1 | /* |
2 | * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #ifndef B2_COLLISION_H |
20 | #define B2_COLLISION_H |
21 | |
22 | #include <Box2D/Common/b2Math.h> |
23 | #include <limits.h> |
24 | |
25 | /// @file |
26 | /// Structures and functions used for computing contact points, distance |
27 | /// queries, and TOI queries. |
28 | |
29 | class b2Shape; |
30 | class b2CircleShape; |
31 | class b2EdgeShape; |
32 | class b2PolygonShape; |
33 | |
34 | const uint8 b2_nullFeature = UCHAR_MAX; |
35 | |
36 | /// The features that intersect to form the contact point |
37 | /// This must be 4 bytes or less. |
38 | struct b2ContactFeature |
39 | { |
40 | enum Type |
41 | { |
42 | e_vertex = 0, |
43 | e_face = 1 |
44 | }; |
45 | |
46 | uint8 indexA; ///< Feature index on shapeA |
47 | uint8 indexB; ///< Feature index on shapeB |
48 | uint8 typeA; ///< The feature type on shapeA |
49 | uint8 typeB; ///< The feature type on shapeB |
50 | }; |
51 | |
52 | /// Contact ids to facilitate warm starting. |
53 | union b2ContactID |
54 | { |
55 | b2ContactFeature cf; |
56 | uint32 key; ///< Used to quickly compare contact ids. |
57 | }; |
58 | |
59 | /// A manifold point is a contact point belonging to a contact |
60 | /// manifold. It holds details related to the geometry and dynamics |
61 | /// of the contact points. |
62 | /// The local point usage depends on the manifold type: |
63 | /// -e_circles: the local center of circleB |
64 | /// -e_faceA: the local center of cirlceB or the clip point of polygonB |
65 | /// -e_faceB: the clip point of polygonA |
66 | /// This structure is stored across time steps, so we keep it small. |
67 | /// Note: the impulses are used for internal caching and may not |
68 | /// provide reliable contact forces, especially for high speed collisions. |
69 | struct b2ManifoldPoint |
70 | { |
71 | b2Vec2 localPoint; ///< usage depends on manifold type |
72 | float32 normalImpulse; ///< the non-penetration impulse |
73 | float32 tangentImpulse; ///< the friction impulse |
74 | b2ContactID id; ///< uniquely identifies a contact point between two shapes |
75 | }; |
76 | |
77 | /// A manifold for two touching convex shapes. |
78 | /// Box2D supports multiple types of contact: |
79 | /// - clip point versus plane with radius |
80 | /// - point versus point with radius (circles) |
81 | /// The local point usage depends on the manifold type: |
82 | /// -e_circles: the local center of circleA |
83 | /// -e_faceA: the center of faceA |
84 | /// -e_faceB: the center of faceB |
85 | /// Similarly the local normal usage: |
86 | /// -e_circles: not used |
87 | /// -e_faceA: the normal on polygonA |
88 | /// -e_faceB: the normal on polygonB |
89 | /// We store contacts in this way so that position correction can |
90 | /// account for movement, which is critical for continuous physics. |
91 | /// All contact scenarios must be expressed in one of these types. |
92 | /// This structure is stored across time steps, so we keep it small. |
93 | struct b2Manifold |
94 | { |
95 | enum Type |
96 | { |
97 | e_circles, |
98 | e_faceA, |
99 | e_faceB |
100 | }; |
101 | |
102 | b2ManifoldPoint points[b2_maxManifoldPoints]; ///< the points of contact |
103 | b2Vec2 localNormal; ///< not use for Type::e_points |
104 | b2Vec2 localPoint; ///< usage depends on manifold type |
105 | Type type; |
106 | int32 pointCount; ///< the number of manifold points |
107 | }; |
108 | |
109 | /// This is used to compute the current state of a contact manifold. |
110 | struct b2WorldManifold |
111 | { |
112 | /// Evaluate the manifold with supplied transforms. This assumes |
113 | /// modest motion from the original state. This does not change the |
114 | /// point count, impulses, etc. The radii must come from the shapes |
115 | /// that generated the manifold. |
116 | void Initialize(const b2Manifold* manifold, |
117 | const b2Transform& xfA, float32 radiusA, |
118 | const b2Transform& xfB, float32 radiusB); |
119 | |
120 | b2Vec2 normal; ///< world vector pointing from A to B |
121 | b2Vec2 points[b2_maxManifoldPoints]; ///< world contact point (point of intersection) |
122 | float32 separations[b2_maxManifoldPoints]; ///< a negative value indicates overlap, in meters |
123 | }; |
124 | |
125 | /// This is used for determining the state of contact points. |
126 | enum b2PointState |
127 | { |
128 | b2_nullState, ///< point does not exist |
129 | b2_addState, ///< point was added in the update |
130 | b2_persistState, ///< point persisted across the update |
131 | b2_removeState ///< point was removed in the update |
132 | }; |
133 | |
134 | /// Compute the point states given two manifolds. The states pertain to the transition from manifold1 |
135 | /// to manifold2. So state1 is either persist or remove while state2 is either add or persist. |
136 | void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints], |
137 | const b2Manifold* manifold1, const b2Manifold* manifold2); |
138 | |
139 | /// Used for computing contact manifolds. |
140 | struct b2ClipVertex |
141 | { |
142 | b2Vec2 v; |
143 | b2ContactID id; |
144 | }; |
145 | |
146 | /// Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). |
147 | struct b2RayCastInput |
148 | { |
149 | b2Vec2 p1, p2; |
150 | float32 maxFraction; |
151 | }; |
152 | |
153 | /// Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2 |
154 | /// come from b2RayCastInput. |
155 | struct b2RayCastOutput |
156 | { |
157 | b2Vec2 normal; |
158 | float32 fraction; |
159 | }; |
160 | |
161 | /// An axis aligned bounding box. |
162 | struct b2AABB |
163 | { |
164 | /// Verify that the bounds are sorted. |
165 | bool IsValid() const; |
166 | |
167 | /// Get the center of the AABB. |
168 | b2Vec2 GetCenter() const |
169 | { |
170 | return 0.5f * (lowerBound + upperBound); |
171 | } |
172 | |
173 | /// Get the extents of the AABB (half-widths). |
174 | b2Vec2 GetExtents() const |
175 | { |
176 | return 0.5f * (upperBound - lowerBound); |
177 | } |
178 | |
179 | /// Get the perimeter length |
180 | float32 GetPerimeter() const |
181 | { |
182 | float32 wx = upperBound.x - lowerBound.x; |
183 | float32 wy = upperBound.y - lowerBound.y; |
184 | return 2.0f * (wx + wy); |
185 | } |
186 | |
187 | /// Combine an AABB into this one. |
188 | void Combine(const b2AABB& aabb) |
189 | { |
190 | lowerBound = b2Min(lowerBound, aabb.lowerBound); |
191 | upperBound = b2Max(upperBound, aabb.upperBound); |
192 | } |
193 | |
194 | /// Combine two AABBs into this one. |
195 | void Combine(const b2AABB& aabb1, const b2AABB& aabb2) |
196 | { |
197 | lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound); |
198 | upperBound = b2Max(aabb1.upperBound, aabb2.upperBound); |
199 | } |
200 | |
201 | /// Does this aabb contain the provided AABB. |
202 | bool Contains(const b2AABB& aabb) const |
203 | { |
204 | bool result = true; |
205 | result = result && lowerBound.x <= aabb.lowerBound.x; |
206 | result = result && lowerBound.y <= aabb.lowerBound.y; |
207 | result = result && aabb.upperBound.x <= upperBound.x; |
208 | result = result && aabb.upperBound.y <= upperBound.y; |
209 | return result; |
210 | } |
211 | |
212 | bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const; |
213 | |
214 | b2Vec2 lowerBound; ///< the lower vertex |
215 | b2Vec2 upperBound; ///< the upper vertex |
216 | }; |
217 | |
218 | /// Compute the collision manifold between two circles. |
219 | void b2CollideCircles(b2Manifold* manifold, |
220 | const b2CircleShape* circleA, const b2Transform& xfA, |
221 | const b2CircleShape* circleB, const b2Transform& xfB); |
222 | |
223 | /// Compute the collision manifold between a polygon and a circle. |
224 | void b2CollidePolygonAndCircle(b2Manifold* manifold, |
225 | const b2PolygonShape* polygonA, const b2Transform& xfA, |
226 | const b2CircleShape* circleB, const b2Transform& xfB); |
227 | |
228 | /// Compute the collision manifold between two polygons. |
229 | void b2CollidePolygons(b2Manifold* manifold, |
230 | const b2PolygonShape* polygonA, const b2Transform& xfA, |
231 | const b2PolygonShape* polygonB, const b2Transform& xfB); |
232 | |
233 | /// Compute the collision manifold between an edge and a circle. |
234 | void b2CollideEdgeAndCircle(b2Manifold* manifold, |
235 | const b2EdgeShape* polygonA, const b2Transform& xfA, |
236 | const b2CircleShape* circleB, const b2Transform& xfB); |
237 | |
238 | /// Compute the collision manifold between an edge and a circle. |
239 | void b2CollideEdgeAndPolygon(b2Manifold* manifold, |
240 | const b2EdgeShape* edgeA, const b2Transform& xfA, |
241 | const b2PolygonShape* circleB, const b2Transform& xfB); |
242 | |
243 | /// Clipping for contact manifolds. |
244 | int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2], |
245 | const b2Vec2& normal, float32 offset, int32 vertexIndexA); |
246 | |
247 | /// Determine if two generic shapes overlap. |
248 | bool b2TestOverlap( const b2Shape* shapeA, int32 indexA, |
249 | const b2Shape* shapeB, int32 indexB, |
250 | const b2Transform& xfA, const b2Transform& xfB); |
251 | |
252 | // ---------------- Inline Functions ------------------------------------------ |
253 | |
254 | inline bool b2AABB::IsValid() const |
255 | { |
256 | b2Vec2 d = upperBound - lowerBound; |
257 | bool valid = d.x >= 0.0f && d.y >= 0.0f; |
258 | valid = valid && lowerBound.IsValid() && upperBound.IsValid(); |
259 | return valid; |
260 | } |
261 | |
262 | inline bool b2TestOverlap(const b2AABB& a, const b2AABB& b) |
263 | { |
264 | b2Vec2 d1, d2; |
265 | d1 = b.lowerBound - a.upperBound; |
266 | d2 = a.lowerBound - b.upperBound; |
267 | |
268 | if (d1.x > 0.0f || d1.y > 0.0f) |
269 | return false; |
270 | |
271 | if (d2.x > 0.0f || d2.y > 0.0f) |
272 | return false; |
273 | |
274 | return true; |
275 | } |
276 | |
277 | #endif |
278 | |