1 | /**************************************************************************/ |
2 | /* plane.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "plane.h" |
32 | |
33 | #include "core/math/math_funcs.h" |
34 | #include "core/variant/variant.h" |
35 | |
36 | void Plane::set_normal(const Vector3 &p_normal) { |
37 | normal = p_normal; |
38 | } |
39 | |
40 | void Plane::normalize() { |
41 | real_t l = normal.length(); |
42 | if (l == 0) { |
43 | *this = Plane(0, 0, 0, 0); |
44 | return; |
45 | } |
46 | normal /= l; |
47 | d /= l; |
48 | } |
49 | |
50 | Plane Plane::normalized() const { |
51 | Plane p = *this; |
52 | p.normalize(); |
53 | return p; |
54 | } |
55 | |
56 | Vector3 Plane::get_any_perpendicular_normal() const { |
57 | static const Vector3 p1 = Vector3(1, 0, 0); |
58 | static const Vector3 p2 = Vector3(0, 1, 0); |
59 | Vector3 p; |
60 | |
61 | if (ABS(normal.dot(p1)) > 0.99f) { // if too similar to p1 |
62 | p = p2; // use p2 |
63 | } else { |
64 | p = p1; // use p1 |
65 | } |
66 | |
67 | p -= normal * normal.dot(p); |
68 | p.normalize(); |
69 | |
70 | return p; |
71 | } |
72 | |
73 | /* intersections */ |
74 | |
75 | bool Plane::intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result) const { |
76 | const Plane &p_plane0 = *this; |
77 | Vector3 normal0 = p_plane0.normal; |
78 | Vector3 normal1 = p_plane1.normal; |
79 | Vector3 normal2 = p_plane2.normal; |
80 | |
81 | real_t denom = vec3_cross(normal0, normal1).dot(normal2); |
82 | |
83 | if (Math::is_zero_approx(denom)) { |
84 | return false; |
85 | } |
86 | |
87 | if (r_result) { |
88 | *r_result = ((vec3_cross(normal1, normal2) * p_plane0.d) + |
89 | (vec3_cross(normal2, normal0) * p_plane1.d) + |
90 | (vec3_cross(normal0, normal1) * p_plane2.d)) / |
91 | denom; |
92 | } |
93 | |
94 | return true; |
95 | } |
96 | |
97 | bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const { |
98 | Vector3 segment = p_dir; |
99 | real_t den = normal.dot(segment); |
100 | |
101 | if (Math::is_zero_approx(den)) { |
102 | return false; |
103 | } |
104 | |
105 | real_t dist = (normal.dot(p_from) - d) / den; |
106 | |
107 | if (dist > (real_t)CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist |
108 | |
109 | return false; |
110 | } |
111 | |
112 | dist = -dist; |
113 | *p_intersection = p_from + segment * dist; |
114 | |
115 | return true; |
116 | } |
117 | |
118 | bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 *p_intersection) const { |
119 | Vector3 segment = p_begin - p_end; |
120 | real_t den = normal.dot(segment); |
121 | |
122 | if (Math::is_zero_approx(den)) { |
123 | return false; |
124 | } |
125 | |
126 | real_t dist = (normal.dot(p_begin) - d) / den; |
127 | |
128 | if (dist < (real_t)-CMP_EPSILON || dist > (1.0f + (real_t)CMP_EPSILON)) { |
129 | return false; |
130 | } |
131 | |
132 | dist = -dist; |
133 | *p_intersection = p_begin + segment * dist; |
134 | |
135 | return true; |
136 | } |
137 | |
138 | Variant Plane::intersect_3_bind(const Plane &p_plane1, const Plane &p_plane2) const { |
139 | Vector3 inters; |
140 | if (intersect_3(p_plane1, p_plane2, &inters)) { |
141 | return inters; |
142 | } else { |
143 | return Variant(); |
144 | } |
145 | } |
146 | |
147 | Variant Plane::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const { |
148 | Vector3 inters; |
149 | if (intersects_ray(p_from, p_dir, &inters)) { |
150 | return inters; |
151 | } else { |
152 | return Variant(); |
153 | } |
154 | } |
155 | |
156 | Variant Plane::intersects_segment_bind(const Vector3 &p_begin, const Vector3 &p_end) const { |
157 | Vector3 inters; |
158 | if (intersects_segment(p_begin, p_end, &inters)) { |
159 | return inters; |
160 | } else { |
161 | return Variant(); |
162 | } |
163 | } |
164 | |
165 | /* misc */ |
166 | |
167 | bool Plane::is_equal_approx_any_side(const Plane &p_plane) const { |
168 | return (normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d)) || (normal.is_equal_approx(-p_plane.normal) && Math::is_equal_approx(d, -p_plane.d)); |
169 | } |
170 | |
171 | bool Plane::is_equal_approx(const Plane &p_plane) const { |
172 | return normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d); |
173 | } |
174 | |
175 | bool Plane::is_finite() const { |
176 | return normal.is_finite() && Math::is_finite(d); |
177 | } |
178 | |
179 | Plane::operator String() const { |
180 | return "[N: " + normal.operator String() + ", D: " + String::num_real(d, false) + "]" ; |
181 | } |
182 | |