| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "../common/ray.h" |
| 7 | #include "curve_intersector_precalculations.h" |
| 8 | |
| 9 | namespace embree |
| 10 | { |
| 11 | namespace isa |
| 12 | { |
| 13 | template<int M> |
| 14 | struct LineIntersectorHitM |
| 15 | { |
| 16 | __forceinline LineIntersectorHitM() {} |
| 17 | |
| 18 | __forceinline LineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng) |
| 19 | : vu(u), vv(v), vt(t), vNg(Ng) {} |
| 20 | |
| 21 | __forceinline void finalize() {} |
| 22 | |
| 23 | __forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); } |
| 24 | __forceinline float t (const size_t i) const { return vt[i]; } |
| 25 | __forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); } |
| 26 | |
| 27 | __forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); } |
| 28 | __forceinline vfloat<M> t () const { return vt; } |
| 29 | __forceinline Vec3vf<M> Ng() const { return vNg; } |
| 30 | |
| 31 | public: |
| 32 | vfloat<M> vu; |
| 33 | vfloat<M> vv; |
| 34 | vfloat<M> vt; |
| 35 | Vec3vf<M> vNg; |
| 36 | }; |
| 37 | |
| 38 | template<int M> |
| 39 | struct FlatLinearCurveIntersector1 |
| 40 | { |
| 41 | typedef CurvePrecalculations1 Precalculations; |
| 42 | |
| 43 | template<typename Ray, typename Epilog> |
| 44 | static __forceinline bool intersect(const vbool<M>& valid_i, |
| 45 | Ray& ray, |
| 46 | IntersectContext* context, |
| 47 | const LineSegments* geom, |
| 48 | const Precalculations& pre, |
| 49 | const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, |
| 50 | const Epilog& epilog) |
| 51 | { |
| 52 | /* transform end points into ray space */ |
| 53 | vbool<M> valid = valid_i; |
| 54 | vfloat<M> depth_scale = pre.depth_scale; |
| 55 | LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space; |
| 56 | |
| 57 | const Vec3vf<M> ray_org ((Vec3fa)ray.org); |
| 58 | const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i); |
| 59 | const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i); |
| 60 | |
| 61 | Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w); |
| 62 | Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w); |
| 63 | |
| 64 | /* approximative intersection with cone */ |
| 65 | const Vec4vf<M> v = p1-p0; |
| 66 | const Vec4vf<M> w = -p0; |
| 67 | const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y); |
| 68 | const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y); |
| 69 | const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one)); |
| 70 | const Vec4vf<M> p = madd(u,v,p0); |
| 71 | const vfloat<M> t = p.z; |
| 72 | const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y); |
| 73 | const vfloat<M> r = p.w; |
| 74 | const vfloat<M> r2 = r*r; |
| 75 | valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()) <= t) & (t <= vfloat<M>(ray.tfar)); |
| 76 | if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) |
| 77 | valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections |
| 78 | if (unlikely(none(valid))) return false; |
| 79 | |
| 80 | /* ignore denormalized segments */ |
| 81 | const Vec3vf<M> T = v1.xyz()-v0.xyz(); |
| 82 | valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero)); |
| 83 | if (unlikely(none(valid))) return false; |
| 84 | |
| 85 | /* update hit information */ |
| 86 | LineIntersectorHitM<M> hit(u,zero,t,T); |
| 87 | return epilog(valid,hit); |
| 88 | } |
| 89 | }; |
| 90 | |
| 91 | template<int M, int K> |
| 92 | struct FlatLinearCurveIntersectorK |
| 93 | { |
| 94 | typedef CurvePrecalculationsK<K> Precalculations; |
| 95 | |
| 96 | template<typename Epilog> |
| 97 | static __forceinline bool intersect(const vbool<M>& valid_i, |
| 98 | RayK<K>& ray, size_t k, |
| 99 | IntersectContext* context, |
| 100 | const LineSegments* geom, |
| 101 | const Precalculations& pre, |
| 102 | const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, |
| 103 | const Epilog& epilog) |
| 104 | { |
| 105 | /* transform end points into ray space */ |
| 106 | vbool<M> valid = valid_i; |
| 107 | vfloat<M> depth_scale = pre.depth_scale[k]; |
| 108 | LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space[k]; |
| 109 | const Vec3vf<M> ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]); |
| 110 | const Vec3vf<M> ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]); |
| 111 | |
| 112 | const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i); |
| 113 | const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i); |
| 114 | |
| 115 | Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w); |
| 116 | Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w); |
| 117 | |
| 118 | /* approximative intersection with cone */ |
| 119 | const Vec4vf<M> v = p1-p0; |
| 120 | const Vec4vf<M> w = -p0; |
| 121 | const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y); |
| 122 | const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y); |
| 123 | const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one)); |
| 124 | const Vec4vf<M> p = madd(u,v,p0); |
| 125 | const vfloat<M> t = p.z; |
| 126 | const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y); |
| 127 | const vfloat<M> r = p.w; |
| 128 | const vfloat<M> r2 = r*r; |
| 129 | valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()[k]) <= t) & (t <= vfloat<M>(ray.tfar[k])); |
| 130 | if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) |
| 131 | valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections |
| 132 | if (unlikely(none(valid))) return false; |
| 133 | |
| 134 | /* ignore denormalized segments */ |
| 135 | const Vec3vf<M> T = v1.xyz()-v0.xyz(); |
| 136 | valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero)); |
| 137 | if (unlikely(none(valid))) return false; |
| 138 | |
| 139 | /* update hit information */ |
| 140 | LineIntersectorHitM<M> hit(u,zero,t,T); |
| 141 | return epilog(valid,hit); |
| 142 | } |
| 143 | }; |
| 144 | } |
| 145 | } |
| 146 | |