| 1 | /* ----------------------------------------------------------------------------- |
| 2 | |
| 3 | Copyright (c) 2006 Simon Brown si@sjbrown.co.uk |
| 4 | Copyright (c) 2007 Ignacio Castano icastano@nvidia.com |
| 5 | |
| 6 | Permission is hereby granted, free of charge, to any person obtaining |
| 7 | a copy of this software and associated documentation files (the |
| 8 | "Software"), to deal in the Software without restriction, including |
| 9 | without limitation the rights to use, copy, modify, merge, publish, |
| 10 | distribute, sublicense, and/or sell copies of the Software, and to |
| 11 | permit persons to whom the Software is furnished to do so, subject to |
| 12 | the following conditions: |
| 13 | |
| 14 | The above copyright notice and this permission notice shall be included |
| 15 | in all copies or substantial portions of the Software. |
| 16 | |
| 17 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| 18 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 19 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| 20 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
| 21 | CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| 22 | TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
| 23 | SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 24 | |
| 25 | -------------------------------------------------------------------------- */ |
| 26 | |
| 27 | #include "clusterfit.h" |
| 28 | #include "colourset.h" |
| 29 | #include "colourblock.h" |
| 30 | #include <cfloat> |
| 31 | |
| 32 | namespace squish { |
| 33 | |
| 34 | ClusterFit::ClusterFit( ColourSet const* colours, int flags, float* metric ) |
| 35 | : ColourFit( colours, flags ) |
| 36 | { |
| 37 | // set the iteration count |
| 38 | m_iterationCount = ( m_flags & kColourIterativeClusterFit ) ? kMaxIterations : 1; |
| 39 | |
| 40 | // initialise the metric (old perceptual = 0.2126f, 0.7152f, 0.0722f) |
| 41 | if( metric ) |
| 42 | m_metric = Vec4( metric[0], metric[1], metric[2], 1.0f ); |
| 43 | else |
| 44 | m_metric = VEC4_CONST( 1.0f ); |
| 45 | |
| 46 | // initialise the best error |
| 47 | m_besterror = VEC4_CONST( FLT_MAX ); |
| 48 | |
| 49 | // cache some values |
| 50 | int const count = m_colours->GetCount(); |
| 51 | Vec3 const* values = m_colours->GetPoints(); |
| 52 | |
| 53 | // get the covariance matrix |
| 54 | Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() ); |
| 55 | |
| 56 | // compute the principle component |
| 57 | m_principle = ComputePrincipleComponent( covariance ); |
| 58 | } |
| 59 | |
| 60 | bool ClusterFit::ConstructOrdering( Vec3 const& axis, int iteration ) |
| 61 | { |
| 62 | // cache some values |
| 63 | int const count = m_colours->GetCount(); |
| 64 | Vec3 const* values = m_colours->GetPoints(); |
| 65 | |
| 66 | // build the list of dot products |
| 67 | float dps[16]; |
| 68 | u8* order = ( u8* )m_order + 16*iteration; |
| 69 | for( int i = 0; i < count; ++i ) |
| 70 | { |
| 71 | dps[i] = Dot( values[i], axis ); |
| 72 | order[i] = ( u8 )i; |
| 73 | } |
| 74 | |
| 75 | // stable sort using them |
| 76 | for( int i = 0; i < count; ++i ) |
| 77 | { |
| 78 | for( int j = i; j > 0 && dps[j] < dps[j - 1]; --j ) |
| 79 | { |
| 80 | std::swap( dps[j], dps[j - 1] ); |
| 81 | std::swap( order[j], order[j - 1] ); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | // check this ordering is unique |
| 86 | for( int it = 0; it < iteration; ++it ) |
| 87 | { |
| 88 | u8 const* prev = ( u8* )m_order + 16*it; |
| 89 | bool same = true; |
| 90 | for( int i = 0; i < count; ++i ) |
| 91 | { |
| 92 | if( order[i] != prev[i] ) |
| 93 | { |
| 94 | same = false; |
| 95 | break; |
| 96 | } |
| 97 | } |
| 98 | if( same ) |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | // copy the ordering and weight all the points |
| 103 | Vec3 const* unweighted = m_colours->GetPoints(); |
| 104 | float const* weights = m_colours->GetWeights(); |
| 105 | m_xsum_wsum = VEC4_CONST( 0.0f ); |
| 106 | for( int i = 0; i < count; ++i ) |
| 107 | { |
| 108 | int j = order[i]; |
| 109 | Vec4 p( unweighted[j].X(), unweighted[j].Y(), unweighted[j].Z(), 1.0f ); |
| 110 | Vec4 w( weights[j] ); |
| 111 | Vec4 x = p*w; |
| 112 | m_points_weights[i] = x; |
| 113 | m_xsum_wsum += x; |
| 114 | } |
| 115 | return true; |
| 116 | } |
| 117 | |
| 118 | void ClusterFit::Compress3( void* block ) |
| 119 | { |
| 120 | // declare variables |
| 121 | int const count = m_colours->GetCount(); |
| 122 | Vec4 const two = VEC4_CONST( 2.0 ); |
| 123 | Vec4 const one = VEC4_CONST( 1.0f ); |
| 124 | Vec4 const half_half2( 0.5f, 0.5f, 0.5f, 0.25f ); |
| 125 | Vec4 const zero = VEC4_CONST( 0.0f ); |
| 126 | Vec4 const half = VEC4_CONST( 0.5f ); |
| 127 | Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); |
| 128 | Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); |
| 129 | |
| 130 | // prepare an ordering using the principle axis |
| 131 | ConstructOrdering( m_principle, 0 ); |
| 132 | |
| 133 | // check all possible clusters and iterate on the total order |
| 134 | Vec4 beststart = VEC4_CONST( 0.0f ); |
| 135 | Vec4 bestend = VEC4_CONST( 0.0f ); |
| 136 | Vec4 besterror = m_besterror; |
| 137 | u8 bestindices[16]; |
| 138 | int bestiteration = 0; |
| 139 | int besti = 0, bestj = 0; |
| 140 | |
| 141 | // loop over iterations (we avoid the case that all points in first or last cluster) |
| 142 | for( int iterationIndex = 0;; ) |
| 143 | { |
| 144 | // first cluster [0,i) is at the start |
| 145 | Vec4 part0 = VEC4_CONST( 0.0f ); |
| 146 | for( int i = 0; i < count; ++i ) |
| 147 | { |
| 148 | // second cluster [i,j) is half along |
| 149 | Vec4 part1 = ( i == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); |
| 150 | int jmin = ( i == 0 ) ? 1 : i; |
| 151 | for( int j = jmin;; ) |
| 152 | { |
| 153 | // last cluster [j,count) is at the end |
| 154 | Vec4 part2 = m_xsum_wsum - part1 - part0; |
| 155 | |
| 156 | // compute least squares terms directly |
| 157 | Vec4 alphax_sum = MultiplyAdd( part1, half_half2, part0 ); |
| 158 | Vec4 alpha2_sum = alphax_sum.SplatW(); |
| 159 | |
| 160 | Vec4 betax_sum = MultiplyAdd( part1, half_half2, part2 ); |
| 161 | Vec4 beta2_sum = betax_sum.SplatW(); |
| 162 | |
| 163 | Vec4 alphabeta_sum = ( part1*half_half2 ).SplatW(); |
| 164 | |
| 165 | // compute the least-squares optimal points |
| 166 | Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); |
| 167 | Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; |
| 168 | Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; |
| 169 | |
| 170 | // clamp to the grid |
| 171 | a = Min( one, Max( zero, a ) ); |
| 172 | b = Min( one, Max( zero, b ) ); |
| 173 | a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; |
| 174 | b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; |
| 175 | |
| 176 | // compute the error (we skip the constant xxsum) |
| 177 | Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); |
| 178 | Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); |
| 179 | Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); |
| 180 | Vec4 e4 = MultiplyAdd( two, e3, e1 ); |
| 181 | |
| 182 | // apply the metric to the error term |
| 183 | Vec4 e5 = e4*m_metric; |
| 184 | Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); |
| 185 | |
| 186 | // keep the solution if it wins |
| 187 | if( CompareAnyLessThan( error, besterror ) ) |
| 188 | { |
| 189 | beststart = a; |
| 190 | bestend = b; |
| 191 | besti = i; |
| 192 | bestj = j; |
| 193 | besterror = error; |
| 194 | bestiteration = iterationIndex; |
| 195 | } |
| 196 | |
| 197 | // advance |
| 198 | if( j == count ) |
| 199 | break; |
| 200 | part1 += m_points_weights[j]; |
| 201 | ++j; |
| 202 | } |
| 203 | |
| 204 | // advance |
| 205 | part0 += m_points_weights[i]; |
| 206 | } |
| 207 | |
| 208 | // stop if we didn't improve in this iteration |
| 209 | if( bestiteration != iterationIndex ) |
| 210 | break; |
| 211 | |
| 212 | // advance if possible |
| 213 | ++iterationIndex; |
| 214 | if( iterationIndex == m_iterationCount ) |
| 215 | break; |
| 216 | |
| 217 | // stop if a new iteration is an ordering that has already been tried |
| 218 | Vec3 axis = ( bestend - beststart ).GetVec3(); |
| 219 | if( !ConstructOrdering( axis, iterationIndex ) ) |
| 220 | break; |
| 221 | } |
| 222 | |
| 223 | // save the block if necessary |
| 224 | if( CompareAnyLessThan( besterror, m_besterror ) ) |
| 225 | { |
| 226 | // remap the indices |
| 227 | u8 const* order = ( u8* )m_order + 16*bestiteration; |
| 228 | |
| 229 | u8 unordered[16]; |
| 230 | for( int m = 0; m < besti; ++m ) |
| 231 | unordered[order[m]] = 0; |
| 232 | for( int m = besti; m < bestj; ++m ) |
| 233 | unordered[order[m]] = 2; |
| 234 | for( int m = bestj; m < count; ++m ) |
| 235 | unordered[order[m]] = 1; |
| 236 | |
| 237 | m_colours->RemapIndices( unordered, bestindices ); |
| 238 | |
| 239 | // save the block |
| 240 | WriteColourBlock3( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); |
| 241 | |
| 242 | // save the error |
| 243 | m_besterror = besterror; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | void ClusterFit::Compress4( void* block ) |
| 248 | { |
| 249 | // declare variables |
| 250 | int const count = m_colours->GetCount(); |
| 251 | Vec4 const two = VEC4_CONST( 2.0f ); |
| 252 | Vec4 const one = VEC4_CONST( 1.0f ); |
| 253 | Vec4 const onethird_onethird2( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f ); |
| 254 | Vec4 const twothirds_twothirds2( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f ); |
| 255 | Vec4 const twonineths = VEC4_CONST( 2.0f/9.0f ); |
| 256 | Vec4 const zero = VEC4_CONST( 0.0f ); |
| 257 | Vec4 const half = VEC4_CONST( 0.5f ); |
| 258 | Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); |
| 259 | Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); |
| 260 | |
| 261 | // prepare an ordering using the principle axis |
| 262 | ConstructOrdering( m_principle, 0 ); |
| 263 | |
| 264 | // check all possible clusters and iterate on the total order |
| 265 | Vec4 beststart = VEC4_CONST( 0.0f ); |
| 266 | Vec4 bestend = VEC4_CONST( 0.0f ); |
| 267 | Vec4 besterror = m_besterror; |
| 268 | u8 bestindices[16]; |
| 269 | int bestiteration = 0; |
| 270 | int besti = 0, bestj = 0, bestk = 0; |
| 271 | |
| 272 | // loop over iterations (we avoid the case that all points in first or last cluster) |
| 273 | for( int iterationIndex = 0;; ) |
| 274 | { |
| 275 | // first cluster [0,i) is at the start |
| 276 | Vec4 part0 = VEC4_CONST( 0.0f ); |
| 277 | for( int i = 0; i < count; ++i ) |
| 278 | { |
| 279 | // second cluster [i,j) is one third along |
| 280 | Vec4 part1 = VEC4_CONST( 0.0f ); |
| 281 | for( int j = i;; ) |
| 282 | { |
| 283 | // third cluster [j,k) is two thirds along |
| 284 | Vec4 part2 = ( j == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); |
| 285 | int kmin = ( j == 0 ) ? 1 : j; |
| 286 | for( int k = kmin;; ) |
| 287 | { |
| 288 | // last cluster [k,count) is at the end |
| 289 | Vec4 part3 = m_xsum_wsum - part2 - part1 - part0; |
| 290 | |
| 291 | // compute least squares terms directly |
| 292 | Vec4 const alphax_sum = MultiplyAdd( part2, onethird_onethird2, MultiplyAdd( part1, twothirds_twothirds2, part0 ) ); |
| 293 | Vec4 const alpha2_sum = alphax_sum.SplatW(); |
| 294 | |
| 295 | Vec4 const betax_sum = MultiplyAdd( part1, onethird_onethird2, MultiplyAdd( part2, twothirds_twothirds2, part3 ) ); |
| 296 | Vec4 const beta2_sum = betax_sum.SplatW(); |
| 297 | |
| 298 | Vec4 const alphabeta_sum = twonineths*( part1 + part2 ).SplatW(); |
| 299 | |
| 300 | // compute the least-squares optimal points |
| 301 | Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); |
| 302 | Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; |
| 303 | Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; |
| 304 | |
| 305 | // clamp to the grid |
| 306 | a = Min( one, Max( zero, a ) ); |
| 307 | b = Min( one, Max( zero, b ) ); |
| 308 | a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; |
| 309 | b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; |
| 310 | |
| 311 | // compute the error (we skip the constant xxsum) |
| 312 | Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); |
| 313 | Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); |
| 314 | Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); |
| 315 | Vec4 e4 = MultiplyAdd( two, e3, e1 ); |
| 316 | |
| 317 | // apply the metric to the error term |
| 318 | Vec4 e5 = e4*m_metric; |
| 319 | Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); |
| 320 | |
| 321 | // keep the solution if it wins |
| 322 | if( CompareAnyLessThan( error, besterror ) ) |
| 323 | { |
| 324 | beststart = a; |
| 325 | bestend = b; |
| 326 | besterror = error; |
| 327 | besti = i; |
| 328 | bestj = j; |
| 329 | bestk = k; |
| 330 | bestiteration = iterationIndex; |
| 331 | } |
| 332 | |
| 333 | // advance |
| 334 | if( k == count ) |
| 335 | break; |
| 336 | part2 += m_points_weights[k]; |
| 337 | ++k; |
| 338 | } |
| 339 | |
| 340 | // advance |
| 341 | if( j == count ) |
| 342 | break; |
| 343 | part1 += m_points_weights[j]; |
| 344 | ++j; |
| 345 | } |
| 346 | |
| 347 | // advance |
| 348 | part0 += m_points_weights[i]; |
| 349 | } |
| 350 | |
| 351 | // stop if we didn't improve in this iteration |
| 352 | if( bestiteration != iterationIndex ) |
| 353 | break; |
| 354 | |
| 355 | // advance if possible |
| 356 | ++iterationIndex; |
| 357 | if( iterationIndex == m_iterationCount ) |
| 358 | break; |
| 359 | |
| 360 | // stop if a new iteration is an ordering that has already been tried |
| 361 | Vec3 axis = ( bestend - beststart ).GetVec3(); |
| 362 | if( !ConstructOrdering( axis, iterationIndex ) ) |
| 363 | break; |
| 364 | } |
| 365 | |
| 366 | // save the block if necessary |
| 367 | if( CompareAnyLessThan( besterror, m_besterror ) ) |
| 368 | { |
| 369 | // remap the indices |
| 370 | u8 const* order = ( u8* )m_order + 16*bestiteration; |
| 371 | |
| 372 | u8 unordered[16]; |
| 373 | for( int m = 0; m < besti; ++m ) |
| 374 | unordered[order[m]] = 0; |
| 375 | for( int m = besti; m < bestj; ++m ) |
| 376 | unordered[order[m]] = 2; |
| 377 | for( int m = bestj; m < bestk; ++m ) |
| 378 | unordered[order[m]] = 3; |
| 379 | for( int m = bestk; m < count; ++m ) |
| 380 | unordered[order[m]] = 1; |
| 381 | |
| 382 | m_colours->RemapIndices( unordered, bestindices ); |
| 383 | |
| 384 | // save the block |
| 385 | WriteColourBlock4( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); |
| 386 | |
| 387 | // save the error |
| 388 | m_besterror = besterror; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | } // namespace squish |
| 393 | |