1 | /* ----------------------------------------------------------------------------- |
2 | |
3 | Copyright (c) 2006 Simon Brown si@sjbrown.co.uk |
4 | Copyright (c) 2007 Ignacio Castano icastano@nvidia.com |
5 | |
6 | Permission is hereby granted, free of charge, to any person obtaining |
7 | a copy of this software and associated documentation files (the |
8 | "Software"), to deal in the Software without restriction, including |
9 | without limitation the rights to use, copy, modify, merge, publish, |
10 | distribute, sublicense, and/or sell copies of the Software, and to |
11 | permit persons to whom the Software is furnished to do so, subject to |
12 | the following conditions: |
13 | |
14 | The above copyright notice and this permission notice shall be included |
15 | in all copies or substantial portions of the Software. |
16 | |
17 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
18 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
19 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
20 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
21 | CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
22 | TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
23 | SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
24 | |
25 | -------------------------------------------------------------------------- */ |
26 | |
27 | #include "clusterfit.h" |
28 | #include "colourset.h" |
29 | #include "colourblock.h" |
30 | #include <cfloat> |
31 | |
32 | namespace squish { |
33 | |
34 | ClusterFit::ClusterFit( ColourSet const* colours, int flags, float* metric ) |
35 | : ColourFit( colours, flags ) |
36 | { |
37 | // set the iteration count |
38 | m_iterationCount = ( m_flags & kColourIterativeClusterFit ) ? kMaxIterations : 1; |
39 | |
40 | // initialise the metric (old perceptual = 0.2126f, 0.7152f, 0.0722f) |
41 | if( metric ) |
42 | m_metric = Vec4( metric[0], metric[1], metric[2], 1.0f ); |
43 | else |
44 | m_metric = VEC4_CONST( 1.0f ); |
45 | |
46 | // initialise the best error |
47 | m_besterror = VEC4_CONST( FLT_MAX ); |
48 | |
49 | // cache some values |
50 | int const count = m_colours->GetCount(); |
51 | Vec3 const* values = m_colours->GetPoints(); |
52 | |
53 | // get the covariance matrix |
54 | Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() ); |
55 | |
56 | // compute the principle component |
57 | m_principle = ComputePrincipleComponent( covariance ); |
58 | } |
59 | |
60 | bool ClusterFit::ConstructOrdering( Vec3 const& axis, int iteration ) |
61 | { |
62 | // cache some values |
63 | int const count = m_colours->GetCount(); |
64 | Vec3 const* values = m_colours->GetPoints(); |
65 | |
66 | // build the list of dot products |
67 | float dps[16]; |
68 | u8* order = ( u8* )m_order + 16*iteration; |
69 | for( int i = 0; i < count; ++i ) |
70 | { |
71 | dps[i] = Dot( values[i], axis ); |
72 | order[i] = ( u8 )i; |
73 | } |
74 | |
75 | // stable sort using them |
76 | for( int i = 0; i < count; ++i ) |
77 | { |
78 | for( int j = i; j > 0 && dps[j] < dps[j - 1]; --j ) |
79 | { |
80 | std::swap( dps[j], dps[j - 1] ); |
81 | std::swap( order[j], order[j - 1] ); |
82 | } |
83 | } |
84 | |
85 | // check this ordering is unique |
86 | for( int it = 0; it < iteration; ++it ) |
87 | { |
88 | u8 const* prev = ( u8* )m_order + 16*it; |
89 | bool same = true; |
90 | for( int i = 0; i < count; ++i ) |
91 | { |
92 | if( order[i] != prev[i] ) |
93 | { |
94 | same = false; |
95 | break; |
96 | } |
97 | } |
98 | if( same ) |
99 | return false; |
100 | } |
101 | |
102 | // copy the ordering and weight all the points |
103 | Vec3 const* unweighted = m_colours->GetPoints(); |
104 | float const* weights = m_colours->GetWeights(); |
105 | m_xsum_wsum = VEC4_CONST( 0.0f ); |
106 | for( int i = 0; i < count; ++i ) |
107 | { |
108 | int j = order[i]; |
109 | Vec4 p( unweighted[j].X(), unweighted[j].Y(), unweighted[j].Z(), 1.0f ); |
110 | Vec4 w( weights[j] ); |
111 | Vec4 x = p*w; |
112 | m_points_weights[i] = x; |
113 | m_xsum_wsum += x; |
114 | } |
115 | return true; |
116 | } |
117 | |
118 | void ClusterFit::Compress3( void* block ) |
119 | { |
120 | // declare variables |
121 | int const count = m_colours->GetCount(); |
122 | Vec4 const two = VEC4_CONST( 2.0 ); |
123 | Vec4 const one = VEC4_CONST( 1.0f ); |
124 | Vec4 const half_half2( 0.5f, 0.5f, 0.5f, 0.25f ); |
125 | Vec4 const zero = VEC4_CONST( 0.0f ); |
126 | Vec4 const half = VEC4_CONST( 0.5f ); |
127 | Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); |
128 | Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); |
129 | |
130 | // prepare an ordering using the principle axis |
131 | ConstructOrdering( m_principle, 0 ); |
132 | |
133 | // check all possible clusters and iterate on the total order |
134 | Vec4 beststart = VEC4_CONST( 0.0f ); |
135 | Vec4 bestend = VEC4_CONST( 0.0f ); |
136 | Vec4 besterror = m_besterror; |
137 | u8 bestindices[16]; |
138 | int bestiteration = 0; |
139 | int besti = 0, bestj = 0; |
140 | |
141 | // loop over iterations (we avoid the case that all points in first or last cluster) |
142 | for( int iterationIndex = 0;; ) |
143 | { |
144 | // first cluster [0,i) is at the start |
145 | Vec4 part0 = VEC4_CONST( 0.0f ); |
146 | for( int i = 0; i < count; ++i ) |
147 | { |
148 | // second cluster [i,j) is half along |
149 | Vec4 part1 = ( i == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); |
150 | int jmin = ( i == 0 ) ? 1 : i; |
151 | for( int j = jmin;; ) |
152 | { |
153 | // last cluster [j,count) is at the end |
154 | Vec4 part2 = m_xsum_wsum - part1 - part0; |
155 | |
156 | // compute least squares terms directly |
157 | Vec4 alphax_sum = MultiplyAdd( part1, half_half2, part0 ); |
158 | Vec4 alpha2_sum = alphax_sum.SplatW(); |
159 | |
160 | Vec4 betax_sum = MultiplyAdd( part1, half_half2, part2 ); |
161 | Vec4 beta2_sum = betax_sum.SplatW(); |
162 | |
163 | Vec4 alphabeta_sum = ( part1*half_half2 ).SplatW(); |
164 | |
165 | // compute the least-squares optimal points |
166 | Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); |
167 | Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; |
168 | Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; |
169 | |
170 | // clamp to the grid |
171 | a = Min( one, Max( zero, a ) ); |
172 | b = Min( one, Max( zero, b ) ); |
173 | a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; |
174 | b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; |
175 | |
176 | // compute the error (we skip the constant xxsum) |
177 | Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); |
178 | Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); |
179 | Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); |
180 | Vec4 e4 = MultiplyAdd( two, e3, e1 ); |
181 | |
182 | // apply the metric to the error term |
183 | Vec4 e5 = e4*m_metric; |
184 | Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); |
185 | |
186 | // keep the solution if it wins |
187 | if( CompareAnyLessThan( error, besterror ) ) |
188 | { |
189 | beststart = a; |
190 | bestend = b; |
191 | besti = i; |
192 | bestj = j; |
193 | besterror = error; |
194 | bestiteration = iterationIndex; |
195 | } |
196 | |
197 | // advance |
198 | if( j == count ) |
199 | break; |
200 | part1 += m_points_weights[j]; |
201 | ++j; |
202 | } |
203 | |
204 | // advance |
205 | part0 += m_points_weights[i]; |
206 | } |
207 | |
208 | // stop if we didn't improve in this iteration |
209 | if( bestiteration != iterationIndex ) |
210 | break; |
211 | |
212 | // advance if possible |
213 | ++iterationIndex; |
214 | if( iterationIndex == m_iterationCount ) |
215 | break; |
216 | |
217 | // stop if a new iteration is an ordering that has already been tried |
218 | Vec3 axis = ( bestend - beststart ).GetVec3(); |
219 | if( !ConstructOrdering( axis, iterationIndex ) ) |
220 | break; |
221 | } |
222 | |
223 | // save the block if necessary |
224 | if( CompareAnyLessThan( besterror, m_besterror ) ) |
225 | { |
226 | // remap the indices |
227 | u8 const* order = ( u8* )m_order + 16*bestiteration; |
228 | |
229 | u8 unordered[16]; |
230 | for( int m = 0; m < besti; ++m ) |
231 | unordered[order[m]] = 0; |
232 | for( int m = besti; m < bestj; ++m ) |
233 | unordered[order[m]] = 2; |
234 | for( int m = bestj; m < count; ++m ) |
235 | unordered[order[m]] = 1; |
236 | |
237 | m_colours->RemapIndices( unordered, bestindices ); |
238 | |
239 | // save the block |
240 | WriteColourBlock3( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); |
241 | |
242 | // save the error |
243 | m_besterror = besterror; |
244 | } |
245 | } |
246 | |
247 | void ClusterFit::Compress4( void* block ) |
248 | { |
249 | // declare variables |
250 | int const count = m_colours->GetCount(); |
251 | Vec4 const two = VEC4_CONST( 2.0f ); |
252 | Vec4 const one = VEC4_CONST( 1.0f ); |
253 | Vec4 const onethird_onethird2( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f ); |
254 | Vec4 const twothirds_twothirds2( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f ); |
255 | Vec4 const twonineths = VEC4_CONST( 2.0f/9.0f ); |
256 | Vec4 const zero = VEC4_CONST( 0.0f ); |
257 | Vec4 const half = VEC4_CONST( 0.5f ); |
258 | Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); |
259 | Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); |
260 | |
261 | // prepare an ordering using the principle axis |
262 | ConstructOrdering( m_principle, 0 ); |
263 | |
264 | // check all possible clusters and iterate on the total order |
265 | Vec4 beststart = VEC4_CONST( 0.0f ); |
266 | Vec4 bestend = VEC4_CONST( 0.0f ); |
267 | Vec4 besterror = m_besterror; |
268 | u8 bestindices[16]; |
269 | int bestiteration = 0; |
270 | int besti = 0, bestj = 0, bestk = 0; |
271 | |
272 | // loop over iterations (we avoid the case that all points in first or last cluster) |
273 | for( int iterationIndex = 0;; ) |
274 | { |
275 | // first cluster [0,i) is at the start |
276 | Vec4 part0 = VEC4_CONST( 0.0f ); |
277 | for( int i = 0; i < count; ++i ) |
278 | { |
279 | // second cluster [i,j) is one third along |
280 | Vec4 part1 = VEC4_CONST( 0.0f ); |
281 | for( int j = i;; ) |
282 | { |
283 | // third cluster [j,k) is two thirds along |
284 | Vec4 part2 = ( j == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); |
285 | int kmin = ( j == 0 ) ? 1 : j; |
286 | for( int k = kmin;; ) |
287 | { |
288 | // last cluster [k,count) is at the end |
289 | Vec4 part3 = m_xsum_wsum - part2 - part1 - part0; |
290 | |
291 | // compute least squares terms directly |
292 | Vec4 const alphax_sum = MultiplyAdd( part2, onethird_onethird2, MultiplyAdd( part1, twothirds_twothirds2, part0 ) ); |
293 | Vec4 const alpha2_sum = alphax_sum.SplatW(); |
294 | |
295 | Vec4 const betax_sum = MultiplyAdd( part1, onethird_onethird2, MultiplyAdd( part2, twothirds_twothirds2, part3 ) ); |
296 | Vec4 const beta2_sum = betax_sum.SplatW(); |
297 | |
298 | Vec4 const alphabeta_sum = twonineths*( part1 + part2 ).SplatW(); |
299 | |
300 | // compute the least-squares optimal points |
301 | Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); |
302 | Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; |
303 | Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; |
304 | |
305 | // clamp to the grid |
306 | a = Min( one, Max( zero, a ) ); |
307 | b = Min( one, Max( zero, b ) ); |
308 | a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; |
309 | b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; |
310 | |
311 | // compute the error (we skip the constant xxsum) |
312 | Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); |
313 | Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); |
314 | Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); |
315 | Vec4 e4 = MultiplyAdd( two, e3, e1 ); |
316 | |
317 | // apply the metric to the error term |
318 | Vec4 e5 = e4*m_metric; |
319 | Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); |
320 | |
321 | // keep the solution if it wins |
322 | if( CompareAnyLessThan( error, besterror ) ) |
323 | { |
324 | beststart = a; |
325 | bestend = b; |
326 | besterror = error; |
327 | besti = i; |
328 | bestj = j; |
329 | bestk = k; |
330 | bestiteration = iterationIndex; |
331 | } |
332 | |
333 | // advance |
334 | if( k == count ) |
335 | break; |
336 | part2 += m_points_weights[k]; |
337 | ++k; |
338 | } |
339 | |
340 | // advance |
341 | if( j == count ) |
342 | break; |
343 | part1 += m_points_weights[j]; |
344 | ++j; |
345 | } |
346 | |
347 | // advance |
348 | part0 += m_points_weights[i]; |
349 | } |
350 | |
351 | // stop if we didn't improve in this iteration |
352 | if( bestiteration != iterationIndex ) |
353 | break; |
354 | |
355 | // advance if possible |
356 | ++iterationIndex; |
357 | if( iterationIndex == m_iterationCount ) |
358 | break; |
359 | |
360 | // stop if a new iteration is an ordering that has already been tried |
361 | Vec3 axis = ( bestend - beststart ).GetVec3(); |
362 | if( !ConstructOrdering( axis, iterationIndex ) ) |
363 | break; |
364 | } |
365 | |
366 | // save the block if necessary |
367 | if( CompareAnyLessThan( besterror, m_besterror ) ) |
368 | { |
369 | // remap the indices |
370 | u8 const* order = ( u8* )m_order + 16*bestiteration; |
371 | |
372 | u8 unordered[16]; |
373 | for( int m = 0; m < besti; ++m ) |
374 | unordered[order[m]] = 0; |
375 | for( int m = besti; m < bestj; ++m ) |
376 | unordered[order[m]] = 2; |
377 | for( int m = bestj; m < bestk; ++m ) |
378 | unordered[order[m]] = 3; |
379 | for( int m = bestk; m < count; ++m ) |
380 | unordered[order[m]] = 1; |
381 | |
382 | m_colours->RemapIndices( unordered, bestindices ); |
383 | |
384 | // save the block |
385 | WriteColourBlock4( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); |
386 | |
387 | // save the error |
388 | m_besterror = besterror; |
389 | } |
390 | } |
391 | |
392 | } // namespace squish |
393 | |