| 1 | /**************************************************************************/ |
| 2 | /* plane.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "plane.h" |
| 32 | |
| 33 | #include "core/math/math_funcs.h" |
| 34 | #include "core/variant/variant.h" |
| 35 | |
| 36 | void Plane::set_normal(const Vector3 &p_normal) { |
| 37 | normal = p_normal; |
| 38 | } |
| 39 | |
| 40 | void Plane::normalize() { |
| 41 | real_t l = normal.length(); |
| 42 | if (l == 0) { |
| 43 | *this = Plane(0, 0, 0, 0); |
| 44 | return; |
| 45 | } |
| 46 | normal /= l; |
| 47 | d /= l; |
| 48 | } |
| 49 | |
| 50 | Plane Plane::normalized() const { |
| 51 | Plane p = *this; |
| 52 | p.normalize(); |
| 53 | return p; |
| 54 | } |
| 55 | |
| 56 | Vector3 Plane::get_any_perpendicular_normal() const { |
| 57 | static const Vector3 p1 = Vector3(1, 0, 0); |
| 58 | static const Vector3 p2 = Vector3(0, 1, 0); |
| 59 | Vector3 p; |
| 60 | |
| 61 | if (ABS(normal.dot(p1)) > 0.99f) { // if too similar to p1 |
| 62 | p = p2; // use p2 |
| 63 | } else { |
| 64 | p = p1; // use p1 |
| 65 | } |
| 66 | |
| 67 | p -= normal * normal.dot(p); |
| 68 | p.normalize(); |
| 69 | |
| 70 | return p; |
| 71 | } |
| 72 | |
| 73 | /* intersections */ |
| 74 | |
| 75 | bool Plane::intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result) const { |
| 76 | const Plane &p_plane0 = *this; |
| 77 | Vector3 normal0 = p_plane0.normal; |
| 78 | Vector3 normal1 = p_plane1.normal; |
| 79 | Vector3 normal2 = p_plane2.normal; |
| 80 | |
| 81 | real_t denom = vec3_cross(normal0, normal1).dot(normal2); |
| 82 | |
| 83 | if (Math::is_zero_approx(denom)) { |
| 84 | return false; |
| 85 | } |
| 86 | |
| 87 | if (r_result) { |
| 88 | *r_result = ((vec3_cross(normal1, normal2) * p_plane0.d) + |
| 89 | (vec3_cross(normal2, normal0) * p_plane1.d) + |
| 90 | (vec3_cross(normal0, normal1) * p_plane2.d)) / |
| 91 | denom; |
| 92 | } |
| 93 | |
| 94 | return true; |
| 95 | } |
| 96 | |
| 97 | bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const { |
| 98 | Vector3 segment = p_dir; |
| 99 | real_t den = normal.dot(segment); |
| 100 | |
| 101 | if (Math::is_zero_approx(den)) { |
| 102 | return false; |
| 103 | } |
| 104 | |
| 105 | real_t dist = (normal.dot(p_from) - d) / den; |
| 106 | |
| 107 | if (dist > (real_t)CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist |
| 108 | |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | dist = -dist; |
| 113 | *p_intersection = p_from + segment * dist; |
| 114 | |
| 115 | return true; |
| 116 | } |
| 117 | |
| 118 | bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 *p_intersection) const { |
| 119 | Vector3 segment = p_begin - p_end; |
| 120 | real_t den = normal.dot(segment); |
| 121 | |
| 122 | if (Math::is_zero_approx(den)) { |
| 123 | return false; |
| 124 | } |
| 125 | |
| 126 | real_t dist = (normal.dot(p_begin) - d) / den; |
| 127 | |
| 128 | if (dist < (real_t)-CMP_EPSILON || dist > (1.0f + (real_t)CMP_EPSILON)) { |
| 129 | return false; |
| 130 | } |
| 131 | |
| 132 | dist = -dist; |
| 133 | *p_intersection = p_begin + segment * dist; |
| 134 | |
| 135 | return true; |
| 136 | } |
| 137 | |
| 138 | Variant Plane::intersect_3_bind(const Plane &p_plane1, const Plane &p_plane2) const { |
| 139 | Vector3 inters; |
| 140 | if (intersect_3(p_plane1, p_plane2, &inters)) { |
| 141 | return inters; |
| 142 | } else { |
| 143 | return Variant(); |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | Variant Plane::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const { |
| 148 | Vector3 inters; |
| 149 | if (intersects_ray(p_from, p_dir, &inters)) { |
| 150 | return inters; |
| 151 | } else { |
| 152 | return Variant(); |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | Variant Plane::intersects_segment_bind(const Vector3 &p_begin, const Vector3 &p_end) const { |
| 157 | Vector3 inters; |
| 158 | if (intersects_segment(p_begin, p_end, &inters)) { |
| 159 | return inters; |
| 160 | } else { |
| 161 | return Variant(); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | /* misc */ |
| 166 | |
| 167 | bool Plane::is_equal_approx_any_side(const Plane &p_plane) const { |
| 168 | return (normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d)) || (normal.is_equal_approx(-p_plane.normal) && Math::is_equal_approx(d, -p_plane.d)); |
| 169 | } |
| 170 | |
| 171 | bool Plane::is_equal_approx(const Plane &p_plane) const { |
| 172 | return normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d); |
| 173 | } |
| 174 | |
| 175 | bool Plane::is_finite() const { |
| 176 | return normal.is_finite() && Math::is_finite(d); |
| 177 | } |
| 178 | |
| 179 | Plane::operator String() const { |
| 180 | return "[N: " + normal.operator String() + ", D: " + String::num_real(d, false) + "]" ; |
| 181 | } |
| 182 | |