| 1 | /* $Id: ClpSimplexOther.cpp 1753 2011-06-19 16:27:26Z stefan $ */ |
| 2 | // Copyright (C) 2004, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include "CoinPragma.hpp" |
| 7 | |
| 8 | #include <math.h> |
| 9 | |
| 10 | #include "CoinHelperFunctions.hpp" |
| 11 | #include "ClpSimplexOther.hpp" |
| 12 | #include "ClpSimplexDual.hpp" |
| 13 | #include "ClpSimplexPrimal.hpp" |
| 14 | #include "ClpEventHandler.hpp" |
| 15 | #include "ClpHelperFunctions.hpp" |
| 16 | #include "ClpFactorization.hpp" |
| 17 | #include "ClpDualRowDantzig.hpp" |
| 18 | #include "ClpDynamicMatrix.hpp" |
| 19 | #include "CoinPackedMatrix.hpp" |
| 20 | #include "CoinIndexedVector.hpp" |
| 21 | #include "CoinBuild.hpp" |
| 22 | #include "CoinMpsIO.hpp" |
| 23 | #include "CoinFloatEqual.hpp" |
| 24 | #include "ClpMessage.hpp" |
| 25 | #include <cfloat> |
| 26 | #include <cassert> |
| 27 | #include <string> |
| 28 | #include <stdio.h> |
| 29 | #include <iostream> |
| 30 | /* Dual ranging. |
| 31 | This computes increase/decrease in cost for each given variable and corresponding |
| 32 | sequence numbers which would change basis. Sequence numbers are 0..numberColumns |
| 33 | and numberColumns.. for artificials/slacks. |
| 34 | For non-basic variables the sequence number will be that of the non-basic variables. |
| 35 | |
| 36 | Up to user to provide correct length arrays. |
| 37 | |
| 38 | */ |
| 39 | void ClpSimplexOther::dualRanging(int numberCheck, const int * which, |
| 40 | double * costIncreased, int * sequenceIncreased, |
| 41 | double * costDecreased, int * sequenceDecreased, |
| 42 | double * valueIncrease, double * valueDecrease) |
| 43 | { |
| 44 | rowArray_[1]->clear(); |
| 45 | columnArray_[1]->clear(); |
| 46 | // long enough for rows+columns |
| 47 | assert(rowArray_[3]->capacity() >= numberRows_ + numberColumns_); |
| 48 | rowArray_[3]->clear(); |
| 49 | int * backPivot = rowArray_[3]->getIndices(); |
| 50 | int i; |
| 51 | for ( i = 0; i < numberRows_ + numberColumns_; i++) { |
| 52 | backPivot[i] = -1; |
| 53 | } |
| 54 | for (i = 0; i < numberRows_; i++) { |
| 55 | int iSequence = pivotVariable_[i]; |
| 56 | backPivot[iSequence] = i; |
| 57 | } |
| 58 | // dualTolerance may be zero if from CBC. In fact use that fact |
| 59 | bool inCBC = !dualTolerance_; |
| 60 | if (inCBC) |
| 61 | assert (integerType_); |
| 62 | dualTolerance_ = dblParam_[ClpDualTolerance]; |
| 63 | double * arrayX = rowArray_[0]->denseVector(); |
| 64 | for ( i = 0; i < numberCheck; i++) { |
| 65 | rowArray_[0]->clear(); |
| 66 | //rowArray_[0]->checkClear(); |
| 67 | //rowArray_[1]->checkClear(); |
| 68 | //columnArray_[1]->checkClear(); |
| 69 | columnArray_[0]->clear(); |
| 70 | //columnArray_[0]->checkClear(); |
| 71 | int iSequence = which[i]; |
| 72 | if (iSequence < 0) { |
| 73 | costIncreased[i] = 0.0; |
| 74 | sequenceIncreased[i] = -1; |
| 75 | costDecreased[i] = 0.0; |
| 76 | sequenceDecreased[i] = -1; |
| 77 | continue; |
| 78 | } |
| 79 | double costIncrease = COIN_DBL_MAX; |
| 80 | double costDecrease = COIN_DBL_MAX; |
| 81 | int sequenceIncrease = -1; |
| 82 | int sequenceDecrease = -1; |
| 83 | if (valueIncrease) { |
| 84 | assert (valueDecrease); |
| 85 | valueIncrease[i] = iSequence < numberColumns_ ? columnActivity_[iSequence] : rowActivity_[iSequence-numberColumns_]; |
| 86 | valueDecrease[i] = valueIncrease[i]; |
| 87 | } |
| 88 | |
| 89 | switch(getStatus(iSequence)) { |
| 90 | |
| 91 | case basic: { |
| 92 | // non-trvial |
| 93 | // Get pivot row |
| 94 | int iRow = backPivot[iSequence]; |
| 95 | assert (iRow >= 0); |
| 96 | double plusOne = 1.0; |
| 97 | rowArray_[0]->createPacked(1, &iRow, &plusOne); |
| 98 | factorization_->updateColumnTranspose(rowArray_[1], rowArray_[0]); |
| 99 | // put row of tableau in rowArray[0] and columnArray[0] |
| 100 | matrix_->transposeTimes(this, -1.0, |
| 101 | rowArray_[0], columnArray_[1], columnArray_[0]); |
| 102 | double alphaIncrease; |
| 103 | double alphaDecrease; |
| 104 | // do ratio test up and down |
| 105 | checkDualRatios(rowArray_[0], columnArray_[0], costIncrease, sequenceIncrease, alphaIncrease, |
| 106 | costDecrease, sequenceDecrease, alphaDecrease); |
| 107 | if (!inCBC) { |
| 108 | if (valueIncrease) { |
| 109 | if (sequenceIncrease >= 0) |
| 110 | valueIncrease[i] = primalRanging1(sequenceIncrease, iSequence); |
| 111 | if (sequenceDecrease >= 0) |
| 112 | valueDecrease[i] = primalRanging1(sequenceDecrease, iSequence); |
| 113 | } |
| 114 | } else { |
| 115 | int number = rowArray_[0]->getNumElements(); |
| 116 | double scale2 = 0.0; |
| 117 | int j; |
| 118 | for (j = 0; j < number; j++) { |
| 119 | scale2 += arrayX[j] * arrayX[j]; |
| 120 | } |
| 121 | scale2 = 1.0 / sqrt(scale2); |
| 122 | //valueIncrease[i] = scale2; |
| 123 | if (sequenceIncrease >= 0) { |
| 124 | double djValue = dj_[sequenceIncrease]; |
| 125 | if (fabs(djValue) > 10.0 * dualTolerance_) { |
| 126 | // we are going to use for cutoff so be exact |
| 127 | costIncrease = fabs(djValue / alphaIncrease); |
| 128 | /* Not sure this is good idea as I don't think correct e.g. |
| 129 | suppose a continuous variable has dj slightly greater. */ |
| 130 | if(false && sequenceIncrease < numberColumns_ && integerType_[sequenceIncrease]) { |
| 131 | // can improve |
| 132 | double movement = (columnScale_ == NULL) ? 1.0 : |
| 133 | rhsScale_ * inverseColumnScale_[sequenceIncrease]; |
| 134 | costIncrease = CoinMax(fabs(djValue * movement), costIncrease); |
| 135 | } |
| 136 | } else { |
| 137 | costIncrease = 0.0; |
| 138 | } |
| 139 | } |
| 140 | if (sequenceDecrease >= 0) { |
| 141 | double djValue = dj_[sequenceDecrease]; |
| 142 | if (fabs(djValue) > 10.0 * dualTolerance_) { |
| 143 | // we are going to use for cutoff so be exact |
| 144 | costDecrease = fabs(djValue / alphaDecrease); |
| 145 | if(sequenceDecrease < numberColumns_ && integerType_[sequenceDecrease]) { |
| 146 | // can improve |
| 147 | double movement = (columnScale_ == NULL) ? 1.0 : |
| 148 | rhsScale_ * inverseColumnScale_[sequenceDecrease]; |
| 149 | costDecrease = CoinMax(fabs(djValue * movement), costDecrease); |
| 150 | } |
| 151 | } else { |
| 152 | costDecrease = 0.0; |
| 153 | } |
| 154 | } |
| 155 | costIncrease *= scale2; |
| 156 | costDecrease *= scale2; |
| 157 | } |
| 158 | } |
| 159 | break; |
| 160 | case isFixed: |
| 161 | break; |
| 162 | case isFree: |
| 163 | case superBasic: |
| 164 | costIncrease = 0.0; |
| 165 | costDecrease = 0.0; |
| 166 | sequenceIncrease = iSequence; |
| 167 | sequenceDecrease = iSequence; |
| 168 | break; |
| 169 | case atUpperBound: |
| 170 | costIncrease = CoinMax(0.0, -dj_[iSequence]); |
| 171 | sequenceIncrease = iSequence; |
| 172 | if (valueIncrease) |
| 173 | valueIncrease[i] = primalRanging1(iSequence, iSequence); |
| 174 | break; |
| 175 | case atLowerBound: |
| 176 | costDecrease = CoinMax(0.0, dj_[iSequence]); |
| 177 | sequenceDecrease = iSequence; |
| 178 | if (valueIncrease) |
| 179 | valueDecrease[i] = primalRanging1(iSequence, iSequence); |
| 180 | break; |
| 181 | } |
| 182 | double scaleFactor; |
| 183 | if (rowScale_) { |
| 184 | if (iSequence < numberColumns_) |
| 185 | scaleFactor = 1.0 / (objectiveScale_ * columnScale_[iSequence]); |
| 186 | else |
| 187 | scaleFactor = rowScale_[iSequence-numberColumns_] / objectiveScale_; |
| 188 | } else { |
| 189 | scaleFactor = 1.0 / objectiveScale_; |
| 190 | } |
| 191 | if (costIncrease < 1.0e30) |
| 192 | costIncrease *= scaleFactor; |
| 193 | if (costDecrease < 1.0e30) |
| 194 | costDecrease *= scaleFactor; |
| 195 | if (optimizationDirection_ == 1.0) { |
| 196 | costIncreased[i] = costIncrease; |
| 197 | sequenceIncreased[i] = sequenceIncrease; |
| 198 | costDecreased[i] = costDecrease; |
| 199 | sequenceDecreased[i] = sequenceDecrease; |
| 200 | } else if (optimizationDirection_ == -1.0) { |
| 201 | costIncreased[i] = costDecrease; |
| 202 | sequenceIncreased[i] = sequenceDecrease; |
| 203 | costDecreased[i] = costIncrease; |
| 204 | sequenceDecreased[i] = sequenceIncrease; |
| 205 | if (valueIncrease) { |
| 206 | double temp = valueIncrease[i]; |
| 207 | valueIncrease[i] = valueDecrease[i]; |
| 208 | valueDecrease[i] = temp; |
| 209 | } |
| 210 | } else if (optimizationDirection_ == 0.0) { |
| 211 | // !!!!!! ??? |
| 212 | costIncreased[i] = COIN_DBL_MAX; |
| 213 | sequenceIncreased[i] = -1; |
| 214 | costDecreased[i] = COIN_DBL_MAX; |
| 215 | sequenceDecreased[i] = -1; |
| 216 | } else { |
| 217 | abort(); |
| 218 | } |
| 219 | } |
| 220 | rowArray_[0]->clear(); |
| 221 | //rowArray_[1]->clear(); |
| 222 | //columnArray_[1]->clear(); |
| 223 | columnArray_[0]->clear(); |
| 224 | //rowArray_[3]->clear(); |
| 225 | if (!optimizationDirection_) |
| 226 | printf("*** ????? Ranging with zero optimization costs\n" ); |
| 227 | } |
| 228 | /* |
| 229 | Row array has row part of pivot row |
| 230 | Column array has column part. |
| 231 | This is used in dual ranging |
| 232 | */ |
| 233 | void |
| 234 | ClpSimplexOther::checkDualRatios(CoinIndexedVector * rowArray, |
| 235 | CoinIndexedVector * columnArray, |
| 236 | double & costIncrease, int & sequenceIncrease, double & alphaIncrease, |
| 237 | double & costDecrease, int & sequenceDecrease, double & alphaDecrease) |
| 238 | { |
| 239 | double acceptablePivot = 1.0e-9; |
| 240 | double * work; |
| 241 | int number; |
| 242 | int * which; |
| 243 | int iSection; |
| 244 | |
| 245 | double thetaDown = 1.0e31; |
| 246 | double thetaUp = 1.0e31; |
| 247 | int sequenceDown = -1; |
| 248 | int sequenceUp = -1; |
| 249 | double alphaDown = 0.0; |
| 250 | double alphaUp = 0.0; |
| 251 | |
| 252 | int addSequence; |
| 253 | |
| 254 | for (iSection = 0; iSection < 2; iSection++) { |
| 255 | |
| 256 | int i; |
| 257 | if (!iSection) { |
| 258 | work = rowArray->denseVector(); |
| 259 | number = rowArray->getNumElements(); |
| 260 | which = rowArray->getIndices(); |
| 261 | addSequence = numberColumns_; |
| 262 | } else { |
| 263 | work = columnArray->denseVector(); |
| 264 | number = columnArray->getNumElements(); |
| 265 | which = columnArray->getIndices(); |
| 266 | addSequence = 0; |
| 267 | } |
| 268 | |
| 269 | for (i = 0; i < number; i++) { |
| 270 | int iSequence = which[i]; |
| 271 | int iSequence2 = iSequence + addSequence; |
| 272 | double alpha = work[i]; |
| 273 | if (fabs(alpha) < acceptablePivot) |
| 274 | continue; |
| 275 | double oldValue = dj_[iSequence2]; |
| 276 | |
| 277 | switch(getStatus(iSequence2)) { |
| 278 | |
| 279 | case basic: |
| 280 | break; |
| 281 | case ClpSimplex::isFixed: |
| 282 | break; |
| 283 | case isFree: |
| 284 | case superBasic: |
| 285 | // treat dj as if zero |
| 286 | thetaDown = 0.0; |
| 287 | thetaUp = 0.0; |
| 288 | sequenceDown = iSequence2; |
| 289 | sequenceUp = iSequence2; |
| 290 | break; |
| 291 | case atUpperBound: |
| 292 | if (alpha > 0.0) { |
| 293 | // test up |
| 294 | if (oldValue + thetaUp * alpha > dualTolerance_) { |
| 295 | thetaUp = (dualTolerance_ - oldValue) / alpha; |
| 296 | sequenceUp = iSequence2; |
| 297 | alphaUp = alpha; |
| 298 | } |
| 299 | } else { |
| 300 | // test down |
| 301 | if (oldValue - thetaDown * alpha > dualTolerance_) { |
| 302 | thetaDown = -(dualTolerance_ - oldValue) / alpha; |
| 303 | sequenceDown = iSequence2; |
| 304 | alphaDown = alpha; |
| 305 | } |
| 306 | } |
| 307 | break; |
| 308 | case atLowerBound: |
| 309 | if (alpha < 0.0) { |
| 310 | // test up |
| 311 | if (oldValue + thetaUp * alpha < - dualTolerance_) { |
| 312 | thetaUp = -(dualTolerance_ + oldValue) / alpha; |
| 313 | sequenceUp = iSequence2; |
| 314 | alphaUp = alpha; |
| 315 | } |
| 316 | } else { |
| 317 | // test down |
| 318 | if (oldValue - thetaDown * alpha < -dualTolerance_) { |
| 319 | thetaDown = (dualTolerance_ + oldValue) / alpha; |
| 320 | sequenceDown = iSequence2; |
| 321 | alphaDown = alpha; |
| 322 | } |
| 323 | } |
| 324 | break; |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | if (sequenceUp >= 0) { |
| 329 | costIncrease = thetaUp; |
| 330 | sequenceIncrease = sequenceUp; |
| 331 | alphaIncrease = alphaUp; |
| 332 | } |
| 333 | if (sequenceDown >= 0) { |
| 334 | costDecrease = thetaDown; |
| 335 | sequenceDecrease = sequenceDown; |
| 336 | alphaDecrease = alphaDown; |
| 337 | } |
| 338 | } |
| 339 | /** Primal ranging. |
| 340 | This computes increase/decrease in value for each given variable and corresponding |
| 341 | sequence numbers which would change basis. Sequence numbers are 0..numberColumns |
| 342 | and numberColumns.. for artificials/slacks. |
| 343 | For basic variables the sequence number will be that of the basic variables. |
| 344 | |
| 345 | Up to user to provide correct length arrays. |
| 346 | |
| 347 | When here - guaranteed optimal |
| 348 | */ |
| 349 | void |
| 350 | ClpSimplexOther::primalRanging(int numberCheck, const int * which, |
| 351 | double * valueIncreased, int * sequenceIncreased, |
| 352 | double * valueDecreased, int * sequenceDecreased) |
| 353 | { |
| 354 | rowArray_[0]->clear(); |
| 355 | rowArray_[1]->clear(); |
| 356 | lowerIn_ = -COIN_DBL_MAX; |
| 357 | upperIn_ = COIN_DBL_MAX; |
| 358 | valueIn_ = 0.0; |
| 359 | for ( int i = 0; i < numberCheck; i++) { |
| 360 | int iSequence = which[i]; |
| 361 | double valueIncrease = COIN_DBL_MAX; |
| 362 | double valueDecrease = COIN_DBL_MAX; |
| 363 | int sequenceIncrease = -1; |
| 364 | int sequenceDecrease = -1; |
| 365 | |
| 366 | switch(getStatus(iSequence)) { |
| 367 | |
| 368 | case basic: |
| 369 | case isFree: |
| 370 | case superBasic: |
| 371 | // Easy |
| 372 | valueDecrease = CoinMax(0.0, upper_[iSequence] - solution_[iSequence]); |
| 373 | valueIncrease = CoinMax(0.0, solution_[iSequence] - lower_[iSequence]); |
| 374 | sequenceDecrease = iSequence; |
| 375 | sequenceIncrease = iSequence; |
| 376 | break; |
| 377 | case isFixed: |
| 378 | case atUpperBound: |
| 379 | case atLowerBound: { |
| 380 | // Non trivial |
| 381 | // Other bound is ignored |
| 382 | unpackPacked(rowArray_[1], iSequence); |
| 383 | factorization_->updateColumn(rowArray_[2], rowArray_[1]); |
| 384 | // Get extra rows |
| 385 | matrix_->extendUpdated(this, rowArray_[1], 0); |
| 386 | // do ratio test |
| 387 | checkPrimalRatios(rowArray_[1], 1); |
| 388 | if (pivotRow_ >= 0) { |
| 389 | valueIncrease = theta_; |
| 390 | sequenceIncrease = pivotVariable_[pivotRow_]; |
| 391 | } |
| 392 | checkPrimalRatios(rowArray_[1], -1); |
| 393 | if (pivotRow_ >= 0) { |
| 394 | valueDecrease = theta_; |
| 395 | sequenceDecrease = pivotVariable_[pivotRow_]; |
| 396 | } |
| 397 | rowArray_[1]->clear(); |
| 398 | } |
| 399 | break; |
| 400 | } |
| 401 | double scaleFactor; |
| 402 | if (rowScale_) { |
| 403 | if (iSequence < numberColumns_) |
| 404 | scaleFactor = columnScale_[iSequence] / rhsScale_; |
| 405 | else |
| 406 | scaleFactor = 1.0 / (rowScale_[iSequence-numberColumns_] * rhsScale_); |
| 407 | } else { |
| 408 | scaleFactor = 1.0 / rhsScale_; |
| 409 | } |
| 410 | if (valueIncrease < 1.0e30) |
| 411 | valueIncrease *= scaleFactor; |
| 412 | else |
| 413 | valueIncrease = COIN_DBL_MAX; |
| 414 | if (valueDecrease < 1.0e30) |
| 415 | valueDecrease *= scaleFactor; |
| 416 | else |
| 417 | valueDecrease = COIN_DBL_MAX; |
| 418 | valueIncreased[i] = valueIncrease; |
| 419 | sequenceIncreased[i] = sequenceIncrease; |
| 420 | valueDecreased[i] = valueDecrease; |
| 421 | sequenceDecreased[i] = sequenceDecrease; |
| 422 | } |
| 423 | } |
| 424 | // Returns new value of whichOther when whichIn enters basis |
| 425 | double |
| 426 | ClpSimplexOther::primalRanging1(int whichIn, int whichOther) |
| 427 | { |
| 428 | rowArray_[0]->clear(); |
| 429 | rowArray_[1]->clear(); |
| 430 | int iSequence = whichIn; |
| 431 | double newValue = solution_[whichOther]; |
| 432 | double alphaOther = 0.0; |
| 433 | Status status = getStatus(iSequence); |
| 434 | assert (status == atLowerBound || status == atUpperBound); |
| 435 | int wayIn = (status == atLowerBound) ? 1 : -1; |
| 436 | |
| 437 | switch(getStatus(iSequence)) { |
| 438 | |
| 439 | case basic: |
| 440 | case isFree: |
| 441 | case superBasic: |
| 442 | assert (whichIn == whichOther); |
| 443 | // Easy |
| 444 | newValue = wayIn > 0 ? upper_[iSequence] : lower_[iSequence]; |
| 445 | break; |
| 446 | case isFixed: |
| 447 | case atUpperBound: |
| 448 | case atLowerBound: |
| 449 | // Non trivial |
| 450 | { |
| 451 | // Other bound is ignored |
| 452 | unpackPacked(rowArray_[1], iSequence); |
| 453 | factorization_->updateColumn(rowArray_[2], rowArray_[1]); |
| 454 | // Get extra rows |
| 455 | matrix_->extendUpdated(this, rowArray_[1], 0); |
| 456 | // do ratio test |
| 457 | double acceptablePivot = 1.0e-7; |
| 458 | double * work = rowArray_[1]->denseVector(); |
| 459 | int number = rowArray_[1]->getNumElements(); |
| 460 | int * which = rowArray_[1]->getIndices(); |
| 461 | |
| 462 | // we may need to swap sign |
| 463 | double way = wayIn; |
| 464 | double theta = 1.0e30; |
| 465 | for (int iIndex = 0; iIndex < number; iIndex++) { |
| 466 | |
| 467 | int iRow = which[iIndex]; |
| 468 | double alpha = work[iIndex] * way; |
| 469 | int iPivot = pivotVariable_[iRow]; |
| 470 | if (iPivot == whichOther) { |
| 471 | alphaOther = alpha; |
| 472 | continue; |
| 473 | } |
| 474 | double oldValue = solution_[iPivot]; |
| 475 | if (fabs(alpha) > acceptablePivot) { |
| 476 | if (alpha > 0.0) { |
| 477 | // basic variable going towards lower bound |
| 478 | double bound = lower_[iPivot]; |
| 479 | oldValue -= bound; |
| 480 | if (oldValue - theta * alpha < 0.0) { |
| 481 | theta = CoinMax(0.0, oldValue / alpha); |
| 482 | } |
| 483 | } else { |
| 484 | // basic variable going towards upper bound |
| 485 | double bound = upper_[iPivot]; |
| 486 | oldValue = oldValue - bound; |
| 487 | if (oldValue - theta * alpha > 0.0) { |
| 488 | theta = CoinMax(0.0, oldValue / alpha); |
| 489 | } |
| 490 | } |
| 491 | } |
| 492 | } |
| 493 | if (whichIn != whichOther) { |
| 494 | if (theta < 1.0e30) |
| 495 | newValue -= theta * alphaOther; |
| 496 | else |
| 497 | newValue = alphaOther > 0.0 ? -1.0e30 : 1.0e30; |
| 498 | } else { |
| 499 | newValue += theta * wayIn; |
| 500 | } |
| 501 | } |
| 502 | rowArray_[1]->clear(); |
| 503 | break; |
| 504 | } |
| 505 | double scaleFactor; |
| 506 | if (rowScale_) { |
| 507 | if (whichOther < numberColumns_) |
| 508 | scaleFactor = columnScale_[whichOther] / rhsScale_; |
| 509 | else |
| 510 | scaleFactor = 1.0 / (rowScale_[whichOther-numberColumns_] * rhsScale_); |
| 511 | } else { |
| 512 | scaleFactor = 1.0 / rhsScale_; |
| 513 | } |
| 514 | if (newValue < 1.0e29) |
| 515 | if (newValue > -1.0e29) |
| 516 | newValue *= scaleFactor; |
| 517 | else |
| 518 | newValue = -COIN_DBL_MAX; |
| 519 | else |
| 520 | newValue = COIN_DBL_MAX; |
| 521 | return newValue; |
| 522 | } |
| 523 | /* |
| 524 | Row array has pivot column |
| 525 | This is used in primal ranging |
| 526 | */ |
| 527 | void |
| 528 | ClpSimplexOther::checkPrimalRatios(CoinIndexedVector * rowArray, |
| 529 | int direction) |
| 530 | { |
| 531 | // sequence stays as row number until end |
| 532 | pivotRow_ = -1; |
| 533 | double acceptablePivot = 1.0e-7; |
| 534 | double * work = rowArray->denseVector(); |
| 535 | int number = rowArray->getNumElements(); |
| 536 | int * which = rowArray->getIndices(); |
| 537 | |
| 538 | // we need to swap sign if going down |
| 539 | double way = direction; |
| 540 | theta_ = 1.0e30; |
| 541 | for (int iIndex = 0; iIndex < number; iIndex++) { |
| 542 | |
| 543 | int iRow = which[iIndex]; |
| 544 | double alpha = work[iIndex] * way; |
| 545 | int iPivot = pivotVariable_[iRow]; |
| 546 | double oldValue = solution_[iPivot]; |
| 547 | if (fabs(alpha) > acceptablePivot) { |
| 548 | if (alpha > 0.0) { |
| 549 | // basic variable going towards lower bound |
| 550 | double bound = lower_[iPivot]; |
| 551 | oldValue -= bound; |
| 552 | if (oldValue - theta_ * alpha < 0.0) { |
| 553 | pivotRow_ = iRow; |
| 554 | theta_ = CoinMax(0.0, oldValue / alpha); |
| 555 | } |
| 556 | } else { |
| 557 | // basic variable going towards upper bound |
| 558 | double bound = upper_[iPivot]; |
| 559 | oldValue = oldValue - bound; |
| 560 | if (oldValue - theta_ * alpha > 0.0) { |
| 561 | pivotRow_ = iRow; |
| 562 | theta_ = CoinMax(0.0, oldValue / alpha); |
| 563 | } |
| 564 | } |
| 565 | } |
| 566 | } |
| 567 | } |
| 568 | /* Write the basis in MPS format to the specified file. |
| 569 | If writeValues true writes values of structurals |
| 570 | (and adds VALUES to end of NAME card) |
| 571 | |
| 572 | Row and column names may be null. |
| 573 | formatType is |
| 574 | <ul> |
| 575 | <li> 0 - normal |
| 576 | <li> 1 - extra accuracy |
| 577 | <li> 2 - IEEE hex (later) |
| 578 | </ul> |
| 579 | |
| 580 | Returns non-zero on I/O error |
| 581 | |
| 582 | This is based on code contributed by Thorsten Koch |
| 583 | */ |
| 584 | int |
| 585 | ClpSimplexOther::writeBasis(const char *filename, |
| 586 | bool writeValues, |
| 587 | int formatType) const |
| 588 | { |
| 589 | formatType = CoinMax(0, formatType); |
| 590 | formatType = CoinMin(2, formatType); |
| 591 | if (!writeValues) |
| 592 | formatType = 0; |
| 593 | // See if INTEL if IEEE |
| 594 | if (formatType == 2) { |
| 595 | // test intel here and add 1 if not intel |
| 596 | double value = 1.0; |
| 597 | char x[8]; |
| 598 | memcpy(x, &value, 8); |
| 599 | if (x[0] == 63) { |
| 600 | formatType ++; // not intel |
| 601 | } else { |
| 602 | assert (x[0] == 0); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | char number[20]; |
| 607 | FILE * fp = fopen(filename, "w" ); |
| 608 | if (!fp) |
| 609 | return -1; |
| 610 | |
| 611 | // NAME card |
| 612 | |
| 613 | if (strcmp(strParam_[ClpProbName].c_str(), "" ) == 0) { |
| 614 | fprintf(fp, "NAME BLANK " ); |
| 615 | } else { |
| 616 | fprintf(fp, "NAME %s " , strParam_[ClpProbName].c_str()); |
| 617 | } |
| 618 | if (formatType >= 2) |
| 619 | fprintf(fp, "FREEIEEE" ); |
| 620 | else if (writeValues) |
| 621 | fprintf(fp, "VALUES" ); |
| 622 | // finish off name |
| 623 | fprintf(fp, "\n" ); |
| 624 | int iRow = 0; |
| 625 | for(int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 626 | bool printit = false; |
| 627 | if( getColumnStatus(iColumn) == ClpSimplex::basic) { |
| 628 | printit = true; |
| 629 | // Find non basic row |
| 630 | for(; iRow < numberRows_; iRow++) { |
| 631 | if (getRowStatus(iRow) != ClpSimplex::basic) |
| 632 | break; |
| 633 | } |
| 634 | if (lengthNames_) { |
| 635 | if (iRow != numberRows_) { |
| 636 | fprintf(fp, " %s %-8s %s" , |
| 637 | getRowStatus(iRow) == ClpSimplex::atUpperBound ? "XU" : "XL" , |
| 638 | columnNames_[iColumn].c_str(), |
| 639 | rowNames_[iRow].c_str()); |
| 640 | iRow++; |
| 641 | } else { |
| 642 | // Allow for too many basics! |
| 643 | fprintf(fp, " BS %-8s " , |
| 644 | columnNames_[iColumn].c_str()); |
| 645 | // Dummy row name if values |
| 646 | if (writeValues) |
| 647 | fprintf(fp, " _dummy_" ); |
| 648 | } |
| 649 | } else { |
| 650 | // no names |
| 651 | if (iRow != numberRows_) { |
| 652 | fprintf(fp, " %s C%7.7d R%7.7d" , |
| 653 | getRowStatus(iRow) == ClpSimplex::atUpperBound ? "XU" : "XL" , |
| 654 | iColumn, iRow); |
| 655 | iRow++; |
| 656 | } else { |
| 657 | // Allow for too many basics! |
| 658 | fprintf(fp, " BS C%7.7d" , iColumn); |
| 659 | // Dummy row name if values |
| 660 | if (writeValues) |
| 661 | fprintf(fp, " _dummy_" ); |
| 662 | } |
| 663 | } |
| 664 | } else { |
| 665 | if( getColumnStatus(iColumn) == ClpSimplex::atUpperBound) { |
| 666 | printit = true; |
| 667 | if (lengthNames_) |
| 668 | fprintf(fp, " UL %s" , columnNames_[iColumn].c_str()); |
| 669 | else |
| 670 | fprintf(fp, " UL C%7.7d" , iColumn); |
| 671 | // Dummy row name if values |
| 672 | if (writeValues) |
| 673 | fprintf(fp, " _dummy_" ); |
| 674 | } |
| 675 | } |
| 676 | if (printit && writeValues) { |
| 677 | // add value |
| 678 | CoinConvertDouble(0, formatType, columnActivity_[iColumn], number); |
| 679 | fprintf(fp, " %s" , number); |
| 680 | } |
| 681 | if (printit) |
| 682 | fprintf(fp, "\n" ); |
| 683 | } |
| 684 | fprintf(fp, "ENDATA\n" ); |
| 685 | fclose(fp); |
| 686 | return 0; |
| 687 | } |
| 688 | // Read a basis from the given filename |
| 689 | int |
| 690 | ClpSimplexOther::readBasis(const char *fileName) |
| 691 | { |
| 692 | int status = 0; |
| 693 | bool canOpen = false; |
| 694 | if (!strcmp(fileName, "-" ) || !strcmp(fileName, "stdin" )) { |
| 695 | // stdin |
| 696 | canOpen = true; |
| 697 | } else { |
| 698 | FILE *fp = fopen(fileName, "r" ); |
| 699 | if (fp) { |
| 700 | // can open - lets go for it |
| 701 | fclose(fp); |
| 702 | canOpen = true; |
| 703 | } else { |
| 704 | handler_->message(CLP_UNABLE_OPEN, messages_) |
| 705 | << fileName << CoinMessageEol; |
| 706 | return -1; |
| 707 | } |
| 708 | } |
| 709 | CoinMpsIO m; |
| 710 | m.passInMessageHandler(handler_); |
| 711 | *m.messagesPointer() = coinMessages(); |
| 712 | bool savePrefix = m.messageHandler()->prefix(); |
| 713 | m.messageHandler()->setPrefix(handler_->prefix()); |
| 714 | status = m.readBasis(fileName, "" , columnActivity_, status_ + numberColumns_, |
| 715 | status_, |
| 716 | columnNames_, numberColumns_, |
| 717 | rowNames_, numberRows_); |
| 718 | m.messageHandler()->setPrefix(savePrefix); |
| 719 | if (status >= 0) { |
| 720 | if (!status) { |
| 721 | // set values |
| 722 | int iColumn, iRow; |
| 723 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 724 | if (getRowStatus(iRow) == atLowerBound) |
| 725 | rowActivity_[iRow] = rowLower_[iRow]; |
| 726 | else if (getRowStatus(iRow) == atUpperBound) |
| 727 | rowActivity_[iRow] = rowUpper_[iRow]; |
| 728 | } |
| 729 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 730 | if (getColumnStatus(iColumn) == atLowerBound) |
| 731 | columnActivity_[iColumn] = columnLower_[iColumn]; |
| 732 | else if (getColumnStatus(iColumn) == atUpperBound) |
| 733 | columnActivity_[iColumn] = columnUpper_[iColumn]; |
| 734 | } |
| 735 | } else { |
| 736 | memset(rowActivity_, 0, numberRows_ * sizeof(double)); |
| 737 | matrix_->times(-1.0, columnActivity_, rowActivity_); |
| 738 | } |
| 739 | } else { |
| 740 | // errors |
| 741 | handler_->message(CLP_IMPORT_ERRORS, messages_) |
| 742 | << status << fileName << CoinMessageEol; |
| 743 | } |
| 744 | return status; |
| 745 | } |
| 746 | /* Creates dual of a problem if looks plausible |
| 747 | (defaults will always create model) |
| 748 | fractionRowRanges is fraction of rows allowed to have ranges |
| 749 | fractionColumnRanges is fraction of columns allowed to have ranges |
| 750 | */ |
| 751 | ClpSimplex * |
| 752 | ClpSimplexOther::dualOfModel(double fractionRowRanges, double fractionColumnRanges) const |
| 753 | { |
| 754 | const ClpSimplex * model2 = static_cast<const ClpSimplex *> (this); |
| 755 | bool changed = false; |
| 756 | int numberChanged = 0; |
| 757 | int iColumn; |
| 758 | // check if we need to change bounds to rows |
| 759 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 760 | if (columnUpper_[iColumn] < 1.0e20 && |
| 761 | columnLower_[iColumn] > -1.0e20) { |
| 762 | changed = true; |
| 763 | numberChanged++; |
| 764 | } |
| 765 | } |
| 766 | int iRow; |
| 767 | int = 0; |
| 768 | if (numberChanged <= fractionColumnRanges * numberColumns_) { |
| 769 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 770 | if (rowLower_[iRow] > -1.0e20 && |
| 771 | rowUpper_[iRow] < 1.0e20) { |
| 772 | if (rowUpper_[iRow] != rowLower_[iRow]) |
| 773 | numberExtraRows++; |
| 774 | } |
| 775 | } |
| 776 | if (numberExtraRows > fractionRowRanges * numberRows_) |
| 777 | return NULL; |
| 778 | } else { |
| 779 | return NULL; |
| 780 | } |
| 781 | if (changed) { |
| 782 | ClpSimplex * model3 = new ClpSimplex(*model2); |
| 783 | CoinBuild build; |
| 784 | double one = 1.0; |
| 785 | int numberColumns = model3->numberColumns(); |
| 786 | const double * columnLower = model3->columnLower(); |
| 787 | const double * columnUpper = model3->columnUpper(); |
| 788 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 789 | if (columnUpper[iColumn] < 1.0e20 && |
| 790 | columnLower[iColumn] > -1.0e20) { |
| 791 | if (fabs(columnLower[iColumn]) < fabs(columnUpper[iColumn])) { |
| 792 | double value = columnUpper[iColumn]; |
| 793 | model3->setColumnUpper(iColumn, COIN_DBL_MAX); |
| 794 | build.addRow(1, &iColumn, &one, -COIN_DBL_MAX, value); |
| 795 | } else { |
| 796 | double value = columnLower[iColumn]; |
| 797 | model3->setColumnLower(iColumn, -COIN_DBL_MAX); |
| 798 | build.addRow(1, &iColumn, &one, value, COIN_DBL_MAX); |
| 799 | } |
| 800 | } |
| 801 | } |
| 802 | model3->addRows(build); |
| 803 | model2 = model3; |
| 804 | } |
| 805 | int numberColumns = model2->numberColumns(); |
| 806 | const double * columnLower = model2->columnLower(); |
| 807 | const double * columnUpper = model2->columnUpper(); |
| 808 | int numberRows = model2->numberRows(); |
| 809 | double * rowLower = CoinCopyOfArray(model2->rowLower(), numberRows); |
| 810 | double * rowUpper = CoinCopyOfArray(model2->rowUpper(), numberRows); |
| 811 | |
| 812 | const double * objective = model2->objective(); |
| 813 | CoinPackedMatrix * matrix = model2->matrix(); |
| 814 | // get transpose |
| 815 | CoinPackedMatrix rowCopy = *matrix; |
| 816 | const int * row = matrix->getIndices(); |
| 817 | const int * columnLength = matrix->getVectorLengths(); |
| 818 | const CoinBigIndex * columnStart = matrix->getVectorStarts(); |
| 819 | const double * elementByColumn = matrix->getElements(); |
| 820 | double objOffset = 0.0; |
| 821 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 822 | double offset = 0.0; |
| 823 | double objValue = optimizationDirection_ * objective[iColumn]; |
| 824 | if (columnUpper[iColumn] > 1.0e20) { |
| 825 | if (columnLower[iColumn] > -1.0e20) |
| 826 | offset = columnLower[iColumn]; |
| 827 | } else if (columnLower[iColumn] < -1.0e20) { |
| 828 | offset = columnUpper[iColumn]; |
| 829 | } else { |
| 830 | // taken care of before |
| 831 | abort(); |
| 832 | } |
| 833 | if (offset) { |
| 834 | objOffset += offset * objValue; |
| 835 | for (CoinBigIndex j = columnStart[iColumn]; |
| 836 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 837 | int iRow = row[j]; |
| 838 | if (rowLower[iRow] > -1.0e20) |
| 839 | rowLower[iRow] -= offset * elementByColumn[j]; |
| 840 | if (rowUpper[iRow] < 1.0e20) |
| 841 | rowUpper[iRow] -= offset * elementByColumn[j]; |
| 842 | } |
| 843 | } |
| 844 | } |
| 845 | int * which = new int[numberRows+numberExtraRows]; |
| 846 | rowCopy.reverseOrdering(); |
| 847 | rowCopy.transpose(); |
| 848 | double * fromRowsLower = new double[numberRows+numberExtraRows]; |
| 849 | double * fromRowsUpper = new double[numberRows+numberExtraRows]; |
| 850 | double * newObjective = new double[numberRows+numberExtraRows]; |
| 851 | double * fromColumnsLower = new double[numberColumns]; |
| 852 | double * fromColumnsUpper = new double[numberColumns]; |
| 853 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 854 | double objValue = optimizationDirection_ * objective[iColumn]; |
| 855 | // Offset is already in |
| 856 | if (columnUpper[iColumn] > 1.0e20) { |
| 857 | if (columnLower[iColumn] > -1.0e20) { |
| 858 | fromColumnsLower[iColumn] = -COIN_DBL_MAX; |
| 859 | fromColumnsUpper[iColumn] = objValue; |
| 860 | } else { |
| 861 | // free |
| 862 | fromColumnsLower[iColumn] = objValue; |
| 863 | fromColumnsUpper[iColumn] = objValue; |
| 864 | } |
| 865 | } else if (columnLower[iColumn] < -1.0e20) { |
| 866 | fromColumnsLower[iColumn] = objValue; |
| 867 | fromColumnsUpper[iColumn] = COIN_DBL_MAX; |
| 868 | } else { |
| 869 | abort(); |
| 870 | } |
| 871 | } |
| 872 | int kRow = 0; |
| 873 | int = numberRows; |
| 874 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 875 | if (rowLower[iRow] < -1.0e20) { |
| 876 | assert (rowUpper[iRow] < 1.0e20); |
| 877 | newObjective[kRow] = -rowUpper[iRow]; |
| 878 | fromRowsLower[kRow] = -COIN_DBL_MAX; |
| 879 | fromRowsUpper[kRow] = 0.0; |
| 880 | which[kRow] = iRow; |
| 881 | kRow++; |
| 882 | } else if (rowUpper[iRow] > 1.0e20) { |
| 883 | newObjective[kRow] = -rowLower[iRow]; |
| 884 | fromRowsLower[kRow] = 0.0; |
| 885 | fromRowsUpper[kRow] = COIN_DBL_MAX; |
| 886 | which[kRow] = iRow; |
| 887 | kRow++; |
| 888 | } else { |
| 889 | if (rowUpper[iRow] == rowLower[iRow]) { |
| 890 | newObjective[kRow] = -rowLower[iRow]; |
| 891 | fromRowsLower[kRow] = -COIN_DBL_MAX; |
| 892 | fromRowsUpper[kRow] = COIN_DBL_MAX; |
| 893 | which[kRow] = iRow; |
| 894 | kRow++; |
| 895 | } else { |
| 896 | // range |
| 897 | newObjective[kRow] = -rowUpper[iRow]; |
| 898 | fromRowsLower[kRow] = -COIN_DBL_MAX; |
| 899 | fromRowsUpper[kRow] = 0.0; |
| 900 | which[kRow] = iRow; |
| 901 | kRow++; |
| 902 | newObjective[kExtraRow] = -rowLower[iRow]; |
| 903 | fromRowsLower[kExtraRow] = 0.0; |
| 904 | fromRowsUpper[kExtraRow] = COIN_DBL_MAX; |
| 905 | which[kExtraRow] = iRow; |
| 906 | kExtraRow++; |
| 907 | } |
| 908 | } |
| 909 | } |
| 910 | if (numberExtraRows) { |
| 911 | CoinPackedMatrix newCopy; |
| 912 | newCopy.setExtraGap(0.0); |
| 913 | newCopy.setExtraMajor(0.0); |
| 914 | newCopy.submatrixOfWithDuplicates(rowCopy, kExtraRow, which); |
| 915 | rowCopy = newCopy; |
| 916 | } |
| 917 | ClpSimplex * modelDual = new ClpSimplex(); |
| 918 | modelDual->loadProblem(rowCopy, fromRowsLower, fromRowsUpper, newObjective, |
| 919 | fromColumnsLower, fromColumnsUpper); |
| 920 | modelDual->setObjectiveOffset(objOffset); |
| 921 | modelDual->setDualBound(model2->dualBound()); |
| 922 | modelDual->setInfeasibilityCost(model2->infeasibilityCost()); |
| 923 | modelDual->setDualTolerance(model2->dualTolerance()); |
| 924 | modelDual->setPrimalTolerance(model2->primalTolerance()); |
| 925 | modelDual->setPerturbation(model2->perturbation()); |
| 926 | modelDual->setSpecialOptions(model2->specialOptions()); |
| 927 | modelDual->setMoreSpecialOptions(model2->moreSpecialOptions()); |
| 928 | delete [] fromRowsLower; |
| 929 | delete [] fromRowsUpper; |
| 930 | delete [] fromColumnsLower; |
| 931 | delete [] fromColumnsUpper; |
| 932 | delete [] newObjective; |
| 933 | delete [] which; |
| 934 | delete [] rowLower; |
| 935 | delete [] rowUpper; |
| 936 | if (changed) |
| 937 | delete model2; |
| 938 | modelDual->createStatus(); |
| 939 | return modelDual; |
| 940 | } |
| 941 | // Restores solution from dualized problem |
| 942 | int |
| 943 | ClpSimplexOther::restoreFromDual(const ClpSimplex * dualProblem) |
| 944 | { |
| 945 | int returnCode = 0; |
| 946 | createStatus(); |
| 947 | // Number of rows in dual problem was original number of columns |
| 948 | assert (numberColumns_ == dualProblem->numberRows()); |
| 949 | // If slack on d-row basic then column at bound otherwise column basic |
| 950 | // If d-column basic then rhs tight |
| 951 | int numberBasic = 0; |
| 952 | int iRow, iColumn = 0; |
| 953 | // Get number of extra rows from ranges |
| 954 | int = 0; |
| 955 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 956 | if (rowLower_[iRow] > -1.0e20 && |
| 957 | rowUpper_[iRow] < 1.0e20) { |
| 958 | if (rowUpper_[iRow] != rowLower_[iRow]) |
| 959 | numberExtraRows++; |
| 960 | } |
| 961 | } |
| 962 | const double * objective = this->objective(); |
| 963 | const double * dualDual = dualProblem->dualRowSolution(); |
| 964 | const double * dualDj = dualProblem->dualColumnSolution(); |
| 965 | const double * dualSol = dualProblem->primalColumnSolution(); |
| 966 | const double * dualActs = dualProblem->primalRowSolution(); |
| 967 | #if 0 |
| 968 | ClpSimplex thisCopy = *this; |
| 969 | thisCopy.dual(); // for testing |
| 970 | const double * primalDual = thisCopy.dualRowSolution(); |
| 971 | const double * primalDj = thisCopy.dualColumnSolution(); |
| 972 | const double * primalSol = thisCopy.primalColumnSolution(); |
| 973 | const double * primalActs = thisCopy.primalRowSolution(); |
| 974 | char ss[] = {'F', 'B', 'U', 'L', 'S', 'F'}; |
| 975 | printf ("Dual problem row info %d rows\n" , dualProblem->numberRows()); |
| 976 | for (iRow = 0; iRow < dualProblem->numberRows(); iRow++) |
| 977 | printf("%d at %c primal %g dual %g\n" , |
| 978 | iRow, ss[dualProblem->getRowStatus(iRow)], |
| 979 | dualActs[iRow], dualDual[iRow]); |
| 980 | printf ("Dual problem column info %d columns\n" , dualProblem->numberColumns()); |
| 981 | for (iColumn = 0; iColumn < dualProblem->numberColumns(); iColumn++) |
| 982 | printf("%d at %c primal %g dual %g\n" , |
| 983 | iColumn, ss[dualProblem->getColumnStatus(iColumn)], |
| 984 | dualSol[iColumn], dualDj[iColumn]); |
| 985 | printf ("Primal problem row info %d rows\n" , thisCopy.numberRows()); |
| 986 | for (iRow = 0; iRow < thisCopy.numberRows(); iRow++) |
| 987 | printf("%d at %c primal %g dual %g\n" , |
| 988 | iRow, ss[thisCopy.getRowStatus(iRow)], |
| 989 | primalActs[iRow], primalDual[iRow]); |
| 990 | printf ("Primal problem column info %d columns\n" , thisCopy.numberColumns()); |
| 991 | for (iColumn = 0; iColumn < thisCopy.numberColumns(); iColumn++) |
| 992 | printf("%d at %c primal %g dual %g\n" , |
| 993 | iColumn, ss[thisCopy.getColumnStatus(iColumn)], |
| 994 | primalSol[iColumn], primalDj[iColumn]); |
| 995 | #endif |
| 996 | // position at bound information |
| 997 | int jColumn = numberRows_; |
| 998 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 999 | double objValue = optimizationDirection_ * objective[iColumn]; |
| 1000 | Status status = dualProblem->getRowStatus(iColumn); |
| 1001 | double otherValue = COIN_DBL_MAX; |
| 1002 | if (columnUpper_[iColumn] < 1.0e20 && |
| 1003 | columnLower_[iColumn] > -1.0e20) { |
| 1004 | if (fabs(columnLower_[iColumn]) < fabs(columnUpper_[iColumn])) { |
| 1005 | otherValue = columnUpper_[iColumn] + dualDj[jColumn]; |
| 1006 | } else { |
| 1007 | otherValue = columnLower_[iColumn] + dualDj[jColumn]; |
| 1008 | } |
| 1009 | jColumn++; |
| 1010 | } |
| 1011 | if (status == basic) { |
| 1012 | // column is at bound |
| 1013 | if (otherValue == COIN_DBL_MAX) { |
| 1014 | reducedCost_[iColumn] = objValue - dualActs[iColumn]; |
| 1015 | if (columnUpper_[iColumn] > 1.0e20) { |
| 1016 | if (columnLower_[iColumn] > -1.0e20) { |
| 1017 | if (columnUpper_[iColumn] > columnLower_[iColumn]) |
| 1018 | setColumnStatus(iColumn, atLowerBound); |
| 1019 | else |
| 1020 | setColumnStatus(iColumn, isFixed); |
| 1021 | columnActivity_[iColumn] = columnLower_[iColumn]; |
| 1022 | } else { |
| 1023 | // free |
| 1024 | setColumnStatus(iColumn, isFree); |
| 1025 | columnActivity_[iColumn] = 0.0; |
| 1026 | } |
| 1027 | } else { |
| 1028 | setColumnStatus(iColumn, atUpperBound); |
| 1029 | columnActivity_[iColumn] = columnUpper_[iColumn]; |
| 1030 | } |
| 1031 | } else { |
| 1032 | reducedCost_[iColumn] = objValue - dualActs[iColumn]; |
| 1033 | //printf("other dual sol %g\n",otherValue); |
| 1034 | if (fabs(otherValue - columnLower_[iColumn]) < 1.0e-5) { |
| 1035 | if (columnUpper_[iColumn] > columnLower_[iColumn]) |
| 1036 | setColumnStatus(iColumn, atLowerBound); |
| 1037 | else |
| 1038 | setColumnStatus(iColumn, isFixed); |
| 1039 | columnActivity_[iColumn] = columnLower_[iColumn]; |
| 1040 | } else if (fabs(otherValue - columnUpper_[iColumn]) < 1.0e-5) { |
| 1041 | if (columnUpper_[iColumn] > columnLower_[iColumn]) |
| 1042 | setColumnStatus(iColumn, atUpperBound); |
| 1043 | else |
| 1044 | setColumnStatus(iColumn, isFixed); |
| 1045 | columnActivity_[iColumn] = columnUpper_[iColumn]; |
| 1046 | } else { |
| 1047 | abort(); |
| 1048 | } |
| 1049 | } |
| 1050 | } else { |
| 1051 | if (otherValue == COIN_DBL_MAX) { |
| 1052 | // column basic |
| 1053 | setColumnStatus(iColumn, basic); |
| 1054 | numberBasic++; |
| 1055 | if (columnLower_[iColumn] > -1.0e20) { |
| 1056 | columnActivity_[iColumn] = -dualDual[iColumn] + columnLower_[iColumn]; |
| 1057 | } else if (columnUpper_[iColumn] < 1.0e20) { |
| 1058 | columnActivity_[iColumn] = -dualDual[iColumn] + columnUpper_[iColumn]; |
| 1059 | } else { |
| 1060 | columnActivity_[iColumn] = -dualDual[iColumn]; |
| 1061 | } |
| 1062 | reducedCost_[iColumn] = 0.0; |
| 1063 | } else { |
| 1064 | // may be at other bound |
| 1065 | //printf("xx %d %g jcol %d\n",iColumn,otherValue,jColumn-1); |
| 1066 | if (dualProblem->getColumnStatus(jColumn - 1) != basic) { |
| 1067 | // column basic |
| 1068 | setColumnStatus(iColumn, basic); |
| 1069 | numberBasic++; |
| 1070 | //printf("Col %d otherV %g dualDual %g\n",iColumn, |
| 1071 | // otherValue,dualDual[iColumn]); |
| 1072 | columnActivity_[iColumn] = -dualDual[iColumn]; |
| 1073 | columnActivity_[iColumn] = otherValue; |
| 1074 | reducedCost_[iColumn] = 0.0; |
| 1075 | } else { |
| 1076 | reducedCost_[iColumn] = objValue - dualActs[iColumn]; |
| 1077 | if (fabs(otherValue - columnLower_[iColumn]) < 1.0e-5) { |
| 1078 | if (columnUpper_[iColumn] > columnLower_[iColumn]) |
| 1079 | setColumnStatus(iColumn, atLowerBound); |
| 1080 | else |
| 1081 | setColumnStatus(iColumn, isFixed); |
| 1082 | columnActivity_[iColumn] = columnLower_[iColumn]; |
| 1083 | } else if (fabs(otherValue - columnUpper_[iColumn]) < 1.0e-5) { |
| 1084 | if (columnUpper_[iColumn] > columnLower_[iColumn]) |
| 1085 | setColumnStatus(iColumn, atUpperBound); |
| 1086 | else |
| 1087 | setColumnStatus(iColumn, isFixed); |
| 1088 | columnActivity_[iColumn] = columnUpper_[iColumn]; |
| 1089 | } else { |
| 1090 | abort(); |
| 1091 | } |
| 1092 | } |
| 1093 | } |
| 1094 | } |
| 1095 | } |
| 1096 | // now rows |
| 1097 | int = jColumn; |
| 1098 | int numberRanges = 0; |
| 1099 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1100 | Status status = dualProblem->getColumnStatus(iRow); |
| 1101 | if (status == basic) { |
| 1102 | // row is at bound |
| 1103 | dual_[iRow] = dualSol[iRow]; |
| 1104 | } else { |
| 1105 | // row basic |
| 1106 | setRowStatus(iRow, basic); |
| 1107 | numberBasic++; |
| 1108 | dual_[iRow] = 0.0; |
| 1109 | } |
| 1110 | if (rowLower_[iRow] < -1.0e20) { |
| 1111 | if (status == basic) { |
| 1112 | rowActivity_[iRow] = rowUpper_[iRow]; |
| 1113 | setRowStatus(iRow, atUpperBound); |
| 1114 | } else { |
| 1115 | assert (dualDj[iRow] < 1.0e-5); |
| 1116 | rowActivity_[iRow] = rowUpper_[iRow] + dualDj[iRow]; |
| 1117 | } |
| 1118 | } else if (rowUpper_[iRow] > 1.0e20) { |
| 1119 | if (status == basic) { |
| 1120 | rowActivity_[iRow] = rowLower_[iRow]; |
| 1121 | setRowStatus(iRow, atLowerBound); |
| 1122 | } else { |
| 1123 | rowActivity_[iRow] = rowLower_[iRow] + dualDj[iRow]; |
| 1124 | assert (dualDj[iRow] > -1.0e-5); |
| 1125 | } |
| 1126 | } else { |
| 1127 | if (rowUpper_[iRow] == rowLower_[iRow]) { |
| 1128 | rowActivity_[iRow] = rowLower_[iRow]; |
| 1129 | if (status == basic) { |
| 1130 | setRowStatus(iRow, isFixed); |
| 1131 | } |
| 1132 | } else { |
| 1133 | // range |
| 1134 | numberRanges++; |
| 1135 | Status statusL = dualProblem->getColumnStatus(kExtraRow); |
| 1136 | //printf("range row %d (%d), extra %d (%d) - dualSol %g,%g dualDj %g,%g\n", |
| 1137 | // iRow,status,kExtraRow,statusL, dualSol[iRow], |
| 1138 | // dualSol[kExtraRow],dualDj[iRow],dualDj[kExtraRow]); |
| 1139 | if (status == basic) { |
| 1140 | assert (statusL != basic); |
| 1141 | rowActivity_[iRow] = rowUpper_[iRow]; |
| 1142 | setRowStatus(iRow, atUpperBound); |
| 1143 | } else if (statusL == basic) { |
| 1144 | numberBasic--; // already counted |
| 1145 | rowActivity_[iRow] = rowLower_[iRow]; |
| 1146 | setRowStatus(iRow, atLowerBound); |
| 1147 | dual_[iRow] = dualSol[kExtraRow]; |
| 1148 | } else { |
| 1149 | rowActivity_[iRow] = rowLower_[iRow] - dualDj[iRow]; |
| 1150 | assert (dualDj[iRow] < 1.0e-5); |
| 1151 | // row basic |
| 1152 | //setRowStatus(iRow,basic); |
| 1153 | //numberBasic++; |
| 1154 | dual_[iRow] = 0.0; |
| 1155 | } |
| 1156 | kExtraRow++; |
| 1157 | } |
| 1158 | } |
| 1159 | } |
| 1160 | if (numberBasic != numberRows_) { |
| 1161 | printf("Bad basis - ranges - coding needed\n" ); |
| 1162 | assert (numberRanges); |
| 1163 | abort(); |
| 1164 | } |
| 1165 | if (optimizationDirection_ < 0.0) { |
| 1166 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1167 | dual_[iRow] = -dual_[iRow]; |
| 1168 | } |
| 1169 | } |
| 1170 | // redo row activities |
| 1171 | memset(rowActivity_, 0, numberRows_ * sizeof(double)); |
| 1172 | matrix_->times(1.0, columnActivity_, rowActivity_); |
| 1173 | // redo reduced costs |
| 1174 | memcpy(reducedCost_, this->objective(), numberColumns_ * sizeof(double)); |
| 1175 | matrix_->transposeTimes(-1.0, dual_, reducedCost_); |
| 1176 | checkSolutionInternal(); |
| 1177 | if (sumDualInfeasibilities_ > 1.0e-5 || sumPrimalInfeasibilities_ > 1.0e-5) { |
| 1178 | returnCode = 1; |
| 1179 | #ifdef CLP_INVESTIGATE |
| 1180 | printf("There are %d dual infeasibilities summing to %g " , |
| 1181 | numberDualInfeasibilities_, sumDualInfeasibilities_); |
| 1182 | printf("and %d primal infeasibilities summing to %g\n" , |
| 1183 | numberPrimalInfeasibilities_, sumPrimalInfeasibilities_); |
| 1184 | #endif |
| 1185 | } |
| 1186 | // Below will go to ..DEBUG later |
| 1187 | #if 1 //ndef NDEBUG |
| 1188 | // Check if correct |
| 1189 | double * columnActivity = CoinCopyOfArray(columnActivity_, numberColumns_); |
| 1190 | double * rowActivity = CoinCopyOfArray(rowActivity_, numberRows_); |
| 1191 | double * reducedCost = CoinCopyOfArray(reducedCost_, numberColumns_); |
| 1192 | double * dual = CoinCopyOfArray(dual_, numberRows_); |
| 1193 | this->dual(); //primal(); |
| 1194 | CoinRelFltEq eq(1.0e-5); |
| 1195 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1196 | assert(eq(dual[iRow], dual_[iRow])); |
| 1197 | } |
| 1198 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1199 | assert(eq(columnActivity[iColumn], columnActivity_[iColumn])); |
| 1200 | } |
| 1201 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1202 | assert(eq(rowActivity[iRow], rowActivity_[iRow])); |
| 1203 | } |
| 1204 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1205 | assert(eq(reducedCost[iColumn], reducedCost_[iColumn])); |
| 1206 | } |
| 1207 | delete [] columnActivity; |
| 1208 | delete [] rowActivity; |
| 1209 | delete [] reducedCost; |
| 1210 | delete [] dual; |
| 1211 | #endif |
| 1212 | return returnCode; |
| 1213 | } |
| 1214 | /* Does very cursory presolve. |
| 1215 | rhs is numberRows, whichRows is 3*numberRows and whichColumns is 2*numberColumns |
| 1216 | */ |
| 1217 | ClpSimplex * |
| 1218 | ClpSimplexOther::crunch(double * rhs, int * whichRow, int * whichColumn, |
| 1219 | int & nBound, bool moreBounds, bool tightenBounds) |
| 1220 | { |
| 1221 | //#define CHECK_STATUS |
| 1222 | #ifdef CHECK_STATUS |
| 1223 | { |
| 1224 | int n = 0; |
| 1225 | int i; |
| 1226 | for (i = 0; i < numberColumns_; i++) |
| 1227 | if (getColumnStatus(i) == ClpSimplex::basic) |
| 1228 | n++; |
| 1229 | for (i = 0; i < numberRows_; i++) |
| 1230 | if (getRowStatus(i) == ClpSimplex::basic) |
| 1231 | n++; |
| 1232 | assert (n == numberRows_); |
| 1233 | } |
| 1234 | #endif |
| 1235 | |
| 1236 | const double * element = matrix_->getElements(); |
| 1237 | const int * row = matrix_->getIndices(); |
| 1238 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 1239 | const int * columnLength = matrix_->getVectorLengths(); |
| 1240 | |
| 1241 | CoinZeroN(rhs, numberRows_); |
| 1242 | int iColumn; |
| 1243 | int iRow; |
| 1244 | CoinZeroN(whichRow, numberRows_); |
| 1245 | int * backColumn = whichColumn + numberColumns_; |
| 1246 | int numberRows2 = 0; |
| 1247 | int numberColumns2 = 0; |
| 1248 | double offset = 0.0; |
| 1249 | const double * objective = this->objective(); |
| 1250 | double * solution = columnActivity_; |
| 1251 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1252 | double lower = columnLower_[iColumn]; |
| 1253 | double upper = columnUpper_[iColumn]; |
| 1254 | if (upper > lower || getColumnStatus(iColumn) == ClpSimplex::basic) { |
| 1255 | backColumn[iColumn] = numberColumns2; |
| 1256 | whichColumn[numberColumns2++] = iColumn; |
| 1257 | for (CoinBigIndex j = columnStart[iColumn]; |
| 1258 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1259 | int iRow = row[j]; |
| 1260 | int n = whichRow[iRow]; |
| 1261 | if (n == 0 && element[j]) |
| 1262 | whichRow[iRow] = -iColumn - 1; |
| 1263 | else if (n < 0) |
| 1264 | whichRow[iRow] = 2; |
| 1265 | } |
| 1266 | } else { |
| 1267 | // fixed |
| 1268 | backColumn[iColumn] = -1; |
| 1269 | solution[iColumn] = upper; |
| 1270 | if (upper) { |
| 1271 | offset += objective[iColumn] * upper; |
| 1272 | for (CoinBigIndex j = columnStart[iColumn]; |
| 1273 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1274 | int iRow = row[j]; |
| 1275 | double value = element[j]; |
| 1276 | rhs[iRow] += upper * value; |
| 1277 | } |
| 1278 | } |
| 1279 | } |
| 1280 | } |
| 1281 | int returnCode = 0; |
| 1282 | double tolerance = primalTolerance(); |
| 1283 | nBound = 2 * numberRows_; |
| 1284 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1285 | int n = whichRow[iRow]; |
| 1286 | if (n > 0) { |
| 1287 | whichRow[numberRows2++] = iRow; |
| 1288 | } else if (n < 0) { |
| 1289 | //whichRow[numberRows2++]=iRow; |
| 1290 | //continue; |
| 1291 | // Can only do in certain circumstances as we don't know current value |
| 1292 | if (rowLower_[iRow] == rowUpper_[iRow] || getRowStatus(iRow) == ClpSimplex::basic) { |
| 1293 | // save row and column for bound |
| 1294 | whichRow[--nBound] = iRow; |
| 1295 | whichRow[nBound+numberRows_] = -n - 1; |
| 1296 | } else if (moreBounds) { |
| 1297 | // save row and column for bound |
| 1298 | whichRow[--nBound] = iRow; |
| 1299 | whichRow[nBound+numberRows_] = -n - 1; |
| 1300 | } else { |
| 1301 | whichRow[numberRows2++] = iRow; |
| 1302 | } |
| 1303 | } else { |
| 1304 | // empty |
| 1305 | double rhsValue = rhs[iRow]; |
| 1306 | if (rhsValue < rowLower_[iRow] - tolerance || rhsValue > rowUpper_[iRow] + tolerance) { |
| 1307 | returnCode = 1; // infeasible |
| 1308 | } |
| 1309 | } |
| 1310 | } |
| 1311 | ClpSimplex * small = NULL; |
| 1312 | if (!returnCode) { |
| 1313 | //printf("CRUNCH from (%d,%d) to (%d,%d)\n", |
| 1314 | // numberRows_,numberColumns_,numberRows2,numberColumns2); |
| 1315 | small = new ClpSimplex(this, numberRows2, whichRow, |
| 1316 | numberColumns2, whichColumn, true, false); |
| 1317 | #if 0 |
| 1318 | ClpPackedMatrix * rowCopy = dynamic_cast<ClpPackedMatrix *>(rowCopy_); |
| 1319 | if (rowCopy) { |
| 1320 | assert(!small->rowCopy()); |
| 1321 | small->setNewRowCopy(new ClpPackedMatrix(*rowCopy, numberRows2, whichRow, |
| 1322 | numberColumns2, whichColumn)); |
| 1323 | } |
| 1324 | #endif |
| 1325 | // Set some stuff |
| 1326 | small->setDualBound(dualBound_); |
| 1327 | small->setInfeasibilityCost(infeasibilityCost_); |
| 1328 | small->setSpecialOptions(specialOptions_); |
| 1329 | small->setPerturbation(perturbation_); |
| 1330 | small->defaultFactorizationFrequency(); |
| 1331 | small->setAlphaAccuracy(alphaAccuracy_); |
| 1332 | // If no rows left then no tightening! |
| 1333 | if (!numberRows2 || !numberColumns2) |
| 1334 | tightenBounds = false; |
| 1335 | |
| 1336 | int numberElements = getNumElements(); |
| 1337 | int numberElements2 = small->getNumElements(); |
| 1338 | small->setObjectiveOffset(objectiveOffset() - offset); |
| 1339 | handler_->message(CLP_CRUNCH_STATS, messages_) |
| 1340 | << numberRows2 << -(numberRows_ - numberRows2) |
| 1341 | << numberColumns2 << -(numberColumns_ - numberColumns2) |
| 1342 | << numberElements2 << -(numberElements - numberElements2) |
| 1343 | << CoinMessageEol; |
| 1344 | // And set objective value to match |
| 1345 | small->setObjectiveValue(this->objectiveValue()); |
| 1346 | double * rowLower2 = small->rowLower(); |
| 1347 | double * rowUpper2 = small->rowUpper(); |
| 1348 | int jRow; |
| 1349 | for (jRow = 0; jRow < numberRows2; jRow++) { |
| 1350 | iRow = whichRow[jRow]; |
| 1351 | if (rowLower2[jRow] > -1.0e20) |
| 1352 | rowLower2[jRow] -= rhs[iRow]; |
| 1353 | if (rowUpper2[jRow] < 1.0e20) |
| 1354 | rowUpper2[jRow] -= rhs[iRow]; |
| 1355 | } |
| 1356 | // and bounds |
| 1357 | double * columnLower2 = small->columnLower(); |
| 1358 | double * columnUpper2 = small->columnUpper(); |
| 1359 | const char * integerInformation = integerType_; |
| 1360 | for (jRow = nBound; jRow < 2 * numberRows_; jRow++) { |
| 1361 | iRow = whichRow[jRow]; |
| 1362 | iColumn = whichRow[jRow+numberRows_]; |
| 1363 | double lowerRow = rowLower_[iRow]; |
| 1364 | if (lowerRow > -1.0e20) |
| 1365 | lowerRow -= rhs[iRow]; |
| 1366 | double upperRow = rowUpper_[iRow]; |
| 1367 | if (upperRow < 1.0e20) |
| 1368 | upperRow -= rhs[iRow]; |
| 1369 | int jColumn = backColumn[iColumn]; |
| 1370 | double lower = columnLower2[jColumn]; |
| 1371 | double upper = columnUpper2[jColumn]; |
| 1372 | double value = 0.0; |
| 1373 | for (CoinBigIndex j = columnStart[iColumn]; |
| 1374 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1375 | if (iRow == row[j]) { |
| 1376 | value = element[j]; |
| 1377 | break; |
| 1378 | } |
| 1379 | } |
| 1380 | assert (value); |
| 1381 | // convert rowLower and Upper to implied bounds on column |
| 1382 | double newLower = -COIN_DBL_MAX; |
| 1383 | double newUpper = COIN_DBL_MAX; |
| 1384 | if (value > 0.0) { |
| 1385 | if (lowerRow > -1.0e20) |
| 1386 | newLower = lowerRow / value; |
| 1387 | if (upperRow < 1.0e20) |
| 1388 | newUpper = upperRow / value; |
| 1389 | } else { |
| 1390 | if (upperRow < 1.0e20) |
| 1391 | newLower = upperRow / value; |
| 1392 | if (lowerRow > -1.0e20) |
| 1393 | newUpper = lowerRow / value; |
| 1394 | } |
| 1395 | if (integerInformation && integerInformation[iColumn]) { |
| 1396 | if (newLower - floor(newLower) < 10.0 * tolerance) |
| 1397 | newLower = floor(newLower); |
| 1398 | else |
| 1399 | newLower = ceil(newLower); |
| 1400 | if (ceil(newUpper) - newUpper < 10.0 * tolerance) |
| 1401 | newUpper = ceil(newUpper); |
| 1402 | else |
| 1403 | newUpper = floor(newUpper); |
| 1404 | } |
| 1405 | newLower = CoinMax(lower, newLower); |
| 1406 | newUpper = CoinMin(upper, newUpper); |
| 1407 | if (newLower > newUpper + tolerance) { |
| 1408 | //printf("XXYY inf on bound\n"); |
| 1409 | returnCode = 1; |
| 1410 | } |
| 1411 | columnLower2[jColumn] = newLower; |
| 1412 | columnUpper2[jColumn] = CoinMax(newLower, newUpper); |
| 1413 | if (getRowStatus(iRow) != ClpSimplex::basic) { |
| 1414 | if (getColumnStatus(iColumn) == ClpSimplex::basic) { |
| 1415 | if (columnLower2[jColumn] == columnUpper2[jColumn]) { |
| 1416 | // can only get here if will be fixed |
| 1417 | small->setColumnStatus(jColumn, ClpSimplex::isFixed); |
| 1418 | } else { |
| 1419 | // solution is valid |
| 1420 | if (fabs(columnActivity_[iColumn] - columnLower2[jColumn]) < |
| 1421 | fabs(columnActivity_[iColumn] - columnUpper2[jColumn])) |
| 1422 | small->setColumnStatus(jColumn, ClpSimplex::atLowerBound); |
| 1423 | else |
| 1424 | small->setColumnStatus(jColumn, ClpSimplex::atUpperBound); |
| 1425 | } |
| 1426 | } else { |
| 1427 | //printf("what now neither basic\n"); |
| 1428 | } |
| 1429 | } |
| 1430 | } |
| 1431 | if (returnCode) { |
| 1432 | delete small; |
| 1433 | small = NULL; |
| 1434 | } else if (tightenBounds && integerInformation) { |
| 1435 | // See if we can tighten any bounds |
| 1436 | // use rhs for upper and small duals for lower |
| 1437 | double * up = rhs; |
| 1438 | double * lo = small->dualRowSolution(); |
| 1439 | const double * element = small->clpMatrix()->getElements(); |
| 1440 | const int * row = small->clpMatrix()->getIndices(); |
| 1441 | const CoinBigIndex * columnStart = small->clpMatrix()->getVectorStarts(); |
| 1442 | //const int * columnLength = small->clpMatrix()->getVectorLengths(); |
| 1443 | CoinZeroN(lo, numberRows2); |
| 1444 | CoinZeroN(up, numberRows2); |
| 1445 | for (int iColumn = 0; iColumn < numberColumns2; iColumn++) { |
| 1446 | double upper = columnUpper2[iColumn]; |
| 1447 | double lower = columnLower2[iColumn]; |
| 1448 | //assert (columnLength[iColumn]==columnStart[iColumn+1]-columnStart[iColumn]); |
| 1449 | for (CoinBigIndex j = columnStart[iColumn]; j < columnStart[iColumn+1]; j++) { |
| 1450 | int iRow = row[j]; |
| 1451 | double value = element[j]; |
| 1452 | if (value > 0.0) { |
| 1453 | if (upper < 1.0e20) |
| 1454 | up[iRow] += upper * value; |
| 1455 | else |
| 1456 | up[iRow] = COIN_DBL_MAX; |
| 1457 | if (lower > -1.0e20) |
| 1458 | lo[iRow] += lower * value; |
| 1459 | else |
| 1460 | lo[iRow] = -COIN_DBL_MAX; |
| 1461 | } else { |
| 1462 | if (upper < 1.0e20) |
| 1463 | lo[iRow] += upper * value; |
| 1464 | else |
| 1465 | lo[iRow] = -COIN_DBL_MAX; |
| 1466 | if (lower > -1.0e20) |
| 1467 | up[iRow] += lower * value; |
| 1468 | else |
| 1469 | up[iRow] = COIN_DBL_MAX; |
| 1470 | } |
| 1471 | } |
| 1472 | } |
| 1473 | double * rowLower2 = small->rowLower(); |
| 1474 | double * rowUpper2 = small->rowUpper(); |
| 1475 | bool feasible = true; |
| 1476 | // make safer |
| 1477 | for (int iRow = 0; iRow < numberRows2; iRow++) { |
| 1478 | double lower = lo[iRow]; |
| 1479 | if (lower > rowUpper2[iRow] + tolerance) { |
| 1480 | feasible = false; |
| 1481 | break; |
| 1482 | } else { |
| 1483 | lo[iRow] = CoinMin(lower - rowUpper2[iRow], 0.0) - tolerance; |
| 1484 | } |
| 1485 | double upper = up[iRow]; |
| 1486 | if (upper < rowLower2[iRow] - tolerance) { |
| 1487 | feasible = false; |
| 1488 | break; |
| 1489 | } else { |
| 1490 | up[iRow] = CoinMax(upper - rowLower2[iRow], 0.0) + tolerance; |
| 1491 | } |
| 1492 | } |
| 1493 | if (!feasible) { |
| 1494 | delete small; |
| 1495 | small = NULL; |
| 1496 | } else { |
| 1497 | // and tighten |
| 1498 | for (int iColumn = 0; iColumn < numberColumns2; iColumn++) { |
| 1499 | if (integerInformation[whichColumn[iColumn]]) { |
| 1500 | double upper = columnUpper2[iColumn]; |
| 1501 | double lower = columnLower2[iColumn]; |
| 1502 | double newUpper = upper; |
| 1503 | double newLower = lower; |
| 1504 | double difference = upper - lower; |
| 1505 | if (lower > -1000.0 && upper < 1000.0) { |
| 1506 | for (CoinBigIndex j = columnStart[iColumn]; j < columnStart[iColumn+1]; j++) { |
| 1507 | int iRow = row[j]; |
| 1508 | double value = element[j]; |
| 1509 | if (value > 0.0) { |
| 1510 | double upWithOut = up[iRow] - value * difference; |
| 1511 | if (upWithOut < 0.0) { |
| 1512 | newLower = CoinMax(newLower, lower - (upWithOut + tolerance) / value); |
| 1513 | } |
| 1514 | double lowWithOut = lo[iRow] + value * difference; |
| 1515 | if (lowWithOut > 0.0) { |
| 1516 | newUpper = CoinMin(newUpper, upper - (lowWithOut - tolerance) / value); |
| 1517 | } |
| 1518 | } else { |
| 1519 | double upWithOut = up[iRow] + value * difference; |
| 1520 | if (upWithOut < 0.0) { |
| 1521 | newUpper = CoinMin(newUpper, upper - (upWithOut + tolerance) / value); |
| 1522 | } |
| 1523 | double lowWithOut = lo[iRow] - value * difference; |
| 1524 | if (lowWithOut > 0.0) { |
| 1525 | newLower = CoinMax(newLower, lower - (lowWithOut - tolerance) / value); |
| 1526 | } |
| 1527 | } |
| 1528 | } |
| 1529 | if (newLower > lower || newUpper < upper) { |
| 1530 | if (fabs(newUpper - floor(newUpper + 0.5)) > 1.0e-6) |
| 1531 | newUpper = floor(newUpper); |
| 1532 | else |
| 1533 | newUpper = floor(newUpper + 0.5); |
| 1534 | if (fabs(newLower - ceil(newLower - 0.5)) > 1.0e-6) |
| 1535 | newLower = ceil(newLower); |
| 1536 | else |
| 1537 | newLower = ceil(newLower - 0.5); |
| 1538 | // change may be too small - check |
| 1539 | if (newLower > lower || newUpper < upper) { |
| 1540 | if (newUpper >= newLower) { |
| 1541 | // Could also tighten in this |
| 1542 | //printf("%d bounds %g %g tightened to %g %g\n", |
| 1543 | // iColumn,columnLower2[iColumn],columnUpper2[iColumn], |
| 1544 | // newLower,newUpper); |
| 1545 | #if 1 |
| 1546 | columnUpper2[iColumn] = newUpper; |
| 1547 | columnLower2[iColumn] = newLower; |
| 1548 | columnUpper_[whichColumn[iColumn]] = newUpper; |
| 1549 | columnLower_[whichColumn[iColumn]] = newLower; |
| 1550 | #endif |
| 1551 | // and adjust bounds on rows |
| 1552 | newUpper -= upper; |
| 1553 | newLower -= lower; |
| 1554 | for (CoinBigIndex j = columnStart[iColumn]; j < columnStart[iColumn+1]; j++) { |
| 1555 | int iRow = row[j]; |
| 1556 | double value = element[j]; |
| 1557 | if (value > 0.0) { |
| 1558 | up[iRow] += newUpper * value; |
| 1559 | lo[iRow] += newLower * value; |
| 1560 | } else { |
| 1561 | lo[iRow] += newUpper * value; |
| 1562 | up[iRow] += newLower * value; |
| 1563 | } |
| 1564 | } |
| 1565 | } else { |
| 1566 | // infeasible |
| 1567 | //printf("%d bounds infeasible %g %g tightened to %g %g\n", |
| 1568 | // iColumn,columnLower2[iColumn],columnUpper2[iColumn], |
| 1569 | // newLower,newUpper); |
| 1570 | #if 1 |
| 1571 | delete small; |
| 1572 | small = NULL; |
| 1573 | break; |
| 1574 | #endif |
| 1575 | } |
| 1576 | } |
| 1577 | } |
| 1578 | } |
| 1579 | } |
| 1580 | } |
| 1581 | } |
| 1582 | } |
| 1583 | } |
| 1584 | #if 0 |
| 1585 | if (small) { |
| 1586 | static int which = 0; |
| 1587 | which++; |
| 1588 | char xxxx[20]; |
| 1589 | sprintf(xxxx, "bad%d.mps" , which); |
| 1590 | small->writeMps(xxxx, 0, 1); |
| 1591 | sprintf(xxxx, "largebad%d.mps" , which); |
| 1592 | writeMps(xxxx, 0, 1); |
| 1593 | printf("bad%d %x old size %d %d new %d %d\n" , which, small, |
| 1594 | numberRows_, numberColumns_, small->numberRows(), small->numberColumns()); |
| 1595 | #if 0 |
| 1596 | for (int i = 0; i < numberColumns_; i++) |
| 1597 | printf("Bound %d %g %g\n" , i, columnLower_[i], columnUpper_[i]); |
| 1598 | for (int i = 0; i < numberRows_; i++) |
| 1599 | printf("Row bound %d %g %g\n" , i, rowLower_[i], rowUpper_[i]); |
| 1600 | #endif |
| 1601 | } |
| 1602 | #endif |
| 1603 | #ifdef CHECK_STATUS |
| 1604 | { |
| 1605 | int n = 0; |
| 1606 | int i; |
| 1607 | for (i = 0; i < small->numberColumns(); i++) |
| 1608 | if (small->getColumnStatus(i) == ClpSimplex::basic) |
| 1609 | n++; |
| 1610 | for (i = 0; i < small->numberRows(); i++) |
| 1611 | if (small->getRowStatus(i) == ClpSimplex::basic) |
| 1612 | n++; |
| 1613 | assert (n == small->numberRows()); |
| 1614 | } |
| 1615 | #endif |
| 1616 | return small; |
| 1617 | } |
| 1618 | /* After very cursory presolve. |
| 1619 | rhs is numberRows, whichRows is 3*numberRows and whichColumns is 2*numberColumns. |
| 1620 | */ |
| 1621 | void |
| 1622 | ClpSimplexOther::afterCrunch(const ClpSimplex & small, |
| 1623 | const int * whichRow, |
| 1624 | const int * whichColumn, int nBound) |
| 1625 | { |
| 1626 | #ifndef NDEBUG |
| 1627 | for (int i = 0; i < small.numberRows(); i++) |
| 1628 | assert (whichRow[i] >= 0 && whichRow[i] < numberRows_); |
| 1629 | for (int i = 0; i < small.numberColumns(); i++) |
| 1630 | assert (whichColumn[i] >= 0 && whichColumn[i] < numberColumns_); |
| 1631 | #endif |
| 1632 | getbackSolution(small, whichRow, whichColumn); |
| 1633 | // and deal with status for bounds |
| 1634 | const double * element = matrix_->getElements(); |
| 1635 | const int * row = matrix_->getIndices(); |
| 1636 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 1637 | const int * columnLength = matrix_->getVectorLengths(); |
| 1638 | double tolerance = primalTolerance(); |
| 1639 | double djTolerance = dualTolerance(); |
| 1640 | for (int jRow = nBound; jRow < 2 * numberRows_; jRow++) { |
| 1641 | int iRow = whichRow[jRow]; |
| 1642 | int iColumn = whichRow[jRow+numberRows_]; |
| 1643 | if (getColumnStatus(iColumn) != ClpSimplex::basic) { |
| 1644 | double lower = columnLower_[iColumn]; |
| 1645 | double upper = columnUpper_[iColumn]; |
| 1646 | double value = columnActivity_[iColumn]; |
| 1647 | double djValue = reducedCost_[iColumn]; |
| 1648 | dual_[iRow] = 0.0; |
| 1649 | if (upper > lower) { |
| 1650 | if (value < lower + tolerance && djValue > -djTolerance) { |
| 1651 | setColumnStatus(iColumn, ClpSimplex::atLowerBound); |
| 1652 | setRowStatus(iRow, ClpSimplex::basic); |
| 1653 | } else if (value > upper - tolerance && djValue < djTolerance) { |
| 1654 | setColumnStatus(iColumn, ClpSimplex::atUpperBound); |
| 1655 | setRowStatus(iRow, ClpSimplex::basic); |
| 1656 | } else { |
| 1657 | // has to be basic |
| 1658 | setColumnStatus(iColumn, ClpSimplex::basic); |
| 1659 | reducedCost_[iColumn] = 0.0; |
| 1660 | double value = 0.0; |
| 1661 | for (CoinBigIndex j = columnStart[iColumn]; |
| 1662 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1663 | if (iRow == row[j]) { |
| 1664 | value = element[j]; |
| 1665 | break; |
| 1666 | } |
| 1667 | } |
| 1668 | dual_[iRow] = djValue / value; |
| 1669 | if (rowUpper_[iRow] > rowLower_[iRow]) { |
| 1670 | if (fabs(rowActivity_[iRow] - rowLower_[iRow]) < |
| 1671 | fabs(rowActivity_[iRow] - rowUpper_[iRow])) |
| 1672 | setRowStatus(iRow, ClpSimplex::atLowerBound); |
| 1673 | else |
| 1674 | setRowStatus(iRow, ClpSimplex::atUpperBound); |
| 1675 | } else { |
| 1676 | setRowStatus(iRow, ClpSimplex::isFixed); |
| 1677 | } |
| 1678 | } |
| 1679 | } else { |
| 1680 | // row can always be basic |
| 1681 | setRowStatus(iRow, ClpSimplex::basic); |
| 1682 | } |
| 1683 | } else { |
| 1684 | // row can always be basic |
| 1685 | setRowStatus(iRow, ClpSimplex::basic); |
| 1686 | } |
| 1687 | } |
| 1688 | //#ifndef NDEBUG |
| 1689 | #if 0 |
| 1690 | if (small.status() == 0) { |
| 1691 | int n = 0; |
| 1692 | int i; |
| 1693 | for (i = 0; i < numberColumns; i++) |
| 1694 | if (getColumnStatus(i) == ClpSimplex::basic) |
| 1695 | n++; |
| 1696 | for (i = 0; i < numberRows; i++) |
| 1697 | if (getRowStatus(i) == ClpSimplex::basic) |
| 1698 | n++; |
| 1699 | assert (n == numberRows); |
| 1700 | } |
| 1701 | #endif |
| 1702 | } |
| 1703 | /* Tightens integer bounds - returns number tightened or -1 if infeasible |
| 1704 | */ |
| 1705 | int |
| 1706 | ClpSimplexOther::tightenIntegerBounds(double * rhsSpace) |
| 1707 | { |
| 1708 | // See if we can tighten any bounds |
| 1709 | // use rhs for upper and small duals for lower |
| 1710 | double * up = rhsSpace; |
| 1711 | double * lo = dual_; |
| 1712 | const double * element = matrix_->getElements(); |
| 1713 | const int * row = matrix_->getIndices(); |
| 1714 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 1715 | const int * columnLength = matrix_->getVectorLengths(); |
| 1716 | CoinZeroN(lo, numberRows_); |
| 1717 | CoinZeroN(up, numberRows_); |
| 1718 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1719 | double upper = columnUpper_[iColumn]; |
| 1720 | double lower = columnLower_[iColumn]; |
| 1721 | //assert (columnLength[iColumn]==columnStart[iColumn+1]-columnStart[iColumn]); |
| 1722 | for (CoinBigIndex j = columnStart[iColumn]; |
| 1723 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1724 | int iRow = row[j]; |
| 1725 | double value = element[j]; |
| 1726 | if (value > 0.0) { |
| 1727 | if (upper < 1.0e20) |
| 1728 | up[iRow] += upper * value; |
| 1729 | else |
| 1730 | up[iRow] = COIN_DBL_MAX; |
| 1731 | if (lower > -1.0e20) |
| 1732 | lo[iRow] += lower * value; |
| 1733 | else |
| 1734 | lo[iRow] = -COIN_DBL_MAX; |
| 1735 | } else { |
| 1736 | if (upper < 1.0e20) |
| 1737 | lo[iRow] += upper * value; |
| 1738 | else |
| 1739 | lo[iRow] = -COIN_DBL_MAX; |
| 1740 | if (lower > -1.0e20) |
| 1741 | up[iRow] += lower * value; |
| 1742 | else |
| 1743 | up[iRow] = COIN_DBL_MAX; |
| 1744 | } |
| 1745 | } |
| 1746 | } |
| 1747 | bool feasible = true; |
| 1748 | // make safer |
| 1749 | double tolerance = primalTolerance(); |
| 1750 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
| 1751 | double lower = lo[iRow]; |
| 1752 | if (lower > rowUpper_[iRow] + tolerance) { |
| 1753 | feasible = false; |
| 1754 | break; |
| 1755 | } else { |
| 1756 | lo[iRow] = CoinMin(lower - rowUpper_[iRow], 0.0) - tolerance; |
| 1757 | } |
| 1758 | double upper = up[iRow]; |
| 1759 | if (upper < rowLower_[iRow] - tolerance) { |
| 1760 | feasible = false; |
| 1761 | break; |
| 1762 | } else { |
| 1763 | up[iRow] = CoinMax(upper - rowLower_[iRow], 0.0) + tolerance; |
| 1764 | } |
| 1765 | } |
| 1766 | int numberTightened = 0; |
| 1767 | if (!feasible) { |
| 1768 | return -1; |
| 1769 | } else if (integerType_) { |
| 1770 | // and tighten |
| 1771 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1772 | if (integerType_[iColumn]) { |
| 1773 | double upper = columnUpper_[iColumn]; |
| 1774 | double lower = columnLower_[iColumn]; |
| 1775 | double newUpper = upper; |
| 1776 | double newLower = lower; |
| 1777 | double difference = upper - lower; |
| 1778 | if (lower > -1000.0 && upper < 1000.0) { |
| 1779 | for (CoinBigIndex j = columnStart[iColumn]; |
| 1780 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1781 | int iRow = row[j]; |
| 1782 | double value = element[j]; |
| 1783 | if (value > 0.0) { |
| 1784 | double upWithOut = up[iRow] - value * difference; |
| 1785 | if (upWithOut < 0.0) { |
| 1786 | newLower = CoinMax(newLower, lower - (upWithOut + tolerance) / value); |
| 1787 | } |
| 1788 | double lowWithOut = lo[iRow] + value * difference; |
| 1789 | if (lowWithOut > 0.0) { |
| 1790 | newUpper = CoinMin(newUpper, upper - (lowWithOut - tolerance) / value); |
| 1791 | } |
| 1792 | } else { |
| 1793 | double upWithOut = up[iRow] + value * difference; |
| 1794 | if (upWithOut < 0.0) { |
| 1795 | newUpper = CoinMin(newUpper, upper - (upWithOut + tolerance) / value); |
| 1796 | } |
| 1797 | double lowWithOut = lo[iRow] - value * difference; |
| 1798 | if (lowWithOut > 0.0) { |
| 1799 | newLower = CoinMax(newLower, lower - (lowWithOut - tolerance) / value); |
| 1800 | } |
| 1801 | } |
| 1802 | } |
| 1803 | if (newLower > lower || newUpper < upper) { |
| 1804 | if (fabs(newUpper - floor(newUpper + 0.5)) > 1.0e-6) |
| 1805 | newUpper = floor(newUpper); |
| 1806 | else |
| 1807 | newUpper = floor(newUpper + 0.5); |
| 1808 | if (fabs(newLower - ceil(newLower - 0.5)) > 1.0e-6) |
| 1809 | newLower = ceil(newLower); |
| 1810 | else |
| 1811 | newLower = ceil(newLower - 0.5); |
| 1812 | // change may be too small - check |
| 1813 | if (newLower > lower || newUpper < upper) { |
| 1814 | if (newUpper >= newLower) { |
| 1815 | numberTightened++; |
| 1816 | //printf("%d bounds %g %g tightened to %g %g\n", |
| 1817 | // iColumn,columnLower_[iColumn],columnUpper_[iColumn], |
| 1818 | // newLower,newUpper); |
| 1819 | columnUpper_[iColumn] = newUpper; |
| 1820 | columnLower_[iColumn] = newLower; |
| 1821 | // and adjust bounds on rows |
| 1822 | newUpper -= upper; |
| 1823 | newLower -= lower; |
| 1824 | for (CoinBigIndex j = columnStart[iColumn]; |
| 1825 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1826 | int iRow = row[j]; |
| 1827 | double value = element[j]; |
| 1828 | if (value > 0.0) { |
| 1829 | up[iRow] += newUpper * value; |
| 1830 | lo[iRow] += newLower * value; |
| 1831 | } else { |
| 1832 | lo[iRow] += newUpper * value; |
| 1833 | up[iRow] += newLower * value; |
| 1834 | } |
| 1835 | } |
| 1836 | } else { |
| 1837 | // infeasible |
| 1838 | //printf("%d bounds infeasible %g %g tightened to %g %g\n", |
| 1839 | // iColumn,columnLower_[iColumn],columnUpper_[iColumn], |
| 1840 | // newLower,newUpper); |
| 1841 | return -1; |
| 1842 | } |
| 1843 | } |
| 1844 | } |
| 1845 | } |
| 1846 | } |
| 1847 | } |
| 1848 | } |
| 1849 | return numberTightened; |
| 1850 | } |
| 1851 | /* Parametrics |
| 1852 | This is an initial slow version. |
| 1853 | The code uses current bounds + theta * change (if change array not NULL) |
| 1854 | and similarly for objective. |
| 1855 | It starts at startingTheta and returns ending theta in endingTheta. |
| 1856 | If reportIncrement 0.0 it will report on any movement |
| 1857 | If reportIncrement >0.0 it will report at startingTheta+k*reportIncrement. |
| 1858 | If it can not reach input endingTheta return code will be 1 for infeasible, |
| 1859 | 2 for unbounded, if error on ranges -1, otherwise 0. |
| 1860 | Normal report is just theta and objective but |
| 1861 | if event handler exists it may do more |
| 1862 | On exit endingTheta is maximum reached (can be used for next startingTheta) |
| 1863 | */ |
| 1864 | int |
| 1865 | ClpSimplexOther::parametrics(double startingTheta, double & endingTheta, double reportIncrement, |
| 1866 | const double * changeLowerBound, const double * changeUpperBound, |
| 1867 | const double * changeLowerRhs, const double * changeUpperRhs, |
| 1868 | const double * changeObjective) |
| 1869 | { |
| 1870 | bool needToDoSomething = true; |
| 1871 | bool canTryQuick = (reportIncrement) ? true : false; |
| 1872 | // Save copy of model |
| 1873 | ClpSimplex copyModel = *this; |
| 1874 | int savePerturbation = perturbation_; |
| 1875 | perturbation_ = 102; // switch off |
| 1876 | while (needToDoSomething) { |
| 1877 | needToDoSomething = false; |
| 1878 | algorithm_ = -1; |
| 1879 | |
| 1880 | // save data |
| 1881 | ClpDataSave data = saveData(); |
| 1882 | int returnCode = reinterpret_cast<ClpSimplexDual *> (this)->startupSolve(0, NULL, 0); |
| 1883 | int iRow, iColumn; |
| 1884 | double * chgUpper = NULL; |
| 1885 | double * chgLower = NULL; |
| 1886 | double * chgObjective = NULL; |
| 1887 | |
| 1888 | // Dantzig (as will not be used) (out later) |
| 1889 | ClpDualRowPivot * savePivot = dualRowPivot_; |
| 1890 | dualRowPivot_ = new ClpDualRowDantzig(); |
| 1891 | |
| 1892 | if (!returnCode) { |
| 1893 | // Find theta when bounds will cross over and create arrays |
| 1894 | int numberTotal = numberRows_ + numberColumns_; |
| 1895 | chgLower = new double[numberTotal]; |
| 1896 | memset(chgLower, 0, numberTotal * sizeof(double)); |
| 1897 | chgUpper = new double[numberTotal]; |
| 1898 | memset(chgUpper, 0, numberTotal * sizeof(double)); |
| 1899 | chgObjective = new double[numberTotal]; |
| 1900 | memset(chgObjective, 0, numberTotal * sizeof(double)); |
| 1901 | assert (!rowScale_); |
| 1902 | double maxTheta = 1.0e50; |
| 1903 | if (changeLowerRhs || changeUpperRhs) { |
| 1904 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1905 | double lower = rowLower_[iRow]; |
| 1906 | double upper = rowUpper_[iRow]; |
| 1907 | if (lower > upper) { |
| 1908 | maxTheta = -1.0; |
| 1909 | break; |
| 1910 | } |
| 1911 | double changeLower = (changeLowerRhs) ? changeLowerRhs[iRow] : 0.0; |
| 1912 | double changeUpper = (changeUpperRhs) ? changeUpperRhs[iRow] : 0.0; |
| 1913 | if (lower > -1.0e20 && upper < 1.0e20) { |
| 1914 | if (lower + maxTheta * changeLower > upper + maxTheta * changeUpper) { |
| 1915 | maxTheta = (upper - lower) / (changeLower - changeUpper); |
| 1916 | } |
| 1917 | } |
| 1918 | if (lower > -1.0e20) { |
| 1919 | lower_[numberColumns_+iRow] += startingTheta * changeLower; |
| 1920 | chgLower[numberColumns_+iRow] = changeLower; |
| 1921 | } |
| 1922 | if (upper < 1.0e20) { |
| 1923 | upper_[numberColumns_+iRow] += startingTheta * changeUpper; |
| 1924 | chgUpper[numberColumns_+iRow] = changeUpper; |
| 1925 | } |
| 1926 | } |
| 1927 | } |
| 1928 | if (maxTheta > 0.0) { |
| 1929 | if (changeLowerBound || changeUpperBound) { |
| 1930 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1931 | double lower = columnLower_[iColumn]; |
| 1932 | double upper = columnUpper_[iColumn]; |
| 1933 | if (lower > upper) { |
| 1934 | maxTheta = -1.0; |
| 1935 | break; |
| 1936 | } |
| 1937 | double changeLower = (changeLowerBound) ? changeLowerBound[iColumn] : 0.0; |
| 1938 | double changeUpper = (changeUpperBound) ? changeUpperBound[iColumn] : 0.0; |
| 1939 | if (lower > -1.0e20 && upper < 1.0e20) { |
| 1940 | if (lower + maxTheta * changeLower > upper + maxTheta * changeUpper) { |
| 1941 | maxTheta = (upper - lower) / (changeLower - changeUpper); |
| 1942 | } |
| 1943 | } |
| 1944 | if (lower > -1.0e20) { |
| 1945 | lower_[iColumn] += startingTheta * changeLower; |
| 1946 | chgLower[iColumn] = changeLower; |
| 1947 | } |
| 1948 | if (upper < 1.0e20) { |
| 1949 | upper_[iColumn] += startingTheta * changeUpper; |
| 1950 | chgUpper[iColumn] = changeUpper; |
| 1951 | } |
| 1952 | } |
| 1953 | } |
| 1954 | if (maxTheta == 1.0e50) |
| 1955 | maxTheta = COIN_DBL_MAX; |
| 1956 | } |
| 1957 | if (maxTheta < 0.0) { |
| 1958 | // bad ranges or initial |
| 1959 | returnCode = -1; |
| 1960 | } |
| 1961 | if (maxTheta < endingTheta) { |
| 1962 | char line[100]; |
| 1963 | sprintf(line,"Crossover considerations reduce ending theta from %g to %g\n" , |
| 1964 | endingTheta,maxTheta); |
| 1965 | handler_->message(CLP_GENERAL,messages_) |
| 1966 | << line << CoinMessageEol; |
| 1967 | endingTheta = maxTheta; |
| 1968 | } |
| 1969 | if (endingTheta < startingTheta) { |
| 1970 | // bad initial |
| 1971 | returnCode = -2; |
| 1972 | } |
| 1973 | } |
| 1974 | double saveEndingTheta = endingTheta; |
| 1975 | if (!returnCode) { |
| 1976 | if (changeObjective) { |
| 1977 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1978 | chgObjective[iColumn] = changeObjective[iColumn]; |
| 1979 | cost_[iColumn] += startingTheta * changeObjective[iColumn]; |
| 1980 | } |
| 1981 | } |
| 1982 | double * saveDuals = NULL; |
| 1983 | reinterpret_cast<ClpSimplexDual *> (this)->gutsOfDual(0, saveDuals, -1, data); |
| 1984 | assert (!problemStatus_); |
| 1985 | // Now do parametrics |
| 1986 | handler_->message(CLP_PARAMETRICS_STATS, messages_) |
| 1987 | << startingTheta << objectiveValue() << CoinMessageEol; |
| 1988 | while (!returnCode) { |
| 1989 | //assert (reportIncrement); |
| 1990 | returnCode = parametricsLoop(startingTheta, endingTheta, reportIncrement, |
| 1991 | chgLower, chgUpper, chgObjective, data, |
| 1992 | canTryQuick); |
| 1993 | if (!returnCode) { |
| 1994 | //double change = endingTheta-startingTheta; |
| 1995 | startingTheta = endingTheta; |
| 1996 | endingTheta = saveEndingTheta; |
| 1997 | //for (int i=0;i<numberTotal;i++) { |
| 1998 | //lower_[i] += change*chgLower[i]; |
| 1999 | //upper_[i] += change*chgUpper[i]; |
| 2000 | //cost_[i] += change*chgObjective[i]; |
| 2001 | //} |
| 2002 | handler_->message(CLP_PARAMETRICS_STATS, messages_) |
| 2003 | << startingTheta << objectiveValue() << CoinMessageEol; |
| 2004 | if (startingTheta >= endingTheta) |
| 2005 | break; |
| 2006 | } else if (returnCode == -1) { |
| 2007 | // trouble - do external solve |
| 2008 | needToDoSomething = true; |
| 2009 | } else if (problemStatus_==1) { |
| 2010 | // can't move any further |
| 2011 | if (!canTryQuick) { |
| 2012 | handler_->message(CLP_PARAMETRICS_STATS, messages_) |
| 2013 | << endingTheta << objectiveValue() << CoinMessageEol; |
| 2014 | problemStatus_=0; |
| 2015 | } |
| 2016 | } else { |
| 2017 | abort(); |
| 2018 | } |
| 2019 | } |
| 2020 | } |
| 2021 | reinterpret_cast<ClpSimplexDual *> (this)->finishSolve(0); |
| 2022 | |
| 2023 | delete dualRowPivot_; |
| 2024 | dualRowPivot_ = savePivot; |
| 2025 | // Restore any saved stuff |
| 2026 | restoreData(data); |
| 2027 | if (needToDoSomething) { |
| 2028 | double saveStartingTheta = startingTheta; // known to be feasible |
| 2029 | int cleanedUp = 1; |
| 2030 | while (cleanedUp) { |
| 2031 | // tweak |
| 2032 | if (cleanedUp == 1) { |
| 2033 | if (!reportIncrement) |
| 2034 | startingTheta = CoinMin(startingTheta + 1.0e-5, saveEndingTheta); |
| 2035 | else |
| 2036 | startingTheta = CoinMin(startingTheta + reportIncrement, saveEndingTheta); |
| 2037 | } else { |
| 2038 | // restoring to go slowly |
| 2039 | startingTheta = saveStartingTheta; |
| 2040 | } |
| 2041 | // only works if not scaled |
| 2042 | int i; |
| 2043 | const double * obj1 = objective(); |
| 2044 | double * obj2 = copyModel.objective(); |
| 2045 | const double * lower1 = columnLower_; |
| 2046 | double * lower2 = copyModel.columnLower(); |
| 2047 | const double * upper1 = columnUpper_; |
| 2048 | double * upper2 = copyModel.columnUpper(); |
| 2049 | for (i = 0; i < numberColumns_; i++) { |
| 2050 | obj2[i] = obj1[i] + startingTheta * chgObjective[i]; |
| 2051 | lower2[i] = lower1[i] + startingTheta * chgLower[i]; |
| 2052 | upper2[i] = upper1[i] + startingTheta * chgUpper[i]; |
| 2053 | } |
| 2054 | lower1 = rowLower_; |
| 2055 | lower2 = copyModel.rowLower(); |
| 2056 | upper1 = rowUpper_; |
| 2057 | upper2 = copyModel.rowUpper(); |
| 2058 | for (i = 0; i < numberRows_; i++) { |
| 2059 | lower2[i] = lower1[i] + startingTheta * chgLower[i+numberColumns_]; |
| 2060 | upper2[i] = upper1[i] + startingTheta * chgUpper[i+numberColumns_]; |
| 2061 | } |
| 2062 | copyModel.dual(); |
| 2063 | if (copyModel.problemStatus()) { |
| 2064 | char line[100]; |
| 2065 | sprintf(line,"Can not get to theta of %g\n" , startingTheta); |
| 2066 | handler_->message(CLP_GENERAL,messages_) |
| 2067 | << line << CoinMessageEol; |
| 2068 | canTryQuick = false; // do slowly to get exact amount |
| 2069 | // back to last known good |
| 2070 | if (cleanedUp == 1) |
| 2071 | cleanedUp = 2; |
| 2072 | else |
| 2073 | abort(); |
| 2074 | } else { |
| 2075 | // and move stuff back |
| 2076 | int numberTotal = numberRows_ + numberColumns_; |
| 2077 | CoinMemcpyN(copyModel.statusArray(), numberTotal, status_); |
| 2078 | CoinMemcpyN(copyModel.primalColumnSolution(), numberColumns_, columnActivity_); |
| 2079 | CoinMemcpyN(copyModel.primalRowSolution(), numberRows_, rowActivity_); |
| 2080 | cleanedUp = 0; |
| 2081 | } |
| 2082 | } |
| 2083 | } |
| 2084 | delete [] chgLower; |
| 2085 | delete [] chgUpper; |
| 2086 | delete [] chgObjective; |
| 2087 | } |
| 2088 | perturbation_ = savePerturbation; |
| 2089 | char line[100]; |
| 2090 | sprintf(line,"Ending theta %g\n" , endingTheta); |
| 2091 | handler_->message(CLP_GENERAL,messages_) |
| 2092 | << line << CoinMessageEol; |
| 2093 | return problemStatus_; |
| 2094 | } |
| 2095 | /* Version of parametrics which reads from file |
| 2096 | See CbcClpParam.cpp for details of format |
| 2097 | Returns -2 if unable to open file */ |
| 2098 | int |
| 2099 | ClpSimplexOther::parametrics(const char * dataFile) |
| 2100 | { |
| 2101 | int returnCode=-2; |
| 2102 | FILE *fp = fopen(dataFile, "r" ); |
| 2103 | char line[200]; |
| 2104 | if (!fp) { |
| 2105 | handler_->message(CLP_UNABLE_OPEN, messages_) |
| 2106 | << dataFile << CoinMessageEol; |
| 2107 | return -2; |
| 2108 | } |
| 2109 | |
| 2110 | if (!fgets(line, 200, fp)) { |
| 2111 | sprintf(line,"Empty parametrics file %s?" ,dataFile); |
| 2112 | handler_->message(CLP_GENERAL,messages_) |
| 2113 | << line << CoinMessageEol; |
| 2114 | fclose(fp); |
| 2115 | return -2; |
| 2116 | } |
| 2117 | char * pos = line; |
| 2118 | char * put = line; |
| 2119 | while (*pos >= ' ' && *pos != '\n') { |
| 2120 | if (*pos != ' ' && *pos != '\t') { |
| 2121 | *put = static_cast<char>(tolower(*pos)); |
| 2122 | put++; |
| 2123 | } |
| 2124 | pos++; |
| 2125 | } |
| 2126 | *put = '\0'; |
| 2127 | pos = line; |
| 2128 | double startTheta=0.0; |
| 2129 | double endTheta=0.0; |
| 2130 | double intervalTheta=COIN_DBL_MAX; |
| 2131 | int detail=0; |
| 2132 | bool good = true; |
| 2133 | while (good) { |
| 2134 | good=false; |
| 2135 | // check ROWS |
| 2136 | char * comma = strchr(pos, ','); |
| 2137 | if (!comma) |
| 2138 | break; |
| 2139 | *comma = '\0'; |
| 2140 | if (strcmp(pos,"rows" )) |
| 2141 | break; |
| 2142 | *comma = ','; |
| 2143 | pos = comma+1; |
| 2144 | // check lower theta |
| 2145 | comma = strchr(pos, ','); |
| 2146 | if (!comma) |
| 2147 | break; |
| 2148 | *comma = '\0'; |
| 2149 | startTheta = atof(pos); |
| 2150 | *comma = ','; |
| 2151 | pos = comma+1; |
| 2152 | // check upper theta |
| 2153 | comma = strchr(pos, ','); |
| 2154 | good=true; |
| 2155 | if (comma) |
| 2156 | *comma = '\0'; |
| 2157 | endTheta = atof(pos); |
| 2158 | if (comma) { |
| 2159 | *comma = ','; |
| 2160 | pos = comma+1; |
| 2161 | comma = strchr(pos, ','); |
| 2162 | if (comma) |
| 2163 | *comma = '\0'; |
| 2164 | intervalTheta = atof(pos); |
| 2165 | if (comma) { |
| 2166 | *comma = ','; |
| 2167 | pos = comma+1; |
| 2168 | comma = strchr(pos, ','); |
| 2169 | if (comma) |
| 2170 | *comma = '\0'; |
| 2171 | detail = atoi(pos); |
| 2172 | if (comma) |
| 2173 | *comma = ','; |
| 2174 | } |
| 2175 | } |
| 2176 | break; |
| 2177 | } |
| 2178 | if (good) { |
| 2179 | if (startTheta<0.0|| |
| 2180 | startTheta>endTheta|| |
| 2181 | intervalTheta<0.0) |
| 2182 | good=false; |
| 2183 | if (detail<0||detail>1) |
| 2184 | good=false; |
| 2185 | } |
| 2186 | if (intervalTheta>=endTheta) |
| 2187 | intervalTheta=0.0; |
| 2188 | if (!good) { |
| 2189 | sprintf(line,"Odd first line %s on file %s?" ,line,dataFile); |
| 2190 | handler_->message(CLP_GENERAL,messages_) |
| 2191 | << line << CoinMessageEol; |
| 2192 | fclose(fp); |
| 2193 | return -2; |
| 2194 | } |
| 2195 | if (!fgets(line, 200, fp)) { |
| 2196 | sprintf(line,"Not enough records on parametrics file %s?" ,dataFile); |
| 2197 | handler_->message(CLP_GENERAL,messages_) |
| 2198 | << line << CoinMessageEol; |
| 2199 | fclose(fp); |
| 2200 | return -2; |
| 2201 | } |
| 2202 | double * lowerRowMove = NULL; |
| 2203 | double * upperRowMove = NULL; |
| 2204 | double * lowerColumnMove = NULL; |
| 2205 | double * upperColumnMove = NULL; |
| 2206 | double * objectiveMove = NULL; |
| 2207 | char saveLine[200]; |
| 2208 | saveLine[0]='\0'; |
| 2209 | std::string headingsRow[] = {"name" , "number" , "lower" , "upper" , "rhs" }; |
| 2210 | int gotRow[] = { -1, -1, -1, -1, -1}; |
| 2211 | int orderRow[5]; |
| 2212 | assert(sizeof(gotRow) == sizeof(orderRow)); |
| 2213 | int nAcross = 0; |
| 2214 | pos = line; |
| 2215 | put = line; |
| 2216 | while (*pos >= ' ' && *pos != '\n') { |
| 2217 | if (*pos != ' ' && *pos != '\t') { |
| 2218 | *put = static_cast<char>(tolower(*pos)); |
| 2219 | put++; |
| 2220 | } |
| 2221 | pos++; |
| 2222 | } |
| 2223 | *put = '\0'; |
| 2224 | pos = line; |
| 2225 | int i; |
| 2226 | good = true; |
| 2227 | if (strncmp(line,"column" ,6)) { |
| 2228 | while (pos) { |
| 2229 | char * comma = strchr(pos, ','); |
| 2230 | if (comma) |
| 2231 | *comma = '\0'; |
| 2232 | for (i = 0; i < static_cast<int> (sizeof(gotRow) / sizeof(int)); i++) { |
| 2233 | if (headingsRow[i] == pos) { |
| 2234 | if (gotRow[i] < 0) { |
| 2235 | orderRow[nAcross] = i; |
| 2236 | gotRow[i] = nAcross++; |
| 2237 | } else { |
| 2238 | // duplicate |
| 2239 | good = false; |
| 2240 | } |
| 2241 | break; |
| 2242 | } |
| 2243 | } |
| 2244 | if (i == static_cast<int> (sizeof(gotRow) / sizeof(int))) |
| 2245 | good = false; |
| 2246 | if (comma) { |
| 2247 | *comma = ','; |
| 2248 | pos = comma + 1; |
| 2249 | } else { |
| 2250 | break; |
| 2251 | } |
| 2252 | } |
| 2253 | if (gotRow[0] < 0 && gotRow[1] < 0) |
| 2254 | good = false; |
| 2255 | if (gotRow[0] >= 0 && gotRow[1] >= 0) |
| 2256 | good = false; |
| 2257 | if (gotRow[0] >= 0 && !lengthNames()) |
| 2258 | good = false; |
| 2259 | if (gotRow[4]<0) { |
| 2260 | if (gotRow[2] < 0 && gotRow[3] >= 0) |
| 2261 | good = false; |
| 2262 | else if (gotRow[3] < 0 && gotRow[2] >= 0) |
| 2263 | good = false; |
| 2264 | } else if (gotRow[2]>=0||gotRow[3]>=0) { |
| 2265 | good = false; |
| 2266 | } |
| 2267 | if (good) { |
| 2268 | char ** rowNames = new char * [numberRows_]; |
| 2269 | int iRow; |
| 2270 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 2271 | rowNames[iRow] = |
| 2272 | CoinStrdup(rowName(iRow).c_str()); |
| 2273 | } |
| 2274 | lowerRowMove = new double [numberRows_]; |
| 2275 | memset(lowerRowMove,0,numberRows_*sizeof(double)); |
| 2276 | upperRowMove = new double [numberRows_]; |
| 2277 | memset(upperRowMove,0,numberRows_*sizeof(double)); |
| 2278 | int nLine = 0; |
| 2279 | int nBadLine = 0; |
| 2280 | int nBadName = 0; |
| 2281 | bool goodLine=false; |
| 2282 | while (fgets(line, 200, fp)) { |
| 2283 | goodLine=true; |
| 2284 | if (!strncmp(line, "ENDATA" , 6)|| |
| 2285 | !strncmp(line, "COLUMN" ,6)) |
| 2286 | break; |
| 2287 | goodLine=false; |
| 2288 | nLine++; |
| 2289 | iRow = -1; |
| 2290 | double upper = 0.0; |
| 2291 | double lower = 0.0; |
| 2292 | char * pos = line; |
| 2293 | char * put = line; |
| 2294 | while (*pos >= ' ' && *pos != '\n') { |
| 2295 | if (*pos != ' ' && *pos != '\t') { |
| 2296 | *put = *pos; |
| 2297 | put++; |
| 2298 | } |
| 2299 | pos++; |
| 2300 | } |
| 2301 | *put = '\0'; |
| 2302 | pos = line; |
| 2303 | for (int i = 0; i < nAcross; i++) { |
| 2304 | char * comma = strchr(pos, ','); |
| 2305 | if (comma) { |
| 2306 | *comma = '\0'; |
| 2307 | } else if (i < nAcross - 1) { |
| 2308 | nBadLine++; |
| 2309 | break; |
| 2310 | } |
| 2311 | switch (orderRow[i]) { |
| 2312 | // name |
| 2313 | case 0: |
| 2314 | // For large problems this could be slow |
| 2315 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 2316 | if (!strcmp(rowNames[iRow], pos)) |
| 2317 | break; |
| 2318 | } |
| 2319 | if (iRow == numberRows_) |
| 2320 | iRow = -1; |
| 2321 | break; |
| 2322 | // number |
| 2323 | case 1: |
| 2324 | iRow = atoi(pos); |
| 2325 | if (iRow < 0 || iRow >= numberRows_) |
| 2326 | iRow = -1; |
| 2327 | break; |
| 2328 | // lower |
| 2329 | case 2: |
| 2330 | upper = atof(pos); |
| 2331 | break; |
| 2332 | // upper |
| 2333 | case 3: |
| 2334 | lower = atof(pos); |
| 2335 | break; |
| 2336 | // rhs |
| 2337 | case 4: |
| 2338 | lower = atof(pos); |
| 2339 | upper = lower; |
| 2340 | break; |
| 2341 | } |
| 2342 | if (comma) { |
| 2343 | *comma = ','; |
| 2344 | pos = comma + 1; |
| 2345 | } |
| 2346 | } |
| 2347 | if (iRow >= 0) { |
| 2348 | if (rowLower_[iRow]>-1.0e20) |
| 2349 | lowerRowMove[iRow] = lower; |
| 2350 | else |
| 2351 | lowerRowMove[iRow]=0.0; |
| 2352 | if (rowUpper_[iRow]<1.0e20) |
| 2353 | upperRowMove[iRow] = upper; |
| 2354 | else |
| 2355 | upperRowMove[iRow] = lower; |
| 2356 | } else { |
| 2357 | nBadName++; |
| 2358 | if(saveLine[0]=='\0') |
| 2359 | strcpy(saveLine,line); |
| 2360 | } |
| 2361 | } |
| 2362 | sprintf(line,"%d Row fields and %d records" , nAcross, nLine); |
| 2363 | handler_->message(CLP_GENERAL,messages_) |
| 2364 | << line << CoinMessageEol; |
| 2365 | if (nBadName) { |
| 2366 | sprintf(line," ** %d records did not match on name/sequence, first bad %s" , nBadName,saveLine); |
| 2367 | handler_->message(CLP_GENERAL,messages_) |
| 2368 | << line << CoinMessageEol; |
| 2369 | returnCode=-1; |
| 2370 | good=false; |
| 2371 | } |
| 2372 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 2373 | free(rowNames[iRow]); |
| 2374 | } |
| 2375 | delete [] rowNames; |
| 2376 | } else { |
| 2377 | sprintf(line,"Duplicate or unknown keyword - or name/number fields wrong" ); |
| 2378 | handler_->message(CLP_GENERAL,messages_) |
| 2379 | << line << CoinMessageEol; |
| 2380 | returnCode=-1; |
| 2381 | good=false; |
| 2382 | } |
| 2383 | } |
| 2384 | if (good&&(!strncmp(line, "COLUMN" ,6)||!strncmp(line, "column" ,6))) { |
| 2385 | if (!fgets(line, 200, fp)) { |
| 2386 | sprintf(line,"Not enough records on parametrics file %s after COLUMNS?" ,dataFile); |
| 2387 | handler_->message(CLP_GENERAL,messages_) |
| 2388 | << line << CoinMessageEol; |
| 2389 | fclose(fp); |
| 2390 | return -2; |
| 2391 | } |
| 2392 | std::string headingsColumn[] = {"name" , "number" , "lower" , "upper" , "objective" }; |
| 2393 | saveLine[0]='\0'; |
| 2394 | int gotColumn[] = { -1, -1, -1, -1, -1}; |
| 2395 | int orderColumn[5]; |
| 2396 | assert(sizeof(gotColumn) == sizeof(orderColumn)); |
| 2397 | nAcross = 0; |
| 2398 | pos = line; |
| 2399 | put = line; |
| 2400 | while (*pos >= ' ' && *pos != '\n') { |
| 2401 | if (*pos != ' ' && *pos != '\t') { |
| 2402 | *put = static_cast<char>(tolower(*pos)); |
| 2403 | put++; |
| 2404 | } |
| 2405 | pos++; |
| 2406 | } |
| 2407 | *put = '\0'; |
| 2408 | pos = line; |
| 2409 | int i; |
| 2410 | if (strncmp(line,"endata" ,6)&&good) { |
| 2411 | while (pos) { |
| 2412 | char * comma = strchr(pos, ','); |
| 2413 | if (comma) |
| 2414 | *comma = '\0'; |
| 2415 | for (i = 0; i < static_cast<int> (sizeof(gotColumn) / sizeof(int)); i++) { |
| 2416 | if (headingsColumn[i] == pos) { |
| 2417 | if (gotColumn[i] < 0) { |
| 2418 | orderColumn[nAcross] = i; |
| 2419 | gotColumn[i] = nAcross++; |
| 2420 | } else { |
| 2421 | // duplicate |
| 2422 | good = false; |
| 2423 | } |
| 2424 | break; |
| 2425 | } |
| 2426 | } |
| 2427 | if (i == static_cast<int> (sizeof(gotColumn) / sizeof(int))) |
| 2428 | good = false; |
| 2429 | if (comma) { |
| 2430 | *comma = ','; |
| 2431 | pos = comma + 1; |
| 2432 | } else { |
| 2433 | break; |
| 2434 | } |
| 2435 | } |
| 2436 | if (gotColumn[0] < 0 && gotColumn[1] < 0) |
| 2437 | good = false; |
| 2438 | if (gotColumn[0] >= 0 && gotColumn[1] >= 0) |
| 2439 | good = false; |
| 2440 | if (gotColumn[0] >= 0 && !lengthNames()) |
| 2441 | good = false; |
| 2442 | if (good) { |
| 2443 | char ** columnNames = new char * [numberColumns_]; |
| 2444 | int iColumn; |
| 2445 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 2446 | columnNames[iColumn] = |
| 2447 | CoinStrdup(columnName(iColumn).c_str()); |
| 2448 | } |
| 2449 | lowerColumnMove = reinterpret_cast<double *> (malloc(numberColumns_ * sizeof(double))); |
| 2450 | memset(lowerColumnMove,0,numberColumns_*sizeof(double)); |
| 2451 | upperColumnMove = reinterpret_cast<double *> (malloc(numberColumns_ * sizeof(double))); |
| 2452 | memset(upperColumnMove,0,numberColumns_*sizeof(double)); |
| 2453 | objectiveMove = reinterpret_cast<double *> (malloc(numberColumns_ * sizeof(double))); |
| 2454 | memset(objectiveMove,0,numberColumns_*sizeof(double)); |
| 2455 | int nLine = 0; |
| 2456 | int nBadLine = 0; |
| 2457 | int nBadName = 0; |
| 2458 | bool goodLine=false; |
| 2459 | while (fgets(line, 200, fp)) { |
| 2460 | goodLine=true; |
| 2461 | if (!strncmp(line, "ENDATA" , 6)) |
| 2462 | break; |
| 2463 | goodLine=false; |
| 2464 | nLine++; |
| 2465 | iColumn = -1; |
| 2466 | double upper = 0.0; |
| 2467 | double lower = 0.0; |
| 2468 | double obj =0.0; |
| 2469 | char * pos = line; |
| 2470 | char * put = line; |
| 2471 | while (*pos >= ' ' && *pos != '\n') { |
| 2472 | if (*pos != ' ' && *pos != '\t') { |
| 2473 | *put = *pos; |
| 2474 | put++; |
| 2475 | } |
| 2476 | pos++; |
| 2477 | } |
| 2478 | *put = '\0'; |
| 2479 | pos = line; |
| 2480 | for (int i = 0; i < nAcross; i++) { |
| 2481 | char * comma = strchr(pos, ','); |
| 2482 | if (comma) { |
| 2483 | *comma = '\0'; |
| 2484 | } else if (i < nAcross - 1) { |
| 2485 | nBadLine++; |
| 2486 | break; |
| 2487 | } |
| 2488 | switch (orderColumn[i]) { |
| 2489 | // name |
| 2490 | case 0: |
| 2491 | // For large problems this could be slow |
| 2492 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 2493 | if (!strcmp(columnNames[iColumn], pos)) |
| 2494 | break; |
| 2495 | } |
| 2496 | if (iColumn == numberColumns_) |
| 2497 | iColumn = -1; |
| 2498 | break; |
| 2499 | // number |
| 2500 | case 1: |
| 2501 | iColumn = atoi(pos); |
| 2502 | if (iColumn < 0 || iColumn >= numberColumns_) |
| 2503 | iColumn = -1; |
| 2504 | break; |
| 2505 | // lower |
| 2506 | case 2: |
| 2507 | upper = atof(pos); |
| 2508 | break; |
| 2509 | // upper |
| 2510 | case 3: |
| 2511 | lower = atof(pos); |
| 2512 | break; |
| 2513 | // objective |
| 2514 | case 4: |
| 2515 | obj = atof(pos); |
| 2516 | upper = lower; |
| 2517 | break; |
| 2518 | } |
| 2519 | if (comma) { |
| 2520 | *comma = ','; |
| 2521 | pos = comma + 1; |
| 2522 | } |
| 2523 | } |
| 2524 | if (iColumn >= 0) { |
| 2525 | if (columnLower_[iColumn]>-1.0e20) |
| 2526 | lowerColumnMove[iColumn] = lower; |
| 2527 | else |
| 2528 | lowerColumnMove[iColumn]=0.0; |
| 2529 | if (columnUpper_[iColumn]<1.0e20) |
| 2530 | upperColumnMove[iColumn] = upper; |
| 2531 | else |
| 2532 | upperColumnMove[iColumn] = lower; |
| 2533 | objectiveMove[iColumn] = obj; |
| 2534 | } else { |
| 2535 | nBadName++; |
| 2536 | if(saveLine[0]=='\0') |
| 2537 | strcpy(saveLine,line); |
| 2538 | } |
| 2539 | } |
| 2540 | sprintf(line,"%d Column fields and %d records" , nAcross, nLine); |
| 2541 | handler_->message(CLP_GENERAL,messages_) |
| 2542 | << line << CoinMessageEol; |
| 2543 | if (nBadName) { |
| 2544 | sprintf(line," ** %d records did not match on name/sequence, first bad %s" , nBadName,saveLine); |
| 2545 | handler_->message(CLP_GENERAL,messages_) |
| 2546 | << line << CoinMessageEol; |
| 2547 | returnCode=-1; |
| 2548 | good=false; |
| 2549 | } |
| 2550 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 2551 | free(columnNames[iColumn]); |
| 2552 | } |
| 2553 | delete [] columnNames; |
| 2554 | } else { |
| 2555 | sprintf(line,"Duplicate or unknown keyword - or name/number fields wrong" ); |
| 2556 | handler_->message(CLP_GENERAL,messages_) |
| 2557 | << line << CoinMessageEol; |
| 2558 | returnCode=-1; |
| 2559 | good=false; |
| 2560 | } |
| 2561 | } |
| 2562 | } |
| 2563 | returnCode=-1; |
| 2564 | if (good) { |
| 2565 | // clean arrays |
| 2566 | if (lowerRowMove) { |
| 2567 | bool empty=true; |
| 2568 | for (int i=0;i<numberRows_;i++) { |
| 2569 | if (lowerRowMove[i]) { |
| 2570 | empty=false; |
| 2571 | break; |
| 2572 | } |
| 2573 | } |
| 2574 | if (empty) { |
| 2575 | delete [] lowerRowMove; |
| 2576 | lowerRowMove=NULL; |
| 2577 | } |
| 2578 | } |
| 2579 | if (upperRowMove) { |
| 2580 | bool empty=true; |
| 2581 | for (int i=0;i<numberRows_;i++) { |
| 2582 | if (upperRowMove[i]) { |
| 2583 | empty=false; |
| 2584 | break; |
| 2585 | } |
| 2586 | } |
| 2587 | if (empty) { |
| 2588 | delete [] upperRowMove; |
| 2589 | upperRowMove=NULL; |
| 2590 | } |
| 2591 | } |
| 2592 | if (lowerColumnMove) { |
| 2593 | bool empty=true; |
| 2594 | for (int i=0;i<numberColumns_;i++) { |
| 2595 | if (lowerColumnMove[i]) { |
| 2596 | empty=false; |
| 2597 | break; |
| 2598 | } |
| 2599 | } |
| 2600 | if (empty) { |
| 2601 | delete [] lowerColumnMove; |
| 2602 | lowerColumnMove=NULL; |
| 2603 | } |
| 2604 | } |
| 2605 | if (upperColumnMove) { |
| 2606 | bool empty=true; |
| 2607 | for (int i=0;i<numberColumns_;i++) { |
| 2608 | if (upperColumnMove[i]) { |
| 2609 | empty=false; |
| 2610 | break; |
| 2611 | } |
| 2612 | } |
| 2613 | if (empty) { |
| 2614 | delete [] upperColumnMove; |
| 2615 | upperColumnMove=NULL; |
| 2616 | } |
| 2617 | } |
| 2618 | if (objectiveMove) { |
| 2619 | bool empty=true; |
| 2620 | for (int i=0;i<numberColumns_;i++) { |
| 2621 | if (objectiveMove[i]) { |
| 2622 | empty=false; |
| 2623 | break; |
| 2624 | } |
| 2625 | } |
| 2626 | if (empty) { |
| 2627 | delete [] objectiveMove; |
| 2628 | objectiveMove=NULL; |
| 2629 | } |
| 2630 | } |
| 2631 | int saveScaling = scalingFlag_; |
| 2632 | scalingFlag_ = 0; |
| 2633 | int saveLogLevel = handler_->logLevel(); |
| 2634 | if (detail>0&&!intervalTheta) |
| 2635 | handler_->setLogLevel(3); |
| 2636 | else |
| 2637 | handler_->setLogLevel(1); |
| 2638 | returnCode = parametrics(startTheta,endTheta,intervalTheta, |
| 2639 | lowerColumnMove,upperColumnMove, |
| 2640 | lowerRowMove,upperRowMove, |
| 2641 | objectiveMove); |
| 2642 | scalingFlag_ = saveScaling; |
| 2643 | handler_->setLogLevel(saveLogLevel); |
| 2644 | } |
| 2645 | delete [] lowerRowMove; |
| 2646 | delete [] upperRowMove; |
| 2647 | delete [] lowerColumnMove; |
| 2648 | delete [] upperColumnMove; |
| 2649 | delete [] objectiveMove; |
| 2650 | fclose(fp); |
| 2651 | return returnCode; |
| 2652 | } |
| 2653 | int |
| 2654 | ClpSimplexOther::parametricsLoop(double startingTheta, double & endingTheta, double reportIncrement, |
| 2655 | const double * changeLower, const double * changeUpper, |
| 2656 | const double * changeObjective, ClpDataSave & data, |
| 2657 | bool canTryQuick) |
| 2658 | { |
| 2659 | // stuff is already at starting |
| 2660 | // For this crude version just try and go to end |
| 2661 | double change = 0.0; |
| 2662 | if (reportIncrement && canTryQuick) { |
| 2663 | endingTheta = CoinMin(endingTheta, startingTheta + reportIncrement); |
| 2664 | change = endingTheta - startingTheta; |
| 2665 | } |
| 2666 | int numberTotal = numberRows_ + numberColumns_; |
| 2667 | int i; |
| 2668 | for ( i = 0; i < numberTotal; i++) { |
| 2669 | lower_[i] += change * changeLower[i]; |
| 2670 | upper_[i] += change * changeUpper[i]; |
| 2671 | switch(getStatus(i)) { |
| 2672 | |
| 2673 | case basic: |
| 2674 | case isFree: |
| 2675 | case superBasic: |
| 2676 | break; |
| 2677 | case isFixed: |
| 2678 | case atUpperBound: |
| 2679 | solution_[i] = upper_[i]; |
| 2680 | break; |
| 2681 | case atLowerBound: |
| 2682 | solution_[i] = lower_[i]; |
| 2683 | break; |
| 2684 | } |
| 2685 | cost_[i] += change * changeObjective[i]; |
| 2686 | } |
| 2687 | problemStatus_ = -1; |
| 2688 | |
| 2689 | // This says whether to restore things etc |
| 2690 | // startup will have factorized so can skip |
| 2691 | int factorType = 0; |
| 2692 | // Start check for cycles |
| 2693 | progress_.startCheck(); |
| 2694 | // Say change made on first iteration |
| 2695 | changeMade_ = 1; |
| 2696 | /* |
| 2697 | Status of problem: |
| 2698 | 0 - optimal |
| 2699 | 1 - infeasible |
| 2700 | 2 - unbounded |
| 2701 | -1 - iterating |
| 2702 | -2 - factorization wanted |
| 2703 | -3 - redo checking without factorization |
| 2704 | -4 - looks infeasible |
| 2705 | */ |
| 2706 | while (problemStatus_ < 0) { |
| 2707 | int iRow, iColumn; |
| 2708 | // clear |
| 2709 | for (iRow = 0; iRow < 4; iRow++) { |
| 2710 | rowArray_[iRow]->clear(); |
| 2711 | } |
| 2712 | |
| 2713 | for (iColumn = 0; iColumn < 2; iColumn++) { |
| 2714 | columnArray_[iColumn]->clear(); |
| 2715 | } |
| 2716 | |
| 2717 | // give matrix (and model costs and bounds a chance to be |
| 2718 | // refreshed (normally null) |
| 2719 | matrix_->refresh(this); |
| 2720 | // may factorize, checks if problem finished |
| 2721 | statusOfProblemInParametrics(factorType, data); |
| 2722 | // Say good factorization |
| 2723 | factorType = 1; |
| 2724 | if (data.sparseThreshold_) { |
| 2725 | // use default at present |
| 2726 | factorization_->sparseThreshold(0); |
| 2727 | factorization_->goSparse(); |
| 2728 | } |
| 2729 | |
| 2730 | // exit if victory declared |
| 2731 | if (problemStatus_ >= 0 && |
| 2732 | (canTryQuick || startingTheta>=endingTheta-1.0e-7) ) |
| 2733 | break; |
| 2734 | |
| 2735 | // test for maximum iterations |
| 2736 | if (hitMaximumIterations()) { |
| 2737 | problemStatus_ = 3; |
| 2738 | break; |
| 2739 | } |
| 2740 | // Check event |
| 2741 | { |
| 2742 | int status = eventHandler_->event(ClpEventHandler::endOfFactorization); |
| 2743 | if (status >= 0) { |
| 2744 | problemStatus_ = 5; |
| 2745 | secondaryStatus_ = ClpEventHandler::endOfFactorization; |
| 2746 | break; |
| 2747 | } |
| 2748 | } |
| 2749 | // Do iterations |
| 2750 | problemStatus_=-1; |
| 2751 | if (canTryQuick) { |
| 2752 | double * saveDuals = NULL; |
| 2753 | reinterpret_cast<ClpSimplexDual *> (this)->whileIterating(saveDuals, 0); |
| 2754 | } else { |
| 2755 | whileIterating(startingTheta, endingTheta, reportIncrement, |
| 2756 | changeLower, changeUpper, |
| 2757 | changeObjective); |
| 2758 | startingTheta = endingTheta; |
| 2759 | } |
| 2760 | } |
| 2761 | if (!problemStatus_) { |
| 2762 | theta_ = change + startingTheta; |
| 2763 | eventHandler_->event(ClpEventHandler::theta); |
| 2764 | return 0; |
| 2765 | } else if (problemStatus_ == 10) { |
| 2766 | return -1; |
| 2767 | } else { |
| 2768 | return problemStatus_; |
| 2769 | } |
| 2770 | } |
| 2771 | /* Checks if finished. Updates status */ |
| 2772 | void |
| 2773 | ClpSimplexOther::statusOfProblemInParametrics(int type, ClpDataSave & saveData) |
| 2774 | { |
| 2775 | if (type == 2) { |
| 2776 | // trouble - go to recovery |
| 2777 | problemStatus_ = 10; |
| 2778 | return; |
| 2779 | } |
| 2780 | if (problemStatus_ > -3 || factorization_->pivots()) { |
| 2781 | // factorize |
| 2782 | // later on we will need to recover from singularities |
| 2783 | // also we could skip if first time |
| 2784 | if (type) { |
| 2785 | // is factorization okay? |
| 2786 | if (internalFactorize(1)) { |
| 2787 | // trouble - go to recovery |
| 2788 | problemStatus_ = 10; |
| 2789 | return; |
| 2790 | } |
| 2791 | } |
| 2792 | if (problemStatus_ != -4 || factorization_->pivots() > 10) |
| 2793 | problemStatus_ = -3; |
| 2794 | } |
| 2795 | // at this stage status is -3 or -4 if looks infeasible |
| 2796 | // get primal and dual solutions |
| 2797 | gutsOfSolution(NULL, NULL); |
| 2798 | double realDualInfeasibilities = sumDualInfeasibilities_; |
| 2799 | // If bad accuracy treat as singular |
| 2800 | if ((largestPrimalError_ > 1.0e15 || largestDualError_ > 1.0e15) && numberIterations_) { |
| 2801 | // trouble - go to recovery |
| 2802 | problemStatus_ = 10; |
| 2803 | return; |
| 2804 | } else if (largestPrimalError_ < 1.0e-7 && largestDualError_ < 1.0e-7) { |
| 2805 | // Can reduce tolerance |
| 2806 | double newTolerance = CoinMax(0.99 * factorization_->pivotTolerance(), saveData.pivotTolerance_); |
| 2807 | factorization_->pivotTolerance(newTolerance); |
| 2808 | } |
| 2809 | // Check if looping |
| 2810 | int loop; |
| 2811 | if (type != 2) |
| 2812 | loop = progress_.looping(); |
| 2813 | else |
| 2814 | loop = -1; |
| 2815 | if (loop >= 0) { |
| 2816 | problemStatus_ = loop; //exit if in loop |
| 2817 | if (!problemStatus_) { |
| 2818 | // declaring victory |
| 2819 | numberPrimalInfeasibilities_ = 0; |
| 2820 | sumPrimalInfeasibilities_ = 0.0; |
| 2821 | } else { |
| 2822 | problemStatus_ = 10; // instead - try other algorithm |
| 2823 | } |
| 2824 | return; |
| 2825 | } else if (loop < -1) { |
| 2826 | // something may have changed |
| 2827 | gutsOfSolution(NULL, NULL); |
| 2828 | } |
| 2829 | progressFlag_ = 0; //reset progress flag |
| 2830 | if (handler_->detail(CLP_SIMPLEX_STATUS, messages_) < 100) { |
| 2831 | handler_->message(CLP_SIMPLEX_STATUS, messages_) |
| 2832 | << numberIterations_ << objectiveValue(); |
| 2833 | handler_->printing(sumPrimalInfeasibilities_ > 0.0) |
| 2834 | << sumPrimalInfeasibilities_ << numberPrimalInfeasibilities_; |
| 2835 | handler_->printing(sumDualInfeasibilities_ > 0.0) |
| 2836 | << sumDualInfeasibilities_ << numberDualInfeasibilities_; |
| 2837 | handler_->printing(numberDualInfeasibilitiesWithoutFree_ |
| 2838 | < numberDualInfeasibilities_) |
| 2839 | << numberDualInfeasibilitiesWithoutFree_; |
| 2840 | handler_->message() << CoinMessageEol; |
| 2841 | } |
| 2842 | /* If we are primal feasible and any dual infeasibilities are on |
| 2843 | free variables then it is better to go to primal */ |
| 2844 | if (!numberPrimalInfeasibilities_ && !numberDualInfeasibilitiesWithoutFree_ && |
| 2845 | numberDualInfeasibilities_) { |
| 2846 | problemStatus_ = 10; |
| 2847 | return; |
| 2848 | } |
| 2849 | |
| 2850 | // check optimal |
| 2851 | // give code benefit of doubt |
| 2852 | if (sumOfRelaxedDualInfeasibilities_ == 0.0 && |
| 2853 | sumOfRelaxedPrimalInfeasibilities_ == 0.0) { |
| 2854 | // say optimal (with these bounds etc) |
| 2855 | numberDualInfeasibilities_ = 0; |
| 2856 | sumDualInfeasibilities_ = 0.0; |
| 2857 | numberPrimalInfeasibilities_ = 0; |
| 2858 | sumPrimalInfeasibilities_ = 0.0; |
| 2859 | } |
| 2860 | if (dualFeasible() || problemStatus_ == -4) { |
| 2861 | progress_.modifyObjective(objectiveValue_ |
| 2862 | - sumDualInfeasibilities_ * dualBound_); |
| 2863 | } |
| 2864 | if (numberPrimalInfeasibilities_) { |
| 2865 | if (problemStatus_ == -4 || problemStatus_ == -5) { |
| 2866 | problemStatus_ = 1; // infeasible |
| 2867 | } |
| 2868 | } else if (numberDualInfeasibilities_) { |
| 2869 | // clean up |
| 2870 | problemStatus_ = 10; |
| 2871 | } else { |
| 2872 | problemStatus_ = 0; |
| 2873 | } |
| 2874 | lastGoodIteration_ = numberIterations_; |
| 2875 | if (problemStatus_ < 0) { |
| 2876 | sumDualInfeasibilities_ = realDualInfeasibilities; // back to say be careful |
| 2877 | if (sumDualInfeasibilities_) |
| 2878 | numberDualInfeasibilities_ = 1; |
| 2879 | } |
| 2880 | // Allow matrices to be sorted etc |
| 2881 | int fake = -999; // signal sort |
| 2882 | matrix_->correctSequence(this, fake, fake); |
| 2883 | } |
| 2884 | /* This has the flow between re-factorizations |
| 2885 | Reasons to come out: |
| 2886 | -1 iterations etc |
| 2887 | -2 inaccuracy |
| 2888 | -3 slight inaccuracy (and done iterations) |
| 2889 | +0 looks optimal (might be unbounded - but we will investigate) |
| 2890 | +1 looks infeasible |
| 2891 | +3 max iterations |
| 2892 | +4 accuracy problems |
| 2893 | */ |
| 2894 | int |
| 2895 | ClpSimplexOther::whileIterating(double startingTheta, double & endingTheta, double /*reportIncrement*/, |
| 2896 | const double * changeLower, const double * changeUpper, |
| 2897 | const double * changeObjective) |
| 2898 | { |
| 2899 | { |
| 2900 | int i; |
| 2901 | for (i = 0; i < 4; i++) { |
| 2902 | rowArray_[i]->clear(); |
| 2903 | } |
| 2904 | for (i = 0; i < 2; i++) { |
| 2905 | columnArray_[i]->clear(); |
| 2906 | } |
| 2907 | } |
| 2908 | // if can't trust much and long way from optimal then relax |
| 2909 | if (largestPrimalError_ > 10.0) |
| 2910 | factorization_->relaxAccuracyCheck(CoinMin(1.0e2, largestPrimalError_ / 10.0)); |
| 2911 | else |
| 2912 | factorization_->relaxAccuracyCheck(1.0); |
| 2913 | // status stays at -1 while iterating, >=0 finished, -2 to invert |
| 2914 | // status -3 to go to top without an invert |
| 2915 | int returnCode = -1; |
| 2916 | double saveSumDual = sumDualInfeasibilities_; // so we know to be careful |
| 2917 | double lastTheta = startingTheta; |
| 2918 | double useTheta = startingTheta; |
| 2919 | int numberTotal = numberColumns_ + numberRows_; |
| 2920 | double * primalChange = new double[numberTotal]; |
| 2921 | double * dualChange = new double[numberTotal]; |
| 2922 | int iSequence; |
| 2923 | // See if bounds |
| 2924 | int type = 0; |
| 2925 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 2926 | if (changeLower[iSequence] || changeUpper[iSequence]) { |
| 2927 | type = 1; |
| 2928 | break; |
| 2929 | } |
| 2930 | } |
| 2931 | // See if objective |
| 2932 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 2933 | if (changeObjective[iSequence]) { |
| 2934 | type |= 2; |
| 2935 | break; |
| 2936 | } |
| 2937 | } |
| 2938 | assert (type); |
| 2939 | while (problemStatus_ == -1) { |
| 2940 | double increaseTheta = CoinMin(endingTheta - lastTheta, 1.0e50); |
| 2941 | |
| 2942 | // Get theta for bounds - we know can't crossover |
| 2943 | int pivotType = nextTheta(type, increaseTheta, primalChange, dualChange, |
| 2944 | changeLower, changeUpper, changeObjective); |
| 2945 | useTheta += theta_; |
| 2946 | double change = useTheta - lastTheta; |
| 2947 | for (int i = 0; i < numberTotal; i++) { |
| 2948 | lower_[i] += change * changeLower[i]; |
| 2949 | upper_[i] += change * changeUpper[i]; |
| 2950 | switch(getStatus(i)) { |
| 2951 | |
| 2952 | case basic: |
| 2953 | case isFree: |
| 2954 | case superBasic: |
| 2955 | break; |
| 2956 | case isFixed: |
| 2957 | case atUpperBound: |
| 2958 | solution_[i] = upper_[i]; |
| 2959 | break; |
| 2960 | case atLowerBound: |
| 2961 | solution_[i] = lower_[i]; |
| 2962 | break; |
| 2963 | } |
| 2964 | cost_[i] += change * changeObjective[i]; |
| 2965 | assert (solution_[i]>lower_[i]-1.0e-5&& |
| 2966 | solution_[i]<upper_[i]+1.0e-5); |
| 2967 | } |
| 2968 | sequenceIn_=-1; |
| 2969 | if (pivotType) { |
| 2970 | problemStatus_ = -2; |
| 2971 | endingTheta = useTheta; |
| 2972 | return 4; |
| 2973 | } |
| 2974 | // choose row to go out |
| 2975 | //reinterpret_cast<ClpSimplexDual *> ( this)->dualRow(-1); |
| 2976 | if (pivotRow_ >= 0) { |
| 2977 | // we found a pivot row |
| 2978 | if (handler_->detail(CLP_SIMPLEX_PIVOTROW, messages_) < 100) { |
| 2979 | handler_->message(CLP_SIMPLEX_PIVOTROW, messages_) |
| 2980 | << pivotRow_ |
| 2981 | << CoinMessageEol; |
| 2982 | } |
| 2983 | // check accuracy of weights |
| 2984 | dualRowPivot_->checkAccuracy(); |
| 2985 | // Get good size for pivot |
| 2986 | // Allow first few iterations to take tiny |
| 2987 | double acceptablePivot = 1.0e-9; |
| 2988 | if (numberIterations_ > 100) |
| 2989 | acceptablePivot = 1.0e-8; |
| 2990 | if (factorization_->pivots() > 10 || |
| 2991 | (factorization_->pivots() && saveSumDual)) |
| 2992 | acceptablePivot = 1.0e-5; // if we have iterated be more strict |
| 2993 | else if (factorization_->pivots() > 5) |
| 2994 | acceptablePivot = 1.0e-6; // if we have iterated be slightly more strict |
| 2995 | else if (factorization_->pivots()) |
| 2996 | acceptablePivot = 1.0e-8; // relax |
| 2997 | double bestPossiblePivot = 1.0; |
| 2998 | // get sign for finding row of tableau |
| 2999 | // normal iteration |
| 3000 | // create as packed |
| 3001 | double direction = directionOut_; |
| 3002 | rowArray_[0]->createPacked(1, &pivotRow_, &direction); |
| 3003 | factorization_->updateColumnTranspose(rowArray_[1], rowArray_[0]); |
| 3004 | // put row of tableau in rowArray[0] and columnArray[0] |
| 3005 | matrix_->transposeTimes(this, -1.0, |
| 3006 | rowArray_[0], rowArray_[3], columnArray_[0]); |
| 3007 | // do ratio test for normal iteration |
| 3008 | bestPossiblePivot = reinterpret_cast<ClpSimplexDual *> ( this)->dualColumn(rowArray_[0], |
| 3009 | columnArray_[0], columnArray_[1], |
| 3010 | rowArray_[3], acceptablePivot, NULL); |
| 3011 | if (sequenceIn_ >= 0) { |
| 3012 | // normal iteration |
| 3013 | // update the incoming column |
| 3014 | double btranAlpha = -alpha_ * directionOut_; // for check |
| 3015 | unpackPacked(rowArray_[1]); |
| 3016 | // moved into updateWeights factorization_->updateColumnFT(rowArray_[2],rowArray_[1]); |
| 3017 | // and update dual weights (can do in parallel - with extra array) |
| 3018 | alpha_ = dualRowPivot_->updateWeights(rowArray_[0], |
| 3019 | rowArray_[2], |
| 3020 | rowArray_[3], |
| 3021 | rowArray_[1]); |
| 3022 | // see if update stable |
| 3023 | #ifdef CLP_DEBUG |
| 3024 | if ((handler_->logLevel() & 32)) |
| 3025 | printf("btran alpha %g, ftran alpha %g\n" , btranAlpha, alpha_); |
| 3026 | #endif |
| 3027 | double checkValue = 1.0e-7; |
| 3028 | // if can't trust much and long way from optimal then relax |
| 3029 | if (largestPrimalError_ > 10.0) |
| 3030 | checkValue = CoinMin(1.0e-4, 1.0e-8 * largestPrimalError_); |
| 3031 | if (fabs(btranAlpha) < 1.0e-12 || fabs(alpha_) < 1.0e-12 || |
| 3032 | fabs(btranAlpha - alpha_) > checkValue*(1.0 + fabs(alpha_))) { |
| 3033 | handler_->message(CLP_DUAL_CHECK, messages_) |
| 3034 | << btranAlpha |
| 3035 | << alpha_ |
| 3036 | << CoinMessageEol; |
| 3037 | if (factorization_->pivots()) { |
| 3038 | dualRowPivot_->unrollWeights(); |
| 3039 | problemStatus_ = -2; // factorize now |
| 3040 | rowArray_[0]->clear(); |
| 3041 | rowArray_[1]->clear(); |
| 3042 | columnArray_[0]->clear(); |
| 3043 | returnCode = -2; |
| 3044 | break; |
| 3045 | } else { |
| 3046 | // take on more relaxed criterion |
| 3047 | double test; |
| 3048 | if (fabs(btranAlpha) < 1.0e-8 || fabs(alpha_) < 1.0e-8) |
| 3049 | test = 1.0e-1 * fabs(alpha_); |
| 3050 | else |
| 3051 | test = 1.0e-4 * (1.0 + fabs(alpha_)); |
| 3052 | if (fabs(btranAlpha) < 1.0e-12 || fabs(alpha_) < 1.0e-12 || |
| 3053 | fabs(btranAlpha - alpha_) > test) { |
| 3054 | dualRowPivot_->unrollWeights(); |
| 3055 | // need to reject something |
| 3056 | char x = isColumn(sequenceOut_) ? 'C' : 'R'; |
| 3057 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
| 3058 | << x << sequenceWithin(sequenceOut_) |
| 3059 | << CoinMessageEol; |
| 3060 | setFlagged(sequenceOut_); |
| 3061 | progress_.clearBadTimes(); |
| 3062 | lastBadIteration_ = numberIterations_; // say be more cautious |
| 3063 | rowArray_[0]->clear(); |
| 3064 | rowArray_[1]->clear(); |
| 3065 | columnArray_[0]->clear(); |
| 3066 | if (fabs(alpha_) < 1.0e-10 && fabs(btranAlpha) < 1.0e-8 && numberIterations_ > 100) { |
| 3067 | //printf("I think should declare infeasible\n"); |
| 3068 | problemStatus_ = 1; |
| 3069 | returnCode = 1; |
| 3070 | break; |
| 3071 | } |
| 3072 | continue; |
| 3073 | } |
| 3074 | } |
| 3075 | } |
| 3076 | // update duals BEFORE replaceColumn so can do updateColumn |
| 3077 | double objectiveChange = 0.0; |
| 3078 | // do duals first as variables may flip bounds |
| 3079 | // rowArray_[0] and columnArray_[0] may have flips |
| 3080 | // so use rowArray_[3] for work array from here on |
| 3081 | int nswapped = 0; |
| 3082 | //rowArray_[0]->cleanAndPackSafe(1.0e-60); |
| 3083 | //columnArray_[0]->cleanAndPackSafe(1.0e-60); |
| 3084 | nswapped = reinterpret_cast<ClpSimplexDual *> ( this)->updateDualsInDual(rowArray_[0], columnArray_[0], |
| 3085 | rowArray_[2], theta_, |
| 3086 | objectiveChange, false); |
| 3087 | |
| 3088 | // which will change basic solution |
| 3089 | if (nswapped) { |
| 3090 | factorization_->updateColumn(rowArray_[3], rowArray_[2]); |
| 3091 | dualRowPivot_->updatePrimalSolution(rowArray_[2], |
| 3092 | 1.0, objectiveChange); |
| 3093 | // recompute dualOut_ |
| 3094 | valueOut_ = solution_[sequenceOut_]; |
| 3095 | if (directionOut_ < 0) { |
| 3096 | dualOut_ = valueOut_ - upperOut_; |
| 3097 | } else { |
| 3098 | dualOut_ = lowerOut_ - valueOut_; |
| 3099 | } |
| 3100 | } |
| 3101 | // amount primal will move |
| 3102 | double movement = -dualOut_ * directionOut_ / alpha_; |
| 3103 | // so objective should increase by fabs(dj)*movement |
| 3104 | // but we already have objective change - so check will be good |
| 3105 | if (objectiveChange + fabs(movement * dualIn_) < -1.0e-5) { |
| 3106 | #ifdef CLP_DEBUG |
| 3107 | if (handler_->logLevel() & 32) |
| 3108 | printf("movement %g, swap change %g, rest %g * %g\n" , |
| 3109 | objectiveChange + fabs(movement * dualIn_), |
| 3110 | objectiveChange, movement, dualIn_); |
| 3111 | #endif |
| 3112 | if(factorization_->pivots()) { |
| 3113 | // going backwards - factorize |
| 3114 | dualRowPivot_->unrollWeights(); |
| 3115 | problemStatus_ = -2; // factorize now |
| 3116 | returnCode = -2; |
| 3117 | break; |
| 3118 | } |
| 3119 | } |
| 3120 | CoinAssert(fabs(dualOut_) < 1.0e50); |
| 3121 | // if stable replace in basis |
| 3122 | int updateStatus = factorization_->replaceColumn(this, |
| 3123 | rowArray_[2], |
| 3124 | rowArray_[1], |
| 3125 | pivotRow_, |
| 3126 | alpha_); |
| 3127 | // if no pivots, bad update but reasonable alpha - take and invert |
| 3128 | if (updateStatus == 2 && |
| 3129 | !factorization_->pivots() && fabs(alpha_) > 1.0e-5) |
| 3130 | updateStatus = 4; |
| 3131 | if (updateStatus == 1 || updateStatus == 4) { |
| 3132 | // slight error |
| 3133 | if (factorization_->pivots() > 5 || updateStatus == 4) { |
| 3134 | problemStatus_ = -2; // factorize now |
| 3135 | returnCode = -3; |
| 3136 | } |
| 3137 | } else if (updateStatus == 2) { |
| 3138 | // major error |
| 3139 | dualRowPivot_->unrollWeights(); |
| 3140 | // later we may need to unwind more e.g. fake bounds |
| 3141 | if (factorization_->pivots()) { |
| 3142 | problemStatus_ = -2; // factorize now |
| 3143 | returnCode = -2; |
| 3144 | break; |
| 3145 | } else { |
| 3146 | // need to reject something |
| 3147 | char x = isColumn(sequenceOut_) ? 'C' : 'R'; |
| 3148 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
| 3149 | << x << sequenceWithin(sequenceOut_) |
| 3150 | << CoinMessageEol; |
| 3151 | setFlagged(sequenceOut_); |
| 3152 | progress_.clearBadTimes(); |
| 3153 | lastBadIteration_ = numberIterations_; // say be more cautious |
| 3154 | rowArray_[0]->clear(); |
| 3155 | rowArray_[1]->clear(); |
| 3156 | columnArray_[0]->clear(); |
| 3157 | // make sure dual feasible |
| 3158 | // look at all rows and columns |
| 3159 | double objectiveChange = 0.0; |
| 3160 | reinterpret_cast<ClpSimplexDual *> ( this)->updateDualsInDual(rowArray_[0], columnArray_[0], rowArray_[1], |
| 3161 | 0.0, objectiveChange, true); |
| 3162 | continue; |
| 3163 | } |
| 3164 | } else if (updateStatus == 3) { |
| 3165 | // out of memory |
| 3166 | // increase space if not many iterations |
| 3167 | if (factorization_->pivots() < |
| 3168 | 0.5 * factorization_->maximumPivots() && |
| 3169 | factorization_->pivots() < 200) |
| 3170 | factorization_->areaFactor( |
| 3171 | factorization_->areaFactor() * 1.1); |
| 3172 | problemStatus_ = -2; // factorize now |
| 3173 | } else if (updateStatus == 5) { |
| 3174 | problemStatus_ = -2; // factorize now |
| 3175 | } |
| 3176 | // update primal solution |
| 3177 | if (theta_ < 0.0) { |
| 3178 | #ifdef CLP_DEBUG |
| 3179 | if (handler_->logLevel() & 32) |
| 3180 | printf("negative theta %g\n" , theta_); |
| 3181 | #endif |
| 3182 | theta_ = 0.0; |
| 3183 | } |
| 3184 | // do actual flips |
| 3185 | reinterpret_cast<ClpSimplexDual *> ( this)->flipBounds(rowArray_[0], columnArray_[0]); |
| 3186 | //rowArray_[1]->expand(); |
| 3187 | dualRowPivot_->updatePrimalSolution(rowArray_[1], |
| 3188 | movement, |
| 3189 | objectiveChange); |
| 3190 | // modify dualout |
| 3191 | dualOut_ /= alpha_; |
| 3192 | dualOut_ *= -directionOut_; |
| 3193 | //setStatus(sequenceIn_,basic); |
| 3194 | dj_[sequenceIn_] = 0.0; |
| 3195 | //double oldValue = valueIn_; |
| 3196 | if (directionIn_ == -1) { |
| 3197 | // as if from upper bound |
| 3198 | valueIn_ = upperIn_ + dualOut_; |
| 3199 | } else { |
| 3200 | // as if from lower bound |
| 3201 | valueIn_ = lowerIn_ + dualOut_; |
| 3202 | } |
| 3203 | objectiveChange = 0.0; |
| 3204 | for (int i=0;i<numberTotal;i++) |
| 3205 | objectiveChange += solution_[i]*cost_[i]; |
| 3206 | objectiveChange -= objectiveValue_; |
| 3207 | // outgoing |
| 3208 | // set dj to zero unless values pass |
| 3209 | if (directionOut_ > 0) { |
| 3210 | valueOut_ = lowerOut_; |
| 3211 | dj_[sequenceOut_] = theta_; |
| 3212 | } else { |
| 3213 | valueOut_ = upperOut_; |
| 3214 | dj_[sequenceOut_] = -theta_; |
| 3215 | } |
| 3216 | solution_[sequenceOut_] = valueOut_; |
| 3217 | int whatNext = housekeeping(objectiveChange); |
| 3218 | { |
| 3219 | char in[200],out[200]; |
| 3220 | int iSequence=sequenceIn_; |
| 3221 | if (iSequence<numberColumns_) { |
| 3222 | if (lengthNames_) |
| 3223 | strcpy(in,columnNames_[iSequence].c_str()); |
| 3224 | else |
| 3225 | sprintf(in,"C%7.7d" ,iSequence); |
| 3226 | } else { |
| 3227 | iSequence -= numberColumns_; |
| 3228 | if (lengthNames_) |
| 3229 | strcpy(in,rowNames_[iSequence].c_str()); |
| 3230 | else |
| 3231 | sprintf(in,"R%7.7d" ,iSequence); |
| 3232 | } |
| 3233 | iSequence=sequenceOut_; |
| 3234 | if (iSequence<numberColumns_) { |
| 3235 | if (lengthNames_) |
| 3236 | strcpy(out,columnNames_[iSequence].c_str()); |
| 3237 | else |
| 3238 | sprintf(out,"C%7.7d" ,iSequence); |
| 3239 | } else { |
| 3240 | iSequence -= numberColumns_; |
| 3241 | if (lengthNames_) |
| 3242 | strcpy(out,rowNames_[iSequence].c_str()); |
| 3243 | else |
| 3244 | sprintf(out,"R%7.7d" ,iSequence); |
| 3245 | } |
| 3246 | handler_->message(CLP_PARAMETRICS_STATS2, messages_) |
| 3247 | << useTheta << objectiveValue() |
| 3248 | << in << out << CoinMessageEol; |
| 3249 | } |
| 3250 | if (useTheta>lastTheta+1.0e-9) { |
| 3251 | handler_->message(CLP_PARAMETRICS_STATS, messages_) |
| 3252 | << useTheta << objectiveValue() << CoinMessageEol; |
| 3253 | lastTheta = useTheta; |
| 3254 | } |
| 3255 | // and set bounds correctly |
| 3256 | reinterpret_cast<ClpSimplexDual *> ( this)->originalBound(sequenceIn_); |
| 3257 | reinterpret_cast<ClpSimplexDual *> ( this)->changeBound(sequenceOut_); |
| 3258 | if (whatNext == 1) { |
| 3259 | problemStatus_ = -2; // refactorize |
| 3260 | } else if (whatNext == 2) { |
| 3261 | // maximum iterations or equivalent |
| 3262 | problemStatus_ = 3; |
| 3263 | returnCode = 3; |
| 3264 | break; |
| 3265 | } |
| 3266 | // Check event |
| 3267 | { |
| 3268 | int status = eventHandler_->event(ClpEventHandler::endOfIteration); |
| 3269 | if (status >= 0) { |
| 3270 | problemStatus_ = 5; |
| 3271 | secondaryStatus_ = ClpEventHandler::endOfIteration; |
| 3272 | returnCode = 4; |
| 3273 | break; |
| 3274 | } |
| 3275 | } |
| 3276 | } else { |
| 3277 | // no incoming column is valid |
| 3278 | pivotRow_ = -1; |
| 3279 | #ifdef CLP_DEBUG |
| 3280 | if (handler_->logLevel() & 32) |
| 3281 | printf("** no column pivot\n" ); |
| 3282 | #endif |
| 3283 | if (factorization_->pivots() < 5) { |
| 3284 | // If not in branch and bound etc save ray |
| 3285 | if ((specialOptions_&(1024 | 4096)) == 0) { |
| 3286 | // create ray anyway |
| 3287 | delete [] ray_; |
| 3288 | ray_ = new double [ numberRows_]; |
| 3289 | rowArray_[0]->expand(); // in case packed |
| 3290 | ClpDisjointCopyN(rowArray_[0]->denseVector(), numberRows_, ray_); |
| 3291 | } |
| 3292 | // If we have just factorized and infeasibility reasonable say infeas |
| 3293 | if (((specialOptions_ & 4096) != 0 || bestPossiblePivot < 1.0e-11) && dualBound_ > 1.0e8) { |
| 3294 | if (valueOut_ > upperOut_ + 1.0e-3 || valueOut_ < lowerOut_ - 1.0e-3 |
| 3295 | || (specialOptions_ & 64) == 0) { |
| 3296 | // say infeasible |
| 3297 | problemStatus_ = 1; |
| 3298 | // unless primal feasible!!!! |
| 3299 | //printf("%d %g %d %g\n",numberPrimalInfeasibilities_,sumPrimalInfeasibilities_, |
| 3300 | // numberDualInfeasibilities_,sumDualInfeasibilities_); |
| 3301 | if (numberDualInfeasibilities_) |
| 3302 | problemStatus_ = 10; |
| 3303 | rowArray_[0]->clear(); |
| 3304 | columnArray_[0]->clear(); |
| 3305 | returnCode = 1; |
| 3306 | break; |
| 3307 | } |
| 3308 | } |
| 3309 | // If special option set - put off as long as possible |
| 3310 | if ((specialOptions_ & 64) == 0) { |
| 3311 | problemStatus_ = -4; //say looks infeasible |
| 3312 | } else { |
| 3313 | // flag |
| 3314 | char x = isColumn(sequenceOut_) ? 'C' : 'R'; |
| 3315 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
| 3316 | << x << sequenceWithin(sequenceOut_) |
| 3317 | << CoinMessageEol; |
| 3318 | setFlagged(sequenceOut_); |
| 3319 | if (!factorization_->pivots()) { |
| 3320 | rowArray_[0]->clear(); |
| 3321 | columnArray_[0]->clear(); |
| 3322 | continue; |
| 3323 | } |
| 3324 | } |
| 3325 | } |
| 3326 | rowArray_[0]->clear(); |
| 3327 | columnArray_[0]->clear(); |
| 3328 | returnCode = 1; |
| 3329 | break; |
| 3330 | } |
| 3331 | } else { |
| 3332 | // no pivot row |
| 3333 | #ifdef CLP_DEBUG |
| 3334 | if (handler_->logLevel() & 32) |
| 3335 | printf("** no row pivot\n" ); |
| 3336 | #endif |
| 3337 | int numberPivots = factorization_->pivots(); |
| 3338 | bool specialCase; |
| 3339 | int useNumberFake; |
| 3340 | returnCode = 0; |
| 3341 | if (numberPivots < 20 && |
| 3342 | (specialOptions_ & 2048) != 0 && !numberChanged_ && perturbation_ >= 100 |
| 3343 | && dualBound_ > 1.0e8) { |
| 3344 | specialCase = true; |
| 3345 | // as dual bound high - should be okay |
| 3346 | useNumberFake = 0; |
| 3347 | } else { |
| 3348 | specialCase = false; |
| 3349 | useNumberFake = numberFake_; |
| 3350 | } |
| 3351 | if (!numberPivots || specialCase) { |
| 3352 | // may have crept through - so may be optimal |
| 3353 | // check any flagged variables |
| 3354 | int iRow; |
| 3355 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3356 | int iPivot = pivotVariable_[iRow]; |
| 3357 | if (flagged(iPivot)) |
| 3358 | break; |
| 3359 | } |
| 3360 | if (iRow < numberRows_ && numberPivots) { |
| 3361 | // try factorization |
| 3362 | returnCode = -2; |
| 3363 | } |
| 3364 | |
| 3365 | if (useNumberFake || numberDualInfeasibilities_) { |
| 3366 | // may be dual infeasible |
| 3367 | problemStatus_ = -5; |
| 3368 | } else { |
| 3369 | if (iRow < numberRows_) { |
| 3370 | problemStatus_ = -5; |
| 3371 | } else { |
| 3372 | if (numberPivots) { |
| 3373 | // objective may be wrong |
| 3374 | objectiveValue_ = innerProduct(cost_, |
| 3375 | numberColumns_ + numberRows_, |
| 3376 | solution_); |
| 3377 | objectiveValue_ += objective_->nonlinearOffset(); |
| 3378 | objectiveValue_ /= (objectiveScale_ * rhsScale_); |
| 3379 | if ((specialOptions_ & 16384) == 0) { |
| 3380 | // and dual_ may be wrong (i.e. for fixed or basic) |
| 3381 | CoinIndexedVector * arrayVector = rowArray_[1]; |
| 3382 | arrayVector->clear(); |
| 3383 | int iRow; |
| 3384 | double * array = arrayVector->denseVector(); |
| 3385 | /* Use dual_ instead of array |
| 3386 | Even though dual_ is only numberRows_ long this is |
| 3387 | okay as gets permuted to longer rowArray_[2] |
| 3388 | */ |
| 3389 | arrayVector->setDenseVector(dual_); |
| 3390 | int * index = arrayVector->getIndices(); |
| 3391 | int number = 0; |
| 3392 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3393 | int iPivot = pivotVariable_[iRow]; |
| 3394 | double value = cost_[iPivot]; |
| 3395 | dual_[iRow] = value; |
| 3396 | if (value) { |
| 3397 | index[number++] = iRow; |
| 3398 | } |
| 3399 | } |
| 3400 | arrayVector->setNumElements(number); |
| 3401 | // Extended duals before "updateTranspose" |
| 3402 | matrix_->dualExpanded(this, arrayVector, NULL, 0); |
| 3403 | // Btran basic costs |
| 3404 | rowArray_[2]->clear(); |
| 3405 | factorization_->updateColumnTranspose(rowArray_[2], arrayVector); |
| 3406 | // and return vector |
| 3407 | arrayVector->setDenseVector(array); |
| 3408 | } |
| 3409 | } |
| 3410 | problemStatus_ = 0; |
| 3411 | sumPrimalInfeasibilities_ = 0.0; |
| 3412 | if ((specialOptions_&(1024 + 16384)) != 0) { |
| 3413 | CoinIndexedVector * arrayVector = rowArray_[1]; |
| 3414 | arrayVector->clear(); |
| 3415 | double * rhs = arrayVector->denseVector(); |
| 3416 | times(1.0, solution_, rhs); |
| 3417 | bool bad2 = false; |
| 3418 | int i; |
| 3419 | for ( i = 0; i < numberRows_; i++) { |
| 3420 | if (rhs[i] < rowLowerWork_[i] - primalTolerance_ || |
| 3421 | rhs[i] > rowUpperWork_[i] + primalTolerance_) { |
| 3422 | bad2 = true; |
| 3423 | } else if (fabs(rhs[i] - rowActivityWork_[i]) > 1.0e-3) { |
| 3424 | } |
| 3425 | rhs[i] = 0.0; |
| 3426 | } |
| 3427 | for ( i = 0; i < numberColumns_; i++) { |
| 3428 | if (solution_[i] < columnLowerWork_[i] - primalTolerance_ || |
| 3429 | solution_[i] > columnUpperWork_[i] + primalTolerance_) { |
| 3430 | bad2 = true; |
| 3431 | } |
| 3432 | } |
| 3433 | if (bad2) { |
| 3434 | problemStatus_ = -3; |
| 3435 | returnCode = -2; |
| 3436 | // Force to re-factorize early next time |
| 3437 | int numberPivots = factorization_->pivots(); |
| 3438 | forceFactorization_ = CoinMin(forceFactorization_, (numberPivots + 1) >> 1); |
| 3439 | } |
| 3440 | } |
| 3441 | } |
| 3442 | } |
| 3443 | } else { |
| 3444 | problemStatus_ = -3; |
| 3445 | returnCode = -2; |
| 3446 | // Force to re-factorize early next time |
| 3447 | int numberPivots = factorization_->pivots(); |
| 3448 | forceFactorization_ = CoinMin(forceFactorization_, (numberPivots + 1) >> 1); |
| 3449 | } |
| 3450 | break; |
| 3451 | } |
| 3452 | } |
| 3453 | delete [] primalChange; |
| 3454 | delete [] dualChange; |
| 3455 | endingTheta = lastTheta; |
| 3456 | return returnCode; |
| 3457 | } |
| 3458 | // Computes next theta and says if objective or bounds (0= bounds, 1 objective, -1 none) |
| 3459 | int |
| 3460 | ClpSimplexOther::nextTheta(int type, double maxTheta, double * primalChange, double * /*dualChange*/, |
| 3461 | const double * changeLower, const double * changeUpper, |
| 3462 | const double * /*changeObjective*/) |
| 3463 | { |
| 3464 | int numberTotal = numberColumns_ + numberRows_; |
| 3465 | int iSequence; |
| 3466 | int iRow; |
| 3467 | theta_ = maxTheta; |
| 3468 | bool toLower = false; |
| 3469 | if ((type & 1) != 0) { |
| 3470 | // get change |
| 3471 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 3472 | primalChange[iSequence] = 0.0; |
| 3473 | switch(getStatus(iSequence)) { |
| 3474 | |
| 3475 | case basic: |
| 3476 | case isFree: |
| 3477 | case superBasic: |
| 3478 | break; |
| 3479 | case isFixed: |
| 3480 | case atUpperBound: |
| 3481 | primalChange[iSequence] = changeUpper[iSequence]; |
| 3482 | break; |
| 3483 | case atLowerBound: |
| 3484 | primalChange[iSequence] = changeLower[iSequence]; |
| 3485 | break; |
| 3486 | } |
| 3487 | } |
| 3488 | // use array |
| 3489 | double * array = rowArray_[1]->denseVector(); |
| 3490 | // put slacks in |
| 3491 | for (int i=0;i<numberRows_;i++) |
| 3492 | array[i] = - primalChange[i+numberColumns_]; |
| 3493 | times(1.0, primalChange, array); |
| 3494 | int * index = rowArray_[1]->getIndices(); |
| 3495 | int number = 0; |
| 3496 | pivotRow_ = -1; |
| 3497 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3498 | double value = array[iRow]; |
| 3499 | if (value) { |
| 3500 | index[number++] = iRow; |
| 3501 | } |
| 3502 | } |
| 3503 | // ftran it |
| 3504 | rowArray_[1]->setNumElements(number); |
| 3505 | factorization_->updateColumn(rowArray_[0], rowArray_[1]); |
| 3506 | //number = rowArray_[1]->getNumElements(); |
| 3507 | for (int iPivot = 0; iPivot < numberRows_; iPivot++) { |
| 3508 | //int iPivot = index[iRow]; |
| 3509 | iSequence = pivotVariable_[iPivot]; |
| 3510 | // solution value will be sol - theta*alpha |
| 3511 | // bounds will be bounds + change *theta |
| 3512 | double currentSolution = solution_[iSequence]; |
| 3513 | double currentLower = lower_[iSequence]; |
| 3514 | double currentUpper = upper_[iSequence]; |
| 3515 | double alpha = array[iPivot]; |
| 3516 | assert (currentSolution >= currentLower - primalTolerance_); |
| 3517 | assert (currentSolution <= currentUpper + primalTolerance_); |
| 3518 | double thetaCoefficient; |
| 3519 | double hitsLower = COIN_DBL_MAX; |
| 3520 | thetaCoefficient = changeLower[iSequence] + alpha; |
| 3521 | if (thetaCoefficient > 1.0e-8) |
| 3522 | hitsLower = (currentSolution - currentLower) / thetaCoefficient; |
| 3523 | //if (hitsLower < 0.0) { |
| 3524 | // does not hit - but should we check further |
| 3525 | // hitsLower = COIN_DBL_MAX; |
| 3526 | //} |
| 3527 | double hitsUpper = COIN_DBL_MAX; |
| 3528 | thetaCoefficient = changeUpper[iSequence] + alpha; |
| 3529 | if (thetaCoefficient < -1.0e-8) |
| 3530 | hitsUpper = (currentSolution - currentUpper) / thetaCoefficient; |
| 3531 | //if (hitsUpper < 0.0) { |
| 3532 | // does not hit - but should we check further |
| 3533 | // hitsUpper = COIN_DBL_MAX; |
| 3534 | //} |
| 3535 | if (CoinMin(hitsLower, hitsUpper) < theta_) { |
| 3536 | theta_ = CoinMin(hitsLower, hitsUpper); |
| 3537 | toLower = hitsLower < hitsUpper; |
| 3538 | pivotRow_ = iPivot; |
| 3539 | } |
| 3540 | } |
| 3541 | } |
| 3542 | if ((type & 2) != 0) { |
| 3543 | abort(); |
| 3544 | } |
| 3545 | theta_ = CoinMax(theta_,0.0); |
| 3546 | // update solution |
| 3547 | double * array = rowArray_[1]->denseVector(); |
| 3548 | int * index = rowArray_[1]->getIndices(); |
| 3549 | int number = rowArray_[1]->getNumElements(); |
| 3550 | for (int iRow = 0; iRow < number; iRow++) { |
| 3551 | int iPivot = index[iRow]; |
| 3552 | iSequence = pivotVariable_[iPivot]; |
| 3553 | // solution value will be sol - theta*alpha |
| 3554 | double alpha = array[iPivot]; |
| 3555 | solution_[iSequence] -= theta_ * alpha; |
| 3556 | } |
| 3557 | if (pivotRow_ >= 0) { |
| 3558 | sequenceOut_ = pivotVariable_[pivotRow_]; |
| 3559 | valueOut_ = solution_[sequenceOut_]; |
| 3560 | lowerOut_ = lower_[sequenceOut_]+theta_*changeLower[sequenceOut_]; |
| 3561 | upperOut_ = upper_[sequenceOut_]+theta_*changeUpper[sequenceOut_]; |
| 3562 | if (!toLower) { |
| 3563 | directionOut_ = -1; |
| 3564 | dualOut_ = valueOut_ - upperOut_; |
| 3565 | } else { |
| 3566 | directionOut_ = 1; |
| 3567 | dualOut_ = lowerOut_ - valueOut_; |
| 3568 | } |
| 3569 | return 0; |
| 3570 | } else { |
| 3571 | return -1; |
| 3572 | } |
| 3573 | } |
| 3574 | /* Expands out all possible combinations for a knapsack |
| 3575 | If buildObj NULL then just computes space needed - returns number elements |
| 3576 | On entry numberOutput is maximum allowed, on exit it is number needed or |
| 3577 | -1 (as will be number elements) if maximum exceeded. numberOutput will have at |
| 3578 | least space to return values which reconstruct input. |
| 3579 | Rows returned will be original rows but no entries will be returned for |
| 3580 | any rows all of whose entries are in knapsack. So up to user to allow for this. |
| 3581 | If reConstruct >=0 then returns number of entrie which make up item "reConstruct" |
| 3582 | in expanded knapsack. Values in buildRow and buildElement; |
| 3583 | */ |
| 3584 | int |
| 3585 | ClpSimplexOther::expandKnapsack(int knapsackRow, int & numberOutput, |
| 3586 | double * buildObj, CoinBigIndex * buildStart, |
| 3587 | int * buildRow, double * buildElement, int reConstruct) const |
| 3588 | { |
| 3589 | int iRow; |
| 3590 | int iColumn; |
| 3591 | // Get column copy |
| 3592 | CoinPackedMatrix * columnCopy = matrix(); |
| 3593 | // Get a row copy in standard format |
| 3594 | CoinPackedMatrix matrixByRow; |
| 3595 | matrixByRow.reverseOrderedCopyOf(*columnCopy); |
| 3596 | const double * elementByRow = matrixByRow.getElements(); |
| 3597 | const int * column = matrixByRow.getIndices(); |
| 3598 | const CoinBigIndex * rowStart = matrixByRow.getVectorStarts(); |
| 3599 | const int * rowLength = matrixByRow.getVectorLengths(); |
| 3600 | CoinBigIndex j; |
| 3601 | int * whichColumn = new int [numberColumns_]; |
| 3602 | int * whichRow = new int [numberRows_]; |
| 3603 | int numJ = 0; |
| 3604 | // Get what other columns can compensate for |
| 3605 | double * lo = new double [numberRows_]; |
| 3606 | double * high = new double [numberRows_]; |
| 3607 | { |
| 3608 | // Use to get tight column bounds |
| 3609 | ClpSimplex tempModel(*this); |
| 3610 | tempModel.tightenPrimalBounds(0.0, 0, true); |
| 3611 | // Now another model without knapsacks |
| 3612 | int nCol = 0; |
| 3613 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3614 | whichRow[iRow] = iRow; |
| 3615 | } |
| 3616 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) |
| 3617 | whichColumn[iColumn] = -1; |
| 3618 | for (j = rowStart[knapsackRow]; j < rowStart[knapsackRow] + rowLength[knapsackRow]; j++) { |
| 3619 | int iColumn = column[j]; |
| 3620 | if (columnUpper_[iColumn] > columnLower_[iColumn]) { |
| 3621 | whichColumn[iColumn] = 0; |
| 3622 | } else { |
| 3623 | assert (!columnLower_[iColumn]); // fix later |
| 3624 | } |
| 3625 | } |
| 3626 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 3627 | if (whichColumn[iColumn] < 0) |
| 3628 | whichColumn[nCol++] = iColumn; |
| 3629 | } |
| 3630 | ClpSimplex tempModel2(&tempModel, numberRows_, whichRow, nCol, whichColumn, false, false, false); |
| 3631 | // Row copy |
| 3632 | CoinPackedMatrix matrixByRow; |
| 3633 | matrixByRow.reverseOrderedCopyOf(*tempModel2.matrix()); |
| 3634 | const double * elementByRow = matrixByRow.getElements(); |
| 3635 | const int * column = matrixByRow.getIndices(); |
| 3636 | const CoinBigIndex * rowStart = matrixByRow.getVectorStarts(); |
| 3637 | const int * rowLength = matrixByRow.getVectorLengths(); |
| 3638 | const double * columnLower = tempModel2.getColLower(); |
| 3639 | const double * columnUpper = tempModel2.getColUpper(); |
| 3640 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3641 | lo[iRow] = -COIN_DBL_MAX; |
| 3642 | high[iRow] = COIN_DBL_MAX; |
| 3643 | if (rowLower_[iRow] > -1.0e20 || rowUpper_[iRow] < 1.0e20) { |
| 3644 | |
| 3645 | // possible row |
| 3646 | int infiniteUpper = 0; |
| 3647 | int infiniteLower = 0; |
| 3648 | double maximumUp = 0.0; |
| 3649 | double maximumDown = 0.0; |
| 3650 | CoinBigIndex rStart = rowStart[iRow]; |
| 3651 | CoinBigIndex rEnd = rowStart[iRow] + rowLength[iRow]; |
| 3652 | CoinBigIndex j; |
| 3653 | // Compute possible lower and upper ranges |
| 3654 | |
| 3655 | for (j = rStart; j < rEnd; ++j) { |
| 3656 | double value = elementByRow[j]; |
| 3657 | iColumn = column[j]; |
| 3658 | if (value > 0.0) { |
| 3659 | if (columnUpper[iColumn] >= 1.0e20) { |
| 3660 | ++infiniteUpper; |
| 3661 | } else { |
| 3662 | maximumUp += columnUpper[iColumn] * value; |
| 3663 | } |
| 3664 | if (columnLower[iColumn] <= -1.0e20) { |
| 3665 | ++infiniteLower; |
| 3666 | } else { |
| 3667 | maximumDown += columnLower[iColumn] * value; |
| 3668 | } |
| 3669 | } else if (value < 0.0) { |
| 3670 | if (columnUpper[iColumn] >= 1.0e20) { |
| 3671 | ++infiniteLower; |
| 3672 | } else { |
| 3673 | maximumDown += columnUpper[iColumn] * value; |
| 3674 | } |
| 3675 | if (columnLower[iColumn] <= -1.0e20) { |
| 3676 | ++infiniteUpper; |
| 3677 | } else { |
| 3678 | maximumUp += columnLower[iColumn] * value; |
| 3679 | } |
| 3680 | } |
| 3681 | } |
| 3682 | // Build in a margin of error |
| 3683 | maximumUp += 1.0e-8 * fabs(maximumUp) + 1.0e-7; |
| 3684 | maximumDown -= 1.0e-8 * fabs(maximumDown) + 1.0e-7; |
| 3685 | // we want to save effective rhs |
| 3686 | double up = (infiniteUpper) ? COIN_DBL_MAX : maximumUp; |
| 3687 | double down = (infiniteLower) ? -COIN_DBL_MAX : maximumDown; |
| 3688 | if (up == COIN_DBL_MAX || rowLower_[iRow] == -COIN_DBL_MAX) { |
| 3689 | // However low we go it doesn't matter |
| 3690 | lo[iRow] = -COIN_DBL_MAX; |
| 3691 | } else { |
| 3692 | // If we go below this then can not be feasible |
| 3693 | lo[iRow] = rowLower_[iRow] - up; |
| 3694 | } |
| 3695 | if (down == -COIN_DBL_MAX || rowUpper_[iRow] == COIN_DBL_MAX) { |
| 3696 | // However high we go it doesn't matter |
| 3697 | high[iRow] = COIN_DBL_MAX; |
| 3698 | } else { |
| 3699 | // If we go above this then can not be feasible |
| 3700 | high[iRow] = rowUpper_[iRow] - down; |
| 3701 | } |
| 3702 | } |
| 3703 | } |
| 3704 | } |
| 3705 | numJ = 0; |
| 3706 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) |
| 3707 | whichColumn[iColumn] = -1; |
| 3708 | int * markRow = new int [numberRows_]; |
| 3709 | for (iRow = 0; iRow < numberRows_; iRow++) |
| 3710 | markRow[iRow] = 1; |
| 3711 | for (j = rowStart[knapsackRow]; j < rowStart[knapsackRow] + rowLength[knapsackRow]; j++) { |
| 3712 | int iColumn = column[j]; |
| 3713 | if (columnUpper_[iColumn] > columnLower_[iColumn]) { |
| 3714 | whichColumn[iColumn] = numJ; |
| 3715 | numJ++; |
| 3716 | } |
| 3717 | } |
| 3718 | /* mark rows |
| 3719 | -n in knapsack and n other variables |
| 3720 | 1 no entries |
| 3721 | n+1000 not involved in knapsack but n entries |
| 3722 | 0 only in knapsack |
| 3723 | */ |
| 3724 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3725 | int type = 1; |
| 3726 | for (j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; j++) { |
| 3727 | int iColumn = column[j]; |
| 3728 | if (whichColumn[iColumn] >= 0) { |
| 3729 | if (type == 1) { |
| 3730 | type = 0; |
| 3731 | } else if (type > 0) { |
| 3732 | assert (type > 1000); |
| 3733 | type = -(type - 1000); |
| 3734 | } |
| 3735 | } else if (type == 1) { |
| 3736 | type = 1001; |
| 3737 | } else if (type < 0) { |
| 3738 | type --; |
| 3739 | } else if (type == 0) { |
| 3740 | type = -1; |
| 3741 | } else { |
| 3742 | assert (type > 1000); |
| 3743 | type++; |
| 3744 | } |
| 3745 | } |
| 3746 | markRow[iRow] = type; |
| 3747 | if (type < 0 && type > -30 && false) |
| 3748 | printf("markrow on row %d is %d\n" , iRow, markRow[iRow]); |
| 3749 | } |
| 3750 | int * bound = new int [numberColumns_+1]; |
| 3751 | int * stack = new int [numberColumns_+1]; |
| 3752 | int * flip = new int [numberColumns_+1]; |
| 3753 | double * offset = new double[numberColumns_+1]; |
| 3754 | double * size = new double [numberColumns_+1]; |
| 3755 | double * rhsOffset = new double[numberRows_]; |
| 3756 | int * build = new int[numberColumns_]; |
| 3757 | int maxNumber = numberOutput; |
| 3758 | numJ = 0; |
| 3759 | double minSize = rowLower_[knapsackRow]; |
| 3760 | double maxSize = rowUpper_[knapsackRow]; |
| 3761 | double knapsackOffset = 0.0; |
| 3762 | for (j = rowStart[knapsackRow]; j < rowStart[knapsackRow] + rowLength[knapsackRow]; j++) { |
| 3763 | int iColumn = column[j]; |
| 3764 | double lowerColumn = columnLower_[iColumn]; |
| 3765 | double upperColumn = columnUpper_[iColumn]; |
| 3766 | if (lowerColumn == upperColumn) |
| 3767 | continue; |
| 3768 | double gap = upperColumn - lowerColumn; |
| 3769 | if (gap > 1.0e8) |
| 3770 | gap = 1.0e8; |
| 3771 | assert (fabs(floor(gap + 0.5) - gap) < 1.0e-5); |
| 3772 | whichColumn[numJ] = iColumn; |
| 3773 | bound[numJ] = static_cast<int> (gap); |
| 3774 | if (elementByRow[j] > 0.0) { |
| 3775 | flip[numJ] = 1; |
| 3776 | offset[numJ] = lowerColumn; |
| 3777 | size[numJ++] = elementByRow[j]; |
| 3778 | } else { |
| 3779 | flip[numJ] = -1; |
| 3780 | offset[numJ] = upperColumn; |
| 3781 | size[numJ++] = -elementByRow[j]; |
| 3782 | lowerColumn = upperColumn; |
| 3783 | } |
| 3784 | knapsackOffset += elementByRow[j] * lowerColumn; |
| 3785 | } |
| 3786 | int jRow; |
| 3787 | for (iRow = 0; iRow < numberRows_; iRow++) |
| 3788 | whichRow[iRow] = iRow; |
| 3789 | ClpSimplex smallModel(this, numberRows_, whichRow, numJ, whichColumn, true, true, true); |
| 3790 | // modify rhs to allow for nonzero lower bounds |
| 3791 | //double * rowLower = smallModel.rowLower(); |
| 3792 | //double * rowUpper = smallModel.rowUpper(); |
| 3793 | //const double * columnLower = smallModel.columnLower(); |
| 3794 | //const double * columnUpper = smallModel.columnUpper(); |
| 3795 | const CoinPackedMatrix * matrix = smallModel.matrix(); |
| 3796 | const double * element = matrix->getElements(); |
| 3797 | const int * row = matrix->getIndices(); |
| 3798 | const CoinBigIndex * columnStart = matrix->getVectorStarts(); |
| 3799 | const int * columnLength = matrix->getVectorLengths(); |
| 3800 | const double * objective = smallModel.objective(); |
| 3801 | //double objectiveOffset=0.0; |
| 3802 | // would use for fixed? |
| 3803 | CoinZeroN(rhsOffset, numberRows_); |
| 3804 | double * rowActivity = smallModel.primalRowSolution(); |
| 3805 | CoinZeroN(rowActivity, numberRows_); |
| 3806 | maxSize -= knapsackOffset; |
| 3807 | minSize -= knapsackOffset; |
| 3808 | // now generate |
| 3809 | int i; |
| 3810 | int iStack = numJ; |
| 3811 | for (i = 0; i < numJ; i++) { |
| 3812 | stack[i] = 0; |
| 3813 | } |
| 3814 | double tooMuch = 10.0 * maxSize + 10000; |
| 3815 | stack[numJ] = 1; |
| 3816 | size[numJ] = tooMuch; |
| 3817 | bound[numJ] = 0; |
| 3818 | double sum = tooMuch; |
| 3819 | // allow for all zero being OK |
| 3820 | stack[numJ-1] = -1; |
| 3821 | sum -= size[numJ-1]; |
| 3822 | numberOutput = 0; |
| 3823 | int nelCreate = 0; |
| 3824 | /* typeRun is - 0 for initial sizes |
| 3825 | 1 for build |
| 3826 | 2 for reconstruct |
| 3827 | */ |
| 3828 | int typeRun = buildObj ? 1 : 0; |
| 3829 | if (reConstruct >= 0) { |
| 3830 | assert (buildRow && buildElement); |
| 3831 | typeRun = 2; |
| 3832 | } |
| 3833 | if (typeRun == 1) |
| 3834 | buildStart[0] = 0; |
| 3835 | while (iStack >= 0) { |
| 3836 | if (sum >= minSize && sum <= maxSize) { |
| 3837 | double checkSize = 0.0; |
| 3838 | bool good = true; |
| 3839 | int nRow = 0; |
| 3840 | double obj = 0.0; |
| 3841 | CoinZeroN(rowActivity, numberRows_); |
| 3842 | for (iColumn = 0; iColumn < numJ; iColumn++) { |
| 3843 | int iValue = stack[iColumn]; |
| 3844 | if (iValue > bound[iColumn]) { |
| 3845 | good = false; |
| 3846 | break; |
| 3847 | } else { |
| 3848 | double realValue = offset[iColumn] + flip[iColumn] * iValue; |
| 3849 | if (realValue) { |
| 3850 | obj += objective[iColumn] * realValue; |
| 3851 | for (CoinBigIndex j = columnStart[iColumn]; |
| 3852 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 3853 | double value = element[j] * realValue; |
| 3854 | int kRow = row[j]; |
| 3855 | if (rowActivity[kRow]) { |
| 3856 | rowActivity[kRow] += value; |
| 3857 | if (!rowActivity[kRow]) |
| 3858 | rowActivity[kRow] = 1.0e-100; |
| 3859 | } else { |
| 3860 | build[nRow++] = kRow; |
| 3861 | rowActivity[kRow] = value; |
| 3862 | } |
| 3863 | } |
| 3864 | } |
| 3865 | } |
| 3866 | } |
| 3867 | if (good) { |
| 3868 | for (jRow = 0; jRow < nRow; jRow++) { |
| 3869 | int kRow = build[jRow]; |
| 3870 | double value = rowActivity[kRow]; |
| 3871 | if (value > high[kRow] || value < lo[kRow]) { |
| 3872 | good = false; |
| 3873 | break; |
| 3874 | } |
| 3875 | } |
| 3876 | } |
| 3877 | if (good) { |
| 3878 | if (typeRun == 1) { |
| 3879 | buildObj[numberOutput] = obj; |
| 3880 | for (jRow = 0; jRow < nRow; jRow++) { |
| 3881 | int kRow = build[jRow]; |
| 3882 | double value = rowActivity[kRow]; |
| 3883 | if (markRow[kRow] < 0 && fabs(value) > 1.0e-13) { |
| 3884 | buildElement[nelCreate] = value; |
| 3885 | buildRow[nelCreate++] = kRow; |
| 3886 | } |
| 3887 | } |
| 3888 | buildStart[numberOutput+1] = nelCreate; |
| 3889 | } else if (!typeRun) { |
| 3890 | for (jRow = 0; jRow < nRow; jRow++) { |
| 3891 | int kRow = build[jRow]; |
| 3892 | double value = rowActivity[kRow]; |
| 3893 | if (markRow[kRow] < 0 && fabs(value) > 1.0e-13) { |
| 3894 | nelCreate++; |
| 3895 | } |
| 3896 | } |
| 3897 | } |
| 3898 | if (typeRun == 2 && reConstruct == numberOutput) { |
| 3899 | // build and exit |
| 3900 | nelCreate = 0; |
| 3901 | for (iColumn = 0; iColumn < numJ; iColumn++) { |
| 3902 | int iValue = stack[iColumn]; |
| 3903 | double realValue = offset[iColumn] + flip[iColumn] * iValue; |
| 3904 | if (realValue) { |
| 3905 | buildRow[nelCreate] = whichColumn[iColumn]; |
| 3906 | buildElement[nelCreate++] = realValue; |
| 3907 | } |
| 3908 | } |
| 3909 | numberOutput = 1; |
| 3910 | for (i = 0; i < numJ; i++) { |
| 3911 | bound[i] = 0; |
| 3912 | } |
| 3913 | break; |
| 3914 | } |
| 3915 | numberOutput++; |
| 3916 | if (numberOutput > maxNumber) { |
| 3917 | nelCreate = -numberOutput; |
| 3918 | numberOutput = -1; |
| 3919 | for (i = 0; i < numJ; i++) { |
| 3920 | bound[i] = 0; |
| 3921 | } |
| 3922 | break; |
| 3923 | } else if (typeRun == 1 && numberOutput == maxNumber) { |
| 3924 | // On second run |
| 3925 | for (i = 0; i < numJ; i++) { |
| 3926 | bound[i] = 0; |
| 3927 | } |
| 3928 | break; |
| 3929 | } |
| 3930 | for (int j = 0; j < numJ; j++) { |
| 3931 | checkSize += stack[j] * size[j]; |
| 3932 | } |
| 3933 | assert (fabs(sum - checkSize) < 1.0e-3); |
| 3934 | } |
| 3935 | for (jRow = 0; jRow < nRow; jRow++) { |
| 3936 | int kRow = build[jRow]; |
| 3937 | rowActivity[kRow] = 0.0; |
| 3938 | } |
| 3939 | } |
| 3940 | if (sum > maxSize || stack[iStack] > bound[iStack]) { |
| 3941 | sum -= size[iStack] * stack[iStack]; |
| 3942 | stack[iStack--] = 0; |
| 3943 | if (iStack >= 0) { |
| 3944 | stack[iStack] ++; |
| 3945 | sum += size[iStack]; |
| 3946 | } |
| 3947 | } else { |
| 3948 | // must be less |
| 3949 | // add to last possible |
| 3950 | iStack = numJ - 1; |
| 3951 | sum += size[iStack]; |
| 3952 | stack[iStack]++; |
| 3953 | } |
| 3954 | } |
| 3955 | //printf("%d will be created\n",numberOutput); |
| 3956 | delete [] whichColumn; |
| 3957 | delete [] whichRow; |
| 3958 | delete [] bound; |
| 3959 | delete [] stack; |
| 3960 | delete [] flip; |
| 3961 | delete [] size; |
| 3962 | delete [] offset; |
| 3963 | delete [] rhsOffset; |
| 3964 | delete [] build; |
| 3965 | delete [] markRow; |
| 3966 | delete [] lo; |
| 3967 | delete [] high; |
| 3968 | return nelCreate; |
| 3969 | } |
| 3970 | // Quick try at cleaning up duals if postsolve gets wrong |
| 3971 | void |
| 3972 | ClpSimplexOther::cleanupAfterPostsolve() |
| 3973 | { |
| 3974 | // First mark singleton equality rows |
| 3975 | char * mark = new char [ numberRows_]; |
| 3976 | memset(mark, 0, numberRows_); |
| 3977 | const int * row = matrix_->getIndices(); |
| 3978 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 3979 | const int * columnLength = matrix_->getVectorLengths(); |
| 3980 | const double * element = matrix_->getElements(); |
| 3981 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 3982 | for (CoinBigIndex j = columnStart[iColumn]; |
| 3983 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 3984 | int iRow = row[j]; |
| 3985 | if (mark[iRow]) |
| 3986 | mark[iRow] = 2; |
| 3987 | else |
| 3988 | mark[iRow] = 1; |
| 3989 | } |
| 3990 | } |
| 3991 | // for now just == rows |
| 3992 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
| 3993 | if (rowUpper_[iRow] > rowLower_[iRow]) |
| 3994 | mark[iRow] = 3; |
| 3995 | } |
| 3996 | double dualTolerance = dblParam_[ClpDualTolerance]; |
| 3997 | double primalTolerance = dblParam_[ClpPrimalTolerance]; |
| 3998 | int numberCleaned = 0; |
| 3999 | double maxmin = optimizationDirection_; |
| 4000 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 4001 | double dualValue = reducedCost_[iColumn] * maxmin; |
| 4002 | double primalValue = columnActivity_[iColumn]; |
| 4003 | double lower = columnLower_[iColumn]; |
| 4004 | double upper = columnUpper_[iColumn]; |
| 4005 | int way = 0; |
| 4006 | switch(getColumnStatus(iColumn)) { |
| 4007 | |
| 4008 | case basic: |
| 4009 | // dual should be zero |
| 4010 | if (dualValue > dualTolerance) { |
| 4011 | way = -1; |
| 4012 | } else if (dualValue < -dualTolerance) { |
| 4013 | way = 1; |
| 4014 | } |
| 4015 | break; |
| 4016 | case ClpSimplex::isFixed: |
| 4017 | break; |
| 4018 | case atUpperBound: |
| 4019 | // dual should not be positive |
| 4020 | if (dualValue > dualTolerance) { |
| 4021 | way = -1; |
| 4022 | } |
| 4023 | break; |
| 4024 | case atLowerBound: |
| 4025 | // dual should not be negative |
| 4026 | if (dualValue < -dualTolerance) { |
| 4027 | way = 1; |
| 4028 | } |
| 4029 | break; |
| 4030 | case superBasic: |
| 4031 | case isFree: |
| 4032 | if (primalValue < upper - primalTolerance) { |
| 4033 | // dual should not be negative |
| 4034 | if (dualValue < -dualTolerance) { |
| 4035 | way = 1; |
| 4036 | } |
| 4037 | } |
| 4038 | if (primalValue > lower + primalTolerance) { |
| 4039 | // dual should not be positive |
| 4040 | if (dualValue > dualTolerance) { |
| 4041 | way = -1; |
| 4042 | } |
| 4043 | } |
| 4044 | break; |
| 4045 | } |
| 4046 | if (way) { |
| 4047 | // see if can find singleton row |
| 4048 | for (CoinBigIndex j = columnStart[iColumn]; |
| 4049 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 4050 | int iRow = row[j]; |
| 4051 | if (mark[iRow] == 1) { |
| 4052 | double value = element[j]; |
| 4053 | // dj - addDual*value == 0.0 |
| 4054 | double addDual = dualValue / value; |
| 4055 | dual_[iRow] += addDual; |
| 4056 | reducedCost_[iColumn] = 0.0; |
| 4057 | numberCleaned++; |
| 4058 | break; |
| 4059 | } |
| 4060 | } |
| 4061 | } |
| 4062 | } |
| 4063 | delete [] mark; |
| 4064 | #ifdef CLP_INVESTIGATE |
| 4065 | printf("cleanupAfterPostsolve cleaned up %d columns\n" , numberCleaned); |
| 4066 | #endif |
| 4067 | // Redo |
| 4068 | memcpy(reducedCost_, this->objective(), numberColumns_ * sizeof(double)); |
| 4069 | matrix_->transposeTimes(-1.0, dual_, reducedCost_); |
| 4070 | checkSolutionInternal(); |
| 4071 | } |
| 4072 | // Returns gub version of model or NULL |
| 4073 | ClpSimplex * |
| 4074 | ClpSimplexOther::gubVersion(int * whichRows, int * whichColumns, |
| 4075 | int neededGub, |
| 4076 | int factorizationFrequency) |
| 4077 | { |
| 4078 | // find gub |
| 4079 | int numberRows = this->numberRows(); |
| 4080 | int numberColumns = this->numberColumns(); |
| 4081 | int iRow, iColumn; |
| 4082 | int * columnIsGub = new int [numberColumns]; |
| 4083 | const double * columnLower = this->columnLower(); |
| 4084 | const double * columnUpper = this->columnUpper(); |
| 4085 | int numberFixed=0; |
| 4086 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 4087 | if (columnUpper[iColumn] == columnLower[iColumn]) { |
| 4088 | columnIsGub[iColumn]=-2; |
| 4089 | numberFixed++; |
| 4090 | } else if (columnLower[iColumn]>=0) { |
| 4091 | columnIsGub[iColumn]=-1; |
| 4092 | } else { |
| 4093 | columnIsGub[iColumn]=-3; |
| 4094 | } |
| 4095 | } |
| 4096 | CoinPackedMatrix * matrix = this->matrix(); |
| 4097 | // get row copy |
| 4098 | CoinPackedMatrix rowCopy = *matrix; |
| 4099 | rowCopy.reverseOrdering(); |
| 4100 | const int * column = rowCopy.getIndices(); |
| 4101 | const int * rowLength = rowCopy.getVectorLengths(); |
| 4102 | const CoinBigIndex * rowStart = rowCopy.getVectorStarts(); |
| 4103 | const double * element = rowCopy.getElements(); |
| 4104 | int numberNonGub = 0; |
| 4105 | int numberEmpty = numberRows; |
| 4106 | int * rowIsGub = new int [numberRows]; |
| 4107 | int smallestGubRow=-1; |
| 4108 | int count=numberColumns+1; |
| 4109 | double * rowLower = this->rowLower(); |
| 4110 | double * rowUpper = this->rowUpper(); |
| 4111 | // make sure we can get rid of upper bounds |
| 4112 | double * fixedRow = new double [numberRows]; |
| 4113 | for (iRow = 0 ; iRow < numberRows ; iRow++) { |
| 4114 | double sumFixed=0.0; |
| 4115 | for (int j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; j++) { |
| 4116 | int iColumn = column[j]; |
| 4117 | double value = columnLower[iColumn]; |
| 4118 | if (value) |
| 4119 | sumFixed += element[j] * value; |
| 4120 | } |
| 4121 | fixedRow[iRow]=rowUpper[iRow]-sumFixed; |
| 4122 | } |
| 4123 | for (iRow = numberRows - 1; iRow >= 0; iRow--) { |
| 4124 | bool gubRow = true; |
| 4125 | int numberInRow=0; |
| 4126 | double sumFixed=0.0; |
| 4127 | double gap = fixedRow[iRow]-1.0e-12; |
| 4128 | for (int j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; j++) { |
| 4129 | int iColumn = column[j]; |
| 4130 | if (columnIsGub[iColumn]!=-2) { |
| 4131 | if (element[j] != 1.0||columnIsGub[iColumn]==-3|| |
| 4132 | columnUpper[iColumn]-columnLower[iColumn]<gap) { |
| 4133 | gubRow = false; |
| 4134 | break; |
| 4135 | } else { |
| 4136 | numberInRow++; |
| 4137 | if (columnIsGub[iColumn] >= 0) { |
| 4138 | gubRow = false; |
| 4139 | break; |
| 4140 | } |
| 4141 | } |
| 4142 | } else { |
| 4143 | sumFixed += columnLower[iColumn]*element[j]; |
| 4144 | } |
| 4145 | } |
| 4146 | if (!gubRow) { |
| 4147 | whichRows[numberNonGub++] = iRow; |
| 4148 | rowIsGub[iRow] = -1; |
| 4149 | } else if (numberInRow) { |
| 4150 | if (numberInRow<count) { |
| 4151 | count = numberInRow; |
| 4152 | smallestGubRow=iRow; |
| 4153 | } |
| 4154 | for (int j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; j++) { |
| 4155 | int iColumn = column[j]; |
| 4156 | if (columnIsGub[iColumn]!=-2) |
| 4157 | columnIsGub[iColumn] = iRow; |
| 4158 | } |
| 4159 | rowIsGub[iRow] = 0; |
| 4160 | } else { |
| 4161 | // empty row! |
| 4162 | whichRows[--numberEmpty] = iRow; |
| 4163 | rowIsGub[iRow] = -2; |
| 4164 | if (sumFixed>rowUpper[iRow]+1.0e-4|| |
| 4165 | sumFixed<rowLower[iRow]-1.0e-4) { |
| 4166 | fprintf(stderr,"******** No infeasible empty rows - please!\n" ); |
| 4167 | abort(); |
| 4168 | } |
| 4169 | } |
| 4170 | } |
| 4171 | delete [] fixedRow; |
| 4172 | char message[100]; |
| 4173 | int numberGub = numberEmpty - numberNonGub; |
| 4174 | if (numberGub >= neededGub) { |
| 4175 | sprintf(message,"%d gub rows" , numberGub); |
| 4176 | handler_->message(CLP_GENERAL2, messages_) |
| 4177 | << message << CoinMessageEol; |
| 4178 | int numberNormal = 0; |
| 4179 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 4180 | if (columnIsGub[iColumn] < 0 && columnIsGub[iColumn] !=-2) { |
| 4181 | whichColumns[numberNormal++] = iColumn; |
| 4182 | } |
| 4183 | } |
| 4184 | if (!numberNormal) { |
| 4185 | sprintf(message,"Putting back one gub row to make non-empty" ); |
| 4186 | handler_->message(CLP_GENERAL2, messages_) |
| 4187 | << message << CoinMessageEol; |
| 4188 | rowIsGub[smallestGubRow]=-1; |
| 4189 | whichRows[numberNonGub++] = smallestGubRow; |
| 4190 | for (int j = rowStart[smallestGubRow]; |
| 4191 | j < rowStart[smallestGubRow] + rowLength[smallestGubRow]; j++) { |
| 4192 | int iColumn = column[j]; |
| 4193 | if (columnIsGub[iColumn]>=0) { |
| 4194 | columnIsGub[iColumn]=-4; |
| 4195 | whichColumns[numberNormal++] = iColumn; |
| 4196 | } |
| 4197 | } |
| 4198 | } |
| 4199 | std::sort(whichRows,whichRows+numberNonGub); |
| 4200 | std::sort(whichColumns,whichColumns+numberNormal); |
| 4201 | double * lower = CoinCopyOfArray(this->rowLower(),numberRows); |
| 4202 | double * upper = CoinCopyOfArray(this->rowUpper(),numberRows); |
| 4203 | // leave empty rows at end |
| 4204 | numberEmpty = numberRows-numberEmpty; |
| 4205 | const int * row = matrix->getIndices(); |
| 4206 | const int * columnLength = matrix->getVectorLengths(); |
| 4207 | const CoinBigIndex * columnStart = matrix->getVectorStarts(); |
| 4208 | const double * elementByColumn = matrix->getElements(); |
| 4209 | // Fixed at end |
| 4210 | int put2 = numberColumns-numberFixed; |
| 4211 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 4212 | if (columnIsGub[iColumn] ==-2) { |
| 4213 | whichColumns[put2++] = iColumn; |
| 4214 | double value = columnLower[iColumn]; |
| 4215 | for (int j = columnStart[iColumn]; |
| 4216 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 4217 | int iRow = row[j]; |
| 4218 | if (lower[iRow]>-1.0e20) |
| 4219 | lower[iRow] -= value*element[j]; |
| 4220 | if (upper[iRow]<1.0e20) |
| 4221 | upper[iRow] -= value*element[j]; |
| 4222 | } |
| 4223 | } |
| 4224 | } |
| 4225 | int put = numberNormal; |
| 4226 | ClpSimplex * model2 = |
| 4227 | new ClpSimplex(this, numberNonGub, whichRows , numberNormal, whichColumns); |
| 4228 | // scale |
| 4229 | double * scaleArray = new double [numberRows]; |
| 4230 | for (int i=0;i<numberRows;i++) { |
| 4231 | scaleArray[i]=1.0; |
| 4232 | if (rowIsGub[i]==-1) { |
| 4233 | double largest = 1.0e-30; |
| 4234 | double smallest = 1.0e30; |
| 4235 | for (int j = rowStart[i]; j < rowStart[i] + rowLength[i]; j++) { |
| 4236 | int iColumn = column[j]; |
| 4237 | if (columnIsGub[iColumn]!=-2) { |
| 4238 | double value =fabs(element[j]); |
| 4239 | largest = CoinMax(value,largest); |
| 4240 | smallest = CoinMin(value,smallest); |
| 4241 | } |
| 4242 | } |
| 4243 | double scale = CoinMax(0.001,1.0/sqrt(largest*smallest)); |
| 4244 | scaleArray[i]=scale; |
| 4245 | if (lower[i]>-1.0e30) |
| 4246 | lower[i] *= scale; |
| 4247 | if (upper[i]<1.0e30) |
| 4248 | upper[i] *= scale; |
| 4249 | } |
| 4250 | } |
| 4251 | // scale partial matrix |
| 4252 | { |
| 4253 | CoinPackedMatrix * matrix = model2->matrix(); |
| 4254 | const int * row = matrix->getIndices(); |
| 4255 | const int * columnLength = matrix->getVectorLengths(); |
| 4256 | const CoinBigIndex * columnStart = matrix->getVectorStarts(); |
| 4257 | double * element = matrix->getMutableElements(); |
| 4258 | for (int i=0;i<numberNormal;i++) { |
| 4259 | for (int j = columnStart[i]; |
| 4260 | j < columnStart[i] + columnLength[i]; j++) { |
| 4261 | int iRow = row[j]; |
| 4262 | iRow = whichRows[iRow]; |
| 4263 | double scaleBy = scaleArray[iRow]; |
| 4264 | element[j] *= scaleBy; |
| 4265 | } |
| 4266 | } |
| 4267 | } |
| 4268 | // adjust rhs |
| 4269 | double * rowLower = model2->rowLower(); |
| 4270 | double * rowUpper = model2->rowUpper(); |
| 4271 | for (int i=0;i<numberNonGub;i++) { |
| 4272 | int iRow = whichRows[i]; |
| 4273 | rowLower[i] = lower[iRow]; |
| 4274 | rowUpper[i] = upper[iRow]; |
| 4275 | } |
| 4276 | int numberGubColumns = numberColumns - put - numberFixed; |
| 4277 | CoinBigIndex numberElements=0; |
| 4278 | int * temp1 = new int [numberRows+1]; |
| 4279 | // get counts |
| 4280 | memset(temp1,0,numberRows*sizeof(int)); |
| 4281 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 4282 | int iGub = columnIsGub[iColumn]; |
| 4283 | if (iGub>=0) { |
| 4284 | numberElements += columnLength[iColumn]-1; |
| 4285 | temp1[iGub]++; |
| 4286 | } |
| 4287 | } |
| 4288 | /* Optional but means can eventually simplify coding |
| 4289 | could even add in fixed slacks to deal with |
| 4290 | singularities - but should not be necessary */ |
| 4291 | int numberSlacks=0; |
| 4292 | for (int i = 0; i < numberRows; i++) { |
| 4293 | if (rowIsGub[i]>=0) { |
| 4294 | if (lower[i]<upper[i]) { |
| 4295 | numberSlacks++; |
| 4296 | temp1[i]++; |
| 4297 | } |
| 4298 | } |
| 4299 | } |
| 4300 | int * gubStart = new int [numberGub+1]; |
| 4301 | numberGub=0; |
| 4302 | gubStart[0]=0; |
| 4303 | for (int i = 0; i < numberRows; i++) { |
| 4304 | if (rowIsGub[i]>=0) { |
| 4305 | rowIsGub[i]=numberGub; |
| 4306 | gubStart[numberGub+1]=gubStart[numberGub]+temp1[i]; |
| 4307 | temp1[numberGub]=0; |
| 4308 | lower[numberGub]=lower[i]; |
| 4309 | upper[numberGub]=upper[i]; |
| 4310 | whichRows[numberNonGub+numberGub]=i; |
| 4311 | numberGub++; |
| 4312 | } |
| 4313 | } |
| 4314 | int numberGubColumnsPlus = numberGubColumns + numberSlacks; |
| 4315 | double * lowerColumn2 = new double [numberGubColumnsPlus]; |
| 4316 | CoinFillN(lowerColumn2, numberGubColumnsPlus, 0.0); |
| 4317 | double * upperColumn2 = new double [numberGubColumnsPlus]; |
| 4318 | CoinFillN(upperColumn2, numberGubColumnsPlus, COIN_DBL_MAX); |
| 4319 | int * start2 = new int[numberGubColumnsPlus+1]; |
| 4320 | int * row2 = new int[numberElements]; |
| 4321 | double * element2 = new double[numberElements]; |
| 4322 | double * cost2 = new double [numberGubColumnsPlus]; |
| 4323 | CoinFillN(cost2, numberGubColumnsPlus, 0.0); |
| 4324 | const double * cost = this->objective(); |
| 4325 | put = numberNormal; |
| 4326 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 4327 | int iGub = columnIsGub[iColumn]; |
| 4328 | if (iGub>=0) { |
| 4329 | // TEMP |
| 4330 | //this->setColUpper(iColumn,COIN_DBL_MAX); |
| 4331 | iGub = rowIsGub[iGub]; |
| 4332 | assert (iGub>=0); |
| 4333 | int kPut = put+gubStart[iGub]+temp1[iGub]; |
| 4334 | temp1[iGub]++; |
| 4335 | whichColumns[kPut]=iColumn; |
| 4336 | } |
| 4337 | } |
| 4338 | for (int i = 0; i < numberRows; i++) { |
| 4339 | if (rowIsGub[i]>=0) { |
| 4340 | int iGub = rowIsGub[i]; |
| 4341 | if (lower[iGub]<upper[iGub]) { |
| 4342 | int kPut = put+gubStart[iGub]+temp1[iGub]; |
| 4343 | temp1[iGub]++; |
| 4344 | whichColumns[kPut]=iGub+numberColumns; |
| 4345 | } |
| 4346 | } |
| 4347 | } |
| 4348 | //this->primal(1); // TEMP |
| 4349 | // redo rowIsGub to give lookup |
| 4350 | for (int i=0;i<numberRows;i++) |
| 4351 | rowIsGub[i]=-1; |
| 4352 | for (int i=0;i<numberNonGub;i++) |
| 4353 | rowIsGub[whichRows[i]]=i; |
| 4354 | start2[0]=0; |
| 4355 | numberElements = 0; |
| 4356 | for (int i=0;i<numberGubColumnsPlus;i++) { |
| 4357 | int iColumn = whichColumns[put++]; |
| 4358 | if (iColumn<numberColumns) { |
| 4359 | cost2[i] = cost[iColumn]; |
| 4360 | lowerColumn2[i] = columnLower[iColumn]; |
| 4361 | upperColumn2[i] = columnUpper[iColumn]; |
| 4362 | upperColumn2[i] = COIN_DBL_MAX; |
| 4363 | for (int j = columnStart[iColumn]; j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 4364 | int iRow = row[j]; |
| 4365 | double scaleBy = scaleArray[iRow]; |
| 4366 | iRow = rowIsGub[iRow]; |
| 4367 | if (iRow >= 0) { |
| 4368 | row2[numberElements] = iRow; |
| 4369 | element2[numberElements++] = elementByColumn[j]*scaleBy; |
| 4370 | } |
| 4371 | } |
| 4372 | } else { |
| 4373 | // slack |
| 4374 | int iGub = iColumn-numberColumns; |
| 4375 | double slack = upper[iGub]-lower[iGub]; |
| 4376 | assert (upper[iGub]<1.0e20); |
| 4377 | lower[iGub]=upper[iGub]; |
| 4378 | cost2[i] = 0; |
| 4379 | lowerColumn2[i] = 0; |
| 4380 | upperColumn2[i] = slack; |
| 4381 | upperColumn2[i] = COIN_DBL_MAX; |
| 4382 | } |
| 4383 | start2[i+1] = numberElements; |
| 4384 | } |
| 4385 | // clean up bounds on variables |
| 4386 | for (int iSet=0;iSet<numberGub;iSet++) { |
| 4387 | double lowerValue=0.0; |
| 4388 | for (int i=gubStart[iSet];i<gubStart[iSet+1];i++) { |
| 4389 | lowerValue += lowerColumn2[i]; |
| 4390 | } |
| 4391 | assert (lowerValue<upper[iSet]+1.0e-6); |
| 4392 | double gap = CoinMax(0.0,upper[iSet]-lowerValue); |
| 4393 | for (int i=gubStart[iSet];i<gubStart[iSet+1];i++) { |
| 4394 | if (upperColumn2[i]<1.0e30) { |
| 4395 | upperColumn2[i] = CoinMin(upperColumn2[i], |
| 4396 | lowerColumn2[i]+gap); |
| 4397 | } |
| 4398 | } |
| 4399 | } |
| 4400 | sprintf(message,"** Before adding matrix there are %d rows and %d columns" , |
| 4401 | model2->numberRows(), model2->numberColumns()); |
| 4402 | handler_->message(CLP_GENERAL2, messages_) |
| 4403 | << message << CoinMessageEol; |
| 4404 | delete [] scaleArray; |
| 4405 | delete [] temp1; |
| 4406 | model2->setFactorizationFrequency(factorizationFrequency); |
| 4407 | ClpDynamicMatrix * newMatrix = |
| 4408 | new ClpDynamicMatrix(model2, numberGub, |
| 4409 | numberGubColumnsPlus, gubStart, |
| 4410 | lower, upper, |
| 4411 | start2, row2, element2, cost2, |
| 4412 | lowerColumn2, upperColumn2); |
| 4413 | delete [] gubStart; |
| 4414 | delete [] lowerColumn2; |
| 4415 | delete [] upperColumn2; |
| 4416 | delete [] start2; |
| 4417 | delete [] row2; |
| 4418 | delete [] element2; |
| 4419 | delete [] cost2; |
| 4420 | delete [] lower; |
| 4421 | delete [] upper; |
| 4422 | model2->replaceMatrix(newMatrix,true); |
| 4423 | #ifdef EVERY_ITERATION |
| 4424 | { |
| 4425 | ClpDynamicMatrix * gubMatrix = |
| 4426 | dynamic_cast< ClpDynamicMatrix*>(model2->clpMatrix()); |
| 4427 | assert(gubMatrix); |
| 4428 | gubMatrix->writeMps("gub.mps" ); |
| 4429 | } |
| 4430 | #endif |
| 4431 | delete [] columnIsGub; |
| 4432 | delete [] rowIsGub; |
| 4433 | newMatrix->switchOffCheck(); |
| 4434 | #ifdef EVERY_ITERATION |
| 4435 | newMatrix->setRefreshFrequency(1/*000*/); |
| 4436 | #else |
| 4437 | newMatrix->setRefreshFrequency(1000); |
| 4438 | #endif |
| 4439 | sprintf(message, |
| 4440 | "** While after adding matrix there are %d rows and %d columns" , |
| 4441 | model2->numberRows(), model2->numberColumns()); |
| 4442 | handler_->message(CLP_GENERAL2, messages_) |
| 4443 | << message << CoinMessageEol; |
| 4444 | model2->setSpecialOptions(4); // exactly to bound |
| 4445 | // Scaling off (done by hand) |
| 4446 | model2->scaling(0); |
| 4447 | return model2; |
| 4448 | } else { |
| 4449 | delete [] columnIsGub; |
| 4450 | delete [] rowIsGub; |
| 4451 | return NULL; |
| 4452 | } |
| 4453 | } |
| 4454 | // Sets basis from original |
| 4455 | void |
| 4456 | ClpSimplexOther::setGubBasis(ClpSimplex &original,const int * whichRows, |
| 4457 | const int * whichColumns) |
| 4458 | { |
| 4459 | ClpDynamicMatrix * gubMatrix = |
| 4460 | dynamic_cast< ClpDynamicMatrix*>(clpMatrix()); |
| 4461 | assert(gubMatrix); |
| 4462 | int numberGubColumns = gubMatrix->numberGubColumns(); |
| 4463 | int numberNormal = gubMatrix->firstDynamic(); |
| 4464 | //int lastOdd = gubMatrix->firstAvailable(); |
| 4465 | //int numberTotalColumns = numberNormal + numberGubColumns; |
| 4466 | //assert (numberTotalColumns==numberColumns+numberSlacks); |
| 4467 | int numberRows = original.numberRows(); |
| 4468 | int numberColumns = original.numberColumns(); |
| 4469 | int * columnIsGub = new int [numberColumns]; |
| 4470 | int numberNonGub = gubMatrix->numberStaticRows(); |
| 4471 | //assert (firstOdd==numberNormal); |
| 4472 | double * solution = primalColumnSolution(); |
| 4473 | double * originalSolution = original.primalColumnSolution(); |
| 4474 | const double * upperSet = gubMatrix->upperSet(); |
| 4475 | // Column copy of GUB part |
| 4476 | int numberSets = gubMatrix->numberSets(); |
| 4477 | const int * startSet = gubMatrix->startSets(); |
| 4478 | const CoinBigIndex * columnStart = gubMatrix->startColumn(); |
| 4479 | const double * columnLower = gubMatrix->columnLower(); |
| 4480 | #ifdef TRY_IMPROVE |
| 4481 | const double * columnUpper = gubMatrix->columnUpper(); |
| 4482 | const double * lowerSet = gubMatrix->lowerSet(); |
| 4483 | const double * element = gubMatrix->element(); |
| 4484 | const int * row = gubMatrix->row(); |
| 4485 | bool allPositive=true; |
| 4486 | double * rowActivity = new double[numberNonGub]; |
| 4487 | memset(rowActivity, 0, numberNonGub*sizeof(double)); |
| 4488 | { |
| 4489 | // Non gub contribution |
| 4490 | const double * element = matrix_->getElements(); |
| 4491 | const int * row = matrix_->getIndices(); |
| 4492 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 4493 | const int * columnLength = matrix_->getVectorLengths(); |
| 4494 | for (int i=0;i<numberNormal;i++) { |
| 4495 | int iColumn = whichColumns[i]; |
| 4496 | double value = originalSolution[iColumn]; |
| 4497 | if (value) { |
| 4498 | for (CoinBigIndex j = columnStart[i]; |
| 4499 | j < columnStart[i] + columnLength[i]; j++) { |
| 4500 | int iRow = row[j]; |
| 4501 | rowActivity[iRow] += value*element[j]; |
| 4502 | } |
| 4503 | } |
| 4504 | } |
| 4505 | } |
| 4506 | double * newSolution = new double [numberGubColumns]; |
| 4507 | int * slacks = new int [numberSets]; |
| 4508 | for (int i=0;i<numberSets;i++) { |
| 4509 | double sum=0.0; |
| 4510 | int iSlack=-1; |
| 4511 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4512 | gubMatrix->setDynamicStatus(j,ClpDynamicMatrix::atLowerBound); |
| 4513 | int iColumn = whichColumns[j+numberNormal]; |
| 4514 | if (iColumn<numberColumns) { |
| 4515 | columnIsGub[iColumn] = whichRows[numberNonGub+i]; |
| 4516 | double value = originalSolution[iColumn]; |
| 4517 | sum += value; |
| 4518 | newSolution[j]=value; |
| 4519 | for (CoinBigIndex k = columnStart[j]; k < columnStart[j+1] ; k++) { |
| 4520 | int iRow = row[k]; |
| 4521 | rowActivity[iRow] += value*element[k]; |
| 4522 | if (element[k] < 0.0) |
| 4523 | allPositive=false; |
| 4524 | } |
| 4525 | if (columnStart[j]==columnStart[j+1]) |
| 4526 | iSlack=j; |
| 4527 | } else { |
| 4528 | newSolution[j]=0.0; |
| 4529 | iSlack=j; |
| 4530 | allPositive=false; // for now |
| 4531 | } |
| 4532 | } |
| 4533 | slacks[i]=iSlack; |
| 4534 | if (sum>upperSet[i]+1.0e-8) { |
| 4535 | double gap = sum-upperSet[i]; |
| 4536 | if (iSlack>=0) { |
| 4537 | double value=newSolution[iSlack]; |
| 4538 | if (value>0.0) { |
| 4539 | double down = CoinMin(gap,value); |
| 4540 | gap -= down; |
| 4541 | sum -= down; |
| 4542 | newSolution[iSlack] = value-down; |
| 4543 | } |
| 4544 | } |
| 4545 | if (gap>1.0e-8) { |
| 4546 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4547 | int iColumn = whichColumns[j+numberNormal]; |
| 4548 | if (newSolution[j]>0.0&&iColumn<numberColumns) { |
| 4549 | double value = newSolution[j]; |
| 4550 | double down = CoinMin(gap,value); |
| 4551 | gap -= down; |
| 4552 | sum -= down; |
| 4553 | newSolution[iSlack] = value-down; |
| 4554 | for (CoinBigIndex k = columnStart[j]; k < columnStart[j+1] ; k++) { |
| 4555 | int iRow = row[k]; |
| 4556 | rowActivity[iRow] -= down*element[k]; |
| 4557 | } |
| 4558 | } |
| 4559 | } |
| 4560 | } |
| 4561 | assert (gap<1.0e-8); |
| 4562 | } else if (sum<lowerSet[i]-1.0e-8) { |
| 4563 | double gap = lowerSet[i]-sum; |
| 4564 | if (iSlack>=0) { |
| 4565 | double value=newSolution[iSlack]; |
| 4566 | if (value<columnUpper[iSlack]) { |
| 4567 | double up = CoinMin(gap,columnUpper[iSlack]-value); |
| 4568 | gap -= up; |
| 4569 | sum += up; |
| 4570 | newSolution[iSlack] = value+up; |
| 4571 | } |
| 4572 | } |
| 4573 | if (gap>1.0e-8) { |
| 4574 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4575 | int iColumn = whichColumns[j+numberNormal]; |
| 4576 | if (newSolution[j]<columnUpper[j]&&iColumn<numberColumns) { |
| 4577 | double value = newSolution[j]; |
| 4578 | double up = CoinMin(gap,columnUpper[j]-value); |
| 4579 | gap -= up; |
| 4580 | sum += up; |
| 4581 | newSolution[iSlack] = value+up; |
| 4582 | for (CoinBigIndex k = columnStart[j]; k < columnStart[j+1] ; k++) { |
| 4583 | int iRow = row[k]; |
| 4584 | rowActivity[iRow] += up*element[k]; |
| 4585 | } |
| 4586 | } |
| 4587 | } |
| 4588 | } |
| 4589 | assert (gap<1.0e-8); |
| 4590 | } |
| 4591 | if (fabs(sum-upperSet[i])>1.0e-7) |
| 4592 | printf("Sum for set %d is %g - lower %g, upper %g\n" ,i, |
| 4593 | sum,lowerSet[i],upperSet[i]); |
| 4594 | } |
| 4595 | if (allPositive) { |
| 4596 | // See if we can improve solution |
| 4597 | // first reduce if over |
| 4598 | double * gaps = new double [numberNonGub]; |
| 4599 | double direction = optimizationDirection_; |
| 4600 | const double * cost = gubMatrix->cost(); |
| 4601 | bool over=false; |
| 4602 | for (int i=0;i<numberNonGub;i++) { |
| 4603 | double activity = rowActivity[i]; |
| 4604 | gaps[i]=0.0; |
| 4605 | if (activity>rowUpper_[i]+1.0e-6) { |
| 4606 | gaps[i]=activity-rowUpper_[i]; |
| 4607 | over=true; |
| 4608 | } |
| 4609 | } |
| 4610 | double * weights = new double [numberGubColumns]; |
| 4611 | int * which = new int [numberGubColumns]; |
| 4612 | int * whichSet = new int [numberGubColumns]; |
| 4613 | if (over) { |
| 4614 | int n=0; |
| 4615 | for (int i=0;i<numberSets;i++) { |
| 4616 | int iSlack = slacks[i]; |
| 4617 | if (iSlack<0||newSolution[iSlack]>upperSet[i]-1.0e-8) |
| 4618 | continue; |
| 4619 | double slackCost = cost[iSlack]*direction; |
| 4620 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4621 | whichSet[j]=i; |
| 4622 | double value = newSolution[j]; |
| 4623 | double thisCost = cost[j]*direction; |
| 4624 | if (value>columnLower[j]&&j!=iSlack) { |
| 4625 | if(thisCost<slackCost) { |
| 4626 | double sum = 1.0e-30; |
| 4627 | for (CoinBigIndex k = columnStart[j]; |
| 4628 | k < columnStart[j+1] ; k++) { |
| 4629 | int iRow = row[k]; |
| 4630 | sum += gaps[iRow]*element[k]; |
| 4631 | } |
| 4632 | which[n]=j; |
| 4633 | // big drop and small difference in cost better |
| 4634 | weights[n++]=(slackCost-thisCost)/sum; |
| 4635 | } else { |
| 4636 | // slack better anyway |
| 4637 | double move = value-columnLower[j]; |
| 4638 | newSolution[iSlack]=CoinMin(upperSet[i], |
| 4639 | newSolution[iSlack]+move); |
| 4640 | newSolution[j]=columnLower[j]; |
| 4641 | for (CoinBigIndex k = columnStart[j]; |
| 4642 | k < columnStart[j+1] ; k++) { |
| 4643 | int iRow = row[k]; |
| 4644 | rowActivity[iRow] -= move*element[k]; |
| 4645 | } |
| 4646 | } |
| 4647 | } |
| 4648 | } |
| 4649 | } |
| 4650 | // sort |
| 4651 | CoinSort_2(weights,weights+n,which); |
| 4652 | for (int i=0;i<n;i++) { |
| 4653 | int j= which[i]; |
| 4654 | int iSet = whichSet[j]; |
| 4655 | int iSlack = slacks[iSet]; |
| 4656 | assert (iSlack>=0); |
| 4657 | double move = 0.0; |
| 4658 | for (CoinBigIndex k = columnStart[j]; |
| 4659 | k < columnStart[j+1] ; k++) { |
| 4660 | int iRow = row[k]; |
| 4661 | if(rowActivity[iRow]-rowUpper_[iRow]>move*element[k]) { |
| 4662 | move = (rowActivity[iRow]-rowUpper_[iRow])/element[k]; |
| 4663 | } |
| 4664 | } |
| 4665 | move=CoinMin(move,newSolution[j]-columnLower[j]); |
| 4666 | if (move) { |
| 4667 | newSolution[j] -= move; |
| 4668 | newSolution[iSlack] += move; |
| 4669 | for (CoinBigIndex k = columnStart[j]; |
| 4670 | k < columnStart[j+1] ; k++) { |
| 4671 | int iRow = row[k]; |
| 4672 | rowActivity[iRow] -= move*element[k]; |
| 4673 | } |
| 4674 | } |
| 4675 | } |
| 4676 | } |
| 4677 | delete [] whichSet; |
| 4678 | delete [] which; |
| 4679 | delete [] weights; |
| 4680 | delete [] gaps; |
| 4681 | // redo original status! |
| 4682 | for (int i=0;i<numberSets;i++) { |
| 4683 | int numberBasic=0; |
| 4684 | int numberNewBasic=0; |
| 4685 | int j1=-1; |
| 4686 | int j2=-1; |
| 4687 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4688 | if (newSolution[j]>columnLower[j]) { |
| 4689 | numberNewBasic++; |
| 4690 | j2=j; |
| 4691 | } |
| 4692 | int iOrig = whichColumns[j+numberNormal]; |
| 4693 | if (iOrig<numberColumns) { |
| 4694 | if (original.getColumnStatus(iOrig)!=ClpSimplex::atLowerBound) { |
| 4695 | numberBasic++; |
| 4696 | j1=j; |
| 4697 | } |
| 4698 | } else { |
| 4699 | int iSet = iOrig - numberColumns; |
| 4700 | int iRow = whichRows[iSet+numberNonGub]; |
| 4701 | if (original.getRowStatus(iRow)==ClpSimplex::basic) { |
| 4702 | numberBasic++; |
| 4703 | j1=j; |
| 4704 | abort(); |
| 4705 | } |
| 4706 | } |
| 4707 | } |
| 4708 | if (numberBasic==1&&numberNewBasic==1&& |
| 4709 | j1!=j2) { |
| 4710 | int iOrig1=whichColumns[j1+numberNormal]; |
| 4711 | int iOrig2=whichColumns[j2+numberNormal]; |
| 4712 | ClpSimplex::Status status1 = original.getColumnStatus(iOrig1); |
| 4713 | ClpSimplex::Status status2 = original.getColumnStatus(iOrig2); |
| 4714 | originalSolution[iOrig1] = newSolution[j1]; |
| 4715 | originalSolution[iOrig2] = newSolution[j2]; |
| 4716 | original.setColumnStatus(iOrig1,status2); |
| 4717 | original.setColumnStatus(iOrig2,status1); |
| 4718 | } |
| 4719 | } |
| 4720 | } |
| 4721 | delete [] newSolution; |
| 4722 | delete [] slacks; |
| 4723 | delete [] rowActivity; |
| 4724 | #else |
| 4725 | for (int i=0;i<numberSets;i++) { |
| 4726 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4727 | gubMatrix->setDynamicStatus(j,ClpDynamicMatrix::atLowerBound); |
| 4728 | int iColumn = whichColumns[j+numberNormal]; |
| 4729 | if (iColumn<numberColumns) { |
| 4730 | columnIsGub[iColumn] = whichRows[numberNonGub+i]; |
| 4731 | } |
| 4732 | } |
| 4733 | } |
| 4734 | #endif |
| 4735 | int * numberKey = new int [numberRows]; |
| 4736 | memset(numberKey,0,numberRows*sizeof(int)); |
| 4737 | for (int i=0;i<numberGubColumns;i++) { |
| 4738 | int iOrig = whichColumns[i+numberNormal]; |
| 4739 | if (iOrig<numberColumns) { |
| 4740 | if (original.getColumnStatus(iOrig)==ClpSimplex::basic) { |
| 4741 | int iRow = columnIsGub[iOrig]; |
| 4742 | assert (iRow>=0); |
| 4743 | numberKey[iRow]++; |
| 4744 | } |
| 4745 | } else { |
| 4746 | // Set slack |
| 4747 | int iSet = iOrig - numberColumns; |
| 4748 | int iRow = whichRows[iSet+numberNonGub]; |
| 4749 | if (original.getRowStatus(iRow)==ClpSimplex::basic) |
| 4750 | numberKey[iRow]++; |
| 4751 | } |
| 4752 | } |
| 4753 | /* Before going into cleanMatrix we need |
| 4754 | gub status set (inSmall just means basic and active) |
| 4755 | row status set |
| 4756 | */ |
| 4757 | for (int i = 0; i < numberSets; i++) { |
| 4758 | gubMatrix->setStatus(i,ClpSimplex::isFixed); |
| 4759 | } |
| 4760 | for (int i = 0; i < numberGubColumns; i++) { |
| 4761 | int iOrig = whichColumns[i+numberNormal]; |
| 4762 | if (iOrig<numberColumns) { |
| 4763 | ClpSimplex::Status status = original.getColumnStatus(iOrig); |
| 4764 | if (status==ClpSimplex::atUpperBound) { |
| 4765 | gubMatrix->setDynamicStatus(i,ClpDynamicMatrix::atUpperBound); |
| 4766 | } else if (status==ClpSimplex::atLowerBound) { |
| 4767 | gubMatrix->setDynamicStatus(i,ClpDynamicMatrix::atLowerBound); |
| 4768 | } else if (status==ClpSimplex::basic) { |
| 4769 | int iRow = columnIsGub[iOrig]; |
| 4770 | assert (iRow>=0); |
| 4771 | assert(numberKey[iRow]); |
| 4772 | if (numberKey[iRow]==1) |
| 4773 | gubMatrix->setDynamicStatus(i,ClpDynamicMatrix::soloKey); |
| 4774 | else |
| 4775 | gubMatrix->setDynamicStatus(i,ClpDynamicMatrix::inSmall); |
| 4776 | } |
| 4777 | } else { |
| 4778 | // slack |
| 4779 | int iSet = iOrig - numberColumns; |
| 4780 | int iRow = whichRows[iSet+numberNonGub]; |
| 4781 | if (original.getRowStatus(iRow)==ClpSimplex::basic |
| 4782 | #ifdef TRY_IMPROVE |
| 4783 | ||newSolution[i]>columnLower[i]+1.0e-8 |
| 4784 | #endif |
| 4785 | ) { |
| 4786 | assert(numberKey[iRow]); |
| 4787 | if (numberKey[iRow]==1) |
| 4788 | gubMatrix->setDynamicStatus(i,ClpDynamicMatrix::soloKey); |
| 4789 | else |
| 4790 | gubMatrix->setDynamicStatus(i,ClpDynamicMatrix::inSmall); |
| 4791 | } else { |
| 4792 | gubMatrix->setDynamicStatus(i,ClpDynamicMatrix::atLowerBound); |
| 4793 | } |
| 4794 | } |
| 4795 | } |
| 4796 | // deal with sets without key |
| 4797 | for (int i = 0; i < numberSets; i++) { |
| 4798 | int iRow = whichRows[numberNonGub+i]; |
| 4799 | if (!numberKey[iRow]) { |
| 4800 | double upper = upperSet[i]-1.0e-7; |
| 4801 | if (original.getRowStatus(iRow)==ClpSimplex::basic) |
| 4802 | gubMatrix->setStatus(i,ClpSimplex::basic); |
| 4803 | // If not at lb make key otherwise one with smallest number els |
| 4804 | double largest=0.0; |
| 4805 | int fewest=numberRows+1; |
| 4806 | int chosen=-1; |
| 4807 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4808 | int length=columnStart[j+1]-columnStart[j]; |
| 4809 | int iOrig = whichColumns[j+numberNormal]; |
| 4810 | double value; |
| 4811 | if (iOrig<numberColumns) { |
| 4812 | #ifdef TRY_IMPROVE |
| 4813 | value=newSolution[j]-columnLower[j]; |
| 4814 | #else |
| 4815 | value = originalSolution[iOrig]-columnLower[j]; |
| 4816 | #endif |
| 4817 | if (value>upper) |
| 4818 | gubMatrix->setStatus(i,ClpSimplex::atLowerBound); |
| 4819 | } else { |
| 4820 | // slack - take value as 0.0 as will win on length |
| 4821 | value=0.0; |
| 4822 | } |
| 4823 | if (value>largest+1.0e-8) { |
| 4824 | largest=value; |
| 4825 | fewest=length; |
| 4826 | chosen=j; |
| 4827 | } else if (fabs(value-largest)<=1.0e-8&&length<fewest) { |
| 4828 | largest=value; |
| 4829 | fewest=length; |
| 4830 | chosen=j; |
| 4831 | } |
| 4832 | } |
| 4833 | assert(chosen>=0); |
| 4834 | if (gubMatrix->getStatus(i)!=ClpSimplex::basic) { |
| 4835 | // set as key |
| 4836 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4837 | if (j!=chosen) |
| 4838 | gubMatrix->setDynamicStatus(j,ClpDynamicMatrix::atLowerBound); |
| 4839 | else |
| 4840 | gubMatrix->setDynamicStatus(j,ClpDynamicMatrix::soloKey); |
| 4841 | } |
| 4842 | } |
| 4843 | } |
| 4844 | } |
| 4845 | for (int i = 0; i < numberNormal; i++) { |
| 4846 | int iOrig = whichColumns[i]; |
| 4847 | setColumnStatus(i,original.getColumnStatus(iOrig)); |
| 4848 | solution[i]=originalSolution[iOrig]; |
| 4849 | } |
| 4850 | for (int i = 0; i < numberNonGub; i++) { |
| 4851 | int iOrig = whichRows[i]; |
| 4852 | setRowStatus(i,original.getRowStatus(iOrig)); |
| 4853 | } |
| 4854 | // Fill in current matrix |
| 4855 | gubMatrix->initialProblem(); |
| 4856 | delete [] numberKey; |
| 4857 | delete [] columnIsGub; |
| 4858 | } |
| 4859 | // Restores basis to original |
| 4860 | void |
| 4861 | ClpSimplexOther::getGubBasis(ClpSimplex &original,const int * whichRows, |
| 4862 | const int * whichColumns) const |
| 4863 | { |
| 4864 | ClpDynamicMatrix * gubMatrix = |
| 4865 | dynamic_cast< ClpDynamicMatrix*>(clpMatrix()); |
| 4866 | assert(gubMatrix); |
| 4867 | int numberGubColumns = gubMatrix->numberGubColumns(); |
| 4868 | int numberNormal = gubMatrix->firstDynamic(); |
| 4869 | //int lastOdd = gubMatrix->firstAvailable(); |
| 4870 | //int numberRows = original.numberRows(); |
| 4871 | int numberColumns = original.numberColumns(); |
| 4872 | int numberNonGub = gubMatrix->numberStaticRows(); |
| 4873 | //assert (firstOdd==numberNormal); |
| 4874 | double * solution = primalColumnSolution(); |
| 4875 | double * originalSolution = original.primalColumnSolution(); |
| 4876 | int numberSets = gubMatrix->numberSets(); |
| 4877 | const double * cost = original.objective(); |
| 4878 | int lastOdd = gubMatrix->firstAvailable(); |
| 4879 | //assert (numberTotalColumns==numberColumns+numberSlacks); |
| 4880 | int numberRows = original.numberRows(); |
| 4881 | //int numberStaticRows = gubMatrix->numberStaticRows(); |
| 4882 | const int * startSet = gubMatrix->startSets(); |
| 4883 | unsigned char * status = original.statusArray(); |
| 4884 | unsigned char * rowStatus = status+numberColumns; |
| 4885 | //assert (firstOdd==numberNormal); |
| 4886 | for (int i=0;i<numberSets;i++) { |
| 4887 | int iRow = whichRows[i+numberNonGub]; |
| 4888 | original.setRowStatus(iRow,ClpSimplex::atLowerBound); |
| 4889 | } |
| 4890 | const int * id = gubMatrix->id(); |
| 4891 | const double * columnLower = gubMatrix->columnLower(); |
| 4892 | const double * columnUpper = gubMatrix->columnUpper(); |
| 4893 | for (int i = 0; i < numberGubColumns; i++) { |
| 4894 | int iOrig = whichColumns[i+numberNormal]; |
| 4895 | if (iOrig<numberColumns) { |
| 4896 | if (gubMatrix->getDynamicStatus(i) == ClpDynamicMatrix::atUpperBound) { |
| 4897 | originalSolution[iOrig] = columnUpper[i]; |
| 4898 | status[iOrig] = 2; |
| 4899 | } else if (gubMatrix->getDynamicStatus(i) == ClpDynamicMatrix::atLowerBound && columnLower) { |
| 4900 | originalSolution[iOrig] = columnLower[i]; |
| 4901 | status[iOrig] = 3; |
| 4902 | } else if (gubMatrix->getDynamicStatus(i) == ClpDynamicMatrix::soloKey) { |
| 4903 | int iSet = gubMatrix->whichSet(i); |
| 4904 | originalSolution[iOrig] = gubMatrix->keyValue(iSet); |
| 4905 | status[iOrig] = 1; |
| 4906 | } else { |
| 4907 | originalSolution[iOrig] = 0.0; |
| 4908 | status[iOrig] = 4; |
| 4909 | } |
| 4910 | } else { |
| 4911 | // slack |
| 4912 | int iSet = iOrig - numberColumns; |
| 4913 | int iRow = whichRows[iSet+numberNonGub]; |
| 4914 | if (gubMatrix->getDynamicStatus(i) == ClpDynamicMatrix::atUpperBound) { |
| 4915 | original.setRowStatus(iRow,ClpSimplex::atLowerBound); |
| 4916 | } else if (gubMatrix->getDynamicStatus(i) == ClpDynamicMatrix::atLowerBound) { |
| 4917 | original.setRowStatus(iRow,ClpSimplex::atUpperBound); |
| 4918 | } else if (gubMatrix->getDynamicStatus(i) == ClpDynamicMatrix::soloKey) { |
| 4919 | original.setRowStatus(iRow,ClpSimplex::basic); |
| 4920 | } |
| 4921 | } |
| 4922 | } |
| 4923 | for (int i = 0; i < numberNormal; i++) { |
| 4924 | int iOrig = whichColumns[i]; |
| 4925 | ClpSimplex::Status thisStatus = getStatus(i); |
| 4926 | if (thisStatus == ClpSimplex::basic) |
| 4927 | status[iOrig] = 1; |
| 4928 | else if (thisStatus == ClpSimplex::atLowerBound) |
| 4929 | status[iOrig] = 3; |
| 4930 | else if (thisStatus == ClpSimplex::atUpperBound) |
| 4931 | status[iOrig] = 2; |
| 4932 | else if (thisStatus == ClpSimplex::isFixed) |
| 4933 | status[iOrig] = 5; |
| 4934 | else |
| 4935 | abort(); |
| 4936 | originalSolution[iOrig] = solution[i]; |
| 4937 | } |
| 4938 | for (int i = numberNormal; i < lastOdd; i++) { |
| 4939 | int iOrig = whichColumns[id[i-numberNormal] + numberNormal]; |
| 4940 | if (iOrig<numberColumns) { |
| 4941 | ClpSimplex::Status thisStatus = getStatus(i); |
| 4942 | if (thisStatus == ClpSimplex::basic) |
| 4943 | status[iOrig] = 1; |
| 4944 | else if (thisStatus == ClpSimplex::atLowerBound) |
| 4945 | status[iOrig] = 3; |
| 4946 | else if (thisStatus == ClpSimplex::atUpperBound) |
| 4947 | status[iOrig] = 2; |
| 4948 | else if (thisStatus == ClpSimplex::isFixed) |
| 4949 | status[iOrig] = 5; |
| 4950 | else |
| 4951 | abort(); |
| 4952 | originalSolution[iOrig] = solution[i]; |
| 4953 | } else { |
| 4954 | // slack (basic probably) |
| 4955 | int iSet = iOrig - numberColumns; |
| 4956 | int iRow = whichRows[iSet+numberNonGub]; |
| 4957 | ClpSimplex::Status thisStatus = getStatus(i); |
| 4958 | if (thisStatus == ClpSimplex::atLowerBound) |
| 4959 | thisStatus = ClpSimplex::atUpperBound; |
| 4960 | else if (thisStatus == ClpSimplex::atUpperBound) |
| 4961 | thisStatus = ClpSimplex::atLowerBound; |
| 4962 | original.setRowStatus(iRow,thisStatus); |
| 4963 | } |
| 4964 | } |
| 4965 | for (int i = 0; i < numberNonGub; i++) { |
| 4966 | int iOrig = whichRows[i]; |
| 4967 | ClpSimplex::Status thisStatus = getRowStatus(i); |
| 4968 | if (thisStatus == ClpSimplex::basic) |
| 4969 | rowStatus[iOrig] = 1; |
| 4970 | else if (thisStatus == ClpSimplex::atLowerBound) |
| 4971 | rowStatus[iOrig] = 3; |
| 4972 | else if (thisStatus == ClpSimplex::atUpperBound) |
| 4973 | rowStatus[iOrig] = 2; |
| 4974 | else if (thisStatus == ClpSimplex::isFixed) |
| 4975 | rowStatus[iOrig] = 5; |
| 4976 | else |
| 4977 | abort(); |
| 4978 | } |
| 4979 | int * numberKey = new int [numberRows]; |
| 4980 | memset(numberKey,0,numberRows*sizeof(int)); |
| 4981 | for (int i=0;i<numberSets;i++) { |
| 4982 | int iRow = whichRows[i+numberNonGub]; |
| 4983 | for (int j=startSet[i];j<startSet[i+1];j++) { |
| 4984 | int iOrig = whichColumns[j+numberNormal]; |
| 4985 | if (iOrig<numberColumns) { |
| 4986 | if (original.getColumnStatus(iOrig)==ClpSimplex::basic) { |
| 4987 | numberKey[iRow]++; |
| 4988 | } |
| 4989 | } else { |
| 4990 | // slack |
| 4991 | if (original.getRowStatus(iRow)==ClpSimplex::basic) |
| 4992 | numberKey[iRow]++; |
| 4993 | } |
| 4994 | } |
| 4995 | } |
| 4996 | for (int i=0;i<numberSets;i++) { |
| 4997 | int iRow = whichRows[i+numberNonGub]; |
| 4998 | if (!numberKey[iRow]) { |
| 4999 | original.setRowStatus(iRow,ClpSimplex::basic); |
| 5000 | } |
| 5001 | } |
| 5002 | delete [] numberKey; |
| 5003 | double objValue = 0.0; |
| 5004 | for (int i = 0; i < numberColumns; i++) |
| 5005 | objValue += cost[i] * originalSolution[i]; |
| 5006 | //printf("objective value is %g\n", objValue); |
| 5007 | } |
| 5008 | |