1 | /* |
2 | * Copyright (c) 2009 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #ifndef B2_DYNAMIC_TREE_H |
20 | #define B2_DYNAMIC_TREE_H |
21 | |
22 | #include <Box2D/Collision/b2Collision.h> |
23 | #include <Box2D/Common/b2GrowableStack.h> |
24 | |
25 | #define b2_nullNode (-1) |
26 | |
27 | /// A node in the dynamic tree. The client does not interact with this directly. |
28 | struct b2TreeNode |
29 | { |
30 | bool IsLeaf() const |
31 | { |
32 | return child1 == b2_nullNode; |
33 | } |
34 | |
35 | /// Enlarged AABB |
36 | b2AABB aabb; |
37 | |
38 | void* userData; |
39 | |
40 | union |
41 | { |
42 | int32 parent; |
43 | int32 next; |
44 | }; |
45 | |
46 | int32 child1; |
47 | int32 child2; |
48 | |
49 | // leaf = 0, free node = -1 |
50 | int32 height; |
51 | }; |
52 | |
53 | /// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt. |
54 | /// A dynamic tree arranges data in a binary tree to accelerate |
55 | /// queries such as volume queries and ray casts. Leafs are proxies |
56 | /// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor |
57 | /// so that the proxy AABB is bigger than the client object. This allows the client |
58 | /// object to move by small amounts without triggering a tree update. |
59 | /// |
60 | /// Nodes are pooled and relocatable, so we use node indices rather than pointers. |
61 | class b2DynamicTree |
62 | { |
63 | public: |
64 | /// Constructing the tree initializes the node pool. |
65 | b2DynamicTree(); |
66 | |
67 | /// Destroy the tree, freeing the node pool. |
68 | ~b2DynamicTree(); |
69 | |
70 | /// Create a proxy. Provide a tight fitting AABB and a userData pointer. |
71 | int32 CreateProxy(const b2AABB& aabb, void* userData); |
72 | |
73 | /// Destroy a proxy. This asserts if the id is invalid. |
74 | void DestroyProxy(int32 proxyId); |
75 | |
76 | /// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB, |
77 | /// then the proxy is removed from the tree and re-inserted. Otherwise |
78 | /// the function returns immediately. |
79 | /// @return true if the proxy was re-inserted. |
80 | bool MoveProxy(int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement); |
81 | |
82 | /// Get proxy user data. |
83 | /// @return the proxy user data or 0 if the id is invalid. |
84 | void* GetUserData(int32 proxyId) const; |
85 | |
86 | /// Get the fat AABB for a proxy. |
87 | const b2AABB& GetFatAABB(int32 proxyId) const; |
88 | |
89 | /// Query an AABB for overlapping proxies. The callback class |
90 | /// is called for each proxy that overlaps the supplied AABB. |
91 | template <typename T> |
92 | void Query(T* callback, const b2AABB& aabb) const; |
93 | |
94 | /// Ray-cast against the proxies in the tree. This relies on the callback |
95 | /// to perform a exact ray-cast in the case were the proxy contains a shape. |
96 | /// The callback also performs the any collision filtering. This has performance |
97 | /// roughly equal to k * log(n), where k is the number of collisions and n is the |
98 | /// number of proxies in the tree. |
99 | /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). |
100 | /// @param callback a callback class that is called for each proxy that is hit by the ray. |
101 | template <typename T> |
102 | void RayCast(T* callback, const b2RayCastInput& input) const; |
103 | |
104 | /// Validate this tree. For testing. |
105 | void Validate() const; |
106 | |
107 | /// Compute the height of the binary tree in O(N) time. Should not be |
108 | /// called often. |
109 | int32 GetHeight() const; |
110 | |
111 | /// Get the maximum balance of an node in the tree. The balance is the difference |
112 | /// in height of the two children of a node. |
113 | int32 GetMaxBalance() const; |
114 | |
115 | /// Get the ratio of the sum of the node areas to the root area. |
116 | float32 GetAreaRatio() const; |
117 | |
118 | /// Build an optimal tree. Very expensive. For testing. |
119 | void RebuildBottomUp(); |
120 | |
121 | /// Shift the world origin. Useful for large worlds. |
122 | /// The shift formula is: position -= newOrigin |
123 | /// @param newOrigin the new origin with respect to the old origin |
124 | void ShiftOrigin(const b2Vec2& newOrigin); |
125 | |
126 | private: |
127 | |
128 | int32 AllocateNode(); |
129 | void FreeNode(int32 node); |
130 | |
131 | void InsertLeaf(int32 node); |
132 | void RemoveLeaf(int32 node); |
133 | |
134 | int32 Balance(int32 index); |
135 | |
136 | int32 ComputeHeight() const; |
137 | int32 ComputeHeight(int32 nodeId) const; |
138 | |
139 | void ValidateStructure(int32 index) const; |
140 | void ValidateMetrics(int32 index) const; |
141 | |
142 | int32 m_root; |
143 | |
144 | b2TreeNode* m_nodes; |
145 | int32 m_nodeCount; |
146 | int32 m_nodeCapacity; |
147 | |
148 | int32 m_freeList; |
149 | |
150 | /// This is used to incrementally traverse the tree for re-balancing. |
151 | uint32 m_path; |
152 | |
153 | int32 m_insertionCount; |
154 | }; |
155 | |
156 | inline void* b2DynamicTree::GetUserData(int32 proxyId) const |
157 | { |
158 | b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); |
159 | return m_nodes[proxyId].userData; |
160 | } |
161 | |
162 | inline const b2AABB& b2DynamicTree::GetFatAABB(int32 proxyId) const |
163 | { |
164 | b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); |
165 | return m_nodes[proxyId].aabb; |
166 | } |
167 | |
168 | template <typename T> |
169 | inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const |
170 | { |
171 | b2GrowableStack<int32, 256> stack; |
172 | stack.Push(m_root); |
173 | |
174 | while (stack.GetCount() > 0) |
175 | { |
176 | int32 nodeId = stack.Pop(); |
177 | if (nodeId == b2_nullNode) |
178 | { |
179 | continue; |
180 | } |
181 | |
182 | const b2TreeNode* node = m_nodes + nodeId; |
183 | |
184 | if (b2TestOverlap(node->aabb, aabb)) |
185 | { |
186 | if (node->IsLeaf()) |
187 | { |
188 | bool proceed = callback->QueryCallback(nodeId); |
189 | if (proceed == false) |
190 | { |
191 | return; |
192 | } |
193 | } |
194 | else |
195 | { |
196 | stack.Push(node->child1); |
197 | stack.Push(node->child2); |
198 | } |
199 | } |
200 | } |
201 | } |
202 | |
203 | template <typename T> |
204 | inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const |
205 | { |
206 | b2Vec2 p1 = input.p1; |
207 | b2Vec2 p2 = input.p2; |
208 | b2Vec2 r = p2 - p1; |
209 | b2Assert(r.LengthSquared() > 0.0f); |
210 | r.Normalize(); |
211 | |
212 | // v is perpendicular to the segment. |
213 | b2Vec2 v = b2Cross(1.0f, r); |
214 | b2Vec2 abs_v = b2Abs(v); |
215 | |
216 | // Separating axis for segment (Gino, p80). |
217 | // |dot(v, p1 - c)| > dot(|v|, h) |
218 | |
219 | float32 maxFraction = input.maxFraction; |
220 | |
221 | // Build a bounding box for the segment. |
222 | b2AABB segmentAABB; |
223 | { |
224 | b2Vec2 t = p1 + maxFraction * (p2 - p1); |
225 | segmentAABB.lowerBound = b2Min(p1, t); |
226 | segmentAABB.upperBound = b2Max(p1, t); |
227 | } |
228 | |
229 | b2GrowableStack<int32, 256> stack; |
230 | stack.Push(m_root); |
231 | |
232 | while (stack.GetCount() > 0) |
233 | { |
234 | int32 nodeId = stack.Pop(); |
235 | if (nodeId == b2_nullNode) |
236 | { |
237 | continue; |
238 | } |
239 | |
240 | const b2TreeNode* node = m_nodes + nodeId; |
241 | |
242 | if (b2TestOverlap(node->aabb, segmentAABB) == false) |
243 | { |
244 | continue; |
245 | } |
246 | |
247 | // Separating axis for segment (Gino, p80). |
248 | // |dot(v, p1 - c)| > dot(|v|, h) |
249 | b2Vec2 c = node->aabb.GetCenter(); |
250 | b2Vec2 h = node->aabb.GetExtents(); |
251 | float32 separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h); |
252 | if (separation > 0.0f) |
253 | { |
254 | continue; |
255 | } |
256 | |
257 | if (node->IsLeaf()) |
258 | { |
259 | b2RayCastInput subInput; |
260 | subInput.p1 = input.p1; |
261 | subInput.p2 = input.p2; |
262 | subInput.maxFraction = maxFraction; |
263 | |
264 | float32 value = callback->RayCastCallback(subInput, nodeId); |
265 | |
266 | if (value == 0.0f) |
267 | { |
268 | // The client has terminated the ray cast. |
269 | return; |
270 | } |
271 | |
272 | if (value > 0.0f) |
273 | { |
274 | // Update segment bounding box. |
275 | maxFraction = value; |
276 | b2Vec2 t = p1 + maxFraction * (p2 - p1); |
277 | segmentAABB.lowerBound = b2Min(p1, t); |
278 | segmentAABB.upperBound = b2Max(p1, t); |
279 | } |
280 | } |
281 | else |
282 | { |
283 | stack.Push(node->child1); |
284 | stack.Push(node->child2); |
285 | } |
286 | } |
287 | } |
288 | |
289 | #endif |
290 | |