| 1 | /* |
| 2 | * Copyright (c) 2009 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #ifndef B2_DYNAMIC_TREE_H |
| 20 | #define B2_DYNAMIC_TREE_H |
| 21 | |
| 22 | #include <Box2D/Collision/b2Collision.h> |
| 23 | #include <Box2D/Common/b2GrowableStack.h> |
| 24 | |
| 25 | #define b2_nullNode (-1) |
| 26 | |
| 27 | /// A node in the dynamic tree. The client does not interact with this directly. |
| 28 | struct b2TreeNode |
| 29 | { |
| 30 | bool IsLeaf() const |
| 31 | { |
| 32 | return child1 == b2_nullNode; |
| 33 | } |
| 34 | |
| 35 | /// Enlarged AABB |
| 36 | b2AABB aabb; |
| 37 | |
| 38 | void* userData; |
| 39 | |
| 40 | union |
| 41 | { |
| 42 | int32 parent; |
| 43 | int32 next; |
| 44 | }; |
| 45 | |
| 46 | int32 child1; |
| 47 | int32 child2; |
| 48 | |
| 49 | // leaf = 0, free node = -1 |
| 50 | int32 height; |
| 51 | }; |
| 52 | |
| 53 | /// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt. |
| 54 | /// A dynamic tree arranges data in a binary tree to accelerate |
| 55 | /// queries such as volume queries and ray casts. Leafs are proxies |
| 56 | /// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor |
| 57 | /// so that the proxy AABB is bigger than the client object. This allows the client |
| 58 | /// object to move by small amounts without triggering a tree update. |
| 59 | /// |
| 60 | /// Nodes are pooled and relocatable, so we use node indices rather than pointers. |
| 61 | class b2DynamicTree |
| 62 | { |
| 63 | public: |
| 64 | /// Constructing the tree initializes the node pool. |
| 65 | b2DynamicTree(); |
| 66 | |
| 67 | /// Destroy the tree, freeing the node pool. |
| 68 | ~b2DynamicTree(); |
| 69 | |
| 70 | /// Create a proxy. Provide a tight fitting AABB and a userData pointer. |
| 71 | int32 CreateProxy(const b2AABB& aabb, void* userData); |
| 72 | |
| 73 | /// Destroy a proxy. This asserts if the id is invalid. |
| 74 | void DestroyProxy(int32 proxyId); |
| 75 | |
| 76 | /// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB, |
| 77 | /// then the proxy is removed from the tree and re-inserted. Otherwise |
| 78 | /// the function returns immediately. |
| 79 | /// @return true if the proxy was re-inserted. |
| 80 | bool MoveProxy(int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement); |
| 81 | |
| 82 | /// Get proxy user data. |
| 83 | /// @return the proxy user data or 0 if the id is invalid. |
| 84 | void* GetUserData(int32 proxyId) const; |
| 85 | |
| 86 | /// Get the fat AABB for a proxy. |
| 87 | const b2AABB& GetFatAABB(int32 proxyId) const; |
| 88 | |
| 89 | /// Query an AABB for overlapping proxies. The callback class |
| 90 | /// is called for each proxy that overlaps the supplied AABB. |
| 91 | template <typename T> |
| 92 | void Query(T* callback, const b2AABB& aabb) const; |
| 93 | |
| 94 | /// Ray-cast against the proxies in the tree. This relies on the callback |
| 95 | /// to perform a exact ray-cast in the case were the proxy contains a shape. |
| 96 | /// The callback also performs the any collision filtering. This has performance |
| 97 | /// roughly equal to k * log(n), where k is the number of collisions and n is the |
| 98 | /// number of proxies in the tree. |
| 99 | /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). |
| 100 | /// @param callback a callback class that is called for each proxy that is hit by the ray. |
| 101 | template <typename T> |
| 102 | void RayCast(T* callback, const b2RayCastInput& input) const; |
| 103 | |
| 104 | /// Validate this tree. For testing. |
| 105 | void Validate() const; |
| 106 | |
| 107 | /// Compute the height of the binary tree in O(N) time. Should not be |
| 108 | /// called often. |
| 109 | int32 GetHeight() const; |
| 110 | |
| 111 | /// Get the maximum balance of an node in the tree. The balance is the difference |
| 112 | /// in height of the two children of a node. |
| 113 | int32 GetMaxBalance() const; |
| 114 | |
| 115 | /// Get the ratio of the sum of the node areas to the root area. |
| 116 | float32 GetAreaRatio() const; |
| 117 | |
| 118 | /// Build an optimal tree. Very expensive. For testing. |
| 119 | void RebuildBottomUp(); |
| 120 | |
| 121 | /// Shift the world origin. Useful for large worlds. |
| 122 | /// The shift formula is: position -= newOrigin |
| 123 | /// @param newOrigin the new origin with respect to the old origin |
| 124 | void ShiftOrigin(const b2Vec2& newOrigin); |
| 125 | |
| 126 | private: |
| 127 | |
| 128 | int32 AllocateNode(); |
| 129 | void FreeNode(int32 node); |
| 130 | |
| 131 | void InsertLeaf(int32 node); |
| 132 | void RemoveLeaf(int32 node); |
| 133 | |
| 134 | int32 Balance(int32 index); |
| 135 | |
| 136 | int32 ComputeHeight() const; |
| 137 | int32 ComputeHeight(int32 nodeId) const; |
| 138 | |
| 139 | void ValidateStructure(int32 index) const; |
| 140 | void ValidateMetrics(int32 index) const; |
| 141 | |
| 142 | int32 m_root; |
| 143 | |
| 144 | b2TreeNode* m_nodes; |
| 145 | int32 m_nodeCount; |
| 146 | int32 m_nodeCapacity; |
| 147 | |
| 148 | int32 m_freeList; |
| 149 | |
| 150 | /// This is used to incrementally traverse the tree for re-balancing. |
| 151 | uint32 m_path; |
| 152 | |
| 153 | int32 m_insertionCount; |
| 154 | }; |
| 155 | |
| 156 | inline void* b2DynamicTree::GetUserData(int32 proxyId) const |
| 157 | { |
| 158 | b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); |
| 159 | return m_nodes[proxyId].userData; |
| 160 | } |
| 161 | |
| 162 | inline const b2AABB& b2DynamicTree::GetFatAABB(int32 proxyId) const |
| 163 | { |
| 164 | b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); |
| 165 | return m_nodes[proxyId].aabb; |
| 166 | } |
| 167 | |
| 168 | template <typename T> |
| 169 | inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const |
| 170 | { |
| 171 | b2GrowableStack<int32, 256> stack; |
| 172 | stack.Push(m_root); |
| 173 | |
| 174 | while (stack.GetCount() > 0) |
| 175 | { |
| 176 | int32 nodeId = stack.Pop(); |
| 177 | if (nodeId == b2_nullNode) |
| 178 | { |
| 179 | continue; |
| 180 | } |
| 181 | |
| 182 | const b2TreeNode* node = m_nodes + nodeId; |
| 183 | |
| 184 | if (b2TestOverlap(node->aabb, aabb)) |
| 185 | { |
| 186 | if (node->IsLeaf()) |
| 187 | { |
| 188 | bool proceed = callback->QueryCallback(nodeId); |
| 189 | if (proceed == false) |
| 190 | { |
| 191 | return; |
| 192 | } |
| 193 | } |
| 194 | else |
| 195 | { |
| 196 | stack.Push(node->child1); |
| 197 | stack.Push(node->child2); |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | template <typename T> |
| 204 | inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const |
| 205 | { |
| 206 | b2Vec2 p1 = input.p1; |
| 207 | b2Vec2 p2 = input.p2; |
| 208 | b2Vec2 r = p2 - p1; |
| 209 | b2Assert(r.LengthSquared() > 0.0f); |
| 210 | r.Normalize(); |
| 211 | |
| 212 | // v is perpendicular to the segment. |
| 213 | b2Vec2 v = b2Cross(1.0f, r); |
| 214 | b2Vec2 abs_v = b2Abs(v); |
| 215 | |
| 216 | // Separating axis for segment (Gino, p80). |
| 217 | // |dot(v, p1 - c)| > dot(|v|, h) |
| 218 | |
| 219 | float32 maxFraction = input.maxFraction; |
| 220 | |
| 221 | // Build a bounding box for the segment. |
| 222 | b2AABB segmentAABB; |
| 223 | { |
| 224 | b2Vec2 t = p1 + maxFraction * (p2 - p1); |
| 225 | segmentAABB.lowerBound = b2Min(p1, t); |
| 226 | segmentAABB.upperBound = b2Max(p1, t); |
| 227 | } |
| 228 | |
| 229 | b2GrowableStack<int32, 256> stack; |
| 230 | stack.Push(m_root); |
| 231 | |
| 232 | while (stack.GetCount() > 0) |
| 233 | { |
| 234 | int32 nodeId = stack.Pop(); |
| 235 | if (nodeId == b2_nullNode) |
| 236 | { |
| 237 | continue; |
| 238 | } |
| 239 | |
| 240 | const b2TreeNode* node = m_nodes + nodeId; |
| 241 | |
| 242 | if (b2TestOverlap(node->aabb, segmentAABB) == false) |
| 243 | { |
| 244 | continue; |
| 245 | } |
| 246 | |
| 247 | // Separating axis for segment (Gino, p80). |
| 248 | // |dot(v, p1 - c)| > dot(|v|, h) |
| 249 | b2Vec2 c = node->aabb.GetCenter(); |
| 250 | b2Vec2 h = node->aabb.GetExtents(); |
| 251 | float32 separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h); |
| 252 | if (separation > 0.0f) |
| 253 | { |
| 254 | continue; |
| 255 | } |
| 256 | |
| 257 | if (node->IsLeaf()) |
| 258 | { |
| 259 | b2RayCastInput subInput; |
| 260 | subInput.p1 = input.p1; |
| 261 | subInput.p2 = input.p2; |
| 262 | subInput.maxFraction = maxFraction; |
| 263 | |
| 264 | float32 value = callback->RayCastCallback(subInput, nodeId); |
| 265 | |
| 266 | if (value == 0.0f) |
| 267 | { |
| 268 | // The client has terminated the ray cast. |
| 269 | return; |
| 270 | } |
| 271 | |
| 272 | if (value > 0.0f) |
| 273 | { |
| 274 | // Update segment bounding box. |
| 275 | maxFraction = value; |
| 276 | b2Vec2 t = p1 + maxFraction * (p2 - p1); |
| 277 | segmentAABB.lowerBound = b2Min(p1, t); |
| 278 | segmentAABB.upperBound = b2Max(p1, t); |
| 279 | } |
| 280 | } |
| 281 | else |
| 282 | { |
| 283 | stack.Push(node->child1); |
| 284 | stack.Push(node->child2); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | #endif |
| 290 | |