| 1 | /* |
| 2 | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Dynamics/Joints/b2RevoluteJoint.h> |
| 20 | #include <Box2D/Dynamics/b2Body.h> |
| 21 | #include <Box2D/Dynamics/b2TimeStep.h> |
| 22 | |
| 23 | // Point-to-point constraint |
| 24 | // C = p2 - p1 |
| 25 | // Cdot = v2 - v1 |
| 26 | // = v2 + cross(w2, r2) - v1 - cross(w1, r1) |
| 27 | // J = [-I -r1_skew I r2_skew ] |
| 28 | // Identity used: |
| 29 | // w k % (rx i + ry j) = w * (-ry i + rx j) |
| 30 | |
| 31 | // Motor constraint |
| 32 | // Cdot = w2 - w1 |
| 33 | // J = [0 0 -1 0 0 1] |
| 34 | // K = invI1 + invI2 |
| 35 | |
| 36 | void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) |
| 37 | { |
| 38 | bodyA = bA; |
| 39 | bodyB = bB; |
| 40 | localAnchorA = bodyA->GetLocalPoint(anchor); |
| 41 | localAnchorB = bodyB->GetLocalPoint(anchor); |
| 42 | referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); |
| 43 | } |
| 44 | |
| 45 | b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) |
| 46 | : b2Joint(def) |
| 47 | { |
| 48 | m_localAnchorA = def->localAnchorA; |
| 49 | m_localAnchorB = def->localAnchorB; |
| 50 | m_referenceAngle = def->referenceAngle; |
| 51 | |
| 52 | m_impulse.SetZero(); |
| 53 | m_motorImpulse = 0.0f; |
| 54 | |
| 55 | m_lowerAngle = def->lowerAngle; |
| 56 | m_upperAngle = def->upperAngle; |
| 57 | m_maxMotorTorque = def->maxMotorTorque; |
| 58 | m_motorSpeed = def->motorSpeed; |
| 59 | m_enableLimit = def->enableLimit; |
| 60 | m_enableMotor = def->enableMotor; |
| 61 | m_limitState = e_inactiveLimit; |
| 62 | } |
| 63 | |
| 64 | void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) |
| 65 | { |
| 66 | m_indexA = m_bodyA->m_islandIndex; |
| 67 | m_indexB = m_bodyB->m_islandIndex; |
| 68 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
| 69 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
| 70 | m_invMassA = m_bodyA->m_invMass; |
| 71 | m_invMassB = m_bodyB->m_invMass; |
| 72 | m_invIA = m_bodyA->m_invI; |
| 73 | m_invIB = m_bodyB->m_invI; |
| 74 | |
| 75 | float32 aA = data.positions[m_indexA].a; |
| 76 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 77 | float32 wA = data.velocities[m_indexA].w; |
| 78 | |
| 79 | float32 aB = data.positions[m_indexB].a; |
| 80 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 81 | float32 wB = data.velocities[m_indexB].w; |
| 82 | |
| 83 | b2Rot qA(aA), qB(aB); |
| 84 | |
| 85 | m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 86 | m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 87 | |
| 88 | // J = [-I -r1_skew I r2_skew] |
| 89 | // [ 0 -1 0 1] |
| 90 | // r_skew = [-ry; rx] |
| 91 | |
| 92 | // Matlab |
| 93 | // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] |
| 94 | // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] |
| 95 | // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] |
| 96 | |
| 97 | float32 mA = m_invMassA, mB = m_invMassB; |
| 98 | float32 iA = m_invIA, iB = m_invIB; |
| 99 | |
| 100 | bool fixedRotation = (iA + iB == 0.0f); |
| 101 | |
| 102 | m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; |
| 103 | m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; |
| 104 | m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB; |
| 105 | m_mass.ex.y = m_mass.ey.x; |
| 106 | m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; |
| 107 | m_mass.ez.y = m_rA.x * iA + m_rB.x * iB; |
| 108 | m_mass.ex.z = m_mass.ez.x; |
| 109 | m_mass.ey.z = m_mass.ez.y; |
| 110 | m_mass.ez.z = iA + iB; |
| 111 | |
| 112 | m_motorMass = iA + iB; |
| 113 | if (m_motorMass > 0.0f) |
| 114 | { |
| 115 | m_motorMass = 1.0f / m_motorMass; |
| 116 | } |
| 117 | |
| 118 | if (m_enableMotor == false || fixedRotation) |
| 119 | { |
| 120 | m_motorImpulse = 0.0f; |
| 121 | } |
| 122 | |
| 123 | if (m_enableLimit && fixedRotation == false) |
| 124 | { |
| 125 | float32 jointAngle = aB - aA - m_referenceAngle; |
| 126 | if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) |
| 127 | { |
| 128 | m_limitState = e_equalLimits; |
| 129 | } |
| 130 | else if (jointAngle <= m_lowerAngle) |
| 131 | { |
| 132 | if (m_limitState != e_atLowerLimit) |
| 133 | { |
| 134 | m_impulse.z = 0.0f; |
| 135 | } |
| 136 | m_limitState = e_atLowerLimit; |
| 137 | } |
| 138 | else if (jointAngle >= m_upperAngle) |
| 139 | { |
| 140 | if (m_limitState != e_atUpperLimit) |
| 141 | { |
| 142 | m_impulse.z = 0.0f; |
| 143 | } |
| 144 | m_limitState = e_atUpperLimit; |
| 145 | } |
| 146 | else |
| 147 | { |
| 148 | m_limitState = e_inactiveLimit; |
| 149 | m_impulse.z = 0.0f; |
| 150 | } |
| 151 | } |
| 152 | else |
| 153 | { |
| 154 | m_limitState = e_inactiveLimit; |
| 155 | } |
| 156 | |
| 157 | if (data.step.warmStarting) |
| 158 | { |
| 159 | // Scale impulses to support a variable time step. |
| 160 | m_impulse *= data.step.dtRatio; |
| 161 | m_motorImpulse *= data.step.dtRatio; |
| 162 | |
| 163 | b2Vec2 P(m_impulse.x, m_impulse.y); |
| 164 | |
| 165 | vA -= mA * P; |
| 166 | wA -= iA * (b2Cross(m_rA, P) + m_motorImpulse + m_impulse.z); |
| 167 | |
| 168 | vB += mB * P; |
| 169 | wB += iB * (b2Cross(m_rB, P) + m_motorImpulse + m_impulse.z); |
| 170 | } |
| 171 | else |
| 172 | { |
| 173 | m_impulse.SetZero(); |
| 174 | m_motorImpulse = 0.0f; |
| 175 | } |
| 176 | |
| 177 | data.velocities[m_indexA].v = vA; |
| 178 | data.velocities[m_indexA].w = wA; |
| 179 | data.velocities[m_indexB].v = vB; |
| 180 | data.velocities[m_indexB].w = wB; |
| 181 | } |
| 182 | |
| 183 | void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) |
| 184 | { |
| 185 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 186 | float32 wA = data.velocities[m_indexA].w; |
| 187 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 188 | float32 wB = data.velocities[m_indexB].w; |
| 189 | |
| 190 | float32 mA = m_invMassA, mB = m_invMassB; |
| 191 | float32 iA = m_invIA, iB = m_invIB; |
| 192 | |
| 193 | bool fixedRotation = (iA + iB == 0.0f); |
| 194 | |
| 195 | // Solve motor constraint. |
| 196 | if (m_enableMotor && m_limitState != e_equalLimits && fixedRotation == false) |
| 197 | { |
| 198 | float32 Cdot = wB - wA - m_motorSpeed; |
| 199 | float32 impulse = -m_motorMass * Cdot; |
| 200 | float32 oldImpulse = m_motorImpulse; |
| 201 | float32 maxImpulse = data.step.dt * m_maxMotorTorque; |
| 202 | m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); |
| 203 | impulse = m_motorImpulse - oldImpulse; |
| 204 | |
| 205 | wA -= iA * impulse; |
| 206 | wB += iB * impulse; |
| 207 | } |
| 208 | |
| 209 | // Solve limit constraint. |
| 210 | if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) |
| 211 | { |
| 212 | b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
| 213 | float32 Cdot2 = wB - wA; |
| 214 | b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); |
| 215 | |
| 216 | b2Vec3 impulse = -m_mass.Solve33(Cdot); |
| 217 | |
| 218 | if (m_limitState == e_equalLimits) |
| 219 | { |
| 220 | m_impulse += impulse; |
| 221 | } |
| 222 | else if (m_limitState == e_atLowerLimit) |
| 223 | { |
| 224 | float32 newImpulse = m_impulse.z + impulse.z; |
| 225 | if (newImpulse < 0.0f) |
| 226 | { |
| 227 | b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); |
| 228 | b2Vec2 reduced = m_mass.Solve22(rhs); |
| 229 | impulse.x = reduced.x; |
| 230 | impulse.y = reduced.y; |
| 231 | impulse.z = -m_impulse.z; |
| 232 | m_impulse.x += reduced.x; |
| 233 | m_impulse.y += reduced.y; |
| 234 | m_impulse.z = 0.0f; |
| 235 | } |
| 236 | else |
| 237 | { |
| 238 | m_impulse += impulse; |
| 239 | } |
| 240 | } |
| 241 | else if (m_limitState == e_atUpperLimit) |
| 242 | { |
| 243 | float32 newImpulse = m_impulse.z + impulse.z; |
| 244 | if (newImpulse > 0.0f) |
| 245 | { |
| 246 | b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); |
| 247 | b2Vec2 reduced = m_mass.Solve22(rhs); |
| 248 | impulse.x = reduced.x; |
| 249 | impulse.y = reduced.y; |
| 250 | impulse.z = -m_impulse.z; |
| 251 | m_impulse.x += reduced.x; |
| 252 | m_impulse.y += reduced.y; |
| 253 | m_impulse.z = 0.0f; |
| 254 | } |
| 255 | else |
| 256 | { |
| 257 | m_impulse += impulse; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | b2Vec2 P(impulse.x, impulse.y); |
| 262 | |
| 263 | vA -= mA * P; |
| 264 | wA -= iA * (b2Cross(m_rA, P) + impulse.z); |
| 265 | |
| 266 | vB += mB * P; |
| 267 | wB += iB * (b2Cross(m_rB, P) + impulse.z); |
| 268 | } |
| 269 | else |
| 270 | { |
| 271 | // Solve point-to-point constraint |
| 272 | b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); |
| 273 | b2Vec2 impulse = m_mass.Solve22(-Cdot); |
| 274 | |
| 275 | m_impulse.x += impulse.x; |
| 276 | m_impulse.y += impulse.y; |
| 277 | |
| 278 | vA -= mA * impulse; |
| 279 | wA -= iA * b2Cross(m_rA, impulse); |
| 280 | |
| 281 | vB += mB * impulse; |
| 282 | wB += iB * b2Cross(m_rB, impulse); |
| 283 | } |
| 284 | |
| 285 | data.velocities[m_indexA].v = vA; |
| 286 | data.velocities[m_indexA].w = wA; |
| 287 | data.velocities[m_indexB].v = vB; |
| 288 | data.velocities[m_indexB].w = wB; |
| 289 | } |
| 290 | |
| 291 | bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) |
| 292 | { |
| 293 | b2Vec2 cA = data.positions[m_indexA].c; |
| 294 | float32 aA = data.positions[m_indexA].a; |
| 295 | b2Vec2 cB = data.positions[m_indexB].c; |
| 296 | float32 aB = data.positions[m_indexB].a; |
| 297 | |
| 298 | b2Rot qA(aA), qB(aB); |
| 299 | |
| 300 | float32 angularError = 0.0f; |
| 301 | float32 positionError = 0.0f; |
| 302 | |
| 303 | bool fixedRotation = (m_invIA + m_invIB == 0.0f); |
| 304 | |
| 305 | // Solve angular limit constraint. |
| 306 | if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) |
| 307 | { |
| 308 | float32 angle = aB - aA - m_referenceAngle; |
| 309 | float32 limitImpulse = 0.0f; |
| 310 | |
| 311 | if (m_limitState == e_equalLimits) |
| 312 | { |
| 313 | // Prevent large angular corrections |
| 314 | float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); |
| 315 | limitImpulse = -m_motorMass * C; |
| 316 | angularError = b2Abs(C); |
| 317 | } |
| 318 | else if (m_limitState == e_atLowerLimit) |
| 319 | { |
| 320 | float32 C = angle - m_lowerAngle; |
| 321 | angularError = -C; |
| 322 | |
| 323 | // Prevent large angular corrections and allow some slop. |
| 324 | C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); |
| 325 | limitImpulse = -m_motorMass * C; |
| 326 | } |
| 327 | else if (m_limitState == e_atUpperLimit) |
| 328 | { |
| 329 | float32 C = angle - m_upperAngle; |
| 330 | angularError = C; |
| 331 | |
| 332 | // Prevent large angular corrections and allow some slop. |
| 333 | C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); |
| 334 | limitImpulse = -m_motorMass * C; |
| 335 | } |
| 336 | |
| 337 | aA -= m_invIA * limitImpulse; |
| 338 | aB += m_invIB * limitImpulse; |
| 339 | } |
| 340 | |
| 341 | // Solve point-to-point constraint. |
| 342 | { |
| 343 | qA.Set(aA); |
| 344 | qB.Set(aB); |
| 345 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 346 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 347 | |
| 348 | b2Vec2 C = cB + rB - cA - rA; |
| 349 | positionError = C.Length(); |
| 350 | |
| 351 | float32 mA = m_invMassA, mB = m_invMassB; |
| 352 | float32 iA = m_invIA, iB = m_invIB; |
| 353 | |
| 354 | b2Mat22 K; |
| 355 | K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; |
| 356 | K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; |
| 357 | K.ey.x = K.ex.y; |
| 358 | K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; |
| 359 | |
| 360 | b2Vec2 impulse = -K.Solve(C); |
| 361 | |
| 362 | cA -= mA * impulse; |
| 363 | aA -= iA * b2Cross(rA, impulse); |
| 364 | |
| 365 | cB += mB * impulse; |
| 366 | aB += iB * b2Cross(rB, impulse); |
| 367 | } |
| 368 | |
| 369 | data.positions[m_indexA].c = cA; |
| 370 | data.positions[m_indexA].a = aA; |
| 371 | data.positions[m_indexB].c = cB; |
| 372 | data.positions[m_indexB].a = aB; |
| 373 | |
| 374 | return positionError <= b2_linearSlop && angularError <= b2_angularSlop; |
| 375 | } |
| 376 | |
| 377 | b2Vec2 b2RevoluteJoint::GetAnchorA() const |
| 378 | { |
| 379 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
| 380 | } |
| 381 | |
| 382 | b2Vec2 b2RevoluteJoint::GetAnchorB() const |
| 383 | { |
| 384 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
| 385 | } |
| 386 | |
| 387 | b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const |
| 388 | { |
| 389 | b2Vec2 P(m_impulse.x, m_impulse.y); |
| 390 | return inv_dt * P; |
| 391 | } |
| 392 | |
| 393 | float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const |
| 394 | { |
| 395 | return inv_dt * m_impulse.z; |
| 396 | } |
| 397 | |
| 398 | float32 b2RevoluteJoint::GetJointAngle() const |
| 399 | { |
| 400 | b2Body* bA = m_bodyA; |
| 401 | b2Body* bB = m_bodyB; |
| 402 | return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle; |
| 403 | } |
| 404 | |
| 405 | float32 b2RevoluteJoint::GetJointSpeed() const |
| 406 | { |
| 407 | b2Body* bA = m_bodyA; |
| 408 | b2Body* bB = m_bodyB; |
| 409 | return bB->m_angularVelocity - bA->m_angularVelocity; |
| 410 | } |
| 411 | |
| 412 | bool b2RevoluteJoint::IsMotorEnabled() const |
| 413 | { |
| 414 | return m_enableMotor; |
| 415 | } |
| 416 | |
| 417 | void b2RevoluteJoint::EnableMotor(bool flag) |
| 418 | { |
| 419 | m_bodyA->SetAwake(true); |
| 420 | m_bodyB->SetAwake(true); |
| 421 | m_enableMotor = flag; |
| 422 | } |
| 423 | |
| 424 | float32 b2RevoluteJoint::GetMotorTorque(float32 inv_dt) const |
| 425 | { |
| 426 | return inv_dt * m_motorImpulse; |
| 427 | } |
| 428 | |
| 429 | void b2RevoluteJoint::SetMotorSpeed(float32 speed) |
| 430 | { |
| 431 | m_bodyA->SetAwake(true); |
| 432 | m_bodyB->SetAwake(true); |
| 433 | m_motorSpeed = speed; |
| 434 | } |
| 435 | |
| 436 | void b2RevoluteJoint::SetMaxMotorTorque(float32 torque) |
| 437 | { |
| 438 | m_bodyA->SetAwake(true); |
| 439 | m_bodyB->SetAwake(true); |
| 440 | m_maxMotorTorque = torque; |
| 441 | } |
| 442 | |
| 443 | bool b2RevoluteJoint::IsLimitEnabled() const |
| 444 | { |
| 445 | return m_enableLimit; |
| 446 | } |
| 447 | |
| 448 | void b2RevoluteJoint::EnableLimit(bool flag) |
| 449 | { |
| 450 | if (flag != m_enableLimit) |
| 451 | { |
| 452 | m_bodyA->SetAwake(true); |
| 453 | m_bodyB->SetAwake(true); |
| 454 | m_enableLimit = flag; |
| 455 | m_impulse.z = 0.0f; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | float32 b2RevoluteJoint::GetLowerLimit() const |
| 460 | { |
| 461 | return m_lowerAngle; |
| 462 | } |
| 463 | |
| 464 | float32 b2RevoluteJoint::GetUpperLimit() const |
| 465 | { |
| 466 | return m_upperAngle; |
| 467 | } |
| 468 | |
| 469 | void b2RevoluteJoint::SetLimits(float32 lower, float32 upper) |
| 470 | { |
| 471 | b2Assert(lower <= upper); |
| 472 | |
| 473 | if (lower != m_lowerAngle || upper != m_upperAngle) |
| 474 | { |
| 475 | m_bodyA->SetAwake(true); |
| 476 | m_bodyB->SetAwake(true); |
| 477 | m_impulse.z = 0.0f; |
| 478 | m_lowerAngle = lower; |
| 479 | m_upperAngle = upper; |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | void b2RevoluteJoint::Dump() |
| 484 | { |
| 485 | int32 indexA = m_bodyA->m_islandIndex; |
| 486 | int32 indexB = m_bodyB->m_islandIndex; |
| 487 | |
| 488 | b2Log(" b2RevoluteJointDef jd;\n" ); |
| 489 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
| 490 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
| 491 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
| 492 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
| 493 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
| 494 | b2Log(" jd.referenceAngle = %.15lef;\n" , m_referenceAngle); |
| 495 | b2Log(" jd.enableLimit = bool(%d);\n" , m_enableLimit); |
| 496 | b2Log(" jd.lowerAngle = %.15lef;\n" , m_lowerAngle); |
| 497 | b2Log(" jd.upperAngle = %.15lef;\n" , m_upperAngle); |
| 498 | b2Log(" jd.enableMotor = bool(%d);\n" , m_enableMotor); |
| 499 | b2Log(" jd.motorSpeed = %.15lef;\n" , m_motorSpeed); |
| 500 | b2Log(" jd.maxMotorTorque = %.15lef;\n" , m_maxMotorTorque); |
| 501 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
| 502 | } |
| 503 | |