| 1 | /* |
| 2 | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Dynamics/Joints/b2DistanceJoint.h> |
| 20 | #include <Box2D/Dynamics/b2Body.h> |
| 21 | #include <Box2D/Dynamics/b2TimeStep.h> |
| 22 | |
| 23 | // 1-D constrained system |
| 24 | // m (v2 - v1) = lambda |
| 25 | // v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass. |
| 26 | // x2 = x1 + h * v2 |
| 27 | |
| 28 | // 1-D mass-damper-spring system |
| 29 | // m (v2 - v1) + h * d * v2 + h * k * |
| 30 | |
| 31 | // C = norm(p2 - p1) - L |
| 32 | // u = (p2 - p1) / norm(p2 - p1) |
| 33 | // Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1)) |
| 34 | // J = [-u -cross(r1, u) u cross(r2, u)] |
| 35 | // K = J * invM * JT |
| 36 | // = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2 |
| 37 | |
| 38 | void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2, |
| 39 | const b2Vec2& anchor1, const b2Vec2& anchor2) |
| 40 | { |
| 41 | bodyA = b1; |
| 42 | bodyB = b2; |
| 43 | localAnchorA = bodyA->GetLocalPoint(anchor1); |
| 44 | localAnchorB = bodyB->GetLocalPoint(anchor2); |
| 45 | b2Vec2 d = anchor2 - anchor1; |
| 46 | length = d.Length(); |
| 47 | } |
| 48 | |
| 49 | b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def) |
| 50 | : b2Joint(def) |
| 51 | { |
| 52 | m_localAnchorA = def->localAnchorA; |
| 53 | m_localAnchorB = def->localAnchorB; |
| 54 | m_length = def->length; |
| 55 | m_frequencyHz = def->frequencyHz; |
| 56 | m_dampingRatio = def->dampingRatio; |
| 57 | m_impulse = 0.0f; |
| 58 | m_gamma = 0.0f; |
| 59 | m_bias = 0.0f; |
| 60 | } |
| 61 | |
| 62 | void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data) |
| 63 | { |
| 64 | m_indexA = m_bodyA->m_islandIndex; |
| 65 | m_indexB = m_bodyB->m_islandIndex; |
| 66 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
| 67 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
| 68 | m_invMassA = m_bodyA->m_invMass; |
| 69 | m_invMassB = m_bodyB->m_invMass; |
| 70 | m_invIA = m_bodyA->m_invI; |
| 71 | m_invIB = m_bodyB->m_invI; |
| 72 | |
| 73 | b2Vec2 cA = data.positions[m_indexA].c; |
| 74 | float32 aA = data.positions[m_indexA].a; |
| 75 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 76 | float32 wA = data.velocities[m_indexA].w; |
| 77 | |
| 78 | b2Vec2 cB = data.positions[m_indexB].c; |
| 79 | float32 aB = data.positions[m_indexB].a; |
| 80 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 81 | float32 wB = data.velocities[m_indexB].w; |
| 82 | |
| 83 | b2Rot qA(aA), qB(aB); |
| 84 | |
| 85 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 86 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 87 | m_u = cB + m_rB - cA - m_rA; |
| 88 | |
| 89 | // Handle singularity. |
| 90 | float32 length = m_u.Length(); |
| 91 | if (length > b2_linearSlop) |
| 92 | { |
| 93 | m_u *= 1.0f / length; |
| 94 | } |
| 95 | else |
| 96 | { |
| 97 | m_u.Set(0.0f, 0.0f); |
| 98 | } |
| 99 | |
| 100 | float32 crAu = b2Cross(m_rA, m_u); |
| 101 | float32 crBu = b2Cross(m_rB, m_u); |
| 102 | float32 invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu; |
| 103 | |
| 104 | // Compute the effective mass matrix. |
| 105 | m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; |
| 106 | |
| 107 | if (m_frequencyHz > 0.0f) |
| 108 | { |
| 109 | float32 C = length - m_length; |
| 110 | |
| 111 | // Frequency |
| 112 | float32 omega = 2.0f * b2_pi * m_frequencyHz; |
| 113 | |
| 114 | // Damping coefficient |
| 115 | float32 d = 2.0f * m_mass * m_dampingRatio * omega; |
| 116 | |
| 117 | // Spring stiffness |
| 118 | float32 k = m_mass * omega * omega; |
| 119 | |
| 120 | // magic formulas |
| 121 | float32 h = data.step.dt; |
| 122 | m_gamma = h * (d + h * k); |
| 123 | m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; |
| 124 | m_bias = C * h * k * m_gamma; |
| 125 | |
| 126 | invMass += m_gamma; |
| 127 | m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; |
| 128 | } |
| 129 | else |
| 130 | { |
| 131 | m_gamma = 0.0f; |
| 132 | m_bias = 0.0f; |
| 133 | } |
| 134 | |
| 135 | if (data.step.warmStarting) |
| 136 | { |
| 137 | // Scale the impulse to support a variable time step. |
| 138 | m_impulse *= data.step.dtRatio; |
| 139 | |
| 140 | b2Vec2 P = m_impulse * m_u; |
| 141 | vA -= m_invMassA * P; |
| 142 | wA -= m_invIA * b2Cross(m_rA, P); |
| 143 | vB += m_invMassB * P; |
| 144 | wB += m_invIB * b2Cross(m_rB, P); |
| 145 | } |
| 146 | else |
| 147 | { |
| 148 | m_impulse = 0.0f; |
| 149 | } |
| 150 | |
| 151 | data.velocities[m_indexA].v = vA; |
| 152 | data.velocities[m_indexA].w = wA; |
| 153 | data.velocities[m_indexB].v = vB; |
| 154 | data.velocities[m_indexB].w = wB; |
| 155 | } |
| 156 | |
| 157 | void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data) |
| 158 | { |
| 159 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 160 | float32 wA = data.velocities[m_indexA].w; |
| 161 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 162 | float32 wB = data.velocities[m_indexB].w; |
| 163 | |
| 164 | // Cdot = dot(u, v + cross(w, r)) |
| 165 | b2Vec2 vpA = vA + b2Cross(wA, m_rA); |
| 166 | b2Vec2 vpB = vB + b2Cross(wB, m_rB); |
| 167 | float32 Cdot = b2Dot(m_u, vpB - vpA); |
| 168 | |
| 169 | float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse); |
| 170 | m_impulse += impulse; |
| 171 | |
| 172 | b2Vec2 P = impulse * m_u; |
| 173 | vA -= m_invMassA * P; |
| 174 | wA -= m_invIA * b2Cross(m_rA, P); |
| 175 | vB += m_invMassB * P; |
| 176 | wB += m_invIB * b2Cross(m_rB, P); |
| 177 | |
| 178 | data.velocities[m_indexA].v = vA; |
| 179 | data.velocities[m_indexA].w = wA; |
| 180 | data.velocities[m_indexB].v = vB; |
| 181 | data.velocities[m_indexB].w = wB; |
| 182 | } |
| 183 | |
| 184 | bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data) |
| 185 | { |
| 186 | if (m_frequencyHz > 0.0f) |
| 187 | { |
| 188 | // There is no position correction for soft distance constraints. |
| 189 | return true; |
| 190 | } |
| 191 | |
| 192 | b2Vec2 cA = data.positions[m_indexA].c; |
| 193 | float32 aA = data.positions[m_indexA].a; |
| 194 | b2Vec2 cB = data.positions[m_indexB].c; |
| 195 | float32 aB = data.positions[m_indexB].a; |
| 196 | |
| 197 | b2Rot qA(aA), qB(aB); |
| 198 | |
| 199 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 200 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 201 | b2Vec2 u = cB + rB - cA - rA; |
| 202 | |
| 203 | float32 length = u.Normalize(); |
| 204 | float32 C = length - m_length; |
| 205 | C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection); |
| 206 | |
| 207 | float32 impulse = -m_mass * C; |
| 208 | b2Vec2 P = impulse * u; |
| 209 | |
| 210 | cA -= m_invMassA * P; |
| 211 | aA -= m_invIA * b2Cross(rA, P); |
| 212 | cB += m_invMassB * P; |
| 213 | aB += m_invIB * b2Cross(rB, P); |
| 214 | |
| 215 | data.positions[m_indexA].c = cA; |
| 216 | data.positions[m_indexA].a = aA; |
| 217 | data.positions[m_indexB].c = cB; |
| 218 | data.positions[m_indexB].a = aB; |
| 219 | |
| 220 | return b2Abs(C) < b2_linearSlop; |
| 221 | } |
| 222 | |
| 223 | b2Vec2 b2DistanceJoint::GetAnchorA() const |
| 224 | { |
| 225 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
| 226 | } |
| 227 | |
| 228 | b2Vec2 b2DistanceJoint::GetAnchorB() const |
| 229 | { |
| 230 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
| 231 | } |
| 232 | |
| 233 | b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const |
| 234 | { |
| 235 | b2Vec2 F = (inv_dt * m_impulse) * m_u; |
| 236 | return F; |
| 237 | } |
| 238 | |
| 239 | float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const |
| 240 | { |
| 241 | B2_NOT_USED(inv_dt); |
| 242 | return 0.0f; |
| 243 | } |
| 244 | |
| 245 | void b2DistanceJoint::Dump() |
| 246 | { |
| 247 | int32 indexA = m_bodyA->m_islandIndex; |
| 248 | int32 indexB = m_bodyB->m_islandIndex; |
| 249 | |
| 250 | b2Log(" b2DistanceJointDef jd;\n" ); |
| 251 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
| 252 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
| 253 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
| 254 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
| 255 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
| 256 | b2Log(" jd.length = %.15lef;\n" , m_length); |
| 257 | b2Log(" jd.frequencyHz = %.15lef;\n" , m_frequencyHz); |
| 258 | b2Log(" jd.dampingRatio = %.15lef;\n" , m_dampingRatio); |
| 259 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
| 260 | } |
| 261 | |