1 | /* |
2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/vmSymbols.hpp" |
27 | #include "logging/log.hpp" |
28 | #include "memory/allocation.inline.hpp" |
29 | #include "memory/resourceArea.hpp" |
30 | #include "oops/oop.inline.hpp" |
31 | #include "os_linux.inline.hpp" |
32 | #include "runtime/handles.inline.hpp" |
33 | #include "runtime/os.hpp" |
34 | #include "runtime/perfMemory.hpp" |
35 | #include "services/memTracker.hpp" |
36 | #include "utilities/exceptions.hpp" |
37 | |
38 | // put OS-includes here |
39 | # include <sys/types.h> |
40 | # include <sys/mman.h> |
41 | # include <errno.h> |
42 | # include <stdio.h> |
43 | # include <unistd.h> |
44 | # include <sys/stat.h> |
45 | # include <signal.h> |
46 | # include <pwd.h> |
47 | |
48 | static char* backing_store_file_name = NULL; // name of the backing store |
49 | // file, if successfully created. |
50 | |
51 | // Standard Memory Implementation Details |
52 | |
53 | // create the PerfData memory region in standard memory. |
54 | // |
55 | static char* create_standard_memory(size_t size) { |
56 | |
57 | // allocate an aligned chuck of memory |
58 | char* mapAddress = os::reserve_memory(size); |
59 | |
60 | if (mapAddress == NULL) { |
61 | return NULL; |
62 | } |
63 | |
64 | // commit memory |
65 | if (!os::commit_memory(mapAddress, size, !ExecMem)) { |
66 | if (PrintMiscellaneous && Verbose) { |
67 | warning("Could not commit PerfData memory\n" ); |
68 | } |
69 | os::release_memory(mapAddress, size); |
70 | return NULL; |
71 | } |
72 | |
73 | return mapAddress; |
74 | } |
75 | |
76 | // delete the PerfData memory region |
77 | // |
78 | static void delete_standard_memory(char* addr, size_t size) { |
79 | |
80 | // there are no persistent external resources to cleanup for standard |
81 | // memory. since DestroyJavaVM does not support unloading of the JVM, |
82 | // cleanup of the memory resource is not performed. The memory will be |
83 | // reclaimed by the OS upon termination of the process. |
84 | // |
85 | return; |
86 | } |
87 | |
88 | // save the specified memory region to the given file |
89 | // |
90 | // Note: this function might be called from signal handler (by os::abort()), |
91 | // don't allocate heap memory. |
92 | // |
93 | static void save_memory_to_file(char* addr, size_t size) { |
94 | |
95 | const char* destfile = PerfMemory::get_perfdata_file_path(); |
96 | assert(destfile[0] != '\0', "invalid PerfData file path" ); |
97 | |
98 | int result; |
99 | |
100 | RESTARTABLE(os::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR), |
101 | result); |
102 | if (result == OS_ERR) { |
103 | if (PrintMiscellaneous && Verbose) { |
104 | warning("Could not create Perfdata save file: %s: %s\n" , |
105 | destfile, os::strerror(errno)); |
106 | } |
107 | } else { |
108 | int fd = result; |
109 | |
110 | for (size_t remaining = size; remaining > 0;) { |
111 | |
112 | RESTARTABLE(::write(fd, addr, remaining), result); |
113 | if (result == OS_ERR) { |
114 | if (PrintMiscellaneous && Verbose) { |
115 | warning("Could not write Perfdata save file: %s: %s\n" , |
116 | destfile, os::strerror(errno)); |
117 | } |
118 | break; |
119 | } |
120 | |
121 | remaining -= (size_t)result; |
122 | addr += result; |
123 | } |
124 | |
125 | result = ::close(fd); |
126 | if (PrintMiscellaneous && Verbose) { |
127 | if (result == OS_ERR) { |
128 | warning("Could not close %s: %s\n" , destfile, os::strerror(errno)); |
129 | } |
130 | } |
131 | } |
132 | FREE_C_HEAP_ARRAY(char, destfile); |
133 | } |
134 | |
135 | |
136 | // Shared Memory Implementation Details |
137 | |
138 | // Note: the solaris and linux shared memory implementation uses the mmap |
139 | // interface with a backing store file to implement named shared memory. |
140 | // Using the file system as the name space for shared memory allows a |
141 | // common name space to be supported across a variety of platforms. It |
142 | // also provides a name space that Java applications can deal with through |
143 | // simple file apis. |
144 | // |
145 | // The solaris and linux implementations store the backing store file in |
146 | // a user specific temporary directory located in the /tmp file system, |
147 | // which is always a local file system and is sometimes a RAM based file |
148 | // system. |
149 | |
150 | |
151 | // return the user specific temporary directory name. |
152 | // |
153 | // If containerized process, get dirname of |
154 | // /proc/{vmid}/root/tmp/{PERFDATA_NAME_user} |
155 | // otherwise /tmp/{PERFDATA_NAME_user} |
156 | // |
157 | // the caller is expected to free the allocated memory. |
158 | // |
159 | #define TMP_BUFFER_LEN (4+22) |
160 | static char* get_user_tmp_dir(const char* user, int vmid, int nspid) { |
161 | char buffer[TMP_BUFFER_LEN]; |
162 | char* tmpdir = (char *)os::get_temp_directory(); |
163 | assert(strlen(tmpdir) == 4, "No longer using /tmp - update buffer size" ); |
164 | |
165 | if (nspid != -1) { |
166 | jio_snprintf(buffer, TMP_BUFFER_LEN, "/proc/%d/root%s" , vmid, tmpdir); |
167 | tmpdir = buffer; |
168 | } |
169 | |
170 | const char* perfdir = PERFDATA_NAME; |
171 | size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3; |
172 | char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal); |
173 | |
174 | // construct the path name to user specific tmp directory |
175 | snprintf(dirname, nbytes, "%s/%s_%s" , tmpdir, perfdir, user); |
176 | |
177 | return dirname; |
178 | } |
179 | |
180 | // convert the given file name into a process id. if the file |
181 | // does not meet the file naming constraints, return 0. |
182 | // |
183 | static pid_t filename_to_pid(const char* filename) { |
184 | |
185 | // a filename that doesn't begin with a digit is not a |
186 | // candidate for conversion. |
187 | // |
188 | if (!isdigit(*filename)) { |
189 | return 0; |
190 | } |
191 | |
192 | // check if file name can be converted to an integer without |
193 | // any leftover characters. |
194 | // |
195 | char* remainder = NULL; |
196 | errno = 0; |
197 | pid_t pid = (pid_t)strtol(filename, &remainder, 10); |
198 | |
199 | if (errno != 0) { |
200 | return 0; |
201 | } |
202 | |
203 | // check for left over characters. If any, then the filename is |
204 | // not a candidate for conversion. |
205 | // |
206 | if (remainder != NULL && *remainder != '\0') { |
207 | return 0; |
208 | } |
209 | |
210 | // successful conversion, return the pid |
211 | return pid; |
212 | } |
213 | |
214 | |
215 | // Check if the given statbuf is considered a secure directory for |
216 | // the backing store files. Returns true if the directory is considered |
217 | // a secure location. Returns false if the statbuf is a symbolic link or |
218 | // if an error occurred. |
219 | // |
220 | static bool is_statbuf_secure(struct stat *statp) { |
221 | if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) { |
222 | // The path represents a link or some non-directory file type, |
223 | // which is not what we expected. Declare it insecure. |
224 | // |
225 | return false; |
226 | } |
227 | // We have an existing directory, check if the permissions are safe. |
228 | // |
229 | if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) { |
230 | // The directory is open for writing and could be subjected |
231 | // to a symlink or a hard link attack. Declare it insecure. |
232 | // |
233 | return false; |
234 | } |
235 | // If user is not root then see if the uid of the directory matches the effective uid of the process. |
236 | uid_t euid = geteuid(); |
237 | if ((euid != 0) && (statp->st_uid != euid)) { |
238 | // The directory was not created by this user, declare it insecure. |
239 | // |
240 | return false; |
241 | } |
242 | return true; |
243 | } |
244 | |
245 | |
246 | // Check if the given path is considered a secure directory for |
247 | // the backing store files. Returns true if the directory exists |
248 | // and is considered a secure location. Returns false if the path |
249 | // is a symbolic link or if an error occurred. |
250 | // |
251 | static bool is_directory_secure(const char* path) { |
252 | struct stat statbuf; |
253 | int result = 0; |
254 | |
255 | RESTARTABLE(::lstat(path, &statbuf), result); |
256 | if (result == OS_ERR) { |
257 | return false; |
258 | } |
259 | |
260 | // The path exists, see if it is secure. |
261 | return is_statbuf_secure(&statbuf); |
262 | } |
263 | |
264 | |
265 | // Check if the given directory file descriptor is considered a secure |
266 | // directory for the backing store files. Returns true if the directory |
267 | // exists and is considered a secure location. Returns false if the path |
268 | // is a symbolic link or if an error occurred. |
269 | // |
270 | static bool is_dirfd_secure(int dir_fd) { |
271 | struct stat statbuf; |
272 | int result = 0; |
273 | |
274 | RESTARTABLE(::fstat(dir_fd, &statbuf), result); |
275 | if (result == OS_ERR) { |
276 | return false; |
277 | } |
278 | |
279 | // The path exists, now check its mode. |
280 | return is_statbuf_secure(&statbuf); |
281 | } |
282 | |
283 | |
284 | // Check to make sure fd1 and fd2 are referencing the same file system object. |
285 | // |
286 | static bool is_same_fsobject(int fd1, int fd2) { |
287 | struct stat statbuf1; |
288 | struct stat statbuf2; |
289 | int result = 0; |
290 | |
291 | RESTARTABLE(::fstat(fd1, &statbuf1), result); |
292 | if (result == OS_ERR) { |
293 | return false; |
294 | } |
295 | RESTARTABLE(::fstat(fd2, &statbuf2), result); |
296 | if (result == OS_ERR) { |
297 | return false; |
298 | } |
299 | |
300 | if ((statbuf1.st_ino == statbuf2.st_ino) && |
301 | (statbuf1.st_dev == statbuf2.st_dev)) { |
302 | return true; |
303 | } else { |
304 | return false; |
305 | } |
306 | } |
307 | |
308 | |
309 | // Open the directory of the given path and validate it. |
310 | // Return a DIR * of the open directory. |
311 | // |
312 | static DIR *open_directory_secure(const char* dirname) { |
313 | // Open the directory using open() so that it can be verified |
314 | // to be secure by calling is_dirfd_secure(), opendir() and then check |
315 | // to see if they are the same file system object. This method does not |
316 | // introduce a window of opportunity for the directory to be attacked that |
317 | // calling opendir() and is_directory_secure() does. |
318 | int result; |
319 | DIR *dirp = NULL; |
320 | RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result); |
321 | if (result == OS_ERR) { |
322 | if (PrintMiscellaneous && Verbose) { |
323 | if (errno == ELOOP) { |
324 | warning("directory %s is a symlink and is not secure\n" , dirname); |
325 | } else { |
326 | warning("could not open directory %s: %s\n" , dirname, os::strerror(errno)); |
327 | } |
328 | } |
329 | return dirp; |
330 | } |
331 | int fd = result; |
332 | |
333 | // Determine if the open directory is secure. |
334 | if (!is_dirfd_secure(fd)) { |
335 | // The directory is not a secure directory. |
336 | os::close(fd); |
337 | return dirp; |
338 | } |
339 | |
340 | // Open the directory. |
341 | dirp = ::opendir(dirname); |
342 | if (dirp == NULL) { |
343 | // The directory doesn't exist, close fd and return. |
344 | os::close(fd); |
345 | return dirp; |
346 | } |
347 | |
348 | // Check to make sure fd and dirp are referencing the same file system object. |
349 | if (!is_same_fsobject(fd, dirfd(dirp))) { |
350 | // The directory is not secure. |
351 | os::close(fd); |
352 | os::closedir(dirp); |
353 | dirp = NULL; |
354 | return dirp; |
355 | } |
356 | |
357 | // Close initial open now that we know directory is secure |
358 | os::close(fd); |
359 | |
360 | return dirp; |
361 | } |
362 | |
363 | // NOTE: The code below uses fchdir(), open() and unlink() because |
364 | // fdopendir(), openat() and unlinkat() are not supported on all |
365 | // versions. Once the support for fdopendir(), openat() and unlinkat() |
366 | // is available on all supported versions the code can be changed |
367 | // to use these functions. |
368 | |
369 | // Open the directory of the given path, validate it and set the |
370 | // current working directory to it. |
371 | // Return a DIR * of the open directory and the saved cwd fd. |
372 | // |
373 | static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) { |
374 | |
375 | // Open the directory. |
376 | DIR* dirp = open_directory_secure(dirname); |
377 | if (dirp == NULL) { |
378 | // Directory doesn't exist or is insecure, so there is nothing to cleanup. |
379 | return dirp; |
380 | } |
381 | int fd = dirfd(dirp); |
382 | |
383 | // Open a fd to the cwd and save it off. |
384 | int result; |
385 | RESTARTABLE(::open("." , O_RDONLY), result); |
386 | if (result == OS_ERR) { |
387 | *saved_cwd_fd = -1; |
388 | } else { |
389 | *saved_cwd_fd = result; |
390 | } |
391 | |
392 | // Set the current directory to dirname by using the fd of the directory and |
393 | // handle errors, otherwise shared memory files will be created in cwd. |
394 | result = fchdir(fd); |
395 | if (result == OS_ERR) { |
396 | if (PrintMiscellaneous && Verbose) { |
397 | warning("could not change to directory %s" , dirname); |
398 | } |
399 | if (*saved_cwd_fd != -1) { |
400 | ::close(*saved_cwd_fd); |
401 | *saved_cwd_fd = -1; |
402 | } |
403 | // Close the directory. |
404 | os::closedir(dirp); |
405 | return NULL; |
406 | } else { |
407 | return dirp; |
408 | } |
409 | } |
410 | |
411 | // Close the directory and restore the current working directory. |
412 | // |
413 | static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) { |
414 | |
415 | int result; |
416 | // If we have a saved cwd change back to it and close the fd. |
417 | if (saved_cwd_fd != -1) { |
418 | result = fchdir(saved_cwd_fd); |
419 | ::close(saved_cwd_fd); |
420 | } |
421 | |
422 | // Close the directory. |
423 | os::closedir(dirp); |
424 | } |
425 | |
426 | // Check if the given file descriptor is considered a secure. |
427 | // |
428 | static bool is_file_secure(int fd, const char *filename) { |
429 | |
430 | int result; |
431 | struct stat statbuf; |
432 | |
433 | // Determine if the file is secure. |
434 | RESTARTABLE(::fstat(fd, &statbuf), result); |
435 | if (result == OS_ERR) { |
436 | if (PrintMiscellaneous && Verbose) { |
437 | warning("fstat failed on %s: %s\n" , filename, os::strerror(errno)); |
438 | } |
439 | return false; |
440 | } |
441 | if (statbuf.st_nlink > 1) { |
442 | // A file with multiple links is not expected. |
443 | if (PrintMiscellaneous && Verbose) { |
444 | warning("file %s has multiple links\n" , filename); |
445 | } |
446 | return false; |
447 | } |
448 | return true; |
449 | } |
450 | |
451 | |
452 | // return the user name for the given user id |
453 | // |
454 | // the caller is expected to free the allocated memory. |
455 | // |
456 | static char* get_user_name(uid_t uid) { |
457 | |
458 | struct passwd pwent; |
459 | |
460 | // determine the max pwbuf size from sysconf, and hardcode |
461 | // a default if this not available through sysconf. |
462 | // |
463 | long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX); |
464 | if (bufsize == -1) |
465 | bufsize = 1024; |
466 | |
467 | char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal); |
468 | |
469 | // POSIX interface to getpwuid_r is used on LINUX |
470 | struct passwd* p; |
471 | int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p); |
472 | |
473 | if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') { |
474 | if (PrintMiscellaneous && Verbose) { |
475 | if (result != 0) { |
476 | warning("Could not retrieve passwd entry: %s\n" , |
477 | os::strerror(result)); |
478 | } |
479 | else if (p == NULL) { |
480 | // this check is added to protect against an observed problem |
481 | // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0, |
482 | // indicating success, but has p == NULL. This was observed when |
483 | // inserting a file descriptor exhaustion fault prior to the call |
484 | // getpwuid_r() call. In this case, error is set to the appropriate |
485 | // error condition, but this is undocumented behavior. This check |
486 | // is safe under any condition, but the use of errno in the output |
487 | // message may result in an erroneous message. |
488 | // Bug Id 89052 was opened with RedHat. |
489 | // |
490 | warning("Could not retrieve passwd entry: %s\n" , |
491 | os::strerror(errno)); |
492 | } |
493 | else { |
494 | warning("Could not determine user name: %s\n" , |
495 | p->pw_name == NULL ? "pw_name = NULL" : |
496 | "pw_name zero length" ); |
497 | } |
498 | } |
499 | FREE_C_HEAP_ARRAY(char, pwbuf); |
500 | return NULL; |
501 | } |
502 | |
503 | char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal); |
504 | strcpy(user_name, p->pw_name); |
505 | |
506 | FREE_C_HEAP_ARRAY(char, pwbuf); |
507 | return user_name; |
508 | } |
509 | |
510 | // return the name of the user that owns the process identified by vmid. |
511 | // |
512 | // This method uses a slow directory search algorithm to find the backing |
513 | // store file for the specified vmid and returns the user name, as determined |
514 | // by the user name suffix of the hsperfdata_<username> directory name. |
515 | // |
516 | // the caller is expected to free the allocated memory. |
517 | // |
518 | // If nspid != -1, look in /proc/{vmid}/root/tmp for directories |
519 | // containing nspid, otherwise just look for vmid in /tmp |
520 | // |
521 | static char* get_user_name_slow(int vmid, int nspid, TRAPS) { |
522 | |
523 | // short circuit the directory search if the process doesn't even exist. |
524 | if (kill(vmid, 0) == OS_ERR) { |
525 | if (errno == ESRCH) { |
526 | THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), |
527 | "Process not found" ); |
528 | } |
529 | else /* EPERM */ { |
530 | THROW_MSG_0(vmSymbols::java_io_IOException(), os::strerror(errno)); |
531 | } |
532 | } |
533 | |
534 | // directory search |
535 | char* oldest_user = NULL; |
536 | time_t oldest_ctime = 0; |
537 | char buffer[MAXPATHLEN + 1]; |
538 | int searchpid; |
539 | char* tmpdirname = (char *)os::get_temp_directory(); |
540 | assert(strlen(tmpdirname) == 4, "No longer using /tmp - update buffer size" ); |
541 | |
542 | if (nspid == -1) { |
543 | searchpid = vmid; |
544 | } else { |
545 | jio_snprintf(buffer, MAXPATHLEN, "/proc/%d/root%s" , vmid, tmpdirname); |
546 | tmpdirname = buffer; |
547 | searchpid = nspid; |
548 | } |
549 | |
550 | // open the temp directory |
551 | DIR* tmpdirp = os::opendir(tmpdirname); |
552 | |
553 | if (tmpdirp == NULL) { |
554 | // Cannot open the directory to get the user name, return. |
555 | return NULL; |
556 | } |
557 | |
558 | // for each entry in the directory that matches the pattern hsperfdata_*, |
559 | // open the directory and check if the file for the given vmid or nspid exists. |
560 | // The file with the expected name and the latest creation date is used |
561 | // to determine the user name for the process id. |
562 | // |
563 | struct dirent* dentry; |
564 | errno = 0; |
565 | while ((dentry = os::readdir(tmpdirp)) != NULL) { |
566 | |
567 | // check if the directory entry is a hsperfdata file |
568 | if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) { |
569 | continue; |
570 | } |
571 | |
572 | char* usrdir_name = NEW_C_HEAP_ARRAY(char, |
573 | strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal); |
574 | strcpy(usrdir_name, tmpdirname); |
575 | strcat(usrdir_name, "/" ); |
576 | strcat(usrdir_name, dentry->d_name); |
577 | |
578 | // open the user directory |
579 | DIR* subdirp = open_directory_secure(usrdir_name); |
580 | |
581 | if (subdirp == NULL) { |
582 | FREE_C_HEAP_ARRAY(char, usrdir_name); |
583 | continue; |
584 | } |
585 | |
586 | // Since we don't create the backing store files in directories |
587 | // pointed to by symbolic links, we also don't follow them when |
588 | // looking for the files. We check for a symbolic link after the |
589 | // call to opendir in order to eliminate a small window where the |
590 | // symlink can be exploited. |
591 | // |
592 | if (!is_directory_secure(usrdir_name)) { |
593 | FREE_C_HEAP_ARRAY(char, usrdir_name); |
594 | os::closedir(subdirp); |
595 | continue; |
596 | } |
597 | |
598 | struct dirent* udentry; |
599 | errno = 0; |
600 | while ((udentry = os::readdir(subdirp)) != NULL) { |
601 | |
602 | if (filename_to_pid(udentry->d_name) == searchpid) { |
603 | struct stat statbuf; |
604 | int result; |
605 | |
606 | char* filename = NEW_C_HEAP_ARRAY(char, |
607 | strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal); |
608 | |
609 | strcpy(filename, usrdir_name); |
610 | strcat(filename, "/" ); |
611 | strcat(filename, udentry->d_name); |
612 | |
613 | // don't follow symbolic links for the file |
614 | RESTARTABLE(::lstat(filename, &statbuf), result); |
615 | if (result == OS_ERR) { |
616 | FREE_C_HEAP_ARRAY(char, filename); |
617 | continue; |
618 | } |
619 | |
620 | // skip over files that are not regular files. |
621 | if (!S_ISREG(statbuf.st_mode)) { |
622 | FREE_C_HEAP_ARRAY(char, filename); |
623 | continue; |
624 | } |
625 | |
626 | // compare and save filename with latest creation time |
627 | if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) { |
628 | |
629 | if (statbuf.st_ctime > oldest_ctime) { |
630 | char* user = strchr(dentry->d_name, '_') + 1; |
631 | |
632 | if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user); |
633 | oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal); |
634 | |
635 | strcpy(oldest_user, user); |
636 | oldest_ctime = statbuf.st_ctime; |
637 | } |
638 | } |
639 | |
640 | FREE_C_HEAP_ARRAY(char, filename); |
641 | } |
642 | } |
643 | os::closedir(subdirp); |
644 | FREE_C_HEAP_ARRAY(char, usrdir_name); |
645 | } |
646 | os::closedir(tmpdirp); |
647 | |
648 | return(oldest_user); |
649 | } |
650 | |
651 | // Determine if the vmid is the parent pid |
652 | // for a child in a PID namespace. |
653 | // return the namespace pid if so, otherwise -1 |
654 | static int get_namespace_pid(int vmid) { |
655 | char fname[24]; |
656 | int retpid = -1; |
657 | |
658 | snprintf(fname, sizeof(fname), "/proc/%d/status" , vmid); |
659 | FILE *fp = fopen(fname, "r" ); |
660 | |
661 | if (fp) { |
662 | int pid, nspid; |
663 | int ret; |
664 | while (!feof(fp) && !ferror(fp)) { |
665 | ret = fscanf(fp, "NSpid: %d %d" , &pid, &nspid); |
666 | if (ret == 1) { |
667 | break; |
668 | } |
669 | if (ret == 2) { |
670 | retpid = nspid; |
671 | break; |
672 | } |
673 | for (;;) { |
674 | int ch = fgetc(fp); |
675 | if (ch == EOF || ch == (int)'\n') break; |
676 | } |
677 | } |
678 | fclose(fp); |
679 | } |
680 | return retpid; |
681 | } |
682 | |
683 | // return the name of the user that owns the JVM indicated by the given vmid. |
684 | // |
685 | static char* get_user_name(int vmid, int *nspid, TRAPS) { |
686 | char *result = get_user_name_slow(vmid, *nspid, THREAD); |
687 | |
688 | // If we are examining a container process without PID namespaces enabled |
689 | // we need to use /proc/{pid}/root/tmp to find hsperfdata files. |
690 | if (result == NULL) { |
691 | result = get_user_name_slow(vmid, vmid, THREAD); |
692 | // Enable nspid logic going forward |
693 | if (result != NULL) *nspid = vmid; |
694 | } |
695 | return result; |
696 | } |
697 | |
698 | // return the file name of the backing store file for the named |
699 | // shared memory region for the given user name and vmid. |
700 | // |
701 | // the caller is expected to free the allocated memory. |
702 | // |
703 | static char* get_sharedmem_filename(const char* dirname, int vmid, int nspid) { |
704 | |
705 | int pid = (nspid == -1) ? vmid : nspid; |
706 | |
707 | // add 2 for the file separator and a null terminator. |
708 | size_t nbytes = strlen(dirname) + UINT_CHARS + 2; |
709 | |
710 | char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal); |
711 | snprintf(name, nbytes, "%s/%d" , dirname, pid); |
712 | |
713 | return name; |
714 | } |
715 | |
716 | |
717 | // remove file |
718 | // |
719 | // this method removes the file specified by the given path |
720 | // |
721 | static void remove_file(const char* path) { |
722 | |
723 | int result; |
724 | |
725 | // if the file is a directory, the following unlink will fail. since |
726 | // we don't expect to find directories in the user temp directory, we |
727 | // won't try to handle this situation. even if accidentially or |
728 | // maliciously planted, the directory's presence won't hurt anything. |
729 | // |
730 | RESTARTABLE(::unlink(path), result); |
731 | if (PrintMiscellaneous && Verbose && result == OS_ERR) { |
732 | if (errno != ENOENT) { |
733 | warning("Could not unlink shared memory backing" |
734 | " store file %s : %s\n" , path, os::strerror(errno)); |
735 | } |
736 | } |
737 | } |
738 | |
739 | |
740 | // cleanup stale shared memory resources |
741 | // |
742 | // This method attempts to remove all stale shared memory files in |
743 | // the named user temporary directory. It scans the named directory |
744 | // for files matching the pattern ^$[0-9]*$. For each file found, the |
745 | // process id is extracted from the file name and a test is run to |
746 | // determine if the process is alive. If the process is not alive, |
747 | // any stale file resources are removed. |
748 | // |
749 | static void cleanup_sharedmem_resources(const char* dirname) { |
750 | |
751 | int saved_cwd_fd; |
752 | // open the directory |
753 | DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd); |
754 | if (dirp == NULL) { |
755 | // directory doesn't exist or is insecure, so there is nothing to cleanup |
756 | return; |
757 | } |
758 | |
759 | // for each entry in the directory that matches the expected file |
760 | // name pattern, determine if the file resources are stale and if |
761 | // so, remove the file resources. Note, instrumented HotSpot processes |
762 | // for this user may start and/or terminate during this search and |
763 | // remove or create new files in this directory. The behavior of this |
764 | // loop under these conditions is dependent upon the implementation of |
765 | // opendir/readdir. |
766 | // |
767 | struct dirent* entry; |
768 | errno = 0; |
769 | while ((entry = os::readdir(dirp)) != NULL) { |
770 | |
771 | pid_t pid = filename_to_pid(entry->d_name); |
772 | |
773 | if (pid == 0) { |
774 | |
775 | if (strcmp(entry->d_name, "." ) != 0 && strcmp(entry->d_name, ".." ) != 0) { |
776 | // attempt to remove all unexpected files, except "." and ".." |
777 | unlink(entry->d_name); |
778 | } |
779 | |
780 | errno = 0; |
781 | continue; |
782 | } |
783 | |
784 | // we now have a file name that converts to a valid integer |
785 | // that could represent a process id . if this process id |
786 | // matches the current process id or the process is not running, |
787 | // then remove the stale file resources. |
788 | // |
789 | // process liveness is detected by sending signal number 0 to |
790 | // the process id (see kill(2)). if kill determines that the |
791 | // process does not exist, then the file resources are removed. |
792 | // if kill determines that that we don't have permission to |
793 | // signal the process, then the file resources are assumed to |
794 | // be stale and are removed because the resources for such a |
795 | // process should be in a different user specific directory. |
796 | // |
797 | if ((pid == os::current_process_id()) || |
798 | (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) { |
799 | unlink(entry->d_name); |
800 | } |
801 | errno = 0; |
802 | } |
803 | |
804 | // close the directory and reset the current working directory |
805 | close_directory_secure_cwd(dirp, saved_cwd_fd); |
806 | } |
807 | |
808 | // make the user specific temporary directory. Returns true if |
809 | // the directory exists and is secure upon return. Returns false |
810 | // if the directory exists but is either a symlink, is otherwise |
811 | // insecure, or if an error occurred. |
812 | // |
813 | static bool make_user_tmp_dir(const char* dirname) { |
814 | |
815 | // create the directory with 0755 permissions. note that the directory |
816 | // will be owned by euid::egid, which may not be the same as uid::gid. |
817 | // |
818 | if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) { |
819 | if (errno == EEXIST) { |
820 | // The directory already exists and was probably created by another |
821 | // JVM instance. However, this could also be the result of a |
822 | // deliberate symlink. Verify that the existing directory is safe. |
823 | // |
824 | if (!is_directory_secure(dirname)) { |
825 | // directory is not secure |
826 | if (PrintMiscellaneous && Verbose) { |
827 | warning("%s directory is insecure\n" , dirname); |
828 | } |
829 | return false; |
830 | } |
831 | } |
832 | else { |
833 | // we encountered some other failure while attempting |
834 | // to create the directory |
835 | // |
836 | if (PrintMiscellaneous && Verbose) { |
837 | warning("could not create directory %s: %s\n" , |
838 | dirname, os::strerror(errno)); |
839 | } |
840 | return false; |
841 | } |
842 | } |
843 | return true; |
844 | } |
845 | |
846 | // create the shared memory file resources |
847 | // |
848 | // This method creates the shared memory file with the given size |
849 | // This method also creates the user specific temporary directory, if |
850 | // it does not yet exist. |
851 | // |
852 | static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) { |
853 | |
854 | // make the user temporary directory |
855 | if (!make_user_tmp_dir(dirname)) { |
856 | // could not make/find the directory or the found directory |
857 | // was not secure |
858 | return -1; |
859 | } |
860 | |
861 | int saved_cwd_fd; |
862 | // open the directory and set the current working directory to it |
863 | DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd); |
864 | if (dirp == NULL) { |
865 | // Directory doesn't exist or is insecure, so cannot create shared |
866 | // memory file. |
867 | return -1; |
868 | } |
869 | |
870 | // Open the filename in the current directory. |
871 | // Cannot use O_TRUNC here; truncation of an existing file has to happen |
872 | // after the is_file_secure() check below. |
873 | int result; |
874 | RESTARTABLE(os::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IRUSR|S_IWUSR), result); |
875 | if (result == OS_ERR) { |
876 | if (PrintMiscellaneous && Verbose) { |
877 | if (errno == ELOOP) { |
878 | warning("file %s is a symlink and is not secure\n" , filename); |
879 | } else { |
880 | warning("could not create file %s: %s\n" , filename, os::strerror(errno)); |
881 | } |
882 | } |
883 | // close the directory and reset the current working directory |
884 | close_directory_secure_cwd(dirp, saved_cwd_fd); |
885 | |
886 | return -1; |
887 | } |
888 | // close the directory and reset the current working directory |
889 | close_directory_secure_cwd(dirp, saved_cwd_fd); |
890 | |
891 | // save the file descriptor |
892 | int fd = result; |
893 | |
894 | // check to see if the file is secure |
895 | if (!is_file_secure(fd, filename)) { |
896 | ::close(fd); |
897 | return -1; |
898 | } |
899 | |
900 | // truncate the file to get rid of any existing data |
901 | RESTARTABLE(::ftruncate(fd, (off_t)0), result); |
902 | if (result == OS_ERR) { |
903 | if (PrintMiscellaneous && Verbose) { |
904 | warning("could not truncate shared memory file: %s\n" , os::strerror(errno)); |
905 | } |
906 | ::close(fd); |
907 | return -1; |
908 | } |
909 | // set the file size |
910 | RESTARTABLE(::ftruncate(fd, (off_t)size), result); |
911 | if (result == OS_ERR) { |
912 | if (PrintMiscellaneous && Verbose) { |
913 | warning("could not set shared memory file size: %s\n" , os::strerror(errno)); |
914 | } |
915 | ::close(fd); |
916 | return -1; |
917 | } |
918 | |
919 | // Verify that we have enough disk space for this file. |
920 | // We'll get random SIGBUS crashes on memory accesses if |
921 | // we don't. |
922 | |
923 | for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) { |
924 | int zero_int = 0; |
925 | result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos)); |
926 | if (result == -1 ) break; |
927 | RESTARTABLE(::write(fd, &zero_int, 1), result); |
928 | if (result != 1) { |
929 | if (errno == ENOSPC) { |
930 | warning("Insufficient space for shared memory file:\n %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n" , filename); |
931 | } |
932 | break; |
933 | } |
934 | } |
935 | |
936 | if (result != -1) { |
937 | return fd; |
938 | } else { |
939 | ::close(fd); |
940 | return -1; |
941 | } |
942 | } |
943 | |
944 | // open the shared memory file for the given user and vmid. returns |
945 | // the file descriptor for the open file or -1 if the file could not |
946 | // be opened. |
947 | // |
948 | static int open_sharedmem_file(const char* filename, int oflags, TRAPS) { |
949 | |
950 | // open the file |
951 | int result; |
952 | RESTARTABLE(os::open(filename, oflags, 0), result); |
953 | if (result == OS_ERR) { |
954 | if (errno == ENOENT) { |
955 | THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(), |
956 | "Process not found" , OS_ERR); |
957 | } |
958 | else if (errno == EACCES) { |
959 | THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(), |
960 | "Permission denied" , OS_ERR); |
961 | } |
962 | else { |
963 | THROW_MSG_(vmSymbols::java_io_IOException(), |
964 | os::strerror(errno), OS_ERR); |
965 | } |
966 | } |
967 | int fd = result; |
968 | |
969 | // check to see if the file is secure |
970 | if (!is_file_secure(fd, filename)) { |
971 | ::close(fd); |
972 | return -1; |
973 | } |
974 | |
975 | return fd; |
976 | } |
977 | |
978 | // create a named shared memory region. returns the address of the |
979 | // memory region on success or NULL on failure. A return value of |
980 | // NULL will ultimately disable the shared memory feature. |
981 | // |
982 | // On Linux, the name space for shared memory objects |
983 | // is the file system name space. |
984 | // |
985 | // A monitoring application attaching to a JVM does not need to know |
986 | // the file system name of the shared memory object. However, it may |
987 | // be convenient for applications to discover the existence of newly |
988 | // created and terminating JVMs by watching the file system name space |
989 | // for files being created or removed. |
990 | // |
991 | static char* mmap_create_shared(size_t size) { |
992 | |
993 | int result; |
994 | int fd; |
995 | char* mapAddress; |
996 | |
997 | int vmid = os::current_process_id(); |
998 | |
999 | char* user_name = get_user_name(geteuid()); |
1000 | |
1001 | if (user_name == NULL) |
1002 | return NULL; |
1003 | |
1004 | char* dirname = get_user_tmp_dir(user_name, vmid, -1); |
1005 | char* filename = get_sharedmem_filename(dirname, vmid, -1); |
1006 | |
1007 | // get the short filename |
1008 | char* short_filename = strrchr(filename, '/'); |
1009 | if (short_filename == NULL) { |
1010 | short_filename = filename; |
1011 | } else { |
1012 | short_filename++; |
1013 | } |
1014 | |
1015 | // cleanup any stale shared memory files |
1016 | cleanup_sharedmem_resources(dirname); |
1017 | |
1018 | assert(((size > 0) && (size % os::vm_page_size() == 0)), |
1019 | "unexpected PerfMemory region size" ); |
1020 | |
1021 | fd = create_sharedmem_resources(dirname, short_filename, size); |
1022 | |
1023 | FREE_C_HEAP_ARRAY(char, user_name); |
1024 | FREE_C_HEAP_ARRAY(char, dirname); |
1025 | |
1026 | if (fd == -1) { |
1027 | FREE_C_HEAP_ARRAY(char, filename); |
1028 | return NULL; |
1029 | } |
1030 | |
1031 | mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); |
1032 | |
1033 | result = ::close(fd); |
1034 | assert(result != OS_ERR, "could not close file" ); |
1035 | |
1036 | if (mapAddress == MAP_FAILED) { |
1037 | if (PrintMiscellaneous && Verbose) { |
1038 | warning("mmap failed - %s\n" , os::strerror(errno)); |
1039 | } |
1040 | remove_file(filename); |
1041 | FREE_C_HEAP_ARRAY(char, filename); |
1042 | return NULL; |
1043 | } |
1044 | |
1045 | // save the file name for use in delete_shared_memory() |
1046 | backing_store_file_name = filename; |
1047 | |
1048 | // clear the shared memory region |
1049 | (void)::memset((void*) mapAddress, 0, size); |
1050 | |
1051 | // it does not go through os api, the operation has to record from here |
1052 | MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal); |
1053 | |
1054 | return mapAddress; |
1055 | } |
1056 | |
1057 | // release a named shared memory region |
1058 | // |
1059 | static void unmap_shared(char* addr, size_t bytes) { |
1060 | os::release_memory(addr, bytes); |
1061 | } |
1062 | |
1063 | // create the PerfData memory region in shared memory. |
1064 | // |
1065 | static char* create_shared_memory(size_t size) { |
1066 | |
1067 | // create the shared memory region. |
1068 | return mmap_create_shared(size); |
1069 | } |
1070 | |
1071 | // delete the shared PerfData memory region |
1072 | // |
1073 | static void delete_shared_memory(char* addr, size_t size) { |
1074 | |
1075 | // cleanup the persistent shared memory resources. since DestroyJavaVM does |
1076 | // not support unloading of the JVM, unmapping of the memory resource is |
1077 | // not performed. The memory will be reclaimed by the OS upon termination of |
1078 | // the process. The backing store file is deleted from the file system. |
1079 | |
1080 | assert(!PerfDisableSharedMem, "shouldn't be here" ); |
1081 | |
1082 | if (backing_store_file_name != NULL) { |
1083 | remove_file(backing_store_file_name); |
1084 | // Don't.. Free heap memory could deadlock os::abort() if it is called |
1085 | // from signal handler. OS will reclaim the heap memory. |
1086 | // FREE_C_HEAP_ARRAY(char, backing_store_file_name); |
1087 | backing_store_file_name = NULL; |
1088 | } |
1089 | } |
1090 | |
1091 | // return the size of the file for the given file descriptor |
1092 | // or 0 if it is not a valid size for a shared memory file |
1093 | // |
1094 | static size_t sharedmem_filesize(int fd, TRAPS) { |
1095 | |
1096 | struct stat statbuf; |
1097 | int result; |
1098 | |
1099 | RESTARTABLE(::fstat(fd, &statbuf), result); |
1100 | if (result == OS_ERR) { |
1101 | if (PrintMiscellaneous && Verbose) { |
1102 | warning("fstat failed: %s\n" , os::strerror(errno)); |
1103 | } |
1104 | THROW_MSG_0(vmSymbols::java_io_IOException(), |
1105 | "Could not determine PerfMemory size" ); |
1106 | } |
1107 | |
1108 | if ((statbuf.st_size == 0) || |
1109 | ((size_t)statbuf.st_size % os::vm_page_size() != 0)) { |
1110 | THROW_MSG_0(vmSymbols::java_lang_Exception(), |
1111 | "Invalid PerfMemory size" ); |
1112 | } |
1113 | |
1114 | return (size_t)statbuf.st_size; |
1115 | } |
1116 | |
1117 | // attach to a named shared memory region. |
1118 | // |
1119 | static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) { |
1120 | |
1121 | char* mapAddress; |
1122 | int result; |
1123 | int fd; |
1124 | size_t size = 0; |
1125 | const char* luser = NULL; |
1126 | |
1127 | int mmap_prot; |
1128 | int file_flags; |
1129 | |
1130 | ResourceMark rm; |
1131 | |
1132 | // map the high level access mode to the appropriate permission |
1133 | // constructs for the file and the shared memory mapping. |
1134 | if (mode == PerfMemory::PERF_MODE_RO) { |
1135 | mmap_prot = PROT_READ; |
1136 | file_flags = O_RDONLY | O_NOFOLLOW; |
1137 | } |
1138 | else if (mode == PerfMemory::PERF_MODE_RW) { |
1139 | #ifdef LATER |
1140 | mmap_prot = PROT_READ | PROT_WRITE; |
1141 | file_flags = O_RDWR | O_NOFOLLOW; |
1142 | #else |
1143 | THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), |
1144 | "Unsupported access mode" ); |
1145 | #endif |
1146 | } |
1147 | else { |
1148 | THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), |
1149 | "Illegal access mode" ); |
1150 | } |
1151 | |
1152 | // determine if vmid is for a containerized process |
1153 | int nspid = get_namespace_pid(vmid); |
1154 | |
1155 | if (user == NULL || strlen(user) == 0) { |
1156 | luser = get_user_name(vmid, &nspid, CHECK); |
1157 | } |
1158 | else { |
1159 | luser = user; |
1160 | } |
1161 | |
1162 | if (luser == NULL) { |
1163 | THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), |
1164 | "Could not map vmid to user Name" ); |
1165 | } |
1166 | |
1167 | char* dirname = get_user_tmp_dir(luser, vmid, nspid); |
1168 | |
1169 | // since we don't follow symbolic links when creating the backing |
1170 | // store file, we don't follow them when attaching either. |
1171 | // |
1172 | if (!is_directory_secure(dirname)) { |
1173 | FREE_C_HEAP_ARRAY(char, dirname); |
1174 | if (luser != user) { |
1175 | FREE_C_HEAP_ARRAY(char, luser); |
1176 | } |
1177 | THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), |
1178 | "Process not found" ); |
1179 | } |
1180 | |
1181 | char* filename = get_sharedmem_filename(dirname, vmid, nspid); |
1182 | |
1183 | // copy heap memory to resource memory. the open_sharedmem_file |
1184 | // method below need to use the filename, but could throw an |
1185 | // exception. using a resource array prevents the leak that |
1186 | // would otherwise occur. |
1187 | char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1); |
1188 | strcpy(rfilename, filename); |
1189 | |
1190 | // free the c heap resources that are no longer needed |
1191 | if (luser != user) FREE_C_HEAP_ARRAY(char, luser); |
1192 | FREE_C_HEAP_ARRAY(char, dirname); |
1193 | FREE_C_HEAP_ARRAY(char, filename); |
1194 | |
1195 | // open the shared memory file for the give vmid |
1196 | fd = open_sharedmem_file(rfilename, file_flags, THREAD); |
1197 | |
1198 | if (fd == OS_ERR) { |
1199 | return; |
1200 | } |
1201 | |
1202 | if (HAS_PENDING_EXCEPTION) { |
1203 | ::close(fd); |
1204 | return; |
1205 | } |
1206 | |
1207 | if (*sizep == 0) { |
1208 | size = sharedmem_filesize(fd, CHECK); |
1209 | } else { |
1210 | size = *sizep; |
1211 | } |
1212 | |
1213 | assert(size > 0, "unexpected size <= 0" ); |
1214 | |
1215 | mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0); |
1216 | |
1217 | result = ::close(fd); |
1218 | assert(result != OS_ERR, "could not close file" ); |
1219 | |
1220 | if (mapAddress == MAP_FAILED) { |
1221 | if (PrintMiscellaneous && Verbose) { |
1222 | warning("mmap failed: %s\n" , os::strerror(errno)); |
1223 | } |
1224 | THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(), |
1225 | "Could not map PerfMemory" ); |
1226 | } |
1227 | |
1228 | // it does not go through os api, the operation has to record from here |
1229 | MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal); |
1230 | |
1231 | *addr = mapAddress; |
1232 | *sizep = size; |
1233 | |
1234 | log_debug(perf, memops)("mapped " SIZE_FORMAT " bytes for vmid %d at " |
1235 | INTPTR_FORMAT, size, vmid, p2i((void*)mapAddress)); |
1236 | } |
1237 | |
1238 | // create the PerfData memory region |
1239 | // |
1240 | // This method creates the memory region used to store performance |
1241 | // data for the JVM. The memory may be created in standard or |
1242 | // shared memory. |
1243 | // |
1244 | void PerfMemory::create_memory_region(size_t size) { |
1245 | |
1246 | if (PerfDisableSharedMem) { |
1247 | // do not share the memory for the performance data. |
1248 | _start = create_standard_memory(size); |
1249 | } |
1250 | else { |
1251 | _start = create_shared_memory(size); |
1252 | if (_start == NULL) { |
1253 | |
1254 | // creation of the shared memory region failed, attempt |
1255 | // to create a contiguous, non-shared memory region instead. |
1256 | // |
1257 | if (PrintMiscellaneous && Verbose) { |
1258 | warning("Reverting to non-shared PerfMemory region.\n" ); |
1259 | } |
1260 | PerfDisableSharedMem = true; |
1261 | _start = create_standard_memory(size); |
1262 | } |
1263 | } |
1264 | |
1265 | if (_start != NULL) _capacity = size; |
1266 | |
1267 | } |
1268 | |
1269 | // delete the PerfData memory region |
1270 | // |
1271 | // This method deletes the memory region used to store performance |
1272 | // data for the JVM. The memory region indicated by the <address, size> |
1273 | // tuple will be inaccessible after a call to this method. |
1274 | // |
1275 | void PerfMemory::delete_memory_region() { |
1276 | |
1277 | assert((start() != NULL && capacity() > 0), "verify proper state" ); |
1278 | |
1279 | // If user specifies PerfDataSaveFile, it will save the performance data |
1280 | // to the specified file name no matter whether PerfDataSaveToFile is specified |
1281 | // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag |
1282 | // -XX:+PerfDataSaveToFile. |
1283 | if (PerfDataSaveToFile || PerfDataSaveFile != NULL) { |
1284 | save_memory_to_file(start(), capacity()); |
1285 | } |
1286 | |
1287 | if (PerfDisableSharedMem) { |
1288 | delete_standard_memory(start(), capacity()); |
1289 | } |
1290 | else { |
1291 | delete_shared_memory(start(), capacity()); |
1292 | } |
1293 | } |
1294 | |
1295 | // attach to the PerfData memory region for another JVM |
1296 | // |
1297 | // This method returns an <address, size> tuple that points to |
1298 | // a memory buffer that is kept reasonably synchronized with |
1299 | // the PerfData memory region for the indicated JVM. This |
1300 | // buffer may be kept in synchronization via shared memory |
1301 | // or some other mechanism that keeps the buffer updated. |
1302 | // |
1303 | // If the JVM chooses not to support the attachability feature, |
1304 | // this method should throw an UnsupportedOperation exception. |
1305 | // |
1306 | // This implementation utilizes named shared memory to map |
1307 | // the indicated process's PerfData memory region into this JVMs |
1308 | // address space. |
1309 | // |
1310 | void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) { |
1311 | |
1312 | if (vmid == 0 || vmid == os::current_process_id()) { |
1313 | *addrp = start(); |
1314 | *sizep = capacity(); |
1315 | return; |
1316 | } |
1317 | |
1318 | mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK); |
1319 | } |
1320 | |
1321 | // detach from the PerfData memory region of another JVM |
1322 | // |
1323 | // This method detaches the PerfData memory region of another |
1324 | // JVM, specified as an <address, size> tuple of a buffer |
1325 | // in this process's address space. This method may perform |
1326 | // arbitrary actions to accomplish the detachment. The memory |
1327 | // region specified by <address, size> will be inaccessible after |
1328 | // a call to this method. |
1329 | // |
1330 | // If the JVM chooses not to support the attachability feature, |
1331 | // this method should throw an UnsupportedOperation exception. |
1332 | // |
1333 | // This implementation utilizes named shared memory to detach |
1334 | // the indicated process's PerfData memory region from this |
1335 | // process's address space. |
1336 | // |
1337 | void PerfMemory::detach(char* addr, size_t bytes, TRAPS) { |
1338 | |
1339 | assert(addr != 0, "address sanity check" ); |
1340 | assert(bytes > 0, "capacity sanity check" ); |
1341 | |
1342 | if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) { |
1343 | // prevent accidental detachment of this process's PerfMemory region |
1344 | return; |
1345 | } |
1346 | |
1347 | unmap_shared(addr, bytes); |
1348 | } |
1349 | |