| 1 | /* |
| 2 | * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Dynamics/Joints/b2WheelJoint.h> |
| 20 | #include <Box2D/Dynamics/b2Body.h> |
| 21 | #include <Box2D/Dynamics/b2TimeStep.h> |
| 22 | |
| 23 | // Linear constraint (point-to-line) |
| 24 | // d = pB - pA = xB + rB - xA - rA |
| 25 | // C = dot(ay, d) |
| 26 | // Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA)) |
| 27 | // = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB) |
| 28 | // J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)] |
| 29 | |
| 30 | // Spring linear constraint |
| 31 | // C = dot(ax, d) |
| 32 | // Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB) |
| 33 | // J = [-ax -cross(d+rA, ax) ax cross(rB, ax)] |
| 34 | |
| 35 | // Motor rotational constraint |
| 36 | // Cdot = wB - wA |
| 37 | // J = [0 0 -1 0 0 1] |
| 38 | |
| 39 | void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) |
| 40 | { |
| 41 | bodyA = bA; |
| 42 | bodyB = bB; |
| 43 | localAnchorA = bodyA->GetLocalPoint(anchor); |
| 44 | localAnchorB = bodyB->GetLocalPoint(anchor); |
| 45 | localAxisA = bodyA->GetLocalVector(axis); |
| 46 | } |
| 47 | |
| 48 | b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def) |
| 49 | : b2Joint(def) |
| 50 | { |
| 51 | m_localAnchorA = def->localAnchorA; |
| 52 | m_localAnchorB = def->localAnchorB; |
| 53 | m_localXAxisA = def->localAxisA; |
| 54 | m_localYAxisA = b2Cross(1.0f, m_localXAxisA); |
| 55 | |
| 56 | m_mass = 0.0f; |
| 57 | m_impulse = 0.0f; |
| 58 | m_motorMass = 0.0f; |
| 59 | m_motorImpulse = 0.0f; |
| 60 | m_springMass = 0.0f; |
| 61 | m_springImpulse = 0.0f; |
| 62 | |
| 63 | m_maxMotorTorque = def->maxMotorTorque; |
| 64 | m_motorSpeed = def->motorSpeed; |
| 65 | m_enableMotor = def->enableMotor; |
| 66 | |
| 67 | m_frequencyHz = def->frequencyHz; |
| 68 | m_dampingRatio = def->dampingRatio; |
| 69 | |
| 70 | m_bias = 0.0f; |
| 71 | m_gamma = 0.0f; |
| 72 | |
| 73 | m_ax.SetZero(); |
| 74 | m_ay.SetZero(); |
| 75 | } |
| 76 | |
| 77 | void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data) |
| 78 | { |
| 79 | m_indexA = m_bodyA->m_islandIndex; |
| 80 | m_indexB = m_bodyB->m_islandIndex; |
| 81 | m_localCenterA = m_bodyA->m_sweep.localCenter; |
| 82 | m_localCenterB = m_bodyB->m_sweep.localCenter; |
| 83 | m_invMassA = m_bodyA->m_invMass; |
| 84 | m_invMassB = m_bodyB->m_invMass; |
| 85 | m_invIA = m_bodyA->m_invI; |
| 86 | m_invIB = m_bodyB->m_invI; |
| 87 | |
| 88 | float32 mA = m_invMassA, mB = m_invMassB; |
| 89 | float32 iA = m_invIA, iB = m_invIB; |
| 90 | |
| 91 | b2Vec2 cA = data.positions[m_indexA].c; |
| 92 | float32 aA = data.positions[m_indexA].a; |
| 93 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 94 | float32 wA = data.velocities[m_indexA].w; |
| 95 | |
| 96 | b2Vec2 cB = data.positions[m_indexB].c; |
| 97 | float32 aB = data.positions[m_indexB].a; |
| 98 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 99 | float32 wB = data.velocities[m_indexB].w; |
| 100 | |
| 101 | b2Rot qA(aA), qB(aB); |
| 102 | |
| 103 | // Compute the effective masses. |
| 104 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 105 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 106 | b2Vec2 d = cB + rB - cA - rA; |
| 107 | |
| 108 | // Point to line constraint |
| 109 | { |
| 110 | m_ay = b2Mul(qA, m_localYAxisA); |
| 111 | m_sAy = b2Cross(d + rA, m_ay); |
| 112 | m_sBy = b2Cross(rB, m_ay); |
| 113 | |
| 114 | m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy; |
| 115 | |
| 116 | if (m_mass > 0.0f) |
| 117 | { |
| 118 | m_mass = 1.0f / m_mass; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | // Spring constraint |
| 123 | m_springMass = 0.0f; |
| 124 | m_bias = 0.0f; |
| 125 | m_gamma = 0.0f; |
| 126 | if (m_frequencyHz > 0.0f) |
| 127 | { |
| 128 | m_ax = b2Mul(qA, m_localXAxisA); |
| 129 | m_sAx = b2Cross(d + rA, m_ax); |
| 130 | m_sBx = b2Cross(rB, m_ax); |
| 131 | |
| 132 | float32 invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx; |
| 133 | |
| 134 | if (invMass > 0.0f) |
| 135 | { |
| 136 | m_springMass = 1.0f / invMass; |
| 137 | |
| 138 | float32 C = b2Dot(d, m_ax); |
| 139 | |
| 140 | // Frequency |
| 141 | float32 omega = 2.0f * b2_pi * m_frequencyHz; |
| 142 | |
| 143 | // Damping coefficient |
| 144 | float32 d = 2.0f * m_springMass * m_dampingRatio * omega; |
| 145 | |
| 146 | // Spring stiffness |
| 147 | float32 k = m_springMass * omega * omega; |
| 148 | |
| 149 | // magic formulas |
| 150 | float32 h = data.step.dt; |
| 151 | m_gamma = h * (d + h * k); |
| 152 | if (m_gamma > 0.0f) |
| 153 | { |
| 154 | m_gamma = 1.0f / m_gamma; |
| 155 | } |
| 156 | |
| 157 | m_bias = C * h * k * m_gamma; |
| 158 | |
| 159 | m_springMass = invMass + m_gamma; |
| 160 | if (m_springMass > 0.0f) |
| 161 | { |
| 162 | m_springMass = 1.0f / m_springMass; |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | else |
| 167 | { |
| 168 | m_springImpulse = 0.0f; |
| 169 | } |
| 170 | |
| 171 | // Rotational motor |
| 172 | if (m_enableMotor) |
| 173 | { |
| 174 | m_motorMass = iA + iB; |
| 175 | if (m_motorMass > 0.0f) |
| 176 | { |
| 177 | m_motorMass = 1.0f / m_motorMass; |
| 178 | } |
| 179 | } |
| 180 | else |
| 181 | { |
| 182 | m_motorMass = 0.0f; |
| 183 | m_motorImpulse = 0.0f; |
| 184 | } |
| 185 | |
| 186 | if (data.step.warmStarting) |
| 187 | { |
| 188 | // Account for variable time step. |
| 189 | m_impulse *= data.step.dtRatio; |
| 190 | m_springImpulse *= data.step.dtRatio; |
| 191 | m_motorImpulse *= data.step.dtRatio; |
| 192 | |
| 193 | b2Vec2 P = m_impulse * m_ay + m_springImpulse * m_ax; |
| 194 | float32 LA = m_impulse * m_sAy + m_springImpulse * m_sAx + m_motorImpulse; |
| 195 | float32 LB = m_impulse * m_sBy + m_springImpulse * m_sBx + m_motorImpulse; |
| 196 | |
| 197 | vA -= m_invMassA * P; |
| 198 | wA -= m_invIA * LA; |
| 199 | |
| 200 | vB += m_invMassB * P; |
| 201 | wB += m_invIB * LB; |
| 202 | } |
| 203 | else |
| 204 | { |
| 205 | m_impulse = 0.0f; |
| 206 | m_springImpulse = 0.0f; |
| 207 | m_motorImpulse = 0.0f; |
| 208 | } |
| 209 | |
| 210 | data.velocities[m_indexA].v = vA; |
| 211 | data.velocities[m_indexA].w = wA; |
| 212 | data.velocities[m_indexB].v = vB; |
| 213 | data.velocities[m_indexB].w = wB; |
| 214 | } |
| 215 | |
| 216 | void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data) |
| 217 | { |
| 218 | float32 mA = m_invMassA, mB = m_invMassB; |
| 219 | float32 iA = m_invIA, iB = m_invIB; |
| 220 | |
| 221 | b2Vec2 vA = data.velocities[m_indexA].v; |
| 222 | float32 wA = data.velocities[m_indexA].w; |
| 223 | b2Vec2 vB = data.velocities[m_indexB].v; |
| 224 | float32 wB = data.velocities[m_indexB].w; |
| 225 | |
| 226 | // Solve spring constraint |
| 227 | { |
| 228 | float32 Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA; |
| 229 | float32 impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse); |
| 230 | m_springImpulse += impulse; |
| 231 | |
| 232 | b2Vec2 P = impulse * m_ax; |
| 233 | float32 LA = impulse * m_sAx; |
| 234 | float32 LB = impulse * m_sBx; |
| 235 | |
| 236 | vA -= mA * P; |
| 237 | wA -= iA * LA; |
| 238 | |
| 239 | vB += mB * P; |
| 240 | wB += iB * LB; |
| 241 | } |
| 242 | |
| 243 | // Solve rotational motor constraint |
| 244 | { |
| 245 | float32 Cdot = wB - wA - m_motorSpeed; |
| 246 | float32 impulse = -m_motorMass * Cdot; |
| 247 | |
| 248 | float32 oldImpulse = m_motorImpulse; |
| 249 | float32 maxImpulse = data.step.dt * m_maxMotorTorque; |
| 250 | m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); |
| 251 | impulse = m_motorImpulse - oldImpulse; |
| 252 | |
| 253 | wA -= iA * impulse; |
| 254 | wB += iB * impulse; |
| 255 | } |
| 256 | |
| 257 | // Solve point to line constraint |
| 258 | { |
| 259 | float32 Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA; |
| 260 | float32 impulse = -m_mass * Cdot; |
| 261 | m_impulse += impulse; |
| 262 | |
| 263 | b2Vec2 P = impulse * m_ay; |
| 264 | float32 LA = impulse * m_sAy; |
| 265 | float32 LB = impulse * m_sBy; |
| 266 | |
| 267 | vA -= mA * P; |
| 268 | wA -= iA * LA; |
| 269 | |
| 270 | vB += mB * P; |
| 271 | wB += iB * LB; |
| 272 | } |
| 273 | |
| 274 | data.velocities[m_indexA].v = vA; |
| 275 | data.velocities[m_indexA].w = wA; |
| 276 | data.velocities[m_indexB].v = vB; |
| 277 | data.velocities[m_indexB].w = wB; |
| 278 | } |
| 279 | |
| 280 | bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data) |
| 281 | { |
| 282 | b2Vec2 cA = data.positions[m_indexA].c; |
| 283 | float32 aA = data.positions[m_indexA].a; |
| 284 | b2Vec2 cB = data.positions[m_indexB].c; |
| 285 | float32 aB = data.positions[m_indexB].a; |
| 286 | |
| 287 | b2Rot qA(aA), qB(aB); |
| 288 | |
| 289 | b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); |
| 290 | b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); |
| 291 | b2Vec2 d = (cB - cA) + rB - rA; |
| 292 | |
| 293 | b2Vec2 ay = b2Mul(qA, m_localYAxisA); |
| 294 | |
| 295 | float32 sAy = b2Cross(d + rA, ay); |
| 296 | float32 sBy = b2Cross(rB, ay); |
| 297 | |
| 298 | float32 C = b2Dot(d, ay); |
| 299 | |
| 300 | float32 k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy; |
| 301 | |
| 302 | float32 impulse; |
| 303 | if (k != 0.0f) |
| 304 | { |
| 305 | impulse = - C / k; |
| 306 | } |
| 307 | else |
| 308 | { |
| 309 | impulse = 0.0f; |
| 310 | } |
| 311 | |
| 312 | b2Vec2 P = impulse * ay; |
| 313 | float32 LA = impulse * sAy; |
| 314 | float32 LB = impulse * sBy; |
| 315 | |
| 316 | cA -= m_invMassA * P; |
| 317 | aA -= m_invIA * LA; |
| 318 | cB += m_invMassB * P; |
| 319 | aB += m_invIB * LB; |
| 320 | |
| 321 | data.positions[m_indexA].c = cA; |
| 322 | data.positions[m_indexA].a = aA; |
| 323 | data.positions[m_indexB].c = cB; |
| 324 | data.positions[m_indexB].a = aB; |
| 325 | |
| 326 | return b2Abs(C) <= b2_linearSlop; |
| 327 | } |
| 328 | |
| 329 | b2Vec2 b2WheelJoint::GetAnchorA() const |
| 330 | { |
| 331 | return m_bodyA->GetWorldPoint(m_localAnchorA); |
| 332 | } |
| 333 | |
| 334 | b2Vec2 b2WheelJoint::GetAnchorB() const |
| 335 | { |
| 336 | return m_bodyB->GetWorldPoint(m_localAnchorB); |
| 337 | } |
| 338 | |
| 339 | b2Vec2 b2WheelJoint::GetReactionForce(float32 inv_dt) const |
| 340 | { |
| 341 | return inv_dt * (m_impulse * m_ay + m_springImpulse * m_ax); |
| 342 | } |
| 343 | |
| 344 | float32 b2WheelJoint::GetReactionTorque(float32 inv_dt) const |
| 345 | { |
| 346 | return inv_dt * m_motorImpulse; |
| 347 | } |
| 348 | |
| 349 | float32 b2WheelJoint::GetJointTranslation() const |
| 350 | { |
| 351 | b2Body* bA = m_bodyA; |
| 352 | b2Body* bB = m_bodyB; |
| 353 | |
| 354 | b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA); |
| 355 | b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB); |
| 356 | b2Vec2 d = pB - pA; |
| 357 | b2Vec2 axis = bA->GetWorldVector(m_localXAxisA); |
| 358 | |
| 359 | float32 translation = b2Dot(d, axis); |
| 360 | return translation; |
| 361 | } |
| 362 | |
| 363 | float32 b2WheelJoint::GetJointSpeed() const |
| 364 | { |
| 365 | float32 wA = m_bodyA->m_angularVelocity; |
| 366 | float32 wB = m_bodyB->m_angularVelocity; |
| 367 | return wB - wA; |
| 368 | } |
| 369 | |
| 370 | bool b2WheelJoint::IsMotorEnabled() const |
| 371 | { |
| 372 | return m_enableMotor; |
| 373 | } |
| 374 | |
| 375 | void b2WheelJoint::EnableMotor(bool flag) |
| 376 | { |
| 377 | m_bodyA->SetAwake(true); |
| 378 | m_bodyB->SetAwake(true); |
| 379 | m_enableMotor = flag; |
| 380 | } |
| 381 | |
| 382 | void b2WheelJoint::SetMotorSpeed(float32 speed) |
| 383 | { |
| 384 | m_bodyA->SetAwake(true); |
| 385 | m_bodyB->SetAwake(true); |
| 386 | m_motorSpeed = speed; |
| 387 | } |
| 388 | |
| 389 | void b2WheelJoint::SetMaxMotorTorque(float32 torque) |
| 390 | { |
| 391 | m_bodyA->SetAwake(true); |
| 392 | m_bodyB->SetAwake(true); |
| 393 | m_maxMotorTorque = torque; |
| 394 | } |
| 395 | |
| 396 | float32 b2WheelJoint::GetMotorTorque(float32 inv_dt) const |
| 397 | { |
| 398 | return inv_dt * m_motorImpulse; |
| 399 | } |
| 400 | |
| 401 | void b2WheelJoint::Dump() |
| 402 | { |
| 403 | int32 indexA = m_bodyA->m_islandIndex; |
| 404 | int32 indexB = m_bodyB->m_islandIndex; |
| 405 | |
| 406 | b2Log(" b2WheelJointDef jd;\n" ); |
| 407 | b2Log(" jd.bodyA = bodies[%d];\n" , indexA); |
| 408 | b2Log(" jd.bodyB = bodies[%d];\n" , indexB); |
| 409 | b2Log(" jd.collideConnected = bool(%d);\n" , m_collideConnected); |
| 410 | b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n" , m_localAnchorA.x, m_localAnchorA.y); |
| 411 | b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n" , m_localAnchorB.x, m_localAnchorB.y); |
| 412 | b2Log(" jd.localAxisA.Set(%.15lef, %.15lef);\n" , m_localXAxisA.x, m_localXAxisA.y); |
| 413 | b2Log(" jd.enableMotor = bool(%d);\n" , m_enableMotor); |
| 414 | b2Log(" jd.motorSpeed = %.15lef;\n" , m_motorSpeed); |
| 415 | b2Log(" jd.maxMotorTorque = %.15lef;\n" , m_maxMotorTorque); |
| 416 | b2Log(" jd.frequencyHz = %.15lef;\n" , m_frequencyHz); |
| 417 | b2Log(" jd.dampingRatio = %.15lef;\n" , m_dampingRatio); |
| 418 | b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n" , m_index); |
| 419 | } |
| 420 | |