| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SPARSEMATRIX_H |
| 11 | #define EIGEN_SPARSEMATRIX_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \ingroup SparseCore_Module |
| 16 | * |
| 17 | * \class SparseMatrix |
| 18 | * |
| 19 | * \brief A versatible sparse matrix representation |
| 20 | * |
| 21 | * This class implements a more versatile variants of the common \em compressed row/column storage format. |
| 22 | * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. |
| 23 | * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra |
| 24 | * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero |
| 25 | * can be done with limited memory reallocation and copies. |
| 26 | * |
| 27 | * A call to the function makeCompressed() turns the matrix into the standard \em compressed format |
| 28 | * compatible with many library. |
| 29 | * |
| 30 | * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages". |
| 31 | * |
| 32 | * \tparam _Scalar the scalar type, i.e. the type of the coefficients |
| 33 | * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility |
| 34 | * is ColMajor or RowMajor. The default is 0 which means column-major. |
| 35 | * \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int. |
| 36 | * |
| 37 | * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int), |
| 38 | * whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index. |
| 39 | * Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead. |
| 40 | * |
| 41 | * This class can be extended with the help of the plugin mechanism described on the page |
| 42 | * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. |
| 43 | */ |
| 44 | |
| 45 | namespace internal { |
| 46 | template<typename _Scalar, int _Options, typename _StorageIndex> |
| 47 | struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> > |
| 48 | { |
| 49 | typedef _Scalar Scalar; |
| 50 | typedef _StorageIndex StorageIndex; |
| 51 | typedef Sparse StorageKind; |
| 52 | typedef MatrixXpr XprKind; |
| 53 | enum { |
| 54 | RowsAtCompileTime = Dynamic, |
| 55 | ColsAtCompileTime = Dynamic, |
| 56 | MaxRowsAtCompileTime = Dynamic, |
| 57 | MaxColsAtCompileTime = Dynamic, |
| 58 | Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit, |
| 59 | SupportedAccessPatterns = InnerRandomAccessPattern |
| 60 | }; |
| 61 | }; |
| 62 | |
| 63 | template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex> |
| 64 | struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> > |
| 65 | { |
| 66 | typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType; |
| 67 | typedef typename ref_selector<MatrixType>::type MatrixTypeNested; |
| 68 | typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; |
| 69 | |
| 70 | typedef _Scalar Scalar; |
| 71 | typedef Dense StorageKind; |
| 72 | typedef _StorageIndex StorageIndex; |
| 73 | typedef MatrixXpr XprKind; |
| 74 | |
| 75 | enum { |
| 76 | RowsAtCompileTime = Dynamic, |
| 77 | ColsAtCompileTime = 1, |
| 78 | MaxRowsAtCompileTime = Dynamic, |
| 79 | MaxColsAtCompileTime = 1, |
| 80 | Flags = LvalueBit |
| 81 | }; |
| 82 | }; |
| 83 | |
| 84 | template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex> |
| 85 | struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> > |
| 86 | : public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> > |
| 87 | { |
| 88 | enum { |
| 89 | Flags = 0 |
| 90 | }; |
| 91 | }; |
| 92 | |
| 93 | } // end namespace internal |
| 94 | |
| 95 | template<typename _Scalar, int _Options, typename _StorageIndex> |
| 96 | class SparseMatrix |
| 97 | : public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> > |
| 98 | { |
| 99 | typedef SparseCompressedBase<SparseMatrix> Base; |
| 100 | using Base::convert_index; |
| 101 | friend class SparseVector<_Scalar,0,_StorageIndex>; |
| 102 | public: |
| 103 | using Base::isCompressed; |
| 104 | using Base::nonZeros; |
| 105 | EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) |
| 106 | using Base::operator+=; |
| 107 | using Base::operator-=; |
| 108 | |
| 109 | typedef MappedSparseMatrix<Scalar,Flags> Map; |
| 110 | typedef Diagonal<SparseMatrix> DiagonalReturnType; |
| 111 | typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType; |
| 112 | typedef typename Base::InnerIterator InnerIterator; |
| 113 | typedef typename Base::ReverseInnerIterator ReverseInnerIterator; |
| 114 | |
| 115 | |
| 116 | using Base::IsRowMajor; |
| 117 | typedef internal::CompressedStorage<Scalar,StorageIndex> Storage; |
| 118 | enum { |
| 119 | Options = _Options |
| 120 | }; |
| 121 | |
| 122 | typedef typename Base::IndexVector IndexVector; |
| 123 | typedef typename Base::ScalarVector ScalarVector; |
| 124 | protected: |
| 125 | typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix; |
| 126 | |
| 127 | Index m_outerSize; |
| 128 | Index m_innerSize; |
| 129 | StorageIndex* m_outerIndex; |
| 130 | StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed |
| 131 | Storage m_data; |
| 132 | |
| 133 | public: |
| 134 | |
| 135 | /** \returns the number of rows of the matrix */ |
| 136 | inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } |
| 137 | /** \returns the number of columns of the matrix */ |
| 138 | inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } |
| 139 | |
| 140 | /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ |
| 141 | inline Index innerSize() const { return m_innerSize; } |
| 142 | /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */ |
| 143 | inline Index outerSize() const { return m_outerSize; } |
| 144 | |
| 145 | /** \returns a const pointer to the array of values. |
| 146 | * This function is aimed at interoperability with other libraries. |
| 147 | * \sa innerIndexPtr(), outerIndexPtr() */ |
| 148 | inline const Scalar* valuePtr() const { return m_data.valuePtr(); } |
| 149 | /** \returns a non-const pointer to the array of values. |
| 150 | * This function is aimed at interoperability with other libraries. |
| 151 | * \sa innerIndexPtr(), outerIndexPtr() */ |
| 152 | inline Scalar* valuePtr() { return m_data.valuePtr(); } |
| 153 | |
| 154 | /** \returns a const pointer to the array of inner indices. |
| 155 | * This function is aimed at interoperability with other libraries. |
| 156 | * \sa valuePtr(), outerIndexPtr() */ |
| 157 | inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } |
| 158 | /** \returns a non-const pointer to the array of inner indices. |
| 159 | * This function is aimed at interoperability with other libraries. |
| 160 | * \sa valuePtr(), outerIndexPtr() */ |
| 161 | inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } |
| 162 | |
| 163 | /** \returns a const pointer to the array of the starting positions of the inner vectors. |
| 164 | * This function is aimed at interoperability with other libraries. |
| 165 | * \sa valuePtr(), innerIndexPtr() */ |
| 166 | inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; } |
| 167 | /** \returns a non-const pointer to the array of the starting positions of the inner vectors. |
| 168 | * This function is aimed at interoperability with other libraries. |
| 169 | * \sa valuePtr(), innerIndexPtr() */ |
| 170 | inline StorageIndex* outerIndexPtr() { return m_outerIndex; } |
| 171 | |
| 172 | /** \returns a const pointer to the array of the number of non zeros of the inner vectors. |
| 173 | * This function is aimed at interoperability with other libraries. |
| 174 | * \warning it returns the null pointer 0 in compressed mode */ |
| 175 | inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; } |
| 176 | /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. |
| 177 | * This function is aimed at interoperability with other libraries. |
| 178 | * \warning it returns the null pointer 0 in compressed mode */ |
| 179 | inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; } |
| 180 | |
| 181 | /** \internal */ |
| 182 | inline Storage& data() { return m_data; } |
| 183 | /** \internal */ |
| 184 | inline const Storage& data() const { return m_data; } |
| 185 | |
| 186 | /** \returns the value of the matrix at position \a i, \a j |
| 187 | * This function returns Scalar(0) if the element is an explicit \em zero */ |
| 188 | inline Scalar coeff(Index row, Index col) const |
| 189 | { |
| 190 | eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); |
| 191 | |
| 192 | const Index outer = IsRowMajor ? row : col; |
| 193 | const Index inner = IsRowMajor ? col : row; |
| 194 | Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; |
| 195 | return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner)); |
| 196 | } |
| 197 | |
| 198 | /** \returns a non-const reference to the value of the matrix at position \a i, \a j |
| 199 | * |
| 200 | * If the element does not exist then it is inserted via the insert(Index,Index) function |
| 201 | * which itself turns the matrix into a non compressed form if that was not the case. |
| 202 | * |
| 203 | * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index) |
| 204 | * function if the element does not already exist. |
| 205 | */ |
| 206 | inline Scalar& coeffRef(Index row, Index col) |
| 207 | { |
| 208 | eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); |
| 209 | |
| 210 | const Index outer = IsRowMajor ? row : col; |
| 211 | const Index inner = IsRowMajor ? col : row; |
| 212 | |
| 213 | Index start = m_outerIndex[outer]; |
| 214 | Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; |
| 215 | eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix" ); |
| 216 | if(end<=start) |
| 217 | return insert(row,col); |
| 218 | const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner)); |
| 219 | if((p<end) && (m_data.index(p)==inner)) |
| 220 | return m_data.value(p); |
| 221 | else |
| 222 | return insert(row,col); |
| 223 | } |
| 224 | |
| 225 | /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col. |
| 226 | * The non zero coefficient must \b not already exist. |
| 227 | * |
| 228 | * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed |
| 229 | * mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier. |
| 230 | * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be |
| 231 | * inserted by increasing outer-indices. |
| 232 | * |
| 233 | * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first |
| 234 | * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector. |
| 235 | * |
| 236 | * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1) |
| 237 | * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion. |
| 238 | * |
| 239 | */ |
| 240 | Scalar& insert(Index row, Index col); |
| 241 | |
| 242 | public: |
| 243 | |
| 244 | /** Removes all non zeros but keep allocated memory |
| 245 | * |
| 246 | * This function does not free the currently allocated memory. To release as much as memory as possible, |
| 247 | * call \code mat.data().squeeze(); \endcode after resizing it. |
| 248 | * |
| 249 | * \sa resize(Index,Index), data() |
| 250 | */ |
| 251 | inline void setZero() |
| 252 | { |
| 253 | m_data.clear(); |
| 254 | memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex)); |
| 255 | if(m_innerNonZeros) |
| 256 | memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex)); |
| 257 | } |
| 258 | |
| 259 | /** Preallocates \a reserveSize non zeros. |
| 260 | * |
| 261 | * Precondition: the matrix must be in compressed mode. */ |
| 262 | inline void reserve(Index reserveSize) |
| 263 | { |
| 264 | eigen_assert(isCompressed() && "This function does not make sense in non compressed mode." ); |
| 265 | m_data.reserve(reserveSize); |
| 266 | } |
| 267 | |
| 268 | #ifdef EIGEN_PARSED_BY_DOXYGEN |
| 269 | /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j. |
| 270 | * |
| 271 | * This function turns the matrix in non-compressed mode. |
| 272 | * |
| 273 | * The type \c SizesType must expose the following interface: |
| 274 | \code |
| 275 | typedef value_type; |
| 276 | const value_type& operator[](i) const; |
| 277 | \endcode |
| 278 | * for \c i in the [0,this->outerSize()[ range. |
| 279 | * Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc. |
| 280 | */ |
| 281 | template<class SizesType> |
| 282 | inline void reserve(const SizesType& reserveSizes); |
| 283 | #else |
| 284 | template<class SizesType> |
| 285 | inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = |
| 286 | #if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename |
| 287 | typename |
| 288 | #endif |
| 289 | SizesType::value_type()) |
| 290 | { |
| 291 | EIGEN_UNUSED_VARIABLE(enableif); |
| 292 | reserveInnerVectors(reserveSizes); |
| 293 | } |
| 294 | #endif // EIGEN_PARSED_BY_DOXYGEN |
| 295 | protected: |
| 296 | template<class SizesType> |
| 297 | inline void reserveInnerVectors(const SizesType& reserveSizes) |
| 298 | { |
| 299 | if(isCompressed()) |
| 300 | { |
| 301 | Index totalReserveSize = 0; |
| 302 | // turn the matrix into non-compressed mode |
| 303 | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex))); |
| 304 | if (!m_innerNonZeros) internal::throw_std_bad_alloc(); |
| 305 | |
| 306 | // temporarily use m_innerSizes to hold the new starting points. |
| 307 | StorageIndex* newOuterIndex = m_innerNonZeros; |
| 308 | |
| 309 | StorageIndex count = 0; |
| 310 | for(Index j=0; j<m_outerSize; ++j) |
| 311 | { |
| 312 | newOuterIndex[j] = count; |
| 313 | count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]); |
| 314 | totalReserveSize += reserveSizes[j]; |
| 315 | } |
| 316 | m_data.reserve(totalReserveSize); |
| 317 | StorageIndex previousOuterIndex = m_outerIndex[m_outerSize]; |
| 318 | for(Index j=m_outerSize-1; j>=0; --j) |
| 319 | { |
| 320 | StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j]; |
| 321 | for(Index i=innerNNZ-1; i>=0; --i) |
| 322 | { |
| 323 | m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); |
| 324 | m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); |
| 325 | } |
| 326 | previousOuterIndex = m_outerIndex[j]; |
| 327 | m_outerIndex[j] = newOuterIndex[j]; |
| 328 | m_innerNonZeros[j] = innerNNZ; |
| 329 | } |
| 330 | m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1]; |
| 331 | |
| 332 | m_data.resize(m_outerIndex[m_outerSize]); |
| 333 | } |
| 334 | else |
| 335 | { |
| 336 | StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex))); |
| 337 | if (!newOuterIndex) internal::throw_std_bad_alloc(); |
| 338 | |
| 339 | StorageIndex count = 0; |
| 340 | for(Index j=0; j<m_outerSize; ++j) |
| 341 | { |
| 342 | newOuterIndex[j] = count; |
| 343 | StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j]; |
| 344 | StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved); |
| 345 | count += toReserve + m_innerNonZeros[j]; |
| 346 | } |
| 347 | newOuterIndex[m_outerSize] = count; |
| 348 | |
| 349 | m_data.resize(count); |
| 350 | for(Index j=m_outerSize-1; j>=0; --j) |
| 351 | { |
| 352 | Index offset = newOuterIndex[j] - m_outerIndex[j]; |
| 353 | if(offset>0) |
| 354 | { |
| 355 | StorageIndex innerNNZ = m_innerNonZeros[j]; |
| 356 | for(Index i=innerNNZ-1; i>=0; --i) |
| 357 | { |
| 358 | m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); |
| 359 | m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | std::swap(m_outerIndex, newOuterIndex); |
| 365 | std::free(newOuterIndex); |
| 366 | } |
| 367 | |
| 368 | } |
| 369 | public: |
| 370 | |
| 371 | //--- low level purely coherent filling --- |
| 372 | |
| 373 | /** \internal |
| 374 | * \returns a reference to the non zero coefficient at position \a row, \a col assuming that: |
| 375 | * - the nonzero does not already exist |
| 376 | * - the new coefficient is the last one according to the storage order |
| 377 | * |
| 378 | * Before filling a given inner vector you must call the statVec(Index) function. |
| 379 | * |
| 380 | * After an insertion session, you should call the finalize() function. |
| 381 | * |
| 382 | * \sa insert, insertBackByOuterInner, startVec */ |
| 383 | inline Scalar& insertBack(Index row, Index col) |
| 384 | { |
| 385 | return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); |
| 386 | } |
| 387 | |
| 388 | /** \internal |
| 389 | * \sa insertBack, startVec */ |
| 390 | inline Scalar& insertBackByOuterInner(Index outer, Index inner) |
| 391 | { |
| 392 | eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)" ); |
| 393 | eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)" ); |
| 394 | Index p = m_outerIndex[outer+1]; |
| 395 | ++m_outerIndex[outer+1]; |
| 396 | m_data.append(Scalar(0), inner); |
| 397 | return m_data.value(p); |
| 398 | } |
| 399 | |
| 400 | /** \internal |
| 401 | * \warning use it only if you know what you are doing */ |
| 402 | inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) |
| 403 | { |
| 404 | Index p = m_outerIndex[outer+1]; |
| 405 | ++m_outerIndex[outer+1]; |
| 406 | m_data.append(Scalar(0), inner); |
| 407 | return m_data.value(p); |
| 408 | } |
| 409 | |
| 410 | /** \internal |
| 411 | * \sa insertBack, insertBackByOuterInner */ |
| 412 | inline void startVec(Index outer) |
| 413 | { |
| 414 | eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially" ); |
| 415 | eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially" ); |
| 416 | m_outerIndex[outer+1] = m_outerIndex[outer]; |
| 417 | } |
| 418 | |
| 419 | /** \internal |
| 420 | * Must be called after inserting a set of non zero entries using the low level compressed API. |
| 421 | */ |
| 422 | inline void finalize() |
| 423 | { |
| 424 | if(isCompressed()) |
| 425 | { |
| 426 | StorageIndex size = internal::convert_index<StorageIndex>(m_data.size()); |
| 427 | Index i = m_outerSize; |
| 428 | // find the last filled column |
| 429 | while (i>=0 && m_outerIndex[i]==0) |
| 430 | --i; |
| 431 | ++i; |
| 432 | while (i<=m_outerSize) |
| 433 | { |
| 434 | m_outerIndex[i] = size; |
| 435 | ++i; |
| 436 | } |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | //--- |
| 441 | |
| 442 | template<typename InputIterators> |
| 443 | void setFromTriplets(const InputIterators& begin, const InputIterators& end); |
| 444 | |
| 445 | template<typename InputIterators,typename DupFunctor> |
| 446 | void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func); |
| 447 | |
| 448 | void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); } |
| 449 | |
| 450 | template<typename DupFunctor> |
| 451 | void collapseDuplicates(DupFunctor dup_func = DupFunctor()); |
| 452 | |
| 453 | //--- |
| 454 | |
| 455 | /** \internal |
| 456 | * same as insert(Index,Index) except that the indices are given relative to the storage order */ |
| 457 | Scalar& insertByOuterInner(Index j, Index i) |
| 458 | { |
| 459 | return insert(IsRowMajor ? j : i, IsRowMajor ? i : j); |
| 460 | } |
| 461 | |
| 462 | /** Turns the matrix into the \em compressed format. |
| 463 | */ |
| 464 | void makeCompressed() |
| 465 | { |
| 466 | if(isCompressed()) |
| 467 | return; |
| 468 | |
| 469 | eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0); |
| 470 | |
| 471 | Index oldStart = m_outerIndex[1]; |
| 472 | m_outerIndex[1] = m_innerNonZeros[0]; |
| 473 | for(Index j=1; j<m_outerSize; ++j) |
| 474 | { |
| 475 | Index nextOldStart = m_outerIndex[j+1]; |
| 476 | Index offset = oldStart - m_outerIndex[j]; |
| 477 | if(offset>0) |
| 478 | { |
| 479 | for(Index k=0; k<m_innerNonZeros[j]; ++k) |
| 480 | { |
| 481 | m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k); |
| 482 | m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k); |
| 483 | } |
| 484 | } |
| 485 | m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j]; |
| 486 | oldStart = nextOldStart; |
| 487 | } |
| 488 | std::free(m_innerNonZeros); |
| 489 | m_innerNonZeros = 0; |
| 490 | m_data.resize(m_outerIndex[m_outerSize]); |
| 491 | m_data.squeeze(); |
| 492 | } |
| 493 | |
| 494 | /** Turns the matrix into the uncompressed mode */ |
| 495 | void uncompress() |
| 496 | { |
| 497 | if(m_innerNonZeros != 0) |
| 498 | return; |
| 499 | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex))); |
| 500 | for (Index i = 0; i < m_outerSize; i++) |
| 501 | { |
| 502 | m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */ |
| 507 | void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) |
| 508 | { |
| 509 | prune(default_prunning_func(reference,epsilon)); |
| 510 | } |
| 511 | |
| 512 | /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep. |
| 513 | * The functor type \a KeepFunc must implement the following function: |
| 514 | * \code |
| 515 | * bool operator() (const Index& row, const Index& col, const Scalar& value) const; |
| 516 | * \endcode |
| 517 | * \sa prune(Scalar,RealScalar) |
| 518 | */ |
| 519 | template<typename KeepFunc> |
| 520 | void prune(const KeepFunc& keep = KeepFunc()) |
| 521 | { |
| 522 | // TODO optimize the uncompressed mode to avoid moving and allocating the data twice |
| 523 | makeCompressed(); |
| 524 | |
| 525 | StorageIndex k = 0; |
| 526 | for(Index j=0; j<m_outerSize; ++j) |
| 527 | { |
| 528 | Index previousStart = m_outerIndex[j]; |
| 529 | m_outerIndex[j] = k; |
| 530 | Index end = m_outerIndex[j+1]; |
| 531 | for(Index i=previousStart; i<end; ++i) |
| 532 | { |
| 533 | if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i))) |
| 534 | { |
| 535 | m_data.value(k) = m_data.value(i); |
| 536 | m_data.index(k) = m_data.index(i); |
| 537 | ++k; |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | m_outerIndex[m_outerSize] = k; |
| 542 | m_data.resize(k,0); |
| 543 | } |
| 544 | |
| 545 | /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched. |
| 546 | * |
| 547 | * If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode |
| 548 | * and the storage of the out of bounds coefficients is kept and reserved. |
| 549 | * Call makeCompressed() to pack the entries and squeeze extra memory. |
| 550 | * |
| 551 | * \sa reserve(), setZero(), makeCompressed() |
| 552 | */ |
| 553 | void conservativeResize(Index rows, Index cols) |
| 554 | { |
| 555 | // No change |
| 556 | if (this->rows() == rows && this->cols() == cols) return; |
| 557 | |
| 558 | // If one dimension is null, then there is nothing to be preserved |
| 559 | if(rows==0 || cols==0) return resize(rows,cols); |
| 560 | |
| 561 | Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows(); |
| 562 | Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols(); |
| 563 | StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows); |
| 564 | |
| 565 | // Deals with inner non zeros |
| 566 | if (m_innerNonZeros) |
| 567 | { |
| 568 | // Resize m_innerNonZeros |
| 569 | StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex))); |
| 570 | if (!newInnerNonZeros) internal::throw_std_bad_alloc(); |
| 571 | m_innerNonZeros = newInnerNonZeros; |
| 572 | |
| 573 | for(Index i=m_outerSize; i<m_outerSize+outerChange; i++) |
| 574 | m_innerNonZeros[i] = 0; |
| 575 | } |
| 576 | else if (innerChange < 0) |
| 577 | { |
| 578 | // Inner size decreased: allocate a new m_innerNonZeros |
| 579 | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex))); |
| 580 | if (!m_innerNonZeros) internal::throw_std_bad_alloc(); |
| 581 | for(Index i = 0; i < m_outerSize; i++) |
| 582 | m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; |
| 583 | } |
| 584 | |
| 585 | // Change the m_innerNonZeros in case of a decrease of inner size |
| 586 | if (m_innerNonZeros && innerChange < 0) |
| 587 | { |
| 588 | for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++) |
| 589 | { |
| 590 | StorageIndex &n = m_innerNonZeros[i]; |
| 591 | StorageIndex start = m_outerIndex[i]; |
| 592 | while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | m_innerSize = newInnerSize; |
| 597 | |
| 598 | // Re-allocate outer index structure if necessary |
| 599 | if (outerChange == 0) |
| 600 | return; |
| 601 | |
| 602 | StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex))); |
| 603 | if (!newOuterIndex) internal::throw_std_bad_alloc(); |
| 604 | m_outerIndex = newOuterIndex; |
| 605 | if (outerChange > 0) |
| 606 | { |
| 607 | StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize]; |
| 608 | for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++) |
| 609 | m_outerIndex[i] = last; |
| 610 | } |
| 611 | m_outerSize += outerChange; |
| 612 | } |
| 613 | |
| 614 | /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero. |
| 615 | * |
| 616 | * This function does not free the currently allocated memory. To release as much as memory as possible, |
| 617 | * call \code mat.data().squeeze(); \endcode after resizing it. |
| 618 | * |
| 619 | * \sa reserve(), setZero() |
| 620 | */ |
| 621 | void resize(Index rows, Index cols) |
| 622 | { |
| 623 | const Index outerSize = IsRowMajor ? rows : cols; |
| 624 | m_innerSize = IsRowMajor ? cols : rows; |
| 625 | m_data.clear(); |
| 626 | if (m_outerSize != outerSize || m_outerSize==0) |
| 627 | { |
| 628 | std::free(m_outerIndex); |
| 629 | m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex))); |
| 630 | if (!m_outerIndex) internal::throw_std_bad_alloc(); |
| 631 | |
| 632 | m_outerSize = outerSize; |
| 633 | } |
| 634 | if(m_innerNonZeros) |
| 635 | { |
| 636 | std::free(m_innerNonZeros); |
| 637 | m_innerNonZeros = 0; |
| 638 | } |
| 639 | memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex)); |
| 640 | } |
| 641 | |
| 642 | /** \internal |
| 643 | * Resize the nonzero vector to \a size */ |
| 644 | void resizeNonZeros(Index size) |
| 645 | { |
| 646 | m_data.resize(size); |
| 647 | } |
| 648 | |
| 649 | /** \returns a const expression of the diagonal coefficients. */ |
| 650 | const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); } |
| 651 | |
| 652 | /** \returns a read-write expression of the diagonal coefficients. |
| 653 | * \warning If the diagonal entries are written, then all diagonal |
| 654 | * entries \b must already exist, otherwise an assertion will be raised. |
| 655 | */ |
| 656 | DiagonalReturnType diagonal() { return DiagonalReturnType(*this); } |
| 657 | |
| 658 | /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */ |
| 659 | inline SparseMatrix() |
| 660 | : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| 661 | { |
| 662 | check_template_parameters(); |
| 663 | resize(0, 0); |
| 664 | } |
| 665 | |
| 666 | /** Constructs a \a rows \c x \a cols empty matrix */ |
| 667 | inline SparseMatrix(Index rows, Index cols) |
| 668 | : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| 669 | { |
| 670 | check_template_parameters(); |
| 671 | resize(rows, cols); |
| 672 | } |
| 673 | |
| 674 | /** Constructs a sparse matrix from the sparse expression \a other */ |
| 675 | template<typename OtherDerived> |
| 676 | inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other) |
| 677 | : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| 678 | { |
| 679 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
| 680 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| 681 | check_template_parameters(); |
| 682 | const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit); |
| 683 | if (needToTranspose) |
| 684 | *this = other.derived(); |
| 685 | else |
| 686 | { |
| 687 | #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| 688 | EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| 689 | #endif |
| 690 | internal::call_assignment_no_alias(*this, other.derived()); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | /** Constructs a sparse matrix from the sparse selfadjoint view \a other */ |
| 695 | template<typename OtherDerived, unsigned int UpLo> |
| 696 | inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other) |
| 697 | : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| 698 | { |
| 699 | check_template_parameters(); |
| 700 | Base::operator=(other); |
| 701 | } |
| 702 | |
| 703 | /** Copy constructor (it performs a deep copy) */ |
| 704 | inline SparseMatrix(const SparseMatrix& other) |
| 705 | : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| 706 | { |
| 707 | check_template_parameters(); |
| 708 | *this = other.derived(); |
| 709 | } |
| 710 | |
| 711 | /** \brief Copy constructor with in-place evaluation */ |
| 712 | template<typename OtherDerived> |
| 713 | SparseMatrix(const ReturnByValue<OtherDerived>& other) |
| 714 | : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| 715 | { |
| 716 | check_template_parameters(); |
| 717 | initAssignment(other); |
| 718 | other.evalTo(*this); |
| 719 | } |
| 720 | |
| 721 | /** \brief Copy constructor with in-place evaluation */ |
| 722 | template<typename OtherDerived> |
| 723 | explicit SparseMatrix(const DiagonalBase<OtherDerived>& other) |
| 724 | : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| 725 | { |
| 726 | check_template_parameters(); |
| 727 | *this = other.derived(); |
| 728 | } |
| 729 | |
| 730 | /** Swaps the content of two sparse matrices of the same type. |
| 731 | * This is a fast operation that simply swaps the underlying pointers and parameters. */ |
| 732 | inline void swap(SparseMatrix& other) |
| 733 | { |
| 734 | //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); |
| 735 | std::swap(m_outerIndex, other.m_outerIndex); |
| 736 | std::swap(m_innerSize, other.m_innerSize); |
| 737 | std::swap(m_outerSize, other.m_outerSize); |
| 738 | std::swap(m_innerNonZeros, other.m_innerNonZeros); |
| 739 | m_data.swap(other.m_data); |
| 740 | } |
| 741 | |
| 742 | /** Sets *this to the identity matrix. |
| 743 | * This function also turns the matrix into compressed mode, and drop any reserved memory. */ |
| 744 | inline void setIdentity() |
| 745 | { |
| 746 | eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES" ); |
| 747 | this->m_data.resize(rows()); |
| 748 | Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1)); |
| 749 | Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes(); |
| 750 | Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows())); |
| 751 | std::free(m_innerNonZeros); |
| 752 | m_innerNonZeros = 0; |
| 753 | } |
| 754 | inline SparseMatrix& operator=(const SparseMatrix& other) |
| 755 | { |
| 756 | if (other.isRValue()) |
| 757 | { |
| 758 | swap(other.const_cast_derived()); |
| 759 | } |
| 760 | else if(this!=&other) |
| 761 | { |
| 762 | #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| 763 | EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| 764 | #endif |
| 765 | initAssignment(other); |
| 766 | if(other.isCompressed()) |
| 767 | { |
| 768 | internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex); |
| 769 | m_data = other.m_data; |
| 770 | } |
| 771 | else |
| 772 | { |
| 773 | Base::operator=(other); |
| 774 | } |
| 775 | } |
| 776 | return *this; |
| 777 | } |
| 778 | |
| 779 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 780 | template<typename OtherDerived> |
| 781 | inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other) |
| 782 | { return Base::operator=(other.derived()); } |
| 783 | #endif // EIGEN_PARSED_BY_DOXYGEN |
| 784 | |
| 785 | template<typename OtherDerived> |
| 786 | EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other); |
| 787 | |
| 788 | friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) |
| 789 | { |
| 790 | EIGEN_DBG_SPARSE( |
| 791 | s << "Nonzero entries:\n" ; |
| 792 | if(m.isCompressed()) |
| 793 | { |
| 794 | for (Index i=0; i<m.nonZeros(); ++i) |
| 795 | s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") " ; |
| 796 | } |
| 797 | else |
| 798 | { |
| 799 | for (Index i=0; i<m.outerSize(); ++i) |
| 800 | { |
| 801 | Index p = m.m_outerIndex[i]; |
| 802 | Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i]; |
| 803 | Index k=p; |
| 804 | for (; k<pe; ++k) { |
| 805 | s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") " ; |
| 806 | } |
| 807 | for (; k<m.m_outerIndex[i+1]; ++k) { |
| 808 | s << "(_,_) " ; |
| 809 | } |
| 810 | } |
| 811 | } |
| 812 | s << std::endl; |
| 813 | s << std::endl; |
| 814 | s << "Outer pointers:\n" ; |
| 815 | for (Index i=0; i<m.outerSize(); ++i) { |
| 816 | s << m.m_outerIndex[i] << " " ; |
| 817 | } |
| 818 | s << " $" << std::endl; |
| 819 | if(!m.isCompressed()) |
| 820 | { |
| 821 | s << "Inner non zeros:\n" ; |
| 822 | for (Index i=0; i<m.outerSize(); ++i) { |
| 823 | s << m.m_innerNonZeros[i] << " " ; |
| 824 | } |
| 825 | s << " $" << std::endl; |
| 826 | } |
| 827 | s << std::endl; |
| 828 | ); |
| 829 | s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m); |
| 830 | return s; |
| 831 | } |
| 832 | |
| 833 | /** Destructor */ |
| 834 | inline ~SparseMatrix() |
| 835 | { |
| 836 | std::free(m_outerIndex); |
| 837 | std::free(m_innerNonZeros); |
| 838 | } |
| 839 | |
| 840 | /** Overloaded for performance */ |
| 841 | Scalar sum() const; |
| 842 | |
| 843 | # ifdef EIGEN_SPARSEMATRIX_PLUGIN |
| 844 | # include EIGEN_SPARSEMATRIX_PLUGIN |
| 845 | # endif |
| 846 | |
| 847 | protected: |
| 848 | |
| 849 | template<typename Other> |
| 850 | void initAssignment(const Other& other) |
| 851 | { |
| 852 | resize(other.rows(), other.cols()); |
| 853 | if(m_innerNonZeros) |
| 854 | { |
| 855 | std::free(m_innerNonZeros); |
| 856 | m_innerNonZeros = 0; |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | /** \internal |
| 861 | * \sa insert(Index,Index) */ |
| 862 | EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col); |
| 863 | |
| 864 | /** \internal |
| 865 | * A vector object that is equal to 0 everywhere but v at the position i */ |
| 866 | class SingletonVector |
| 867 | { |
| 868 | StorageIndex m_index; |
| 869 | StorageIndex m_value; |
| 870 | public: |
| 871 | typedef StorageIndex value_type; |
| 872 | SingletonVector(Index i, Index v) |
| 873 | : m_index(convert_index(i)), m_value(convert_index(v)) |
| 874 | {} |
| 875 | |
| 876 | StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; } |
| 877 | }; |
| 878 | |
| 879 | /** \internal |
| 880 | * \sa insert(Index,Index) */ |
| 881 | EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col); |
| 882 | |
| 883 | public: |
| 884 | /** \internal |
| 885 | * \sa insert(Index,Index) */ |
| 886 | EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col) |
| 887 | { |
| 888 | const Index outer = IsRowMajor ? row : col; |
| 889 | const Index inner = IsRowMajor ? col : row; |
| 890 | |
| 891 | eigen_assert(!isCompressed()); |
| 892 | eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer])); |
| 893 | |
| 894 | Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++; |
| 895 | m_data.index(p) = convert_index(inner); |
| 896 | return (m_data.value(p) = Scalar(0)); |
| 897 | } |
| 898 | |
| 899 | private: |
| 900 | static void check_template_parameters() |
| 901 | { |
| 902 | EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); |
| 903 | EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); |
| 904 | } |
| 905 | |
| 906 | struct default_prunning_func { |
| 907 | default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {} |
| 908 | inline bool operator() (const Index&, const Index&, const Scalar& value) const |
| 909 | { |
| 910 | return !internal::isMuchSmallerThan(value, reference, epsilon); |
| 911 | } |
| 912 | Scalar reference; |
| 913 | RealScalar epsilon; |
| 914 | }; |
| 915 | }; |
| 916 | |
| 917 | namespace internal { |
| 918 | |
| 919 | template<typename InputIterator, typename SparseMatrixType, typename DupFunctor> |
| 920 | void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func) |
| 921 | { |
| 922 | enum { IsRowMajor = SparseMatrixType::IsRowMajor }; |
| 923 | typedef typename SparseMatrixType::Scalar Scalar; |
| 924 | typedef typename SparseMatrixType::StorageIndex StorageIndex; |
| 925 | SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols()); |
| 926 | |
| 927 | if(begin!=end) |
| 928 | { |
| 929 | // pass 1: count the nnz per inner-vector |
| 930 | typename SparseMatrixType::IndexVector wi(trMat.outerSize()); |
| 931 | wi.setZero(); |
| 932 | for(InputIterator it(begin); it!=end; ++it) |
| 933 | { |
| 934 | eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols()); |
| 935 | wi(IsRowMajor ? it->col() : it->row())++; |
| 936 | } |
| 937 | |
| 938 | // pass 2: insert all the elements into trMat |
| 939 | trMat.reserve(wi); |
| 940 | for(InputIterator it(begin); it!=end; ++it) |
| 941 | trMat.insertBackUncompressed(it->row(),it->col()) = it->value(); |
| 942 | |
| 943 | // pass 3: |
| 944 | trMat.collapseDuplicates(dup_func); |
| 945 | } |
| 946 | |
| 947 | // pass 4: transposed copy -> implicit sorting |
| 948 | mat = trMat; |
| 949 | } |
| 950 | |
| 951 | } |
| 952 | |
| 953 | |
| 954 | /** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end. |
| 955 | * |
| 956 | * A \em triplet is a tuple (i,j,value) defining a non-zero element. |
| 957 | * The input list of triplets does not have to be sorted, and can contains duplicated elements. |
| 958 | * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. |
| 959 | * This is a \em O(n) operation, with \em n the number of triplet elements. |
| 960 | * The initial contents of \c *this is destroyed. |
| 961 | * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, |
| 962 | * or the resize(Index,Index) method. The sizes are not extracted from the triplet list. |
| 963 | * |
| 964 | * The \a InputIterators value_type must provide the following interface: |
| 965 | * \code |
| 966 | * Scalar value() const; // the value |
| 967 | * Scalar row() const; // the row index i |
| 968 | * Scalar col() const; // the column index j |
| 969 | * \endcode |
| 970 | * See for instance the Eigen::Triplet template class. |
| 971 | * |
| 972 | * Here is a typical usage example: |
| 973 | * \code |
| 974 | typedef Triplet<double> T; |
| 975 | std::vector<T> tripletList; |
| 976 | triplets.reserve(estimation_of_entries); |
| 977 | for(...) |
| 978 | { |
| 979 | // ... |
| 980 | tripletList.push_back(T(i,j,v_ij)); |
| 981 | } |
| 982 | SparseMatrixType m(rows,cols); |
| 983 | m.setFromTriplets(tripletList.begin(), tripletList.end()); |
| 984 | // m is ready to go! |
| 985 | * \endcode |
| 986 | * |
| 987 | * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define |
| 988 | * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather |
| 989 | * be explicitely stored into a std::vector for instance. |
| 990 | */ |
| 991 | template<typename Scalar, int _Options, typename _StorageIndex> |
| 992 | template<typename InputIterators> |
| 993 | void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end) |
| 994 | { |
| 995 | internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>()); |
| 996 | } |
| 997 | |
| 998 | /** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied: |
| 999 | * \code |
| 1000 | * value = dup_func(OldValue, NewValue) |
| 1001 | * \endcode |
| 1002 | * Here is a C++11 example keeping the latest entry only: |
| 1003 | * \code |
| 1004 | * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; }); |
| 1005 | * \endcode |
| 1006 | */ |
| 1007 | template<typename Scalar, int _Options, typename _StorageIndex> |
| 1008 | template<typename InputIterators,typename DupFunctor> |
| 1009 | void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func) |
| 1010 | { |
| 1011 | internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func); |
| 1012 | } |
| 1013 | |
| 1014 | /** \internal */ |
| 1015 | template<typename Scalar, int _Options, typename _StorageIndex> |
| 1016 | template<typename DupFunctor> |
| 1017 | void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func) |
| 1018 | { |
| 1019 | eigen_assert(!isCompressed()); |
| 1020 | // TODO, in practice we should be able to use m_innerNonZeros for that task |
| 1021 | IndexVector wi(innerSize()); |
| 1022 | wi.fill(-1); |
| 1023 | StorageIndex count = 0; |
| 1024 | // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers |
| 1025 | for(Index j=0; j<outerSize(); ++j) |
| 1026 | { |
| 1027 | StorageIndex start = count; |
| 1028 | Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j]; |
| 1029 | for(Index k=m_outerIndex[j]; k<oldEnd; ++k) |
| 1030 | { |
| 1031 | Index i = m_data.index(k); |
| 1032 | if(wi(i)>=start) |
| 1033 | { |
| 1034 | // we already meet this entry => accumulate it |
| 1035 | m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k)); |
| 1036 | } |
| 1037 | else |
| 1038 | { |
| 1039 | m_data.value(count) = m_data.value(k); |
| 1040 | m_data.index(count) = m_data.index(k); |
| 1041 | wi(i) = count; |
| 1042 | ++count; |
| 1043 | } |
| 1044 | } |
| 1045 | m_outerIndex[j] = start; |
| 1046 | } |
| 1047 | m_outerIndex[m_outerSize] = count; |
| 1048 | |
| 1049 | // turn the matrix into compressed form |
| 1050 | std::free(m_innerNonZeros); |
| 1051 | m_innerNonZeros = 0; |
| 1052 | m_data.resize(m_outerIndex[m_outerSize]); |
| 1053 | } |
| 1054 | |
| 1055 | template<typename Scalar, int _Options, typename _StorageIndex> |
| 1056 | template<typename OtherDerived> |
| 1057 | EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other) |
| 1058 | { |
| 1059 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
| 1060 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| 1061 | |
| 1062 | #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| 1063 | EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| 1064 | #endif |
| 1065 | |
| 1066 | const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit); |
| 1067 | if (needToTranspose) |
| 1068 | { |
| 1069 | #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN |
| 1070 | EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN |
| 1071 | #endif |
| 1072 | // two passes algorithm: |
| 1073 | // 1 - compute the number of coeffs per dest inner vector |
| 1074 | // 2 - do the actual copy/eval |
| 1075 | // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed |
| 1076 | typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy; |
| 1077 | typedef typename internal::remove_all<OtherCopy>::type _OtherCopy; |
| 1078 | typedef internal::evaluator<_OtherCopy> OtherCopyEval; |
| 1079 | OtherCopy otherCopy(other.derived()); |
| 1080 | OtherCopyEval otherCopyEval(otherCopy); |
| 1081 | |
| 1082 | SparseMatrix dest(other.rows(),other.cols()); |
| 1083 | Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero(); |
| 1084 | |
| 1085 | // pass 1 |
| 1086 | // FIXME the above copy could be merged with that pass |
| 1087 | for (Index j=0; j<otherCopy.outerSize(); ++j) |
| 1088 | for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it) |
| 1089 | ++dest.m_outerIndex[it.index()]; |
| 1090 | |
| 1091 | // prefix sum |
| 1092 | StorageIndex count = 0; |
| 1093 | IndexVector positions(dest.outerSize()); |
| 1094 | for (Index j=0; j<dest.outerSize(); ++j) |
| 1095 | { |
| 1096 | StorageIndex tmp = dest.m_outerIndex[j]; |
| 1097 | dest.m_outerIndex[j] = count; |
| 1098 | positions[j] = count; |
| 1099 | count += tmp; |
| 1100 | } |
| 1101 | dest.m_outerIndex[dest.outerSize()] = count; |
| 1102 | // alloc |
| 1103 | dest.m_data.resize(count); |
| 1104 | // pass 2 |
| 1105 | for (StorageIndex j=0; j<otherCopy.outerSize(); ++j) |
| 1106 | { |
| 1107 | for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it) |
| 1108 | { |
| 1109 | Index pos = positions[it.index()]++; |
| 1110 | dest.m_data.index(pos) = j; |
| 1111 | dest.m_data.value(pos) = it.value(); |
| 1112 | } |
| 1113 | } |
| 1114 | this->swap(dest); |
| 1115 | return *this; |
| 1116 | } |
| 1117 | else |
| 1118 | { |
| 1119 | if(other.isRValue()) |
| 1120 | { |
| 1121 | initAssignment(other.derived()); |
| 1122 | } |
| 1123 | // there is no special optimization |
| 1124 | return Base::operator=(other.derived()); |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | template<typename _Scalar, int _Options, typename _StorageIndex> |
| 1129 | typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col) |
| 1130 | { |
| 1131 | eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); |
| 1132 | |
| 1133 | const Index outer = IsRowMajor ? row : col; |
| 1134 | const Index inner = IsRowMajor ? col : row; |
| 1135 | |
| 1136 | if(isCompressed()) |
| 1137 | { |
| 1138 | if(nonZeros()==0) |
| 1139 | { |
| 1140 | // reserve space if not already done |
| 1141 | if(m_data.allocatedSize()==0) |
| 1142 | m_data.reserve(2*m_innerSize); |
| 1143 | |
| 1144 | // turn the matrix into non-compressed mode |
| 1145 | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex))); |
| 1146 | if(!m_innerNonZeros) internal::throw_std_bad_alloc(); |
| 1147 | |
| 1148 | memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex)); |
| 1149 | |
| 1150 | // pack all inner-vectors to the end of the pre-allocated space |
| 1151 | // and allocate the entire free-space to the first inner-vector |
| 1152 | StorageIndex end = convert_index(m_data.allocatedSize()); |
| 1153 | for(Index j=1; j<=m_outerSize; ++j) |
| 1154 | m_outerIndex[j] = end; |
| 1155 | } |
| 1156 | else |
| 1157 | { |
| 1158 | // turn the matrix into non-compressed mode |
| 1159 | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex))); |
| 1160 | if(!m_innerNonZeros) internal::throw_std_bad_alloc(); |
| 1161 | for(Index j=0; j<m_outerSize; ++j) |
| 1162 | m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j]; |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | // check whether we can do a fast "push back" insertion |
| 1167 | Index data_end = m_data.allocatedSize(); |
| 1168 | |
| 1169 | // First case: we are filling a new inner vector which is packed at the end. |
| 1170 | // We assume that all remaining inner-vectors are also empty and packed to the end. |
| 1171 | if(m_outerIndex[outer]==data_end) |
| 1172 | { |
| 1173 | eigen_internal_assert(m_innerNonZeros[outer]==0); |
| 1174 | |
| 1175 | // pack previous empty inner-vectors to end of the used-space |
| 1176 | // and allocate the entire free-space to the current inner-vector. |
| 1177 | StorageIndex p = convert_index(m_data.size()); |
| 1178 | Index j = outer; |
| 1179 | while(j>=0 && m_innerNonZeros[j]==0) |
| 1180 | m_outerIndex[j--] = p; |
| 1181 | |
| 1182 | // push back the new element |
| 1183 | ++m_innerNonZeros[outer]; |
| 1184 | m_data.append(Scalar(0), inner); |
| 1185 | |
| 1186 | // check for reallocation |
| 1187 | if(data_end != m_data.allocatedSize()) |
| 1188 | { |
| 1189 | // m_data has been reallocated |
| 1190 | // -> move remaining inner-vectors back to the end of the free-space |
| 1191 | // so that the entire free-space is allocated to the current inner-vector. |
| 1192 | eigen_internal_assert(data_end < m_data.allocatedSize()); |
| 1193 | StorageIndex new_end = convert_index(m_data.allocatedSize()); |
| 1194 | for(Index k=outer+1; k<=m_outerSize; ++k) |
| 1195 | if(m_outerIndex[k]==data_end) |
| 1196 | m_outerIndex[k] = new_end; |
| 1197 | } |
| 1198 | return m_data.value(p); |
| 1199 | } |
| 1200 | |
| 1201 | // Second case: the next inner-vector is packed to the end |
| 1202 | // and the current inner-vector end match the used-space. |
| 1203 | if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size()) |
| 1204 | { |
| 1205 | eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0); |
| 1206 | |
| 1207 | // add space for the new element |
| 1208 | ++m_innerNonZeros[outer]; |
| 1209 | m_data.resize(m_data.size()+1); |
| 1210 | |
| 1211 | // check for reallocation |
| 1212 | if(data_end != m_data.allocatedSize()) |
| 1213 | { |
| 1214 | // m_data has been reallocated |
| 1215 | // -> move remaining inner-vectors back to the end of the free-space |
| 1216 | // so that the entire free-space is allocated to the current inner-vector. |
| 1217 | eigen_internal_assert(data_end < m_data.allocatedSize()); |
| 1218 | StorageIndex new_end = convert_index(m_data.allocatedSize()); |
| 1219 | for(Index k=outer+1; k<=m_outerSize; ++k) |
| 1220 | if(m_outerIndex[k]==data_end) |
| 1221 | m_outerIndex[k] = new_end; |
| 1222 | } |
| 1223 | |
| 1224 | // and insert it at the right position (sorted insertion) |
| 1225 | Index startId = m_outerIndex[outer]; |
| 1226 | Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1; |
| 1227 | while ( (p > startId) && (m_data.index(p-1) > inner) ) |
| 1228 | { |
| 1229 | m_data.index(p) = m_data.index(p-1); |
| 1230 | m_data.value(p) = m_data.value(p-1); |
| 1231 | --p; |
| 1232 | } |
| 1233 | |
| 1234 | m_data.index(p) = convert_index(inner); |
| 1235 | return (m_data.value(p) = 0); |
| 1236 | } |
| 1237 | |
| 1238 | if(m_data.size() != m_data.allocatedSize()) |
| 1239 | { |
| 1240 | // make sure the matrix is compatible to random un-compressed insertion: |
| 1241 | m_data.resize(m_data.allocatedSize()); |
| 1242 | this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2)); |
| 1243 | } |
| 1244 | |
| 1245 | return insertUncompressed(row,col); |
| 1246 | } |
| 1247 | |
| 1248 | template<typename _Scalar, int _Options, typename _StorageIndex> |
| 1249 | EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col) |
| 1250 | { |
| 1251 | eigen_assert(!isCompressed()); |
| 1252 | |
| 1253 | const Index outer = IsRowMajor ? row : col; |
| 1254 | const StorageIndex inner = convert_index(IsRowMajor ? col : row); |
| 1255 | |
| 1256 | Index room = m_outerIndex[outer+1] - m_outerIndex[outer]; |
| 1257 | StorageIndex innerNNZ = m_innerNonZeros[outer]; |
| 1258 | if(innerNNZ>=room) |
| 1259 | { |
| 1260 | // this inner vector is full, we need to reallocate the whole buffer :( |
| 1261 | reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ))); |
| 1262 | } |
| 1263 | |
| 1264 | Index startId = m_outerIndex[outer]; |
| 1265 | Index p = startId + m_innerNonZeros[outer]; |
| 1266 | while ( (p > startId) && (m_data.index(p-1) > inner) ) |
| 1267 | { |
| 1268 | m_data.index(p) = m_data.index(p-1); |
| 1269 | m_data.value(p) = m_data.value(p-1); |
| 1270 | --p; |
| 1271 | } |
| 1272 | eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end" ); |
| 1273 | |
| 1274 | m_innerNonZeros[outer]++; |
| 1275 | |
| 1276 | m_data.index(p) = inner; |
| 1277 | return (m_data.value(p) = Scalar(0)); |
| 1278 | } |
| 1279 | |
| 1280 | template<typename _Scalar, int _Options, typename _StorageIndex> |
| 1281 | EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col) |
| 1282 | { |
| 1283 | eigen_assert(isCompressed()); |
| 1284 | |
| 1285 | const Index outer = IsRowMajor ? row : col; |
| 1286 | const Index inner = IsRowMajor ? col : row; |
| 1287 | |
| 1288 | Index previousOuter = outer; |
| 1289 | if (m_outerIndex[outer+1]==0) |
| 1290 | { |
| 1291 | // we start a new inner vector |
| 1292 | while (previousOuter>=0 && m_outerIndex[previousOuter]==0) |
| 1293 | { |
| 1294 | m_outerIndex[previousOuter] = convert_index(m_data.size()); |
| 1295 | --previousOuter; |
| 1296 | } |
| 1297 | m_outerIndex[outer+1] = m_outerIndex[outer]; |
| 1298 | } |
| 1299 | |
| 1300 | // here we have to handle the tricky case where the outerIndex array |
| 1301 | // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g., |
| 1302 | // the 2nd inner vector... |
| 1303 | bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0)) |
| 1304 | && (std::size_t(m_outerIndex[outer+1]) == m_data.size()); |
| 1305 | |
| 1306 | std::size_t startId = m_outerIndex[outer]; |
| 1307 | // FIXME let's make sure sizeof(long int) == sizeof(std::size_t) |
| 1308 | std::size_t p = m_outerIndex[outer+1]; |
| 1309 | ++m_outerIndex[outer+1]; |
| 1310 | |
| 1311 | double reallocRatio = 1; |
| 1312 | if (m_data.allocatedSize()<=m_data.size()) |
| 1313 | { |
| 1314 | // if there is no preallocated memory, let's reserve a minimum of 32 elements |
| 1315 | if (m_data.size()==0) |
| 1316 | { |
| 1317 | m_data.reserve(32); |
| 1318 | } |
| 1319 | else |
| 1320 | { |
| 1321 | // we need to reallocate the data, to reduce multiple reallocations |
| 1322 | // we use a smart resize algorithm based on the current filling ratio |
| 1323 | // in addition, we use double to avoid integers overflows |
| 1324 | double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1); |
| 1325 | reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size()); |
| 1326 | // furthermore we bound the realloc ratio to: |
| 1327 | // 1) reduce multiple minor realloc when the matrix is almost filled |
| 1328 | // 2) avoid to allocate too much memory when the matrix is almost empty |
| 1329 | reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.); |
| 1330 | } |
| 1331 | } |
| 1332 | m_data.resize(m_data.size()+1,reallocRatio); |
| 1333 | |
| 1334 | if (!isLastVec) |
| 1335 | { |
| 1336 | if (previousOuter==-1) |
| 1337 | { |
| 1338 | // oops wrong guess. |
| 1339 | // let's correct the outer offsets |
| 1340 | for (Index k=0; k<=(outer+1); ++k) |
| 1341 | m_outerIndex[k] = 0; |
| 1342 | Index k=outer+1; |
| 1343 | while(m_outerIndex[k]==0) |
| 1344 | m_outerIndex[k++] = 1; |
| 1345 | while (k<=m_outerSize && m_outerIndex[k]!=0) |
| 1346 | m_outerIndex[k++]++; |
| 1347 | p = 0; |
| 1348 | --k; |
| 1349 | k = m_outerIndex[k]-1; |
| 1350 | while (k>0) |
| 1351 | { |
| 1352 | m_data.index(k) = m_data.index(k-1); |
| 1353 | m_data.value(k) = m_data.value(k-1); |
| 1354 | k--; |
| 1355 | } |
| 1356 | } |
| 1357 | else |
| 1358 | { |
| 1359 | // we are not inserting into the last inner vec |
| 1360 | // update outer indices: |
| 1361 | Index j = outer+2; |
| 1362 | while (j<=m_outerSize && m_outerIndex[j]!=0) |
| 1363 | m_outerIndex[j++]++; |
| 1364 | --j; |
| 1365 | // shift data of last vecs: |
| 1366 | Index k = m_outerIndex[j]-1; |
| 1367 | while (k>=Index(p)) |
| 1368 | { |
| 1369 | m_data.index(k) = m_data.index(k-1); |
| 1370 | m_data.value(k) = m_data.value(k-1); |
| 1371 | k--; |
| 1372 | } |
| 1373 | } |
| 1374 | } |
| 1375 | |
| 1376 | while ( (p > startId) && (m_data.index(p-1) > inner) ) |
| 1377 | { |
| 1378 | m_data.index(p) = m_data.index(p-1); |
| 1379 | m_data.value(p) = m_data.value(p-1); |
| 1380 | --p; |
| 1381 | } |
| 1382 | |
| 1383 | m_data.index(p) = inner; |
| 1384 | return (m_data.value(p) = Scalar(0)); |
| 1385 | } |
| 1386 | |
| 1387 | namespace internal { |
| 1388 | |
| 1389 | template<typename _Scalar, int _Options, typename _StorageIndex> |
| 1390 | struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> > |
| 1391 | : evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > |
| 1392 | { |
| 1393 | typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base; |
| 1394 | typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType; |
| 1395 | evaluator() : Base() {} |
| 1396 | explicit evaluator(const SparseMatrixType &mat) : Base(mat) {} |
| 1397 | }; |
| 1398 | |
| 1399 | } |
| 1400 | |
| 1401 | } // end namespace Eigen |
| 1402 | |
| 1403 | #endif // EIGEN_SPARSEMATRIX_H |
| 1404 | |