1/*
2 * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "jvm.h"
27#include "memory/allocation.inline.hpp"
28#include "os_linux.inline.hpp"
29#include "runtime/os.hpp"
30#include "runtime/os_perf.hpp"
31
32#include CPU_HEADER(vm_version_ext)
33
34#include <stdio.h>
35#include <stdarg.h>
36#include <unistd.h>
37#include <errno.h>
38#include <string.h>
39#include <sys/resource.h>
40#include <sys/types.h>
41#include <sys/stat.h>
42#include <dirent.h>
43#include <stdlib.h>
44#include <dlfcn.h>
45#include <pthread.h>
46#include <limits.h>
47#include <ifaddrs.h>
48#include <fcntl.h>
49
50/**
51 /proc/[number]/stat
52 Status information about the process. This is used by ps(1). It is defined in /usr/src/linux/fs/proc/array.c.
53
54 The fields, in order, with their proper scanf(3) format specifiers, are:
55
56 1. pid %d The process id.
57
58 2. comm %s
59 The filename of the executable, in parentheses. This is visible whether or not the executable is swapped out.
60
61 3. state %c
62 One character from the string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk
63 sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
64
65 4. ppid %d
66 The PID of the parent.
67
68 5. pgrp %d
69 The process group ID of the process.
70
71 6. session %d
72 The session ID of the process.
73
74 7. tty_nr %d
75 The tty the process uses.
76
77 8. tpgid %d
78 The process group ID of the process which currently owns the tty that the process is connected to.
79
80 9. flags %lu
81 The flags of the process. The math bit is decimal 4, and the traced bit is decimal 10.
82
83 10. minflt %lu
84 The number of minor faults the process has made which have not required loading a memory page from disk.
85
86 11. cminflt %lu
87 The number of minor faults that the process's waited-for children have made.
88
89 12. majflt %lu
90 The number of major faults the process has made which have required loading a memory page from disk.
91
92 13. cmajflt %lu
93 The number of major faults that the process's waited-for children have made.
94
95 14. utime %lu
96 The number of jiffies that this process has been scheduled in user mode.
97
98 15. stime %lu
99 The number of jiffies that this process has been scheduled in kernel mode.
100
101 16. cutime %ld
102 The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).)
103
104 17. cstime %ld
105 The number of jiffies that this process' waited-for children have been scheduled in kernel mode.
106
107 18. priority %ld
108 The standard nice value, plus fifteen. The value is never negative in the kernel.
109
110 19. nice %ld
111 The nice value ranges from 19 (nicest) to -19 (not nice to others).
112
113 20. 0 %ld This value is hard coded to 0 as a placeholder for a removed field.
114
115 21. itrealvalue %ld
116 The time in jiffies before the next SIGALRM is sent to the process due to an interval timer.
117
118 22. starttime %lu
119 The time in jiffies the process started after system boot.
120
121 23. vsize %lu
122 Virtual memory size in bytes.
123
124 24. rss %ld
125 Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which count
126 towards text, data, or stack space. This does not include pages which have not been demand-loaded in, or which are swapped out.
127
128 25. rlim %lu
129 Current limit in bytes on the rss of the process (usually 4294967295 on i386).
130
131 26. startcode %lu
132 The address above which program text can run.
133
134 27. endcode %lu
135 The address below which program text can run.
136
137 28. startstack %lu
138 The address of the start of the stack.
139
140 29. kstkesp %lu
141 The current value of esp (stack pointer), as found in the kernel stack page for the process.
142
143 30. kstkeip %lu
144 The current EIP (instruction pointer).
145
146 31. signal %lu
147 The bitmap of pending signals (usually 0).
148
149 32. blocked %lu
150 The bitmap of blocked signals (usually 0, 2 for shells).
151
152 33. sigignore %lu
153 The bitmap of ignored signals.
154
155 34. sigcatch %lu
156 The bitmap of catched signals.
157
158 35. wchan %lu
159 This is the "channel" in which the process is waiting. It is the address of a system call, and can be looked up in a namelist if you need
160 a textual name. (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.)
161
162 36. nswap %lu
163 Number of pages swapped - not maintained.
164
165 37. cnswap %lu
166 Cumulative nswap for child processes.
167
168 38. exit_signal %d
169 Signal to be sent to parent when we die.
170
171 39. processor %d
172 CPU number last executed on.
173
174
175
176 ///// SSCANF FORMAT STRING. Copy and use.
177
178field: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
179format: %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d
180
181
182*/
183
184/**
185 * For platforms that have them, when declaring
186 * a printf-style function,
187 * formatSpec is the parameter number (starting at 1)
188 * that is the format argument ("%d pid %s")
189 * params is the parameter number where the actual args to
190 * the format starts. If the args are in a va_list, this
191 * should be 0.
192 */
193#ifndef PRINTF_ARGS
194# define PRINTF_ARGS(formatSpec, params) ATTRIBUTE_PRINTF(formatSpec, params)
195#endif
196
197#ifndef SCANF_ARGS
198# define SCANF_ARGS(formatSpec, params) ATTRIBUTE_SCANF(formatSpec, params)
199#endif
200
201#ifndef _PRINTFMT_
202# define _PRINTFMT_
203#endif
204
205#ifndef _SCANFMT_
206# define _SCANFMT_
207#endif
208
209typedef enum {
210 CPU_LOAD_VM_ONLY,
211 CPU_LOAD_GLOBAL,
212} CpuLoadTarget;
213
214enum {
215 UNDETECTED,
216 UNDETECTABLE,
217 LINUX26_NPTL,
218 BAREMETAL
219};
220
221struct CPUPerfCounters {
222 int nProcs;
223 os::Linux::CPUPerfTicks jvmTicks;
224 os::Linux::CPUPerfTicks* cpus;
225};
226
227static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target);
228
229/** reads /proc/<pid>/stat data, with some checks and some skips.
230 * Ensure that 'fmt' does _NOT_ contain the first two "%d %s"
231 */
232static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) {
233 FILE*f;
234 int n;
235 char buf[2048];
236
237 if ((f = fopen(procfile, "r")) == NULL) {
238 return -1;
239 }
240
241 if ((n = fread(buf, 1, sizeof(buf), f)) != -1) {
242 char *tmp;
243
244 buf[n-1] = '\0';
245 /** skip through pid and exec name. */
246 if ((tmp = strrchr(buf, ')')) != NULL) {
247 // skip the ')' and the following space
248 // but check that buffer is long enough
249 tmp += 2;
250 if (tmp < buf + n) {
251 n = vsscanf(tmp, fmt, args);
252 }
253 }
254 }
255
256 fclose(f);
257
258 return n;
259}
260
261static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) {
262 int n;
263 va_list args;
264
265 va_start(args, fmt);
266 n = vread_statdata(procfile, fmt, args);
267 va_end(args);
268 return n;
269}
270
271static FILE* open_statfile(void) {
272 FILE *f;
273
274 if ((f = fopen("/proc/stat", "r")) == NULL) {
275 static int haveWarned = 0;
276 if (!haveWarned) {
277 haveWarned = 1;
278 }
279 }
280 return f;
281}
282
283static int get_systemtype(void) {
284 static int procEntriesType = UNDETECTED;
285 DIR *taskDir;
286
287 if (procEntriesType != UNDETECTED) {
288 return procEntriesType;
289 }
290
291 // Check whether we have a task subdirectory
292 if ((taskDir = opendir("/proc/self/task")) == NULL) {
293 procEntriesType = UNDETECTABLE;
294 } else {
295 // The task subdirectory exists; we're on a Linux >= 2.6 system
296 closedir(taskDir);
297 procEntriesType = LINUX26_NPTL;
298 }
299
300 return procEntriesType;
301}
302
303/** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */
304static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) {
305 return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT,
306 userTicks, systemTicks);
307}
308
309/**
310 * Return the number of ticks spent in any of the processes belonging
311 * to the JVM on any CPU.
312 */
313static OSReturn get_jvm_ticks(os::Linux::CPUPerfTicks* pticks) {
314 uint64_t userTicks;
315 uint64_t systemTicks;
316
317 if (get_systemtype() != LINUX26_NPTL) {
318 return OS_ERR;
319 }
320
321 if (read_ticks("/proc/self/stat", &userTicks, &systemTicks) != 2) {
322 return OS_ERR;
323 }
324
325 // get the total
326 if (! os::Linux::get_tick_information(pticks, -1)) {
327 return OS_ERR;
328 }
329
330 pticks->used = userTicks;
331 pticks->usedKernel = systemTicks;
332
333 return OS_OK;
334}
335
336/**
337 * Return the load of the CPU as a double. 1.0 means the CPU process uses all
338 * available time for user or system processes, 0.0 means the CPU uses all time
339 * being idle.
340 *
341 * Returns a negative value if there is a problem in determining the CPU load.
342 */
343static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) {
344 uint64_t udiff, kdiff, tdiff;
345 os::Linux::CPUPerfTicks* pticks;
346 os::Linux::CPUPerfTicks tmp;
347 double user_load;
348
349 *pkernelLoad = 0.0;
350
351 if (target == CPU_LOAD_VM_ONLY) {
352 pticks = &counters->jvmTicks;
353 } else if (-1 == which_logical_cpu) {
354 pticks = &counters->cpus[counters->nProcs];
355 } else {
356 pticks = &counters->cpus[which_logical_cpu];
357 }
358
359 tmp = *pticks;
360
361 if (target == CPU_LOAD_VM_ONLY) {
362 if (get_jvm_ticks(pticks) != OS_OK) {
363 return -1.0;
364 }
365 } else if (! os::Linux::get_tick_information(pticks, which_logical_cpu)) {
366 return -1.0;
367 }
368
369 // seems like we sometimes end up with less kernel ticks when
370 // reading /proc/self/stat a second time, timing issue between cpus?
371 if (pticks->usedKernel < tmp.usedKernel) {
372 kdiff = 0;
373 } else {
374 kdiff = pticks->usedKernel - tmp.usedKernel;
375 }
376 tdiff = pticks->total - tmp.total;
377 udiff = pticks->used - tmp.used;
378
379 if (tdiff == 0) {
380 return 0.0;
381 } else if (tdiff < (udiff + kdiff)) {
382 tdiff = udiff + kdiff;
383 }
384 *pkernelLoad = (kdiff / (double)tdiff);
385 // BUG9044876, normalize return values to sane values
386 *pkernelLoad = MAX2<double>(*pkernelLoad, 0.0);
387 *pkernelLoad = MIN2<double>(*pkernelLoad, 1.0);
388
389 user_load = (udiff / (double)tdiff);
390 user_load = MAX2<double>(user_load, 0.0);
391 user_load = MIN2<double>(user_load, 1.0);
392
393 return user_load;
394}
395
396static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) {
397 FILE *f;
398 va_list args;
399
400 va_start(args, fmt);
401
402 if ((f = open_statfile()) == NULL) {
403 va_end(args);
404 return OS_ERR;
405 }
406 for (;;) {
407 char line[80];
408 if (fgets(line, sizeof(line), f) != NULL) {
409 if (vsscanf(line, fmt, args) == 1) {
410 fclose(f);
411 va_end(args);
412 return OS_OK;
413 }
414 } else {
415 fclose(f);
416 va_end(args);
417 return OS_ERR;
418 }
419 }
420}
421
422static int get_noof_context_switches(uint64_t* switches) {
423 return parse_stat("ctxt " UINT64_FORMAT "\n", switches);
424}
425
426/** returns boot time in _seconds_ since epoch */
427static int get_boot_time(uint64_t* time) {
428 return parse_stat("btime " UINT64_FORMAT "\n", time);
429}
430
431static int perf_context_switch_rate(double* rate) {
432 static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
433 static uint64_t lastTime;
434 static uint64_t lastSwitches;
435 static double lastRate;
436
437 uint64_t lt = 0;
438 int res = 0;
439
440 if (lastTime == 0) {
441 uint64_t tmp;
442 if (get_boot_time(&tmp) < 0) {
443 return OS_ERR;
444 }
445 lt = tmp * 1000;
446 }
447
448 res = OS_OK;
449
450 pthread_mutex_lock(&contextSwitchLock);
451 {
452
453 uint64_t sw;
454 s8 t, d;
455
456 if (lastTime == 0) {
457 lastTime = lt;
458 }
459
460 t = os::javaTimeMillis();
461 d = t - lastTime;
462
463 if (d == 0) {
464 *rate = lastRate;
465 } else if (!get_noof_context_switches(&sw)) {
466 *rate = ( (double)(sw - lastSwitches) / d ) * 1000;
467 lastRate = *rate;
468 lastSwitches = sw;
469 lastTime = t;
470 } else {
471 *rate = 0;
472 res = OS_ERR;
473 }
474 if (*rate <= 0) {
475 *rate = 0;
476 lastRate = 0;
477 }
478 }
479 pthread_mutex_unlock(&contextSwitchLock);
480
481 return res;
482}
483
484class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
485 friend class CPUPerformanceInterface;
486 private:
487 CPUPerfCounters _counters;
488
489 int cpu_load(int which_logical_cpu, double* cpu_load);
490 int context_switch_rate(double* rate);
491 int cpu_load_total_process(double* cpu_load);
492 int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
493
494 public:
495 CPUPerformance();
496 bool initialize();
497 ~CPUPerformance();
498};
499
500CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
501 _counters.nProcs = os::active_processor_count();
502 _counters.cpus = NULL;
503}
504
505bool CPUPerformanceInterface::CPUPerformance::initialize() {
506 size_t tick_array_size = (_counters.nProcs +1) * sizeof(os::Linux::CPUPerfTicks);
507 _counters.cpus = (os::Linux::CPUPerfTicks*)NEW_C_HEAP_ARRAY(char, tick_array_size, mtInternal);
508 if (NULL == _counters.cpus) {
509 return false;
510 }
511 memset(_counters.cpus, 0, tick_array_size);
512
513 // For the CPU load total
514 os::Linux::get_tick_information(&_counters.cpus[_counters.nProcs], -1);
515
516 // For each CPU
517 for (int i = 0; i < _counters.nProcs; i++) {
518 os::Linux::get_tick_information(&_counters.cpus[i], i);
519 }
520 // For JVM load
521 get_jvm_ticks(&_counters.jvmTicks);
522
523 // initialize context switch system
524 // the double is only for init
525 double init_ctx_switch_rate;
526 perf_context_switch_rate(&init_ctx_switch_rate);
527
528 return true;
529}
530
531CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
532 if (_counters.cpus != NULL) {
533 FREE_C_HEAP_ARRAY(char, _counters.cpus);
534 }
535}
536
537int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
538 double u, s;
539 u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL);
540 if (u < 0) {
541 *cpu_load = 0.0;
542 return OS_ERR;
543 }
544 // Cap total systemload to 1.0
545 *cpu_load = MIN2<double>((u + s), 1.0);
546 return OS_OK;
547}
548
549int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
550 double u, s;
551 u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
552 if (u < 0) {
553 *cpu_load = 0.0;
554 return OS_ERR;
555 }
556 *cpu_load = u + s;
557 return OS_OK;
558}
559
560int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
561 double u, s, t;
562
563 assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
564 assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
565 assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
566
567 u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
568 if (u < 0) {
569 *pjvmUserLoad = 0.0;
570 *pjvmKernelLoad = 0.0;
571 *psystemTotalLoad = 0.0;
572 return OS_ERR;
573 }
574
575 cpu_load(-1, &t);
576 // clamp at user+system and 1.0
577 if (u + s > t) {
578 t = MIN2<double>(u + s, 1.0);
579 }
580
581 *pjvmUserLoad = u;
582 *pjvmKernelLoad = s;
583 *psystemTotalLoad = t;
584
585 return OS_OK;
586}
587
588int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
589 return perf_context_switch_rate(rate);
590}
591
592CPUPerformanceInterface::CPUPerformanceInterface() {
593 _impl = NULL;
594}
595
596bool CPUPerformanceInterface::initialize() {
597 _impl = new CPUPerformanceInterface::CPUPerformance();
598 return NULL == _impl ? false : _impl->initialize();
599}
600
601CPUPerformanceInterface::~CPUPerformanceInterface() {
602 if (_impl != NULL) {
603 delete _impl;
604 }
605}
606
607int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
608 return _impl->cpu_load(which_logical_cpu, cpu_load);
609}
610
611int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
612 return _impl->cpu_load_total_process(cpu_load);
613}
614
615int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
616 return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
617}
618
619int CPUPerformanceInterface::context_switch_rate(double* rate) const {
620 return _impl->context_switch_rate(rate);
621}
622
623class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
624 friend class SystemProcessInterface;
625 private:
626 class ProcessIterator : public CHeapObj<mtInternal> {
627 friend class SystemProcessInterface::SystemProcesses;
628 private:
629 DIR* _dir;
630 struct dirent* _entry;
631 bool _valid;
632 char _exeName[PATH_MAX];
633 char _exePath[PATH_MAX];
634
635 ProcessIterator();
636 ~ProcessIterator();
637 bool initialize();
638
639 bool is_valid() const { return _valid; }
640 bool is_valid_entry(struct dirent* entry) const;
641 bool is_dir(const char* name) const;
642 int fsize(const char* name, uint64_t& size) const;
643
644 char* allocate_string(const char* str) const;
645 void get_exe_name();
646 char* get_exe_path();
647 char* get_cmdline();
648
649 int current(SystemProcess* process_info);
650 int next_process();
651 };
652
653 ProcessIterator* _iterator;
654 SystemProcesses();
655 bool initialize();
656 ~SystemProcesses();
657
658 //information about system processes
659 int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
660};
661
662bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
663 struct stat mystat;
664 int ret_val = 0;
665
666 ret_val = stat(name, &mystat);
667 if (ret_val < 0) {
668 return false;
669 }
670 ret_val = S_ISDIR(mystat.st_mode);
671 return ret_val > 0;
672}
673
674int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const {
675 assert(name != NULL, "name pointer is NULL!");
676 size = 0;
677 struct stat fbuf;
678
679 if (stat(name, &fbuf) < 0) {
680 return OS_ERR;
681 }
682 size = fbuf.st_size;
683 return OS_OK;
684}
685
686// if it has a numeric name, is a directory and has a 'stat' file in it
687bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
688 char buffer[PATH_MAX];
689 uint64_t size = 0;
690
691 if (atoi(entry->d_name) != 0) {
692 jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
693 buffer[PATH_MAX - 1] = '\0';
694
695 if (is_dir(buffer)) {
696 jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name);
697 buffer[PATH_MAX - 1] = '\0';
698 if (fsize(buffer, size) != OS_ERR) {
699 return true;
700 }
701 }
702 }
703 return false;
704}
705
706// get exe-name from /proc/<pid>/stat
707void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() {
708 FILE* fp;
709 char buffer[PATH_MAX];
710
711 jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name);
712 buffer[PATH_MAX - 1] = '\0';
713 if ((fp = fopen(buffer, "r")) != NULL) {
714 if (fgets(buffer, PATH_MAX, fp) != NULL) {
715 char* start, *end;
716 // exe-name is between the first pair of ( and )
717 start = strchr(buffer, '(');
718 if (start != NULL && start[1] != '\0') {
719 start++;
720 end = strrchr(start, ')');
721 if (end != NULL) {
722 size_t len;
723 len = MIN2<size_t>(end - start, sizeof(_exeName) - 1);
724 memcpy(_exeName, start, len);
725 _exeName[len] = '\0';
726 }
727 }
728 }
729 fclose(fp);
730 }
731}
732
733// get command line from /proc/<pid>/cmdline
734char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() {
735 FILE* fp;
736 char buffer[PATH_MAX];
737 char* cmdline = NULL;
738
739 jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name);
740 buffer[PATH_MAX - 1] = '\0';
741 if ((fp = fopen(buffer, "r")) != NULL) {
742 size_t size = 0;
743 char dummy;
744
745 // find out how long the file is (stat always returns 0)
746 while (fread(&dummy, 1, 1, fp) == 1) {
747 size++;
748 }
749 if (size > 0) {
750 cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal);
751 if (cmdline != NULL) {
752 cmdline[0] = '\0';
753 if (fseek(fp, 0, SEEK_SET) == 0) {
754 if (fread(cmdline, 1, size, fp) == size) {
755 // the file has the arguments separated by '\0',
756 // so we translate '\0' to ' '
757 for (size_t i = 0; i < size; i++) {
758 if (cmdline[i] == '\0') {
759 cmdline[i] = ' ';
760 }
761 }
762 cmdline[size] = '\0';
763 }
764 }
765 }
766 }
767 fclose(fp);
768 }
769 return cmdline;
770}
771
772// get full path to exe from /proc/<pid>/exe symlink
773char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() {
774 char buffer[PATH_MAX];
775
776 jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name);
777 buffer[PATH_MAX - 1] = '\0';
778 return realpath(buffer, _exePath);
779}
780
781char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
782 if (str != NULL) {
783 return os::strdup_check_oom(str, mtInternal);
784 }
785 return NULL;
786}
787
788int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
789 if (!is_valid()) {
790 return OS_ERR;
791 }
792
793 process_info->set_pid(atoi(_entry->d_name));
794
795 get_exe_name();
796 process_info->set_name(allocate_string(_exeName));
797
798 if (get_exe_path() != NULL) {
799 process_info->set_path(allocate_string(_exePath));
800 }
801
802 char* cmdline = NULL;
803 cmdline = get_cmdline();
804 if (cmdline != NULL) {
805 process_info->set_command_line(allocate_string(cmdline));
806 FREE_C_HEAP_ARRAY(char, cmdline);
807 }
808
809 return OS_OK;
810}
811
812int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
813 if (!is_valid()) {
814 return OS_ERR;
815 }
816
817 do {
818 _entry = os::readdir(_dir);
819 if (_entry == NULL) {
820 // Error or reached end. Could use errno to distinguish those cases.
821 _valid = false;
822 return OS_ERR;
823 }
824 } while(!is_valid_entry(_entry));
825
826 _valid = true;
827 return OS_OK;
828}
829
830SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
831 _dir = NULL;
832 _entry = NULL;
833 _valid = false;
834}
835
836bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
837 _dir = os::opendir("/proc");
838 _entry = NULL;
839 _valid = true;
840 next_process();
841
842 return true;
843}
844
845SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
846 if (_dir != NULL) {
847 os::closedir(_dir);
848 }
849}
850
851SystemProcessInterface::SystemProcesses::SystemProcesses() {
852 _iterator = NULL;
853}
854
855bool SystemProcessInterface::SystemProcesses::initialize() {
856 _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
857 return NULL == _iterator ? false : _iterator->initialize();
858}
859
860SystemProcessInterface::SystemProcesses::~SystemProcesses() {
861 if (_iterator != NULL) {
862 delete _iterator;
863 }
864}
865
866int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
867 assert(system_processes != NULL, "system_processes pointer is NULL!");
868 assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!");
869 assert(_iterator != NULL, "iterator is NULL!");
870
871 // initialize pointers
872 *no_of_sys_processes = 0;
873 *system_processes = NULL;
874
875 while (_iterator->is_valid()) {
876 SystemProcess* tmp = new SystemProcess();
877 _iterator->current(tmp);
878
879 //if already existing head
880 if (*system_processes != NULL) {
881 //move "first to second"
882 tmp->set_next(*system_processes);
883 }
884 // new head
885 *system_processes = tmp;
886 // increment
887 (*no_of_sys_processes)++;
888 // step forward
889 _iterator->next_process();
890 }
891 return OS_OK;
892}
893
894int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
895 return _impl->system_processes(system_procs, no_of_sys_processes);
896}
897
898SystemProcessInterface::SystemProcessInterface() {
899 _impl = NULL;
900}
901
902bool SystemProcessInterface::initialize() {
903 _impl = new SystemProcessInterface::SystemProcesses();
904 return NULL == _impl ? false : _impl->initialize();
905}
906
907SystemProcessInterface::~SystemProcessInterface() {
908 if (_impl != NULL) {
909 delete _impl;
910 }
911}
912
913CPUInformationInterface::CPUInformationInterface() {
914 _cpu_info = NULL;
915}
916
917bool CPUInformationInterface::initialize() {
918 _cpu_info = new CPUInformation();
919 if (NULL == _cpu_info) {
920 return false;
921 }
922 _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
923 _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
924 _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
925 _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
926 _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
927
928 return true;
929}
930
931CPUInformationInterface::~CPUInformationInterface() {
932 if (_cpu_info != NULL) {
933 if (_cpu_info->cpu_name() != NULL) {
934 const char* cpu_name = _cpu_info->cpu_name();
935 FREE_C_HEAP_ARRAY(char, cpu_name);
936 _cpu_info->set_cpu_name(NULL);
937 }
938 if (_cpu_info->cpu_description() != NULL) {
939 const char* cpu_desc = _cpu_info->cpu_description();
940 FREE_C_HEAP_ARRAY(char, cpu_desc);
941 _cpu_info->set_cpu_description(NULL);
942 }
943 delete _cpu_info;
944 }
945}
946
947int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
948 if (_cpu_info == NULL) {
949 return OS_ERR;
950 }
951
952 cpu_info = *_cpu_info; // shallow copy assignment
953 return OS_OK;
954}
955
956class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
957 friend class NetworkPerformanceInterface;
958 private:
959 NetworkPerformance();
960 NetworkPerformance(const NetworkPerformance& rhs); // no impl
961 NetworkPerformance& operator=(const NetworkPerformance& rhs); // no impl
962 bool initialize();
963 ~NetworkPerformance();
964 int64_t read_counter(const char* iface, const char* counter) const;
965 int network_utilization(NetworkInterface** network_interfaces) const;
966};
967
968NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
969
970}
971
972bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
973 return true;
974}
975
976NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
977}
978
979int64_t NetworkPerformanceInterface::NetworkPerformance::read_counter(const char* iface, const char* counter) const {
980 char buf[128];
981
982 snprintf(buf, sizeof(buf), "/sys/class/net/%s/statistics/%s", iface, counter);
983
984 int fd = os::open(buf, O_RDONLY, 0);
985 if (fd == -1) {
986 return -1;
987 }
988
989 ssize_t num_bytes = read(fd, buf, sizeof(buf));
990 close(fd);
991 if ((num_bytes == -1) || (num_bytes >= static_cast<ssize_t>(sizeof(buf))) || (num_bytes < 1)) {
992 return -1;
993 }
994
995 buf[num_bytes] = '\0';
996 int64_t value = strtoll(buf, NULL, 10);
997
998 return value;
999}
1000
1001int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
1002{
1003 ifaddrs* addresses;
1004 ifaddrs* cur_address;
1005
1006 if (getifaddrs(&addresses) != 0) {
1007 return OS_ERR;
1008 }
1009
1010 NetworkInterface* ret = NULL;
1011 for (cur_address = addresses; cur_address != NULL; cur_address = cur_address->ifa_next) {
1012 if ((cur_address->ifa_addr == NULL) || (cur_address->ifa_addr->sa_family != AF_PACKET)) {
1013 continue;
1014 }
1015
1016 int64_t bytes_in = read_counter(cur_address->ifa_name, "rx_bytes");
1017 int64_t bytes_out = read_counter(cur_address->ifa_name, "tx_bytes");
1018
1019 NetworkInterface* cur = new NetworkInterface(cur_address->ifa_name, bytes_in, bytes_out, ret);
1020 ret = cur;
1021 }
1022
1023 freeifaddrs(addresses);
1024 *network_interfaces = ret;
1025
1026 return OS_OK;
1027}
1028
1029NetworkPerformanceInterface::NetworkPerformanceInterface() {
1030 _impl = NULL;
1031}
1032
1033NetworkPerformanceInterface::~NetworkPerformanceInterface() {
1034 if (_impl != NULL) {
1035 delete _impl;
1036 }
1037}
1038
1039bool NetworkPerformanceInterface::initialize() {
1040 _impl = new NetworkPerformanceInterface::NetworkPerformance();
1041 return _impl != NULL && _impl->initialize();
1042}
1043
1044int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
1045 return _impl->network_utilization(network_interfaces);
1046}
1047