| 1 | /**************************************************************************/ |
| 2 | /* main_timer_sync.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "main_timer_sync.h" |
| 32 | |
| 33 | #include "core/os/os.h" |
| 34 | #include "servers/display_server.h" |
| 35 | |
| 36 | void MainFrameTime::clamp_process_step(double min_process_step, double max_process_step) { |
| 37 | if (process_step < min_process_step) { |
| 38 | process_step = min_process_step; |
| 39 | } else if (process_step > max_process_step) { |
| 40 | process_step = max_process_step; |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | ///////////////////////////////// |
| 45 | |
| 46 | void MainTimerSync::DeltaSmoother::update_refresh_rate_estimator(int64_t p_delta) { |
| 47 | // the calling code should prevent 0 or negative values of delta |
| 48 | // (preventing divide by zero) |
| 49 | |
| 50 | // note that if the estimate gets locked, and something external changes this |
| 51 | // (e.g. user changes to non-vsync in the OS), then the results may be less than ideal, |
| 52 | // but usually it will detect this via the FPS measurement and not attempt smoothing. |
| 53 | // This should be a rare occurrence anyway, and will be cured next time user restarts game. |
| 54 | if (_estimate_locked) { |
| 55 | return; |
| 56 | } |
| 57 | |
| 58 | // First average the delta over NUM_READINGS |
| 59 | _estimator_total_delta += p_delta; |
| 60 | _estimator_delta_readings++; |
| 61 | |
| 62 | const int NUM_READINGS = 60; |
| 63 | |
| 64 | if (_estimator_delta_readings < NUM_READINGS) { |
| 65 | return; |
| 66 | } |
| 67 | |
| 68 | // use average |
| 69 | p_delta = _estimator_total_delta / NUM_READINGS; |
| 70 | |
| 71 | // reset the averager for next time |
| 72 | _estimator_delta_readings = 0; |
| 73 | _estimator_total_delta = 0; |
| 74 | |
| 75 | /////////////////////////////// |
| 76 | |
| 77 | int fps = Math::round(1000000.0 / p_delta); |
| 78 | |
| 79 | // initial estimation, to speed up converging, special case we will estimate the refresh rate |
| 80 | // from the first average FPS reading |
| 81 | if (_estimated_fps == 0) { |
| 82 | // below 50 might be chugging loading stuff, or else |
| 83 | // dropping loads of frames, so the estimate will be inaccurate |
| 84 | if (fps >= 50) { |
| 85 | _estimated_fps = fps; |
| 86 | #ifdef GODOT_DEBUG_DELTA_SMOOTHER |
| 87 | print_line("initial guess (average measured) refresh rate: " + itos(fps)); |
| 88 | #endif |
| 89 | } else { |
| 90 | // can't get started until above 50 |
| 91 | return; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | // we hit our exact estimated refresh rate. |
| 96 | // increase our confidence in the estimate. |
| 97 | if (fps == _estimated_fps) { |
| 98 | // note that each hit is an average of NUM_READINGS frames |
| 99 | _hits_at_estimated++; |
| 100 | |
| 101 | if (_estimate_complete && _hits_at_estimated == 20) { |
| 102 | _estimate_locked = true; |
| 103 | #ifdef GODOT_DEBUG_DELTA_SMOOTHER |
| 104 | print_line("estimate LOCKED at " + itos(_estimated_fps) + " fps" ); |
| 105 | #endif |
| 106 | return; |
| 107 | } |
| 108 | |
| 109 | // if we are getting pretty confident in this estimate, decide it is complete |
| 110 | // (it can still be increased later, and possibly lowered but only for a short time) |
| 111 | if ((!_estimate_complete) && (_hits_at_estimated > 2)) { |
| 112 | // when the estimate is complete we turn on smoothing |
| 113 | if (_estimated_fps) { |
| 114 | _estimate_complete = true; |
| 115 | _vsync_delta = 1000000 / _estimated_fps; |
| 116 | |
| 117 | #ifdef GODOT_DEBUG_DELTA_SMOOTHER |
| 118 | print_line("estimate complete. vsync_delta " + itos(_vsync_delta) + ", fps " + itos(_estimated_fps)); |
| 119 | #endif |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | #ifdef GODOT_DEBUG_DELTA_SMOOTHER |
| 124 | if ((_hits_at_estimated % (400 / NUM_READINGS)) == 0) { |
| 125 | String sz = "hits at estimated : " + itos(_hits_at_estimated) + ", above : " + itos(_hits_above_estimated) + "( " + itos(_hits_one_above_estimated) + " ), below : " + itos(_hits_below_estimated) + " (" + itos(_hits_one_below_estimated) + " )" ; |
| 126 | |
| 127 | print_line(sz); |
| 128 | } |
| 129 | #endif |
| 130 | |
| 131 | return; |
| 132 | } |
| 133 | |
| 134 | const int SIGNIFICANCE_UP = 1; |
| 135 | const int SIGNIFICANCE_DOWN = 2; |
| 136 | |
| 137 | // we are not usually interested in slowing the estimate |
| 138 | // but we may have overshot, so make it possible to reduce |
| 139 | if (fps < _estimated_fps) { |
| 140 | // micro changes |
| 141 | if (fps == (_estimated_fps - 1)) { |
| 142 | _hits_one_below_estimated++; |
| 143 | |
| 144 | if ((_hits_one_below_estimated > _hits_at_estimated) && (_hits_one_below_estimated > SIGNIFICANCE_DOWN)) { |
| 145 | _estimated_fps--; |
| 146 | made_new_estimate(); |
| 147 | } |
| 148 | |
| 149 | return; |
| 150 | } else { |
| 151 | _hits_below_estimated++; |
| 152 | |
| 153 | // don't allow large lowering if we are established at a refresh rate, as it will probably be dropped frames |
| 154 | bool established = _estimate_complete && (_hits_at_estimated > 10); |
| 155 | |
| 156 | // macro changes |
| 157 | // note there is a large barrier to macro lowering. That is because it is more likely to be dropped frames |
| 158 | // than mis-estimation of the refresh rate. |
| 159 | if (!established) { |
| 160 | if (((_hits_below_estimated / 8) > _hits_at_estimated) && (_hits_below_estimated > SIGNIFICANCE_DOWN)) { |
| 161 | // decrease the estimate |
| 162 | _estimated_fps--; |
| 163 | made_new_estimate(); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | return; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | // Changes increasing the estimate. |
| 172 | // micro changes |
| 173 | if (fps == (_estimated_fps + 1)) { |
| 174 | _hits_one_above_estimated++; |
| 175 | |
| 176 | if ((_hits_one_above_estimated > _hits_at_estimated) && (_hits_one_above_estimated > SIGNIFICANCE_UP)) { |
| 177 | _estimated_fps++; |
| 178 | made_new_estimate(); |
| 179 | } |
| 180 | return; |
| 181 | } else { |
| 182 | _hits_above_estimated++; |
| 183 | |
| 184 | // macro changes |
| 185 | if ((_hits_above_estimated > _hits_at_estimated) && (_hits_above_estimated > SIGNIFICANCE_UP)) { |
| 186 | // increase the estimate |
| 187 | int change = fps - _estimated_fps; |
| 188 | change /= 2; |
| 189 | change = MAX(1, change); |
| 190 | |
| 191 | _estimated_fps += change; |
| 192 | made_new_estimate(); |
| 193 | } |
| 194 | return; |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | bool MainTimerSync::DeltaSmoother::fps_allows_smoothing(int64_t p_delta) { |
| 199 | _measurement_time += p_delta; |
| 200 | _measurement_frame_count++; |
| 201 | |
| 202 | if (_measurement_frame_count == _measurement_end_frame) { |
| 203 | // only switch on or off if the estimate is complete |
| 204 | if (_estimate_complete) { |
| 205 | int64_t time_passed = _measurement_time - _measurement_start_time; |
| 206 | |
| 207 | // average delta |
| 208 | time_passed /= MEASURE_FPS_OVER_NUM_FRAMES; |
| 209 | |
| 210 | // estimate fps |
| 211 | if (time_passed) { |
| 212 | double fps = 1000000.0 / time_passed; |
| 213 | double ratio = fps / (double)_estimated_fps; |
| 214 | |
| 215 | //print_line("ratio : " + String(Variant(ratio))); |
| 216 | |
| 217 | if ((ratio > 0.95) && (ratio < 1.05)) { |
| 218 | _measurement_allows_smoothing = true; |
| 219 | } else { |
| 220 | _measurement_allows_smoothing = false; |
| 221 | } |
| 222 | } |
| 223 | } // estimate complete |
| 224 | |
| 225 | // new start time for next iteration |
| 226 | _measurement_start_time = _measurement_time; |
| 227 | _measurement_end_frame += MEASURE_FPS_OVER_NUM_FRAMES; |
| 228 | } |
| 229 | |
| 230 | return _measurement_allows_smoothing; |
| 231 | } |
| 232 | |
| 233 | int64_t MainTimerSync::DeltaSmoother::smooth_delta(int64_t p_delta) { |
| 234 | // Conditions to disable smoothing. |
| 235 | // Note that vsync is a request, it cannot be relied on, the OS may override this. |
| 236 | // If the OS turns vsync on without vsync in the app, smoothing will not be enabled. |
| 237 | // If the OS turns vsync off with sync enabled in the app, the smoothing must detect this |
| 238 | // via the error metric and switch off. |
| 239 | // Also only try smoothing if vsync is enabled (classical vsync, not new types) .. |
| 240 | // This condition is currently checked before calling smooth_delta(). |
| 241 | if (!OS::get_singleton()->is_delta_smoothing_enabled() || Engine::get_singleton()->is_editor_hint()) { |
| 242 | return p_delta; |
| 243 | } |
| 244 | |
| 245 | // only attempt smoothing if vsync is selected |
| 246 | DisplayServer::VSyncMode vsync_mode = DisplayServer::get_singleton()->window_get_vsync_mode(DisplayServer::MAIN_WINDOW_ID); |
| 247 | if (vsync_mode != DisplayServer::VSYNC_ENABLED) { |
| 248 | return p_delta; |
| 249 | } |
| 250 | |
| 251 | // Very important, ignore long deltas and pass them back unmodified. |
| 252 | // This is to deal with resuming after suspend for long periods. |
| 253 | if (p_delta > 1000000) { |
| 254 | return p_delta; |
| 255 | } |
| 256 | |
| 257 | // keep a running guesstimate of the FPS, and turn off smoothing if |
| 258 | // conditions not close to the estimated FPS |
| 259 | if (!fps_allows_smoothing(p_delta)) { |
| 260 | return p_delta; |
| 261 | } |
| 262 | |
| 263 | // we can't cope with negative deltas .. OS bug on some hardware |
| 264 | // and also very small deltas caused by vsync being off. |
| 265 | // This could possibly be part of a hiccup, this value isn't fixed in stone... |
| 266 | if (p_delta < 1000) { |
| 267 | return p_delta; |
| 268 | } |
| 269 | |
| 270 | // note still some vsync off will still get through to this point... |
| 271 | // and we need to cope with it by not converging the estimator / and / or not smoothing |
| 272 | update_refresh_rate_estimator(p_delta); |
| 273 | |
| 274 | // no smoothing until we know what the refresh rate is |
| 275 | if (!_estimate_complete) { |
| 276 | return p_delta; |
| 277 | } |
| 278 | |
| 279 | // accumulate the time we have available to use |
| 280 | _leftover_time += p_delta; |
| 281 | |
| 282 | // how many vsyncs units can we fit? |
| 283 | int64_t units = _leftover_time / _vsync_delta; |
| 284 | |
| 285 | // a delta must include minimum 1 vsync |
| 286 | // (if it is less than that, it is either random error or we are no longer running at the vsync rate, |
| 287 | // in which case we should switch off delta smoothing, or re-estimate the refresh rate) |
| 288 | units = MAX(units, 1); |
| 289 | |
| 290 | _leftover_time -= units * _vsync_delta; |
| 291 | // print_line("units " + itos(units) + ", leftover " + itos(_leftover_time/1000) + " ms"); |
| 292 | |
| 293 | return units * _vsync_delta; |
| 294 | } |
| 295 | |
| 296 | ///////////////////////////////////// |
| 297 | |
| 298 | // returns the fraction of p_physics_step required for the timer to overshoot |
| 299 | // before advance_core considers changing the physics_steps return from |
| 300 | // the typical values as defined by typical_physics_steps |
| 301 | double MainTimerSync::get_physics_jitter_fix() { |
| 302 | return Engine::get_singleton()->get_physics_jitter_fix(); |
| 303 | } |
| 304 | |
| 305 | // gets our best bet for the average number of physics steps per render frame |
| 306 | // return value: number of frames back this data is consistent |
| 307 | int MainTimerSync::get_average_physics_steps(double &p_min, double &p_max) { |
| 308 | p_min = typical_physics_steps[0]; |
| 309 | p_max = p_min + 1; |
| 310 | |
| 311 | for (int i = 1; i < CONTROL_STEPS; ++i) { |
| 312 | const double typical_lower = typical_physics_steps[i]; |
| 313 | const double current_min = typical_lower / (i + 1); |
| 314 | if (current_min > p_max) { |
| 315 | return i; // bail out if further restrictions would void the interval |
| 316 | } else if (current_min > p_min) { |
| 317 | p_min = current_min; |
| 318 | } |
| 319 | const double current_max = (typical_lower + 1) / (i + 1); |
| 320 | if (current_max < p_min) { |
| 321 | return i; |
| 322 | } else if (current_max < p_max) { |
| 323 | p_max = current_max; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | return CONTROL_STEPS; |
| 328 | } |
| 329 | |
| 330 | // advance physics clock by p_process_step, return appropriate number of steps to simulate |
| 331 | MainFrameTime MainTimerSync::advance_core(double p_physics_step, int p_physics_ticks_per_second, double p_process_step) { |
| 332 | MainFrameTime ret; |
| 333 | |
| 334 | ret.process_step = p_process_step; |
| 335 | |
| 336 | // simple determination of number of physics iteration |
| 337 | time_accum += ret.process_step; |
| 338 | ret.physics_steps = floor(time_accum * p_physics_ticks_per_second); |
| 339 | |
| 340 | int min_typical_steps = typical_physics_steps[0]; |
| 341 | int max_typical_steps = min_typical_steps + 1; |
| 342 | |
| 343 | // given the past recorded steps and typical steps to match, calculate bounds for this |
| 344 | // step to be typical |
| 345 | bool update_typical = false; |
| 346 | |
| 347 | for (int i = 0; i < CONTROL_STEPS - 1; ++i) { |
| 348 | int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i]; |
| 349 | if (steps_left_to_match_typical > max_typical_steps || |
| 350 | steps_left_to_match_typical + 1 < min_typical_steps) { |
| 351 | update_typical = true; |
| 352 | break; |
| 353 | } |
| 354 | |
| 355 | if (steps_left_to_match_typical > min_typical_steps) { |
| 356 | min_typical_steps = steps_left_to_match_typical; |
| 357 | } |
| 358 | if (steps_left_to_match_typical + 1 < max_typical_steps) { |
| 359 | max_typical_steps = steps_left_to_match_typical + 1; |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | #ifdef DEBUG_ENABLED |
| 364 | if (max_typical_steps < 0) { |
| 365 | WARN_PRINT_ONCE("`max_typical_steps` is negative. This could hint at an engine bug or system timer misconfiguration." ); |
| 366 | } |
| 367 | #endif |
| 368 | |
| 369 | // try to keep it consistent with previous iterations |
| 370 | if (ret.physics_steps < min_typical_steps) { |
| 371 | const int max_possible_steps = floor((time_accum)*p_physics_ticks_per_second + get_physics_jitter_fix()); |
| 372 | if (max_possible_steps < min_typical_steps) { |
| 373 | ret.physics_steps = max_possible_steps; |
| 374 | update_typical = true; |
| 375 | } else { |
| 376 | ret.physics_steps = min_typical_steps; |
| 377 | } |
| 378 | } else if (ret.physics_steps > max_typical_steps) { |
| 379 | const int min_possible_steps = floor((time_accum)*p_physics_ticks_per_second - get_physics_jitter_fix()); |
| 380 | if (min_possible_steps > max_typical_steps) { |
| 381 | ret.physics_steps = min_possible_steps; |
| 382 | update_typical = true; |
| 383 | } else { |
| 384 | ret.physics_steps = max_typical_steps; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | if (ret.physics_steps < 0) { |
| 389 | ret.physics_steps = 0; |
| 390 | } |
| 391 | |
| 392 | time_accum -= ret.physics_steps * p_physics_step; |
| 393 | |
| 394 | // keep track of accumulated step counts |
| 395 | for (int i = CONTROL_STEPS - 2; i >= 0; --i) { |
| 396 | accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps; |
| 397 | } |
| 398 | accumulated_physics_steps[0] = ret.physics_steps; |
| 399 | |
| 400 | if (update_typical) { |
| 401 | for (int i = CONTROL_STEPS - 1; i >= 0; --i) { |
| 402 | if (typical_physics_steps[i] > accumulated_physics_steps[i]) { |
| 403 | typical_physics_steps[i] = accumulated_physics_steps[i]; |
| 404 | } else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) { |
| 405 | typical_physics_steps[i] = accumulated_physics_steps[i] - 1; |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | return ret; |
| 411 | } |
| 412 | |
| 413 | // calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero |
| 414 | MainFrameTime MainTimerSync::advance_checked(double p_physics_step, int p_physics_ticks_per_second, double p_process_step) { |
| 415 | if (fixed_fps != -1) { |
| 416 | p_process_step = 1.0 / fixed_fps; |
| 417 | } |
| 418 | |
| 419 | float min_output_step = p_process_step / 8; |
| 420 | min_output_step = MAX(min_output_step, 1E-6); |
| 421 | |
| 422 | // compensate for last deficit |
| 423 | p_process_step += time_deficit; |
| 424 | |
| 425 | MainFrameTime ret = advance_core(p_physics_step, p_physics_ticks_per_second, p_process_step); |
| 426 | |
| 427 | // we will do some clamping on ret.process_step and need to sync those changes to time_accum, |
| 428 | // that's easiest if we just remember their fixed difference now |
| 429 | const double process_minus_accum = ret.process_step - time_accum; |
| 430 | |
| 431 | // first, least important clamping: keep ret.process_step consistent with typical_physics_steps. |
| 432 | // this smoothes out the process steps and culls small but quick variations. |
| 433 | { |
| 434 | double min_average_physics_steps, max_average_physics_steps; |
| 435 | int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps); |
| 436 | if (consistent_steps > 3) { |
| 437 | ret.clamp_process_step(min_average_physics_steps * p_physics_step, max_average_physics_steps * p_physics_step); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | // second clamping: keep abs(time_deficit) < jitter_fix * frame_slise |
| 442 | double max_clock_deviation = get_physics_jitter_fix() * p_physics_step; |
| 443 | ret.clamp_process_step(p_process_step - max_clock_deviation, p_process_step + max_clock_deviation); |
| 444 | |
| 445 | // last clamping: make sure time_accum is between 0 and p_physics_step for consistency between physics and process |
| 446 | ret.clamp_process_step(process_minus_accum, process_minus_accum + p_physics_step); |
| 447 | |
| 448 | // all the operations above may have turned ret.p_process_step negative or zero, keep a minimal value |
| 449 | if (ret.process_step < min_output_step) { |
| 450 | ret.process_step = min_output_step; |
| 451 | } |
| 452 | |
| 453 | // restore time_accum |
| 454 | time_accum = ret.process_step - process_minus_accum; |
| 455 | |
| 456 | // forcing ret.process_step to be positive may trigger a violation of the |
| 457 | // promise that time_accum is between 0 and p_physics_step |
| 458 | #ifdef DEBUG_ENABLED |
| 459 | if (time_accum < -1E-7) { |
| 460 | WARN_PRINT_ONCE("Intermediate value of `time_accum` is negative. This could hint at an engine bug or system timer misconfiguration." ); |
| 461 | } |
| 462 | #endif |
| 463 | |
| 464 | if (time_accum > p_physics_step) { |
| 465 | const int = floor(time_accum * p_physics_ticks_per_second); |
| 466 | time_accum -= extra_physics_steps * p_physics_step; |
| 467 | ret.physics_steps += extra_physics_steps; |
| 468 | } |
| 469 | |
| 470 | #ifdef DEBUG_ENABLED |
| 471 | if (time_accum < -1E-7) { |
| 472 | WARN_PRINT_ONCE("Final value of `time_accum` is negative. It should always be between 0 and `p_physics_step`. This hints at an engine bug." ); |
| 473 | } |
| 474 | if (time_accum > p_physics_step + 1E-7) { |
| 475 | WARN_PRINT_ONCE("Final value of `time_accum` is larger than `p_physics_step`. It should always be between 0 and `p_physics_step`. This hints at an engine bug." ); |
| 476 | } |
| 477 | #endif |
| 478 | |
| 479 | // track deficit |
| 480 | time_deficit = p_process_step - ret.process_step; |
| 481 | |
| 482 | // p_physics_step is 1.0 / iterations_per_sec |
| 483 | // i.e. the time in seconds taken by a physics tick |
| 484 | ret.interpolation_fraction = time_accum / p_physics_step; |
| 485 | |
| 486 | return ret; |
| 487 | } |
| 488 | |
| 489 | // determine wall clock step since last iteration |
| 490 | double MainTimerSync::get_cpu_process_step() { |
| 491 | uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec; |
| 492 | last_cpu_ticks_usec = current_cpu_ticks_usec; |
| 493 | |
| 494 | cpu_ticks_elapsed = _delta_smoother.smooth_delta(cpu_ticks_elapsed); |
| 495 | |
| 496 | return cpu_ticks_elapsed / 1000000.0; |
| 497 | } |
| 498 | |
| 499 | MainTimerSync::MainTimerSync() { |
| 500 | for (int i = CONTROL_STEPS - 1; i >= 0; --i) { |
| 501 | typical_physics_steps[i] = i; |
| 502 | accumulated_physics_steps[i] = i; |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | // start the clock |
| 507 | void MainTimerSync::init(uint64_t p_cpu_ticks_usec) { |
| 508 | current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec; |
| 509 | } |
| 510 | |
| 511 | // set measured wall clock time |
| 512 | void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) { |
| 513 | current_cpu_ticks_usec = p_cpu_ticks_usec; |
| 514 | } |
| 515 | |
| 516 | void MainTimerSync::set_fixed_fps(int p_fixed_fps) { |
| 517 | fixed_fps = p_fixed_fps; |
| 518 | } |
| 519 | |
| 520 | // advance one physics frame, return timesteps to take |
| 521 | MainFrameTime MainTimerSync::advance(double p_physics_step, int p_physics_ticks_per_second) { |
| 522 | double cpu_process_step = get_cpu_process_step(); |
| 523 | |
| 524 | return advance_checked(p_physics_step, p_physics_ticks_per_second, cpu_process_step); |
| 525 | } |
| 526 | |