| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 7 | // |
| 8 | // This Source Code Form is subject to the terms of the Mozilla |
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 11 | |
| 12 | |
| 13 | #ifndef EIGEN_PRODUCTEVALUATORS_H |
| 14 | #define EIGEN_PRODUCTEVALUATORS_H |
| 15 | |
| 16 | namespace Eigen { |
| 17 | |
| 18 | namespace internal { |
| 19 | |
| 20 | /** \internal |
| 21 | * Evaluator of a product expression. |
| 22 | * Since products require special treatments to handle all possible cases, |
| 23 | * we simply deffer the evaluation logic to a product_evaluator class |
| 24 | * which offers more partial specialization possibilities. |
| 25 | * |
| 26 | * \sa class product_evaluator |
| 27 | */ |
| 28 | template<typename Lhs, typename Rhs, int Options> |
| 29 | struct evaluator<Product<Lhs, Rhs, Options> > |
| 30 | : public product_evaluator<Product<Lhs, Rhs, Options> > |
| 31 | { |
| 32 | typedef Product<Lhs, Rhs, Options> XprType; |
| 33 | typedef product_evaluator<XprType> Base; |
| 34 | |
| 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} |
| 36 | }; |
| 37 | |
| 38 | // Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B" |
| 39 | // TODO we should apply that rule only if that's really helpful |
| 40 | template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1> |
| 41 | struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>, |
| 42 | const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, |
| 43 | const Product<Lhs, Rhs, DefaultProduct> > > |
| 44 | { |
| 45 | static const bool value = true; |
| 46 | }; |
| 47 | template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1> |
| 48 | struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>, |
| 49 | const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, |
| 50 | const Product<Lhs, Rhs, DefaultProduct> > > |
| 51 | : public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > |
| 52 | { |
| 53 | typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>, |
| 54 | const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, |
| 55 | const Product<Lhs, Rhs, DefaultProduct> > XprType; |
| 56 | typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base; |
| 57 | |
| 58 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) |
| 59 | : Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs()) |
| 60 | {} |
| 61 | }; |
| 62 | |
| 63 | |
| 64 | template<typename Lhs, typename Rhs, int DiagIndex> |
| 65 | struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> > |
| 66 | : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > |
| 67 | { |
| 68 | typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType; |
| 69 | typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base; |
| 70 | |
| 71 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) |
| 72 | : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>( |
| 73 | Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()), |
| 74 | xpr.index() )) |
| 75 | {} |
| 76 | }; |
| 77 | |
| 78 | |
| 79 | // Helper class to perform a matrix product with the destination at hand. |
| 80 | // Depending on the sizes of the factors, there are different evaluation strategies |
| 81 | // as controlled by internal::product_type. |
| 82 | template< typename Lhs, typename Rhs, |
| 83 | typename LhsShape = typename evaluator_traits<Lhs>::Shape, |
| 84 | typename RhsShape = typename evaluator_traits<Rhs>::Shape, |
| 85 | int ProductType = internal::product_type<Lhs,Rhs>::value> |
| 86 | struct generic_product_impl; |
| 87 | |
| 88 | template<typename Lhs, typename Rhs> |
| 89 | struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > { |
| 90 | static const bool value = true; |
| 91 | }; |
| 92 | |
| 93 | // This is the default evaluator implementation for products: |
| 94 | // It creates a temporary and call generic_product_impl |
| 95 | template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape> |
| 96 | struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape> |
| 97 | : public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject> |
| 98 | { |
| 99 | typedef Product<Lhs, Rhs, Options> XprType; |
| 100 | typedef typename XprType::PlainObject PlainObject; |
| 101 | typedef evaluator<PlainObject> Base; |
| 102 | enum { |
| 103 | Flags = Base::Flags | EvalBeforeNestingBit |
| 104 | }; |
| 105 | |
| 106 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| 107 | explicit product_evaluator(const XprType& xpr) |
| 108 | : m_result(xpr.rows(), xpr.cols()) |
| 109 | { |
| 110 | ::new (static_cast<Base*>(this)) Base(m_result); |
| 111 | |
| 112 | // FIXME shall we handle nested_eval here?, |
| 113 | // if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.) |
| 114 | // typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested; |
| 115 | // typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested; |
| 116 | // typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned; |
| 117 | // typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned; |
| 118 | // |
| 119 | // const LhsNested lhs(xpr.lhs()); |
| 120 | // const RhsNested rhs(xpr.rhs()); |
| 121 | // |
| 122 | // generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs); |
| 123 | |
| 124 | generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs()); |
| 125 | } |
| 126 | |
| 127 | protected: |
| 128 | PlainObject m_result; |
| 129 | }; |
| 130 | |
| 131 | // The following three shortcuts are enabled only if the scalar types match excatly. |
| 132 | // TODO: we could enable them for different scalar types when the product is not vectorized. |
| 133 | |
| 134 | // Dense = Product |
| 135 | template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> |
| 136 | struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense, |
| 137 | typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> |
| 138 | { |
| 139 | typedef Product<Lhs,Rhs,Options> SrcXprType; |
| 140 | static EIGEN_STRONG_INLINE |
| 141 | void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &) |
| 142 | { |
| 143 | Index dstRows = src.rows(); |
| 144 | Index dstCols = src.cols(); |
| 145 | if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) |
| 146 | dst.resize(dstRows, dstCols); |
| 147 | // FIXME shall we handle nested_eval here? |
| 148 | generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs()); |
| 149 | } |
| 150 | }; |
| 151 | |
| 152 | // Dense += Product |
| 153 | template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> |
| 154 | struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense, |
| 155 | typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> |
| 156 | { |
| 157 | typedef Product<Lhs,Rhs,Options> SrcXprType; |
| 158 | static EIGEN_STRONG_INLINE |
| 159 | void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &) |
| 160 | { |
| 161 | eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); |
| 162 | // FIXME shall we handle nested_eval here? |
| 163 | generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs()); |
| 164 | } |
| 165 | }; |
| 166 | |
| 167 | // Dense -= Product |
| 168 | template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> |
| 169 | struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense, |
| 170 | typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> |
| 171 | { |
| 172 | typedef Product<Lhs,Rhs,Options> SrcXprType; |
| 173 | static EIGEN_STRONG_INLINE |
| 174 | void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &) |
| 175 | { |
| 176 | eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); |
| 177 | // FIXME shall we handle nested_eval here? |
| 178 | generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs()); |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | |
| 183 | // Dense ?= scalar * Product |
| 184 | // TODO we should apply that rule if that's really helpful |
| 185 | // for instance, this is not good for inner products |
| 186 | template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain> |
| 187 | struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>, |
| 188 | const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense> |
| 189 | { |
| 190 | typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, |
| 191 | const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>, |
| 192 | const Product<Lhs,Rhs,DefaultProduct> > SrcXprType; |
| 193 | static EIGEN_STRONG_INLINE |
| 194 | void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func) |
| 195 | { |
| 196 | call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func); |
| 197 | } |
| 198 | }; |
| 199 | |
| 200 | //---------------------------------------- |
| 201 | // Catch "Dense ?= xpr + Product<>" expression to save one temporary |
| 202 | // FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct |
| 203 | |
| 204 | template<typename OtherXpr, typename Lhs, typename Rhs> |
| 205 | struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr, |
| 206 | const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > { |
| 207 | static const bool value = true; |
| 208 | }; |
| 209 | |
| 210 | template<typename OtherXpr, typename Lhs, typename Rhs> |
| 211 | struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr, |
| 212 | const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > { |
| 213 | static const bool value = true; |
| 214 | }; |
| 215 | |
| 216 | template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2> |
| 217 | struct assignment_from_xpr_op_product |
| 218 | { |
| 219 | template<typename SrcXprType, typename InitialFunc> |
| 220 | static EIGEN_STRONG_INLINE |
| 221 | void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) |
| 222 | { |
| 223 | call_assignment_no_alias(dst, src.lhs(), Func1()); |
| 224 | call_assignment_no_alias(dst, src.rhs(), Func2()); |
| 225 | } |
| 226 | }; |
| 227 | |
| 228 | #define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \ |
| 229 | template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \ |
| 230 | struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \ |
| 231 | const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \ |
| 232 | : assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \ |
| 233 | {} |
| 234 | |
| 235 | EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op,add_assign_op); |
| 236 | EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op); |
| 237 | EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op); |
| 238 | |
| 239 | EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op,sub_assign_op); |
| 240 | EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op); |
| 241 | EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op); |
| 242 | |
| 243 | //---------------------------------------- |
| 244 | |
| 245 | template<typename Lhs, typename Rhs> |
| 246 | struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct> |
| 247 | { |
| 248 | template<typename Dst> |
| 249 | static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 250 | { |
| 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); |
| 252 | } |
| 253 | |
| 254 | template<typename Dst> |
| 255 | static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 256 | { |
| 257 | dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum(); |
| 258 | } |
| 259 | |
| 260 | template<typename Dst> |
| 261 | static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 262 | { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); } |
| 263 | }; |
| 264 | |
| 265 | |
| 266 | /*********************************************************************** |
| 267 | * Implementation of outer dense * dense vector product |
| 268 | ***********************************************************************/ |
| 269 | |
| 270 | // Column major result |
| 271 | template<typename Dst, typename Lhs, typename Rhs, typename Func> |
| 272 | void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&) |
| 273 | { |
| 274 | evaluator<Rhs> rhsEval(rhs); |
| 275 | typename nested_eval<Lhs,Rhs::SizeAtCompileTime>::type actual_lhs(lhs); |
| 276 | // FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored |
| 277 | // FIXME not very good if rhs is real and lhs complex while alpha is real too |
| 278 | const Index cols = dst.cols(); |
| 279 | for (Index j=0; j<cols; ++j) |
| 280 | func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs); |
| 281 | } |
| 282 | |
| 283 | // Row major result |
| 284 | template<typename Dst, typename Lhs, typename Rhs, typename Func> |
| 285 | void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&) |
| 286 | { |
| 287 | evaluator<Lhs> lhsEval(lhs); |
| 288 | typename nested_eval<Rhs,Lhs::SizeAtCompileTime>::type actual_rhs(rhs); |
| 289 | // FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored |
| 290 | // FIXME not very good if lhs is real and rhs complex while alpha is real too |
| 291 | const Index rows = dst.rows(); |
| 292 | for (Index i=0; i<rows; ++i) |
| 293 | func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs); |
| 294 | } |
| 295 | |
| 296 | template<typename Lhs, typename Rhs> |
| 297 | struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct> |
| 298 | { |
| 299 | template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {}; |
| 300 | typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| 301 | |
| 302 | // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose |
| 303 | struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } }; |
| 304 | struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } }; |
| 305 | struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } }; |
| 306 | struct adds { |
| 307 | Scalar m_scale; |
| 308 | explicit adds(const Scalar& s) : m_scale(s) {} |
| 309 | template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { |
| 310 | dst.const_cast_derived() += m_scale * src; |
| 311 | } |
| 312 | }; |
| 313 | |
| 314 | template<typename Dst> |
| 315 | static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 316 | { |
| 317 | internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>()); |
| 318 | } |
| 319 | |
| 320 | template<typename Dst> |
| 321 | static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 322 | { |
| 323 | internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>()); |
| 324 | } |
| 325 | |
| 326 | template<typename Dst> |
| 327 | static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 328 | { |
| 329 | internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>()); |
| 330 | } |
| 331 | |
| 332 | template<typename Dst> |
| 333 | static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) |
| 334 | { |
| 335 | internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>()); |
| 336 | } |
| 337 | |
| 338 | }; |
| 339 | |
| 340 | |
| 341 | // This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo |
| 342 | template<typename Lhs, typename Rhs, typename Derived> |
| 343 | struct generic_product_impl_base |
| 344 | { |
| 345 | typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| 346 | |
| 347 | template<typename Dst> |
| 348 | static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } |
| 350 | |
| 351 | template<typename Dst> |
| 352 | static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 353 | { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); } |
| 354 | |
| 355 | template<typename Dst> |
| 356 | static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 357 | { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); } |
| 358 | |
| 359 | template<typename Dst> |
| 360 | static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) |
| 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } |
| 362 | |
| 363 | }; |
| 364 | |
| 365 | template<typename Lhs, typename Rhs> |
| 366 | struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> |
| 367 | : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> > |
| 368 | { |
| 369 | typedef typename nested_eval<Lhs,1>::type LhsNested; |
| 370 | typedef typename nested_eval<Rhs,1>::type RhsNested; |
| 371 | typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| 372 | enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight }; |
| 373 | typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType; |
| 374 | |
| 375 | template<typename Dest> |
| 376 | static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) |
| 377 | { |
| 378 | LhsNested actual_lhs(lhs); |
| 379 | RhsNested actual_rhs(rhs); |
| 380 | internal::gemv_dense_selector<Side, |
| 381 | (int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor, |
| 382 | bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess) |
| 383 | >::run(actual_lhs, actual_rhs, dst, alpha); |
| 384 | } |
| 385 | }; |
| 386 | |
| 387 | template<typename Lhs, typename Rhs> |
| 388 | struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> |
| 389 | { |
| 390 | typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| 391 | |
| 392 | template<typename Dst> |
| 393 | static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 394 | { |
| 395 | // Same as: dst.noalias() = lhs.lazyProduct(rhs); |
| 396 | // but easier on the compiler side |
| 397 | call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>()); |
| 398 | } |
| 399 | |
| 400 | template<typename Dst> |
| 401 | static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 402 | { |
| 403 | // dst.noalias() += lhs.lazyProduct(rhs); |
| 404 | call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>()); |
| 405 | } |
| 406 | |
| 407 | template<typename Dst> |
| 408 | static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) |
| 409 | { |
| 410 | // dst.noalias() -= lhs.lazyProduct(rhs); |
| 411 | call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>()); |
| 412 | } |
| 413 | |
| 414 | // template<typename Dst> |
| 415 | // static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) |
| 416 | // { dst.noalias() += alpha * lhs.lazyProduct(rhs); } |
| 417 | }; |
| 418 | |
| 419 | // This specialization enforces the use of a coefficient-based evaluation strategy |
| 420 | template<typename Lhs, typename Rhs> |
| 421 | struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode> |
| 422 | : generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {}; |
| 423 | |
| 424 | // Case 2: Evaluate coeff by coeff |
| 425 | // |
| 426 | // This is mostly taken from CoeffBasedProduct.h |
| 427 | // The main difference is that we add an extra argument to the etor_product_*_impl::run() function |
| 428 | // for the inner dimension of the product, because evaluator object do not know their size. |
| 429 | |
| 430 | template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar> |
| 431 | struct etor_product_coeff_impl; |
| 432 | |
| 433 | template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 434 | struct etor_product_packet_impl; |
| 435 | |
| 436 | template<typename Lhs, typename Rhs, int ProductTag> |
| 437 | struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape> |
| 438 | : evaluator_base<Product<Lhs, Rhs, LazyProduct> > |
| 439 | { |
| 440 | typedef Product<Lhs, Rhs, LazyProduct> XprType; |
| 441 | typedef typename XprType::Scalar Scalar; |
| 442 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
| 443 | |
| 444 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| 445 | explicit product_evaluator(const XprType& xpr) |
| 446 | : m_lhs(xpr.lhs()), |
| 447 | m_rhs(xpr.rhs()), |
| 448 | m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that! |
| 449 | m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed, |
| 450 | // or perhaps declare them on the fly on the packet method... We have experiment to check what's best. |
| 451 | m_innerDim(xpr.lhs().cols()) |
| 452 | { |
| 453 | EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost); |
| 454 | EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost); |
| 455 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| 456 | #if 0 |
| 457 | std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n" ; |
| 458 | std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n" ; |
| 459 | std::cerr << "LhsAlignment= " << LhsAlignment << "\n" ; |
| 460 | std::cerr << "RhsAlignment= " << RhsAlignment << "\n" ; |
| 461 | std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n" ; |
| 462 | std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n" ; |
| 463 | std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n" ; |
| 464 | std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n" ; |
| 465 | std::cerr << "Alignment= " << Alignment << "\n" ; |
| 466 | std::cerr << "Flags= " << Flags << "\n" ; |
| 467 | #endif |
| 468 | } |
| 469 | |
| 470 | // Everything below here is taken from CoeffBasedProduct.h |
| 471 | |
| 472 | typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested; |
| 473 | typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested; |
| 474 | |
| 475 | typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned; |
| 476 | typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned; |
| 477 | |
| 478 | typedef evaluator<LhsNestedCleaned> LhsEtorType; |
| 479 | typedef evaluator<RhsNestedCleaned> RhsEtorType; |
| 480 | |
| 481 | enum { |
| 482 | RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime, |
| 483 | ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime, |
| 484 | InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime), |
| 485 | MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime, |
| 486 | MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime |
| 487 | }; |
| 488 | |
| 489 | typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType; |
| 490 | typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType; |
| 491 | |
| 492 | enum { |
| 493 | |
| 494 | LhsCoeffReadCost = LhsEtorType::CoeffReadCost, |
| 495 | RhsCoeffReadCost = RhsEtorType::CoeffReadCost, |
| 496 | CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost |
| 497 | : InnerSize == Dynamic ? HugeCost |
| 498 | : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost) |
| 499 | + (InnerSize - 1) * NumTraits<Scalar>::AddCost, |
| 500 | |
| 501 | Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT, |
| 502 | |
| 503 | LhsFlags = LhsEtorType::Flags, |
| 504 | RhsFlags = RhsEtorType::Flags, |
| 505 | |
| 506 | LhsRowMajor = LhsFlags & RowMajorBit, |
| 507 | RhsRowMajor = RhsFlags & RowMajorBit, |
| 508 | |
| 509 | LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size, |
| 510 | RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size, |
| 511 | |
| 512 | // Here, we don't care about alignment larger than the usable packet size. |
| 513 | LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))), |
| 514 | RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))), |
| 515 | |
| 516 | SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value, |
| 517 | |
| 518 | CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1), |
| 519 | CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1), |
| 520 | |
| 521 | EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 |
| 522 | : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 |
| 523 | : (bool(RhsRowMajor) && !CanVectorizeLhs), |
| 524 | |
| 525 | Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit) |
| 526 | | (EvalToRowMajor ? RowMajorBit : 0) |
| 527 | // TODO enable vectorization for mixed types |
| 528 | | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0) |
| 529 | | (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0), |
| 530 | |
| 531 | LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)), |
| 532 | RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)), |
| 533 | |
| 534 | Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment) |
| 535 | : bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment) |
| 536 | : 0, |
| 537 | |
| 538 | /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside |
| 539 | * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner |
| 540 | * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect |
| 541 | * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI. |
| 542 | */ |
| 543 | CanVectorizeInner = SameType |
| 544 | && LhsRowMajor |
| 545 | && (!RhsRowMajor) |
| 546 | && (LhsFlags & RhsFlags & ActualPacketAccessBit) |
| 547 | && (InnerSize % packet_traits<Scalar>::size == 0) |
| 548 | }; |
| 549 | |
| 550 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const |
| 551 | { |
| 552 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); |
| 553 | } |
| 554 | |
| 555 | /* Allow index-based non-packet access. It is impossible though to allow index-based packed access, |
| 556 | * which is why we don't set the LinearAccessBit. |
| 557 | * TODO: this seems possible when the result is a vector |
| 558 | */ |
| 559 | EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const |
| 560 | { |
| 561 | const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index; |
| 562 | const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0; |
| 563 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); |
| 564 | } |
| 565 | |
| 566 | template<int LoadMode, typename PacketType> |
| 567 | const PacketType packet(Index row, Index col) const |
| 568 | { |
| 569 | PacketType res; |
| 570 | typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor, |
| 571 | Unroll ? int(InnerSize) : Dynamic, |
| 572 | LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl; |
| 573 | PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res); |
| 574 | return res; |
| 575 | } |
| 576 | |
| 577 | template<int LoadMode, typename PacketType> |
| 578 | const PacketType packet(Index index) const |
| 579 | { |
| 580 | const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index; |
| 581 | const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0; |
| 582 | return packet<LoadMode,PacketType>(row,col); |
| 583 | } |
| 584 | |
| 585 | protected: |
| 586 | typename internal::add_const_on_value_type<LhsNested>::type m_lhs; |
| 587 | typename internal::add_const_on_value_type<RhsNested>::type m_rhs; |
| 588 | |
| 589 | LhsEtorType m_lhsImpl; |
| 590 | RhsEtorType m_rhsImpl; |
| 591 | |
| 592 | // TODO: Get rid of m_innerDim if known at compile time |
| 593 | Index m_innerDim; |
| 594 | }; |
| 595 | |
| 596 | template<typename Lhs, typename Rhs> |
| 597 | struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape> |
| 598 | : product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape> |
| 599 | { |
| 600 | typedef Product<Lhs, Rhs, DefaultProduct> XprType; |
| 601 | typedef Product<Lhs, Rhs, LazyProduct> BaseProduct; |
| 602 | typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base; |
| 603 | enum { |
| 604 | Flags = Base::Flags | EvalBeforeNestingBit |
| 605 | }; |
| 606 | EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) |
| 607 | : Base(BaseProduct(xpr.lhs(),xpr.rhs())) |
| 608 | {} |
| 609 | }; |
| 610 | |
| 611 | /**************************************** |
| 612 | *** Coeff based product, Packet path *** |
| 613 | ****************************************/ |
| 614 | |
| 615 | template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 616 | struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode> |
| 617 | { |
| 618 | static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res) |
| 619 | { |
| 620 | etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res); |
| 621 | res = pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res); |
| 622 | } |
| 623 | }; |
| 624 | |
| 625 | template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 626 | struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode> |
| 627 | { |
| 628 | static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res) |
| 629 | { |
| 630 | etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res); |
| 631 | res = pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res); |
| 632 | } |
| 633 | }; |
| 634 | |
| 635 | template<typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 636 | struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode> |
| 637 | { |
| 638 | static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res) |
| 639 | { |
| 640 | res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col)); |
| 641 | } |
| 642 | }; |
| 643 | |
| 644 | template<typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 645 | struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode> |
| 646 | { |
| 647 | static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res) |
| 648 | { |
| 649 | res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col))); |
| 650 | } |
| 651 | }; |
| 652 | |
| 653 | template<typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 654 | struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode> |
| 655 | { |
| 656 | static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res) |
| 657 | { |
| 658 | res = pset1<Packet>(typename unpacket_traits<Packet>::type(0)); |
| 659 | } |
| 660 | }; |
| 661 | |
| 662 | template<typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 663 | struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode> |
| 664 | { |
| 665 | static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res) |
| 666 | { |
| 667 | res = pset1<Packet>(typename unpacket_traits<Packet>::type(0)); |
| 668 | } |
| 669 | }; |
| 670 | |
| 671 | template<typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 672 | struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode> |
| 673 | { |
| 674 | static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res) |
| 675 | { |
| 676 | res = pset1<Packet>(typename unpacket_traits<Packet>::type(0)); |
| 677 | for(Index i = 0; i < innerDim; ++i) |
| 678 | res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res); |
| 679 | } |
| 680 | }; |
| 681 | |
| 682 | template<typename Lhs, typename Rhs, typename Packet, int LoadMode> |
| 683 | struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode> |
| 684 | { |
| 685 | static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res) |
| 686 | { |
| 687 | res = pset1<Packet>(typename unpacket_traits<Packet>::type(0)); |
| 688 | for(Index i = 0; i < innerDim; ++i) |
| 689 | res = pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res); |
| 690 | } |
| 691 | }; |
| 692 | |
| 693 | |
| 694 | /*************************************************************************** |
| 695 | * Triangular products |
| 696 | ***************************************************************************/ |
| 697 | template<int Mode, bool LhsIsTriangular, |
| 698 | typename Lhs, bool LhsIsVector, |
| 699 | typename Rhs, bool RhsIsVector> |
| 700 | struct triangular_product_impl; |
| 701 | |
| 702 | template<typename Lhs, typename Rhs, int ProductTag> |
| 703 | struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> |
| 704 | : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> > |
| 705 | { |
| 706 | typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| 707 | |
| 708 | template<typename Dest> |
| 709 | static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) |
| 710 | { |
| 711 | triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1> |
| 712 | ::run(dst, lhs.nestedExpression(), rhs, alpha); |
| 713 | } |
| 714 | }; |
| 715 | |
| 716 | template<typename Lhs, typename Rhs, int ProductTag> |
| 717 | struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> |
| 718 | : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> > |
| 719 | { |
| 720 | typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| 721 | |
| 722 | template<typename Dest> |
| 723 | static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) |
| 724 | { |
| 725 | triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha); |
| 726 | } |
| 727 | }; |
| 728 | |
| 729 | |
| 730 | /*************************************************************************** |
| 731 | * SelfAdjoint products |
| 732 | ***************************************************************************/ |
| 733 | template <typename Lhs, int LhsMode, bool LhsIsVector, |
| 734 | typename Rhs, int RhsMode, bool RhsIsVector> |
| 735 | struct selfadjoint_product_impl; |
| 736 | |
| 737 | template<typename Lhs, typename Rhs, int ProductTag> |
| 738 | struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> |
| 739 | : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> > |
| 740 | { |
| 741 | typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| 742 | |
| 743 | template<typename Dest> |
| 744 | static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) |
| 745 | { |
| 746 | selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha); |
| 747 | } |
| 748 | }; |
| 749 | |
| 750 | template<typename Lhs, typename Rhs, int ProductTag> |
| 751 | struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> |
| 752 | : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> > |
| 753 | { |
| 754 | typedef typename Product<Lhs,Rhs>::Scalar Scalar; |
| 755 | |
| 756 | template<typename Dest> |
| 757 | static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) |
| 758 | { |
| 759 | selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha); |
| 760 | } |
| 761 | }; |
| 762 | |
| 763 | |
| 764 | /*************************************************************************** |
| 765 | * Diagonal products |
| 766 | ***************************************************************************/ |
| 767 | |
| 768 | template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder> |
| 769 | struct diagonal_product_evaluator_base |
| 770 | : evaluator_base<Derived> |
| 771 | { |
| 772 | typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar; |
| 773 | public: |
| 774 | enum { |
| 775 | CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost, |
| 776 | |
| 777 | MatrixFlags = evaluator<MatrixType>::Flags, |
| 778 | DiagFlags = evaluator<DiagonalType>::Flags, |
| 779 | _StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor, |
| 780 | _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft) |
| 781 | ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)), |
| 782 | _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value, |
| 783 | // FIXME currently we need same types, but in the future the next rule should be the one |
| 784 | //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))), |
| 785 | _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))), |
| 786 | _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0, |
| 787 | Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0), |
| 788 | Alignment = evaluator<MatrixType>::Alignment, |
| 789 | |
| 790 | AsScalarProduct = (DiagonalType::SizeAtCompileTime==1) |
| 791 | || (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft) |
| 792 | || (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight) |
| 793 | }; |
| 794 | |
| 795 | diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag) |
| 796 | : m_diagImpl(diag), m_matImpl(mat) |
| 797 | { |
| 798 | EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost); |
| 799 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| 800 | } |
| 801 | |
| 802 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const |
| 803 | { |
| 804 | if(AsScalarProduct) |
| 805 | return m_diagImpl.coeff(0) * m_matImpl.coeff(idx); |
| 806 | else |
| 807 | return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx); |
| 808 | } |
| 809 | |
| 810 | protected: |
| 811 | template<int LoadMode,typename PacketType> |
| 812 | EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const |
| 813 | { |
| 814 | return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col), |
| 815 | internal::pset1<PacketType>(m_diagImpl.coeff(id))); |
| 816 | } |
| 817 | |
| 818 | template<int LoadMode,typename PacketType> |
| 819 | EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const |
| 820 | { |
| 821 | enum { |
| 822 | InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime, |
| 823 | DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!! |
| 824 | }; |
| 825 | return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col), |
| 826 | m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id)); |
| 827 | } |
| 828 | |
| 829 | evaluator<DiagonalType> m_diagImpl; |
| 830 | evaluator<MatrixType> m_matImpl; |
| 831 | }; |
| 832 | |
| 833 | // diagonal * dense |
| 834 | template<typename Lhs, typename Rhs, int ProductKind, int ProductTag> |
| 835 | struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape> |
| 836 | : diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> |
| 837 | { |
| 838 | typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base; |
| 839 | using Base::m_diagImpl; |
| 840 | using Base::m_matImpl; |
| 841 | using Base::coeff; |
| 842 | typedef typename Base::Scalar Scalar; |
| 843 | |
| 844 | typedef Product<Lhs, Rhs, ProductKind> XprType; |
| 845 | typedef typename XprType::PlainObject PlainObject; |
| 846 | |
| 847 | enum { |
| 848 | StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor |
| 849 | }; |
| 850 | |
| 851 | EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) |
| 852 | : Base(xpr.rhs(), xpr.lhs().diagonal()) |
| 853 | { |
| 854 | } |
| 855 | |
| 856 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const |
| 857 | { |
| 858 | return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col); |
| 859 | } |
| 860 | |
| 861 | #ifndef __CUDACC__ |
| 862 | template<int LoadMode,typename PacketType> |
| 863 | EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const |
| 864 | { |
| 865 | // FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case. |
| 866 | // See also similar calls below. |
| 867 | return this->template packet_impl<LoadMode,PacketType>(row,col, row, |
| 868 | typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type()); |
| 869 | } |
| 870 | |
| 871 | template<int LoadMode,typename PacketType> |
| 872 | EIGEN_STRONG_INLINE PacketType packet(Index idx) const |
| 873 | { |
| 874 | return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); |
| 875 | } |
| 876 | #endif |
| 877 | }; |
| 878 | |
| 879 | // dense * diagonal |
| 880 | template<typename Lhs, typename Rhs, int ProductKind, int ProductTag> |
| 881 | struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape> |
| 882 | : diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> |
| 883 | { |
| 884 | typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base; |
| 885 | using Base::m_diagImpl; |
| 886 | using Base::m_matImpl; |
| 887 | using Base::coeff; |
| 888 | typedef typename Base::Scalar Scalar; |
| 889 | |
| 890 | typedef Product<Lhs, Rhs, ProductKind> XprType; |
| 891 | typedef typename XprType::PlainObject PlainObject; |
| 892 | |
| 893 | enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor }; |
| 894 | |
| 895 | EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) |
| 896 | : Base(xpr.lhs(), xpr.rhs().diagonal()) |
| 897 | { |
| 898 | } |
| 899 | |
| 900 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const |
| 901 | { |
| 902 | return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col); |
| 903 | } |
| 904 | |
| 905 | #ifndef __CUDACC__ |
| 906 | template<int LoadMode,typename PacketType> |
| 907 | EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const |
| 908 | { |
| 909 | return this->template packet_impl<LoadMode,PacketType>(row,col, col, |
| 910 | typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type()); |
| 911 | } |
| 912 | |
| 913 | template<int LoadMode,typename PacketType> |
| 914 | EIGEN_STRONG_INLINE PacketType packet(Index idx) const |
| 915 | { |
| 916 | return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); |
| 917 | } |
| 918 | #endif |
| 919 | }; |
| 920 | |
| 921 | /*************************************************************************** |
| 922 | * Products with permutation matrices |
| 923 | ***************************************************************************/ |
| 924 | |
| 925 | /** \internal |
| 926 | * \class permutation_matrix_product |
| 927 | * Internal helper class implementing the product between a permutation matrix and a matrix. |
| 928 | * This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h |
| 929 | */ |
| 930 | template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape> |
| 931 | struct permutation_matrix_product; |
| 932 | |
| 933 | template<typename ExpressionType, int Side, bool Transposed> |
| 934 | struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> |
| 935 | { |
| 936 | typedef typename nested_eval<ExpressionType, 1>::type MatrixType; |
| 937 | typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; |
| 938 | |
| 939 | template<typename Dest, typename PermutationType> |
| 940 | static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) |
| 941 | { |
| 942 | MatrixType mat(xpr); |
| 943 | const Index n = Side==OnTheLeft ? mat.rows() : mat.cols(); |
| 944 | // FIXME we need an is_same for expression that is not sensitive to constness. For instance |
| 945 | // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true. |
| 946 | //if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat)) |
| 947 | if(is_same_dense(dst, mat)) |
| 948 | { |
| 949 | // apply the permutation inplace |
| 950 | Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size()); |
| 951 | mask.fill(false); |
| 952 | Index r = 0; |
| 953 | while(r < perm.size()) |
| 954 | { |
| 955 | // search for the next seed |
| 956 | while(r<perm.size() && mask[r]) r++; |
| 957 | if(r>=perm.size()) |
| 958 | break; |
| 959 | // we got one, let's follow it until we are back to the seed |
| 960 | Index k0 = r++; |
| 961 | Index kPrev = k0; |
| 962 | mask.coeffRef(k0) = true; |
| 963 | for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k)) |
| 964 | { |
| 965 | Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k) |
| 966 | .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> |
| 967 | (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); |
| 968 | |
| 969 | mask.coeffRef(k) = true; |
| 970 | kPrev = k; |
| 971 | } |
| 972 | } |
| 973 | } |
| 974 | else |
| 975 | { |
| 976 | for(Index i = 0; i < n; ++i) |
| 977 | { |
| 978 | Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> |
| 979 | (dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i) |
| 980 | |
| 981 | = |
| 982 | |
| 983 | Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime> |
| 984 | (mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i); |
| 985 | } |
| 986 | } |
| 987 | } |
| 988 | }; |
| 989 | |
| 990 | template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> |
| 991 | struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag> |
| 992 | { |
| 993 | template<typename Dest> |
| 994 | static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) |
| 995 | { |
| 996 | permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs); |
| 997 | } |
| 998 | }; |
| 999 | |
| 1000 | template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> |
| 1001 | struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag> |
| 1002 | { |
| 1003 | template<typename Dest> |
| 1004 | static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) |
| 1005 | { |
| 1006 | permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs); |
| 1007 | } |
| 1008 | }; |
| 1009 | |
| 1010 | template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> |
| 1011 | struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag> |
| 1012 | { |
| 1013 | template<typename Dest> |
| 1014 | static void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs) |
| 1015 | { |
| 1016 | permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs); |
| 1017 | } |
| 1018 | }; |
| 1019 | |
| 1020 | template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> |
| 1021 | struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag> |
| 1022 | { |
| 1023 | template<typename Dest> |
| 1024 | static void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs) |
| 1025 | { |
| 1026 | permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs); |
| 1027 | } |
| 1028 | }; |
| 1029 | |
| 1030 | |
| 1031 | /*************************************************************************** |
| 1032 | * Products with transpositions matrices |
| 1033 | ***************************************************************************/ |
| 1034 | |
| 1035 | // FIXME could we unify Transpositions and Permutation into a single "shape"?? |
| 1036 | |
| 1037 | /** \internal |
| 1038 | * \class transposition_matrix_product |
| 1039 | * Internal helper class implementing the product between a permutation matrix and a matrix. |
| 1040 | */ |
| 1041 | template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape> |
| 1042 | struct transposition_matrix_product |
| 1043 | { |
| 1044 | typedef typename nested_eval<ExpressionType, 1>::type MatrixType; |
| 1045 | typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; |
| 1046 | |
| 1047 | template<typename Dest, typename TranspositionType> |
| 1048 | static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr) |
| 1049 | { |
| 1050 | MatrixType mat(xpr); |
| 1051 | typedef typename TranspositionType::StorageIndex StorageIndex; |
| 1052 | const Index size = tr.size(); |
| 1053 | StorageIndex j = 0; |
| 1054 | |
| 1055 | if(!is_same_dense(dst,mat)) |
| 1056 | dst = mat; |
| 1057 | |
| 1058 | for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k) |
| 1059 | if(Index(j=tr.coeff(k))!=k) |
| 1060 | { |
| 1061 | if(Side==OnTheLeft) dst.row(k).swap(dst.row(j)); |
| 1062 | else if(Side==OnTheRight) dst.col(k).swap(dst.col(j)); |
| 1063 | } |
| 1064 | } |
| 1065 | }; |
| 1066 | |
| 1067 | template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> |
| 1068 | struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag> |
| 1069 | { |
| 1070 | template<typename Dest> |
| 1071 | static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) |
| 1072 | { |
| 1073 | transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs); |
| 1074 | } |
| 1075 | }; |
| 1076 | |
| 1077 | template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> |
| 1078 | struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag> |
| 1079 | { |
| 1080 | template<typename Dest> |
| 1081 | static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) |
| 1082 | { |
| 1083 | transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs); |
| 1084 | } |
| 1085 | }; |
| 1086 | |
| 1087 | |
| 1088 | template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> |
| 1089 | struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag> |
| 1090 | { |
| 1091 | template<typename Dest> |
| 1092 | static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs) |
| 1093 | { |
| 1094 | transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs); |
| 1095 | } |
| 1096 | }; |
| 1097 | |
| 1098 | template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape> |
| 1099 | struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag> |
| 1100 | { |
| 1101 | template<typename Dest> |
| 1102 | static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs) |
| 1103 | { |
| 1104 | transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs); |
| 1105 | } |
| 1106 | }; |
| 1107 | |
| 1108 | } // end namespace internal |
| 1109 | |
| 1110 | } // end namespace Eigen |
| 1111 | |
| 1112 | #endif // EIGEN_PRODUCT_EVALUATORS_H |
| 1113 | |