1 | /* |
2 | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #include <Box2D/Dynamics/Joints/b2DistanceJoint.h> |
20 | #include <Box2D/Dynamics/b2Body.h> |
21 | #include <Box2D/Dynamics/b2TimeStep.h> |
22 | |
23 | // 1-D constrained system |
24 | // m (v2 - v1) = lambda |
25 | // v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass. |
26 | // x2 = x1 + h * v2 |
27 | |
28 | // 1-D mass-damper-spring system |
29 | // m (v2 - v1) + h * d * v2 + h * k * |
30 | |
31 | // C = norm(p2 - p1) - L |
32 | // u = (p2 - p1) / norm(p2 - p1) |
33 | // Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1)) |
34 | // J = [-u -cross(r1, u) u cross(r2, u)] |
35 | // K = J * invM * JT |
36 | // = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2 |
37 | |
38 | void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2, |
39 | const b2Vec2& anchor1, const b2Vec2& anchor2) |
40 | { |
41 | bodyA = b1; |
42 | bodyB = b2; |
43 | localAnchorA = bodyA->GetLocalPoint(anchor1); |
44 | localAnchorB = bodyB->GetLocalPoint(anchor2); |
45 | b2Vec2 d = anchor2 - anchor1; |
46 | length = d.Length(); |
47 | } |
48 | |
49 | b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def) |
50 | : b2Joint(def) |
51 | { |
52 | m_localAnchorA = def->localAnchorA; |
53 | m_localAnchorB = def->localAnchorB; |
54 | m_length = def->length; |
55 | m_frequencyHz = def->frequencyHz; |
56 | m_dampingRatio = def->dampingRatio; |
57 | m_impulse = 0.0f; |
58 | m_gamma = 0.0f; |
59 | m_bias = 0.0f; |
60 | } |
61 | |
62 | void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data) |
63 | { |
64 | m_indexA = m_bodyA->m_islandIndex; |
65 | m_indexB = m_bodyB->m_islandIndex; |
66 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
67 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
68 | m_invMassA = m_bodyA->m_invMass; |
69 | m_invMassB = m_bodyB->m_invMass; |
70 | m_invIA = m_bodyA->m_invI; |
71 | m_invIB = m_bodyB->m_invI; |
72 | |
73 | b2Vec2 cA = data.positions[m_indexA].c; |
74 | float32 aA = data.positions[m_indexA].a; |
75 | b2Vec2 vA = data.velocities[m_indexA].v; |
76 | float32 wA = data.velocities[m_indexA].w; |
77 | |
78 | b2Vec2 cB = data.positions[m_indexB].c; |
79 | float32 aB = data.positions[m_indexB].a; |
80 | b2Vec2 vB = data.velocities[m_indexB].v; |
81 | float32 wB = data.velocities[m_indexB].w; |
82 | |
83 | b2Rot qA(aA), qB(aB); |
84 | |
85 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
86 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
87 | m_u = cB + m_rB - cA - m_rA; |
88 | |
89 | // Handle singularity. |
90 | float32 length = m_u.Length(); |
91 | if (length > b2_linearSlop) |
92 | { |
93 | m_u *= 1.0f / length; |
94 | } |
95 | else |
96 | { |
97 | m_u.Set(0.0f, 0.0f); |
98 | } |
99 | |
100 | float32 crAu = b2Cross(m_rA, m_u); |
101 | float32 crBu = b2Cross(m_rB, m_u); |
102 | float32 invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu; |
103 | |
104 | // Compute the effective mass matrix. |
105 | m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; |
106 | |
107 | if (m_frequencyHz > 0.0f) |
108 | { |
109 | float32 C = length - m_length; |
110 | |
111 | // Frequency |
112 | float32 omega = 2.0f * b2_pi * m_frequencyHz; |
113 | |
114 | // Damping coefficient |
115 | float32 d = 2.0f * m_mass * m_dampingRatio * omega; |
116 | |
117 | // Spring stiffness |
118 | float32 k = m_mass * omega * omega; |
119 | |
120 | // magic formulas |
121 | float32 h = data.step.dt; |
122 | m_gamma = h * (d + h * k); |
123 | m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; |
124 | m_bias = C * h * k * m_gamma; |
125 | |
126 | invMass += m_gamma; |
127 | m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; |
128 | } |
129 | else |
130 | { |
131 | m_gamma = 0.0f; |
132 | m_bias = 0.0f; |
133 | } |
134 | |
135 | if (data.step.warmStarting) |
136 | { |
137 | // Scale the impulse to support a variable time step. |
138 | m_impulse *= data.step.dtRatio; |
139 | |
140 | b2Vec2 P = m_impulse * m_u; |
141 | vA -= m_invMassA * P; |
142 | wA -= m_invIA * b2Cross(m_rA, P); |
143 | vB += m_invMassB * P; |
144 | wB += m_invIB * b2Cross(m_rB, P); |
145 | } |
146 | else |
147 | { |
148 | m_impulse = 0.0f; |
149 | } |
150 | |
151 | data.velocities[m_indexA].v = vA; |
152 | data.velocities[m_indexA].w = wA; |
153 | data.velocities[m_indexB].v = vB; |
154 | data.velocities[m_indexB].w = wB; |
155 | } |
156 | |
157 | void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data) |
158 | { |
159 | b2Vec2 vA = data.velocities[m_indexA].v; |
160 | float32 wA = data.velocities[m_indexA].w; |
161 | b2Vec2 vB = data.velocities[m_indexB].v; |
162 | float32 wB = data.velocities[m_indexB].w; |
163 | |
164 | // Cdot = dot(u, v + cross(w, r)) |
165 | b2Vec2 vpA = vA + b2Cross(wA, m_rA); |
166 | b2Vec2 vpB = vB + b2Cross(wB, m_rB); |
167 | float32 Cdot = b2Dot(m_u, vpB - vpA); |
168 | |
169 | float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse); |
170 | m_impulse += impulse; |
171 | |
172 | b2Vec2 P = impulse * m_u; |
173 | vA -= m_invMassA * P; |
174 | wA -= m_invIA * b2Cross(m_rA, P); |
175 | vB += m_invMassB * P; |
176 | wB += m_invIB * b2Cross(m_rB, P); |
177 | |
178 | data.velocities[m_indexA].v = vA; |
179 | data.velocities[m_indexA].w = wA; |
180 | data.velocities[m_indexB].v = vB; |
181 | data.velocities[m_indexB].w = wB; |
182 | } |
183 | |
184 | bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data) |
185 | { |
186 | if (m_frequencyHz > 0.0f) |
187 | { |
188 | // There is no position correction for soft distance constraints. |
189 | return true; |
190 | } |
191 | |
192 | b2Vec2 cA = data.positions[m_indexA].c; |
193 | float32 aA = data.positions[m_indexA].a; |
194 | b2Vec2 cB = data.positions[m_indexB].c; |
195 | float32 aB = data.positions[m_indexB].a; |
196 | |
197 | b2Rot qA(aA), qB(aB); |
198 | |
199 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
200 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
201 | b2Vec2 u = cB + rB - cA - rA; |
202 | |
203 | float32 length = u.Normalize(); |
204 | float32 C = length - m_length; |
205 | C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection); |
206 | |
207 | float32 impulse = -m_mass * C; |
208 | b2Vec2 P = impulse * u; |
209 | |
210 | cA -= m_invMassA * P; |
211 | aA -= m_invIA * b2Cross(rA, P); |
212 | cB += m_invMassB * P; |
213 | aB += m_invIB * b2Cross(rB, P); |
214 | |
215 | data.positions[m_indexA].c = cA; |
216 | data.positions[m_indexA].a = aA; |
217 | data.positions[m_indexB].c = cB; |
218 | data.positions[m_indexB].a = aB; |
219 | |
220 | return b2Abs(C) < b2_linearSlop; |
221 | } |
222 | |
223 | b2Vec2 b2DistanceJoint::GetAnchorA() const |
224 | { |
225 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
226 | } |
227 | |
228 | b2Vec2 b2DistanceJoint::GetAnchorB() const |
229 | { |
230 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
231 | } |
232 | |
233 | b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const |
234 | { |
235 | b2Vec2 F = (inv_dt * m_impulse) * m_u; |
236 | return F; |
237 | } |
238 | |
239 | float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const |
240 | { |
241 | B2_NOT_USED(inv_dt); |
242 | return 0.0f; |
243 | } |
244 | |
245 | void b2DistanceJoint::Dump() |
246 | { |
247 | int32 indexA = m_bodyA->m_islandIndex; |
248 | int32 indexB = m_bodyB->m_islandIndex; |
249 | |
250 | b2Log(" b2DistanceJointDef jd;\n" ); |
251 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
252 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
253 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
254 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
255 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
256 | b2Log(" jd.length = %.15lef;\n" , m_length); |
257 | b2Log(" jd.frequencyHz = %.15lef;\n" , m_frequencyHz); |
258 | b2Log(" jd.dampingRatio = %.15lef;\n" , m_dampingRatio); |
259 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
260 | } |
261 | |