| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SPARSEVECTOR_H |
| 11 | #define EIGEN_SPARSEVECTOR_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \ingroup SparseCore_Module |
| 16 | * \class SparseVector |
| 17 | * |
| 18 | * \brief a sparse vector class |
| 19 | * |
| 20 | * \tparam _Scalar the scalar type, i.e. the type of the coefficients |
| 21 | * |
| 22 | * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. |
| 23 | * |
| 24 | * This class can be extended with the help of the plugin mechanism described on the page |
| 25 | * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. |
| 26 | */ |
| 27 | |
| 28 | namespace internal { |
| 29 | template<typename _Scalar, int _Options, typename _StorageIndex> |
| 30 | struct traits<SparseVector<_Scalar, _Options, _StorageIndex> > |
| 31 | { |
| 32 | typedef _Scalar Scalar; |
| 33 | typedef _StorageIndex StorageIndex; |
| 34 | typedef Sparse StorageKind; |
| 35 | typedef MatrixXpr XprKind; |
| 36 | enum { |
| 37 | IsColVector = (_Options & RowMajorBit) ? 0 : 1, |
| 38 | |
| 39 | RowsAtCompileTime = IsColVector ? Dynamic : 1, |
| 40 | ColsAtCompileTime = IsColVector ? 1 : Dynamic, |
| 41 | MaxRowsAtCompileTime = RowsAtCompileTime, |
| 42 | MaxColsAtCompileTime = ColsAtCompileTime, |
| 43 | Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit, |
| 44 | SupportedAccessPatterns = InnerRandomAccessPattern |
| 45 | }; |
| 46 | }; |
| 47 | |
| 48 | // Sparse-Vector-Assignment kinds: |
| 49 | enum { |
| 50 | SVA_RuntimeSwitch, |
| 51 | SVA_Inner, |
| 52 | SVA_Outer |
| 53 | }; |
| 54 | |
| 55 | template< typename Dest, typename Src, |
| 56 | int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch |
| 57 | : Src::InnerSizeAtCompileTime==1 ? SVA_Outer |
| 58 | : SVA_Inner> |
| 59 | struct sparse_vector_assign_selector; |
| 60 | |
| 61 | } |
| 62 | |
| 63 | template<typename _Scalar, int _Options, typename _StorageIndex> |
| 64 | class SparseVector |
| 65 | : public SparseCompressedBase<SparseVector<_Scalar, _Options, _StorageIndex> > |
| 66 | { |
| 67 | typedef SparseCompressedBase<SparseVector> Base; |
| 68 | using Base::convert_index; |
| 69 | public: |
| 70 | EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) |
| 71 | EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) |
| 72 | EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) |
| 73 | |
| 74 | typedef internal::CompressedStorage<Scalar,StorageIndex> Storage; |
| 75 | enum { IsColVector = internal::traits<SparseVector>::IsColVector }; |
| 76 | |
| 77 | enum { |
| 78 | Options = _Options |
| 79 | }; |
| 80 | |
| 81 | EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } |
| 82 | EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } |
| 83 | EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } |
| 84 | EIGEN_STRONG_INLINE Index outerSize() const { return 1; } |
| 85 | |
| 86 | EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); } |
| 87 | EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); } |
| 88 | |
| 89 | EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } |
| 90 | EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } |
| 91 | |
| 92 | inline const StorageIndex* outerIndexPtr() const { return 0; } |
| 93 | inline StorageIndex* outerIndexPtr() { return 0; } |
| 94 | inline const StorageIndex* innerNonZeroPtr() const { return 0; } |
| 95 | inline StorageIndex* innerNonZeroPtr() { return 0; } |
| 96 | |
| 97 | /** \internal */ |
| 98 | inline Storage& data() { return m_data; } |
| 99 | /** \internal */ |
| 100 | inline const Storage& data() const { return m_data; } |
| 101 | |
| 102 | inline Scalar coeff(Index row, Index col) const |
| 103 | { |
| 104 | eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); |
| 105 | return coeff(IsColVector ? row : col); |
| 106 | } |
| 107 | inline Scalar coeff(Index i) const |
| 108 | { |
| 109 | eigen_assert(i>=0 && i<m_size); |
| 110 | return m_data.at(StorageIndex(i)); |
| 111 | } |
| 112 | |
| 113 | inline Scalar& coeffRef(Index row, Index col) |
| 114 | { |
| 115 | eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); |
| 116 | return coeffRef(IsColVector ? row : col); |
| 117 | } |
| 118 | |
| 119 | /** \returns a reference to the coefficient value at given index \a i |
| 120 | * This operation involes a log(rho*size) binary search. If the coefficient does not |
| 121 | * exist yet, then a sorted insertion into a sequential buffer is performed. |
| 122 | * |
| 123 | * This insertion might be very costly if the number of nonzeros above \a i is large. |
| 124 | */ |
| 125 | inline Scalar& coeffRef(Index i) |
| 126 | { |
| 127 | eigen_assert(i>=0 && i<m_size); |
| 128 | |
| 129 | return m_data.atWithInsertion(StorageIndex(i)); |
| 130 | } |
| 131 | |
| 132 | public: |
| 133 | |
| 134 | typedef typename Base::InnerIterator InnerIterator; |
| 135 | typedef typename Base::ReverseInnerIterator ReverseInnerIterator; |
| 136 | |
| 137 | inline void setZero() { m_data.clear(); } |
| 138 | |
| 139 | /** \returns the number of non zero coefficients */ |
| 140 | inline Index nonZeros() const { return m_data.size(); } |
| 141 | |
| 142 | inline void startVec(Index outer) |
| 143 | { |
| 144 | EIGEN_UNUSED_VARIABLE(outer); |
| 145 | eigen_assert(outer==0); |
| 146 | } |
| 147 | |
| 148 | inline Scalar& insertBackByOuterInner(Index outer, Index inner) |
| 149 | { |
| 150 | EIGEN_UNUSED_VARIABLE(outer); |
| 151 | eigen_assert(outer==0); |
| 152 | return insertBack(inner); |
| 153 | } |
| 154 | inline Scalar& insertBack(Index i) |
| 155 | { |
| 156 | m_data.append(0, i); |
| 157 | return m_data.value(m_data.size()-1); |
| 158 | } |
| 159 | |
| 160 | Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) |
| 161 | { |
| 162 | EIGEN_UNUSED_VARIABLE(outer); |
| 163 | eigen_assert(outer==0); |
| 164 | return insertBackUnordered(inner); |
| 165 | } |
| 166 | inline Scalar& insertBackUnordered(Index i) |
| 167 | { |
| 168 | m_data.append(0, i); |
| 169 | return m_data.value(m_data.size()-1); |
| 170 | } |
| 171 | |
| 172 | inline Scalar& insert(Index row, Index col) |
| 173 | { |
| 174 | eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); |
| 175 | |
| 176 | Index inner = IsColVector ? row : col; |
| 177 | Index outer = IsColVector ? col : row; |
| 178 | EIGEN_ONLY_USED_FOR_DEBUG(outer); |
| 179 | eigen_assert(outer==0); |
| 180 | return insert(inner); |
| 181 | } |
| 182 | Scalar& insert(Index i) |
| 183 | { |
| 184 | eigen_assert(i>=0 && i<m_size); |
| 185 | |
| 186 | Index startId = 0; |
| 187 | Index p = Index(m_data.size()) - 1; |
| 188 | // TODO smart realloc |
| 189 | m_data.resize(p+2,1); |
| 190 | |
| 191 | while ( (p >= startId) && (m_data.index(p) > i) ) |
| 192 | { |
| 193 | m_data.index(p+1) = m_data.index(p); |
| 194 | m_data.value(p+1) = m_data.value(p); |
| 195 | --p; |
| 196 | } |
| 197 | m_data.index(p+1) = convert_index(i); |
| 198 | m_data.value(p+1) = 0; |
| 199 | return m_data.value(p+1); |
| 200 | } |
| 201 | |
| 202 | /** |
| 203 | */ |
| 204 | inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } |
| 205 | |
| 206 | |
| 207 | inline void finalize() {} |
| 208 | |
| 209 | /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */ |
| 210 | void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) |
| 211 | { |
| 212 | m_data.prune(reference,epsilon); |
| 213 | } |
| 214 | |
| 215 | /** Resizes the sparse vector to \a rows x \a cols |
| 216 | * |
| 217 | * This method is provided for compatibility with matrices. |
| 218 | * For a column vector, \a cols must be equal to 1. |
| 219 | * For a row vector, \a rows must be equal to 1. |
| 220 | * |
| 221 | * \sa resize(Index) |
| 222 | */ |
| 223 | void resize(Index rows, Index cols) |
| 224 | { |
| 225 | eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1" ); |
| 226 | resize(IsColVector ? rows : cols); |
| 227 | } |
| 228 | |
| 229 | /** Resizes the sparse vector to \a newSize |
| 230 | * This method deletes all entries, thus leaving an empty sparse vector |
| 231 | * |
| 232 | * \sa conservativeResize(), setZero() */ |
| 233 | void resize(Index newSize) |
| 234 | { |
| 235 | m_size = newSize; |
| 236 | m_data.clear(); |
| 237 | } |
| 238 | |
| 239 | /** Resizes the sparse vector to \a newSize, while leaving old values untouched. |
| 240 | * |
| 241 | * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved. |
| 242 | * Call .data().squeeze() to free extra memory. |
| 243 | * |
| 244 | * \sa reserve(), setZero() |
| 245 | */ |
| 246 | void conservativeResize(Index newSize) |
| 247 | { |
| 248 | if (newSize < m_size) |
| 249 | { |
| 250 | Index i = 0; |
| 251 | while (i<m_data.size() && m_data.index(i)<newSize) ++i; |
| 252 | m_data.resize(i); |
| 253 | } |
| 254 | m_size = newSize; |
| 255 | } |
| 256 | |
| 257 | void resizeNonZeros(Index size) { m_data.resize(size); } |
| 258 | |
| 259 | inline SparseVector() : m_size(0) { check_template_parameters(); resize(0); } |
| 260 | |
| 261 | explicit inline SparseVector(Index size) : m_size(0) { check_template_parameters(); resize(size); } |
| 262 | |
| 263 | inline SparseVector(Index rows, Index cols) : m_size(0) { check_template_parameters(); resize(rows,cols); } |
| 264 | |
| 265 | template<typename OtherDerived> |
| 266 | inline SparseVector(const SparseMatrixBase<OtherDerived>& other) |
| 267 | : m_size(0) |
| 268 | { |
| 269 | #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| 270 | EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| 271 | #endif |
| 272 | check_template_parameters(); |
| 273 | *this = other.derived(); |
| 274 | } |
| 275 | |
| 276 | inline SparseVector(const SparseVector& other) |
| 277 | : Base(other), m_size(0) |
| 278 | { |
| 279 | check_template_parameters(); |
| 280 | *this = other.derived(); |
| 281 | } |
| 282 | |
| 283 | /** Swaps the values of \c *this and \a other. |
| 284 | * Overloaded for performance: this version performs a \em shallow swap by swaping pointers and attributes only. |
| 285 | * \sa SparseMatrixBase::swap() |
| 286 | */ |
| 287 | inline void swap(SparseVector& other) |
| 288 | { |
| 289 | std::swap(m_size, other.m_size); |
| 290 | m_data.swap(other.m_data); |
| 291 | } |
| 292 | |
| 293 | template<int OtherOptions> |
| 294 | inline void swap(SparseMatrix<Scalar,OtherOptions,StorageIndex>& other) |
| 295 | { |
| 296 | eigen_assert(other.outerSize()==1); |
| 297 | std::swap(m_size, other.m_innerSize); |
| 298 | m_data.swap(other.m_data); |
| 299 | } |
| 300 | |
| 301 | inline SparseVector& operator=(const SparseVector& other) |
| 302 | { |
| 303 | if (other.isRValue()) |
| 304 | { |
| 305 | swap(other.const_cast_derived()); |
| 306 | } |
| 307 | else |
| 308 | { |
| 309 | resize(other.size()); |
| 310 | m_data = other.m_data; |
| 311 | } |
| 312 | return *this; |
| 313 | } |
| 314 | |
| 315 | template<typename OtherDerived> |
| 316 | inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other) |
| 317 | { |
| 318 | SparseVector tmp(other.size()); |
| 319 | internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived()); |
| 320 | this->swap(tmp); |
| 321 | return *this; |
| 322 | } |
| 323 | |
| 324 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 325 | template<typename Lhs, typename Rhs> |
| 326 | inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product) |
| 327 | { |
| 328 | return Base::operator=(product); |
| 329 | } |
| 330 | #endif |
| 331 | |
| 332 | friend std::ostream & operator << (std::ostream & s, const SparseVector& m) |
| 333 | { |
| 334 | for (Index i=0; i<m.nonZeros(); ++i) |
| 335 | s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") " ; |
| 336 | s << std::endl; |
| 337 | return s; |
| 338 | } |
| 339 | |
| 340 | /** Destructor */ |
| 341 | inline ~SparseVector() {} |
| 342 | |
| 343 | /** Overloaded for performance */ |
| 344 | Scalar sum() const; |
| 345 | |
| 346 | public: |
| 347 | |
| 348 | /** \internal \deprecated use setZero() and reserve() */ |
| 349 | EIGEN_DEPRECATED void startFill(Index reserve) |
| 350 | { |
| 351 | setZero(); |
| 352 | m_data.reserve(reserve); |
| 353 | } |
| 354 | |
| 355 | /** \internal \deprecated use insertBack(Index,Index) */ |
| 356 | EIGEN_DEPRECATED Scalar& fill(Index r, Index c) |
| 357 | { |
| 358 | eigen_assert(r==0 || c==0); |
| 359 | return fill(IsColVector ? r : c); |
| 360 | } |
| 361 | |
| 362 | /** \internal \deprecated use insertBack(Index) */ |
| 363 | EIGEN_DEPRECATED Scalar& fill(Index i) |
| 364 | { |
| 365 | m_data.append(0, i); |
| 366 | return m_data.value(m_data.size()-1); |
| 367 | } |
| 368 | |
| 369 | /** \internal \deprecated use insert(Index,Index) */ |
| 370 | EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c) |
| 371 | { |
| 372 | eigen_assert(r==0 || c==0); |
| 373 | return fillrand(IsColVector ? r : c); |
| 374 | } |
| 375 | |
| 376 | /** \internal \deprecated use insert(Index) */ |
| 377 | EIGEN_DEPRECATED Scalar& fillrand(Index i) |
| 378 | { |
| 379 | return insert(i); |
| 380 | } |
| 381 | |
| 382 | /** \internal \deprecated use finalize() */ |
| 383 | EIGEN_DEPRECATED void endFill() {} |
| 384 | |
| 385 | // These two functions were here in the 3.1 release, so let's keep them in case some code rely on them. |
| 386 | /** \internal \deprecated use data() */ |
| 387 | EIGEN_DEPRECATED Storage& _data() { return m_data; } |
| 388 | /** \internal \deprecated use data() */ |
| 389 | EIGEN_DEPRECATED const Storage& _data() const { return m_data; } |
| 390 | |
| 391 | # ifdef EIGEN_SPARSEVECTOR_PLUGIN |
| 392 | # include EIGEN_SPARSEVECTOR_PLUGIN |
| 393 | # endif |
| 394 | |
| 395 | protected: |
| 396 | |
| 397 | static void check_template_parameters() |
| 398 | { |
| 399 | EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); |
| 400 | EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); |
| 401 | } |
| 402 | |
| 403 | Storage m_data; |
| 404 | Index m_size; |
| 405 | }; |
| 406 | |
| 407 | namespace internal { |
| 408 | |
| 409 | template<typename _Scalar, int _Options, typename _Index> |
| 410 | struct evaluator<SparseVector<_Scalar,_Options,_Index> > |
| 411 | : evaluator_base<SparseVector<_Scalar,_Options,_Index> > |
| 412 | { |
| 413 | typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType; |
| 414 | typedef evaluator_base<SparseVectorType> Base; |
| 415 | typedef typename SparseVectorType::InnerIterator InnerIterator; |
| 416 | typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator; |
| 417 | |
| 418 | enum { |
| 419 | CoeffReadCost = NumTraits<_Scalar>::ReadCost, |
| 420 | Flags = SparseVectorType::Flags |
| 421 | }; |
| 422 | |
| 423 | evaluator() : Base() {} |
| 424 | |
| 425 | explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat) |
| 426 | { |
| 427 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| 428 | } |
| 429 | |
| 430 | inline Index nonZerosEstimate() const { |
| 431 | return m_matrix->nonZeros(); |
| 432 | } |
| 433 | |
| 434 | operator SparseVectorType&() { return m_matrix->const_cast_derived(); } |
| 435 | operator const SparseVectorType&() const { return *m_matrix; } |
| 436 | |
| 437 | const SparseVectorType *m_matrix; |
| 438 | }; |
| 439 | |
| 440 | template< typename Dest, typename Src> |
| 441 | struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> { |
| 442 | static void run(Dest& dst, const Src& src) { |
| 443 | eigen_internal_assert(src.innerSize()==src.size()); |
| 444 | typedef internal::evaluator<Src> SrcEvaluatorType; |
| 445 | SrcEvaluatorType srcEval(src); |
| 446 | for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it) |
| 447 | dst.insert(it.index()) = it.value(); |
| 448 | } |
| 449 | }; |
| 450 | |
| 451 | template< typename Dest, typename Src> |
| 452 | struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> { |
| 453 | static void run(Dest& dst, const Src& src) { |
| 454 | eigen_internal_assert(src.outerSize()==src.size()); |
| 455 | typedef internal::evaluator<Src> SrcEvaluatorType; |
| 456 | SrcEvaluatorType srcEval(src); |
| 457 | for(Index i=0; i<src.size(); ++i) |
| 458 | { |
| 459 | typename SrcEvaluatorType::InnerIterator it(srcEval, i); |
| 460 | if(it) |
| 461 | dst.insert(i) = it.value(); |
| 462 | } |
| 463 | } |
| 464 | }; |
| 465 | |
| 466 | template< typename Dest, typename Src> |
| 467 | struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> { |
| 468 | static void run(Dest& dst, const Src& src) { |
| 469 | if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src); |
| 470 | else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src); |
| 471 | } |
| 472 | }; |
| 473 | |
| 474 | } |
| 475 | |
| 476 | } // end namespace Eigen |
| 477 | |
| 478 | #endif // EIGEN_SPARSEVECTOR_H |
| 479 | |