| 1 | /* ----------------------------------------------------------------------------- | 
|---|
| 2 |  | 
|---|
| 3 | Copyright (c) 2006 Simon Brown                          si@sjbrown.co.uk | 
|---|
| 4 | Copyright (c) 2007 Ignacio Castano                   icastano@nvidia.com | 
|---|
| 5 |  | 
|---|
| 6 | Permission is hereby granted, free of charge, to any person obtaining | 
|---|
| 7 | a copy of this software and associated documentation files (the | 
|---|
| 8 | "Software"), to deal in the Software without restriction, including | 
|---|
| 9 | without limitation the rights to use, copy, modify, merge, publish, | 
|---|
| 10 | distribute, sublicense, and/or sell copies of the Software, and to | 
|---|
| 11 | permit persons to whom the Software is furnished to do so, subject to | 
|---|
| 12 | the following conditions: | 
|---|
| 13 |  | 
|---|
| 14 | The above copyright notice and this permission notice shall be included | 
|---|
| 15 | in all copies or substantial portions of the Software. | 
|---|
| 16 |  | 
|---|
| 17 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | 
|---|
| 18 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|---|
| 19 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | 
|---|
| 20 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | 
|---|
| 21 | CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | 
|---|
| 22 | TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | 
|---|
| 23 | SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | 
|---|
| 24 |  | 
|---|
| 25 | -------------------------------------------------------------------------- */ | 
|---|
| 26 |  | 
|---|
| 27 | #include "clusterfit.h" | 
|---|
| 28 | #include "colourset.h" | 
|---|
| 29 | #include "colourblock.h" | 
|---|
| 30 | #include <cfloat> | 
|---|
| 31 |  | 
|---|
| 32 | namespace squish { | 
|---|
| 33 |  | 
|---|
| 34 | ClusterFit::ClusterFit( ColourSet const* colours, int flags, float* metric ) | 
|---|
| 35 | : ColourFit( colours, flags ) | 
|---|
| 36 | { | 
|---|
| 37 | // set the iteration count | 
|---|
| 38 | m_iterationCount = ( m_flags & kColourIterativeClusterFit ) ? kMaxIterations : 1; | 
|---|
| 39 |  | 
|---|
| 40 | // initialise the metric (old perceptual = 0.2126f, 0.7152f, 0.0722f) | 
|---|
| 41 | if( metric ) | 
|---|
| 42 | m_metric = Vec4( metric[0], metric[1], metric[2], 1.0f ); | 
|---|
| 43 | else | 
|---|
| 44 | m_metric = VEC4_CONST( 1.0f ); | 
|---|
| 45 |  | 
|---|
| 46 | // initialise the best error | 
|---|
| 47 | m_besterror = VEC4_CONST( FLT_MAX ); | 
|---|
| 48 |  | 
|---|
| 49 | // cache some values | 
|---|
| 50 | int const count = m_colours->GetCount(); | 
|---|
| 51 | Vec3 const* values = m_colours->GetPoints(); | 
|---|
| 52 |  | 
|---|
| 53 | // get the covariance matrix | 
|---|
| 54 | Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() ); | 
|---|
| 55 |  | 
|---|
| 56 | // compute the principle component | 
|---|
| 57 | m_principle = ComputePrincipleComponent( covariance ); | 
|---|
| 58 | } | 
|---|
| 59 |  | 
|---|
| 60 | bool ClusterFit::ConstructOrdering( Vec3 const& axis, int iteration ) | 
|---|
| 61 | { | 
|---|
| 62 | // cache some values | 
|---|
| 63 | int const count = m_colours->GetCount(); | 
|---|
| 64 | Vec3 const* values = m_colours->GetPoints(); | 
|---|
| 65 |  | 
|---|
| 66 | // build the list of dot products | 
|---|
| 67 | float dps[16]; | 
|---|
| 68 | u8* order = ( u8* )m_order + 16*iteration; | 
|---|
| 69 | for( int i = 0; i < count; ++i ) | 
|---|
| 70 | { | 
|---|
| 71 | dps[i] = Dot( values[i], axis ); | 
|---|
| 72 | order[i] = ( u8 )i; | 
|---|
| 73 | } | 
|---|
| 74 |  | 
|---|
| 75 | // stable sort using them | 
|---|
| 76 | for( int i = 0; i < count; ++i ) | 
|---|
| 77 | { | 
|---|
| 78 | for( int j = i; j > 0 && dps[j] < dps[j - 1]; --j ) | 
|---|
| 79 | { | 
|---|
| 80 | std::swap( dps[j], dps[j - 1] ); | 
|---|
| 81 | std::swap( order[j], order[j - 1] ); | 
|---|
| 82 | } | 
|---|
| 83 | } | 
|---|
| 84 |  | 
|---|
| 85 | // check this ordering is unique | 
|---|
| 86 | for( int it = 0; it < iteration; ++it ) | 
|---|
| 87 | { | 
|---|
| 88 | u8 const* prev = ( u8* )m_order + 16*it; | 
|---|
| 89 | bool same = true; | 
|---|
| 90 | for( int i = 0; i < count; ++i ) | 
|---|
| 91 | { | 
|---|
| 92 | if( order[i] != prev[i] ) | 
|---|
| 93 | { | 
|---|
| 94 | same = false; | 
|---|
| 95 | break; | 
|---|
| 96 | } | 
|---|
| 97 | } | 
|---|
| 98 | if( same ) | 
|---|
| 99 | return false; | 
|---|
| 100 | } | 
|---|
| 101 |  | 
|---|
| 102 | // copy the ordering and weight all the points | 
|---|
| 103 | Vec3 const* unweighted = m_colours->GetPoints(); | 
|---|
| 104 | float const* weights = m_colours->GetWeights(); | 
|---|
| 105 | m_xsum_wsum = VEC4_CONST( 0.0f ); | 
|---|
| 106 | for( int i = 0; i < count; ++i ) | 
|---|
| 107 | { | 
|---|
| 108 | int j = order[i]; | 
|---|
| 109 | Vec4 p( unweighted[j].X(), unweighted[j].Y(), unweighted[j].Z(), 1.0f ); | 
|---|
| 110 | Vec4 w( weights[j] ); | 
|---|
| 111 | Vec4 x = p*w; | 
|---|
| 112 | m_points_weights[i] = x; | 
|---|
| 113 | m_xsum_wsum += x; | 
|---|
| 114 | } | 
|---|
| 115 | return true; | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | void ClusterFit::Compress3( void* block ) | 
|---|
| 119 | { | 
|---|
| 120 | // declare variables | 
|---|
| 121 | int const count = m_colours->GetCount(); | 
|---|
| 122 | Vec4 const two = VEC4_CONST( 2.0 ); | 
|---|
| 123 | Vec4 const one = VEC4_CONST( 1.0f ); | 
|---|
| 124 | Vec4 const half_half2( 0.5f, 0.5f, 0.5f, 0.25f ); | 
|---|
| 125 | Vec4 const zero = VEC4_CONST( 0.0f ); | 
|---|
| 126 | Vec4 const half = VEC4_CONST( 0.5f ); | 
|---|
| 127 | Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); | 
|---|
| 128 | Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); | 
|---|
| 129 |  | 
|---|
| 130 | // prepare an ordering using the principle axis | 
|---|
| 131 | ConstructOrdering( m_principle, 0 ); | 
|---|
| 132 |  | 
|---|
| 133 | // check all possible clusters and iterate on the total order | 
|---|
| 134 | Vec4 beststart = VEC4_CONST( 0.0f ); | 
|---|
| 135 | Vec4 bestend = VEC4_CONST( 0.0f ); | 
|---|
| 136 | Vec4 besterror = m_besterror; | 
|---|
| 137 | u8 bestindices[16]; | 
|---|
| 138 | int bestiteration = 0; | 
|---|
| 139 | int besti = 0, bestj = 0; | 
|---|
| 140 |  | 
|---|
| 141 | // loop over iterations (we avoid the case that all points in first or last cluster) | 
|---|
| 142 | for( int iterationIndex = 0;; ) | 
|---|
| 143 | { | 
|---|
| 144 | // first cluster [0,i) is at the start | 
|---|
| 145 | Vec4 part0 = VEC4_CONST( 0.0f ); | 
|---|
| 146 | for( int i = 0; i < count; ++i ) | 
|---|
| 147 | { | 
|---|
| 148 | // second cluster [i,j) is half along | 
|---|
| 149 | Vec4 part1 = ( i == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); | 
|---|
| 150 | int jmin = ( i == 0 ) ? 1 : i; | 
|---|
| 151 | for( int j = jmin;; ) | 
|---|
| 152 | { | 
|---|
| 153 | // last cluster [j,count) is at the end | 
|---|
| 154 | Vec4 part2 = m_xsum_wsum - part1 - part0; | 
|---|
| 155 |  | 
|---|
| 156 | // compute least squares terms directly | 
|---|
| 157 | Vec4 alphax_sum = MultiplyAdd( part1, half_half2, part0 ); | 
|---|
| 158 | Vec4 alpha2_sum = alphax_sum.SplatW(); | 
|---|
| 159 |  | 
|---|
| 160 | Vec4 betax_sum = MultiplyAdd( part1, half_half2, part2 ); | 
|---|
| 161 | Vec4 beta2_sum = betax_sum.SplatW(); | 
|---|
| 162 |  | 
|---|
| 163 | Vec4 alphabeta_sum = ( part1*half_half2 ).SplatW(); | 
|---|
| 164 |  | 
|---|
| 165 | // compute the least-squares optimal points | 
|---|
| 166 | Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); | 
|---|
| 167 | Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; | 
|---|
| 168 | Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; | 
|---|
| 169 |  | 
|---|
| 170 | // clamp to the grid | 
|---|
| 171 | a = Min( one, Max( zero, a ) ); | 
|---|
| 172 | b = Min( one, Max( zero, b ) ); | 
|---|
| 173 | a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; | 
|---|
| 174 | b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; | 
|---|
| 175 |  | 
|---|
| 176 | // compute the error (we skip the constant xxsum) | 
|---|
| 177 | Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); | 
|---|
| 178 | Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); | 
|---|
| 179 | Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); | 
|---|
| 180 | Vec4 e4 = MultiplyAdd( two, e3, e1 ); | 
|---|
| 181 |  | 
|---|
| 182 | // apply the metric to the error term | 
|---|
| 183 | Vec4 e5 = e4*m_metric; | 
|---|
| 184 | Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); | 
|---|
| 185 |  | 
|---|
| 186 | // keep the solution if it wins | 
|---|
| 187 | if( CompareAnyLessThan( error, besterror ) ) | 
|---|
| 188 | { | 
|---|
| 189 | beststart = a; | 
|---|
| 190 | bestend = b; | 
|---|
| 191 | besti = i; | 
|---|
| 192 | bestj = j; | 
|---|
| 193 | besterror = error; | 
|---|
| 194 | bestiteration = iterationIndex; | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | // advance | 
|---|
| 198 | if( j == count ) | 
|---|
| 199 | break; | 
|---|
| 200 | part1 += m_points_weights[j]; | 
|---|
| 201 | ++j; | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | // advance | 
|---|
| 205 | part0 += m_points_weights[i]; | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 | // stop if we didn't improve in this iteration | 
|---|
| 209 | if( bestiteration != iterationIndex ) | 
|---|
| 210 | break; | 
|---|
| 211 |  | 
|---|
| 212 | // advance if possible | 
|---|
| 213 | ++iterationIndex; | 
|---|
| 214 | if( iterationIndex == m_iterationCount ) | 
|---|
| 215 | break; | 
|---|
| 216 |  | 
|---|
| 217 | // stop if a new iteration is an ordering that has already been tried | 
|---|
| 218 | Vec3 axis = ( bestend - beststart ).GetVec3(); | 
|---|
| 219 | if( !ConstructOrdering( axis, iterationIndex ) ) | 
|---|
| 220 | break; | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | // save the block if necessary | 
|---|
| 224 | if( CompareAnyLessThan( besterror, m_besterror ) ) | 
|---|
| 225 | { | 
|---|
| 226 | // remap the indices | 
|---|
| 227 | u8 const* order = ( u8* )m_order + 16*bestiteration; | 
|---|
| 228 |  | 
|---|
| 229 | u8 unordered[16]; | 
|---|
| 230 | for( int m = 0; m < besti; ++m ) | 
|---|
| 231 | unordered[order[m]] = 0; | 
|---|
| 232 | for( int m = besti; m < bestj; ++m ) | 
|---|
| 233 | unordered[order[m]] = 2; | 
|---|
| 234 | for( int m = bestj; m < count; ++m ) | 
|---|
| 235 | unordered[order[m]] = 1; | 
|---|
| 236 |  | 
|---|
| 237 | m_colours->RemapIndices( unordered, bestindices ); | 
|---|
| 238 |  | 
|---|
| 239 | // save the block | 
|---|
| 240 | WriteColourBlock3( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); | 
|---|
| 241 |  | 
|---|
| 242 | // save the error | 
|---|
| 243 | m_besterror = besterror; | 
|---|
| 244 | } | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | void ClusterFit::Compress4( void* block ) | 
|---|
| 248 | { | 
|---|
| 249 | // declare variables | 
|---|
| 250 | int const count = m_colours->GetCount(); | 
|---|
| 251 | Vec4 const two = VEC4_CONST( 2.0f ); | 
|---|
| 252 | Vec4 const one = VEC4_CONST( 1.0f ); | 
|---|
| 253 | Vec4 const onethird_onethird2( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f ); | 
|---|
| 254 | Vec4 const twothirds_twothirds2( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f ); | 
|---|
| 255 | Vec4 const twonineths = VEC4_CONST( 2.0f/9.0f ); | 
|---|
| 256 | Vec4 const zero = VEC4_CONST( 0.0f ); | 
|---|
| 257 | Vec4 const half = VEC4_CONST( 0.5f ); | 
|---|
| 258 | Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); | 
|---|
| 259 | Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); | 
|---|
| 260 |  | 
|---|
| 261 | // prepare an ordering using the principle axis | 
|---|
| 262 | ConstructOrdering( m_principle, 0 ); | 
|---|
| 263 |  | 
|---|
| 264 | // check all possible clusters and iterate on the total order | 
|---|
| 265 | Vec4 beststart = VEC4_CONST( 0.0f ); | 
|---|
| 266 | Vec4 bestend = VEC4_CONST( 0.0f ); | 
|---|
| 267 | Vec4 besterror = m_besterror; | 
|---|
| 268 | u8 bestindices[16]; | 
|---|
| 269 | int bestiteration = 0; | 
|---|
| 270 | int besti = 0, bestj = 0, bestk = 0; | 
|---|
| 271 |  | 
|---|
| 272 | // loop over iterations (we avoid the case that all points in first or last cluster) | 
|---|
| 273 | for( int iterationIndex = 0;; ) | 
|---|
| 274 | { | 
|---|
| 275 | // first cluster [0,i) is at the start | 
|---|
| 276 | Vec4 part0 = VEC4_CONST( 0.0f ); | 
|---|
| 277 | for( int i = 0; i < count; ++i ) | 
|---|
| 278 | { | 
|---|
| 279 | // second cluster [i,j) is one third along | 
|---|
| 280 | Vec4 part1 = VEC4_CONST( 0.0f ); | 
|---|
| 281 | for( int j = i;; ) | 
|---|
| 282 | { | 
|---|
| 283 | // third cluster [j,k) is two thirds along | 
|---|
| 284 | Vec4 part2 = ( j == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); | 
|---|
| 285 | int kmin = ( j == 0 ) ? 1 : j; | 
|---|
| 286 | for( int k = kmin;; ) | 
|---|
| 287 | { | 
|---|
| 288 | // last cluster [k,count) is at the end | 
|---|
| 289 | Vec4 part3 = m_xsum_wsum - part2 - part1 - part0; | 
|---|
| 290 |  | 
|---|
| 291 | // compute least squares terms directly | 
|---|
| 292 | Vec4 const alphax_sum = MultiplyAdd( part2, onethird_onethird2, MultiplyAdd( part1, twothirds_twothirds2, part0 ) ); | 
|---|
| 293 | Vec4 const alpha2_sum = alphax_sum.SplatW(); | 
|---|
| 294 |  | 
|---|
| 295 | Vec4 const betax_sum = MultiplyAdd( part1, onethird_onethird2, MultiplyAdd( part2, twothirds_twothirds2, part3 ) ); | 
|---|
| 296 | Vec4 const beta2_sum = betax_sum.SplatW(); | 
|---|
| 297 |  | 
|---|
| 298 | Vec4 const alphabeta_sum = twonineths*( part1 + part2 ).SplatW(); | 
|---|
| 299 |  | 
|---|
| 300 | // compute the least-squares optimal points | 
|---|
| 301 | Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); | 
|---|
| 302 | Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; | 
|---|
| 303 | Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; | 
|---|
| 304 |  | 
|---|
| 305 | // clamp to the grid | 
|---|
| 306 | a = Min( one, Max( zero, a ) ); | 
|---|
| 307 | b = Min( one, Max( zero, b ) ); | 
|---|
| 308 | a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; | 
|---|
| 309 | b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; | 
|---|
| 310 |  | 
|---|
| 311 | // compute the error (we skip the constant xxsum) | 
|---|
| 312 | Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); | 
|---|
| 313 | Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); | 
|---|
| 314 | Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); | 
|---|
| 315 | Vec4 e4 = MultiplyAdd( two, e3, e1 ); | 
|---|
| 316 |  | 
|---|
| 317 | // apply the metric to the error term | 
|---|
| 318 | Vec4 e5 = e4*m_metric; | 
|---|
| 319 | Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); | 
|---|
| 320 |  | 
|---|
| 321 | // keep the solution if it wins | 
|---|
| 322 | if( CompareAnyLessThan( error, besterror ) ) | 
|---|
| 323 | { | 
|---|
| 324 | beststart = a; | 
|---|
| 325 | bestend = b; | 
|---|
| 326 | besterror = error; | 
|---|
| 327 | besti = i; | 
|---|
| 328 | bestj = j; | 
|---|
| 329 | bestk = k; | 
|---|
| 330 | bestiteration = iterationIndex; | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | // advance | 
|---|
| 334 | if( k == count ) | 
|---|
| 335 | break; | 
|---|
| 336 | part2 += m_points_weights[k]; | 
|---|
| 337 | ++k; | 
|---|
| 338 | } | 
|---|
| 339 |  | 
|---|
| 340 | // advance | 
|---|
| 341 | if( j == count ) | 
|---|
| 342 | break; | 
|---|
| 343 | part1 += m_points_weights[j]; | 
|---|
| 344 | ++j; | 
|---|
| 345 | } | 
|---|
| 346 |  | 
|---|
| 347 | // advance | 
|---|
| 348 | part0 += m_points_weights[i]; | 
|---|
| 349 | } | 
|---|
| 350 |  | 
|---|
| 351 | // stop if we didn't improve in this iteration | 
|---|
| 352 | if( bestiteration != iterationIndex ) | 
|---|
| 353 | break; | 
|---|
| 354 |  | 
|---|
| 355 | // advance if possible | 
|---|
| 356 | ++iterationIndex; | 
|---|
| 357 | if( iterationIndex == m_iterationCount ) | 
|---|
| 358 | break; | 
|---|
| 359 |  | 
|---|
| 360 | // stop if a new iteration is an ordering that has already been tried | 
|---|
| 361 | Vec3 axis = ( bestend - beststart ).GetVec3(); | 
|---|
| 362 | if( !ConstructOrdering( axis, iterationIndex ) ) | 
|---|
| 363 | break; | 
|---|
| 364 | } | 
|---|
| 365 |  | 
|---|
| 366 | // save the block if necessary | 
|---|
| 367 | if( CompareAnyLessThan( besterror, m_besterror ) ) | 
|---|
| 368 | { | 
|---|
| 369 | // remap the indices | 
|---|
| 370 | u8 const* order = ( u8* )m_order + 16*bestiteration; | 
|---|
| 371 |  | 
|---|
| 372 | u8 unordered[16]; | 
|---|
| 373 | for( int m = 0; m < besti; ++m ) | 
|---|
| 374 | unordered[order[m]] = 0; | 
|---|
| 375 | for( int m = besti; m < bestj; ++m ) | 
|---|
| 376 | unordered[order[m]] = 2; | 
|---|
| 377 | for( int m = bestj; m < bestk; ++m ) | 
|---|
| 378 | unordered[order[m]] = 3; | 
|---|
| 379 | for( int m = bestk; m < count; ++m ) | 
|---|
| 380 | unordered[order[m]] = 1; | 
|---|
| 381 |  | 
|---|
| 382 | m_colours->RemapIndices( unordered, bestindices ); | 
|---|
| 383 |  | 
|---|
| 384 | // save the block | 
|---|
| 385 | WriteColourBlock4( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); | 
|---|
| 386 |  | 
|---|
| 387 | // save the error | 
|---|
| 388 | m_besterror = besterror; | 
|---|
| 389 | } | 
|---|
| 390 | } | 
|---|
| 391 |  | 
|---|
| 392 | } // namespace squish | 
|---|
| 393 |  | 
|---|