1 | /* |
2 | Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net |
3 | |
4 | This software is provided 'as-is', without any express or implied warranty. |
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
6 | Permission is granted to anyone to use this software for any purpose, |
7 | including commercial applications, and to alter it and redistribute it freely, |
8 | subject to the following restrictions: |
9 | |
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
12 | 3. This notice may not be removed or altered from any source distribution. |
13 | */ |
14 | |
15 | #include <string.h> |
16 | |
17 | #include "btAlignedObjectArray.h" |
18 | #include "btConvexHullComputer.h" |
19 | #include "btMinMax.h" |
20 | #include "btVector3.h" |
21 | |
22 | #ifdef __GNUC__ |
23 | #include <stdint.h> |
24 | #elif defined(_MSC_VER) |
25 | typedef __int32 int32_t; |
26 | typedef __int64 int64_t; |
27 | typedef unsigned __int32 uint32_t; |
28 | typedef unsigned __int64 uint64_t; |
29 | #else |
30 | typedef int32_t int32_t; |
31 | typedef long long int32_t int64_t; |
32 | typedef uint32_t uint32_t; |
33 | typedef unsigned long long int32_t uint64_t; |
34 | #endif |
35 | |
36 | #ifdef _MSC_VER |
37 | #pragma warning(disable:4458) |
38 | #endif |
39 | |
40 | //The definition of USE_X86_64_ASM is moved into the build system. You can enable it manually by commenting out the following lines |
41 | //#if (defined(__GNUC__) && defined(__x86_64__) && !defined(__ICL)) // || (defined(__ICL) && defined(_M_X64)) bug in Intel compiler, disable inline assembly |
42 | // #define USE_X86_64_ASM |
43 | //#endif |
44 | |
45 | //#define DEBUG_CONVEX_HULL |
46 | //#define SHOW_ITERATIONS |
47 | |
48 | #if defined(DEBUG_CONVEX_HULL) || defined(SHOW_ITERATIONS) |
49 | #include <stdio.h> |
50 | #endif |
51 | |
52 | // -- GODOT start -- |
53 | namespace VHACD { |
54 | // -- GODOT end -- |
55 | |
56 | // Convex hull implementation based on Preparata and Hong |
57 | // Ole Kniemeyer, MAXON Computer GmbH |
58 | class btConvexHullInternal { |
59 | public: |
60 | class Point64 { |
61 | public: |
62 | int64_t x; |
63 | int64_t y; |
64 | int64_t z; |
65 | |
66 | Point64(int64_t x, int64_t y, int64_t z) |
67 | : x(x) |
68 | , y(y) |
69 | , z(z) |
70 | { |
71 | } |
72 | |
73 | bool isZero() |
74 | { |
75 | return (x == 0) && (y == 0) && (z == 0); |
76 | } |
77 | |
78 | int64_t dot(const Point64& b) const |
79 | { |
80 | return x * b.x + y * b.y + z * b.z; |
81 | } |
82 | }; |
83 | |
84 | class Point32 { |
85 | public: |
86 | int32_t x; |
87 | int32_t y; |
88 | int32_t z; |
89 | int32_t index; |
90 | |
91 | Point32() |
92 | { |
93 | } |
94 | |
95 | Point32(int32_t x, int32_t y, int32_t z) |
96 | : x(x) |
97 | , y(y) |
98 | , z(z) |
99 | , index(-1) |
100 | { |
101 | } |
102 | |
103 | bool operator==(const Point32& b) const |
104 | { |
105 | return (x == b.x) && (y == b.y) && (z == b.z); |
106 | } |
107 | |
108 | bool operator!=(const Point32& b) const |
109 | { |
110 | return (x != b.x) || (y != b.y) || (z != b.z); |
111 | } |
112 | |
113 | bool isZero() |
114 | { |
115 | return (x == 0) && (y == 0) && (z == 0); |
116 | } |
117 | |
118 | Point64 cross(const Point32& b) const |
119 | { |
120 | return Point64(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x); |
121 | } |
122 | |
123 | Point64 cross(const Point64& b) const |
124 | { |
125 | return Point64(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x); |
126 | } |
127 | |
128 | int64_t dot(const Point32& b) const |
129 | { |
130 | return x * b.x + y * b.y + z * b.z; |
131 | } |
132 | |
133 | int64_t dot(const Point64& b) const |
134 | { |
135 | return x * b.x + y * b.y + z * b.z; |
136 | } |
137 | |
138 | Point32 operator+(const Point32& b) const |
139 | { |
140 | return Point32(x + b.x, y + b.y, z + b.z); |
141 | } |
142 | |
143 | Point32 operator-(const Point32& b) const |
144 | { |
145 | return Point32(x - b.x, y - b.y, z - b.z); |
146 | } |
147 | }; |
148 | |
149 | class Int128 { |
150 | public: |
151 | uint64_t low; |
152 | uint64_t high; |
153 | |
154 | Int128() |
155 | { |
156 | } |
157 | |
158 | Int128(uint64_t low, uint64_t high) |
159 | : low(low) |
160 | , high(high) |
161 | { |
162 | } |
163 | |
164 | Int128(uint64_t low) |
165 | : low(low) |
166 | , high(0) |
167 | { |
168 | } |
169 | |
170 | Int128(int64_t value) |
171 | : low(value) |
172 | , high((value >= 0) ? 0 : (uint64_t)-1LL) |
173 | { |
174 | } |
175 | |
176 | static Int128 mul(int64_t a, int64_t b); |
177 | |
178 | static Int128 mul(uint64_t a, uint64_t b); |
179 | |
180 | Int128 operator-() const |
181 | { |
182 | return Int128((uint64_t) - (int64_t)low, ~high + (low == 0)); |
183 | } |
184 | |
185 | Int128 operator+(const Int128& b) const |
186 | { |
187 | #ifdef USE_X86_64_ASM |
188 | Int128 result; |
189 | __asm__("addq %[bl], %[rl]\n\t" |
190 | "adcq %[bh], %[rh]\n\t" |
191 | : [rl] "=r" (result.low), [rh] "=r" (result.high) |
192 | : "0" (low), "1" (high), [bl] "g" (b.low), [bh] "g" (b.high) |
193 | : "cc" ); |
194 | return result; |
195 | #else |
196 | uint64_t lo = low + b.low; |
197 | return Int128(lo, high + b.high + (lo < low)); |
198 | #endif |
199 | } |
200 | |
201 | Int128 operator-(const Int128& b) const |
202 | { |
203 | #ifdef USE_X86_64_ASM |
204 | Int128 result; |
205 | __asm__("subq %[bl], %[rl]\n\t" |
206 | "sbbq %[bh], %[rh]\n\t" |
207 | : [rl] "=r" (result.low), [rh] "=r" (result.high) |
208 | : "0" (low), "1" (high), [bl] "g" (b.low), [bh] "g" (b.high) |
209 | : "cc" ); |
210 | return result; |
211 | #else |
212 | return *this + -b; |
213 | #endif |
214 | } |
215 | |
216 | Int128& operator+=(const Int128& b) |
217 | { |
218 | #ifdef USE_X86_64_ASM |
219 | __asm__("addq %[bl], %[rl]\n\t" |
220 | "adcq %[bh], %[rh]\n\t" |
221 | : [rl] "=r" (low), [rh] "=r" (high) |
222 | : "0" (low), "1" (high), [bl] "g" (b.low), [bh] "g" (b.high) |
223 | : "cc" ); |
224 | #else |
225 | uint64_t lo = low + b.low; |
226 | if (lo < low) { |
227 | ++high; |
228 | } |
229 | low = lo; |
230 | high += b.high; |
231 | #endif |
232 | return *this; |
233 | } |
234 | |
235 | Int128& operator++() |
236 | { |
237 | if (++low == 0) { |
238 | ++high; |
239 | } |
240 | return *this; |
241 | } |
242 | |
243 | Int128 operator*(int64_t b) const; |
244 | |
245 | btScalar toScalar() const |
246 | { |
247 | return ((int64_t)high >= 0) ? btScalar(high) * (btScalar(0x100000000LL) * btScalar(0x100000000LL)) + btScalar(low) |
248 | : -(-*this).toScalar(); |
249 | } |
250 | |
251 | int32_t getSign() const |
252 | { |
253 | return ((int64_t)high < 0) ? -1 : (high || low) ? 1 : 0; |
254 | } |
255 | |
256 | bool operator<(const Int128& b) const |
257 | { |
258 | return (high < b.high) || ((high == b.high) && (low < b.low)); |
259 | } |
260 | |
261 | int32_t ucmp(const Int128& b) const |
262 | { |
263 | if (high < b.high) { |
264 | return -1; |
265 | } |
266 | if (high > b.high) { |
267 | return 1; |
268 | } |
269 | if (low < b.low) { |
270 | return -1; |
271 | } |
272 | if (low > b.low) { |
273 | return 1; |
274 | } |
275 | return 0; |
276 | } |
277 | }; |
278 | |
279 | class Rational64 { |
280 | private: |
281 | uint64_t m_numerator; |
282 | uint64_t m_denominator; |
283 | int32_t sign; |
284 | |
285 | public: |
286 | Rational64(int64_t numerator, int64_t denominator) |
287 | { |
288 | if (numerator > 0) { |
289 | sign = 1; |
290 | m_numerator = (uint64_t)numerator; |
291 | } |
292 | else if (numerator < 0) { |
293 | sign = -1; |
294 | m_numerator = (uint64_t)-numerator; |
295 | } |
296 | else { |
297 | sign = 0; |
298 | m_numerator = 0; |
299 | } |
300 | if (denominator > 0) { |
301 | m_denominator = (uint64_t)denominator; |
302 | } |
303 | else if (denominator < 0) { |
304 | sign = -sign; |
305 | m_denominator = (uint64_t)-denominator; |
306 | } |
307 | else { |
308 | m_denominator = 0; |
309 | } |
310 | } |
311 | |
312 | bool isNegativeInfinity() const |
313 | { |
314 | return (sign < 0) && (m_denominator == 0); |
315 | } |
316 | |
317 | bool isNaN() const |
318 | { |
319 | return (sign == 0) && (m_denominator == 0); |
320 | } |
321 | |
322 | int32_t compare(const Rational64& b) const; |
323 | |
324 | btScalar toScalar() const |
325 | { |
326 | return sign * ((m_denominator == 0) ? SIMD_INFINITY : (btScalar)m_numerator / m_denominator); |
327 | } |
328 | }; |
329 | |
330 | class Rational128 { |
331 | private: |
332 | Int128 numerator; |
333 | Int128 denominator; |
334 | int32_t sign; |
335 | bool isInt64; |
336 | |
337 | public: |
338 | Rational128(int64_t value) |
339 | { |
340 | if (value > 0) { |
341 | sign = 1; |
342 | this->numerator = value; |
343 | } |
344 | else if (value < 0) { |
345 | sign = -1; |
346 | this->numerator = -value; |
347 | } |
348 | else { |
349 | sign = 0; |
350 | this->numerator = (uint64_t)0; |
351 | } |
352 | this->denominator = (uint64_t)1; |
353 | isInt64 = true; |
354 | } |
355 | |
356 | Rational128(const Int128& numerator, const Int128& denominator) |
357 | { |
358 | sign = numerator.getSign(); |
359 | if (sign >= 0) { |
360 | this->numerator = numerator; |
361 | } |
362 | else { |
363 | this->numerator = -numerator; |
364 | } |
365 | int32_t dsign = denominator.getSign(); |
366 | if (dsign >= 0) { |
367 | this->denominator = denominator; |
368 | } |
369 | else { |
370 | sign = -sign; |
371 | this->denominator = -denominator; |
372 | } |
373 | isInt64 = false; |
374 | } |
375 | |
376 | int32_t compare(const Rational128& b) const; |
377 | |
378 | int32_t compare(int64_t b) const; |
379 | |
380 | btScalar toScalar() const |
381 | { |
382 | return sign * ((denominator.getSign() == 0) ? SIMD_INFINITY : numerator.toScalar() / denominator.toScalar()); |
383 | } |
384 | }; |
385 | |
386 | class PointR128 { |
387 | public: |
388 | Int128 x; |
389 | Int128 y; |
390 | Int128 z; |
391 | Int128 denominator; |
392 | |
393 | PointR128() |
394 | { |
395 | } |
396 | |
397 | PointR128(Int128 x, Int128 y, Int128 z, Int128 denominator) |
398 | : x(x) |
399 | , y(y) |
400 | , z(z) |
401 | , denominator(denominator) |
402 | { |
403 | } |
404 | |
405 | btScalar xvalue() const |
406 | { |
407 | return x.toScalar() / denominator.toScalar(); |
408 | } |
409 | |
410 | btScalar yvalue() const |
411 | { |
412 | return y.toScalar() / denominator.toScalar(); |
413 | } |
414 | |
415 | btScalar zvalue() const |
416 | { |
417 | return z.toScalar() / denominator.toScalar(); |
418 | } |
419 | }; |
420 | |
421 | class Edge; |
422 | class Face; |
423 | |
424 | class Vertex { |
425 | public: |
426 | Vertex* next; |
427 | Vertex* prev; |
428 | Edge* edges; |
429 | Face* firstNearbyFace; |
430 | Face* lastNearbyFace; |
431 | PointR128 point128; |
432 | Point32 point; |
433 | int32_t copy; |
434 | |
435 | Vertex() |
436 | : next(NULL) |
437 | , prev(NULL) |
438 | , edges(NULL) |
439 | , firstNearbyFace(NULL) |
440 | , lastNearbyFace(NULL) |
441 | , copy(-1) |
442 | { |
443 | } |
444 | |
445 | #ifdef DEBUG_CONVEX_HULL |
446 | void print() |
447 | { |
448 | printf("V%d (%d, %d, %d)" , point.index, point.x, point.y, point.z); |
449 | } |
450 | |
451 | void printGraph(); |
452 | #endif |
453 | |
454 | Point32 operator-(const Vertex& b) const |
455 | { |
456 | return point - b.point; |
457 | } |
458 | |
459 | Rational128 dot(const Point64& b) const |
460 | { |
461 | return (point.index >= 0) ? Rational128(point.dot(b)) |
462 | : Rational128(point128.x * b.x + point128.y * b.y + point128.z * b.z, point128.denominator); |
463 | } |
464 | |
465 | btScalar xvalue() const |
466 | { |
467 | return (point.index >= 0) ? btScalar(point.x) : point128.xvalue(); |
468 | } |
469 | |
470 | btScalar yvalue() const |
471 | { |
472 | return (point.index >= 0) ? btScalar(point.y) : point128.yvalue(); |
473 | } |
474 | |
475 | btScalar zvalue() const |
476 | { |
477 | return (point.index >= 0) ? btScalar(point.z) : point128.zvalue(); |
478 | } |
479 | |
480 | void receiveNearbyFaces(Vertex* src) |
481 | { |
482 | if (lastNearbyFace) { |
483 | lastNearbyFace->nextWithSameNearbyVertex = src->firstNearbyFace; |
484 | } |
485 | else { |
486 | firstNearbyFace = src->firstNearbyFace; |
487 | } |
488 | if (src->lastNearbyFace) { |
489 | lastNearbyFace = src->lastNearbyFace; |
490 | } |
491 | for (Face* f = src->firstNearbyFace; f; f = f->nextWithSameNearbyVertex) { |
492 | btAssert(f->nearbyVertex == src); |
493 | f->nearbyVertex = this; |
494 | } |
495 | src->firstNearbyFace = NULL; |
496 | src->lastNearbyFace = NULL; |
497 | } |
498 | }; |
499 | |
500 | class Edge { |
501 | public: |
502 | Edge* next; |
503 | Edge* prev; |
504 | Edge* reverse; |
505 | Vertex* target; |
506 | Face* face; |
507 | int32_t copy; |
508 | |
509 | ~Edge() |
510 | { |
511 | next = NULL; |
512 | prev = NULL; |
513 | reverse = NULL; |
514 | target = NULL; |
515 | face = NULL; |
516 | } |
517 | |
518 | void link(Edge* n) |
519 | { |
520 | btAssert(reverse->target == n->reverse->target); |
521 | next = n; |
522 | n->prev = this; |
523 | } |
524 | |
525 | #ifdef DEBUG_CONVEX_HULL |
526 | void print() |
527 | { |
528 | printf("E%p : %d -> %d, n=%p p=%p (0 %d\t%d\t%d) -> (%d %d %d)" , this, reverse->target->point.index, target->point.index, next, prev, |
529 | reverse->target->point.x, reverse->target->point.y, reverse->target->point.z, target->point.x, target->point.y, target->point.z); |
530 | } |
531 | #endif |
532 | }; |
533 | |
534 | class Face { |
535 | public: |
536 | Face* next; |
537 | Vertex* nearbyVertex; |
538 | Face* nextWithSameNearbyVertex; |
539 | Point32 origin; |
540 | Point32 dir0; |
541 | Point32 dir1; |
542 | |
543 | Face() |
544 | : next(NULL) |
545 | , nearbyVertex(NULL) |
546 | , nextWithSameNearbyVertex(NULL) |
547 | { |
548 | } |
549 | |
550 | void init(Vertex* a, Vertex* b, Vertex* c) |
551 | { |
552 | nearbyVertex = a; |
553 | origin = a->point; |
554 | dir0 = *b - *a; |
555 | dir1 = *c - *a; |
556 | if (a->lastNearbyFace) { |
557 | a->lastNearbyFace->nextWithSameNearbyVertex = this; |
558 | } |
559 | else { |
560 | a->firstNearbyFace = this; |
561 | } |
562 | a->lastNearbyFace = this; |
563 | } |
564 | |
565 | Point64 getNormal() |
566 | { |
567 | return dir0.cross(dir1); |
568 | } |
569 | }; |
570 | |
571 | template <typename UWord, typename UHWord> |
572 | class DMul { |
573 | private: |
574 | static uint32_t high(uint64_t value) |
575 | { |
576 | return (uint32_t)(value >> 32); |
577 | } |
578 | |
579 | static uint32_t low(uint64_t value) |
580 | { |
581 | return (uint32_t)value; |
582 | } |
583 | |
584 | static uint64_t mul(uint32_t a, uint32_t b) |
585 | { |
586 | return (uint64_t)a * (uint64_t)b; |
587 | } |
588 | |
589 | static void shlHalf(uint64_t& value) |
590 | { |
591 | value <<= 32; |
592 | } |
593 | |
594 | static uint64_t high(Int128 value) |
595 | { |
596 | return value.high; |
597 | } |
598 | |
599 | static uint64_t low(Int128 value) |
600 | { |
601 | return value.low; |
602 | } |
603 | |
604 | static Int128 mul(uint64_t a, uint64_t b) |
605 | { |
606 | return Int128::mul(a, b); |
607 | } |
608 | |
609 | static void shlHalf(Int128& value) |
610 | { |
611 | value.high = value.low; |
612 | value.low = 0; |
613 | } |
614 | |
615 | public: |
616 | static void mul(UWord a, UWord b, UWord& resLow, UWord& resHigh) |
617 | { |
618 | UWord p00 = mul(low(a), low(b)); |
619 | UWord p01 = mul(low(a), high(b)); |
620 | UWord p10 = mul(high(a), low(b)); |
621 | UWord p11 = mul(high(a), high(b)); |
622 | UWord p0110 = UWord(low(p01)) + UWord(low(p10)); |
623 | p11 += high(p01); |
624 | p11 += high(p10); |
625 | p11 += high(p0110); |
626 | shlHalf(p0110); |
627 | p00 += p0110; |
628 | if (p00 < p0110) { |
629 | ++p11; |
630 | } |
631 | resLow = p00; |
632 | resHigh = p11; |
633 | } |
634 | }; |
635 | |
636 | private: |
637 | class IntermediateHull { |
638 | public: |
639 | Vertex* minXy; |
640 | Vertex* maxXy; |
641 | Vertex* minYx; |
642 | Vertex* maxYx; |
643 | |
644 | IntermediateHull() |
645 | : minXy(NULL) |
646 | , maxXy(NULL) |
647 | , minYx(NULL) |
648 | , maxYx(NULL) |
649 | { |
650 | } |
651 | |
652 | void print(); |
653 | }; |
654 | |
655 | enum Orientation { NONE, |
656 | CLOCKWISE, |
657 | COUNTER_CLOCKWISE }; |
658 | |
659 | template <typename T> |
660 | class PoolArray { |
661 | private: |
662 | T* array; |
663 | int32_t size; |
664 | |
665 | public: |
666 | PoolArray<T>* next; |
667 | |
668 | PoolArray(int32_t size) |
669 | : size(size) |
670 | , next(NULL) |
671 | { |
672 | array = (T*)btAlignedAlloc(sizeof(T) * size, 16); |
673 | } |
674 | |
675 | ~PoolArray() |
676 | { |
677 | btAlignedFree(array); |
678 | } |
679 | |
680 | T* init() |
681 | { |
682 | T* o = array; |
683 | for (int32_t i = 0; i < size; i++, o++) { |
684 | o->next = (i + 1 < size) ? o + 1 : NULL; |
685 | } |
686 | return array; |
687 | } |
688 | }; |
689 | |
690 | template <typename T> |
691 | class Pool { |
692 | private: |
693 | PoolArray<T>* arrays; |
694 | PoolArray<T>* nextArray; |
695 | T* freeObjects; |
696 | int32_t arraySize; |
697 | |
698 | public: |
699 | Pool() |
700 | : arrays(NULL) |
701 | , nextArray(NULL) |
702 | , freeObjects(NULL) |
703 | , arraySize(256) |
704 | { |
705 | } |
706 | |
707 | ~Pool() |
708 | { |
709 | while (arrays) { |
710 | PoolArray<T>* p = arrays; |
711 | arrays = p->next; |
712 | p->~PoolArray<T>(); |
713 | btAlignedFree(p); |
714 | } |
715 | } |
716 | |
717 | void reset() |
718 | { |
719 | nextArray = arrays; |
720 | freeObjects = NULL; |
721 | } |
722 | |
723 | void setArraySize(int32_t arraySize) |
724 | { |
725 | this->arraySize = arraySize; |
726 | } |
727 | |
728 | T* newObject() |
729 | { |
730 | T* o = freeObjects; |
731 | if (!o) { |
732 | PoolArray<T>* p = nextArray; |
733 | if (p) { |
734 | nextArray = p->next; |
735 | } |
736 | else { |
737 | p = new (btAlignedAlloc(sizeof(PoolArray<T>), 16)) PoolArray<T>(arraySize); |
738 | p->next = arrays; |
739 | arrays = p; |
740 | } |
741 | o = p->init(); |
742 | } |
743 | freeObjects = o->next; |
744 | return new (o) T(); |
745 | }; |
746 | |
747 | void freeObject(T* object) |
748 | { |
749 | object->~T(); |
750 | object->next = freeObjects; |
751 | freeObjects = object; |
752 | } |
753 | }; |
754 | |
755 | btVector3 scaling; |
756 | btVector3 center; |
757 | Pool<Vertex> vertexPool; |
758 | Pool<Edge> edgePool; |
759 | Pool<Face> facePool; |
760 | btAlignedObjectArray<Vertex*> originalVertices; |
761 | int32_t mergeStamp; |
762 | int32_t minAxis; |
763 | int32_t medAxis; |
764 | int32_t maxAxis; |
765 | int32_t usedEdgePairs; |
766 | int32_t maxUsedEdgePairs; |
767 | |
768 | static Orientation getOrientation(const Edge* prev, const Edge* next, const Point32& s, const Point32& t); |
769 | Edge* findMaxAngle(bool ccw, const Vertex* start, const Point32& s, const Point64& rxs, const Point64& sxrxs, Rational64& minCot); |
770 | void findEdgeForCoplanarFaces(Vertex* c0, Vertex* c1, Edge*& e0, Edge*& e1, Vertex* stop0, Vertex* stop1); |
771 | |
772 | Edge* newEdgePair(Vertex* from, Vertex* to); |
773 | |
774 | void removeEdgePair(Edge* edge) |
775 | { |
776 | Edge* n = edge->next; |
777 | Edge* r = edge->reverse; |
778 | |
779 | btAssert(edge->target && r->target); |
780 | |
781 | if (n != edge) { |
782 | n->prev = edge->prev; |
783 | edge->prev->next = n; |
784 | r->target->edges = n; |
785 | } |
786 | else { |
787 | r->target->edges = NULL; |
788 | } |
789 | |
790 | n = r->next; |
791 | |
792 | if (n != r) { |
793 | n->prev = r->prev; |
794 | r->prev->next = n; |
795 | edge->target->edges = n; |
796 | } |
797 | else { |
798 | edge->target->edges = NULL; |
799 | } |
800 | |
801 | edgePool.freeObject(edge); |
802 | edgePool.freeObject(r); |
803 | usedEdgePairs--; |
804 | } |
805 | |
806 | void computeInternal(int32_t start, int32_t end, IntermediateHull& result); |
807 | |
808 | bool mergeProjection(IntermediateHull& h0, IntermediateHull& h1, Vertex*& c0, Vertex*& c1); |
809 | |
810 | void merge(IntermediateHull& h0, IntermediateHull& h1); |
811 | |
812 | btVector3 toBtVector(const Point32& v); |
813 | |
814 | btVector3 getBtNormal(Face* face); |
815 | |
816 | bool shiftFace(Face* face, btScalar amount, btAlignedObjectArray<Vertex*> stack); |
817 | |
818 | public: |
819 | Vertex* vertexList; |
820 | |
821 | void compute(const void* coords, bool doubleCoords, int32_t stride, int32_t count); |
822 | |
823 | btVector3 getCoordinates(const Vertex* v); |
824 | |
825 | btScalar shrink(btScalar amount, btScalar clampAmount); |
826 | }; |
827 | |
828 | btConvexHullInternal::Int128 btConvexHullInternal::Int128::operator*(int64_t b) const |
829 | { |
830 | bool negative = (int64_t)high < 0; |
831 | Int128 a = negative ? -*this : *this; |
832 | if (b < 0) { |
833 | negative = !negative; |
834 | b = -b; |
835 | } |
836 | Int128 result = mul(a.low, (uint64_t)b); |
837 | result.high += a.high * (uint64_t)b; |
838 | return negative ? -result : result; |
839 | } |
840 | |
841 | btConvexHullInternal::Int128 btConvexHullInternal::Int128::mul(int64_t a, int64_t b) |
842 | { |
843 | Int128 result; |
844 | |
845 | #ifdef USE_X86_64_ASM |
846 | __asm__("imulq %[b]" |
847 | : "=a" (result.low), "=d" (result.high) |
848 | : "0" (a), [b] "r" (b) |
849 | : "cc" ); |
850 | return result; |
851 | |
852 | #else |
853 | bool negative = a < 0; |
854 | if (negative) { |
855 | a = -a; |
856 | } |
857 | if (b < 0) { |
858 | negative = !negative; |
859 | b = -b; |
860 | } |
861 | DMul<uint64_t, uint32_t>::mul((uint64_t)a, (uint64_t)b, result.low, result.high); |
862 | return negative ? -result : result; |
863 | #endif |
864 | } |
865 | |
866 | btConvexHullInternal::Int128 btConvexHullInternal::Int128::mul(uint64_t a, uint64_t b) |
867 | { |
868 | Int128 result; |
869 | |
870 | #ifdef USE_X86_64_ASM |
871 | __asm__("mulq %[b]" |
872 | : "=a" (result.low), "=d" (result.high) |
873 | : "0" (a), [b] "r" (b) |
874 | : "cc" ); |
875 | |
876 | #else |
877 | DMul<uint64_t, uint32_t>::mul(a, b, result.low, result.high); |
878 | #endif |
879 | |
880 | return result; |
881 | } |
882 | |
883 | int32_t btConvexHullInternal::Rational64::compare(const Rational64& b) const |
884 | { |
885 | if (sign != b.sign) { |
886 | return sign - b.sign; |
887 | } |
888 | else if (sign == 0) { |
889 | return 0; |
890 | } |
891 | |
892 | // return (numerator * b.denominator > b.numerator * denominator) ? sign : (numerator * b.denominator < b.numerator * denominator) ? -sign : 0; |
893 | |
894 | #ifdef USE_X86_64_ASM |
895 | |
896 | int32_t result; |
897 | int64_t tmp; |
898 | int64_t dummy; |
899 | __asm__("mulq %[bn]\n\t" |
900 | "movq %%rax, %[tmp]\n\t" |
901 | "movq %%rdx, %%rbx\n\t" |
902 | "movq %[tn], %%rax\n\t" |
903 | "mulq %[bd]\n\t" |
904 | "subq %[tmp], %%rax\n\t" |
905 | "sbbq %%rbx, %%rdx\n\t" // rdx:rax contains 128-bit-difference "numerator*b.denominator - b.numerator*denominator" |
906 | "setnsb %%bh\n\t" // bh=1 if difference is non-negative, bh=0 otherwise |
907 | "orq %%rdx, %%rax\n\t" |
908 | "setnzb %%bl\n\t" // bl=1 if difference if non-zero, bl=0 if it is zero |
909 | "decb %%bh\n\t" // now bx=0x0000 if difference is zero, 0xff01 if it is negative, 0x0001 if it is positive (i.e., same sign as difference) |
910 | "shll $16, %%ebx\n\t" // ebx has same sign as difference |
911 | : "=&b" (result), [tmp] "=&r" (tmp), "=a" (dummy) |
912 | : "a" (denominator), [bn] "g" (b.numerator), [tn] "g" (numerator), [bd] "g" (b.denominator) |
913 | : "%rdx" , "cc" ); |
914 | return result ? result ^ sign // if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero) |
915 | // if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero) |
916 | : 0; |
917 | |
918 | #else |
919 | |
920 | return sign * Int128::mul(m_numerator, b.m_denominator).ucmp(Int128::mul(m_denominator, b.m_numerator)); |
921 | |
922 | #endif |
923 | } |
924 | |
925 | int32_t btConvexHullInternal::Rational128::compare(const Rational128& b) const |
926 | { |
927 | if (sign != b.sign) { |
928 | return sign - b.sign; |
929 | } |
930 | else if (sign == 0) { |
931 | return 0; |
932 | } |
933 | if (isInt64) { |
934 | return -b.compare(sign * (int64_t)numerator.low); |
935 | } |
936 | |
937 | Int128 nbdLow, nbdHigh, dbnLow, dbnHigh; |
938 | DMul<Int128, uint64_t>::mul(numerator, b.denominator, nbdLow, nbdHigh); |
939 | DMul<Int128, uint64_t>::mul(denominator, b.numerator, dbnLow, dbnHigh); |
940 | |
941 | int32_t cmp = nbdHigh.ucmp(dbnHigh); |
942 | if (cmp) { |
943 | return cmp * sign; |
944 | } |
945 | return nbdLow.ucmp(dbnLow) * sign; |
946 | } |
947 | |
948 | int32_t btConvexHullInternal::Rational128::compare(int64_t b) const |
949 | { |
950 | if (isInt64) { |
951 | int64_t a = sign * (int64_t)numerator.low; |
952 | return (a > b) ? 1 : (a < b) ? -1 : 0; |
953 | } |
954 | if (b > 0) { |
955 | if (sign <= 0) { |
956 | return -1; |
957 | } |
958 | } |
959 | else if (b < 0) { |
960 | if (sign >= 0) { |
961 | return 1; |
962 | } |
963 | b = -b; |
964 | } |
965 | else { |
966 | return sign; |
967 | } |
968 | |
969 | return numerator.ucmp(denominator * b) * sign; |
970 | } |
971 | |
972 | btConvexHullInternal::Edge* btConvexHullInternal::newEdgePair(Vertex* from, Vertex* to) |
973 | { |
974 | btAssert(from && to); |
975 | Edge* e = edgePool.newObject(); |
976 | Edge* r = edgePool.newObject(); |
977 | e->reverse = r; |
978 | r->reverse = e; |
979 | e->copy = mergeStamp; |
980 | r->copy = mergeStamp; |
981 | e->target = to; |
982 | r->target = from; |
983 | e->face = NULL; |
984 | r->face = NULL; |
985 | usedEdgePairs++; |
986 | if (usedEdgePairs > maxUsedEdgePairs) { |
987 | maxUsedEdgePairs = usedEdgePairs; |
988 | } |
989 | return e; |
990 | } |
991 | |
992 | bool btConvexHullInternal::mergeProjection(IntermediateHull& h0, IntermediateHull& h1, Vertex*& c0, Vertex*& c1) |
993 | { |
994 | Vertex* v0 = h0.maxYx; |
995 | Vertex* v1 = h1.minYx; |
996 | if ((v0->point.x == v1->point.x) && (v0->point.y == v1->point.y)) { |
997 | btAssert(v0->point.z < v1->point.z); |
998 | Vertex* v1p = v1->prev; |
999 | if (v1p == v1) { |
1000 | c0 = v0; |
1001 | if (v1->edges) { |
1002 | btAssert(v1->edges->next == v1->edges); |
1003 | v1 = v1->edges->target; |
1004 | btAssert(v1->edges->next == v1->edges); |
1005 | } |
1006 | c1 = v1; |
1007 | return false; |
1008 | } |
1009 | Vertex* v1n = v1->next; |
1010 | v1p->next = v1n; |
1011 | v1n->prev = v1p; |
1012 | if (v1 == h1.minXy) { |
1013 | if ((v1n->point.x < v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y < v1p->point.y))) { |
1014 | h1.minXy = v1n; |
1015 | } |
1016 | else { |
1017 | h1.minXy = v1p; |
1018 | } |
1019 | } |
1020 | if (v1 == h1.maxXy) { |
1021 | if ((v1n->point.x > v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y > v1p->point.y))) { |
1022 | h1.maxXy = v1n; |
1023 | } |
1024 | else { |
1025 | h1.maxXy = v1p; |
1026 | } |
1027 | } |
1028 | } |
1029 | |
1030 | v0 = h0.maxXy; |
1031 | v1 = h1.maxXy; |
1032 | Vertex* v00 = NULL; |
1033 | Vertex* v10 = NULL; |
1034 | int32_t sign = 1; |
1035 | |
1036 | for (int32_t side = 0; side <= 1; side++) { |
1037 | int32_t dx = (v1->point.x - v0->point.x) * sign; |
1038 | if (dx > 0) { |
1039 | while (true) { |
1040 | int32_t dy = v1->point.y - v0->point.y; |
1041 | |
1042 | Vertex* w0 = side ? v0->next : v0->prev; |
1043 | if (w0 != v0) { |
1044 | int32_t dx0 = (w0->point.x - v0->point.x) * sign; |
1045 | int32_t dy0 = w0->point.y - v0->point.y; |
1046 | if ((dy0 <= 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx <= dy * dx0)))) { |
1047 | v0 = w0; |
1048 | dx = (v1->point.x - v0->point.x) * sign; |
1049 | continue; |
1050 | } |
1051 | } |
1052 | |
1053 | Vertex* w1 = side ? v1->next : v1->prev; |
1054 | if (w1 != v1) { |
1055 | int32_t dx1 = (w1->point.x - v1->point.x) * sign; |
1056 | int32_t dy1 = w1->point.y - v1->point.y; |
1057 | int32_t dxn = (w1->point.x - v0->point.x) * sign; |
1058 | if ((dxn > 0) && (dy1 < 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx < dy * dx1)))) { |
1059 | v1 = w1; |
1060 | dx = dxn; |
1061 | continue; |
1062 | } |
1063 | } |
1064 | |
1065 | break; |
1066 | } |
1067 | } |
1068 | else if (dx < 0) { |
1069 | while (true) { |
1070 | int32_t dy = v1->point.y - v0->point.y; |
1071 | |
1072 | Vertex* w1 = side ? v1->prev : v1->next; |
1073 | if (w1 != v1) { |
1074 | int32_t dx1 = (w1->point.x - v1->point.x) * sign; |
1075 | int32_t dy1 = w1->point.y - v1->point.y; |
1076 | if ((dy1 >= 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx <= dy * dx1)))) { |
1077 | v1 = w1; |
1078 | dx = (v1->point.x - v0->point.x) * sign; |
1079 | continue; |
1080 | } |
1081 | } |
1082 | |
1083 | Vertex* w0 = side ? v0->prev : v0->next; |
1084 | if (w0 != v0) { |
1085 | int32_t dx0 = (w0->point.x - v0->point.x) * sign; |
1086 | int32_t dy0 = w0->point.y - v0->point.y; |
1087 | int32_t dxn = (v1->point.x - w0->point.x) * sign; |
1088 | if ((dxn < 0) && (dy0 > 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx < dy * dx0)))) { |
1089 | v0 = w0; |
1090 | dx = dxn; |
1091 | continue; |
1092 | } |
1093 | } |
1094 | |
1095 | break; |
1096 | } |
1097 | } |
1098 | else { |
1099 | int32_t x = v0->point.x; |
1100 | int32_t y0 = v0->point.y; |
1101 | Vertex* w0 = v0; |
1102 | Vertex* t; |
1103 | while (((t = side ? w0->next : w0->prev) != v0) && (t->point.x == x) && (t->point.y <= y0)) { |
1104 | w0 = t; |
1105 | y0 = t->point.y; |
1106 | } |
1107 | v0 = w0; |
1108 | |
1109 | int32_t y1 = v1->point.y; |
1110 | Vertex* w1 = v1; |
1111 | while (((t = side ? w1->prev : w1->next) != v1) && (t->point.x == x) && (t->point.y >= y1)) { |
1112 | w1 = t; |
1113 | y1 = t->point.y; |
1114 | } |
1115 | v1 = w1; |
1116 | } |
1117 | |
1118 | if (side == 0) { |
1119 | v00 = v0; |
1120 | v10 = v1; |
1121 | |
1122 | v0 = h0.minXy; |
1123 | v1 = h1.minXy; |
1124 | sign = -1; |
1125 | } |
1126 | } |
1127 | |
1128 | v0->prev = v1; |
1129 | v1->next = v0; |
1130 | |
1131 | v00->next = v10; |
1132 | v10->prev = v00; |
1133 | |
1134 | if (h1.minXy->point.x < h0.minXy->point.x) { |
1135 | h0.minXy = h1.minXy; |
1136 | } |
1137 | if (h1.maxXy->point.x >= h0.maxXy->point.x) { |
1138 | h0.maxXy = h1.maxXy; |
1139 | } |
1140 | |
1141 | h0.maxYx = h1.maxYx; |
1142 | |
1143 | c0 = v00; |
1144 | c1 = v10; |
1145 | |
1146 | return true; |
1147 | } |
1148 | |
1149 | void btConvexHullInternal::computeInternal(int32_t start, int32_t end, IntermediateHull& result) |
1150 | { |
1151 | int32_t n = end - start; |
1152 | switch (n) { |
1153 | case 0: |
1154 | result.minXy = NULL; |
1155 | result.maxXy = NULL; |
1156 | result.minYx = NULL; |
1157 | result.maxYx = NULL; |
1158 | return; |
1159 | case 2: { |
1160 | Vertex* v = originalVertices[start]; |
1161 | Vertex* w = v + 1; |
1162 | if (v->point != w->point) { |
1163 | int32_t dx = v->point.x - w->point.x; |
1164 | int32_t dy = v->point.y - w->point.y; |
1165 | |
1166 | if ((dx == 0) && (dy == 0)) { |
1167 | if (v->point.z > w->point.z) { |
1168 | Vertex* t = w; |
1169 | w = v; |
1170 | v = t; |
1171 | } |
1172 | btAssert(v->point.z < w->point.z); |
1173 | v->next = v; |
1174 | v->prev = v; |
1175 | result.minXy = v; |
1176 | result.maxXy = v; |
1177 | result.minYx = v; |
1178 | result.maxYx = v; |
1179 | } |
1180 | else { |
1181 | v->next = w; |
1182 | v->prev = w; |
1183 | w->next = v; |
1184 | w->prev = v; |
1185 | |
1186 | if ((dx < 0) || ((dx == 0) && (dy < 0))) { |
1187 | result.minXy = v; |
1188 | result.maxXy = w; |
1189 | } |
1190 | else { |
1191 | result.minXy = w; |
1192 | result.maxXy = v; |
1193 | } |
1194 | |
1195 | if ((dy < 0) || ((dy == 0) && (dx < 0))) { |
1196 | result.minYx = v; |
1197 | result.maxYx = w; |
1198 | } |
1199 | else { |
1200 | result.minYx = w; |
1201 | result.maxYx = v; |
1202 | } |
1203 | } |
1204 | |
1205 | Edge* e = newEdgePair(v, w); |
1206 | e->link(e); |
1207 | v->edges = e; |
1208 | |
1209 | e = e->reverse; |
1210 | e->link(e); |
1211 | w->edges = e; |
1212 | |
1213 | return; |
1214 | } |
1215 | } |
1216 | // lint -fallthrough |
1217 | case 1: { |
1218 | Vertex* v = originalVertices[start]; |
1219 | v->edges = NULL; |
1220 | v->next = v; |
1221 | v->prev = v; |
1222 | |
1223 | result.minXy = v; |
1224 | result.maxXy = v; |
1225 | result.minYx = v; |
1226 | result.maxYx = v; |
1227 | |
1228 | return; |
1229 | } |
1230 | } |
1231 | |
1232 | int32_t split0 = start + n / 2; |
1233 | Point32 p = originalVertices[split0 - 1]->point; |
1234 | int32_t split1 = split0; |
1235 | while ((split1 < end) && (originalVertices[split1]->point == p)) { |
1236 | split1++; |
1237 | } |
1238 | computeInternal(start, split0, result); |
1239 | IntermediateHull hull1; |
1240 | computeInternal(split1, end, hull1); |
1241 | #ifdef DEBUG_CONVEX_HULL |
1242 | printf("\n\nMerge\n" ); |
1243 | result.print(); |
1244 | hull1.print(); |
1245 | #endif |
1246 | merge(result, hull1); |
1247 | #ifdef DEBUG_CONVEX_HULL |
1248 | printf("\n Result\n" ); |
1249 | result.print(); |
1250 | #endif |
1251 | } |
1252 | |
1253 | #ifdef DEBUG_CONVEX_HULL |
1254 | void btConvexHullInternal::IntermediateHull::print() |
1255 | { |
1256 | printf(" Hull\n" ); |
1257 | for (Vertex* v = minXy; v;) { |
1258 | printf(" " ); |
1259 | v->print(); |
1260 | if (v == maxXy) { |
1261 | printf(" maxXy" ); |
1262 | } |
1263 | if (v == minYx) { |
1264 | printf(" minYx" ); |
1265 | } |
1266 | if (v == maxYx) { |
1267 | printf(" maxYx" ); |
1268 | } |
1269 | if (v->next->prev != v) { |
1270 | printf(" Inconsistency" ); |
1271 | } |
1272 | printf("\n" ); |
1273 | v = v->next; |
1274 | if (v == minXy) { |
1275 | break; |
1276 | } |
1277 | } |
1278 | if (minXy) { |
1279 | minXy->copy = (minXy->copy == -1) ? -2 : -1; |
1280 | minXy->printGraph(); |
1281 | } |
1282 | } |
1283 | |
1284 | void btConvexHullInternal::Vertex::printGraph() |
1285 | { |
1286 | print(); |
1287 | printf("\nEdges\n" ); |
1288 | Edge* e = edges; |
1289 | if (e) { |
1290 | do { |
1291 | e->print(); |
1292 | printf("\n" ); |
1293 | e = e->next; |
1294 | } while (e != edges); |
1295 | do { |
1296 | Vertex* v = e->target; |
1297 | if (v->copy != copy) { |
1298 | v->copy = copy; |
1299 | v->printGraph(); |
1300 | } |
1301 | e = e->next; |
1302 | } while (e != edges); |
1303 | } |
1304 | } |
1305 | #endif |
1306 | |
1307 | btConvexHullInternal::Orientation btConvexHullInternal::getOrientation(const Edge* prev, const Edge* next, const Point32& s, const Point32& t) |
1308 | { |
1309 | btAssert(prev->reverse->target == next->reverse->target); |
1310 | if (prev->next == next) { |
1311 | if (prev->prev == next) { |
1312 | Point64 n = t.cross(s); |
1313 | Point64 m = (*prev->target - *next->reverse->target).cross(*next->target - *next->reverse->target); |
1314 | btAssert(!m.isZero()); |
1315 | int64_t dot = n.dot(m); |
1316 | btAssert(dot != 0); |
1317 | return (dot > 0) ? COUNTER_CLOCKWISE : CLOCKWISE; |
1318 | } |
1319 | return COUNTER_CLOCKWISE; |
1320 | } |
1321 | else if (prev->prev == next) { |
1322 | return CLOCKWISE; |
1323 | } |
1324 | else { |
1325 | return NONE; |
1326 | } |
1327 | } |
1328 | |
1329 | btConvexHullInternal::Edge* btConvexHullInternal::findMaxAngle(bool ccw, const Vertex* start, const Point32& s, const Point64& rxs, const Point64& sxrxs, Rational64& minCot) |
1330 | { |
1331 | Edge* minEdge = NULL; |
1332 | |
1333 | #ifdef DEBUG_CONVEX_HULL |
1334 | printf("find max edge for %d\n" , start->point.index); |
1335 | #endif |
1336 | Edge* e = start->edges; |
1337 | if (e) { |
1338 | do { |
1339 | if (e->copy > mergeStamp) { |
1340 | Point32 t = *e->target - *start; |
1341 | Rational64 cot(t.dot(sxrxs), t.dot(rxs)); |
1342 | #ifdef DEBUG_CONVEX_HULL |
1343 | printf(" Angle is %f (%d) for " , (float)btAtan(cot.toScalar()), (int32_t)cot.isNaN()); |
1344 | e->print(); |
1345 | #endif |
1346 | if (cot.isNaN()) { |
1347 | btAssert(ccw ? (t.dot(s) < 0) : (t.dot(s) > 0)); |
1348 | } |
1349 | else { |
1350 | int32_t cmp; |
1351 | if (minEdge == NULL) { |
1352 | minCot = cot; |
1353 | minEdge = e; |
1354 | } |
1355 | else if ((cmp = cot.compare(minCot)) < 0) { |
1356 | minCot = cot; |
1357 | minEdge = e; |
1358 | } |
1359 | else if ((cmp == 0) && (ccw == (getOrientation(minEdge, e, s, t) == COUNTER_CLOCKWISE))) { |
1360 | minEdge = e; |
1361 | } |
1362 | } |
1363 | #ifdef DEBUG_CONVEX_HULL |
1364 | printf("\n" ); |
1365 | #endif |
1366 | } |
1367 | e = e->next; |
1368 | } while (e != start->edges); |
1369 | } |
1370 | return minEdge; |
1371 | } |
1372 | |
1373 | void btConvexHullInternal::findEdgeForCoplanarFaces(Vertex* c0, Vertex* c1, Edge*& e0, Edge*& e1, Vertex* stop0, Vertex* stop1) |
1374 | { |
1375 | Edge* start0 = e0; |
1376 | Edge* start1 = e1; |
1377 | Point32 et0 = start0 ? start0->target->point : c0->point; |
1378 | Point32 et1 = start1 ? start1->target->point : c1->point; |
1379 | Point32 s = c1->point - c0->point; |
1380 | Point64 normal = ((start0 ? start0 : start1)->target->point - c0->point).cross(s); |
1381 | int64_t dist = c0->point.dot(normal); |
1382 | btAssert(!start1 || (start1->target->point.dot(normal) == dist)); |
1383 | Point64 perp = s.cross(normal); |
1384 | btAssert(!perp.isZero()); |
1385 | |
1386 | #ifdef DEBUG_CONVEX_HULL |
1387 | printf(" Advancing %d %d (%p %p, %d %d)\n" , c0->point.index, c1->point.index, start0, start1, start0 ? start0->target->point.index : -1, start1 ? start1->target->point.index : -1); |
1388 | #endif |
1389 | |
1390 | int64_t maxDot0 = et0.dot(perp); |
1391 | if (e0) { |
1392 | while (e0->target != stop0) { |
1393 | Edge* e = e0->reverse->prev; |
1394 | if (e->target->point.dot(normal) < dist) { |
1395 | break; |
1396 | } |
1397 | btAssert(e->target->point.dot(normal) == dist); |
1398 | if (e->copy == mergeStamp) { |
1399 | break; |
1400 | } |
1401 | int64_t dot = e->target->point.dot(perp); |
1402 | if (dot <= maxDot0) { |
1403 | break; |
1404 | } |
1405 | maxDot0 = dot; |
1406 | e0 = e; |
1407 | et0 = e->target->point; |
1408 | } |
1409 | } |
1410 | |
1411 | int64_t maxDot1 = et1.dot(perp); |
1412 | if (e1) { |
1413 | while (e1->target != stop1) { |
1414 | Edge* e = e1->reverse->next; |
1415 | if (e->target->point.dot(normal) < dist) { |
1416 | break; |
1417 | } |
1418 | btAssert(e->target->point.dot(normal) == dist); |
1419 | if (e->copy == mergeStamp) { |
1420 | break; |
1421 | } |
1422 | int64_t dot = e->target->point.dot(perp); |
1423 | if (dot <= maxDot1) { |
1424 | break; |
1425 | } |
1426 | maxDot1 = dot; |
1427 | e1 = e; |
1428 | et1 = e->target->point; |
1429 | } |
1430 | } |
1431 | |
1432 | #ifdef DEBUG_CONVEX_HULL |
1433 | printf(" Starting at %d %d\n" , et0.index, et1.index); |
1434 | #endif |
1435 | |
1436 | int64_t dx = maxDot1 - maxDot0; |
1437 | if (dx > 0) { |
1438 | while (true) { |
1439 | int64_t dy = (et1 - et0).dot(s); |
1440 | |
1441 | if (e0 && (e0->target != stop0)) { |
1442 | Edge* f0 = e0->next->reverse; |
1443 | if (f0->copy > mergeStamp) { |
1444 | int64_t dx0 = (f0->target->point - et0).dot(perp); |
1445 | int64_t dy0 = (f0->target->point - et0).dot(s); |
1446 | if ((dx0 == 0) ? (dy0 < 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) >= 0))) { |
1447 | et0 = f0->target->point; |
1448 | dx = (et1 - et0).dot(perp); |
1449 | e0 = (e0 == start0) ? NULL : f0; |
1450 | continue; |
1451 | } |
1452 | } |
1453 | } |
1454 | |
1455 | if (e1 && (e1->target != stop1)) { |
1456 | Edge* f1 = e1->reverse->next; |
1457 | if (f1->copy > mergeStamp) { |
1458 | Point32 d1 = f1->target->point - et1; |
1459 | if (d1.dot(normal) == 0) { |
1460 | int64_t dx1 = d1.dot(perp); |
1461 | int64_t dy1 = d1.dot(s); |
1462 | int64_t dxn = (f1->target->point - et0).dot(perp); |
1463 | if ((dxn > 0) && ((dx1 == 0) ? (dy1 < 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) > 0)))) { |
1464 | e1 = f1; |
1465 | et1 = e1->target->point; |
1466 | dx = dxn; |
1467 | continue; |
1468 | } |
1469 | } |
1470 | else { |
1471 | btAssert((e1 == start1) && (d1.dot(normal) < 0)); |
1472 | } |
1473 | } |
1474 | } |
1475 | |
1476 | break; |
1477 | } |
1478 | } |
1479 | else if (dx < 0) { |
1480 | while (true) { |
1481 | int64_t dy = (et1 - et0).dot(s); |
1482 | |
1483 | if (e1 && (e1->target != stop1)) { |
1484 | Edge* f1 = e1->prev->reverse; |
1485 | if (f1->copy > mergeStamp) { |
1486 | int64_t dx1 = (f1->target->point - et1).dot(perp); |
1487 | int64_t dy1 = (f1->target->point - et1).dot(s); |
1488 | if ((dx1 == 0) ? (dy1 > 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) <= 0))) { |
1489 | et1 = f1->target->point; |
1490 | dx = (et1 - et0).dot(perp); |
1491 | e1 = (e1 == start1) ? NULL : f1; |
1492 | continue; |
1493 | } |
1494 | } |
1495 | } |
1496 | |
1497 | if (e0 && (e0->target != stop0)) { |
1498 | Edge* f0 = e0->reverse->prev; |
1499 | if (f0->copy > mergeStamp) { |
1500 | Point32 d0 = f0->target->point - et0; |
1501 | if (d0.dot(normal) == 0) { |
1502 | int64_t dx0 = d0.dot(perp); |
1503 | int64_t dy0 = d0.dot(s); |
1504 | int64_t dxn = (et1 - f0->target->point).dot(perp); |
1505 | if ((dxn < 0) && ((dx0 == 0) ? (dy0 > 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) < 0)))) { |
1506 | e0 = f0; |
1507 | et0 = e0->target->point; |
1508 | dx = dxn; |
1509 | continue; |
1510 | } |
1511 | } |
1512 | else { |
1513 | btAssert((e0 == start0) && (d0.dot(normal) < 0)); |
1514 | } |
1515 | } |
1516 | } |
1517 | |
1518 | break; |
1519 | } |
1520 | } |
1521 | #ifdef DEBUG_CONVEX_HULL |
1522 | printf(" Advanced edges to %d %d\n" , et0.index, et1.index); |
1523 | #endif |
1524 | } |
1525 | |
1526 | void btConvexHullInternal::merge(IntermediateHull& h0, IntermediateHull& h1) |
1527 | { |
1528 | if (!h1.maxXy) { |
1529 | return; |
1530 | } |
1531 | if (!h0.maxXy) { |
1532 | h0 = h1; |
1533 | return; |
1534 | } |
1535 | |
1536 | mergeStamp--; |
1537 | |
1538 | Vertex* c0 = NULL; |
1539 | Edge* toPrev0 = NULL; |
1540 | Edge* firstNew0 = NULL; |
1541 | Edge* pendingHead0 = NULL; |
1542 | Edge* pendingTail0 = NULL; |
1543 | Vertex* c1 = NULL; |
1544 | Edge* toPrev1 = NULL; |
1545 | Edge* firstNew1 = NULL; |
1546 | Edge* pendingHead1 = NULL; |
1547 | Edge* pendingTail1 = NULL; |
1548 | Point32 prevPoint; |
1549 | |
1550 | if (mergeProjection(h0, h1, c0, c1)) { |
1551 | Point32 s = *c1 - *c0; |
1552 | Point64 normal = Point32(0, 0, -1).cross(s); |
1553 | Point64 t = s.cross(normal); |
1554 | btAssert(!t.isZero()); |
1555 | |
1556 | Edge* e = c0->edges; |
1557 | Edge* start0 = NULL; |
1558 | if (e) { |
1559 | do { |
1560 | int64_t dot = (*e->target - *c0).dot(normal); |
1561 | btAssert(dot <= 0); |
1562 | if ((dot == 0) && ((*e->target - *c0).dot(t) > 0)) { |
1563 | if (!start0 || (getOrientation(start0, e, s, Point32(0, 0, -1)) == CLOCKWISE)) { |
1564 | start0 = e; |
1565 | } |
1566 | } |
1567 | e = e->next; |
1568 | } while (e != c0->edges); |
1569 | } |
1570 | |
1571 | e = c1->edges; |
1572 | Edge* start1 = NULL; |
1573 | if (e) { |
1574 | do { |
1575 | int64_t dot = (*e->target - *c1).dot(normal); |
1576 | btAssert(dot <= 0); |
1577 | if ((dot == 0) && ((*e->target - *c1).dot(t) > 0)) { |
1578 | if (!start1 || (getOrientation(start1, e, s, Point32(0, 0, -1)) == COUNTER_CLOCKWISE)) { |
1579 | start1 = e; |
1580 | } |
1581 | } |
1582 | e = e->next; |
1583 | } while (e != c1->edges); |
1584 | } |
1585 | |
1586 | if (start0 || start1) { |
1587 | findEdgeForCoplanarFaces(c0, c1, start0, start1, NULL, NULL); |
1588 | if (start0) { |
1589 | c0 = start0->target; |
1590 | } |
1591 | if (start1) { |
1592 | c1 = start1->target; |
1593 | } |
1594 | } |
1595 | |
1596 | prevPoint = c1->point; |
1597 | prevPoint.z++; |
1598 | } |
1599 | else { |
1600 | prevPoint = c1->point; |
1601 | prevPoint.x++; |
1602 | } |
1603 | |
1604 | Vertex* first0 = c0; |
1605 | Vertex* first1 = c1; |
1606 | bool firstRun = true; |
1607 | |
1608 | while (true) { |
1609 | Point32 s = *c1 - *c0; |
1610 | Point32 r = prevPoint - c0->point; |
1611 | Point64 rxs = r.cross(s); |
1612 | Point64 sxrxs = s.cross(rxs); |
1613 | |
1614 | #ifdef DEBUG_CONVEX_HULL |
1615 | printf("\n Checking %d %d\n" , c0->point.index, c1->point.index); |
1616 | #endif |
1617 | Rational64 minCot0(0, 0); |
1618 | Edge* min0 = findMaxAngle(false, c0, s, rxs, sxrxs, minCot0); |
1619 | Rational64 minCot1(0, 0); |
1620 | Edge* min1 = findMaxAngle(true, c1, s, rxs, sxrxs, minCot1); |
1621 | if (!min0 && !min1) { |
1622 | Edge* e = newEdgePair(c0, c1); |
1623 | e->link(e); |
1624 | c0->edges = e; |
1625 | |
1626 | e = e->reverse; |
1627 | e->link(e); |
1628 | c1->edges = e; |
1629 | return; |
1630 | } |
1631 | else { |
1632 | int32_t cmp = !min0 ? 1 : !min1 ? -1 : minCot0.compare(minCot1); |
1633 | #ifdef DEBUG_CONVEX_HULL |
1634 | printf(" -> Result %d\n" , cmp); |
1635 | #endif |
1636 | if (firstRun || ((cmp >= 0) ? !minCot1.isNegativeInfinity() : !minCot0.isNegativeInfinity())) { |
1637 | Edge* e = newEdgePair(c0, c1); |
1638 | if (pendingTail0) { |
1639 | pendingTail0->prev = e; |
1640 | } |
1641 | else { |
1642 | pendingHead0 = e; |
1643 | } |
1644 | e->next = pendingTail0; |
1645 | pendingTail0 = e; |
1646 | |
1647 | e = e->reverse; |
1648 | if (pendingTail1) { |
1649 | pendingTail1->next = e; |
1650 | } |
1651 | else { |
1652 | pendingHead1 = e; |
1653 | } |
1654 | e->prev = pendingTail1; |
1655 | pendingTail1 = e; |
1656 | } |
1657 | |
1658 | Edge* e0 = min0; |
1659 | Edge* e1 = min1; |
1660 | |
1661 | #ifdef DEBUG_CONVEX_HULL |
1662 | printf(" Found min edges to %d %d\n" , e0 ? e0->target->point.index : -1, e1 ? e1->target->point.index : -1); |
1663 | #endif |
1664 | |
1665 | if (cmp == 0) { |
1666 | findEdgeForCoplanarFaces(c0, c1, e0, e1, NULL, NULL); |
1667 | } |
1668 | |
1669 | if ((cmp >= 0) && e1) { |
1670 | if (toPrev1) { |
1671 | for (Edge *e = toPrev1->next, *n = NULL; e != min1; e = n) { |
1672 | n = e->next; |
1673 | removeEdgePair(e); |
1674 | } |
1675 | } |
1676 | |
1677 | if (pendingTail1) { |
1678 | if (toPrev1) { |
1679 | toPrev1->link(pendingHead1); |
1680 | } |
1681 | else { |
1682 | min1->prev->link(pendingHead1); |
1683 | firstNew1 = pendingHead1; |
1684 | } |
1685 | pendingTail1->link(min1); |
1686 | pendingHead1 = NULL; |
1687 | pendingTail1 = NULL; |
1688 | } |
1689 | else if (!toPrev1) { |
1690 | firstNew1 = min1; |
1691 | } |
1692 | |
1693 | prevPoint = c1->point; |
1694 | c1 = e1->target; |
1695 | toPrev1 = e1->reverse; |
1696 | } |
1697 | |
1698 | if ((cmp <= 0) && e0) { |
1699 | if (toPrev0) { |
1700 | for (Edge *e = toPrev0->prev, *n = NULL; e != min0; e = n) { |
1701 | n = e->prev; |
1702 | removeEdgePair(e); |
1703 | } |
1704 | } |
1705 | |
1706 | if (pendingTail0) { |
1707 | if (toPrev0) { |
1708 | pendingHead0->link(toPrev0); |
1709 | } |
1710 | else { |
1711 | pendingHead0->link(min0->next); |
1712 | firstNew0 = pendingHead0; |
1713 | } |
1714 | min0->link(pendingTail0); |
1715 | pendingHead0 = NULL; |
1716 | pendingTail0 = NULL; |
1717 | } |
1718 | else if (!toPrev0) { |
1719 | firstNew0 = min0; |
1720 | } |
1721 | |
1722 | prevPoint = c0->point; |
1723 | c0 = e0->target; |
1724 | toPrev0 = e0->reverse; |
1725 | } |
1726 | } |
1727 | |
1728 | if ((c0 == first0) && (c1 == first1)) { |
1729 | if (toPrev0 == NULL) { |
1730 | pendingHead0->link(pendingTail0); |
1731 | c0->edges = pendingTail0; |
1732 | } |
1733 | else { |
1734 | for (Edge *e = toPrev0->prev, *n = NULL; e != firstNew0; e = n) { |
1735 | n = e->prev; |
1736 | removeEdgePair(e); |
1737 | } |
1738 | if (pendingTail0) { |
1739 | pendingHead0->link(toPrev0); |
1740 | firstNew0->link(pendingTail0); |
1741 | } |
1742 | } |
1743 | |
1744 | if (toPrev1 == NULL) { |
1745 | pendingTail1->link(pendingHead1); |
1746 | c1->edges = pendingTail1; |
1747 | } |
1748 | else { |
1749 | for (Edge *e = toPrev1->next, *n = NULL; e != firstNew1; e = n) { |
1750 | n = e->next; |
1751 | removeEdgePair(e); |
1752 | } |
1753 | if (pendingTail1) { |
1754 | toPrev1->link(pendingHead1); |
1755 | pendingTail1->link(firstNew1); |
1756 | } |
1757 | } |
1758 | |
1759 | return; |
1760 | } |
1761 | |
1762 | firstRun = false; |
1763 | } |
1764 | } |
1765 | |
1766 | static bool pointCmp(const btConvexHullInternal::Point32& p, const btConvexHullInternal::Point32& q) |
1767 | { |
1768 | return (p.y < q.y) || ((p.y == q.y) && ((p.x < q.x) || ((p.x == q.x) && (p.z < q.z)))); |
1769 | } |
1770 | |
1771 | void btConvexHullInternal::compute(const void* coords, bool doubleCoords, int32_t stride, int32_t count) |
1772 | { |
1773 | btVector3 min(btScalar(1e30), btScalar(1e30), btScalar(1e30)), max(btScalar(-1e30), btScalar(-1e30), btScalar(-1e30)); |
1774 | const char* ptr = (const char*)coords; |
1775 | if (doubleCoords) { |
1776 | for (int32_t i = 0; i < count; i++) { |
1777 | const double* v = (const double*)ptr; |
1778 | btVector3 p((btScalar)v[0], (btScalar)v[1], (btScalar)v[2]); |
1779 | ptr += stride; |
1780 | min.setMin(p); |
1781 | max.setMax(p); |
1782 | } |
1783 | } |
1784 | else { |
1785 | for (int32_t i = 0; i < count; i++) { |
1786 | const float* v = (const float*)ptr; |
1787 | btVector3 p(v[0], v[1], v[2]); |
1788 | ptr += stride; |
1789 | min.setMin(p); |
1790 | max.setMax(p); |
1791 | } |
1792 | } |
1793 | |
1794 | btVector3 s = max - min; |
1795 | maxAxis = s.maxAxis(); |
1796 | minAxis = s.minAxis(); |
1797 | if (minAxis == maxAxis) { |
1798 | minAxis = (maxAxis + 1) % 3; |
1799 | } |
1800 | medAxis = 3 - maxAxis - minAxis; |
1801 | |
1802 | s /= btScalar(10216); |
1803 | if (((medAxis + 1) % 3) != maxAxis) { |
1804 | s *= -1; |
1805 | } |
1806 | scaling = s; |
1807 | |
1808 | if (s[0] != 0) { |
1809 | s[0] = btScalar(1) / s[0]; |
1810 | } |
1811 | if (s[1] != 0) { |
1812 | s[1] = btScalar(1) / s[1]; |
1813 | } |
1814 | if (s[2] != 0) { |
1815 | s[2] = btScalar(1) / s[2]; |
1816 | } |
1817 | |
1818 | center = (min + max) * btScalar(0.5); |
1819 | |
1820 | btAlignedObjectArray<Point32> points; |
1821 | points.resize(count); |
1822 | ptr = (const char*)coords; |
1823 | if (doubleCoords) { |
1824 | for (int32_t i = 0; i < count; i++) { |
1825 | const double* v = (const double*)ptr; |
1826 | btVector3 p((btScalar)v[0], (btScalar)v[1], (btScalar)v[2]); |
1827 | ptr += stride; |
1828 | p = (p - center) * s; |
1829 | points[i].x = (int32_t)p[medAxis]; |
1830 | points[i].y = (int32_t)p[maxAxis]; |
1831 | points[i].z = (int32_t)p[minAxis]; |
1832 | points[i].index = i; |
1833 | } |
1834 | } |
1835 | else { |
1836 | for (int32_t i = 0; i < count; i++) { |
1837 | const float* v = (const float*)ptr; |
1838 | btVector3 p(v[0], v[1], v[2]); |
1839 | ptr += stride; |
1840 | p = (p - center) * s; |
1841 | points[i].x = (int32_t)p[medAxis]; |
1842 | points[i].y = (int32_t)p[maxAxis]; |
1843 | points[i].z = (int32_t)p[minAxis]; |
1844 | points[i].index = i; |
1845 | } |
1846 | } |
1847 | points.quickSort(pointCmp); |
1848 | |
1849 | vertexPool.reset(); |
1850 | vertexPool.setArraySize(count); |
1851 | originalVertices.resize(count); |
1852 | for (int32_t i = 0; i < count; i++) { |
1853 | Vertex* v = vertexPool.newObject(); |
1854 | v->edges = NULL; |
1855 | v->point = points[i]; |
1856 | v->copy = -1; |
1857 | originalVertices[i] = v; |
1858 | } |
1859 | |
1860 | points.clear(); |
1861 | |
1862 | edgePool.reset(); |
1863 | edgePool.setArraySize(6 * count); |
1864 | |
1865 | usedEdgePairs = 0; |
1866 | maxUsedEdgePairs = 0; |
1867 | |
1868 | mergeStamp = -3; |
1869 | |
1870 | IntermediateHull hull; |
1871 | computeInternal(0, count, hull); |
1872 | vertexList = hull.minXy; |
1873 | #ifdef DEBUG_CONVEX_HULL |
1874 | printf("max. edges %d (3v = %d)" , maxUsedEdgePairs, 3 * count); |
1875 | #endif |
1876 | } |
1877 | |
1878 | btVector3 btConvexHullInternal::toBtVector(const Point32& v) |
1879 | { |
1880 | btVector3 p; |
1881 | p[medAxis] = btScalar(v.x); |
1882 | p[maxAxis] = btScalar(v.y); |
1883 | p[minAxis] = btScalar(v.z); |
1884 | return p * scaling; |
1885 | } |
1886 | |
1887 | btVector3 btConvexHullInternal::getBtNormal(Face* face) |
1888 | { |
1889 | return toBtVector(face->dir0).cross(toBtVector(face->dir1)).normalized(); |
1890 | } |
1891 | |
1892 | btVector3 btConvexHullInternal::getCoordinates(const Vertex* v) |
1893 | { |
1894 | btVector3 p; |
1895 | p[medAxis] = v->xvalue(); |
1896 | p[maxAxis] = v->yvalue(); |
1897 | p[minAxis] = v->zvalue(); |
1898 | return p * scaling + center; |
1899 | } |
1900 | |
1901 | btScalar btConvexHullInternal::shrink(btScalar amount, btScalar clampAmount) |
1902 | { |
1903 | if (!vertexList) { |
1904 | return 0; |
1905 | } |
1906 | int32_t stamp = --mergeStamp; |
1907 | btAlignedObjectArray<Vertex*> stack; |
1908 | vertexList->copy = stamp; |
1909 | stack.push_back(vertexList); |
1910 | btAlignedObjectArray<Face*> faces; |
1911 | |
1912 | Point32 ref = vertexList->point; |
1913 | Int128 hullCenterX(0, 0); |
1914 | Int128 hullCenterY(0, 0); |
1915 | Int128 hullCenterZ(0, 0); |
1916 | Int128 volume(0, 0); |
1917 | |
1918 | while (stack.size() > 0) { |
1919 | Vertex* v = stack[stack.size() - 1]; |
1920 | stack.pop_back(); |
1921 | Edge* e = v->edges; |
1922 | if (e) { |
1923 | do { |
1924 | if (e->target->copy != stamp) { |
1925 | e->target->copy = stamp; |
1926 | stack.push_back(e->target); |
1927 | } |
1928 | if (e->copy != stamp) { |
1929 | Face* face = facePool.newObject(); |
1930 | face->init(e->target, e->reverse->prev->target, v); |
1931 | faces.push_back(face); |
1932 | Edge* f = e; |
1933 | |
1934 | Vertex* a = NULL; |
1935 | Vertex* b = NULL; |
1936 | do { |
1937 | if (a && b) { |
1938 | int64_t vol = (v->point - ref).dot((a->point - ref).cross(b->point - ref)); |
1939 | btAssert(vol >= 0); |
1940 | Point32 c = v->point + a->point + b->point + ref; |
1941 | hullCenterX += vol * c.x; |
1942 | hullCenterY += vol * c.y; |
1943 | hullCenterZ += vol * c.z; |
1944 | volume += vol; |
1945 | } |
1946 | |
1947 | btAssert(f->copy != stamp); |
1948 | f->copy = stamp; |
1949 | f->face = face; |
1950 | |
1951 | a = b; |
1952 | b = f->target; |
1953 | |
1954 | f = f->reverse->prev; |
1955 | } while (f != e); |
1956 | } |
1957 | e = e->next; |
1958 | } while (e != v->edges); |
1959 | } |
1960 | } |
1961 | |
1962 | if (volume.getSign() <= 0) { |
1963 | return 0; |
1964 | } |
1965 | |
1966 | btVector3 hullCenter; |
1967 | hullCenter[medAxis] = hullCenterX.toScalar(); |
1968 | hullCenter[maxAxis] = hullCenterY.toScalar(); |
1969 | hullCenter[minAxis] = hullCenterZ.toScalar(); |
1970 | hullCenter /= 4 * volume.toScalar(); |
1971 | hullCenter *= scaling; |
1972 | |
1973 | int32_t faceCount = faces.size(); |
1974 | |
1975 | if (clampAmount > 0) { |
1976 | btScalar minDist = SIMD_INFINITY; |
1977 | for (int32_t i = 0; i < faceCount; i++) { |
1978 | btVector3 normal = getBtNormal(faces[i]); |
1979 | btScalar dist = normal.dot(toBtVector(faces[i]->origin) - hullCenter); |
1980 | if (dist < minDist) { |
1981 | minDist = dist; |
1982 | } |
1983 | } |
1984 | |
1985 | if (minDist <= 0) { |
1986 | return 0; |
1987 | } |
1988 | |
1989 | amount = btMin(amount, minDist * clampAmount); |
1990 | } |
1991 | |
1992 | uint32_t seed = 243703; |
1993 | for (int32_t i = 0; i < faceCount; i++, seed = 1664525 * seed + 1013904223) { |
1994 | btSwap(faces[i], faces[seed % faceCount]); |
1995 | } |
1996 | |
1997 | for (int32_t i = 0; i < faceCount; i++) { |
1998 | if (!shiftFace(faces[i], amount, stack)) { |
1999 | return -amount; |
2000 | } |
2001 | } |
2002 | |
2003 | return amount; |
2004 | } |
2005 | |
2006 | bool btConvexHullInternal::shiftFace(Face* face, btScalar amount, btAlignedObjectArray<Vertex*> stack) |
2007 | { |
2008 | btVector3 origShift = getBtNormal(face) * -amount; |
2009 | if (scaling[0] != 0) { |
2010 | origShift[0] /= scaling[0]; |
2011 | } |
2012 | if (scaling[1] != 0) { |
2013 | origShift[1] /= scaling[1]; |
2014 | } |
2015 | if (scaling[2] != 0) { |
2016 | origShift[2] /= scaling[2]; |
2017 | } |
2018 | Point32 shift((int32_t)origShift[medAxis], (int32_t)origShift[maxAxis], (int32_t)origShift[minAxis]); |
2019 | if (shift.isZero()) { |
2020 | return true; |
2021 | } |
2022 | Point64 normal = face->getNormal(); |
2023 | #ifdef DEBUG_CONVEX_HULL |
2024 | printf("\nShrinking face (%d %d %d) (%d %d %d) (%d %d %d) by (%d %d %d)\n" , |
2025 | face->origin.x, face->origin.y, face->origin.z, face->dir0.x, face->dir0.y, face->dir0.z, face->dir1.x, face->dir1.y, face->dir1.z, shift.x, shift.y, shift.z); |
2026 | #endif |
2027 | int64_t origDot = face->origin.dot(normal); |
2028 | Point32 shiftedOrigin = face->origin + shift; |
2029 | int64_t shiftedDot = shiftedOrigin.dot(normal); |
2030 | btAssert(shiftedDot <= origDot); |
2031 | if (shiftedDot >= origDot) { |
2032 | return false; |
2033 | } |
2034 | |
2035 | Edge* intersection = NULL; |
2036 | |
2037 | Edge* startEdge = face->nearbyVertex->edges; |
2038 | #ifdef DEBUG_CONVEX_HULL |
2039 | printf("Start edge is " ); |
2040 | startEdge->print(); |
2041 | printf(", normal is (%lld %lld %lld), shifted dot is %lld\n" , normal.x, normal.y, normal.z, shiftedDot); |
2042 | #endif |
2043 | Rational128 optDot = face->nearbyVertex->dot(normal); |
2044 | int32_t cmp = optDot.compare(shiftedDot); |
2045 | #ifdef SHOW_ITERATIONS |
2046 | int32_t n = 0; |
2047 | #endif |
2048 | if (cmp >= 0) { |
2049 | Edge* e = startEdge; |
2050 | do { |
2051 | #ifdef SHOW_ITERATIONS |
2052 | n++; |
2053 | #endif |
2054 | Rational128 dot = e->target->dot(normal); |
2055 | btAssert(dot.compare(origDot) <= 0); |
2056 | #ifdef DEBUG_CONVEX_HULL |
2057 | printf("Moving downwards, edge is " ); |
2058 | e->print(); |
2059 | printf(", dot is %f (%f %lld)\n" , (float)dot.toScalar(), (float)optDot.toScalar(), shiftedDot); |
2060 | #endif |
2061 | if (dot.compare(optDot) < 0) { |
2062 | int32_t c = dot.compare(shiftedDot); |
2063 | optDot = dot; |
2064 | e = e->reverse; |
2065 | startEdge = e; |
2066 | if (c < 0) { |
2067 | intersection = e; |
2068 | break; |
2069 | } |
2070 | cmp = c; |
2071 | } |
2072 | e = e->prev; |
2073 | } while (e != startEdge); |
2074 | |
2075 | if (!intersection) { |
2076 | return false; |
2077 | } |
2078 | } |
2079 | else { |
2080 | Edge* e = startEdge; |
2081 | do { |
2082 | #ifdef SHOW_ITERATIONS |
2083 | n++; |
2084 | #endif |
2085 | Rational128 dot = e->target->dot(normal); |
2086 | btAssert(dot.compare(origDot) <= 0); |
2087 | #ifdef DEBUG_CONVEX_HULL |
2088 | printf("Moving upwards, edge is " ); |
2089 | e->print(); |
2090 | printf(", dot is %f (%f %lld)\n" , (float)dot.toScalar(), (float)optDot.toScalar(), shiftedDot); |
2091 | #endif |
2092 | if (dot.compare(optDot) > 0) { |
2093 | cmp = dot.compare(shiftedDot); |
2094 | if (cmp >= 0) { |
2095 | intersection = e; |
2096 | break; |
2097 | } |
2098 | optDot = dot; |
2099 | e = e->reverse; |
2100 | startEdge = e; |
2101 | } |
2102 | e = e->prev; |
2103 | } while (e != startEdge); |
2104 | |
2105 | if (!intersection) { |
2106 | return true; |
2107 | } |
2108 | } |
2109 | |
2110 | #ifdef SHOW_ITERATIONS |
2111 | printf("Needed %d iterations to find initial intersection\n" , n); |
2112 | #endif |
2113 | |
2114 | if (cmp == 0) { |
2115 | Edge* e = intersection->reverse->next; |
2116 | #ifdef SHOW_ITERATIONS |
2117 | n = 0; |
2118 | #endif |
2119 | while (e->target->dot(normal).compare(shiftedDot) <= 0) { |
2120 | #ifdef SHOW_ITERATIONS |
2121 | n++; |
2122 | #endif |
2123 | e = e->next; |
2124 | if (e == intersection->reverse) { |
2125 | return true; |
2126 | } |
2127 | #ifdef DEBUG_CONVEX_HULL |
2128 | printf("Checking for outwards edge, current edge is " ); |
2129 | e->print(); |
2130 | printf("\n" ); |
2131 | #endif |
2132 | } |
2133 | #ifdef SHOW_ITERATIONS |
2134 | printf("Needed %d iterations to check for complete containment\n" , n); |
2135 | #endif |
2136 | } |
2137 | |
2138 | Edge* firstIntersection = NULL; |
2139 | Edge* faceEdge = NULL; |
2140 | Edge* firstFaceEdge = NULL; |
2141 | |
2142 | #ifdef SHOW_ITERATIONS |
2143 | int32_t m = 0; |
2144 | #endif |
2145 | while (true) { |
2146 | #ifdef SHOW_ITERATIONS |
2147 | m++; |
2148 | #endif |
2149 | #ifdef DEBUG_CONVEX_HULL |
2150 | printf("Intersecting edge is " ); |
2151 | intersection->print(); |
2152 | printf("\n" ); |
2153 | #endif |
2154 | if (cmp == 0) { |
2155 | Edge* e = intersection->reverse->next; |
2156 | startEdge = e; |
2157 | #ifdef SHOW_ITERATIONS |
2158 | n = 0; |
2159 | #endif |
2160 | while (true) { |
2161 | #ifdef SHOW_ITERATIONS |
2162 | n++; |
2163 | #endif |
2164 | if (e->target->dot(normal).compare(shiftedDot) >= 0) { |
2165 | break; |
2166 | } |
2167 | intersection = e->reverse; |
2168 | e = e->next; |
2169 | if (e == startEdge) { |
2170 | return true; |
2171 | } |
2172 | } |
2173 | #ifdef SHOW_ITERATIONS |
2174 | printf("Needed %d iterations to advance intersection\n" , n); |
2175 | #endif |
2176 | } |
2177 | |
2178 | #ifdef DEBUG_CONVEX_HULL |
2179 | printf("Advanced intersecting edge to " ); |
2180 | intersection->print(); |
2181 | printf(", cmp = %d\n" , cmp); |
2182 | #endif |
2183 | |
2184 | if (!firstIntersection) { |
2185 | firstIntersection = intersection; |
2186 | } |
2187 | else if (intersection == firstIntersection) { |
2188 | break; |
2189 | } |
2190 | |
2191 | int32_t prevCmp = cmp; |
2192 | Edge* prevIntersection = intersection; |
2193 | Edge* prevFaceEdge = faceEdge; |
2194 | |
2195 | Edge* e = intersection->reverse; |
2196 | #ifdef SHOW_ITERATIONS |
2197 | n = 0; |
2198 | #endif |
2199 | while (true) { |
2200 | #ifdef SHOW_ITERATIONS |
2201 | n++; |
2202 | #endif |
2203 | e = e->reverse->prev; |
2204 | btAssert(e != intersection->reverse); |
2205 | cmp = e->target->dot(normal).compare(shiftedDot); |
2206 | #ifdef DEBUG_CONVEX_HULL |
2207 | printf("Testing edge " ); |
2208 | e->print(); |
2209 | printf(" -> cmp = %d\n" , cmp); |
2210 | #endif |
2211 | if (cmp >= 0) { |
2212 | intersection = e; |
2213 | break; |
2214 | } |
2215 | } |
2216 | #ifdef SHOW_ITERATIONS |
2217 | printf("Needed %d iterations to find other intersection of face\n" , n); |
2218 | #endif |
2219 | |
2220 | if (cmp > 0) { |
2221 | Vertex* removed = intersection->target; |
2222 | e = intersection->reverse; |
2223 | if (e->prev == e) { |
2224 | removed->edges = NULL; |
2225 | } |
2226 | else { |
2227 | removed->edges = e->prev; |
2228 | e->prev->link(e->next); |
2229 | e->link(e); |
2230 | } |
2231 | #ifdef DEBUG_CONVEX_HULL |
2232 | printf("1: Removed part contains (%d %d %d)\n" , removed->point.x, removed->point.y, removed->point.z); |
2233 | #endif |
2234 | |
2235 | Point64 n0 = intersection->face->getNormal(); |
2236 | Point64 n1 = intersection->reverse->face->getNormal(); |
2237 | int64_t m00 = face->dir0.dot(n0); |
2238 | int64_t m01 = face->dir1.dot(n0); |
2239 | int64_t m10 = face->dir0.dot(n1); |
2240 | int64_t m11 = face->dir1.dot(n1); |
2241 | int64_t r0 = (intersection->face->origin - shiftedOrigin).dot(n0); |
2242 | int64_t r1 = (intersection->reverse->face->origin - shiftedOrigin).dot(n1); |
2243 | Int128 det = Int128::mul(m00, m11) - Int128::mul(m01, m10); |
2244 | btAssert(det.getSign() != 0); |
2245 | Vertex* v = vertexPool.newObject(); |
2246 | v->point.index = -1; |
2247 | v->copy = -1; |
2248 | v->point128 = PointR128(Int128::mul(face->dir0.x * r0, m11) - Int128::mul(face->dir0.x * r1, m01) |
2249 | + Int128::mul(face->dir1.x * r1, m00) - Int128::mul(face->dir1.x * r0, m10) + det * shiftedOrigin.x, |
2250 | Int128::mul(face->dir0.y * r0, m11) - Int128::mul(face->dir0.y * r1, m01) |
2251 | + Int128::mul(face->dir1.y * r1, m00) - Int128::mul(face->dir1.y * r0, m10) + det * shiftedOrigin.y, |
2252 | Int128::mul(face->dir0.z * r0, m11) - Int128::mul(face->dir0.z * r1, m01) |
2253 | + Int128::mul(face->dir1.z * r1, m00) - Int128::mul(face->dir1.z * r0, m10) + det * shiftedOrigin.z, |
2254 | det); |
2255 | v->point.x = (int32_t)v->point128.xvalue(); |
2256 | v->point.y = (int32_t)v->point128.yvalue(); |
2257 | v->point.z = (int32_t)v->point128.zvalue(); |
2258 | intersection->target = v; |
2259 | v->edges = e; |
2260 | |
2261 | stack.push_back(v); |
2262 | stack.push_back(removed); |
2263 | stack.push_back(NULL); |
2264 | } |
2265 | |
2266 | if (cmp || prevCmp || (prevIntersection->reverse->next->target != intersection->target)) { |
2267 | faceEdge = newEdgePair(prevIntersection->target, intersection->target); |
2268 | if (prevCmp == 0) { |
2269 | faceEdge->link(prevIntersection->reverse->next); |
2270 | } |
2271 | if ((prevCmp == 0) || prevFaceEdge) { |
2272 | prevIntersection->reverse->link(faceEdge); |
2273 | } |
2274 | if (cmp == 0) { |
2275 | intersection->reverse->prev->link(faceEdge->reverse); |
2276 | } |
2277 | faceEdge->reverse->link(intersection->reverse); |
2278 | } |
2279 | else { |
2280 | faceEdge = prevIntersection->reverse->next; |
2281 | } |
2282 | |
2283 | if (prevFaceEdge) { |
2284 | if (prevCmp > 0) { |
2285 | faceEdge->link(prevFaceEdge->reverse); |
2286 | } |
2287 | else if (faceEdge != prevFaceEdge->reverse) { |
2288 | stack.push_back(prevFaceEdge->target); |
2289 | while (faceEdge->next != prevFaceEdge->reverse) { |
2290 | Vertex* removed = faceEdge->next->target; |
2291 | removeEdgePair(faceEdge->next); |
2292 | stack.push_back(removed); |
2293 | #ifdef DEBUG_CONVEX_HULL |
2294 | printf("2: Removed part contains (%d %d %d)\n" , removed->point.x, removed->point.y, removed->point.z); |
2295 | #endif |
2296 | } |
2297 | stack.push_back(NULL); |
2298 | } |
2299 | } |
2300 | faceEdge->face = face; |
2301 | faceEdge->reverse->face = intersection->face; |
2302 | |
2303 | if (!firstFaceEdge) { |
2304 | firstFaceEdge = faceEdge; |
2305 | } |
2306 | } |
2307 | #ifdef SHOW_ITERATIONS |
2308 | printf("Needed %d iterations to process all intersections\n" , m); |
2309 | #endif |
2310 | |
2311 | if (cmp > 0) { |
2312 | firstFaceEdge->reverse->target = faceEdge->target; |
2313 | firstIntersection->reverse->link(firstFaceEdge); |
2314 | firstFaceEdge->link(faceEdge->reverse); |
2315 | } |
2316 | else if (firstFaceEdge != faceEdge->reverse) { |
2317 | stack.push_back(faceEdge->target); |
2318 | while (firstFaceEdge->next != faceEdge->reverse) { |
2319 | Vertex* removed = firstFaceEdge->next->target; |
2320 | removeEdgePair(firstFaceEdge->next); |
2321 | stack.push_back(removed); |
2322 | #ifdef DEBUG_CONVEX_HULL |
2323 | printf("3: Removed part contains (%d %d %d)\n" , removed->point.x, removed->point.y, removed->point.z); |
2324 | #endif |
2325 | } |
2326 | stack.push_back(NULL); |
2327 | } |
2328 | |
2329 | btAssert(stack.size() > 0); |
2330 | vertexList = stack[0]; |
2331 | |
2332 | #ifdef DEBUG_CONVEX_HULL |
2333 | printf("Removing part\n" ); |
2334 | #endif |
2335 | #ifdef SHOW_ITERATIONS |
2336 | n = 0; |
2337 | #endif |
2338 | int32_t pos = 0; |
2339 | while (pos < stack.size()) { |
2340 | int32_t end = stack.size(); |
2341 | while (pos < end) { |
2342 | Vertex* kept = stack[pos++]; |
2343 | #ifdef DEBUG_CONVEX_HULL |
2344 | kept->print(); |
2345 | #endif |
2346 | bool deeper = false; |
2347 | Vertex* removed; |
2348 | while ((removed = stack[pos++]) != NULL) { |
2349 | #ifdef SHOW_ITERATIONS |
2350 | n++; |
2351 | #endif |
2352 | kept->receiveNearbyFaces(removed); |
2353 | while (removed->edges) { |
2354 | if (!deeper) { |
2355 | deeper = true; |
2356 | stack.push_back(kept); |
2357 | } |
2358 | stack.push_back(removed->edges->target); |
2359 | removeEdgePair(removed->edges); |
2360 | } |
2361 | } |
2362 | if (deeper) { |
2363 | stack.push_back(NULL); |
2364 | } |
2365 | } |
2366 | } |
2367 | #ifdef SHOW_ITERATIONS |
2368 | printf("Needed %d iterations to remove part\n" , n); |
2369 | #endif |
2370 | |
2371 | stack.resize(0); |
2372 | face->origin = shiftedOrigin; |
2373 | |
2374 | return true; |
2375 | } |
2376 | |
2377 | static int32_t getVertexCopy(btConvexHullInternal::Vertex* vertex, btAlignedObjectArray<btConvexHullInternal::Vertex*>& vertices) |
2378 | { |
2379 | int32_t index = vertex->copy; |
2380 | if (index < 0) { |
2381 | index = vertices.size(); |
2382 | vertex->copy = index; |
2383 | vertices.push_back(vertex); |
2384 | #ifdef DEBUG_CONVEX_HULL |
2385 | printf("Vertex %d gets index *%d\n" , vertex->point.index, index); |
2386 | #endif |
2387 | } |
2388 | return index; |
2389 | } |
2390 | |
2391 | btScalar btConvexHullComputer::compute(const void* coords, bool doubleCoords, int32_t stride, int32_t count, btScalar shrink, btScalar shrinkClamp) |
2392 | { |
2393 | if (count <= 0) { |
2394 | vertices.clear(); |
2395 | edges.clear(); |
2396 | faces.clear(); |
2397 | return 0; |
2398 | } |
2399 | |
2400 | btConvexHullInternal hull; |
2401 | hull.compute(coords, doubleCoords, stride, count); |
2402 | |
2403 | btScalar shift = 0; |
2404 | if ((shrink > 0) && ((shift = hull.shrink(shrink, shrinkClamp)) < 0)) { |
2405 | vertices.clear(); |
2406 | edges.clear(); |
2407 | faces.clear(); |
2408 | return shift; |
2409 | } |
2410 | |
2411 | vertices.resize(0); |
2412 | edges.resize(0); |
2413 | faces.resize(0); |
2414 | |
2415 | btAlignedObjectArray<btConvexHullInternal::Vertex*> oldVertices; |
2416 | getVertexCopy(hull.vertexList, oldVertices); |
2417 | int32_t copied = 0; |
2418 | while (copied < oldVertices.size()) { |
2419 | btConvexHullInternal::Vertex* v = oldVertices[copied]; |
2420 | vertices.push_back(hull.getCoordinates(v)); |
2421 | btConvexHullInternal::Edge* firstEdge = v->edges; |
2422 | if (firstEdge) { |
2423 | int32_t firstCopy = -1; |
2424 | int32_t prevCopy = -1; |
2425 | btConvexHullInternal::Edge* e = firstEdge; |
2426 | do { |
2427 | if (e->copy < 0) { |
2428 | int32_t s = edges.size(); |
2429 | edges.push_back(Edge()); |
2430 | edges.push_back(Edge()); |
2431 | Edge* c = &edges[s]; |
2432 | Edge* r = &edges[s + 1]; |
2433 | e->copy = s; |
2434 | e->reverse->copy = s + 1; |
2435 | c->reverse = 1; |
2436 | r->reverse = -1; |
2437 | c->targetVertex = getVertexCopy(e->target, oldVertices); |
2438 | r->targetVertex = copied; |
2439 | #ifdef DEBUG_CONVEX_HULL |
2440 | printf(" CREATE: Vertex *%d has edge to *%d\n" , copied, c->getTargetVertex()); |
2441 | #endif |
2442 | } |
2443 | if (prevCopy >= 0) { |
2444 | edges[e->copy].next = prevCopy - e->copy; |
2445 | } |
2446 | else { |
2447 | firstCopy = e->copy; |
2448 | } |
2449 | prevCopy = e->copy; |
2450 | e = e->next; |
2451 | } while (e != firstEdge); |
2452 | edges[firstCopy].next = prevCopy - firstCopy; |
2453 | } |
2454 | copied++; |
2455 | } |
2456 | |
2457 | for (int32_t i = 0; i < copied; i++) { |
2458 | btConvexHullInternal::Vertex* v = oldVertices[i]; |
2459 | btConvexHullInternal::Edge* firstEdge = v->edges; |
2460 | if (firstEdge) { |
2461 | btConvexHullInternal::Edge* e = firstEdge; |
2462 | do { |
2463 | if (e->copy >= 0) { |
2464 | #ifdef DEBUG_CONVEX_HULL |
2465 | printf("Vertex *%d has edge to *%d\n" , i, edges[e->copy].getTargetVertex()); |
2466 | #endif |
2467 | faces.push_back(e->copy); |
2468 | btConvexHullInternal::Edge* f = e; |
2469 | do { |
2470 | #ifdef DEBUG_CONVEX_HULL |
2471 | printf(" Face *%d\n" , edges[f->copy].getTargetVertex()); |
2472 | #endif |
2473 | f->copy = -1; |
2474 | f = f->reverse->prev; |
2475 | } while (f != e); |
2476 | } |
2477 | e = e->next; |
2478 | } while (e != firstEdge); |
2479 | } |
2480 | } |
2481 | |
2482 | return shift; |
2483 | } |
2484 | |
2485 | // -- GODOT start -- |
2486 | }; // namespace VHACD |
2487 | // -- GODOT end -- |
2488 | |