| 1 | /* | 
| 2 | * Copyright (c) 2006-2012 Erin Catto http://www.box2d.org | 
| 3 | * | 
| 4 | * This software is provided 'as-is', without any express or implied | 
| 5 | * warranty.  In no event will the authors be held liable for any damages | 
| 6 | * arising from the use of this software. | 
| 7 | * Permission is granted to anyone to use this software for any purpose, | 
| 8 | * including commercial applications, and to alter it and redistribute it | 
| 9 | * freely, subject to the following restrictions: | 
| 10 | * 1. The origin of this software must not be misrepresented; you must not | 
| 11 | * claim that you wrote the original software. If you use this software | 
| 12 | * in a product, an acknowledgment in the product documentation would be | 
| 13 | * appreciated but is not required. | 
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be | 
| 15 | * misrepresented as being the original software. | 
| 16 | * 3. This notice may not be removed or altered from any source distribution. | 
| 17 | */ | 
| 18 |  | 
| 19 | #include <Box2D/Dynamics/Joints/b2MotorJoint.h> | 
| 20 | #include <Box2D/Dynamics/b2Body.h> | 
| 21 | #include <Box2D/Dynamics/b2TimeStep.h> | 
| 22 |  | 
| 23 | // Point-to-point constraint | 
| 24 | // Cdot = v2 - v1 | 
| 25 | //      = v2 + cross(w2, r2) - v1 - cross(w1, r1) | 
| 26 | // J = [-I -r1_skew I r2_skew ] | 
| 27 | // Identity used: | 
| 28 | // w k % (rx i + ry j) = w * (-ry i + rx j) | 
| 29 |  | 
| 30 | // Angle constraint | 
| 31 | // Cdot = w2 - w1 | 
| 32 | // J = [0 0 -1 0 0 1] | 
| 33 | // K = invI1 + invI2 | 
| 34 |  | 
| 35 | void b2MotorJointDef::Initialize(b2Body* bA, b2Body* bB) | 
| 36 | { | 
| 37 | 	bodyA = bA; | 
| 38 | 	bodyB = bB; | 
| 39 | 	b2Vec2 xB = bodyB->GetPosition(); | 
| 40 | 	linearOffset = bodyA->GetLocalPoint(xB); | 
| 41 |  | 
| 42 | 	float32 angleA = bodyA->GetAngle(); | 
| 43 | 	float32 angleB = bodyB->GetAngle(); | 
| 44 | 	angularOffset = angleB - angleA; | 
| 45 | } | 
| 46 |  | 
| 47 | b2MotorJoint::b2MotorJoint(const b2MotorJointDef* def) | 
| 48 | : b2Joint(def) | 
| 49 | { | 
| 50 | 	m_linearOffset = def->linearOffset; | 
| 51 | 	m_angularOffset = def->angularOffset; | 
| 52 |  | 
| 53 | 	m_linearImpulse.SetZero(); | 
| 54 | 	m_angularImpulse = 0.0f; | 
| 55 |  | 
| 56 | 	m_maxForce = def->maxForce; | 
| 57 | 	m_maxTorque = def->maxTorque; | 
| 58 | 	m_correctionFactor = def->correctionFactor; | 
| 59 | } | 
| 60 |  | 
| 61 | void b2MotorJoint::InitVelocityConstraints(const b2SolverData& data) | 
| 62 | { | 
| 63 | 	m_indexA = m_bodyA->m_islandIndex; | 
| 64 | 	m_indexB = m_bodyB->m_islandIndex; | 
| 65 | 	m_localCenterA = m_bodyA->m_sweep.localCenter; | 
| 66 | 	m_localCenterB = m_bodyB->m_sweep.localCenter; | 
| 67 | 	m_invMassA = m_bodyA->m_invMass; | 
| 68 | 	m_invMassB = m_bodyB->m_invMass; | 
| 69 | 	m_invIA = m_bodyA->m_invI; | 
| 70 | 	m_invIB = m_bodyB->m_invI; | 
| 71 |  | 
| 72 | 	b2Vec2 cA = data.positions[m_indexA].c; | 
| 73 | 	float32 aA = data.positions[m_indexA].a; | 
| 74 | 	b2Vec2 vA = data.velocities[m_indexA].v; | 
| 75 | 	float32 wA = data.velocities[m_indexA].w; | 
| 76 |  | 
| 77 | 	b2Vec2 cB = data.positions[m_indexB].c; | 
| 78 | 	float32 aB = data.positions[m_indexB].a; | 
| 79 | 	b2Vec2 vB = data.velocities[m_indexB].v; | 
| 80 | 	float32 wB = data.velocities[m_indexB].w; | 
| 81 |  | 
| 82 | 	b2Rot qA(aA), qB(aB); | 
| 83 |  | 
| 84 | 	// Compute the effective mass matrix. | 
| 85 | 	m_rA = b2Mul(qA, -m_localCenterA); | 
| 86 | 	m_rB = b2Mul(qB, -m_localCenterB); | 
| 87 |  | 
| 88 | 	// J = [-I -r1_skew I r2_skew] | 
| 89 | 	//     [ 0       -1 0       1] | 
| 90 | 	// r_skew = [-ry; rx] | 
| 91 |  | 
| 92 | 	// Matlab | 
| 93 | 	// K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB] | 
| 94 | 	//     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB] | 
| 95 | 	//     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB] | 
| 96 |  | 
| 97 | 	float32 mA = m_invMassA, mB = m_invMassB; | 
| 98 | 	float32 iA = m_invIA, iB = m_invIB; | 
| 99 |  | 
| 100 | 	b2Mat22 K; | 
| 101 | 	K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; | 
| 102 | 	K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; | 
| 103 | 	K.ey.x = K.ex.y; | 
| 104 | 	K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; | 
| 105 |  | 
| 106 | 	m_linearMass = K.GetInverse(); | 
| 107 |  | 
| 108 | 	m_angularMass = iA + iB; | 
| 109 | 	if (m_angularMass > 0.0f) | 
| 110 | 	{ | 
| 111 | 		m_angularMass = 1.0f / m_angularMass; | 
| 112 | 	} | 
| 113 |  | 
| 114 | 	m_linearError = cB + m_rB - cA - m_rA - b2Mul(qA, m_linearOffset); | 
| 115 | 	m_angularError = aB - aA - m_angularOffset; | 
| 116 |  | 
| 117 | 	if (data.step.warmStarting) | 
| 118 | 	{ | 
| 119 | 		// Scale impulses to support a variable time step. | 
| 120 | 		m_linearImpulse *= data.step.dtRatio; | 
| 121 | 		m_angularImpulse *= data.step.dtRatio; | 
| 122 |  | 
| 123 | 		b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y); | 
| 124 | 		vA -= mA * P; | 
| 125 | 		wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse); | 
| 126 | 		vB += mB * P; | 
| 127 | 		wB += iB * (b2Cross(m_rB, P) + m_angularImpulse); | 
| 128 | 	} | 
| 129 | 	else | 
| 130 | 	{ | 
| 131 | 		m_linearImpulse.SetZero(); | 
| 132 | 		m_angularImpulse = 0.0f; | 
| 133 | 	} | 
| 134 |  | 
| 135 | 	data.velocities[m_indexA].v = vA; | 
| 136 | 	data.velocities[m_indexA].w = wA; | 
| 137 | 	data.velocities[m_indexB].v = vB; | 
| 138 | 	data.velocities[m_indexB].w = wB; | 
| 139 | } | 
| 140 |  | 
| 141 | void b2MotorJoint::SolveVelocityConstraints(const b2SolverData& data) | 
| 142 | { | 
| 143 | 	b2Vec2 vA = data.velocities[m_indexA].v; | 
| 144 | 	float32 wA = data.velocities[m_indexA].w; | 
| 145 | 	b2Vec2 vB = data.velocities[m_indexB].v; | 
| 146 | 	float32 wB = data.velocities[m_indexB].w; | 
| 147 |  | 
| 148 | 	float32 mA = m_invMassA, mB = m_invMassB; | 
| 149 | 	float32 iA = m_invIA, iB = m_invIB; | 
| 150 |  | 
| 151 | 	float32 h = data.step.dt; | 
| 152 | 	float32 inv_h = data.step.inv_dt; | 
| 153 |  | 
| 154 | 	// Solve angular friction | 
| 155 | 	{ | 
| 156 | 		float32 Cdot = wB - wA + inv_h * m_correctionFactor * m_angularError; | 
| 157 | 		float32 impulse = -m_angularMass * Cdot; | 
| 158 |  | 
| 159 | 		float32 oldImpulse = m_angularImpulse; | 
| 160 | 		float32 maxImpulse = h * m_maxTorque; | 
| 161 | 		m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse); | 
| 162 | 		impulse = m_angularImpulse - oldImpulse; | 
| 163 |  | 
| 164 | 		wA -= iA * impulse; | 
| 165 | 		wB += iB * impulse; | 
| 166 | 	} | 
| 167 |  | 
| 168 | 	// Solve linear friction | 
| 169 | 	{ | 
| 170 | 		b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA) + inv_h * m_correctionFactor * m_linearError; | 
| 171 |  | 
| 172 | 		b2Vec2 impulse = -b2Mul(m_linearMass, Cdot); | 
| 173 | 		b2Vec2 oldImpulse = m_linearImpulse; | 
| 174 | 		m_linearImpulse += impulse; | 
| 175 |  | 
| 176 | 		float32 maxImpulse = h * m_maxForce; | 
| 177 |  | 
| 178 | 		if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) | 
| 179 | 		{ | 
| 180 | 			m_linearImpulse.Normalize(); | 
| 181 | 			m_linearImpulse *= maxImpulse; | 
| 182 | 		} | 
| 183 |  | 
| 184 | 		impulse = m_linearImpulse - oldImpulse; | 
| 185 |  | 
| 186 | 		vA -= mA * impulse; | 
| 187 | 		wA -= iA * b2Cross(m_rA, impulse); | 
| 188 |  | 
| 189 | 		vB += mB * impulse; | 
| 190 | 		wB += iB * b2Cross(m_rB, impulse); | 
| 191 | 	} | 
| 192 |  | 
| 193 | 	data.velocities[m_indexA].v = vA; | 
| 194 | 	data.velocities[m_indexA].w = wA; | 
| 195 | 	data.velocities[m_indexB].v = vB; | 
| 196 | 	data.velocities[m_indexB].w = wB; | 
| 197 | } | 
| 198 |  | 
| 199 | bool b2MotorJoint::SolvePositionConstraints(const b2SolverData& data) | 
| 200 | { | 
| 201 | 	B2_NOT_USED(data); | 
| 202 |  | 
| 203 | 	return true; | 
| 204 | } | 
| 205 |  | 
| 206 | b2Vec2 b2MotorJoint::GetAnchorA() const | 
| 207 | { | 
| 208 | 	return m_bodyA->GetPosition(); | 
| 209 | } | 
| 210 |  | 
| 211 | b2Vec2 b2MotorJoint::GetAnchorB() const | 
| 212 | { | 
| 213 | 	return m_bodyB->GetPosition(); | 
| 214 | } | 
| 215 |  | 
| 216 | b2Vec2 b2MotorJoint::GetReactionForce(float32 inv_dt) const | 
| 217 | { | 
| 218 | 	return inv_dt * m_linearImpulse; | 
| 219 | } | 
| 220 |  | 
| 221 | float32 b2MotorJoint::GetReactionTorque(float32 inv_dt) const | 
| 222 | { | 
| 223 | 	return inv_dt * m_angularImpulse; | 
| 224 | } | 
| 225 |  | 
| 226 | void b2MotorJoint::SetMaxForce(float32 force) | 
| 227 | { | 
| 228 | 	b2Assert(b2IsValid(force) && force >= 0.0f); | 
| 229 | 	m_maxForce = force; | 
| 230 | } | 
| 231 |  | 
| 232 | float32 b2MotorJoint::GetMaxForce() const | 
| 233 | { | 
| 234 | 	return m_maxForce; | 
| 235 | } | 
| 236 |  | 
| 237 | void b2MotorJoint::SetMaxTorque(float32 torque) | 
| 238 | { | 
| 239 | 	b2Assert(b2IsValid(torque) && torque >= 0.0f); | 
| 240 | 	m_maxTorque = torque; | 
| 241 | } | 
| 242 |  | 
| 243 | float32 b2MotorJoint::GetMaxTorque() const | 
| 244 | { | 
| 245 | 	return m_maxTorque; | 
| 246 | } | 
| 247 |  | 
| 248 | void b2MotorJoint::SetCorrectionFactor(float32 factor) | 
| 249 | { | 
| 250 | 	b2Assert(b2IsValid(factor) && 0.0f <= factor && factor <= 1.0f); | 
| 251 | 	m_correctionFactor = factor; | 
| 252 | } | 
| 253 |  | 
| 254 | float32 b2MotorJoint::GetCorrectionFactor() const | 
| 255 | { | 
| 256 | 	return m_correctionFactor; | 
| 257 | } | 
| 258 |  | 
| 259 | void b2MotorJoint::SetLinearOffset(const b2Vec2& linearOffset) | 
| 260 | { | 
| 261 | 	if (linearOffset.x != m_linearOffset.x || linearOffset.y != m_linearOffset.y) | 
| 262 | 	{ | 
| 263 | 		m_bodyA->SetAwake(true); | 
| 264 | 		m_bodyB->SetAwake(true); | 
| 265 | 		m_linearOffset = linearOffset; | 
| 266 | 	} | 
| 267 | } | 
| 268 |  | 
| 269 | const b2Vec2& b2MotorJoint::GetLinearOffset() const | 
| 270 | { | 
| 271 | 	return m_linearOffset; | 
| 272 | } | 
| 273 |  | 
| 274 | void b2MotorJoint::SetAngularOffset(float32 angularOffset) | 
| 275 | { | 
| 276 | 	if (angularOffset != m_angularOffset) | 
| 277 | 	{ | 
| 278 | 		m_bodyA->SetAwake(true); | 
| 279 | 		m_bodyB->SetAwake(true); | 
| 280 | 		m_angularOffset = angularOffset; | 
| 281 | 	} | 
| 282 | } | 
| 283 |  | 
| 284 | float32 b2MotorJoint::GetAngularOffset() const | 
| 285 | { | 
| 286 | 	return m_angularOffset; | 
| 287 | } | 
| 288 |  | 
| 289 | void b2MotorJoint::Dump() | 
| 290 | { | 
| 291 | 	int32 indexA = m_bodyA->m_islandIndex; | 
| 292 | 	int32 indexB = m_bodyB->m_islandIndex; | 
| 293 |  | 
| 294 | 	b2Log("  b2MotorJointDef jd;\n" ); | 
| 295 | 	b2Log("  jd.bodyA = bodies[%d];\n" , indexA); | 
| 296 | 	b2Log("  jd.bodyB = bodies[%d];\n" , indexB); | 
| 297 | 	b2Log("  jd.collideConnected = bool(%d);\n" , m_collideConnected); | 
| 298 | 	b2Log("  jd.linearOffset.Set(%.15lef, %.15lef);\n" , m_linearOffset.x, m_linearOffset.y); | 
| 299 | 	b2Log("  jd.angularOffset = %.15lef;\n" , m_angularOffset); | 
| 300 | 	b2Log("  jd.maxForce = %.15lef;\n" , m_maxForce); | 
| 301 | 	b2Log("  jd.maxTorque = %.15lef;\n" , m_maxTorque); | 
| 302 | 	b2Log("  jd.correctionFactor = %.15lef;\n" , m_correctionFactor); | 
| 303 | 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); | 
| 304 | } | 
| 305 |  |