1 | /**************************************************************************/ |
2 | /* hash_set.h */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #ifndef HASH_SET_H |
32 | #define HASH_SET_H |
33 | |
34 | #include "core/math/math_funcs.h" |
35 | #include "core/os/memory.h" |
36 | #include "core/templates/hash_map.h" |
37 | #include "core/templates/hashfuncs.h" |
38 | #include "core/templates/paged_allocator.h" |
39 | |
40 | /** |
41 | * Implementation of Set using a bidi indexed hash map. |
42 | * Use RBSet instead of this only if the following conditions are met: |
43 | * |
44 | * - You need to keep an iterator or const pointer to Key and you intend to add/remove elements in the meantime. |
45 | * - Iteration order does matter (via operator<) |
46 | * |
47 | */ |
48 | |
49 | template <class TKey, |
50 | class Hasher = HashMapHasherDefault, |
51 | class Comparator = HashMapComparatorDefault<TKey>> |
52 | class HashSet { |
53 | public: |
54 | static constexpr uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime. |
55 | static constexpr float MAX_OCCUPANCY = 0.75; |
56 | static constexpr uint32_t EMPTY_HASH = 0; |
57 | |
58 | private: |
59 | TKey *keys = nullptr; |
60 | uint32_t *hash_to_key = nullptr; |
61 | uint32_t *key_to_hash = nullptr; |
62 | uint32_t *hashes = nullptr; |
63 | |
64 | uint32_t capacity_index = 0; |
65 | uint32_t num_elements = 0; |
66 | |
67 | _FORCE_INLINE_ uint32_t _hash(const TKey &p_key) const { |
68 | uint32_t hash = Hasher::hash(p_key); |
69 | |
70 | if (unlikely(hash == EMPTY_HASH)) { |
71 | hash = EMPTY_HASH + 1; |
72 | } |
73 | |
74 | return hash; |
75 | } |
76 | |
77 | static _FORCE_INLINE_ uint32_t _get_probe_length(const uint32_t p_pos, const uint32_t p_hash, const uint32_t p_capacity, const uint64_t p_capacity_inv) { |
78 | const uint32_t original_pos = fastmod(p_hash, p_capacity_inv, p_capacity); |
79 | return fastmod(p_pos - original_pos + p_capacity, p_capacity_inv, p_capacity); |
80 | } |
81 | |
82 | bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) const { |
83 | if (keys == nullptr || num_elements == 0) { |
84 | return false; // Failed lookups, no elements |
85 | } |
86 | |
87 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
88 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
89 | uint32_t hash = _hash(p_key); |
90 | uint32_t pos = fastmod(hash, capacity_inv, capacity); |
91 | uint32_t distance = 0; |
92 | |
93 | while (true) { |
94 | if (hashes[pos] == EMPTY_HASH) { |
95 | return false; |
96 | } |
97 | |
98 | if (distance > _get_probe_length(pos, hashes[pos], capacity, capacity_inv)) { |
99 | return false; |
100 | } |
101 | |
102 | if (hashes[pos] == hash && Comparator::compare(keys[hash_to_key[pos]], p_key)) { |
103 | r_pos = hash_to_key[pos]; |
104 | return true; |
105 | } |
106 | |
107 | pos = fastmod(pos + 1, capacity_inv, capacity); |
108 | distance++; |
109 | } |
110 | } |
111 | |
112 | uint32_t _insert_with_hash(uint32_t p_hash, uint32_t p_index) { |
113 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
114 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
115 | uint32_t hash = p_hash; |
116 | uint32_t index = p_index; |
117 | uint32_t distance = 0; |
118 | uint32_t pos = fastmod(hash, capacity_inv, capacity); |
119 | |
120 | while (true) { |
121 | if (hashes[pos] == EMPTY_HASH) { |
122 | hashes[pos] = hash; |
123 | key_to_hash[index] = pos; |
124 | hash_to_key[pos] = index; |
125 | return pos; |
126 | } |
127 | |
128 | // Not an empty slot, let's check the probing length of the existing one. |
129 | uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos], capacity, capacity_inv); |
130 | if (existing_probe_len < distance) { |
131 | key_to_hash[index] = pos; |
132 | SWAP(hash, hashes[pos]); |
133 | SWAP(index, hash_to_key[pos]); |
134 | distance = existing_probe_len; |
135 | } |
136 | |
137 | pos = fastmod(pos + 1, capacity_inv, capacity); |
138 | distance++; |
139 | } |
140 | } |
141 | |
142 | void _resize_and_rehash(uint32_t p_new_capacity_index) { |
143 | // Capacity can't be 0. |
144 | capacity_index = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_index); |
145 | |
146 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
147 | |
148 | uint32_t *old_hashes = hashes; |
149 | uint32_t *old_key_to_hash = key_to_hash; |
150 | |
151 | hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
152 | keys = reinterpret_cast<TKey *>(Memory::realloc_static(keys, sizeof(TKey) * capacity)); |
153 | key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
154 | hash_to_key = reinterpret_cast<uint32_t *>(Memory::realloc_static(hash_to_key, sizeof(uint32_t) * capacity)); |
155 | |
156 | for (uint32_t i = 0; i < capacity; i++) { |
157 | hashes[i] = EMPTY_HASH; |
158 | } |
159 | |
160 | for (uint32_t i = 0; i < num_elements; i++) { |
161 | uint32_t h = old_hashes[old_key_to_hash[i]]; |
162 | _insert_with_hash(h, i); |
163 | } |
164 | |
165 | Memory::free_static(old_hashes); |
166 | Memory::free_static(old_key_to_hash); |
167 | } |
168 | |
169 | _FORCE_INLINE_ int32_t _insert(const TKey &p_key) { |
170 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
171 | if (unlikely(keys == nullptr)) { |
172 | // Allocate on demand to save memory. |
173 | |
174 | hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
175 | keys = reinterpret_cast<TKey *>(Memory::alloc_static(sizeof(TKey) * capacity)); |
176 | key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
177 | hash_to_key = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
178 | |
179 | for (uint32_t i = 0; i < capacity; i++) { |
180 | hashes[i] = EMPTY_HASH; |
181 | } |
182 | } |
183 | |
184 | uint32_t pos = 0; |
185 | bool exists = _lookup_pos(p_key, pos); |
186 | |
187 | if (exists) { |
188 | return pos; |
189 | } else { |
190 | if (num_elements + 1 > MAX_OCCUPANCY * capacity) { |
191 | ERR_FAIL_COND_V_MSG(capacity_index + 1 == HASH_TABLE_SIZE_MAX, -1, "Hash table maximum capacity reached, aborting insertion." ); |
192 | _resize_and_rehash(capacity_index + 1); |
193 | } |
194 | |
195 | uint32_t hash = _hash(p_key); |
196 | memnew_placement(&keys[num_elements], TKey(p_key)); |
197 | _insert_with_hash(hash, num_elements); |
198 | num_elements++; |
199 | return num_elements - 1; |
200 | } |
201 | } |
202 | |
203 | void _init_from(const HashSet &p_other) { |
204 | capacity_index = p_other.capacity_index; |
205 | num_elements = p_other.num_elements; |
206 | |
207 | if (p_other.num_elements == 0) { |
208 | return; |
209 | } |
210 | |
211 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
212 | |
213 | hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
214 | keys = reinterpret_cast<TKey *>(Memory::alloc_static(sizeof(TKey) * capacity)); |
215 | key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
216 | hash_to_key = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); |
217 | |
218 | for (uint32_t i = 0; i < num_elements; i++) { |
219 | memnew_placement(&keys[i], TKey(p_other.keys[i])); |
220 | key_to_hash[i] = p_other.key_to_hash[i]; |
221 | } |
222 | |
223 | for (uint32_t i = 0; i < capacity; i++) { |
224 | hashes[i] = p_other.hashes[i]; |
225 | hash_to_key[i] = p_other.hash_to_key[i]; |
226 | } |
227 | } |
228 | |
229 | public: |
230 | _FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[capacity_index]; } |
231 | _FORCE_INLINE_ uint32_t size() const { return num_elements; } |
232 | |
233 | /* Standard Godot Container API */ |
234 | |
235 | bool is_empty() const { |
236 | return num_elements == 0; |
237 | } |
238 | |
239 | void clear() { |
240 | if (keys == nullptr || num_elements == 0) { |
241 | return; |
242 | } |
243 | uint32_t capacity = hash_table_size_primes[capacity_index]; |
244 | for (uint32_t i = 0; i < capacity; i++) { |
245 | hashes[i] = EMPTY_HASH; |
246 | } |
247 | for (uint32_t i = 0; i < num_elements; i++) { |
248 | keys[i].~TKey(); |
249 | } |
250 | |
251 | num_elements = 0; |
252 | } |
253 | |
254 | _FORCE_INLINE_ bool has(const TKey &p_key) const { |
255 | uint32_t _pos = 0; |
256 | return _lookup_pos(p_key, _pos); |
257 | } |
258 | |
259 | bool erase(const TKey &p_key) { |
260 | uint32_t pos = 0; |
261 | bool exists = _lookup_pos(p_key, pos); |
262 | |
263 | if (!exists) { |
264 | return false; |
265 | } |
266 | |
267 | uint32_t key_pos = pos; |
268 | pos = key_to_hash[pos]; //make hash pos |
269 | |
270 | const uint32_t capacity = hash_table_size_primes[capacity_index]; |
271 | const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index]; |
272 | uint32_t next_pos = fastmod(pos + 1, capacity_inv, capacity); |
273 | while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity, capacity_inv) != 0) { |
274 | uint32_t kpos = hash_to_key[pos]; |
275 | uint32_t kpos_next = hash_to_key[next_pos]; |
276 | SWAP(key_to_hash[kpos], key_to_hash[kpos_next]); |
277 | SWAP(hashes[next_pos], hashes[pos]); |
278 | SWAP(hash_to_key[next_pos], hash_to_key[pos]); |
279 | |
280 | pos = next_pos; |
281 | next_pos = fastmod(pos + 1, capacity_inv, capacity); |
282 | } |
283 | |
284 | hashes[pos] = EMPTY_HASH; |
285 | keys[key_pos].~TKey(); |
286 | num_elements--; |
287 | if (key_pos < num_elements) { |
288 | // Not the last key, move the last one here to keep keys lineal |
289 | memnew_placement(&keys[key_pos], TKey(keys[num_elements])); |
290 | keys[num_elements].~TKey(); |
291 | key_to_hash[key_pos] = key_to_hash[num_elements]; |
292 | hash_to_key[key_to_hash[num_elements]] = key_pos; |
293 | } |
294 | |
295 | return true; |
296 | } |
297 | |
298 | // Reserves space for a number of elements, useful to avoid many resizes and rehashes. |
299 | // If adding a known (possibly large) number of elements at once, must be larger than old capacity. |
300 | void reserve(uint32_t p_new_capacity) { |
301 | uint32_t new_index = capacity_index; |
302 | |
303 | while (hash_table_size_primes[new_index] < p_new_capacity) { |
304 | ERR_FAIL_COND_MSG(new_index + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr); |
305 | new_index++; |
306 | } |
307 | |
308 | if (new_index == capacity_index) { |
309 | return; |
310 | } |
311 | |
312 | if (keys == nullptr) { |
313 | capacity_index = new_index; |
314 | return; // Unallocated yet. |
315 | } |
316 | _resize_and_rehash(new_index); |
317 | } |
318 | |
319 | /** Iterator API **/ |
320 | |
321 | struct Iterator { |
322 | _FORCE_INLINE_ const TKey &operator*() const { |
323 | return keys[index]; |
324 | } |
325 | _FORCE_INLINE_ const TKey *operator->() const { |
326 | return &keys[index]; |
327 | } |
328 | _FORCE_INLINE_ Iterator &operator++() { |
329 | index++; |
330 | if (index >= (int32_t)num_keys) { |
331 | index = -1; |
332 | keys = nullptr; |
333 | num_keys = 0; |
334 | } |
335 | return *this; |
336 | } |
337 | _FORCE_INLINE_ Iterator &operator--() { |
338 | index--; |
339 | if (index < 0) { |
340 | index = -1; |
341 | keys = nullptr; |
342 | num_keys = 0; |
343 | } |
344 | return *this; |
345 | } |
346 | |
347 | _FORCE_INLINE_ bool operator==(const Iterator &b) const { return keys == b.keys && index == b.index; } |
348 | _FORCE_INLINE_ bool operator!=(const Iterator &b) const { return keys != b.keys || index != b.index; } |
349 | |
350 | _FORCE_INLINE_ explicit operator bool() const { |
351 | return keys != nullptr; |
352 | } |
353 | |
354 | _FORCE_INLINE_ Iterator(const TKey *p_keys, uint32_t p_num_keys, int32_t p_index = -1) { |
355 | keys = p_keys; |
356 | num_keys = p_num_keys; |
357 | index = p_index; |
358 | } |
359 | _FORCE_INLINE_ Iterator() {} |
360 | _FORCE_INLINE_ Iterator(const Iterator &p_it) { |
361 | keys = p_it.keys; |
362 | num_keys = p_it.num_keys; |
363 | index = p_it.index; |
364 | } |
365 | _FORCE_INLINE_ void operator=(const Iterator &p_it) { |
366 | keys = p_it.keys; |
367 | num_keys = p_it.num_keys; |
368 | index = p_it.index; |
369 | } |
370 | |
371 | private: |
372 | const TKey *keys = nullptr; |
373 | uint32_t num_keys = 0; |
374 | int32_t index = -1; |
375 | }; |
376 | |
377 | _FORCE_INLINE_ Iterator begin() const { |
378 | return num_elements ? Iterator(keys, num_elements, 0) : Iterator(); |
379 | } |
380 | _FORCE_INLINE_ Iterator end() const { |
381 | return Iterator(); |
382 | } |
383 | _FORCE_INLINE_ Iterator last() const { |
384 | if (num_elements == 0) { |
385 | return Iterator(); |
386 | } |
387 | return Iterator(keys, num_elements, num_elements - 1); |
388 | } |
389 | |
390 | _FORCE_INLINE_ Iterator find(const TKey &p_key) const { |
391 | uint32_t pos = 0; |
392 | bool exists = _lookup_pos(p_key, pos); |
393 | if (!exists) { |
394 | return end(); |
395 | } |
396 | return Iterator(keys, num_elements, pos); |
397 | } |
398 | |
399 | _FORCE_INLINE_ void remove(const Iterator &p_iter) { |
400 | if (p_iter) { |
401 | erase(*p_iter); |
402 | } |
403 | } |
404 | |
405 | /* Insert */ |
406 | |
407 | Iterator insert(const TKey &p_key) { |
408 | uint32_t pos = _insert(p_key); |
409 | return Iterator(keys, num_elements, pos); |
410 | } |
411 | |
412 | /* Constructors */ |
413 | |
414 | HashSet(const HashSet &p_other) { |
415 | _init_from(p_other); |
416 | } |
417 | |
418 | void operator=(const HashSet &p_other) { |
419 | if (this == &p_other) { |
420 | return; // Ignore self assignment. |
421 | } |
422 | |
423 | clear(); |
424 | |
425 | if (keys != nullptr) { |
426 | Memory::free_static(keys); |
427 | Memory::free_static(key_to_hash); |
428 | Memory::free_static(hash_to_key); |
429 | Memory::free_static(hashes); |
430 | keys = nullptr; |
431 | hashes = nullptr; |
432 | hash_to_key = nullptr; |
433 | key_to_hash = nullptr; |
434 | } |
435 | |
436 | _init_from(p_other); |
437 | } |
438 | |
439 | HashSet(uint32_t p_initial_capacity) { |
440 | // Capacity can't be 0. |
441 | capacity_index = 0; |
442 | reserve(p_initial_capacity); |
443 | } |
444 | HashSet() { |
445 | capacity_index = MIN_CAPACITY_INDEX; |
446 | } |
447 | |
448 | void reset() { |
449 | clear(); |
450 | |
451 | if (keys != nullptr) { |
452 | Memory::free_static(keys); |
453 | Memory::free_static(key_to_hash); |
454 | Memory::free_static(hash_to_key); |
455 | Memory::free_static(hashes); |
456 | keys = nullptr; |
457 | hashes = nullptr; |
458 | hash_to_key = nullptr; |
459 | key_to_hash = nullptr; |
460 | } |
461 | capacity_index = MIN_CAPACITY_INDEX; |
462 | } |
463 | |
464 | ~HashSet() { |
465 | clear(); |
466 | |
467 | if (keys != nullptr) { |
468 | Memory::free_static(keys); |
469 | Memory::free_static(key_to_hash); |
470 | Memory::free_static(hash_to_key); |
471 | Memory::free_static(hashes); |
472 | } |
473 | } |
474 | }; |
475 | |
476 | #endif // HASH_SET_H |
477 | |