| 1 | /**************************************************************************/ |
| 2 | /* hash_set.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef HASH_SET_H |
| 32 | #define HASH_SET_H |
| 33 | |
| 34 | #include "core/math/math_funcs.h" |
| 35 | #include "core/os/memory.h" |
| 36 | #include "core/templates/hash_map.h" |
| 37 | #include "core/templates/hashfuncs.h" |
| 38 | #include "core/templates/paged_allocator.h" |
| 39 | |
| 40 | /** |
| 41 | * Implementation of Set using a bidi indexed hash map. |
| 42 | * Use RBSet instead of this only if the following conditions are met: |
| 43 | * |
| 44 | * - You need to keep an iterator or const pointer to Key and you intend to add/remove elements in the meantime. |
| 45 | * - Iteration order does matter (via operator<) |
| 46 | * |
| 47 | */ |
| 48 | |
| 49 | template <class TKey, |
| 50 | class Hasher = HashMapHasherDefault, |
| 51 | class Comparator = HashMapComparatorDefault<TKey>> |
| 52 | class HashSet { |
| 53 | public: |
| 54 | static constexpr uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime. |
| 55 | static constexpr float MAX_OCCUPANCY = 0.75; |
| 56 | static constexpr uint32_t EMPTY_HASH = 0; |
| 57 | |
| 58 | private: |
| 59 | TKey *keys = nullptr; |
| 60 | uint32_t *hash_to_key = nullptr; |
| 61 | uint32_t *key_to_hash = nullptr; |
| 62 | uint32_t *hashes = nullptr; |
| 63 | |
| 64 | uint32_t capacity_index = 0; |
| 65 | uint32_t num_elements = 0; |
| 66 | |
| 67 | _FORCE_INLINE_ uint32_t _hash(const TKey &p_key) const { |
| 68 | uint32_t hash = Hasher::hash(p_key); |
| 69 | |
| 70 | if (unlikely(hash == EMPTY_HASH)) { |
| 71 | hash = EMPTY_HASH + 1; |
| 72 | } |
| 73 | |
| 74 | return hash; |
| 75 | } |
| 76 | |
| 77 | static _FORCE_INLINE_ uint32_t _get_probe_length(const uint32_t p_pos, const uint32_t p_hash, const uint32_t p_capacity, const uint64_t p_capacity_inv) { |
| 78 | const uint32_t original_pos = fastmod(p_hash, p_capacity_inv, p_capacity); |
| 79 | return fastmod(p_pos - original_pos + p_capacity, p_capacity_inv, p_capacity); |
| 80 | } |
| 81 | |
| 82 | bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) const { |
| 83 | if (keys == nullptr || num_elements == 0) { |
| 84 | return false; // Failed lookups, no elements |
| 85 | } |
| 86 | |
| 87 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 88 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
| 89 | uint32_t hash = _hash(p_key); |
| 90 | uint32_t pos = fastmod(hash, capacity_inv, capacity); |
| 91 | uint32_t distance = 0; |
| 92 | |
| 93 | while (true) { |
| 94 | if (hashes[pos] == EMPTY_HASH) { |
| 95 | return false; |
| 96 | } |
| 97 | |
| 98 | if (distance > _get_probe_length(pos, hashes[pos], capacity, capacity_inv)) { |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | if (hashes[pos] == hash && Comparator::compare(keys[hash_to_key[pos]], p_key)) { |
| 103 | r_pos = hash_to_key[pos]; |
| 104 | return true; |
| 105 | } |
| 106 | |
| 107 | pos = fastmod(pos + 1, capacity_inv, capacity); |
| 108 | distance++; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | uint32_t _insert_with_hash(uint32_t p_hash, uint32_t p_index) { |
| 113 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 114 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
| 115 | uint32_t hash = p_hash; |
| 116 | uint32_t index = p_index; |
| 117 | uint32_t distance = 0; |
| 118 | uint32_t pos = fastmod(hash, capacity_inv, capacity); |
| 119 | |
| 120 | while (true) { |
| 121 | if (hashes[pos] == EMPTY_HASH) { |
| 122 | hashes[pos] = hash; |
| 123 | key_to_hash[index] = pos; |
| 124 | hash_to_key[pos] = index; |
| 125 | return pos; |
| 126 | } |
| 127 | |
| 128 | // Not an empty slot, let's check the probing length of the existing one. |
| 129 | uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos], capacity, capacity_inv); |
| 130 | if (existing_probe_len < distance) { |
| 131 | key_to_hash[index] = pos; |
| 132 | SWAP(hash, hashes[pos]); |
| 133 | SWAP(index, hash_to_key[pos]); |
| 134 | distance = existing_probe_len; |
| 135 | } |
| 136 | |
| 137 | pos = fastmod(pos + 1, capacity_inv, capacity); |
| 138 | distance++; |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | void _resize_and_rehash(uint32_t p_new_capacity_index) { |
| 143 | // Capacity can't be 0. |
| 144 | capacity_index = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_index); |
| 145 | |
| 146 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 147 | |
| 148 | uint32_t *old_hashes = hashes; |
| 149 | uint32_t *old_key_to_hash = key_to_hash; |
| 150 | |
| 151 | hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 152 | keys = reinterpret_cast<TKey *>(Memory::realloc_static(keys, sizeof(TKey) * capacity)); |
| 153 | key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 154 | hash_to_key = reinterpret_cast<uint32_t *>(Memory::realloc_static(hash_to_key, sizeof(uint32_t) * capacity)); |
| 155 | |
| 156 | for (uint32_t i = 0; i < capacity; i++) { |
| 157 | hashes[i] = EMPTY_HASH; |
| 158 | } |
| 159 | |
| 160 | for (uint32_t i = 0; i < num_elements; i++) { |
| 161 | uint32_t h = old_hashes[old_key_to_hash[i]]; |
| 162 | _insert_with_hash(h, i); |
| 163 | } |
| 164 | |
| 165 | Memory::free_static(old_hashes); |
| 166 | Memory::free_static(old_key_to_hash); |
| 167 | } |
| 168 | |
| 169 | _FORCE_INLINE_ int32_t _insert(const TKey &p_key) { |
| 170 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 171 | if (unlikely(keys == nullptr)) { |
| 172 | // Allocate on demand to save memory. |
| 173 | |
| 174 | hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 175 | keys = reinterpret_cast<TKey *>(Memory::alloc_static(sizeof(TKey) * capacity)); |
| 176 | key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 177 | hash_to_key = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 178 | |
| 179 | for (uint32_t i = 0; i < capacity; i++) { |
| 180 | hashes[i] = EMPTY_HASH; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | uint32_t pos = 0; |
| 185 | bool exists = _lookup_pos(p_key, pos); |
| 186 | |
| 187 | if (exists) { |
| 188 | return pos; |
| 189 | } else { |
| 190 | if (num_elements + 1 > MAX_OCCUPANCY * capacity) { |
| 191 | ERR_FAIL_COND_V_MSG(capacity_index + 1 == HASH_TABLE_SIZE_MAX, -1, "Hash table maximum capacity reached, aborting insertion." ); |
| 192 | _resize_and_rehash(capacity_index + 1); |
| 193 | } |
| 194 | |
| 195 | uint32_t hash = _hash(p_key); |
| 196 | memnew_placement(&keys[num_elements], TKey(p_key)); |
| 197 | _insert_with_hash(hash, num_elements); |
| 198 | num_elements++; |
| 199 | return num_elements - 1; |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | void _init_from(const HashSet &p_other) { |
| 204 | capacity_index = p_other.capacity_index; |
| 205 | num_elements = p_other.num_elements; |
| 206 | |
| 207 | if (p_other.num_elements == 0) { |
| 208 | return; |
| 209 | } |
| 210 | |
| 211 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 212 | |
| 213 | hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 214 | keys = reinterpret_cast<TKey *>(Memory::alloc_static(sizeof(TKey) * capacity)); |
| 215 | key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 216 | hash_to_key = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
| 217 | |
| 218 | for (uint32_t i = 0; i < num_elements; i++) { |
| 219 | memnew_placement(&keys[i], TKey(p_other.keys[i])); |
| 220 | key_to_hash[i] = p_other.key_to_hash[i]; |
| 221 | } |
| 222 | |
| 223 | for (uint32_t i = 0; i < capacity; i++) { |
| 224 | hashes[i] = p_other.hashes[i]; |
| 225 | hash_to_key[i] = p_other.hash_to_key[i]; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | public: |
| 230 | _FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[capacity_index]; } |
| 231 | _FORCE_INLINE_ uint32_t size() const { return num_elements; } |
| 232 | |
| 233 | /* Standard Godot Container API */ |
| 234 | |
| 235 | bool is_empty() const { |
| 236 | return num_elements == 0; |
| 237 | } |
| 238 | |
| 239 | void clear() { |
| 240 | if (keys == nullptr || num_elements == 0) { |
| 241 | return; |
| 242 | } |
| 243 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 244 | for (uint32_t i = 0; i < capacity; i++) { |
| 245 | hashes[i] = EMPTY_HASH; |
| 246 | } |
| 247 | for (uint32_t i = 0; i < num_elements; i++) { |
| 248 | keys[i].~TKey(); |
| 249 | } |
| 250 | |
| 251 | num_elements = 0; |
| 252 | } |
| 253 | |
| 254 | _FORCE_INLINE_ bool has(const TKey &p_key) const { |
| 255 | uint32_t _pos = 0; |
| 256 | return _lookup_pos(p_key, _pos); |
| 257 | } |
| 258 | |
| 259 | bool erase(const TKey &p_key) { |
| 260 | uint32_t pos = 0; |
| 261 | bool exists = _lookup_pos(p_key, pos); |
| 262 | |
| 263 | if (!exists) { |
| 264 | return false; |
| 265 | } |
| 266 | |
| 267 | uint32_t key_pos = pos; |
| 268 | pos = key_to_hash[pos]; //make hash pos |
| 269 | |
| 270 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
| 271 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
| 272 | uint32_t next_pos = fastmod(pos + 1, capacity_inv, capacity); |
| 273 | while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity, capacity_inv) != 0) { |
| 274 | uint32_t kpos = hash_to_key[pos]; |
| 275 | uint32_t kpos_next = hash_to_key[next_pos]; |
| 276 | SWAP(key_to_hash[kpos], key_to_hash[kpos_next]); |
| 277 | SWAP(hashes[next_pos], hashes[pos]); |
| 278 | SWAP(hash_to_key[next_pos], hash_to_key[pos]); |
| 279 | |
| 280 | pos = next_pos; |
| 281 | next_pos = fastmod(pos + 1, capacity_inv, capacity); |
| 282 | } |
| 283 | |
| 284 | hashes[pos] = EMPTY_HASH; |
| 285 | keys[key_pos].~TKey(); |
| 286 | num_elements--; |
| 287 | if (key_pos < num_elements) { |
| 288 | // Not the last key, move the last one here to keep keys lineal |
| 289 | memnew_placement(&keys[key_pos], TKey(keys[num_elements])); |
| 290 | keys[num_elements].~TKey(); |
| 291 | key_to_hash[key_pos] = key_to_hash[num_elements]; |
| 292 | hash_to_key[key_to_hash[num_elements]] = key_pos; |
| 293 | } |
| 294 | |
| 295 | return true; |
| 296 | } |
| 297 | |
| 298 | // Reserves space for a number of elements, useful to avoid many resizes and rehashes. |
| 299 | // If adding a known (possibly large) number of elements at once, must be larger than old capacity. |
| 300 | void reserve(uint32_t p_new_capacity) { |
| 301 | uint32_t new_index = capacity_index; |
| 302 | |
| 303 | while (hash_table_size_primes[new_index] < p_new_capacity) { |
| 304 | ERR_FAIL_COND_MSG(new_index + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr); |
| 305 | new_index++; |
| 306 | } |
| 307 | |
| 308 | if (new_index == capacity_index) { |
| 309 | return; |
| 310 | } |
| 311 | |
| 312 | if (keys == nullptr) { |
| 313 | capacity_index = new_index; |
| 314 | return; // Unallocated yet. |
| 315 | } |
| 316 | _resize_and_rehash(new_index); |
| 317 | } |
| 318 | |
| 319 | /** Iterator API **/ |
| 320 | |
| 321 | struct Iterator { |
| 322 | _FORCE_INLINE_ const TKey &operator*() const { |
| 323 | return keys[index]; |
| 324 | } |
| 325 | _FORCE_INLINE_ const TKey *operator->() const { |
| 326 | return &keys[index]; |
| 327 | } |
| 328 | _FORCE_INLINE_ Iterator &operator++() { |
| 329 | index++; |
| 330 | if (index >= (int32_t)num_keys) { |
| 331 | index = -1; |
| 332 | keys = nullptr; |
| 333 | num_keys = 0; |
| 334 | } |
| 335 | return *this; |
| 336 | } |
| 337 | _FORCE_INLINE_ Iterator &operator--() { |
| 338 | index--; |
| 339 | if (index < 0) { |
| 340 | index = -1; |
| 341 | keys = nullptr; |
| 342 | num_keys = 0; |
| 343 | } |
| 344 | return *this; |
| 345 | } |
| 346 | |
| 347 | _FORCE_INLINE_ bool operator==(const Iterator &b) const { return keys == b.keys && index == b.index; } |
| 348 | _FORCE_INLINE_ bool operator!=(const Iterator &b) const { return keys != b.keys || index != b.index; } |
| 349 | |
| 350 | _FORCE_INLINE_ explicit operator bool() const { |
| 351 | return keys != nullptr; |
| 352 | } |
| 353 | |
| 354 | _FORCE_INLINE_ Iterator(const TKey *p_keys, uint32_t p_num_keys, int32_t p_index = -1) { |
| 355 | keys = p_keys; |
| 356 | num_keys = p_num_keys; |
| 357 | index = p_index; |
| 358 | } |
| 359 | _FORCE_INLINE_ Iterator() {} |
| 360 | _FORCE_INLINE_ Iterator(const Iterator &p_it) { |
| 361 | keys = p_it.keys; |
| 362 | num_keys = p_it.num_keys; |
| 363 | index = p_it.index; |
| 364 | } |
| 365 | _FORCE_INLINE_ void operator=(const Iterator &p_it) { |
| 366 | keys = p_it.keys; |
| 367 | num_keys = p_it.num_keys; |
| 368 | index = p_it.index; |
| 369 | } |
| 370 | |
| 371 | private: |
| 372 | const TKey *keys = nullptr; |
| 373 | uint32_t num_keys = 0; |
| 374 | int32_t index = -1; |
| 375 | }; |
| 376 | |
| 377 | _FORCE_INLINE_ Iterator begin() const { |
| 378 | return num_elements ? Iterator(keys, num_elements, 0) : Iterator(); |
| 379 | } |
| 380 | _FORCE_INLINE_ Iterator end() const { |
| 381 | return Iterator(); |
| 382 | } |
| 383 | _FORCE_INLINE_ Iterator last() const { |
| 384 | if (num_elements == 0) { |
| 385 | return Iterator(); |
| 386 | } |
| 387 | return Iterator(keys, num_elements, num_elements - 1); |
| 388 | } |
| 389 | |
| 390 | _FORCE_INLINE_ Iterator find(const TKey &p_key) const { |
| 391 | uint32_t pos = 0; |
| 392 | bool exists = _lookup_pos(p_key, pos); |
| 393 | if (!exists) { |
| 394 | return end(); |
| 395 | } |
| 396 | return Iterator(keys, num_elements, pos); |
| 397 | } |
| 398 | |
| 399 | _FORCE_INLINE_ void remove(const Iterator &p_iter) { |
| 400 | if (p_iter) { |
| 401 | erase(*p_iter); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | /* Insert */ |
| 406 | |
| 407 | Iterator insert(const TKey &p_key) { |
| 408 | uint32_t pos = _insert(p_key); |
| 409 | return Iterator(keys, num_elements, pos); |
| 410 | } |
| 411 | |
| 412 | /* Constructors */ |
| 413 | |
| 414 | HashSet(const HashSet &p_other) { |
| 415 | _init_from(p_other); |
| 416 | } |
| 417 | |
| 418 | void operator=(const HashSet &p_other) { |
| 419 | if (this == &p_other) { |
| 420 | return; // Ignore self assignment. |
| 421 | } |
| 422 | |
| 423 | clear(); |
| 424 | |
| 425 | if (keys != nullptr) { |
| 426 | Memory::free_static(keys); |
| 427 | Memory::free_static(key_to_hash); |
| 428 | Memory::free_static(hash_to_key); |
| 429 | Memory::free_static(hashes); |
| 430 | keys = nullptr; |
| 431 | hashes = nullptr; |
| 432 | hash_to_key = nullptr; |
| 433 | key_to_hash = nullptr; |
| 434 | } |
| 435 | |
| 436 | _init_from(p_other); |
| 437 | } |
| 438 | |
| 439 | HashSet(uint32_t p_initial_capacity) { |
| 440 | // Capacity can't be 0. |
| 441 | capacity_index = 0; |
| 442 | reserve(p_initial_capacity); |
| 443 | } |
| 444 | HashSet() { |
| 445 | capacity_index = MIN_CAPACITY_INDEX; |
| 446 | } |
| 447 | |
| 448 | void reset() { |
| 449 | clear(); |
| 450 | |
| 451 | if (keys != nullptr) { |
| 452 | Memory::free_static(keys); |
| 453 | Memory::free_static(key_to_hash); |
| 454 | Memory::free_static(hash_to_key); |
| 455 | Memory::free_static(hashes); |
| 456 | keys = nullptr; |
| 457 | hashes = nullptr; |
| 458 | hash_to_key = nullptr; |
| 459 | key_to_hash = nullptr; |
| 460 | } |
| 461 | capacity_index = MIN_CAPACITY_INDEX; |
| 462 | } |
| 463 | |
| 464 | ~HashSet() { |
| 465 | clear(); |
| 466 | |
| 467 | if (keys != nullptr) { |
| 468 | Memory::free_static(keys); |
| 469 | Memory::free_static(key_to_hash); |
| 470 | Memory::free_static(hash_to_key); |
| 471 | Memory::free_static(hashes); |
| 472 | } |
| 473 | } |
| 474 | }; |
| 475 | |
| 476 | #endif // HASH_SET_H |
| 477 | |