| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 5 | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> | 
|---|
| 6 | // | 
|---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 10 |  | 
|---|
| 11 | #ifndef EIGEN_QUATERNION_H | 
|---|
| 12 | #define EIGEN_QUATERNION_H | 
|---|
| 13 | namespace Eigen { | 
|---|
| 14 |  | 
|---|
| 15 |  | 
|---|
| 16 | /*************************************************************************** | 
|---|
| 17 | * Definition of QuaternionBase<Derived> | 
|---|
| 18 | * The implementation is at the end of the file | 
|---|
| 19 | ***************************************************************************/ | 
|---|
| 20 |  | 
|---|
| 21 | namespace internal { | 
|---|
| 22 | template<typename Other, | 
|---|
| 23 | int OtherRows=Other::RowsAtCompileTime, | 
|---|
| 24 | int OtherCols=Other::ColsAtCompileTime> | 
|---|
| 25 | struct quaternionbase_assign_impl; | 
|---|
| 26 | } | 
|---|
| 27 |  | 
|---|
| 28 | /** \geometry_module \ingroup Geometry_Module | 
|---|
| 29 | * \class QuaternionBase | 
|---|
| 30 | * \brief Base class for quaternion expressions | 
|---|
| 31 | * \tparam Derived derived type (CRTP) | 
|---|
| 32 | * \sa class Quaternion | 
|---|
| 33 | */ | 
|---|
| 34 | template<class Derived> | 
|---|
| 35 | class QuaternionBase : public RotationBase<Derived, 3> | 
|---|
| 36 | { | 
|---|
| 37 | public: | 
|---|
| 38 | typedef RotationBase<Derived, 3> Base; | 
|---|
| 39 |  | 
|---|
| 40 | using Base::operator*; | 
|---|
| 41 | using Base::derived; | 
|---|
| 42 |  | 
|---|
| 43 | typedef typename internal::traits<Derived>::Scalar Scalar; | 
|---|
| 44 | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|---|
| 45 | typedef typename internal::traits<Derived>::Coefficients Coefficients; | 
|---|
| 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | 
|---|
| 47 | typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit), | 
|---|
| 48 | Scalar&, CoeffReturnType>::type NonConstCoeffReturnType; | 
|---|
| 49 |  | 
|---|
| 50 |  | 
|---|
| 51 | enum { | 
|---|
| 52 | Flags = Eigen::internal::traits<Derived>::Flags | 
|---|
| 53 | }; | 
|---|
| 54 |  | 
|---|
| 55 | // typedef typename Matrix<Scalar,4,1> Coefficients; | 
|---|
| 56 | /** the type of a 3D vector */ | 
|---|
| 57 | typedef Matrix<Scalar,3,1> Vector3; | 
|---|
| 58 | /** the equivalent rotation matrix type */ | 
|---|
| 59 | typedef Matrix<Scalar,3,3> Matrix3; | 
|---|
| 60 | /** the equivalent angle-axis type */ | 
|---|
| 61 | typedef AngleAxis<Scalar> AngleAxisType; | 
|---|
| 62 |  | 
|---|
| 63 |  | 
|---|
| 64 |  | 
|---|
| 65 | /** \returns the \c x coefficient */ | 
|---|
| 66 | EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } | 
|---|
| 67 | /** \returns the \c y coefficient */ | 
|---|
| 68 | EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } | 
|---|
| 69 | /** \returns the \c z coefficient */ | 
|---|
| 70 | EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } | 
|---|
| 71 | /** \returns the \c w coefficient */ | 
|---|
| 72 | EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } | 
|---|
| 73 |  | 
|---|
| 74 | /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ | 
|---|
| 75 | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } | 
|---|
| 76 | /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ | 
|---|
| 77 | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } | 
|---|
| 78 | /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ | 
|---|
| 79 | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } | 
|---|
| 80 | /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ | 
|---|
| 81 | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } | 
|---|
| 82 |  | 
|---|
| 83 | /** \returns a read-only vector expression of the imaginary part (x,y,z) */ | 
|---|
| 84 | EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); } | 
|---|
| 85 |  | 
|---|
| 86 | /** \returns a vector expression of the imaginary part (x,y,z) */ | 
|---|
| 87 | EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); } | 
|---|
| 88 |  | 
|---|
| 89 | /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ | 
|---|
| 90 | EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); } | 
|---|
| 91 |  | 
|---|
| 92 | /** \returns a vector expression of the coefficients (x,y,z,w) */ | 
|---|
| 93 | EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } | 
|---|
| 94 |  | 
|---|
| 95 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); | 
|---|
| 96 | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); | 
|---|
| 97 |  | 
|---|
| 98 | // disabled this copy operator as it is giving very strange compilation errors when compiling | 
|---|
| 99 | // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's | 
|---|
| 100 | // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase | 
|---|
| 101 | // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. | 
|---|
| 102 | //  Derived& operator=(const QuaternionBase& other) | 
|---|
| 103 | //  { return operator=<Derived>(other); } | 
|---|
| 104 |  | 
|---|
| 105 | EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); | 
|---|
| 106 | template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m); | 
|---|
| 107 |  | 
|---|
| 108 | /** \returns a quaternion representing an identity rotation | 
|---|
| 109 | * \sa MatrixBase::Identity() | 
|---|
| 110 | */ | 
|---|
| 111 | EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); } | 
|---|
| 112 |  | 
|---|
| 113 | /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() | 
|---|
| 114 | */ | 
|---|
| 115 | EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; } | 
|---|
| 116 |  | 
|---|
| 117 | /** \returns the squared norm of the quaternion's coefficients | 
|---|
| 118 | * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() | 
|---|
| 119 | */ | 
|---|
| 120 | EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } | 
|---|
| 121 |  | 
|---|
| 122 | /** \returns the norm of the quaternion's coefficients | 
|---|
| 123 | * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() | 
|---|
| 124 | */ | 
|---|
| 125 | EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } | 
|---|
| 126 |  | 
|---|
| 127 | /** Normalizes the quaternion \c *this | 
|---|
| 128 | * \sa normalized(), MatrixBase::normalize() */ | 
|---|
| 129 | EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } | 
|---|
| 130 | /** \returns a normalized copy of \c *this | 
|---|
| 131 | * \sa normalize(), MatrixBase::normalized() */ | 
|---|
| 132 | EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } | 
|---|
| 133 |  | 
|---|
| 134 | /** \returns the dot product of \c *this and \a other | 
|---|
| 135 | * Geometrically speaking, the dot product of two unit quaternions | 
|---|
| 136 | * corresponds to the cosine of half the angle between the two rotations. | 
|---|
| 137 | * \sa angularDistance() | 
|---|
| 138 | */ | 
|---|
| 139 | template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); } | 
|---|
| 140 |  | 
|---|
| 141 | template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; | 
|---|
| 142 |  | 
|---|
| 143 | /** \returns an equivalent 3x3 rotation matrix */ | 
|---|
| 144 | EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const; | 
|---|
| 145 |  | 
|---|
| 146 | /** \returns the quaternion which transform \a a into \a b through a rotation */ | 
|---|
| 147 | template<typename Derived1, typename Derived2> | 
|---|
| 148 | EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); | 
|---|
| 149 |  | 
|---|
| 150 | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; | 
|---|
| 151 | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q); | 
|---|
| 152 |  | 
|---|
| 153 | /** \returns the quaternion describing the inverse rotation */ | 
|---|
| 154 | EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const; | 
|---|
| 155 |  | 
|---|
| 156 | /** \returns the conjugated quaternion */ | 
|---|
| 157 | EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const; | 
|---|
| 158 |  | 
|---|
| 159 | template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const; | 
|---|
| 160 |  | 
|---|
| 161 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|---|
| 162 | * determined by \a prec. | 
|---|
| 163 | * | 
|---|
| 164 | * \sa MatrixBase::isApprox() */ | 
|---|
| 165 | template<class OtherDerived> | 
|---|
| 166 | EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const | 
|---|
| 167 | { return coeffs().isApprox(other.coeffs(), prec); } | 
|---|
| 168 |  | 
|---|
| 169 | /** return the result vector of \a v through the rotation*/ | 
|---|
| 170 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; | 
|---|
| 171 |  | 
|---|
| 172 | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|---|
| 173 | * | 
|---|
| 174 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|---|
| 175 | * then this function smartly returns a const reference to \c *this. | 
|---|
| 176 | */ | 
|---|
| 177 | template<typename NewScalarType> | 
|---|
| 178 | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const | 
|---|
| 179 | { | 
|---|
| 180 | return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived()); | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | #ifdef EIGEN_QUATERNIONBASE_PLUGIN | 
|---|
| 184 | # include EIGEN_QUATERNIONBASE_PLUGIN | 
|---|
| 185 | #endif | 
|---|
| 186 | }; | 
|---|
| 187 |  | 
|---|
| 188 | /*************************************************************************** | 
|---|
| 189 | * Definition/implementation of Quaternion<Scalar> | 
|---|
| 190 | ***************************************************************************/ | 
|---|
| 191 |  | 
|---|
| 192 | /** \geometry_module \ingroup Geometry_Module | 
|---|
| 193 | * | 
|---|
| 194 | * \class Quaternion | 
|---|
| 195 | * | 
|---|
| 196 | * \brief The quaternion class used to represent 3D orientations and rotations | 
|---|
| 197 | * | 
|---|
| 198 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients | 
|---|
| 199 | * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. | 
|---|
| 200 | * | 
|---|
| 201 | * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of | 
|---|
| 202 | * orientations and rotations of objects in three dimensions. Compared to other representations | 
|---|
| 203 | * like Euler angles or 3x3 matrices, quaternions offer the following advantages: | 
|---|
| 204 | * \li \b compact storage (4 scalars) | 
|---|
| 205 | * \li \b efficient to compose (28 flops), | 
|---|
| 206 | * \li \b stable spherical interpolation | 
|---|
| 207 | * | 
|---|
| 208 | * The following two typedefs are provided for convenience: | 
|---|
| 209 | * \li \c Quaternionf for \c float | 
|---|
| 210 | * \li \c Quaterniond for \c double | 
|---|
| 211 | * | 
|---|
| 212 | * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. | 
|---|
| 213 | * | 
|---|
| 214 | * \sa  class AngleAxis, class Transform | 
|---|
| 215 | */ | 
|---|
| 216 |  | 
|---|
| 217 | namespace internal { | 
|---|
| 218 | template<typename _Scalar,int _Options> | 
|---|
| 219 | struct traits<Quaternion<_Scalar,_Options> > | 
|---|
| 220 | { | 
|---|
| 221 | typedef Quaternion<_Scalar,_Options> PlainObject; | 
|---|
| 222 | typedef _Scalar Scalar; | 
|---|
| 223 | typedef Matrix<_Scalar,4,1,_Options> Coefficients; | 
|---|
| 224 | enum{ | 
|---|
| 225 | Alignment = internal::traits<Coefficients>::Alignment, | 
|---|
| 226 | Flags = LvalueBit | 
|---|
| 227 | }; | 
|---|
| 228 | }; | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | template<typename _Scalar, int _Options> | 
|---|
| 232 | class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> > | 
|---|
| 233 | { | 
|---|
| 234 | public: | 
|---|
| 235 | typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base; | 
|---|
| 236 | enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 }; | 
|---|
| 237 |  | 
|---|
| 238 | typedef _Scalar Scalar; | 
|---|
| 239 |  | 
|---|
| 240 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) | 
|---|
| 241 | using Base::operator*=; | 
|---|
| 242 |  | 
|---|
| 243 | typedef typename internal::traits<Quaternion>::Coefficients Coefficients; | 
|---|
| 244 | typedef typename Base::AngleAxisType AngleAxisType; | 
|---|
| 245 |  | 
|---|
| 246 | /** Default constructor leaving the quaternion uninitialized. */ | 
|---|
| 247 | EIGEN_DEVICE_FUNC inline Quaternion() {} | 
|---|
| 248 |  | 
|---|
| 249 | /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from | 
|---|
| 250 | * its four coefficients \a w, \a x, \a y and \a z. | 
|---|
| 251 | * | 
|---|
| 252 | * \warning Note the order of the arguments: the real \a w coefficient first, | 
|---|
| 253 | * while internally the coefficients are stored in the following order: | 
|---|
| 254 | * [\c x, \c y, \c z, \c w] | 
|---|
| 255 | */ | 
|---|
| 256 | EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} | 
|---|
| 257 |  | 
|---|
| 258 | /** Constructs and initialize a quaternion from the array data */ | 
|---|
| 259 | EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} | 
|---|
| 260 |  | 
|---|
| 261 | /** Copy constructor */ | 
|---|
| 262 | template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); } | 
|---|
| 263 |  | 
|---|
| 264 | /** Constructs and initializes a quaternion from the angle-axis \a aa */ | 
|---|
| 265 | EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } | 
|---|
| 266 |  | 
|---|
| 267 | /** Constructs and initializes a quaternion from either: | 
|---|
| 268 | *  - a rotation matrix expression, | 
|---|
| 269 | *  - a 4D vector expression representing quaternion coefficients. | 
|---|
| 270 | */ | 
|---|
| 271 | template<typename Derived> | 
|---|
| 272 | EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } | 
|---|
| 273 |  | 
|---|
| 274 | /** Explicit copy constructor with scalar conversion */ | 
|---|
| 275 | template<typename OtherScalar, int OtherOptions> | 
|---|
| 276 | EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) | 
|---|
| 277 | { m_coeffs = other.coeffs().template cast<Scalar>(); } | 
|---|
| 278 |  | 
|---|
| 279 | EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); | 
|---|
| 280 |  | 
|---|
| 281 | template<typename Derived1, typename Derived2> | 
|---|
| 282 | EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); | 
|---|
| 283 |  | 
|---|
| 284 | EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;} | 
|---|
| 285 | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} | 
|---|
| 286 |  | 
|---|
| 287 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) | 
|---|
| 288 |  | 
|---|
| 289 | #ifdef EIGEN_QUATERNION_PLUGIN | 
|---|
| 290 | # include EIGEN_QUATERNION_PLUGIN | 
|---|
| 291 | #endif | 
|---|
| 292 |  | 
|---|
| 293 | protected: | 
|---|
| 294 | Coefficients m_coeffs; | 
|---|
| 295 |  | 
|---|
| 296 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|---|
| 297 | static EIGEN_STRONG_INLINE void _check_template_params() | 
|---|
| 298 | { | 
|---|
| 299 | EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, | 
|---|
| 300 | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|---|
| 301 | } | 
|---|
| 302 | #endif | 
|---|
| 303 | }; | 
|---|
| 304 |  | 
|---|
| 305 | /** \ingroup Geometry_Module | 
|---|
| 306 | * single precision quaternion type */ | 
|---|
| 307 | typedef Quaternion<float> Quaternionf; | 
|---|
| 308 | /** \ingroup Geometry_Module | 
|---|
| 309 | * double precision quaternion type */ | 
|---|
| 310 | typedef Quaternion<double> Quaterniond; | 
|---|
| 311 |  | 
|---|
| 312 | /*************************************************************************** | 
|---|
| 313 | * Specialization of Map<Quaternion<Scalar>> | 
|---|
| 314 | ***************************************************************************/ | 
|---|
| 315 |  | 
|---|
| 316 | namespace internal { | 
|---|
| 317 | template<typename _Scalar, int _Options> | 
|---|
| 318 | struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > | 
|---|
| 319 | { | 
|---|
| 320 | typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients; | 
|---|
| 321 | }; | 
|---|
| 322 | } | 
|---|
| 323 |  | 
|---|
| 324 | namespace internal { | 
|---|
| 325 | template<typename _Scalar, int _Options> | 
|---|
| 326 | struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > | 
|---|
| 327 | { | 
|---|
| 328 | typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients; | 
|---|
| 329 | typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase; | 
|---|
| 330 | enum { | 
|---|
| 331 | Flags = TraitsBase::Flags & ~LvalueBit | 
|---|
| 332 | }; | 
|---|
| 333 | }; | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | /** \ingroup Geometry_Module | 
|---|
| 337 | * \brief Quaternion expression mapping a constant memory buffer | 
|---|
| 338 | * | 
|---|
| 339 | * \tparam _Scalar the type of the Quaternion coefficients | 
|---|
| 340 | * \tparam _Options see class Map | 
|---|
| 341 | * | 
|---|
| 342 | * This is a specialization of class Map for Quaternion. This class allows to view | 
|---|
| 343 | * a 4 scalar memory buffer as an Eigen's Quaternion object. | 
|---|
| 344 | * | 
|---|
| 345 | * \sa class Map, class Quaternion, class QuaternionBase | 
|---|
| 346 | */ | 
|---|
| 347 | template<typename _Scalar, int _Options> | 
|---|
| 348 | class Map<const Quaternion<_Scalar>, _Options > | 
|---|
| 349 | : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > | 
|---|
| 350 | { | 
|---|
| 351 | public: | 
|---|
| 352 | typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base; | 
|---|
| 353 |  | 
|---|
| 354 | typedef _Scalar Scalar; | 
|---|
| 355 | typedef typename internal::traits<Map>::Coefficients Coefficients; | 
|---|
| 356 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) | 
|---|
| 357 | using Base::operator*=; | 
|---|
| 358 |  | 
|---|
| 359 | /** Constructs a Mapped Quaternion object from the pointer \a coeffs | 
|---|
| 360 | * | 
|---|
| 361 | * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: | 
|---|
| 362 | * \code *coeffs == {x, y, z, w} \endcode | 
|---|
| 363 | * | 
|---|
| 364 | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ | 
|---|
| 365 | EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} | 
|---|
| 366 |  | 
|---|
| 367 | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} | 
|---|
| 368 |  | 
|---|
| 369 | protected: | 
|---|
| 370 | const Coefficients m_coeffs; | 
|---|
| 371 | }; | 
|---|
| 372 |  | 
|---|
| 373 | /** \ingroup Geometry_Module | 
|---|
| 374 | * \brief Expression of a quaternion from a memory buffer | 
|---|
| 375 | * | 
|---|
| 376 | * \tparam _Scalar the type of the Quaternion coefficients | 
|---|
| 377 | * \tparam _Options see class Map | 
|---|
| 378 | * | 
|---|
| 379 | * This is a specialization of class Map for Quaternion. This class allows to view | 
|---|
| 380 | * a 4 scalar memory buffer as an Eigen's  Quaternion object. | 
|---|
| 381 | * | 
|---|
| 382 | * \sa class Map, class Quaternion, class QuaternionBase | 
|---|
| 383 | */ | 
|---|
| 384 | template<typename _Scalar, int _Options> | 
|---|
| 385 | class Map<Quaternion<_Scalar>, _Options > | 
|---|
| 386 | : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> > | 
|---|
| 387 | { | 
|---|
| 388 | public: | 
|---|
| 389 | typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base; | 
|---|
| 390 |  | 
|---|
| 391 | typedef _Scalar Scalar; | 
|---|
| 392 | typedef typename internal::traits<Map>::Coefficients Coefficients; | 
|---|
| 393 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) | 
|---|
| 394 | using Base::operator*=; | 
|---|
| 395 |  | 
|---|
| 396 | /** Constructs a Mapped Quaternion object from the pointer \a coeffs | 
|---|
| 397 | * | 
|---|
| 398 | * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: | 
|---|
| 399 | * \code *coeffs == {x, y, z, w} \endcode | 
|---|
| 400 | * | 
|---|
| 401 | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ | 
|---|
| 402 | EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} | 
|---|
| 403 |  | 
|---|
| 404 | EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } | 
|---|
| 405 | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } | 
|---|
| 406 |  | 
|---|
| 407 | protected: | 
|---|
| 408 | Coefficients m_coeffs; | 
|---|
| 409 | }; | 
|---|
| 410 |  | 
|---|
| 411 | /** \ingroup Geometry_Module | 
|---|
| 412 | * Map an unaligned array of single precision scalars as a quaternion */ | 
|---|
| 413 | typedef Map<Quaternion<float>, 0>         QuaternionMapf; | 
|---|
| 414 | /** \ingroup Geometry_Module | 
|---|
| 415 | * Map an unaligned array of double precision scalars as a quaternion */ | 
|---|
| 416 | typedef Map<Quaternion<double>, 0>        QuaternionMapd; | 
|---|
| 417 | /** \ingroup Geometry_Module | 
|---|
| 418 | * Map a 16-byte aligned array of single precision scalars as a quaternion */ | 
|---|
| 419 | typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf; | 
|---|
| 420 | /** \ingroup Geometry_Module | 
|---|
| 421 | * Map a 16-byte aligned array of double precision scalars as a quaternion */ | 
|---|
| 422 | typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd; | 
|---|
| 423 |  | 
|---|
| 424 | /*************************************************************************** | 
|---|
| 425 | * Implementation of QuaternionBase methods | 
|---|
| 426 | ***************************************************************************/ | 
|---|
| 427 |  | 
|---|
| 428 | // Generic Quaternion * Quaternion product | 
|---|
| 429 | // This product can be specialized for a given architecture via the Arch template argument. | 
|---|
| 430 | namespace internal { | 
|---|
| 431 | template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product | 
|---|
| 432 | { | 
|---|
| 433 | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ | 
|---|
| 434 | return Quaternion<Scalar> | 
|---|
| 435 | ( | 
|---|
| 436 | a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), | 
|---|
| 437 | a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), | 
|---|
| 438 | a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), | 
|---|
| 439 | a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() | 
|---|
| 440 | ); | 
|---|
| 441 | } | 
|---|
| 442 | }; | 
|---|
| 443 | } | 
|---|
| 444 |  | 
|---|
| 445 | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ | 
|---|
| 446 | template <class Derived> | 
|---|
| 447 | template <class OtherDerived> | 
|---|
| 448 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> | 
|---|
| 449 | QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const | 
|---|
| 450 | { | 
|---|
| 451 | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), | 
|---|
| 452 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|---|
| 453 | return internal::quat_product<Architecture::Target, Derived, OtherDerived, | 
|---|
| 454 | typename internal::traits<Derived>::Scalar>::run(*this, other); | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 | /** \sa operator*(Quaternion) */ | 
|---|
| 458 | template <class Derived> | 
|---|
| 459 | template <class OtherDerived> | 
|---|
| 460 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) | 
|---|
| 461 | { | 
|---|
| 462 | derived() = derived() * other.derived(); | 
|---|
| 463 | return derived(); | 
|---|
| 464 | } | 
|---|
| 465 |  | 
|---|
| 466 | /** Rotation of a vector by a quaternion. | 
|---|
| 467 | * \remarks If the quaternion is used to rotate several points (>1) | 
|---|
| 468 | * then it is much more efficient to first convert it to a 3x3 Matrix. | 
|---|
| 469 | * Comparison of the operation cost for n transformations: | 
|---|
| 470 | *   - Quaternion2:    30n | 
|---|
| 471 | *   - Via a Matrix3: 24 + 15n | 
|---|
| 472 | */ | 
|---|
| 473 | template <class Derived> | 
|---|
| 474 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 | 
|---|
| 475 | QuaternionBase<Derived>::_transformVector(const Vector3& v) const | 
|---|
| 476 | { | 
|---|
| 477 | // Note that this algorithm comes from the optimization by hand | 
|---|
| 478 | // of the conversion to a Matrix followed by a Matrix/Vector product. | 
|---|
| 479 | // It appears to be much faster than the common algorithm found | 
|---|
| 480 | // in the literature (30 versus 39 flops). It also requires two | 
|---|
| 481 | // Vector3 as temporaries. | 
|---|
| 482 | Vector3 uv = this->vec().cross(v); | 
|---|
| 483 | uv += uv; | 
|---|
| 484 | return v + this->w() * uv + this->vec().cross(uv); | 
|---|
| 485 | } | 
|---|
| 486 |  | 
|---|
| 487 | template<class Derived> | 
|---|
| 488 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) | 
|---|
| 489 | { | 
|---|
| 490 | coeffs() = other.coeffs(); | 
|---|
| 491 | return derived(); | 
|---|
| 492 | } | 
|---|
| 493 |  | 
|---|
| 494 | template<class Derived> | 
|---|
| 495 | template<class OtherDerived> | 
|---|
| 496 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) | 
|---|
| 497 | { | 
|---|
| 498 | coeffs() = other.coeffs(); | 
|---|
| 499 | return derived(); | 
|---|
| 500 | } | 
|---|
| 501 |  | 
|---|
| 502 | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this | 
|---|
| 503 | */ | 
|---|
| 504 | template<class Derived> | 
|---|
| 505 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) | 
|---|
| 506 | { | 
|---|
| 507 | EIGEN_USING_STD_MATH(cos) | 
|---|
| 508 | EIGEN_USING_STD_MATH(sin) | 
|---|
| 509 | Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings | 
|---|
| 510 | this->w() = cos(ha); | 
|---|
| 511 | this->vec() = sin(ha) * aa.axis(); | 
|---|
| 512 | return derived(); | 
|---|
| 513 | } | 
|---|
| 514 |  | 
|---|
| 515 | /** Set \c *this from the expression \a xpr: | 
|---|
| 516 | *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion | 
|---|
| 517 | *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix | 
|---|
| 518 | *     and \a xpr is converted to a quaternion | 
|---|
| 519 | */ | 
|---|
| 520 |  | 
|---|
| 521 | template<class Derived> | 
|---|
| 522 | template<class MatrixDerived> | 
|---|
| 523 | EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) | 
|---|
| 524 | { | 
|---|
| 525 | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), | 
|---|
| 526 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|---|
| 527 | internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); | 
|---|
| 528 | return derived(); | 
|---|
| 529 | } | 
|---|
| 530 |  | 
|---|
| 531 | /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to | 
|---|
| 532 | * be normalized, otherwise the result is undefined. | 
|---|
| 533 | */ | 
|---|
| 534 | template<class Derived> | 
|---|
| 535 | EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3 | 
|---|
| 536 | QuaternionBase<Derived>::toRotationMatrix(void) const | 
|---|
| 537 | { | 
|---|
| 538 | // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) | 
|---|
| 539 | // if not inlined then the cost of the return by value is huge ~ +35%, | 
|---|
| 540 | // however, not inlining this function is an order of magnitude slower, so | 
|---|
| 541 | // it has to be inlined, and so the return by value is not an issue | 
|---|
| 542 | Matrix3 res; | 
|---|
| 543 |  | 
|---|
| 544 | const Scalar tx  = Scalar(2)*this->x(); | 
|---|
| 545 | const Scalar ty  = Scalar(2)*this->y(); | 
|---|
| 546 | const Scalar tz  = Scalar(2)*this->z(); | 
|---|
| 547 | const Scalar twx = tx*this->w(); | 
|---|
| 548 | const Scalar twy = ty*this->w(); | 
|---|
| 549 | const Scalar twz = tz*this->w(); | 
|---|
| 550 | const Scalar txx = tx*this->x(); | 
|---|
| 551 | const Scalar txy = ty*this->x(); | 
|---|
| 552 | const Scalar txz = tz*this->x(); | 
|---|
| 553 | const Scalar tyy = ty*this->y(); | 
|---|
| 554 | const Scalar tyz = tz*this->y(); | 
|---|
| 555 | const Scalar tzz = tz*this->z(); | 
|---|
| 556 |  | 
|---|
| 557 | res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); | 
|---|
| 558 | res.coeffRef(0,1) = txy-twz; | 
|---|
| 559 | res.coeffRef(0,2) = txz+twy; | 
|---|
| 560 | res.coeffRef(1,0) = txy+twz; | 
|---|
| 561 | res.coeffRef(1,1) = Scalar(1)-(txx+tzz); | 
|---|
| 562 | res.coeffRef(1,2) = tyz-twx; | 
|---|
| 563 | res.coeffRef(2,0) = txz-twy; | 
|---|
| 564 | res.coeffRef(2,1) = tyz+twx; | 
|---|
| 565 | res.coeffRef(2,2) = Scalar(1)-(txx+tyy); | 
|---|
| 566 |  | 
|---|
| 567 | return res; | 
|---|
| 568 | } | 
|---|
| 569 |  | 
|---|
| 570 | /** Sets \c *this to be a quaternion representing a rotation between | 
|---|
| 571 | * the two arbitrary vectors \a a and \a b. In other words, the built | 
|---|
| 572 | * rotation represent a rotation sending the line of direction \a a | 
|---|
| 573 | * to the line of direction \a b, both lines passing through the origin. | 
|---|
| 574 | * | 
|---|
| 575 | * \returns a reference to \c *this. | 
|---|
| 576 | * | 
|---|
| 577 | * Note that the two input vectors do \b not have to be normalized, and | 
|---|
| 578 | * do not need to have the same norm. | 
|---|
| 579 | */ | 
|---|
| 580 | template<class Derived> | 
|---|
| 581 | template<typename Derived1, typename Derived2> | 
|---|
| 582 | EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) | 
|---|
| 583 | { | 
|---|
| 584 | EIGEN_USING_STD_MATH(sqrt) | 
|---|
| 585 | Vector3 v0 = a.normalized(); | 
|---|
| 586 | Vector3 v1 = b.normalized(); | 
|---|
| 587 | Scalar c = v1.dot(v0); | 
|---|
| 588 |  | 
|---|
| 589 | // if dot == -1, vectors are nearly opposites | 
|---|
| 590 | // => accurately compute the rotation axis by computing the | 
|---|
| 591 | //    intersection of the two planes. This is done by solving: | 
|---|
| 592 | //       x^T v0 = 0 | 
|---|
| 593 | //       x^T v1 = 0 | 
|---|
| 594 | //    under the constraint: | 
|---|
| 595 | //       ||x|| = 1 | 
|---|
| 596 | //    which yields a singular value problem | 
|---|
| 597 | if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) | 
|---|
| 598 | { | 
|---|
| 599 | c = numext::maxi(c,Scalar(-1)); | 
|---|
| 600 | Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); | 
|---|
| 601 | JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); | 
|---|
| 602 | Vector3 axis = svd.matrixV().col(2); | 
|---|
| 603 |  | 
|---|
| 604 | Scalar w2 = (Scalar(1)+c)*Scalar(0.5); | 
|---|
| 605 | this->w() = sqrt(w2); | 
|---|
| 606 | this->vec() = axis * sqrt(Scalar(1) - w2); | 
|---|
| 607 | return derived(); | 
|---|
| 608 | } | 
|---|
| 609 | Vector3 axis = v0.cross(v1); | 
|---|
| 610 | Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); | 
|---|
| 611 | Scalar invs = Scalar(1)/s; | 
|---|
| 612 | this->vec() = axis * invs; | 
|---|
| 613 | this->w() = s * Scalar(0.5); | 
|---|
| 614 |  | 
|---|
| 615 | return derived(); | 
|---|
| 616 | } | 
|---|
| 617 |  | 
|---|
| 618 | /** \returns a random unit quaternion following a uniform distribution law on SO(3) | 
|---|
| 619 | * | 
|---|
| 620 | * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html | 
|---|
| 621 | */ | 
|---|
| 622 | template<typename Scalar, int Options> | 
|---|
| 623 | EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom() | 
|---|
| 624 | { | 
|---|
| 625 | EIGEN_USING_STD_MATH(sqrt) | 
|---|
| 626 | EIGEN_USING_STD_MATH(sin) | 
|---|
| 627 | EIGEN_USING_STD_MATH(cos) | 
|---|
| 628 | const Scalar u1 = internal::random<Scalar>(0, 1), | 
|---|
| 629 | u2 = internal::random<Scalar>(0, 2*EIGEN_PI), | 
|---|
| 630 | u3 = internal::random<Scalar>(0, 2*EIGEN_PI); | 
|---|
| 631 | const Scalar a = sqrt(1 - u1), | 
|---|
| 632 | b = sqrt(u1); | 
|---|
| 633 | return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); | 
|---|
| 634 | } | 
|---|
| 635 |  | 
|---|
| 636 |  | 
|---|
| 637 | /** Returns a quaternion representing a rotation between | 
|---|
| 638 | * the two arbitrary vectors \a a and \a b. In other words, the built | 
|---|
| 639 | * rotation represent a rotation sending the line of direction \a a | 
|---|
| 640 | * to the line of direction \a b, both lines passing through the origin. | 
|---|
| 641 | * | 
|---|
| 642 | * \returns resulting quaternion | 
|---|
| 643 | * | 
|---|
| 644 | * Note that the two input vectors do \b not have to be normalized, and | 
|---|
| 645 | * do not need to have the same norm. | 
|---|
| 646 | */ | 
|---|
| 647 | template<typename Scalar, int Options> | 
|---|
| 648 | template<typename Derived1, typename Derived2> | 
|---|
| 649 | EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) | 
|---|
| 650 | { | 
|---|
| 651 | Quaternion quat; | 
|---|
| 652 | quat.setFromTwoVectors(a, b); | 
|---|
| 653 | return quat; | 
|---|
| 654 | } | 
|---|
| 655 |  | 
|---|
| 656 |  | 
|---|
| 657 | /** \returns the multiplicative inverse of \c *this | 
|---|
| 658 | * Note that in most cases, i.e., if you simply want the opposite rotation, | 
|---|
| 659 | * and/or the quaternion is normalized, then it is enough to use the conjugate. | 
|---|
| 660 | * | 
|---|
| 661 | * \sa QuaternionBase::conjugate() | 
|---|
| 662 | */ | 
|---|
| 663 | template <class Derived> | 
|---|
| 664 | EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const | 
|---|
| 665 | { | 
|---|
| 666 | // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ?? | 
|---|
| 667 | Scalar n2 = this->squaredNorm(); | 
|---|
| 668 | if (n2 > Scalar(0)) | 
|---|
| 669 | return Quaternion<Scalar>(conjugate().coeffs() / n2); | 
|---|
| 670 | else | 
|---|
| 671 | { | 
|---|
| 672 | // return an invalid result to flag the error | 
|---|
| 673 | return Quaternion<Scalar>(Coefficients::Zero()); | 
|---|
| 674 | } | 
|---|
| 675 | } | 
|---|
| 676 |  | 
|---|
| 677 | // Generic conjugate of a Quaternion | 
|---|
| 678 | namespace internal { | 
|---|
| 679 | template<int Arch, class Derived, typename Scalar> struct quat_conj | 
|---|
| 680 | { | 
|---|
| 681 | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){ | 
|---|
| 682 | return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z()); | 
|---|
| 683 | } | 
|---|
| 684 | }; | 
|---|
| 685 | } | 
|---|
| 686 |  | 
|---|
| 687 | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse | 
|---|
| 688 | * if the quaternion is normalized. | 
|---|
| 689 | * The conjugate of a quaternion represents the opposite rotation. | 
|---|
| 690 | * | 
|---|
| 691 | * \sa Quaternion2::inverse() | 
|---|
| 692 | */ | 
|---|
| 693 | template <class Derived> | 
|---|
| 694 | EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> | 
|---|
| 695 | QuaternionBase<Derived>::conjugate() const | 
|---|
| 696 | { | 
|---|
| 697 | return internal::quat_conj<Architecture::Target, Derived, | 
|---|
| 698 | typename internal::traits<Derived>::Scalar>::run(*this); | 
|---|
| 699 |  | 
|---|
| 700 | } | 
|---|
| 701 |  | 
|---|
| 702 | /** \returns the angle (in radian) between two rotations | 
|---|
| 703 | * \sa dot() | 
|---|
| 704 | */ | 
|---|
| 705 | template <class Derived> | 
|---|
| 706 | template <class OtherDerived> | 
|---|
| 707 | EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar | 
|---|
| 708 | QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const | 
|---|
| 709 | { | 
|---|
| 710 | EIGEN_USING_STD_MATH(atan2) | 
|---|
| 711 | Quaternion<Scalar> d = (*this) * other.conjugate(); | 
|---|
| 712 | return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) ); | 
|---|
| 713 | } | 
|---|
| 714 |  | 
|---|
| 715 |  | 
|---|
| 716 |  | 
|---|
| 717 | /** \returns the spherical linear interpolation between the two quaternions | 
|---|
| 718 | * \c *this and \a other at the parameter \a t in [0;1]. | 
|---|
| 719 | * | 
|---|
| 720 | * This represents an interpolation for a constant motion between \c *this and \a other, | 
|---|
| 721 | * see also http://en.wikipedia.org/wiki/Slerp. | 
|---|
| 722 | */ | 
|---|
| 723 | template <class Derived> | 
|---|
| 724 | template <class OtherDerived> | 
|---|
| 725 | EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar> | 
|---|
| 726 | QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const | 
|---|
| 727 | { | 
|---|
| 728 | EIGEN_USING_STD_MATH(acos) | 
|---|
| 729 | EIGEN_USING_STD_MATH(sin) | 
|---|
| 730 | const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); | 
|---|
| 731 | Scalar d = this->dot(other); | 
|---|
| 732 | Scalar absD = numext::abs(d); | 
|---|
| 733 |  | 
|---|
| 734 | Scalar scale0; | 
|---|
| 735 | Scalar scale1; | 
|---|
| 736 |  | 
|---|
| 737 | if(absD>=one) | 
|---|
| 738 | { | 
|---|
| 739 | scale0 = Scalar(1) - t; | 
|---|
| 740 | scale1 = t; | 
|---|
| 741 | } | 
|---|
| 742 | else | 
|---|
| 743 | { | 
|---|
| 744 | // theta is the angle between the 2 quaternions | 
|---|
| 745 | Scalar theta = acos(absD); | 
|---|
| 746 | Scalar sinTheta = sin(theta); | 
|---|
| 747 |  | 
|---|
| 748 | scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; | 
|---|
| 749 | scale1 = sin( ( t * theta) ) / sinTheta; | 
|---|
| 750 | } | 
|---|
| 751 | if(d<Scalar(0)) scale1 = -scale1; | 
|---|
| 752 |  | 
|---|
| 753 | return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); | 
|---|
| 754 | } | 
|---|
| 755 |  | 
|---|
| 756 | namespace internal { | 
|---|
| 757 |  | 
|---|
| 758 | // set from a rotation matrix | 
|---|
| 759 | template<typename Other> | 
|---|
| 760 | struct quaternionbase_assign_impl<Other,3,3> | 
|---|
| 761 | { | 
|---|
| 762 | typedef typename Other::Scalar Scalar; | 
|---|
| 763 | template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat) | 
|---|
| 764 | { | 
|---|
| 765 | const typename internal::nested_eval<Other,2>::type mat(a_mat); | 
|---|
| 766 | EIGEN_USING_STD_MATH(sqrt) | 
|---|
| 767 | // This algorithm comes from  "Quaternion Calculus and Fast Animation", | 
|---|
| 768 | // Ken Shoemake, 1987 SIGGRAPH course notes | 
|---|
| 769 | Scalar t = mat.trace(); | 
|---|
| 770 | if (t > Scalar(0)) | 
|---|
| 771 | { | 
|---|
| 772 | t = sqrt(t + Scalar(1.0)); | 
|---|
| 773 | q.w() = Scalar(0.5)*t; | 
|---|
| 774 | t = Scalar(0.5)/t; | 
|---|
| 775 | q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; | 
|---|
| 776 | q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; | 
|---|
| 777 | q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; | 
|---|
| 778 | } | 
|---|
| 779 | else | 
|---|
| 780 | { | 
|---|
| 781 | Index i = 0; | 
|---|
| 782 | if (mat.coeff(1,1) > mat.coeff(0,0)) | 
|---|
| 783 | i = 1; | 
|---|
| 784 | if (mat.coeff(2,2) > mat.coeff(i,i)) | 
|---|
| 785 | i = 2; | 
|---|
| 786 | Index j = (i+1)%3; | 
|---|
| 787 | Index k = (j+1)%3; | 
|---|
| 788 |  | 
|---|
| 789 | t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); | 
|---|
| 790 | q.coeffs().coeffRef(i) = Scalar(0.5) * t; | 
|---|
| 791 | t = Scalar(0.5)/t; | 
|---|
| 792 | q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; | 
|---|
| 793 | q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; | 
|---|
| 794 | q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; | 
|---|
| 795 | } | 
|---|
| 796 | } | 
|---|
| 797 | }; | 
|---|
| 798 |  | 
|---|
| 799 | // set from a vector of coefficients assumed to be a quaternion | 
|---|
| 800 | template<typename Other> | 
|---|
| 801 | struct quaternionbase_assign_impl<Other,4,1> | 
|---|
| 802 | { | 
|---|
| 803 | typedef typename Other::Scalar Scalar; | 
|---|
| 804 | template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec) | 
|---|
| 805 | { | 
|---|
| 806 | q.coeffs() = vec; | 
|---|
| 807 | } | 
|---|
| 808 | }; | 
|---|
| 809 |  | 
|---|
| 810 | } // end namespace internal | 
|---|
| 811 |  | 
|---|
| 812 | } // end namespace Eigen | 
|---|
| 813 |  | 
|---|
| 814 | #endif // EIGEN_QUATERNION_H | 
|---|
| 815 |  | 
|---|