1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef CPU_X86_VM_VERSION_X86_HPP |
26 | #define CPU_X86_VM_VERSION_X86_HPP |
27 | |
28 | #include "runtime/globals_extension.hpp" |
29 | #include "runtime/vm_version.hpp" |
30 | |
31 | class VM_Version : public Abstract_VM_Version { |
32 | friend class VMStructs; |
33 | friend class JVMCIVMStructs; |
34 | |
35 | public: |
36 | // cpuid result register layouts. These are all unions of a uint32_t |
37 | // (in case anyone wants access to the register as a whole) and a bitfield. |
38 | |
39 | union StdCpuid1Eax { |
40 | uint32_t value; |
41 | struct { |
42 | uint32_t stepping : 4, |
43 | model : 4, |
44 | family : 4, |
45 | proc_type : 2, |
46 | : 2, |
47 | ext_model : 4, |
48 | ext_family : 8, |
49 | : 4; |
50 | } bits; |
51 | }; |
52 | |
53 | union StdCpuid1Ebx { // example, unused |
54 | uint32_t value; |
55 | struct { |
56 | uint32_t brand_id : 8, |
57 | clflush_size : 8, |
58 | threads_per_cpu : 8, |
59 | apic_id : 8; |
60 | } bits; |
61 | }; |
62 | |
63 | union StdCpuid1Ecx { |
64 | uint32_t value; |
65 | struct { |
66 | uint32_t sse3 : 1, |
67 | clmul : 1, |
68 | : 1, |
69 | monitor : 1, |
70 | : 1, |
71 | vmx : 1, |
72 | : 1, |
73 | est : 1, |
74 | : 1, |
75 | ssse3 : 1, |
76 | cid : 1, |
77 | : 1, |
78 | fma : 1, |
79 | cmpxchg16: 1, |
80 | : 4, |
81 | dca : 1, |
82 | sse4_1 : 1, |
83 | sse4_2 : 1, |
84 | : 2, |
85 | popcnt : 1, |
86 | : 1, |
87 | aes : 1, |
88 | : 1, |
89 | osxsave : 1, |
90 | avx : 1, |
91 | : 3; |
92 | } bits; |
93 | }; |
94 | |
95 | union StdCpuid1Edx { |
96 | uint32_t value; |
97 | struct { |
98 | uint32_t : 4, |
99 | tsc : 1, |
100 | : 3, |
101 | cmpxchg8 : 1, |
102 | : 6, |
103 | cmov : 1, |
104 | : 3, |
105 | clflush : 1, |
106 | : 3, |
107 | mmx : 1, |
108 | fxsr : 1, |
109 | sse : 1, |
110 | sse2 : 1, |
111 | : 1, |
112 | ht : 1, |
113 | : 3; |
114 | } bits; |
115 | }; |
116 | |
117 | union DcpCpuid4Eax { |
118 | uint32_t value; |
119 | struct { |
120 | uint32_t cache_type : 5, |
121 | : 21, |
122 | cores_per_cpu : 6; |
123 | } bits; |
124 | }; |
125 | |
126 | union DcpCpuid4Ebx { |
127 | uint32_t value; |
128 | struct { |
129 | uint32_t L1_line_size : 12, |
130 | partitions : 10, |
131 | associativity : 10; |
132 | } bits; |
133 | }; |
134 | |
135 | union TplCpuidBEbx { |
136 | uint32_t value; |
137 | struct { |
138 | uint32_t logical_cpus : 16, |
139 | : 16; |
140 | } bits; |
141 | }; |
142 | |
143 | union ExtCpuid1Ecx { |
144 | uint32_t value; |
145 | struct { |
146 | uint32_t LahfSahf : 1, |
147 | CmpLegacy : 1, |
148 | : 3, |
149 | lzcnt_intel : 1, |
150 | lzcnt : 1, |
151 | sse4a : 1, |
152 | misalignsse : 1, |
153 | prefetchw : 1, |
154 | : 22; |
155 | } bits; |
156 | }; |
157 | |
158 | union ExtCpuid1Edx { |
159 | uint32_t value; |
160 | struct { |
161 | uint32_t : 22, |
162 | mmx_amd : 1, |
163 | mmx : 1, |
164 | fxsr : 1, |
165 | : 4, |
166 | long_mode : 1, |
167 | tdnow2 : 1, |
168 | tdnow : 1; |
169 | } bits; |
170 | }; |
171 | |
172 | union ExtCpuid5Ex { |
173 | uint32_t value; |
174 | struct { |
175 | uint32_t L1_line_size : 8, |
176 | L1_tag_lines : 8, |
177 | L1_assoc : 8, |
178 | L1_size : 8; |
179 | } bits; |
180 | }; |
181 | |
182 | union ExtCpuid7Edx { |
183 | uint32_t value; |
184 | struct { |
185 | uint32_t : 8, |
186 | tsc_invariance : 1, |
187 | : 23; |
188 | } bits; |
189 | }; |
190 | |
191 | union ExtCpuid8Ecx { |
192 | uint32_t value; |
193 | struct { |
194 | uint32_t cores_per_cpu : 8, |
195 | : 24; |
196 | } bits; |
197 | }; |
198 | |
199 | union SefCpuid7Eax { |
200 | uint32_t value; |
201 | }; |
202 | |
203 | union SefCpuid7Ebx { |
204 | uint32_t value; |
205 | struct { |
206 | uint32_t fsgsbase : 1, |
207 | : 2, |
208 | bmi1 : 1, |
209 | : 1, |
210 | avx2 : 1, |
211 | : 2, |
212 | bmi2 : 1, |
213 | erms : 1, |
214 | : 1, |
215 | rtm : 1, |
216 | : 4, |
217 | avx512f : 1, |
218 | avx512dq : 1, |
219 | : 1, |
220 | adx : 1, |
221 | : 6, |
222 | avx512pf : 1, |
223 | avx512er : 1, |
224 | avx512cd : 1, |
225 | sha : 1, |
226 | avx512bw : 1, |
227 | avx512vl : 1; |
228 | } bits; |
229 | }; |
230 | |
231 | union SefCpuid7Ecx { |
232 | uint32_t value; |
233 | struct { |
234 | uint32_t prefetchwt1 : 1, |
235 | avx512_vbmi : 1, |
236 | umip : 1, |
237 | pku : 1, |
238 | ospke : 1, |
239 | : 1, |
240 | avx512_vbmi2 : 1, |
241 | : 1, |
242 | gfni : 1, |
243 | vaes : 1, |
244 | vpclmulqdq : 1, |
245 | avx512_vnni : 1, |
246 | avx512_bitalg : 1, |
247 | : 1, |
248 | avx512_vpopcntdq : 1, |
249 | : 17; |
250 | } bits; |
251 | }; |
252 | |
253 | union SefCpuid7Edx { |
254 | uint32_t value; |
255 | struct { |
256 | uint32_t : 2, |
257 | avx512_4vnniw : 1, |
258 | avx512_4fmaps : 1, |
259 | : 28; |
260 | } bits; |
261 | }; |
262 | |
263 | union ExtCpuid1EEbx { |
264 | uint32_t value; |
265 | struct { |
266 | uint32_t : 8, |
267 | threads_per_core : 8, |
268 | : 16; |
269 | } bits; |
270 | }; |
271 | |
272 | union XemXcr0Eax { |
273 | uint32_t value; |
274 | struct { |
275 | uint32_t x87 : 1, |
276 | sse : 1, |
277 | ymm : 1, |
278 | bndregs : 1, |
279 | bndcsr : 1, |
280 | opmask : 1, |
281 | zmm512 : 1, |
282 | zmm32 : 1, |
283 | : 24; |
284 | } bits; |
285 | }; |
286 | |
287 | protected: |
288 | static int _cpu; |
289 | static int _model; |
290 | static int _stepping; |
291 | |
292 | static address _cpuinfo_segv_addr; // address of instruction which causes SEGV |
293 | static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV |
294 | |
295 | enum Feature_Flag { |
296 | CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX) |
297 | CPU_CMOV = (1 << 1), |
298 | CPU_FXSR = (1 << 2), |
299 | CPU_HT = (1 << 3), |
300 | CPU_MMX = (1 << 4), |
301 | CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions |
302 | // may not necessarily support other 3dnow instructions |
303 | CPU_SSE = (1 << 6), |
304 | CPU_SSE2 = (1 << 7), |
305 | CPU_SSE3 = (1 << 8), // SSE3 comes from cpuid 1 (ECX) |
306 | CPU_SSSE3 = (1 << 9), |
307 | CPU_SSE4A = (1 << 10), |
308 | CPU_SSE4_1 = (1 << 11), |
309 | CPU_SSE4_2 = (1 << 12), |
310 | CPU_POPCNT = (1 << 13), |
311 | CPU_LZCNT = (1 << 14), |
312 | CPU_TSC = (1 << 15), |
313 | CPU_TSCINV = (1 << 16), |
314 | CPU_AVX = (1 << 17), |
315 | CPU_AVX2 = (1 << 18), |
316 | CPU_AES = (1 << 19), |
317 | CPU_ERMS = (1 << 20), // enhanced 'rep movsb/stosb' instructions |
318 | CPU_CLMUL = (1 << 21), // carryless multiply for CRC |
319 | CPU_BMI1 = (1 << 22), |
320 | CPU_BMI2 = (1 << 23), |
321 | CPU_RTM = (1 << 24), // Restricted Transactional Memory instructions |
322 | CPU_ADX = (1 << 25), |
323 | CPU_AVX512F = (1 << 26), // AVX 512bit foundation instructions |
324 | CPU_AVX512DQ = (1 << 27), |
325 | CPU_AVX512PF = (1 << 28), |
326 | CPU_AVX512ER = (1 << 29), |
327 | CPU_AVX512CD = (1 << 30) |
328 | // Keeping sign bit 31 unassigned. |
329 | }; |
330 | |
331 | #define CPU_AVX512BW ((uint64_t)UCONST64(0x100000000)) // enums are limited to 31 bit |
332 | #define CPU_AVX512VL ((uint64_t)UCONST64(0x200000000)) // EVEX instructions with smaller vector length |
333 | #define CPU_SHA ((uint64_t)UCONST64(0x400000000)) // SHA instructions |
334 | #define CPU_FMA ((uint64_t)UCONST64(0x800000000)) // FMA instructions |
335 | #define CPU_VZEROUPPER ((uint64_t)UCONST64(0x1000000000)) // Vzeroupper instruction |
336 | #define CPU_AVX512_VPOPCNTDQ ((uint64_t)UCONST64(0x2000000000)) // Vector popcount |
337 | #define CPU_VPCLMULQDQ ((uint64_t)UCONST64(0x4000000000)) //Vector carryless multiplication |
338 | #define CPU_VAES ((uint64_t)UCONST64(0x8000000000)) // Vector AES instructions |
339 | #define CPU_VNNI ((uint64_t)UCONST64(0x10000000000)) // Vector Neural Network Instructions |
340 | |
341 | enum Extended_Family { |
342 | // AMD |
343 | CPU_FAMILY_AMD_11H = 0x11, |
344 | // ZX |
345 | CPU_FAMILY_ZX_CORE_F6 = 6, |
346 | CPU_FAMILY_ZX_CORE_F7 = 7, |
347 | // Intel |
348 | CPU_FAMILY_INTEL_CORE = 6, |
349 | CPU_MODEL_NEHALEM = 0x1e, |
350 | CPU_MODEL_NEHALEM_EP = 0x1a, |
351 | CPU_MODEL_NEHALEM_EX = 0x2e, |
352 | CPU_MODEL_WESTMERE = 0x25, |
353 | CPU_MODEL_WESTMERE_EP = 0x2c, |
354 | CPU_MODEL_WESTMERE_EX = 0x2f, |
355 | CPU_MODEL_SANDYBRIDGE = 0x2a, |
356 | CPU_MODEL_SANDYBRIDGE_EP = 0x2d, |
357 | CPU_MODEL_IVYBRIDGE_EP = 0x3a, |
358 | CPU_MODEL_HASWELL_E3 = 0x3c, |
359 | CPU_MODEL_HASWELL_E7 = 0x3f, |
360 | CPU_MODEL_BROADWELL = 0x3d, |
361 | CPU_MODEL_SKYLAKE = CPU_MODEL_HASWELL_E3 |
362 | }; |
363 | |
364 | // cpuid information block. All info derived from executing cpuid with |
365 | // various function numbers is stored here. Intel and AMD info is |
366 | // merged in this block: accessor methods disentangle it. |
367 | // |
368 | // The info block is laid out in subblocks of 4 dwords corresponding to |
369 | // eax, ebx, ecx and edx, whether or not they contain anything useful. |
370 | struct CpuidInfo { |
371 | // cpuid function 0 |
372 | uint32_t std_max_function; |
373 | uint32_t std_vendor_name_0; |
374 | uint32_t std_vendor_name_1; |
375 | uint32_t std_vendor_name_2; |
376 | |
377 | // cpuid function 1 |
378 | StdCpuid1Eax std_cpuid1_eax; |
379 | StdCpuid1Ebx std_cpuid1_ebx; |
380 | StdCpuid1Ecx std_cpuid1_ecx; |
381 | StdCpuid1Edx std_cpuid1_edx; |
382 | |
383 | // cpuid function 4 (deterministic cache parameters) |
384 | DcpCpuid4Eax dcp_cpuid4_eax; |
385 | DcpCpuid4Ebx dcp_cpuid4_ebx; |
386 | uint32_t dcp_cpuid4_ecx; // unused currently |
387 | uint32_t dcp_cpuid4_edx; // unused currently |
388 | |
389 | // cpuid function 7 (structured extended features) |
390 | SefCpuid7Eax sef_cpuid7_eax; |
391 | SefCpuid7Ebx sef_cpuid7_ebx; |
392 | SefCpuid7Ecx sef_cpuid7_ecx; |
393 | SefCpuid7Edx sef_cpuid7_edx; |
394 | |
395 | // cpuid function 0xB (processor topology) |
396 | // ecx = 0 |
397 | uint32_t tpl_cpuidB0_eax; |
398 | TplCpuidBEbx tpl_cpuidB0_ebx; |
399 | uint32_t tpl_cpuidB0_ecx; // unused currently |
400 | uint32_t tpl_cpuidB0_edx; // unused currently |
401 | |
402 | // ecx = 1 |
403 | uint32_t tpl_cpuidB1_eax; |
404 | TplCpuidBEbx tpl_cpuidB1_ebx; |
405 | uint32_t tpl_cpuidB1_ecx; // unused currently |
406 | uint32_t tpl_cpuidB1_edx; // unused currently |
407 | |
408 | // ecx = 2 |
409 | uint32_t tpl_cpuidB2_eax; |
410 | TplCpuidBEbx tpl_cpuidB2_ebx; |
411 | uint32_t tpl_cpuidB2_ecx; // unused currently |
412 | uint32_t tpl_cpuidB2_edx; // unused currently |
413 | |
414 | // cpuid function 0x80000000 // example, unused |
415 | uint32_t ext_max_function; |
416 | uint32_t ext_vendor_name_0; |
417 | uint32_t ext_vendor_name_1; |
418 | uint32_t ext_vendor_name_2; |
419 | |
420 | // cpuid function 0x80000001 |
421 | uint32_t ext_cpuid1_eax; // reserved |
422 | uint32_t ext_cpuid1_ebx; // reserved |
423 | ExtCpuid1Ecx ext_cpuid1_ecx; |
424 | ExtCpuid1Edx ext_cpuid1_edx; |
425 | |
426 | // cpuid functions 0x80000002 thru 0x80000004: example, unused |
427 | uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3; |
428 | uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7; |
429 | uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11; |
430 | |
431 | // cpuid function 0x80000005 // AMD L1, Intel reserved |
432 | uint32_t ext_cpuid5_eax; // unused currently |
433 | uint32_t ext_cpuid5_ebx; // reserved |
434 | ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD) |
435 | ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD) |
436 | |
437 | // cpuid function 0x80000007 |
438 | uint32_t ext_cpuid7_eax; // reserved |
439 | uint32_t ext_cpuid7_ebx; // reserved |
440 | uint32_t ext_cpuid7_ecx; // reserved |
441 | ExtCpuid7Edx ext_cpuid7_edx; // tscinv |
442 | |
443 | // cpuid function 0x80000008 |
444 | uint32_t ext_cpuid8_eax; // unused currently |
445 | uint32_t ext_cpuid8_ebx; // reserved |
446 | ExtCpuid8Ecx ext_cpuid8_ecx; |
447 | uint32_t ext_cpuid8_edx; // reserved |
448 | |
449 | // cpuid function 0x8000001E // AMD 17h |
450 | uint32_t ext_cpuid1E_eax; |
451 | ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h) |
452 | uint32_t ext_cpuid1E_ecx; |
453 | uint32_t ext_cpuid1E_edx; // unused currently |
454 | |
455 | // extended control register XCR0 (the XFEATURE_ENABLED_MASK register) |
456 | XemXcr0Eax xem_xcr0_eax; |
457 | uint32_t xem_xcr0_edx; // reserved |
458 | |
459 | // Space to save ymm registers after signal handle |
460 | int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15 |
461 | |
462 | // Space to save zmm registers after signal handle |
463 | int zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31 |
464 | }; |
465 | |
466 | // The actual cpuid info block |
467 | static CpuidInfo _cpuid_info; |
468 | |
469 | // Extractors and predicates |
470 | static uint32_t extended_cpu_family() { |
471 | uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family; |
472 | result += _cpuid_info.std_cpuid1_eax.bits.ext_family; |
473 | return result; |
474 | } |
475 | |
476 | static uint32_t extended_cpu_model() { |
477 | uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model; |
478 | result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4; |
479 | return result; |
480 | } |
481 | |
482 | static uint32_t cpu_stepping() { |
483 | uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping; |
484 | return result; |
485 | } |
486 | |
487 | static uint logical_processor_count() { |
488 | uint result = threads_per_core(); |
489 | return result; |
490 | } |
491 | |
492 | static uint64_t feature_flags() { |
493 | uint64_t result = 0; |
494 | if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0) |
495 | result |= CPU_CX8; |
496 | if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0) |
497 | result |= CPU_CMOV; |
498 | if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd_family() && |
499 | _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0)) |
500 | result |= CPU_FXSR; |
501 | // HT flag is set for multi-core processors also. |
502 | if (threads_per_core() > 1) |
503 | result |= CPU_HT; |
504 | if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd_family() && |
505 | _cpuid_info.ext_cpuid1_edx.bits.mmx != 0)) |
506 | result |= CPU_MMX; |
507 | if (_cpuid_info.std_cpuid1_edx.bits.sse != 0) |
508 | result |= CPU_SSE; |
509 | if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0) |
510 | result |= CPU_SSE2; |
511 | if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0) |
512 | result |= CPU_SSE3; |
513 | if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0) |
514 | result |= CPU_SSSE3; |
515 | if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0) |
516 | result |= CPU_SSE4_1; |
517 | if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0) |
518 | result |= CPU_SSE4_2; |
519 | if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0) |
520 | result |= CPU_POPCNT; |
521 | if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 && |
522 | _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 && |
523 | _cpuid_info.xem_xcr0_eax.bits.sse != 0 && |
524 | _cpuid_info.xem_xcr0_eax.bits.ymm != 0) { |
525 | result |= CPU_AVX; |
526 | result |= CPU_VZEROUPPER; |
527 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0) |
528 | result |= CPU_AVX2; |
529 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 && |
530 | _cpuid_info.xem_xcr0_eax.bits.opmask != 0 && |
531 | _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 && |
532 | _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) { |
533 | result |= CPU_AVX512F; |
534 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0) |
535 | result |= CPU_AVX512CD; |
536 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0) |
537 | result |= CPU_AVX512DQ; |
538 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0) |
539 | result |= CPU_AVX512PF; |
540 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0) |
541 | result |= CPU_AVX512ER; |
542 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0) |
543 | result |= CPU_AVX512BW; |
544 | if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0) |
545 | result |= CPU_AVX512VL; |
546 | if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vpopcntdq != 0) |
547 | result |= CPU_AVX512_VPOPCNTDQ; |
548 | if (_cpuid_info.sef_cpuid7_ecx.bits.vpclmulqdq != 0) |
549 | result |= CPU_VPCLMULQDQ; |
550 | if (_cpuid_info.sef_cpuid7_ecx.bits.vaes != 0) |
551 | result |= CPU_VAES; |
552 | if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vnni != 0) |
553 | result |= CPU_VNNI; |
554 | } |
555 | } |
556 | if (_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0) |
557 | result |= CPU_BMI1; |
558 | if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0) |
559 | result |= CPU_TSC; |
560 | if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0) |
561 | result |= CPU_TSCINV; |
562 | if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0) |
563 | result |= CPU_AES; |
564 | if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0) |
565 | result |= CPU_ERMS; |
566 | if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0) |
567 | result |= CPU_CLMUL; |
568 | if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0) |
569 | result |= CPU_RTM; |
570 | if (_cpuid_info.sef_cpuid7_ebx.bits.adx != 0) |
571 | result |= CPU_ADX; |
572 | if (_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0) |
573 | result |= CPU_BMI2; |
574 | if (_cpuid_info.sef_cpuid7_ebx.bits.sha != 0) |
575 | result |= CPU_SHA; |
576 | if (_cpuid_info.std_cpuid1_ecx.bits.fma != 0) |
577 | result |= CPU_FMA; |
578 | |
579 | // AMD|Hygon features. |
580 | if (is_amd_family()) { |
581 | if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) || |
582 | (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0)) |
583 | result |= CPU_3DNOW_PREFETCH; |
584 | if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0) |
585 | result |= CPU_LZCNT; |
586 | if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0) |
587 | result |= CPU_SSE4A; |
588 | } |
589 | // Intel features. |
590 | if (is_intel()) { |
591 | if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0) |
592 | result |= CPU_LZCNT; |
593 | // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw |
594 | if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) { |
595 | result |= CPU_3DNOW_PREFETCH; |
596 | } |
597 | } |
598 | |
599 | // ZX features. |
600 | if (is_zx()) { |
601 | if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0) |
602 | result |= CPU_LZCNT; |
603 | // for ZX, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw |
604 | if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) { |
605 | result |= CPU_3DNOW_PREFETCH; |
606 | } |
607 | } |
608 | |
609 | return result; |
610 | } |
611 | |
612 | static bool os_supports_avx_vectors() { |
613 | bool retVal = false; |
614 | int nreg = 2 LP64_ONLY(+2); |
615 | if (supports_evex()) { |
616 | // Verify that OS save/restore all bits of EVEX registers |
617 | // during signal processing. |
618 | retVal = true; |
619 | for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register |
620 | if (_cpuid_info.zmm_save[i] != ymm_test_value()) { |
621 | retVal = false; |
622 | break; |
623 | } |
624 | } |
625 | } else if (supports_avx()) { |
626 | // Verify that OS save/restore all bits of AVX registers |
627 | // during signal processing. |
628 | retVal = true; |
629 | for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register |
630 | if (_cpuid_info.ymm_save[i] != ymm_test_value()) { |
631 | retVal = false; |
632 | break; |
633 | } |
634 | } |
635 | // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen |
636 | if (retVal == false) { |
637 | // Verify that OS save/restore all bits of EVEX registers |
638 | // during signal processing. |
639 | retVal = true; |
640 | for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register |
641 | if (_cpuid_info.zmm_save[i] != ymm_test_value()) { |
642 | retVal = false; |
643 | break; |
644 | } |
645 | } |
646 | } |
647 | } |
648 | return retVal; |
649 | } |
650 | |
651 | static void get_processor_features(); |
652 | |
653 | public: |
654 | // Offsets for cpuid asm stub |
655 | static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); } |
656 | static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); } |
657 | static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); } |
658 | static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); } |
659 | static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); } |
660 | static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); } |
661 | static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); } |
662 | static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); } |
663 | static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); } |
664 | static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); } |
665 | static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); } |
666 | static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); } |
667 | static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); } |
668 | static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); } |
669 | static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); } |
670 | |
671 | // The value used to check ymm register after signal handle |
672 | static int ymm_test_value() { return 0xCAFEBABE; } |
673 | |
674 | static void get_cpu_info_wrapper(); |
675 | static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; } |
676 | static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; } |
677 | static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; } |
678 | static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; } |
679 | |
680 | static void clean_cpuFeatures() { _features = 0; } |
681 | static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); } |
682 | static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); } |
683 | |
684 | |
685 | // Initialization |
686 | static void initialize(); |
687 | |
688 | // Override Abstract_VM_Version implementation |
689 | static void print_platform_virtualization_info(outputStream*); |
690 | |
691 | // Override Abstract_VM_Version implementation |
692 | static bool use_biased_locking(); |
693 | |
694 | // Asserts |
695 | static void assert_is_initialized() { |
696 | assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized" ); |
697 | } |
698 | |
699 | // |
700 | // Processor family: |
701 | // 3 - 386 |
702 | // 4 - 486 |
703 | // 5 - Pentium |
704 | // 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon, |
705 | // Pentium M, Core Solo, Core Duo, Core2 Duo |
706 | // family 6 model: 9, 13, 14, 15 |
707 | // 0x0f - Pentium 4, Opteron |
708 | // |
709 | // Note: The cpu family should be used to select between |
710 | // instruction sequences which are valid on all Intel |
711 | // processors. Use the feature test functions below to |
712 | // determine whether a particular instruction is supported. |
713 | // |
714 | static int cpu_family() { return _cpu;} |
715 | static bool is_P6() { return cpu_family() >= 6; } |
716 | static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA' |
717 | static bool is_hygon() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH' |
718 | static bool is_amd_family() { return is_amd() || is_hygon(); } |
719 | static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG' |
720 | static bool is_zx() { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS ' |
721 | static bool is_atom_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton |
722 | static bool is_knights_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi |
723 | |
724 | static bool supports_processor_topology() { |
725 | return (_cpuid_info.std_max_function >= 0xB) && |
726 | // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level. |
727 | // Some cpus have max cpuid >= 0xB but do not support processor topology. |
728 | (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0); |
729 | } |
730 | |
731 | static uint cores_per_cpu() { |
732 | uint result = 1; |
733 | if (is_intel()) { |
734 | bool supports_topology = supports_processor_topology(); |
735 | if (supports_topology) { |
736 | result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus / |
737 | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; |
738 | } |
739 | if (!supports_topology || result == 0) { |
740 | result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1); |
741 | } |
742 | } else if (is_amd_family()) { |
743 | result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1); |
744 | } else if (is_zx()) { |
745 | bool supports_topology = supports_processor_topology(); |
746 | if (supports_topology) { |
747 | result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus / |
748 | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; |
749 | } |
750 | if (!supports_topology || result == 0) { |
751 | result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1); |
752 | } |
753 | } |
754 | return result; |
755 | } |
756 | |
757 | static uint threads_per_core() { |
758 | uint result = 1; |
759 | if (is_intel() && supports_processor_topology()) { |
760 | result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; |
761 | } else if (is_zx() && supports_processor_topology()) { |
762 | result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; |
763 | } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) { |
764 | if (cpu_family() >= 0x17) { |
765 | result = _cpuid_info.ext_cpuid1E_ebx.bits.threads_per_core + 1; |
766 | } else { |
767 | result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu / |
768 | cores_per_cpu(); |
769 | } |
770 | } |
771 | return (result == 0 ? 1 : result); |
772 | } |
773 | |
774 | static intx L1_line_size() { |
775 | intx result = 0; |
776 | if (is_intel()) { |
777 | result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1); |
778 | } else if (is_amd_family()) { |
779 | result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size; |
780 | } else if (is_zx()) { |
781 | result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1); |
782 | } |
783 | if (result < 32) // not defined ? |
784 | result = 32; // 32 bytes by default on x86 and other x64 |
785 | return result; |
786 | } |
787 | |
788 | static intx prefetch_data_size() { |
789 | return L1_line_size(); |
790 | } |
791 | |
792 | // |
793 | // Feature identification |
794 | // |
795 | static bool supports_cpuid() { return _features != 0; } |
796 | static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; } |
797 | static bool supports_cmov() { return (_features & CPU_CMOV) != 0; } |
798 | static bool supports_fxsr() { return (_features & CPU_FXSR) != 0; } |
799 | static bool supports_ht() { return (_features & CPU_HT) != 0; } |
800 | static bool supports_mmx() { return (_features & CPU_MMX) != 0; } |
801 | static bool supports_sse() { return (_features & CPU_SSE) != 0; } |
802 | static bool supports_sse2() { return (_features & CPU_SSE2) != 0; } |
803 | static bool supports_sse3() { return (_features & CPU_SSE3) != 0; } |
804 | static bool supports_ssse3() { return (_features & CPU_SSSE3)!= 0; } |
805 | static bool supports_sse4_1() { return (_features & CPU_SSE4_1) != 0; } |
806 | static bool supports_sse4_2() { return (_features & CPU_SSE4_2) != 0; } |
807 | static bool supports_popcnt() { return (_features & CPU_POPCNT) != 0; } |
808 | static bool supports_avx() { return (_features & CPU_AVX) != 0; } |
809 | static bool supports_avx2() { return (_features & CPU_AVX2) != 0; } |
810 | static bool supports_tsc() { return (_features & CPU_TSC) != 0; } |
811 | static bool supports_aes() { return (_features & CPU_AES) != 0; } |
812 | static bool supports_erms() { return (_features & CPU_ERMS) != 0; } |
813 | static bool supports_clmul() { return (_features & CPU_CLMUL) != 0; } |
814 | static bool supports_rtm() { return (_features & CPU_RTM) != 0; } |
815 | static bool supports_bmi1() { return (_features & CPU_BMI1) != 0; } |
816 | static bool supports_bmi2() { return (_features & CPU_BMI2) != 0; } |
817 | static bool supports_adx() { return (_features & CPU_ADX) != 0; } |
818 | static bool supports_evex() { return (_features & CPU_AVX512F) != 0; } |
819 | static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; } |
820 | static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; } |
821 | static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; } |
822 | static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; } |
823 | static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; } |
824 | static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; } |
825 | static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); } |
826 | static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); } |
827 | static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() && |
828 | supports_avx512bw() && supports_avx512dq()); } |
829 | static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); } |
830 | static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); } |
831 | static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); } |
832 | static bool supports_avxonly() { return ((supports_avx2() || supports_avx()) && !supports_evex()); } |
833 | static bool supports_sha() { return (_features & CPU_SHA) != 0; } |
834 | static bool supports_fma() { return (_features & CPU_FMA) != 0 && supports_avx(); } |
835 | static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; } |
836 | static bool supports_vpopcntdq() { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; } |
837 | static bool supports_vpclmulqdq() { return (_features & CPU_VPCLMULQDQ) != 0; } |
838 | static bool supports_vaes() { return (_features & CPU_VAES) != 0; } |
839 | static bool supports_vnni() { return (_features & CPU_VNNI) != 0; } |
840 | |
841 | // Intel features |
842 | static bool is_intel_family_core() { return is_intel() && |
843 | extended_cpu_family() == CPU_FAMILY_INTEL_CORE; } |
844 | |
845 | static bool is_intel_tsc_synched_at_init() { |
846 | if (is_intel_family_core()) { |
847 | uint32_t ext_model = extended_cpu_model(); |
848 | if (ext_model == CPU_MODEL_NEHALEM_EP || |
849 | ext_model == CPU_MODEL_WESTMERE_EP || |
850 | ext_model == CPU_MODEL_SANDYBRIDGE_EP || |
851 | ext_model == CPU_MODEL_IVYBRIDGE_EP) { |
852 | // <= 2-socket invariant tsc support. EX versions are usually used |
853 | // in > 2-socket systems and likely don't synchronize tscs at |
854 | // initialization. |
855 | // Code that uses tsc values must be prepared for them to arbitrarily |
856 | // jump forward or backward. |
857 | return true; |
858 | } |
859 | } |
860 | return false; |
861 | } |
862 | |
863 | // AMD features |
864 | static bool supports_3dnow_prefetch() { return (_features & CPU_3DNOW_PREFETCH) != 0; } |
865 | static bool supports_mmx_ext() { return is_amd_family() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; } |
866 | static bool supports_lzcnt() { return (_features & CPU_LZCNT) != 0; } |
867 | static bool supports_sse4a() { return (_features & CPU_SSE4A) != 0; } |
868 | |
869 | static bool is_amd_Barcelona() { return is_amd() && |
870 | extended_cpu_family() == CPU_FAMILY_AMD_11H; } |
871 | |
872 | // Intel and AMD newer cores support fast timestamps well |
873 | static bool supports_tscinv_bit() { |
874 | return (_features & CPU_TSCINV) != 0; |
875 | } |
876 | static bool supports_tscinv() { |
877 | return supports_tscinv_bit() && |
878 | ((is_amd_family() && !is_amd_Barcelona()) || |
879 | is_intel_tsc_synched_at_init()); |
880 | } |
881 | |
882 | // Intel Core and newer cpus have fast IDIV instruction (excluding Atom). |
883 | static bool has_fast_idiv() { return is_intel() && cpu_family() == 6 && |
884 | supports_sse3() && _model != 0x1C; } |
885 | |
886 | static bool supports_compare_and_exchange() { return true; } |
887 | |
888 | static intx allocate_prefetch_distance(bool use_watermark_prefetch) { |
889 | // Hardware prefetching (distance/size in bytes): |
890 | // Pentium 3 - 64 / 32 |
891 | // Pentium 4 - 256 / 128 |
892 | // Athlon - 64 / 32 ???? |
893 | // Opteron - 128 / 64 only when 2 sequential cache lines accessed |
894 | // Core - 128 / 64 |
895 | // |
896 | // Software prefetching (distance in bytes / instruction with best score): |
897 | // Pentium 3 - 128 / prefetchnta |
898 | // Pentium 4 - 512 / prefetchnta |
899 | // Athlon - 128 / prefetchnta |
900 | // Opteron - 256 / prefetchnta |
901 | // Core - 256 / prefetchnta |
902 | // It will be used only when AllocatePrefetchStyle > 0 |
903 | |
904 | if (is_amd_family()) { // AMD | Hygon |
905 | if (supports_sse2()) { |
906 | return 256; // Opteron |
907 | } else { |
908 | return 128; // Athlon |
909 | } |
910 | } else { // Intel |
911 | if (supports_sse3() && cpu_family() == 6) { |
912 | if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus |
913 | return 192; |
914 | } else if (use_watermark_prefetch) { // watermark prefetching on Core |
915 | #ifdef _LP64 |
916 | return 384; |
917 | #else |
918 | return 320; |
919 | #endif |
920 | } |
921 | } |
922 | if (supports_sse2()) { |
923 | if (cpu_family() == 6) { |
924 | return 256; // Pentium M, Core, Core2 |
925 | } else { |
926 | return 512; // Pentium 4 |
927 | } |
928 | } else { |
929 | return 128; // Pentium 3 (and all other old CPUs) |
930 | } |
931 | } |
932 | } |
933 | |
934 | // SSE2 and later processors implement a 'pause' instruction |
935 | // that can be used for efficient implementation of |
936 | // the intrinsic for java.lang.Thread.onSpinWait() |
937 | static bool supports_on_spin_wait() { return supports_sse2(); } |
938 | |
939 | // x86_64 supports fast class initialization checks for static methods. |
940 | static bool supports_fast_class_init_checks() { |
941 | return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32 |
942 | } |
943 | |
944 | // support functions for virtualization detection |
945 | private: |
946 | static void check_virt_cpuid(uint32_t idx, uint32_t *regs); |
947 | static void check_virtualizations(); |
948 | }; |
949 | |
950 | #endif // CPU_X86_VM_VERSION_X86_HPP |
951 | |