| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef CPU_X86_VM_VERSION_X86_HPP |
| 26 | #define CPU_X86_VM_VERSION_X86_HPP |
| 27 | |
| 28 | #include "runtime/globals_extension.hpp" |
| 29 | #include "runtime/vm_version.hpp" |
| 30 | |
| 31 | class VM_Version : public Abstract_VM_Version { |
| 32 | friend class VMStructs; |
| 33 | friend class JVMCIVMStructs; |
| 34 | |
| 35 | public: |
| 36 | // cpuid result register layouts. These are all unions of a uint32_t |
| 37 | // (in case anyone wants access to the register as a whole) and a bitfield. |
| 38 | |
| 39 | union StdCpuid1Eax { |
| 40 | uint32_t value; |
| 41 | struct { |
| 42 | uint32_t stepping : 4, |
| 43 | model : 4, |
| 44 | family : 4, |
| 45 | proc_type : 2, |
| 46 | : 2, |
| 47 | ext_model : 4, |
| 48 | ext_family : 8, |
| 49 | : 4; |
| 50 | } bits; |
| 51 | }; |
| 52 | |
| 53 | union StdCpuid1Ebx { // example, unused |
| 54 | uint32_t value; |
| 55 | struct { |
| 56 | uint32_t brand_id : 8, |
| 57 | clflush_size : 8, |
| 58 | threads_per_cpu : 8, |
| 59 | apic_id : 8; |
| 60 | } bits; |
| 61 | }; |
| 62 | |
| 63 | union StdCpuid1Ecx { |
| 64 | uint32_t value; |
| 65 | struct { |
| 66 | uint32_t sse3 : 1, |
| 67 | clmul : 1, |
| 68 | : 1, |
| 69 | monitor : 1, |
| 70 | : 1, |
| 71 | vmx : 1, |
| 72 | : 1, |
| 73 | est : 1, |
| 74 | : 1, |
| 75 | ssse3 : 1, |
| 76 | cid : 1, |
| 77 | : 1, |
| 78 | fma : 1, |
| 79 | cmpxchg16: 1, |
| 80 | : 4, |
| 81 | dca : 1, |
| 82 | sse4_1 : 1, |
| 83 | sse4_2 : 1, |
| 84 | : 2, |
| 85 | popcnt : 1, |
| 86 | : 1, |
| 87 | aes : 1, |
| 88 | : 1, |
| 89 | osxsave : 1, |
| 90 | avx : 1, |
| 91 | : 3; |
| 92 | } bits; |
| 93 | }; |
| 94 | |
| 95 | union StdCpuid1Edx { |
| 96 | uint32_t value; |
| 97 | struct { |
| 98 | uint32_t : 4, |
| 99 | tsc : 1, |
| 100 | : 3, |
| 101 | cmpxchg8 : 1, |
| 102 | : 6, |
| 103 | cmov : 1, |
| 104 | : 3, |
| 105 | clflush : 1, |
| 106 | : 3, |
| 107 | mmx : 1, |
| 108 | fxsr : 1, |
| 109 | sse : 1, |
| 110 | sse2 : 1, |
| 111 | : 1, |
| 112 | ht : 1, |
| 113 | : 3; |
| 114 | } bits; |
| 115 | }; |
| 116 | |
| 117 | union DcpCpuid4Eax { |
| 118 | uint32_t value; |
| 119 | struct { |
| 120 | uint32_t cache_type : 5, |
| 121 | : 21, |
| 122 | cores_per_cpu : 6; |
| 123 | } bits; |
| 124 | }; |
| 125 | |
| 126 | union DcpCpuid4Ebx { |
| 127 | uint32_t value; |
| 128 | struct { |
| 129 | uint32_t L1_line_size : 12, |
| 130 | partitions : 10, |
| 131 | associativity : 10; |
| 132 | } bits; |
| 133 | }; |
| 134 | |
| 135 | union TplCpuidBEbx { |
| 136 | uint32_t value; |
| 137 | struct { |
| 138 | uint32_t logical_cpus : 16, |
| 139 | : 16; |
| 140 | } bits; |
| 141 | }; |
| 142 | |
| 143 | union ExtCpuid1Ecx { |
| 144 | uint32_t value; |
| 145 | struct { |
| 146 | uint32_t LahfSahf : 1, |
| 147 | CmpLegacy : 1, |
| 148 | : 3, |
| 149 | lzcnt_intel : 1, |
| 150 | lzcnt : 1, |
| 151 | sse4a : 1, |
| 152 | misalignsse : 1, |
| 153 | prefetchw : 1, |
| 154 | : 22; |
| 155 | } bits; |
| 156 | }; |
| 157 | |
| 158 | union ExtCpuid1Edx { |
| 159 | uint32_t value; |
| 160 | struct { |
| 161 | uint32_t : 22, |
| 162 | mmx_amd : 1, |
| 163 | mmx : 1, |
| 164 | fxsr : 1, |
| 165 | : 4, |
| 166 | long_mode : 1, |
| 167 | tdnow2 : 1, |
| 168 | tdnow : 1; |
| 169 | } bits; |
| 170 | }; |
| 171 | |
| 172 | union ExtCpuid5Ex { |
| 173 | uint32_t value; |
| 174 | struct { |
| 175 | uint32_t L1_line_size : 8, |
| 176 | L1_tag_lines : 8, |
| 177 | L1_assoc : 8, |
| 178 | L1_size : 8; |
| 179 | } bits; |
| 180 | }; |
| 181 | |
| 182 | union ExtCpuid7Edx { |
| 183 | uint32_t value; |
| 184 | struct { |
| 185 | uint32_t : 8, |
| 186 | tsc_invariance : 1, |
| 187 | : 23; |
| 188 | } bits; |
| 189 | }; |
| 190 | |
| 191 | union ExtCpuid8Ecx { |
| 192 | uint32_t value; |
| 193 | struct { |
| 194 | uint32_t cores_per_cpu : 8, |
| 195 | : 24; |
| 196 | } bits; |
| 197 | }; |
| 198 | |
| 199 | union SefCpuid7Eax { |
| 200 | uint32_t value; |
| 201 | }; |
| 202 | |
| 203 | union SefCpuid7Ebx { |
| 204 | uint32_t value; |
| 205 | struct { |
| 206 | uint32_t fsgsbase : 1, |
| 207 | : 2, |
| 208 | bmi1 : 1, |
| 209 | : 1, |
| 210 | avx2 : 1, |
| 211 | : 2, |
| 212 | bmi2 : 1, |
| 213 | erms : 1, |
| 214 | : 1, |
| 215 | rtm : 1, |
| 216 | : 4, |
| 217 | avx512f : 1, |
| 218 | avx512dq : 1, |
| 219 | : 1, |
| 220 | adx : 1, |
| 221 | : 6, |
| 222 | avx512pf : 1, |
| 223 | avx512er : 1, |
| 224 | avx512cd : 1, |
| 225 | sha : 1, |
| 226 | avx512bw : 1, |
| 227 | avx512vl : 1; |
| 228 | } bits; |
| 229 | }; |
| 230 | |
| 231 | union SefCpuid7Ecx { |
| 232 | uint32_t value; |
| 233 | struct { |
| 234 | uint32_t prefetchwt1 : 1, |
| 235 | avx512_vbmi : 1, |
| 236 | umip : 1, |
| 237 | pku : 1, |
| 238 | ospke : 1, |
| 239 | : 1, |
| 240 | avx512_vbmi2 : 1, |
| 241 | : 1, |
| 242 | gfni : 1, |
| 243 | vaes : 1, |
| 244 | vpclmulqdq : 1, |
| 245 | avx512_vnni : 1, |
| 246 | avx512_bitalg : 1, |
| 247 | : 1, |
| 248 | avx512_vpopcntdq : 1, |
| 249 | : 17; |
| 250 | } bits; |
| 251 | }; |
| 252 | |
| 253 | union SefCpuid7Edx { |
| 254 | uint32_t value; |
| 255 | struct { |
| 256 | uint32_t : 2, |
| 257 | avx512_4vnniw : 1, |
| 258 | avx512_4fmaps : 1, |
| 259 | : 28; |
| 260 | } bits; |
| 261 | }; |
| 262 | |
| 263 | union ExtCpuid1EEbx { |
| 264 | uint32_t value; |
| 265 | struct { |
| 266 | uint32_t : 8, |
| 267 | threads_per_core : 8, |
| 268 | : 16; |
| 269 | } bits; |
| 270 | }; |
| 271 | |
| 272 | union XemXcr0Eax { |
| 273 | uint32_t value; |
| 274 | struct { |
| 275 | uint32_t x87 : 1, |
| 276 | sse : 1, |
| 277 | ymm : 1, |
| 278 | bndregs : 1, |
| 279 | bndcsr : 1, |
| 280 | opmask : 1, |
| 281 | zmm512 : 1, |
| 282 | zmm32 : 1, |
| 283 | : 24; |
| 284 | } bits; |
| 285 | }; |
| 286 | |
| 287 | protected: |
| 288 | static int _cpu; |
| 289 | static int _model; |
| 290 | static int _stepping; |
| 291 | |
| 292 | static address _cpuinfo_segv_addr; // address of instruction which causes SEGV |
| 293 | static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV |
| 294 | |
| 295 | enum Feature_Flag { |
| 296 | CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX) |
| 297 | CPU_CMOV = (1 << 1), |
| 298 | CPU_FXSR = (1 << 2), |
| 299 | CPU_HT = (1 << 3), |
| 300 | CPU_MMX = (1 << 4), |
| 301 | CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions |
| 302 | // may not necessarily support other 3dnow instructions |
| 303 | CPU_SSE = (1 << 6), |
| 304 | CPU_SSE2 = (1 << 7), |
| 305 | CPU_SSE3 = (1 << 8), // SSE3 comes from cpuid 1 (ECX) |
| 306 | CPU_SSSE3 = (1 << 9), |
| 307 | CPU_SSE4A = (1 << 10), |
| 308 | CPU_SSE4_1 = (1 << 11), |
| 309 | CPU_SSE4_2 = (1 << 12), |
| 310 | CPU_POPCNT = (1 << 13), |
| 311 | CPU_LZCNT = (1 << 14), |
| 312 | CPU_TSC = (1 << 15), |
| 313 | CPU_TSCINV = (1 << 16), |
| 314 | CPU_AVX = (1 << 17), |
| 315 | CPU_AVX2 = (1 << 18), |
| 316 | CPU_AES = (1 << 19), |
| 317 | CPU_ERMS = (1 << 20), // enhanced 'rep movsb/stosb' instructions |
| 318 | CPU_CLMUL = (1 << 21), // carryless multiply for CRC |
| 319 | CPU_BMI1 = (1 << 22), |
| 320 | CPU_BMI2 = (1 << 23), |
| 321 | CPU_RTM = (1 << 24), // Restricted Transactional Memory instructions |
| 322 | CPU_ADX = (1 << 25), |
| 323 | CPU_AVX512F = (1 << 26), // AVX 512bit foundation instructions |
| 324 | CPU_AVX512DQ = (1 << 27), |
| 325 | CPU_AVX512PF = (1 << 28), |
| 326 | CPU_AVX512ER = (1 << 29), |
| 327 | CPU_AVX512CD = (1 << 30) |
| 328 | // Keeping sign bit 31 unassigned. |
| 329 | }; |
| 330 | |
| 331 | #define CPU_AVX512BW ((uint64_t)UCONST64(0x100000000)) // enums are limited to 31 bit |
| 332 | #define CPU_AVX512VL ((uint64_t)UCONST64(0x200000000)) // EVEX instructions with smaller vector length |
| 333 | #define CPU_SHA ((uint64_t)UCONST64(0x400000000)) // SHA instructions |
| 334 | #define CPU_FMA ((uint64_t)UCONST64(0x800000000)) // FMA instructions |
| 335 | #define CPU_VZEROUPPER ((uint64_t)UCONST64(0x1000000000)) // Vzeroupper instruction |
| 336 | #define CPU_AVX512_VPOPCNTDQ ((uint64_t)UCONST64(0x2000000000)) // Vector popcount |
| 337 | #define CPU_VPCLMULQDQ ((uint64_t)UCONST64(0x4000000000)) //Vector carryless multiplication |
| 338 | #define CPU_VAES ((uint64_t)UCONST64(0x8000000000)) // Vector AES instructions |
| 339 | #define CPU_VNNI ((uint64_t)UCONST64(0x10000000000)) // Vector Neural Network Instructions |
| 340 | |
| 341 | enum Extended_Family { |
| 342 | // AMD |
| 343 | CPU_FAMILY_AMD_11H = 0x11, |
| 344 | // ZX |
| 345 | CPU_FAMILY_ZX_CORE_F6 = 6, |
| 346 | CPU_FAMILY_ZX_CORE_F7 = 7, |
| 347 | // Intel |
| 348 | CPU_FAMILY_INTEL_CORE = 6, |
| 349 | CPU_MODEL_NEHALEM = 0x1e, |
| 350 | CPU_MODEL_NEHALEM_EP = 0x1a, |
| 351 | CPU_MODEL_NEHALEM_EX = 0x2e, |
| 352 | CPU_MODEL_WESTMERE = 0x25, |
| 353 | CPU_MODEL_WESTMERE_EP = 0x2c, |
| 354 | CPU_MODEL_WESTMERE_EX = 0x2f, |
| 355 | CPU_MODEL_SANDYBRIDGE = 0x2a, |
| 356 | CPU_MODEL_SANDYBRIDGE_EP = 0x2d, |
| 357 | CPU_MODEL_IVYBRIDGE_EP = 0x3a, |
| 358 | CPU_MODEL_HASWELL_E3 = 0x3c, |
| 359 | CPU_MODEL_HASWELL_E7 = 0x3f, |
| 360 | CPU_MODEL_BROADWELL = 0x3d, |
| 361 | CPU_MODEL_SKYLAKE = CPU_MODEL_HASWELL_E3 |
| 362 | }; |
| 363 | |
| 364 | // cpuid information block. All info derived from executing cpuid with |
| 365 | // various function numbers is stored here. Intel and AMD info is |
| 366 | // merged in this block: accessor methods disentangle it. |
| 367 | // |
| 368 | // The info block is laid out in subblocks of 4 dwords corresponding to |
| 369 | // eax, ebx, ecx and edx, whether or not they contain anything useful. |
| 370 | struct CpuidInfo { |
| 371 | // cpuid function 0 |
| 372 | uint32_t std_max_function; |
| 373 | uint32_t std_vendor_name_0; |
| 374 | uint32_t std_vendor_name_1; |
| 375 | uint32_t std_vendor_name_2; |
| 376 | |
| 377 | // cpuid function 1 |
| 378 | StdCpuid1Eax std_cpuid1_eax; |
| 379 | StdCpuid1Ebx std_cpuid1_ebx; |
| 380 | StdCpuid1Ecx std_cpuid1_ecx; |
| 381 | StdCpuid1Edx std_cpuid1_edx; |
| 382 | |
| 383 | // cpuid function 4 (deterministic cache parameters) |
| 384 | DcpCpuid4Eax dcp_cpuid4_eax; |
| 385 | DcpCpuid4Ebx dcp_cpuid4_ebx; |
| 386 | uint32_t dcp_cpuid4_ecx; // unused currently |
| 387 | uint32_t dcp_cpuid4_edx; // unused currently |
| 388 | |
| 389 | // cpuid function 7 (structured extended features) |
| 390 | SefCpuid7Eax sef_cpuid7_eax; |
| 391 | SefCpuid7Ebx sef_cpuid7_ebx; |
| 392 | SefCpuid7Ecx sef_cpuid7_ecx; |
| 393 | SefCpuid7Edx sef_cpuid7_edx; |
| 394 | |
| 395 | // cpuid function 0xB (processor topology) |
| 396 | // ecx = 0 |
| 397 | uint32_t tpl_cpuidB0_eax; |
| 398 | TplCpuidBEbx tpl_cpuidB0_ebx; |
| 399 | uint32_t tpl_cpuidB0_ecx; // unused currently |
| 400 | uint32_t tpl_cpuidB0_edx; // unused currently |
| 401 | |
| 402 | // ecx = 1 |
| 403 | uint32_t tpl_cpuidB1_eax; |
| 404 | TplCpuidBEbx tpl_cpuidB1_ebx; |
| 405 | uint32_t tpl_cpuidB1_ecx; // unused currently |
| 406 | uint32_t tpl_cpuidB1_edx; // unused currently |
| 407 | |
| 408 | // ecx = 2 |
| 409 | uint32_t tpl_cpuidB2_eax; |
| 410 | TplCpuidBEbx tpl_cpuidB2_ebx; |
| 411 | uint32_t tpl_cpuidB2_ecx; // unused currently |
| 412 | uint32_t tpl_cpuidB2_edx; // unused currently |
| 413 | |
| 414 | // cpuid function 0x80000000 // example, unused |
| 415 | uint32_t ext_max_function; |
| 416 | uint32_t ext_vendor_name_0; |
| 417 | uint32_t ext_vendor_name_1; |
| 418 | uint32_t ext_vendor_name_2; |
| 419 | |
| 420 | // cpuid function 0x80000001 |
| 421 | uint32_t ext_cpuid1_eax; // reserved |
| 422 | uint32_t ext_cpuid1_ebx; // reserved |
| 423 | ExtCpuid1Ecx ext_cpuid1_ecx; |
| 424 | ExtCpuid1Edx ext_cpuid1_edx; |
| 425 | |
| 426 | // cpuid functions 0x80000002 thru 0x80000004: example, unused |
| 427 | uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3; |
| 428 | uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7; |
| 429 | uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11; |
| 430 | |
| 431 | // cpuid function 0x80000005 // AMD L1, Intel reserved |
| 432 | uint32_t ext_cpuid5_eax; // unused currently |
| 433 | uint32_t ext_cpuid5_ebx; // reserved |
| 434 | ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD) |
| 435 | ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD) |
| 436 | |
| 437 | // cpuid function 0x80000007 |
| 438 | uint32_t ext_cpuid7_eax; // reserved |
| 439 | uint32_t ext_cpuid7_ebx; // reserved |
| 440 | uint32_t ext_cpuid7_ecx; // reserved |
| 441 | ExtCpuid7Edx ext_cpuid7_edx; // tscinv |
| 442 | |
| 443 | // cpuid function 0x80000008 |
| 444 | uint32_t ext_cpuid8_eax; // unused currently |
| 445 | uint32_t ext_cpuid8_ebx; // reserved |
| 446 | ExtCpuid8Ecx ext_cpuid8_ecx; |
| 447 | uint32_t ext_cpuid8_edx; // reserved |
| 448 | |
| 449 | // cpuid function 0x8000001E // AMD 17h |
| 450 | uint32_t ext_cpuid1E_eax; |
| 451 | ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h) |
| 452 | uint32_t ext_cpuid1E_ecx; |
| 453 | uint32_t ext_cpuid1E_edx; // unused currently |
| 454 | |
| 455 | // extended control register XCR0 (the XFEATURE_ENABLED_MASK register) |
| 456 | XemXcr0Eax xem_xcr0_eax; |
| 457 | uint32_t xem_xcr0_edx; // reserved |
| 458 | |
| 459 | // Space to save ymm registers after signal handle |
| 460 | int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15 |
| 461 | |
| 462 | // Space to save zmm registers after signal handle |
| 463 | int zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31 |
| 464 | }; |
| 465 | |
| 466 | // The actual cpuid info block |
| 467 | static CpuidInfo _cpuid_info; |
| 468 | |
| 469 | // Extractors and predicates |
| 470 | static uint32_t extended_cpu_family() { |
| 471 | uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family; |
| 472 | result += _cpuid_info.std_cpuid1_eax.bits.ext_family; |
| 473 | return result; |
| 474 | } |
| 475 | |
| 476 | static uint32_t extended_cpu_model() { |
| 477 | uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model; |
| 478 | result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4; |
| 479 | return result; |
| 480 | } |
| 481 | |
| 482 | static uint32_t cpu_stepping() { |
| 483 | uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping; |
| 484 | return result; |
| 485 | } |
| 486 | |
| 487 | static uint logical_processor_count() { |
| 488 | uint result = threads_per_core(); |
| 489 | return result; |
| 490 | } |
| 491 | |
| 492 | static uint64_t feature_flags() { |
| 493 | uint64_t result = 0; |
| 494 | if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0) |
| 495 | result |= CPU_CX8; |
| 496 | if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0) |
| 497 | result |= CPU_CMOV; |
| 498 | if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd_family() && |
| 499 | _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0)) |
| 500 | result |= CPU_FXSR; |
| 501 | // HT flag is set for multi-core processors also. |
| 502 | if (threads_per_core() > 1) |
| 503 | result |= CPU_HT; |
| 504 | if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd_family() && |
| 505 | _cpuid_info.ext_cpuid1_edx.bits.mmx != 0)) |
| 506 | result |= CPU_MMX; |
| 507 | if (_cpuid_info.std_cpuid1_edx.bits.sse != 0) |
| 508 | result |= CPU_SSE; |
| 509 | if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0) |
| 510 | result |= CPU_SSE2; |
| 511 | if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0) |
| 512 | result |= CPU_SSE3; |
| 513 | if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0) |
| 514 | result |= CPU_SSSE3; |
| 515 | if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0) |
| 516 | result |= CPU_SSE4_1; |
| 517 | if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0) |
| 518 | result |= CPU_SSE4_2; |
| 519 | if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0) |
| 520 | result |= CPU_POPCNT; |
| 521 | if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 && |
| 522 | _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 && |
| 523 | _cpuid_info.xem_xcr0_eax.bits.sse != 0 && |
| 524 | _cpuid_info.xem_xcr0_eax.bits.ymm != 0) { |
| 525 | result |= CPU_AVX; |
| 526 | result |= CPU_VZEROUPPER; |
| 527 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0) |
| 528 | result |= CPU_AVX2; |
| 529 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 && |
| 530 | _cpuid_info.xem_xcr0_eax.bits.opmask != 0 && |
| 531 | _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 && |
| 532 | _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) { |
| 533 | result |= CPU_AVX512F; |
| 534 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0) |
| 535 | result |= CPU_AVX512CD; |
| 536 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0) |
| 537 | result |= CPU_AVX512DQ; |
| 538 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0) |
| 539 | result |= CPU_AVX512PF; |
| 540 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0) |
| 541 | result |= CPU_AVX512ER; |
| 542 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0) |
| 543 | result |= CPU_AVX512BW; |
| 544 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0) |
| 545 | result |= CPU_AVX512VL; |
| 546 | if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vpopcntdq != 0) |
| 547 | result |= CPU_AVX512_VPOPCNTDQ; |
| 548 | if (_cpuid_info.sef_cpuid7_ecx.bits.vpclmulqdq != 0) |
| 549 | result |= CPU_VPCLMULQDQ; |
| 550 | if (_cpuid_info.sef_cpuid7_ecx.bits.vaes != 0) |
| 551 | result |= CPU_VAES; |
| 552 | if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vnni != 0) |
| 553 | result |= CPU_VNNI; |
| 554 | } |
| 555 | } |
| 556 | if (_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0) |
| 557 | result |= CPU_BMI1; |
| 558 | if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0) |
| 559 | result |= CPU_TSC; |
| 560 | if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0) |
| 561 | result |= CPU_TSCINV; |
| 562 | if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0) |
| 563 | result |= CPU_AES; |
| 564 | if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0) |
| 565 | result |= CPU_ERMS; |
| 566 | if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0) |
| 567 | result |= CPU_CLMUL; |
| 568 | if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0) |
| 569 | result |= CPU_RTM; |
| 570 | if (_cpuid_info.sef_cpuid7_ebx.bits.adx != 0) |
| 571 | result |= CPU_ADX; |
| 572 | if (_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0) |
| 573 | result |= CPU_BMI2; |
| 574 | if (_cpuid_info.sef_cpuid7_ebx.bits.sha != 0) |
| 575 | result |= CPU_SHA; |
| 576 | if (_cpuid_info.std_cpuid1_ecx.bits.fma != 0) |
| 577 | result |= CPU_FMA; |
| 578 | |
| 579 | // AMD|Hygon features. |
| 580 | if (is_amd_family()) { |
| 581 | if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) || |
| 582 | (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0)) |
| 583 | result |= CPU_3DNOW_PREFETCH; |
| 584 | if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0) |
| 585 | result |= CPU_LZCNT; |
| 586 | if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0) |
| 587 | result |= CPU_SSE4A; |
| 588 | } |
| 589 | // Intel features. |
| 590 | if (is_intel()) { |
| 591 | if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0) |
| 592 | result |= CPU_LZCNT; |
| 593 | // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw |
| 594 | if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) { |
| 595 | result |= CPU_3DNOW_PREFETCH; |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | // ZX features. |
| 600 | if (is_zx()) { |
| 601 | if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0) |
| 602 | result |= CPU_LZCNT; |
| 603 | // for ZX, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw |
| 604 | if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) { |
| 605 | result |= CPU_3DNOW_PREFETCH; |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | return result; |
| 610 | } |
| 611 | |
| 612 | static bool os_supports_avx_vectors() { |
| 613 | bool retVal = false; |
| 614 | int nreg = 2 LP64_ONLY(+2); |
| 615 | if (supports_evex()) { |
| 616 | // Verify that OS save/restore all bits of EVEX registers |
| 617 | // during signal processing. |
| 618 | retVal = true; |
| 619 | for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register |
| 620 | if (_cpuid_info.zmm_save[i] != ymm_test_value()) { |
| 621 | retVal = false; |
| 622 | break; |
| 623 | } |
| 624 | } |
| 625 | } else if (supports_avx()) { |
| 626 | // Verify that OS save/restore all bits of AVX registers |
| 627 | // during signal processing. |
| 628 | retVal = true; |
| 629 | for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register |
| 630 | if (_cpuid_info.ymm_save[i] != ymm_test_value()) { |
| 631 | retVal = false; |
| 632 | break; |
| 633 | } |
| 634 | } |
| 635 | // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen |
| 636 | if (retVal == false) { |
| 637 | // Verify that OS save/restore all bits of EVEX registers |
| 638 | // during signal processing. |
| 639 | retVal = true; |
| 640 | for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register |
| 641 | if (_cpuid_info.zmm_save[i] != ymm_test_value()) { |
| 642 | retVal = false; |
| 643 | break; |
| 644 | } |
| 645 | } |
| 646 | } |
| 647 | } |
| 648 | return retVal; |
| 649 | } |
| 650 | |
| 651 | static void get_processor_features(); |
| 652 | |
| 653 | public: |
| 654 | // Offsets for cpuid asm stub |
| 655 | static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); } |
| 656 | static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); } |
| 657 | static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); } |
| 658 | static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); } |
| 659 | static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); } |
| 660 | static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); } |
| 661 | static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); } |
| 662 | static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); } |
| 663 | static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); } |
| 664 | static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); } |
| 665 | static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); } |
| 666 | static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); } |
| 667 | static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); } |
| 668 | static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); } |
| 669 | static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); } |
| 670 | |
| 671 | // The value used to check ymm register after signal handle |
| 672 | static int ymm_test_value() { return 0xCAFEBABE; } |
| 673 | |
| 674 | static void get_cpu_info_wrapper(); |
| 675 | static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; } |
| 676 | static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; } |
| 677 | static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; } |
| 678 | static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; } |
| 679 | |
| 680 | static void clean_cpuFeatures() { _features = 0; } |
| 681 | static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); } |
| 682 | static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); } |
| 683 | |
| 684 | |
| 685 | // Initialization |
| 686 | static void initialize(); |
| 687 | |
| 688 | // Override Abstract_VM_Version implementation |
| 689 | static void print_platform_virtualization_info(outputStream*); |
| 690 | |
| 691 | // Override Abstract_VM_Version implementation |
| 692 | static bool use_biased_locking(); |
| 693 | |
| 694 | // Asserts |
| 695 | static void assert_is_initialized() { |
| 696 | assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized" ); |
| 697 | } |
| 698 | |
| 699 | // |
| 700 | // Processor family: |
| 701 | // 3 - 386 |
| 702 | // 4 - 486 |
| 703 | // 5 - Pentium |
| 704 | // 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon, |
| 705 | // Pentium M, Core Solo, Core Duo, Core2 Duo |
| 706 | // family 6 model: 9, 13, 14, 15 |
| 707 | // 0x0f - Pentium 4, Opteron |
| 708 | // |
| 709 | // Note: The cpu family should be used to select between |
| 710 | // instruction sequences which are valid on all Intel |
| 711 | // processors. Use the feature test functions below to |
| 712 | // determine whether a particular instruction is supported. |
| 713 | // |
| 714 | static int cpu_family() { return _cpu;} |
| 715 | static bool is_P6() { return cpu_family() >= 6; } |
| 716 | static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA' |
| 717 | static bool is_hygon() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH' |
| 718 | static bool is_amd_family() { return is_amd() || is_hygon(); } |
| 719 | static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG' |
| 720 | static bool is_zx() { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS ' |
| 721 | static bool is_atom_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton |
| 722 | static bool is_knights_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi |
| 723 | |
| 724 | static bool supports_processor_topology() { |
| 725 | return (_cpuid_info.std_max_function >= 0xB) && |
| 726 | // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level. |
| 727 | // Some cpus have max cpuid >= 0xB but do not support processor topology. |
| 728 | (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0); |
| 729 | } |
| 730 | |
| 731 | static uint cores_per_cpu() { |
| 732 | uint result = 1; |
| 733 | if (is_intel()) { |
| 734 | bool supports_topology = supports_processor_topology(); |
| 735 | if (supports_topology) { |
| 736 | result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus / |
| 737 | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; |
| 738 | } |
| 739 | if (!supports_topology || result == 0) { |
| 740 | result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1); |
| 741 | } |
| 742 | } else if (is_amd_family()) { |
| 743 | result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1); |
| 744 | } else if (is_zx()) { |
| 745 | bool supports_topology = supports_processor_topology(); |
| 746 | if (supports_topology) { |
| 747 | result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus / |
| 748 | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; |
| 749 | } |
| 750 | if (!supports_topology || result == 0) { |
| 751 | result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1); |
| 752 | } |
| 753 | } |
| 754 | return result; |
| 755 | } |
| 756 | |
| 757 | static uint threads_per_core() { |
| 758 | uint result = 1; |
| 759 | if (is_intel() && supports_processor_topology()) { |
| 760 | result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; |
| 761 | } else if (is_zx() && supports_processor_topology()) { |
| 762 | result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; |
| 763 | } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) { |
| 764 | if (cpu_family() >= 0x17) { |
| 765 | result = _cpuid_info.ext_cpuid1E_ebx.bits.threads_per_core + 1; |
| 766 | } else { |
| 767 | result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu / |
| 768 | cores_per_cpu(); |
| 769 | } |
| 770 | } |
| 771 | return (result == 0 ? 1 : result); |
| 772 | } |
| 773 | |
| 774 | static intx L1_line_size() { |
| 775 | intx result = 0; |
| 776 | if (is_intel()) { |
| 777 | result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1); |
| 778 | } else if (is_amd_family()) { |
| 779 | result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size; |
| 780 | } else if (is_zx()) { |
| 781 | result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1); |
| 782 | } |
| 783 | if (result < 32) // not defined ? |
| 784 | result = 32; // 32 bytes by default on x86 and other x64 |
| 785 | return result; |
| 786 | } |
| 787 | |
| 788 | static intx prefetch_data_size() { |
| 789 | return L1_line_size(); |
| 790 | } |
| 791 | |
| 792 | // |
| 793 | // Feature identification |
| 794 | // |
| 795 | static bool supports_cpuid() { return _features != 0; } |
| 796 | static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; } |
| 797 | static bool supports_cmov() { return (_features & CPU_CMOV) != 0; } |
| 798 | static bool supports_fxsr() { return (_features & CPU_FXSR) != 0; } |
| 799 | static bool supports_ht() { return (_features & CPU_HT) != 0; } |
| 800 | static bool supports_mmx() { return (_features & CPU_MMX) != 0; } |
| 801 | static bool supports_sse() { return (_features & CPU_SSE) != 0; } |
| 802 | static bool supports_sse2() { return (_features & CPU_SSE2) != 0; } |
| 803 | static bool supports_sse3() { return (_features & CPU_SSE3) != 0; } |
| 804 | static bool supports_ssse3() { return (_features & CPU_SSSE3)!= 0; } |
| 805 | static bool supports_sse4_1() { return (_features & CPU_SSE4_1) != 0; } |
| 806 | static bool supports_sse4_2() { return (_features & CPU_SSE4_2) != 0; } |
| 807 | static bool supports_popcnt() { return (_features & CPU_POPCNT) != 0; } |
| 808 | static bool supports_avx() { return (_features & CPU_AVX) != 0; } |
| 809 | static bool supports_avx2() { return (_features & CPU_AVX2) != 0; } |
| 810 | static bool supports_tsc() { return (_features & CPU_TSC) != 0; } |
| 811 | static bool supports_aes() { return (_features & CPU_AES) != 0; } |
| 812 | static bool supports_erms() { return (_features & CPU_ERMS) != 0; } |
| 813 | static bool supports_clmul() { return (_features & CPU_CLMUL) != 0; } |
| 814 | static bool supports_rtm() { return (_features & CPU_RTM) != 0; } |
| 815 | static bool supports_bmi1() { return (_features & CPU_BMI1) != 0; } |
| 816 | static bool supports_bmi2() { return (_features & CPU_BMI2) != 0; } |
| 817 | static bool supports_adx() { return (_features & CPU_ADX) != 0; } |
| 818 | static bool supports_evex() { return (_features & CPU_AVX512F) != 0; } |
| 819 | static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; } |
| 820 | static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; } |
| 821 | static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; } |
| 822 | static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; } |
| 823 | static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; } |
| 824 | static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; } |
| 825 | static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); } |
| 826 | static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); } |
| 827 | static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() && |
| 828 | supports_avx512bw() && supports_avx512dq()); } |
| 829 | static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); } |
| 830 | static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); } |
| 831 | static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); } |
| 832 | static bool supports_avxonly() { return ((supports_avx2() || supports_avx()) && !supports_evex()); } |
| 833 | static bool supports_sha() { return (_features & CPU_SHA) != 0; } |
| 834 | static bool supports_fma() { return (_features & CPU_FMA) != 0 && supports_avx(); } |
| 835 | static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; } |
| 836 | static bool supports_vpopcntdq() { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; } |
| 837 | static bool supports_vpclmulqdq() { return (_features & CPU_VPCLMULQDQ) != 0; } |
| 838 | static bool supports_vaes() { return (_features & CPU_VAES) != 0; } |
| 839 | static bool supports_vnni() { return (_features & CPU_VNNI) != 0; } |
| 840 | |
| 841 | // Intel features |
| 842 | static bool is_intel_family_core() { return is_intel() && |
| 843 | extended_cpu_family() == CPU_FAMILY_INTEL_CORE; } |
| 844 | |
| 845 | static bool is_intel_tsc_synched_at_init() { |
| 846 | if (is_intel_family_core()) { |
| 847 | uint32_t ext_model = extended_cpu_model(); |
| 848 | if (ext_model == CPU_MODEL_NEHALEM_EP || |
| 849 | ext_model == CPU_MODEL_WESTMERE_EP || |
| 850 | ext_model == CPU_MODEL_SANDYBRIDGE_EP || |
| 851 | ext_model == CPU_MODEL_IVYBRIDGE_EP) { |
| 852 | // <= 2-socket invariant tsc support. EX versions are usually used |
| 853 | // in > 2-socket systems and likely don't synchronize tscs at |
| 854 | // initialization. |
| 855 | // Code that uses tsc values must be prepared for them to arbitrarily |
| 856 | // jump forward or backward. |
| 857 | return true; |
| 858 | } |
| 859 | } |
| 860 | return false; |
| 861 | } |
| 862 | |
| 863 | // AMD features |
| 864 | static bool supports_3dnow_prefetch() { return (_features & CPU_3DNOW_PREFETCH) != 0; } |
| 865 | static bool supports_mmx_ext() { return is_amd_family() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; } |
| 866 | static bool supports_lzcnt() { return (_features & CPU_LZCNT) != 0; } |
| 867 | static bool supports_sse4a() { return (_features & CPU_SSE4A) != 0; } |
| 868 | |
| 869 | static bool is_amd_Barcelona() { return is_amd() && |
| 870 | extended_cpu_family() == CPU_FAMILY_AMD_11H; } |
| 871 | |
| 872 | // Intel and AMD newer cores support fast timestamps well |
| 873 | static bool supports_tscinv_bit() { |
| 874 | return (_features & CPU_TSCINV) != 0; |
| 875 | } |
| 876 | static bool supports_tscinv() { |
| 877 | return supports_tscinv_bit() && |
| 878 | ((is_amd_family() && !is_amd_Barcelona()) || |
| 879 | is_intel_tsc_synched_at_init()); |
| 880 | } |
| 881 | |
| 882 | // Intel Core and newer cpus have fast IDIV instruction (excluding Atom). |
| 883 | static bool has_fast_idiv() { return is_intel() && cpu_family() == 6 && |
| 884 | supports_sse3() && _model != 0x1C; } |
| 885 | |
| 886 | static bool supports_compare_and_exchange() { return true; } |
| 887 | |
| 888 | static intx allocate_prefetch_distance(bool use_watermark_prefetch) { |
| 889 | // Hardware prefetching (distance/size in bytes): |
| 890 | // Pentium 3 - 64 / 32 |
| 891 | // Pentium 4 - 256 / 128 |
| 892 | // Athlon - 64 / 32 ???? |
| 893 | // Opteron - 128 / 64 only when 2 sequential cache lines accessed |
| 894 | // Core - 128 / 64 |
| 895 | // |
| 896 | // Software prefetching (distance in bytes / instruction with best score): |
| 897 | // Pentium 3 - 128 / prefetchnta |
| 898 | // Pentium 4 - 512 / prefetchnta |
| 899 | // Athlon - 128 / prefetchnta |
| 900 | // Opteron - 256 / prefetchnta |
| 901 | // Core - 256 / prefetchnta |
| 902 | // It will be used only when AllocatePrefetchStyle > 0 |
| 903 | |
| 904 | if (is_amd_family()) { // AMD | Hygon |
| 905 | if (supports_sse2()) { |
| 906 | return 256; // Opteron |
| 907 | } else { |
| 908 | return 128; // Athlon |
| 909 | } |
| 910 | } else { // Intel |
| 911 | if (supports_sse3() && cpu_family() == 6) { |
| 912 | if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus |
| 913 | return 192; |
| 914 | } else if (use_watermark_prefetch) { // watermark prefetching on Core |
| 915 | #ifdef _LP64 |
| 916 | return 384; |
| 917 | #else |
| 918 | return 320; |
| 919 | #endif |
| 920 | } |
| 921 | } |
| 922 | if (supports_sse2()) { |
| 923 | if (cpu_family() == 6) { |
| 924 | return 256; // Pentium M, Core, Core2 |
| 925 | } else { |
| 926 | return 512; // Pentium 4 |
| 927 | } |
| 928 | } else { |
| 929 | return 128; // Pentium 3 (and all other old CPUs) |
| 930 | } |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | // SSE2 and later processors implement a 'pause' instruction |
| 935 | // that can be used for efficient implementation of |
| 936 | // the intrinsic for java.lang.Thread.onSpinWait() |
| 937 | static bool supports_on_spin_wait() { return supports_sse2(); } |
| 938 | |
| 939 | // x86_64 supports fast class initialization checks for static methods. |
| 940 | static bool supports_fast_class_init_checks() { |
| 941 | return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32 |
| 942 | } |
| 943 | |
| 944 | // support functions for virtualization detection |
| 945 | private: |
| 946 | static void check_virt_cpuid(uint32_t idx, uint32_t *regs); |
| 947 | static void check_virtualizations(); |
| 948 | }; |
| 949 | |
| 950 | #endif // CPU_X86_VM_VERSION_X86_HPP |
| 951 | |