| 1 | /* |
| 2 | * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #ifndef B2_COLLISION_H |
| 20 | #define B2_COLLISION_H |
| 21 | |
| 22 | #include <Box2D/Common/b2Math.h> |
| 23 | #include <limits.h> |
| 24 | |
| 25 | /// @file |
| 26 | /// Structures and functions used for computing contact points, distance |
| 27 | /// queries, and TOI queries. |
| 28 | |
| 29 | class b2Shape; |
| 30 | class b2CircleShape; |
| 31 | class b2EdgeShape; |
| 32 | class b2PolygonShape; |
| 33 | |
| 34 | const uint8 b2_nullFeature = UCHAR_MAX; |
| 35 | |
| 36 | /// The features that intersect to form the contact point |
| 37 | /// This must be 4 bytes or less. |
| 38 | struct b2ContactFeature |
| 39 | { |
| 40 | enum Type |
| 41 | { |
| 42 | e_vertex = 0, |
| 43 | e_face = 1 |
| 44 | }; |
| 45 | |
| 46 | uint8 indexA; ///< Feature index on shapeA |
| 47 | uint8 indexB; ///< Feature index on shapeB |
| 48 | uint8 typeA; ///< The feature type on shapeA |
| 49 | uint8 typeB; ///< The feature type on shapeB |
| 50 | }; |
| 51 | |
| 52 | /// Contact ids to facilitate warm starting. |
| 53 | union b2ContactID |
| 54 | { |
| 55 | b2ContactFeature cf; |
| 56 | uint32 key; ///< Used to quickly compare contact ids. |
| 57 | }; |
| 58 | |
| 59 | /// A manifold point is a contact point belonging to a contact |
| 60 | /// manifold. It holds details related to the geometry and dynamics |
| 61 | /// of the contact points. |
| 62 | /// The local point usage depends on the manifold type: |
| 63 | /// -e_circles: the local center of circleB |
| 64 | /// -e_faceA: the local center of cirlceB or the clip point of polygonB |
| 65 | /// -e_faceB: the clip point of polygonA |
| 66 | /// This structure is stored across time steps, so we keep it small. |
| 67 | /// Note: the impulses are used for internal caching and may not |
| 68 | /// provide reliable contact forces, especially for high speed collisions. |
| 69 | struct b2ManifoldPoint |
| 70 | { |
| 71 | b2Vec2 localPoint; ///< usage depends on manifold type |
| 72 | float32 normalImpulse; ///< the non-penetration impulse |
| 73 | float32 tangentImpulse; ///< the friction impulse |
| 74 | b2ContactID id; ///< uniquely identifies a contact point between two shapes |
| 75 | }; |
| 76 | |
| 77 | /// A manifold for two touching convex shapes. |
| 78 | /// Box2D supports multiple types of contact: |
| 79 | /// - clip point versus plane with radius |
| 80 | /// - point versus point with radius (circles) |
| 81 | /// The local point usage depends on the manifold type: |
| 82 | /// -e_circles: the local center of circleA |
| 83 | /// -e_faceA: the center of faceA |
| 84 | /// -e_faceB: the center of faceB |
| 85 | /// Similarly the local normal usage: |
| 86 | /// -e_circles: not used |
| 87 | /// -e_faceA: the normal on polygonA |
| 88 | /// -e_faceB: the normal on polygonB |
| 89 | /// We store contacts in this way so that position correction can |
| 90 | /// account for movement, which is critical for continuous physics. |
| 91 | /// All contact scenarios must be expressed in one of these types. |
| 92 | /// This structure is stored across time steps, so we keep it small. |
| 93 | struct b2Manifold |
| 94 | { |
| 95 | enum Type |
| 96 | { |
| 97 | e_circles, |
| 98 | e_faceA, |
| 99 | e_faceB |
| 100 | }; |
| 101 | |
| 102 | b2ManifoldPoint points[b2_maxManifoldPoints]; ///< the points of contact |
| 103 | b2Vec2 localNormal; ///< not use for Type::e_points |
| 104 | b2Vec2 localPoint; ///< usage depends on manifold type |
| 105 | Type type; |
| 106 | int32 pointCount; ///< the number of manifold points |
| 107 | }; |
| 108 | |
| 109 | /// This is used to compute the current state of a contact manifold. |
| 110 | struct b2WorldManifold |
| 111 | { |
| 112 | /// Evaluate the manifold with supplied transforms. This assumes |
| 113 | /// modest motion from the original state. This does not change the |
| 114 | /// point count, impulses, etc. The radii must come from the shapes |
| 115 | /// that generated the manifold. |
| 116 | void Initialize(const b2Manifold* manifold, |
| 117 | const b2Transform& xfA, float32 radiusA, |
| 118 | const b2Transform& xfB, float32 radiusB); |
| 119 | |
| 120 | b2Vec2 normal; ///< world vector pointing from A to B |
| 121 | b2Vec2 points[b2_maxManifoldPoints]; ///< world contact point (point of intersection) |
| 122 | float32 separations[b2_maxManifoldPoints]; ///< a negative value indicates overlap, in meters |
| 123 | }; |
| 124 | |
| 125 | /// This is used for determining the state of contact points. |
| 126 | enum b2PointState |
| 127 | { |
| 128 | b2_nullState, ///< point does not exist |
| 129 | b2_addState, ///< point was added in the update |
| 130 | b2_persistState, ///< point persisted across the update |
| 131 | b2_removeState ///< point was removed in the update |
| 132 | }; |
| 133 | |
| 134 | /// Compute the point states given two manifolds. The states pertain to the transition from manifold1 |
| 135 | /// to manifold2. So state1 is either persist or remove while state2 is either add or persist. |
| 136 | void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints], |
| 137 | const b2Manifold* manifold1, const b2Manifold* manifold2); |
| 138 | |
| 139 | /// Used for computing contact manifolds. |
| 140 | struct b2ClipVertex |
| 141 | { |
| 142 | b2Vec2 v; |
| 143 | b2ContactID id; |
| 144 | }; |
| 145 | |
| 146 | /// Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). |
| 147 | struct b2RayCastInput |
| 148 | { |
| 149 | b2Vec2 p1, p2; |
| 150 | float32 maxFraction; |
| 151 | }; |
| 152 | |
| 153 | /// Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2 |
| 154 | /// come from b2RayCastInput. |
| 155 | struct b2RayCastOutput |
| 156 | { |
| 157 | b2Vec2 normal; |
| 158 | float32 fraction; |
| 159 | }; |
| 160 | |
| 161 | /// An axis aligned bounding box. |
| 162 | struct b2AABB |
| 163 | { |
| 164 | /// Verify that the bounds are sorted. |
| 165 | bool IsValid() const; |
| 166 | |
| 167 | /// Get the center of the AABB. |
| 168 | b2Vec2 GetCenter() const |
| 169 | { |
| 170 | return 0.5f * (lowerBound + upperBound); |
| 171 | } |
| 172 | |
| 173 | /// Get the extents of the AABB (half-widths). |
| 174 | b2Vec2 GetExtents() const |
| 175 | { |
| 176 | return 0.5f * (upperBound - lowerBound); |
| 177 | } |
| 178 | |
| 179 | /// Get the perimeter length |
| 180 | float32 GetPerimeter() const |
| 181 | { |
| 182 | float32 wx = upperBound.x - lowerBound.x; |
| 183 | float32 wy = upperBound.y - lowerBound.y; |
| 184 | return 2.0f * (wx + wy); |
| 185 | } |
| 186 | |
| 187 | /// Combine an AABB into this one. |
| 188 | void Combine(const b2AABB& aabb) |
| 189 | { |
| 190 | lowerBound = b2Min(lowerBound, aabb.lowerBound); |
| 191 | upperBound = b2Max(upperBound, aabb.upperBound); |
| 192 | } |
| 193 | |
| 194 | /// Combine two AABBs into this one. |
| 195 | void Combine(const b2AABB& aabb1, const b2AABB& aabb2) |
| 196 | { |
| 197 | lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound); |
| 198 | upperBound = b2Max(aabb1.upperBound, aabb2.upperBound); |
| 199 | } |
| 200 | |
| 201 | /// Does this aabb contain the provided AABB. |
| 202 | bool Contains(const b2AABB& aabb) const |
| 203 | { |
| 204 | bool result = true; |
| 205 | result = result && lowerBound.x <= aabb.lowerBound.x; |
| 206 | result = result && lowerBound.y <= aabb.lowerBound.y; |
| 207 | result = result && aabb.upperBound.x <= upperBound.x; |
| 208 | result = result && aabb.upperBound.y <= upperBound.y; |
| 209 | return result; |
| 210 | } |
| 211 | |
| 212 | bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const; |
| 213 | |
| 214 | b2Vec2 lowerBound; ///< the lower vertex |
| 215 | b2Vec2 upperBound; ///< the upper vertex |
| 216 | }; |
| 217 | |
| 218 | /// Compute the collision manifold between two circles. |
| 219 | void b2CollideCircles(b2Manifold* manifold, |
| 220 | const b2CircleShape* circleA, const b2Transform& xfA, |
| 221 | const b2CircleShape* circleB, const b2Transform& xfB); |
| 222 | |
| 223 | /// Compute the collision manifold between a polygon and a circle. |
| 224 | void b2CollidePolygonAndCircle(b2Manifold* manifold, |
| 225 | const b2PolygonShape* polygonA, const b2Transform& xfA, |
| 226 | const b2CircleShape* circleB, const b2Transform& xfB); |
| 227 | |
| 228 | /// Compute the collision manifold between two polygons. |
| 229 | void b2CollidePolygons(b2Manifold* manifold, |
| 230 | const b2PolygonShape* polygonA, const b2Transform& xfA, |
| 231 | const b2PolygonShape* polygonB, const b2Transform& xfB); |
| 232 | |
| 233 | /// Compute the collision manifold between an edge and a circle. |
| 234 | void b2CollideEdgeAndCircle(b2Manifold* manifold, |
| 235 | const b2EdgeShape* polygonA, const b2Transform& xfA, |
| 236 | const b2CircleShape* circleB, const b2Transform& xfB); |
| 237 | |
| 238 | /// Compute the collision manifold between an edge and a circle. |
| 239 | void b2CollideEdgeAndPolygon(b2Manifold* manifold, |
| 240 | const b2EdgeShape* edgeA, const b2Transform& xfA, |
| 241 | const b2PolygonShape* circleB, const b2Transform& xfB); |
| 242 | |
| 243 | /// Clipping for contact manifolds. |
| 244 | int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2], |
| 245 | const b2Vec2& normal, float32 offset, int32 vertexIndexA); |
| 246 | |
| 247 | /// Determine if two generic shapes overlap. |
| 248 | bool b2TestOverlap( const b2Shape* shapeA, int32 indexA, |
| 249 | const b2Shape* shapeB, int32 indexB, |
| 250 | const b2Transform& xfA, const b2Transform& xfB); |
| 251 | |
| 252 | // ---------------- Inline Functions ------------------------------------------ |
| 253 | |
| 254 | inline bool b2AABB::IsValid() const |
| 255 | { |
| 256 | b2Vec2 d = upperBound - lowerBound; |
| 257 | bool valid = d.x >= 0.0f && d.y >= 0.0f; |
| 258 | valid = valid && lowerBound.IsValid() && upperBound.IsValid(); |
| 259 | return valid; |
| 260 | } |
| 261 | |
| 262 | inline bool b2TestOverlap(const b2AABB& a, const b2AABB& b) |
| 263 | { |
| 264 | b2Vec2 d1, d2; |
| 265 | d1 = b.lowerBound - a.upperBound; |
| 266 | d2 = a.lowerBound - b.upperBound; |
| 267 | |
| 268 | if (d1.x > 0.0f || d1.y > 0.0f) |
| 269 | return false; |
| 270 | |
| 271 | if (d2.x > 0.0f || d2.y > 0.0f) |
| 272 | return false; |
| 273 | |
| 274 | return true; |
| 275 | } |
| 276 | |
| 277 | #endif |
| 278 | |