1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_SPARSEVECTOR_H |
11 | #define EIGEN_SPARSEVECTOR_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | /** \ingroup SparseCore_Module |
16 | * \class SparseVector |
17 | * |
18 | * \brief a sparse vector class |
19 | * |
20 | * \tparam _Scalar the scalar type, i.e. the type of the coefficients |
21 | * |
22 | * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. |
23 | * |
24 | * This class can be extended with the help of the plugin mechanism described on the page |
25 | * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. |
26 | */ |
27 | |
28 | namespace internal { |
29 | template<typename _Scalar, int _Options, typename _StorageIndex> |
30 | struct traits<SparseVector<_Scalar, _Options, _StorageIndex> > |
31 | { |
32 | typedef _Scalar Scalar; |
33 | typedef _StorageIndex StorageIndex; |
34 | typedef Sparse StorageKind; |
35 | typedef MatrixXpr XprKind; |
36 | enum { |
37 | IsColVector = (_Options & RowMajorBit) ? 0 : 1, |
38 | |
39 | RowsAtCompileTime = IsColVector ? Dynamic : 1, |
40 | ColsAtCompileTime = IsColVector ? 1 : Dynamic, |
41 | MaxRowsAtCompileTime = RowsAtCompileTime, |
42 | MaxColsAtCompileTime = ColsAtCompileTime, |
43 | Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit, |
44 | SupportedAccessPatterns = InnerRandomAccessPattern |
45 | }; |
46 | }; |
47 | |
48 | // Sparse-Vector-Assignment kinds: |
49 | enum { |
50 | SVA_RuntimeSwitch, |
51 | SVA_Inner, |
52 | SVA_Outer |
53 | }; |
54 | |
55 | template< typename Dest, typename Src, |
56 | int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch |
57 | : Src::InnerSizeAtCompileTime==1 ? SVA_Outer |
58 | : SVA_Inner> |
59 | struct sparse_vector_assign_selector; |
60 | |
61 | } |
62 | |
63 | template<typename _Scalar, int _Options, typename _StorageIndex> |
64 | class SparseVector |
65 | : public SparseCompressedBase<SparseVector<_Scalar, _Options, _StorageIndex> > |
66 | { |
67 | typedef SparseCompressedBase<SparseVector> Base; |
68 | using Base::convert_index; |
69 | public: |
70 | EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) |
71 | EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) |
72 | EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) |
73 | |
74 | typedef internal::CompressedStorage<Scalar,StorageIndex> Storage; |
75 | enum { IsColVector = internal::traits<SparseVector>::IsColVector }; |
76 | |
77 | enum { |
78 | Options = _Options |
79 | }; |
80 | |
81 | EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } |
82 | EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } |
83 | EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } |
84 | EIGEN_STRONG_INLINE Index outerSize() const { return 1; } |
85 | |
86 | EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); } |
87 | EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); } |
88 | |
89 | EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } |
90 | EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } |
91 | |
92 | inline const StorageIndex* outerIndexPtr() const { return 0; } |
93 | inline StorageIndex* outerIndexPtr() { return 0; } |
94 | inline const StorageIndex* innerNonZeroPtr() const { return 0; } |
95 | inline StorageIndex* innerNonZeroPtr() { return 0; } |
96 | |
97 | /** \internal */ |
98 | inline Storage& data() { return m_data; } |
99 | /** \internal */ |
100 | inline const Storage& data() const { return m_data; } |
101 | |
102 | inline Scalar coeff(Index row, Index col) const |
103 | { |
104 | eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); |
105 | return coeff(IsColVector ? row : col); |
106 | } |
107 | inline Scalar coeff(Index i) const |
108 | { |
109 | eigen_assert(i>=0 && i<m_size); |
110 | return m_data.at(StorageIndex(i)); |
111 | } |
112 | |
113 | inline Scalar& coeffRef(Index row, Index col) |
114 | { |
115 | eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); |
116 | return coeffRef(IsColVector ? row : col); |
117 | } |
118 | |
119 | /** \returns a reference to the coefficient value at given index \a i |
120 | * This operation involes a log(rho*size) binary search. If the coefficient does not |
121 | * exist yet, then a sorted insertion into a sequential buffer is performed. |
122 | * |
123 | * This insertion might be very costly if the number of nonzeros above \a i is large. |
124 | */ |
125 | inline Scalar& coeffRef(Index i) |
126 | { |
127 | eigen_assert(i>=0 && i<m_size); |
128 | |
129 | return m_data.atWithInsertion(StorageIndex(i)); |
130 | } |
131 | |
132 | public: |
133 | |
134 | typedef typename Base::InnerIterator InnerIterator; |
135 | typedef typename Base::ReverseInnerIterator ReverseInnerIterator; |
136 | |
137 | inline void setZero() { m_data.clear(); } |
138 | |
139 | /** \returns the number of non zero coefficients */ |
140 | inline Index nonZeros() const { return m_data.size(); } |
141 | |
142 | inline void startVec(Index outer) |
143 | { |
144 | EIGEN_UNUSED_VARIABLE(outer); |
145 | eigen_assert(outer==0); |
146 | } |
147 | |
148 | inline Scalar& insertBackByOuterInner(Index outer, Index inner) |
149 | { |
150 | EIGEN_UNUSED_VARIABLE(outer); |
151 | eigen_assert(outer==0); |
152 | return insertBack(inner); |
153 | } |
154 | inline Scalar& insertBack(Index i) |
155 | { |
156 | m_data.append(0, i); |
157 | return m_data.value(m_data.size()-1); |
158 | } |
159 | |
160 | Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) |
161 | { |
162 | EIGEN_UNUSED_VARIABLE(outer); |
163 | eigen_assert(outer==0); |
164 | return insertBackUnordered(inner); |
165 | } |
166 | inline Scalar& insertBackUnordered(Index i) |
167 | { |
168 | m_data.append(0, i); |
169 | return m_data.value(m_data.size()-1); |
170 | } |
171 | |
172 | inline Scalar& insert(Index row, Index col) |
173 | { |
174 | eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); |
175 | |
176 | Index inner = IsColVector ? row : col; |
177 | Index outer = IsColVector ? col : row; |
178 | EIGEN_ONLY_USED_FOR_DEBUG(outer); |
179 | eigen_assert(outer==0); |
180 | return insert(inner); |
181 | } |
182 | Scalar& insert(Index i) |
183 | { |
184 | eigen_assert(i>=0 && i<m_size); |
185 | |
186 | Index startId = 0; |
187 | Index p = Index(m_data.size()) - 1; |
188 | // TODO smart realloc |
189 | m_data.resize(p+2,1); |
190 | |
191 | while ( (p >= startId) && (m_data.index(p) > i) ) |
192 | { |
193 | m_data.index(p+1) = m_data.index(p); |
194 | m_data.value(p+1) = m_data.value(p); |
195 | --p; |
196 | } |
197 | m_data.index(p+1) = convert_index(i); |
198 | m_data.value(p+1) = 0; |
199 | return m_data.value(p+1); |
200 | } |
201 | |
202 | /** |
203 | */ |
204 | inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } |
205 | |
206 | |
207 | inline void finalize() {} |
208 | |
209 | /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */ |
210 | void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) |
211 | { |
212 | m_data.prune(reference,epsilon); |
213 | } |
214 | |
215 | /** Resizes the sparse vector to \a rows x \a cols |
216 | * |
217 | * This method is provided for compatibility with matrices. |
218 | * For a column vector, \a cols must be equal to 1. |
219 | * For a row vector, \a rows must be equal to 1. |
220 | * |
221 | * \sa resize(Index) |
222 | */ |
223 | void resize(Index rows, Index cols) |
224 | { |
225 | eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1" ); |
226 | resize(IsColVector ? rows : cols); |
227 | } |
228 | |
229 | /** Resizes the sparse vector to \a newSize |
230 | * This method deletes all entries, thus leaving an empty sparse vector |
231 | * |
232 | * \sa conservativeResize(), setZero() */ |
233 | void resize(Index newSize) |
234 | { |
235 | m_size = newSize; |
236 | m_data.clear(); |
237 | } |
238 | |
239 | /** Resizes the sparse vector to \a newSize, while leaving old values untouched. |
240 | * |
241 | * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved. |
242 | * Call .data().squeeze() to free extra memory. |
243 | * |
244 | * \sa reserve(), setZero() |
245 | */ |
246 | void conservativeResize(Index newSize) |
247 | { |
248 | if (newSize < m_size) |
249 | { |
250 | Index i = 0; |
251 | while (i<m_data.size() && m_data.index(i)<newSize) ++i; |
252 | m_data.resize(i); |
253 | } |
254 | m_size = newSize; |
255 | } |
256 | |
257 | void resizeNonZeros(Index size) { m_data.resize(size); } |
258 | |
259 | inline SparseVector() : m_size(0) { check_template_parameters(); resize(0); } |
260 | |
261 | explicit inline SparseVector(Index size) : m_size(0) { check_template_parameters(); resize(size); } |
262 | |
263 | inline SparseVector(Index rows, Index cols) : m_size(0) { check_template_parameters(); resize(rows,cols); } |
264 | |
265 | template<typename OtherDerived> |
266 | inline SparseVector(const SparseMatrixBase<OtherDerived>& other) |
267 | : m_size(0) |
268 | { |
269 | #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
270 | EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
271 | #endif |
272 | check_template_parameters(); |
273 | *this = other.derived(); |
274 | } |
275 | |
276 | inline SparseVector(const SparseVector& other) |
277 | : Base(other), m_size(0) |
278 | { |
279 | check_template_parameters(); |
280 | *this = other.derived(); |
281 | } |
282 | |
283 | /** Swaps the values of \c *this and \a other. |
284 | * Overloaded for performance: this version performs a \em shallow swap by swaping pointers and attributes only. |
285 | * \sa SparseMatrixBase::swap() |
286 | */ |
287 | inline void swap(SparseVector& other) |
288 | { |
289 | std::swap(m_size, other.m_size); |
290 | m_data.swap(other.m_data); |
291 | } |
292 | |
293 | template<int OtherOptions> |
294 | inline void swap(SparseMatrix<Scalar,OtherOptions,StorageIndex>& other) |
295 | { |
296 | eigen_assert(other.outerSize()==1); |
297 | std::swap(m_size, other.m_innerSize); |
298 | m_data.swap(other.m_data); |
299 | } |
300 | |
301 | inline SparseVector& operator=(const SparseVector& other) |
302 | { |
303 | if (other.isRValue()) |
304 | { |
305 | swap(other.const_cast_derived()); |
306 | } |
307 | else |
308 | { |
309 | resize(other.size()); |
310 | m_data = other.m_data; |
311 | } |
312 | return *this; |
313 | } |
314 | |
315 | template<typename OtherDerived> |
316 | inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other) |
317 | { |
318 | SparseVector tmp(other.size()); |
319 | internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived()); |
320 | this->swap(tmp); |
321 | return *this; |
322 | } |
323 | |
324 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
325 | template<typename Lhs, typename Rhs> |
326 | inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product) |
327 | { |
328 | return Base::operator=(product); |
329 | } |
330 | #endif |
331 | |
332 | friend std::ostream & operator << (std::ostream & s, const SparseVector& m) |
333 | { |
334 | for (Index i=0; i<m.nonZeros(); ++i) |
335 | s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") " ; |
336 | s << std::endl; |
337 | return s; |
338 | } |
339 | |
340 | /** Destructor */ |
341 | inline ~SparseVector() {} |
342 | |
343 | /** Overloaded for performance */ |
344 | Scalar sum() const; |
345 | |
346 | public: |
347 | |
348 | /** \internal \deprecated use setZero() and reserve() */ |
349 | EIGEN_DEPRECATED void startFill(Index reserve) |
350 | { |
351 | setZero(); |
352 | m_data.reserve(reserve); |
353 | } |
354 | |
355 | /** \internal \deprecated use insertBack(Index,Index) */ |
356 | EIGEN_DEPRECATED Scalar& fill(Index r, Index c) |
357 | { |
358 | eigen_assert(r==0 || c==0); |
359 | return fill(IsColVector ? r : c); |
360 | } |
361 | |
362 | /** \internal \deprecated use insertBack(Index) */ |
363 | EIGEN_DEPRECATED Scalar& fill(Index i) |
364 | { |
365 | m_data.append(0, i); |
366 | return m_data.value(m_data.size()-1); |
367 | } |
368 | |
369 | /** \internal \deprecated use insert(Index,Index) */ |
370 | EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c) |
371 | { |
372 | eigen_assert(r==0 || c==0); |
373 | return fillrand(IsColVector ? r : c); |
374 | } |
375 | |
376 | /** \internal \deprecated use insert(Index) */ |
377 | EIGEN_DEPRECATED Scalar& fillrand(Index i) |
378 | { |
379 | return insert(i); |
380 | } |
381 | |
382 | /** \internal \deprecated use finalize() */ |
383 | EIGEN_DEPRECATED void endFill() {} |
384 | |
385 | // These two functions were here in the 3.1 release, so let's keep them in case some code rely on them. |
386 | /** \internal \deprecated use data() */ |
387 | EIGEN_DEPRECATED Storage& _data() { return m_data; } |
388 | /** \internal \deprecated use data() */ |
389 | EIGEN_DEPRECATED const Storage& _data() const { return m_data; } |
390 | |
391 | # ifdef EIGEN_SPARSEVECTOR_PLUGIN |
392 | # include EIGEN_SPARSEVECTOR_PLUGIN |
393 | # endif |
394 | |
395 | protected: |
396 | |
397 | static void check_template_parameters() |
398 | { |
399 | EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); |
400 | EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); |
401 | } |
402 | |
403 | Storage m_data; |
404 | Index m_size; |
405 | }; |
406 | |
407 | namespace internal { |
408 | |
409 | template<typename _Scalar, int _Options, typename _Index> |
410 | struct evaluator<SparseVector<_Scalar,_Options,_Index> > |
411 | : evaluator_base<SparseVector<_Scalar,_Options,_Index> > |
412 | { |
413 | typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType; |
414 | typedef evaluator_base<SparseVectorType> Base; |
415 | typedef typename SparseVectorType::InnerIterator InnerIterator; |
416 | typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator; |
417 | |
418 | enum { |
419 | CoeffReadCost = NumTraits<_Scalar>::ReadCost, |
420 | Flags = SparseVectorType::Flags |
421 | }; |
422 | |
423 | evaluator() : Base() {} |
424 | |
425 | explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat) |
426 | { |
427 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
428 | } |
429 | |
430 | inline Index nonZerosEstimate() const { |
431 | return m_matrix->nonZeros(); |
432 | } |
433 | |
434 | operator SparseVectorType&() { return m_matrix->const_cast_derived(); } |
435 | operator const SparseVectorType&() const { return *m_matrix; } |
436 | |
437 | const SparseVectorType *m_matrix; |
438 | }; |
439 | |
440 | template< typename Dest, typename Src> |
441 | struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> { |
442 | static void run(Dest& dst, const Src& src) { |
443 | eigen_internal_assert(src.innerSize()==src.size()); |
444 | typedef internal::evaluator<Src> SrcEvaluatorType; |
445 | SrcEvaluatorType srcEval(src); |
446 | for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it) |
447 | dst.insert(it.index()) = it.value(); |
448 | } |
449 | }; |
450 | |
451 | template< typename Dest, typename Src> |
452 | struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> { |
453 | static void run(Dest& dst, const Src& src) { |
454 | eigen_internal_assert(src.outerSize()==src.size()); |
455 | typedef internal::evaluator<Src> SrcEvaluatorType; |
456 | SrcEvaluatorType srcEval(src); |
457 | for(Index i=0; i<src.size(); ++i) |
458 | { |
459 | typename SrcEvaluatorType::InnerIterator it(srcEval, i); |
460 | if(it) |
461 | dst.insert(i) = it.value(); |
462 | } |
463 | } |
464 | }; |
465 | |
466 | template< typename Dest, typename Src> |
467 | struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> { |
468 | static void run(Dest& dst, const Src& src) { |
469 | if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src); |
470 | else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src); |
471 | } |
472 | }; |
473 | |
474 | } |
475 | |
476 | } // end namespace Eigen |
477 | |
478 | #endif // EIGEN_SPARSEVECTOR_H |
479 | |