1 | /* |
2 | * Copyright (c) 2006-2012 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #include <Box2D/Dynamics/Joints/b2MotorJoint.h> |
20 | #include <Box2D/Dynamics/b2Body.h> |
21 | #include <Box2D/Dynamics/b2TimeStep.h> |
22 | |
23 | // Point-to-point constraint |
24 | // Cdot = v2 - v1 |
25 | // = v2 + cross(w2, r2) - v1 - cross(w1, r1) |
26 | // J = [-I -r1_skew I r2_skew ] |
27 | // Identity used: |
28 | // w k % (rx i + ry j) = w * (-ry i + rx j) |
29 | |
30 | // Angle constraint |
31 | // Cdot = w2 - w1 |
32 | // J = [0 0 -1 0 0 1] |
33 | // K = invI1 + invI2 |
34 | |
35 | void b2MotorJointDef::Initialize(b2Body* bA, b2Body* bB) |
36 | { |
37 | bodyA = bA; |
38 | bodyB = bB; |
39 | b2Vec2 xB = bodyB->GetPosition(); |
40 | linearOffset = bodyA->GetLocalPoint(xB); |
41 | |
42 | float32 angleA = bodyA->GetAngle(); |
43 | float32 angleB = bodyB->GetAngle(); |
44 | angularOffset = angleB - angleA; |
45 | } |
46 | |
47 | b2MotorJoint::b2MotorJoint(const b2MotorJointDef* def) |
48 | : b2Joint(def) |
49 | { |
50 | m_linearOffset = def->linearOffset; |
51 | m_angularOffset = def->angularOffset; |
52 | |
53 | m_linearImpulse.SetZero(); |
54 | m_angularImpulse = 0.0f; |
55 | |
56 | m_maxForce = def->maxForce; |
57 | m_maxTorque = def->maxTorque; |
58 | m_correctionFactor = def->correctionFactor; |
59 | } |
60 | |
61 | void b2MotorJoint::InitVelocityConstraints(const b2SolverData& data) |
62 | { |
63 | m_indexA = m_bodyA->m_islandIndex; |
64 | m_indexB = m_bodyB->m_islandIndex; |
65 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
66 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
67 | m_invMassA = m_bodyA->m_invMass; |
68 | m_invMassB = m_bodyB->m_invMass; |
69 | m_invIA = m_bodyA->m_invI; |
70 | m_invIB = m_bodyB->m_invI; |
71 | |
72 | b2Vec2 cA = data.positions[m_indexA].c; |
73 | float32 aA = data.positions[m_indexA].a; |
74 | b2Vec2 vA = data.velocities[m_indexA].v; |
75 | float32 wA = data.velocities[m_indexA].w; |
76 | |
77 | b2Vec2 cB = data.positions[m_indexB].c; |
78 | float32 aB = data.positions[m_indexB].a; |
79 | b2Vec2 vB = data.velocities[m_indexB].v; |
80 | float32 wB = data.velocities[m_indexB].w; |
81 | |
82 | b2Rot qA(aA), qB(aB); |
83 | |
84 | // Compute the effective mass matrix. |
85 | m_rA = b2Mul(qA, -m_localCenterA); |
86 | m_rB = b2Mul(qB, -m_localCenterB); |
87 | |
88 | // J = [-I -r1_skew I r2_skew] |
89 | // [ 0 -1 0 1] |
90 | // r_skew = [-ry; rx] |
91 | |
92 | // Matlab |
93 | // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] |
94 | // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] |
95 | // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] |
96 | |
97 | float32 mA = m_invMassA, mB = m_invMassB; |
98 | float32 iA = m_invIA, iB = m_invIB; |
99 | |
100 | b2Mat22 K; |
101 | K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; |
102 | K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; |
103 | K.ey.x = K.ex.y; |
104 | K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; |
105 | |
106 | m_linearMass = K.GetInverse(); |
107 | |
108 | m_angularMass = iA + iB; |
109 | if (m_angularMass > 0.0f) |
110 | { |
111 | m_angularMass = 1.0f / m_angularMass; |
112 | } |
113 | |
114 | m_linearError = cB + m_rB - cA - m_rA - b2Mul(qA, m_linearOffset); |
115 | m_angularError = aB - aA - m_angularOffset; |
116 | |
117 | if (data.step.warmStarting) |
118 | { |
119 | // Scale impulses to support a variable time step. |
120 | m_linearImpulse *= data.step.dtRatio; |
121 | m_angularImpulse *= data.step.dtRatio; |
122 | |
123 | b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y); |
124 | vA -= mA * P; |
125 | wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse); |
126 | vB += mB * P; |
127 | wB += iB * (b2Cross(m_rB, P) + m_angularImpulse); |
128 | } |
129 | else |
130 | { |
131 | m_linearImpulse.SetZero(); |
132 | m_angularImpulse = 0.0f; |
133 | } |
134 | |
135 | data.velocities[m_indexA].v = vA; |
136 | data.velocities[m_indexA].w = wA; |
137 | data.velocities[m_indexB].v = vB; |
138 | data.velocities[m_indexB].w = wB; |
139 | } |
140 | |
141 | void b2MotorJoint::SolveVelocityConstraints(const b2SolverData& data) |
142 | { |
143 | b2Vec2 vA = data.velocities[m_indexA].v; |
144 | float32 wA = data.velocities[m_indexA].w; |
145 | b2Vec2 vB = data.velocities[m_indexB].v; |
146 | float32 wB = data.velocities[m_indexB].w; |
147 | |
148 | float32 mA = m_invMassA, mB = m_invMassB; |
149 | float32 iA = m_invIA, iB = m_invIB; |
150 | |
151 | float32 h = data.step.dt; |
152 | float32 inv_h = data.step.inv_dt; |
153 | |
154 | // Solve angular friction |
155 | { |
156 | float32 Cdot = wB - wA + inv_h * m_correctionFactor * m_angularError; |
157 | float32 impulse = -m_angularMass * Cdot; |
158 | |
159 | float32 oldImpulse = m_angularImpulse; |
160 | float32 maxImpulse = h * m_maxTorque; |
161 | m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse); |
162 | impulse = m_angularImpulse - oldImpulse; |
163 | |
164 | wA -= iA * impulse; |
165 | wB += iB * impulse; |
166 | } |
167 | |
168 | // Solve linear friction |
169 | { |
170 | b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA) + inv_h * m_correctionFactor * m_linearError; |
171 | |
172 | b2Vec2 impulse = -b2Mul(m_linearMass, Cdot); |
173 | b2Vec2 oldImpulse = m_linearImpulse; |
174 | m_linearImpulse += impulse; |
175 | |
176 | float32 maxImpulse = h * m_maxForce; |
177 | |
178 | if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) |
179 | { |
180 | m_linearImpulse.Normalize(); |
181 | m_linearImpulse *= maxImpulse; |
182 | } |
183 | |
184 | impulse = m_linearImpulse - oldImpulse; |
185 | |
186 | vA -= mA * impulse; |
187 | wA -= iA * b2Cross(m_rA, impulse); |
188 | |
189 | vB += mB * impulse; |
190 | wB += iB * b2Cross(m_rB, impulse); |
191 | } |
192 | |
193 | data.velocities[m_indexA].v = vA; |
194 | data.velocities[m_indexA].w = wA; |
195 | data.velocities[m_indexB].v = vB; |
196 | data.velocities[m_indexB].w = wB; |
197 | } |
198 | |
199 | bool b2MotorJoint::SolvePositionConstraints(const b2SolverData& data) |
200 | { |
201 | B2_NOT_USED(data); |
202 | |
203 | return true; |
204 | } |
205 | |
206 | b2Vec2 b2MotorJoint::GetAnchorA() const |
207 | { |
208 | return m_bodyA->GetPosition(); |
209 | } |
210 | |
211 | b2Vec2 b2MotorJoint::GetAnchorB() const |
212 | { |
213 | return m_bodyB->GetPosition(); |
214 | } |
215 | |
216 | b2Vec2 b2MotorJoint::GetReactionForce(float32 inv_dt) const |
217 | { |
218 | return inv_dt * m_linearImpulse; |
219 | } |
220 | |
221 | float32 b2MotorJoint::GetReactionTorque(float32 inv_dt) const |
222 | { |
223 | return inv_dt * m_angularImpulse; |
224 | } |
225 | |
226 | void b2MotorJoint::SetMaxForce(float32 force) |
227 | { |
228 | b2Assert(b2IsValid(force) && force >= 0.0f); |
229 | m_maxForce = force; |
230 | } |
231 | |
232 | float32 b2MotorJoint::GetMaxForce() const |
233 | { |
234 | return m_maxForce; |
235 | } |
236 | |
237 | void b2MotorJoint::SetMaxTorque(float32 torque) |
238 | { |
239 | b2Assert(b2IsValid(torque) && torque >= 0.0f); |
240 | m_maxTorque = torque; |
241 | } |
242 | |
243 | float32 b2MotorJoint::GetMaxTorque() const |
244 | { |
245 | return m_maxTorque; |
246 | } |
247 | |
248 | void b2MotorJoint::SetCorrectionFactor(float32 factor) |
249 | { |
250 | b2Assert(b2IsValid(factor) && 0.0f <= factor && factor <= 1.0f); |
251 | m_correctionFactor = factor; |
252 | } |
253 | |
254 | float32 b2MotorJoint::GetCorrectionFactor() const |
255 | { |
256 | return m_correctionFactor; |
257 | } |
258 | |
259 | void b2MotorJoint::SetLinearOffset(const b2Vec2& linearOffset) |
260 | { |
261 | if (linearOffset.x != m_linearOffset.x || linearOffset.y != m_linearOffset.y) |
262 | { |
263 | m_bodyA->SetAwake(true); |
264 | m_bodyB->SetAwake(true); |
265 | m_linearOffset = linearOffset; |
266 | } |
267 | } |
268 | |
269 | const b2Vec2& b2MotorJoint::GetLinearOffset() const |
270 | { |
271 | return m_linearOffset; |
272 | } |
273 | |
274 | void b2MotorJoint::SetAngularOffset(float32 angularOffset) |
275 | { |
276 | if (angularOffset != m_angularOffset) |
277 | { |
278 | m_bodyA->SetAwake(true); |
279 | m_bodyB->SetAwake(true); |
280 | m_angularOffset = angularOffset; |
281 | } |
282 | } |
283 | |
284 | float32 b2MotorJoint::GetAngularOffset() const |
285 | { |
286 | return m_angularOffset; |
287 | } |
288 | |
289 | void b2MotorJoint::Dump() |
290 | { |
291 | int32 indexA = m_bodyA->m_islandIndex; |
292 | int32 indexB = m_bodyB->m_islandIndex; |
293 | |
294 | b2Log(" b2MotorJointDef jd;\n" ); |
295 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
296 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
297 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
298 | b2Log(" jd.linearOffset.Set(%.15lef, %.15lef);\n" , m_linearOffset.x, m_linearOffset.y); |
299 | b2Log(" jd.angularOffset = %.15lef;\n" , m_angularOffset); |
300 | b2Log(" jd.maxForce = %.15lef;\n" , m_maxForce); |
301 | b2Log(" jd.maxTorque = %.15lef;\n" , m_maxTorque); |
302 | b2Log(" jd.correctionFactor = %.15lef;\n" , m_correctionFactor); |
303 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
304 | } |
305 | |