1 | /* |
2 | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #include <Box2D/Dynamics/Joints/b2RevoluteJoint.h> |
20 | #include <Box2D/Dynamics/b2Body.h> |
21 | #include <Box2D/Dynamics/b2TimeStep.h> |
22 | |
23 | // Point-to-point constraint |
24 | // C = p2 - p1 |
25 | // Cdot = v2 - v1 |
26 | // = v2 + cross(w2, r2) - v1 - cross(w1, r1) |
27 | // J = [-I -r1_skew I r2_skew ] |
28 | // Identity used: |
29 | // w k % (rx i + ry j) = w * (-ry i + rx j) |
30 | |
31 | // Motor constraint |
32 | // Cdot = w2 - w1 |
33 | // J = [0 0 -1 0 0 1] |
34 | // K = invI1 + invI2 |
35 | |
36 | void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) |
37 | { |
38 | bodyA = bA; |
39 | bodyB = bB; |
40 | localAnchorA = bodyA->GetLocalPoint(anchor); |
41 | localAnchorB = bodyB->GetLocalPoint(anchor); |
42 | referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); |
43 | } |
44 | |
45 | b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) |
46 | : b2Joint(def) |
47 | { |
48 | m_localAnchorA = def->localAnchorA; |
49 | m_localAnchorB = def->localAnchorB; |
50 | m_referenceAngle = def->referenceAngle; |
51 | |
52 | m_impulse.SetZero(); |
53 | m_motorImpulse = 0.0f; |
54 | |
55 | m_lowerAngle = def->lowerAngle; |
56 | m_upperAngle = def->upperAngle; |
57 | m_maxMotorTorque = def->maxMotorTorque; |
58 | m_motorSpeed = def->motorSpeed; |
59 | m_enableLimit = def->enableLimit; |
60 | m_enableMotor = def->enableMotor; |
61 | m_limitState = e_inactiveLimit; |
62 | } |
63 | |
64 | void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) |
65 | { |
66 | m_indexA = m_bodyA->m_islandIndex; |
67 | m_indexB = m_bodyB->m_islandIndex; |
68 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
69 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
70 | m_invMassA = m_bodyA->m_invMass; |
71 | m_invMassB = m_bodyB->m_invMass; |
72 | m_invIA = m_bodyA->m_invI; |
73 | m_invIB = m_bodyB->m_invI; |
74 | |
75 | float32 aA = data.positions[m_indexA].a; |
76 | b2Vec2 vA = data.velocities[m_indexA].v; |
77 | float32 wA = data.velocities[m_indexA].w; |
78 | |
79 | float32 aB = data.positions[m_indexB].a; |
80 | b2Vec2 vB = data.velocities[m_indexB].v; |
81 | float32 wB = data.velocities[m_indexB].w; |
82 | |
83 | b2Rot qA(aA), qB(aB); |
84 | |
85 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
86 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
87 | |
88 | // J = [-I -r1_skew I r2_skew] |
89 | // [ 0 -1 0 1] |
90 | // r_skew = [-ry; rx] |
91 | |
92 | // Matlab |
93 | // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] |
94 | // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] |
95 | // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] |
96 | |
97 | float32 mA = m_invMassA, mB = m_invMassB; |
98 | float32 iA = m_invIA, iB = m_invIB; |
99 | |
100 | bool fixedRotation = (iA + iB == 0.0f); |
101 | |
102 | m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; |
103 | m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; |
104 | m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB; |
105 | m_mass.ex.y = m_mass.ey.x; |
106 | m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; |
107 | m_mass.ez.y = m_rA.x * iA + m_rB.x * iB; |
108 | m_mass.ex.z = m_mass.ez.x; |
109 | m_mass.ey.z = m_mass.ez.y; |
110 | m_mass.ez.z = iA + iB; |
111 | |
112 | m_motorMass = iA + iB; |
113 | if (m_motorMass > 0.0f) |
114 | { |
115 | m_motorMass = 1.0f / m_motorMass; |
116 | } |
117 | |
118 | if (m_enableMotor == false || fixedRotation) |
119 | { |
120 | m_motorImpulse = 0.0f; |
121 | } |
122 | |
123 | if (m_enableLimit && fixedRotation == false) |
124 | { |
125 | float32 jointAngle = aB - aA - m_referenceAngle; |
126 | if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) |
127 | { |
128 | m_limitState = e_equalLimits; |
129 | } |
130 | else if (jointAngle <= m_lowerAngle) |
131 | { |
132 | if (m_limitState != e_atLowerLimit) |
133 | { |
134 | m_impulse.z = 0.0f; |
135 | } |
136 | m_limitState = e_atLowerLimit; |
137 | } |
138 | else if (jointAngle >= m_upperAngle) |
139 | { |
140 | if (m_limitState != e_atUpperLimit) |
141 | { |
142 | m_impulse.z = 0.0f; |
143 | } |
144 | m_limitState = e_atUpperLimit; |
145 | } |
146 | else |
147 | { |
148 | m_limitState = e_inactiveLimit; |
149 | m_impulse.z = 0.0f; |
150 | } |
151 | } |
152 | else |
153 | { |
154 | m_limitState = e_inactiveLimit; |
155 | } |
156 | |
157 | if (data.step.warmStarting) |
158 | { |
159 | // Scale impulses to support a variable time step. |
160 | m_impulse *= data.step.dtRatio; |
161 | m_motorImpulse *= data.step.dtRatio; |
162 | |
163 | b2Vec2 P(m_impulse.x, m_impulse.y); |
164 | |
165 | vA -= mA * P; |
166 | wA -= iA * (b2Cross(m_rA, P) + m_motorImpulse + m_impulse.z); |
167 | |
168 | vB += mB * P; |
169 | wB += iB * (b2Cross(m_rB, P) + m_motorImpulse + m_impulse.z); |
170 | } |
171 | else |
172 | { |
173 | m_impulse.SetZero(); |
174 | m_motorImpulse = 0.0f; |
175 | } |
176 | |
177 | data.velocities[m_indexA].v = vA; |
178 | data.velocities[m_indexA].w = wA; |
179 | data.velocities[m_indexB].v = vB; |
180 | data.velocities[m_indexB].w = wB; |
181 | } |
182 | |
183 | void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) |
184 | { |
185 | b2Vec2 vA = data.velocities[m_indexA].v; |
186 | float32 wA = data.velocities[m_indexA].w; |
187 | b2Vec2 vB = data.velocities[m_indexB].v; |
188 | float32 wB = data.velocities[m_indexB].w; |
189 | |
190 | float32 mA = m_invMassA, mB = m_invMassB; |
191 | float32 iA = m_invIA, iB = m_invIB; |
192 | |
193 | bool fixedRotation = (iA + iB == 0.0f); |
194 | |
195 | // Solve motor constraint. |
196 | if (m_enableMotor && m_limitState != e_equalLimits && fixedRotation == false) |
197 | { |
198 | float32 Cdot = wB - wA - m_motorSpeed; |
199 | float32 impulse = -m_motorMass * Cdot; |
200 | float32 oldImpulse = m_motorImpulse; |
201 | float32 maxImpulse = data.step.dt * m_maxMotorTorque; |
202 | m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); |
203 | impulse = m_motorImpulse - oldImpulse; |
204 | |
205 | wA -= iA * impulse; |
206 | wB += iB * impulse; |
207 | } |
208 | |
209 | // Solve limit constraint. |
210 | if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) |
211 | { |
212 | b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
213 | float32 Cdot2 = wB - wA; |
214 | b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); |
215 | |
216 | b2Vec3 impulse = -m_mass.Solve33(Cdot); |
217 | |
218 | if (m_limitState == e_equalLimits) |
219 | { |
220 | m_impulse += impulse; |
221 | } |
222 | else if (m_limitState == e_atLowerLimit) |
223 | { |
224 | float32 newImpulse = m_impulse.z + impulse.z; |
225 | if (newImpulse < 0.0f) |
226 | { |
227 | b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); |
228 | b2Vec2 reduced = m_mass.Solve22(rhs); |
229 | impulse.x = reduced.x; |
230 | impulse.y = reduced.y; |
231 | impulse.z = -m_impulse.z; |
232 | m_impulse.x += reduced.x; |
233 | m_impulse.y += reduced.y; |
234 | m_impulse.z = 0.0f; |
235 | } |
236 | else |
237 | { |
238 | m_impulse += impulse; |
239 | } |
240 | } |
241 | else if (m_limitState == e_atUpperLimit) |
242 | { |
243 | float32 newImpulse = m_impulse.z + impulse.z; |
244 | if (newImpulse > 0.0f) |
245 | { |
246 | b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); |
247 | b2Vec2 reduced = m_mass.Solve22(rhs); |
248 | impulse.x = reduced.x; |
249 | impulse.y = reduced.y; |
250 | impulse.z = -m_impulse.z; |
251 | m_impulse.x += reduced.x; |
252 | m_impulse.y += reduced.y; |
253 | m_impulse.z = 0.0f; |
254 | } |
255 | else |
256 | { |
257 | m_impulse += impulse; |
258 | } |
259 | } |
260 | |
261 | b2Vec2 P(impulse.x, impulse.y); |
262 | |
263 | vA -= mA * P; |
264 | wA -= iA * (b2Cross(m_rA, P) + impulse.z); |
265 | |
266 | vB += mB * P; |
267 | wB += iB * (b2Cross(m_rB, P) + impulse.z); |
268 | } |
269 | else |
270 | { |
271 | // Solve point-to-point constraint |
272 | b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
273 | b2Vec2 impulse = m_mass.Solve22(-Cdot); |
274 | |
275 | m_impulse.x += impulse.x; |
276 | m_impulse.y += impulse.y; |
277 | |
278 | vA -= mA * impulse; |
279 | wA -= iA * b2Cross(m_rA, impulse); |
280 | |
281 | vB += mB * impulse; |
282 | wB += iB * b2Cross(m_rB, impulse); |
283 | } |
284 | |
285 | data.velocities[m_indexA].v = vA; |
286 | data.velocities[m_indexA].w = wA; |
287 | data.velocities[m_indexB].v = vB; |
288 | data.velocities[m_indexB].w = wB; |
289 | } |
290 | |
291 | bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) |
292 | { |
293 | b2Vec2 cA = data.positions[m_indexA].c; |
294 | float32 aA = data.positions[m_indexA].a; |
295 | b2Vec2 cB = data.positions[m_indexB].c; |
296 | float32 aB = data.positions[m_indexB].a; |
297 | |
298 | b2Rot qA(aA), qB(aB); |
299 | |
300 | float32 angularError = 0.0f; |
301 | float32 positionError = 0.0f; |
302 | |
303 | bool fixedRotation = (m_invIA + m_invIB == 0.0f); |
304 | |
305 | // Solve angular limit constraint. |
306 | if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) |
307 | { |
308 | float32 angle = aB - aA - m_referenceAngle; |
309 | float32 limitImpulse = 0.0f; |
310 | |
311 | if (m_limitState == e_equalLimits) |
312 | { |
313 | // Prevent large angular corrections |
314 | float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); |
315 | limitImpulse = -m_motorMass * C; |
316 | angularError = b2Abs(C); |
317 | } |
318 | else if (m_limitState == e_atLowerLimit) |
319 | { |
320 | float32 C = angle - m_lowerAngle; |
321 | angularError = -C; |
322 | |
323 | // Prevent large angular corrections and allow some slop. |
324 | C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); |
325 | limitImpulse = -m_motorMass * C; |
326 | } |
327 | else if (m_limitState == e_atUpperLimit) |
328 | { |
329 | float32 C = angle - m_upperAngle; |
330 | angularError = C; |
331 | |
332 | // Prevent large angular corrections and allow some slop. |
333 | C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); |
334 | limitImpulse = -m_motorMass * C; |
335 | } |
336 | |
337 | aA -= m_invIA * limitImpulse; |
338 | aB += m_invIB * limitImpulse; |
339 | } |
340 | |
341 | // Solve point-to-point constraint. |
342 | { |
343 | qA.Set(aA); |
344 | qB.Set(aB); |
345 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
346 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
347 | |
348 | b2Vec2 C = cB + rB - cA - rA; |
349 | positionError = C.Length(); |
350 | |
351 | float32 mA = m_invMassA, mB = m_invMassB; |
352 | float32 iA = m_invIA, iB = m_invIB; |
353 | |
354 | b2Mat22 K; |
355 | K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; |
356 | K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; |
357 | K.ey.x = K.ex.y; |
358 | K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; |
359 | |
360 | b2Vec2 impulse = -K.Solve(C); |
361 | |
362 | cA -= mA * impulse; |
363 | aA -= iA * b2Cross(rA, impulse); |
364 | |
365 | cB += mB * impulse; |
366 | aB += iB * b2Cross(rB, impulse); |
367 | } |
368 | |
369 | data.positions[m_indexA].c = cA; |
370 | data.positions[m_indexA].a = aA; |
371 | data.positions[m_indexB].c = cB; |
372 | data.positions[m_indexB].a = aB; |
373 | |
374 | return positionError <= b2_linearSlop && angularError <= b2_angularSlop; |
375 | } |
376 | |
377 | b2Vec2 b2RevoluteJoint::GetAnchorA() const |
378 | { |
379 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
380 | } |
381 | |
382 | b2Vec2 b2RevoluteJoint::GetAnchorB() const |
383 | { |
384 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
385 | } |
386 | |
387 | b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const |
388 | { |
389 | b2Vec2 P(m_impulse.x, m_impulse.y); |
390 | return inv_dt * P; |
391 | } |
392 | |
393 | float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const |
394 | { |
395 | return inv_dt * m_impulse.z; |
396 | } |
397 | |
398 | float32 b2RevoluteJoint::GetJointAngle() const |
399 | { |
400 | b2Body* bA = m_bodyA; |
401 | b2Body* bB = m_bodyB; |
402 | return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle; |
403 | } |
404 | |
405 | float32 b2RevoluteJoint::GetJointSpeed() const |
406 | { |
407 | b2Body* bA = m_bodyA; |
408 | b2Body* bB = m_bodyB; |
409 | return bB->m_angularVelocity - bA->m_angularVelocity; |
410 | } |
411 | |
412 | bool b2RevoluteJoint::IsMotorEnabled() const |
413 | { |
414 | return m_enableMotor; |
415 | } |
416 | |
417 | void b2RevoluteJoint::EnableMotor(bool flag) |
418 | { |
419 | m_bodyA->SetAwake(true); |
420 | m_bodyB->SetAwake(true); |
421 | m_enableMotor = flag; |
422 | } |
423 | |
424 | float32 b2RevoluteJoint::GetMotorTorque(float32 inv_dt) const |
425 | { |
426 | return inv_dt * m_motorImpulse; |
427 | } |
428 | |
429 | void b2RevoluteJoint::SetMotorSpeed(float32 speed) |
430 | { |
431 | m_bodyA->SetAwake(true); |
432 | m_bodyB->SetAwake(true); |
433 | m_motorSpeed = speed; |
434 | } |
435 | |
436 | void b2RevoluteJoint::SetMaxMotorTorque(float32 torque) |
437 | { |
438 | m_bodyA->SetAwake(true); |
439 | m_bodyB->SetAwake(true); |
440 | m_maxMotorTorque = torque; |
441 | } |
442 | |
443 | bool b2RevoluteJoint::IsLimitEnabled() const |
444 | { |
445 | return m_enableLimit; |
446 | } |
447 | |
448 | void b2RevoluteJoint::EnableLimit(bool flag) |
449 | { |
450 | if (flag != m_enableLimit) |
451 | { |
452 | m_bodyA->SetAwake(true); |
453 | m_bodyB->SetAwake(true); |
454 | m_enableLimit = flag; |
455 | m_impulse.z = 0.0f; |
456 | } |
457 | } |
458 | |
459 | float32 b2RevoluteJoint::GetLowerLimit() const |
460 | { |
461 | return m_lowerAngle; |
462 | } |
463 | |
464 | float32 b2RevoluteJoint::GetUpperLimit() const |
465 | { |
466 | return m_upperAngle; |
467 | } |
468 | |
469 | void b2RevoluteJoint::SetLimits(float32 lower, float32 upper) |
470 | { |
471 | b2Assert(lower <= upper); |
472 | |
473 | if (lower != m_lowerAngle || upper != m_upperAngle) |
474 | { |
475 | m_bodyA->SetAwake(true); |
476 | m_bodyB->SetAwake(true); |
477 | m_impulse.z = 0.0f; |
478 | m_lowerAngle = lower; |
479 | m_upperAngle = upper; |
480 | } |
481 | } |
482 | |
483 | void b2RevoluteJoint::Dump() |
484 | { |
485 | int32 indexA = m_bodyA->m_islandIndex; |
486 | int32 indexB = m_bodyB->m_islandIndex; |
487 | |
488 | b2Log(" b2RevoluteJointDef jd;\n" ); |
489 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
490 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
491 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
492 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
493 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
494 | b2Log(" jd.referenceAngle = %.15lef;\n" , m_referenceAngle); |
495 | b2Log(" jd.enableLimit = bool(%d);\n" , m_enableLimit); |
496 | b2Log(" jd.lowerAngle = %.15lef;\n" , m_lowerAngle); |
497 | b2Log(" jd.upperAngle = %.15lef;\n" , m_upperAngle); |
498 | b2Log(" jd.enableMotor = bool(%d);\n" , m_enableMotor); |
499 | b2Log(" jd.motorSpeed = %.15lef;\n" , m_motorSpeed); |
500 | b2Log(" jd.maxMotorTorque = %.15lef;\n" , m_maxMotorTorque); |
501 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
502 | } |
503 | |