| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_OOPS_OOP_INLINE_HPP |
| 26 | #define SHARE_OOPS_OOP_INLINE_HPP |
| 27 | |
| 28 | #include "gc/shared/collectedHeap.hpp" |
| 29 | #include "memory/universe.hpp" |
| 30 | #include "oops/access.inline.hpp" |
| 31 | #include "oops/arrayKlass.hpp" |
| 32 | #include "oops/arrayOop.hpp" |
| 33 | #include "oops/compressedOops.inline.hpp" |
| 34 | #include "oops/klass.inline.hpp" |
| 35 | #include "oops/markOop.inline.hpp" |
| 36 | #include "oops/oop.hpp" |
| 37 | #include "runtime/atomic.hpp" |
| 38 | #include "runtime/orderAccess.hpp" |
| 39 | #include "runtime/os.hpp" |
| 40 | #include "utilities/align.hpp" |
| 41 | #include "utilities/macros.hpp" |
| 42 | |
| 43 | // Implementation of all inlined member functions defined in oop.hpp |
| 44 | // We need a separate file to avoid circular references |
| 45 | |
| 46 | markOop oopDesc::mark() const { |
| 47 | return HeapAccess<MO_VOLATILE>::load_at(as_oop(), mark_offset_in_bytes()); |
| 48 | } |
| 49 | |
| 50 | markOop oopDesc::mark_raw() const { |
| 51 | return _mark; |
| 52 | } |
| 53 | |
| 54 | markOop* oopDesc::mark_addr_raw() const { |
| 55 | return (markOop*) &_mark; |
| 56 | } |
| 57 | |
| 58 | void oopDesc::set_mark(volatile markOop m) { |
| 59 | HeapAccess<MO_VOLATILE>::store_at(as_oop(), mark_offset_in_bytes(), m); |
| 60 | } |
| 61 | |
| 62 | void oopDesc::set_mark_raw(volatile markOop m) { |
| 63 | _mark = m; |
| 64 | } |
| 65 | |
| 66 | void oopDesc::set_mark_raw(HeapWord* mem, markOop m) { |
| 67 | *(markOop*)(((char*)mem) + mark_offset_in_bytes()) = m; |
| 68 | } |
| 69 | |
| 70 | void oopDesc::release_set_mark(markOop m) { |
| 71 | HeapAccess<MO_RELEASE>::store_at(as_oop(), mark_offset_in_bytes(), m); |
| 72 | } |
| 73 | |
| 74 | markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) { |
| 75 | return HeapAccess<>::atomic_cmpxchg_at(new_mark, as_oop(), mark_offset_in_bytes(), old_mark); |
| 76 | } |
| 77 | |
| 78 | markOop oopDesc::cas_set_mark_raw(markOop new_mark, markOop old_mark, atomic_memory_order order) { |
| 79 | return Atomic::cmpxchg(new_mark, &_mark, old_mark, order); |
| 80 | } |
| 81 | |
| 82 | void oopDesc::init_mark() { |
| 83 | set_mark(markOopDesc::prototype_for_object(this)); |
| 84 | } |
| 85 | |
| 86 | void oopDesc::init_mark_raw() { |
| 87 | set_mark_raw(markOopDesc::prototype_for_object(this)); |
| 88 | } |
| 89 | |
| 90 | Klass* oopDesc::klass() const { |
| 91 | if (UseCompressedClassPointers) { |
| 92 | return CompressedKlassPointers::decode_not_null(_metadata._compressed_klass); |
| 93 | } else { |
| 94 | return _metadata._klass; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | Klass* oopDesc::klass_or_null() const volatile { |
| 99 | if (UseCompressedClassPointers) { |
| 100 | return CompressedKlassPointers::decode(_metadata._compressed_klass); |
| 101 | } else { |
| 102 | return _metadata._klass; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | Klass* oopDesc::klass_or_null_acquire() const volatile { |
| 107 | if (UseCompressedClassPointers) { |
| 108 | // Workaround for non-const load_acquire parameter. |
| 109 | const volatile narrowKlass* addr = &_metadata._compressed_klass; |
| 110 | volatile narrowKlass* xaddr = const_cast<volatile narrowKlass*>(addr); |
| 111 | return CompressedKlassPointers::decode(OrderAccess::load_acquire(xaddr)); |
| 112 | } else { |
| 113 | return OrderAccess::load_acquire(&_metadata._klass); |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | Klass** oopDesc::klass_addr(HeapWord* mem) { |
| 118 | // Only used internally and with CMS and will not work with |
| 119 | // UseCompressedOops |
| 120 | assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers" ); |
| 121 | ByteSize offset = byte_offset_of(oopDesc, _metadata._klass); |
| 122 | return (Klass**) (((char*)mem) + in_bytes(offset)); |
| 123 | } |
| 124 | |
| 125 | narrowKlass* oopDesc::compressed_klass_addr(HeapWord* mem) { |
| 126 | assert(UseCompressedClassPointers, "only called by compressed klass pointers" ); |
| 127 | ByteSize offset = byte_offset_of(oopDesc, _metadata._compressed_klass); |
| 128 | return (narrowKlass*) (((char*)mem) + in_bytes(offset)); |
| 129 | } |
| 130 | |
| 131 | Klass** oopDesc::klass_addr() { |
| 132 | return klass_addr((HeapWord*)this); |
| 133 | } |
| 134 | |
| 135 | narrowKlass* oopDesc::compressed_klass_addr() { |
| 136 | return compressed_klass_addr((HeapWord*)this); |
| 137 | } |
| 138 | |
| 139 | #define CHECK_SET_KLASS(k) \ |
| 140 | do { \ |
| 141 | assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass"); \ |
| 142 | assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \ |
| 143 | } while (0) |
| 144 | |
| 145 | void oopDesc::set_klass(Klass* k) { |
| 146 | CHECK_SET_KLASS(k); |
| 147 | if (UseCompressedClassPointers) { |
| 148 | *compressed_klass_addr() = CompressedKlassPointers::encode_not_null(k); |
| 149 | } else { |
| 150 | *klass_addr() = k; |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | void oopDesc::release_set_klass(HeapWord* mem, Klass* klass) { |
| 155 | CHECK_SET_KLASS(klass); |
| 156 | if (UseCompressedClassPointers) { |
| 157 | OrderAccess::release_store(compressed_klass_addr(mem), |
| 158 | CompressedKlassPointers::encode_not_null(klass)); |
| 159 | } else { |
| 160 | OrderAccess::release_store(klass_addr(mem), klass); |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | #undef CHECK_SET_KLASS |
| 165 | |
| 166 | int oopDesc::klass_gap() const { |
| 167 | return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()); |
| 168 | } |
| 169 | |
| 170 | void oopDesc::set_klass_gap(HeapWord* mem, int v) { |
| 171 | if (UseCompressedClassPointers) { |
| 172 | *(int*)(((char*)mem) + klass_gap_offset_in_bytes()) = v; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | void oopDesc::set_klass_gap(int v) { |
| 177 | set_klass_gap((HeapWord*)this, v); |
| 178 | } |
| 179 | |
| 180 | void oopDesc::set_klass_to_list_ptr(oop k) { |
| 181 | // This is only to be used during GC, for from-space objects, so no |
| 182 | // barrier is needed. |
| 183 | if (UseCompressedClassPointers) { |
| 184 | _metadata._compressed_klass = (narrowKlass)CompressedOops::encode(k); // may be null (parnew overflow handling) |
| 185 | } else { |
| 186 | _metadata._klass = (Klass*)(address)k; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | oop oopDesc::list_ptr_from_klass() { |
| 191 | // This is only to be used during GC, for from-space objects. |
| 192 | if (UseCompressedClassPointers) { |
| 193 | return CompressedOops::decode((narrowOop)_metadata._compressed_klass); |
| 194 | } else { |
| 195 | // Special case for GC |
| 196 | return (oop)(address)_metadata._klass; |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | bool oopDesc::is_a(Klass* k) const { |
| 201 | return klass()->is_subtype_of(k); |
| 202 | } |
| 203 | |
| 204 | int oopDesc::size() { |
| 205 | return size_given_klass(klass()); |
| 206 | } |
| 207 | |
| 208 | int oopDesc::size_given_klass(Klass* klass) { |
| 209 | int lh = klass->layout_helper(); |
| 210 | int s; |
| 211 | |
| 212 | // lh is now a value computed at class initialization that may hint |
| 213 | // at the size. For instances, this is positive and equal to the |
| 214 | // size. For arrays, this is negative and provides log2 of the |
| 215 | // array element size. For other oops, it is zero and thus requires |
| 216 | // a virtual call. |
| 217 | // |
| 218 | // We go to all this trouble because the size computation is at the |
| 219 | // heart of phase 2 of mark-compaction, and called for every object, |
| 220 | // alive or dead. So the speed here is equal in importance to the |
| 221 | // speed of allocation. |
| 222 | |
| 223 | if (lh > Klass::_lh_neutral_value) { |
| 224 | if (!Klass::layout_helper_needs_slow_path(lh)) { |
| 225 | s = lh >> LogHeapWordSize; // deliver size scaled by wordSize |
| 226 | } else { |
| 227 | s = klass->oop_size(this); |
| 228 | } |
| 229 | } else if (lh <= Klass::_lh_neutral_value) { |
| 230 | // The most common case is instances; fall through if so. |
| 231 | if (lh < Klass::_lh_neutral_value) { |
| 232 | // Second most common case is arrays. We have to fetch the |
| 233 | // length of the array, shift (multiply) it appropriately, |
| 234 | // up to wordSize, add the header, and align to object size. |
| 235 | size_t size_in_bytes; |
| 236 | size_t array_length = (size_t) ((arrayOop)this)->length(); |
| 237 | size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh); |
| 238 | size_in_bytes += Klass::layout_helper_header_size(lh); |
| 239 | |
| 240 | // This code could be simplified, but by keeping array_header_in_bytes |
| 241 | // in units of bytes and doing it this way we can round up just once, |
| 242 | // skipping the intermediate round to HeapWordSize. |
| 243 | s = (int)(align_up(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize); |
| 244 | |
| 245 | // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field |
| 246 | // of an "old copy" of an object array in the young gen so it indicates |
| 247 | // the grey portion of an already copied array. This will cause the first |
| 248 | // disjunct below to fail if the two comparands are computed across such |
| 249 | // a concurrent change. |
| 250 | // ParNew also runs with promotion labs (which look like int |
| 251 | // filler arrays) which are subject to changing their declared size |
| 252 | // when finally retiring a PLAB; this also can cause the first disjunct |
| 253 | // to fail for another worker thread that is concurrently walking the block |
| 254 | // offset table. Both these invariant failures are benign for their |
| 255 | // current uses; we relax the assertion checking to cover these two cases below: |
| 256 | // is_objArray() && is_forwarded() // covers first scenario above |
| 257 | // || is_typeArray() // covers second scenario above |
| 258 | // If and when UseParallelGC uses the same obj array oop stealing/chunking |
| 259 | // technique, we will need to suitably modify the assertion. |
| 260 | assert((s == klass->oop_size(this)) || |
| 261 | (Universe::heap()->is_gc_active() && |
| 262 | ((is_typeArray() && UseConcMarkSweepGC) || |
| 263 | (is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))), |
| 264 | "wrong array object size" ); |
| 265 | } else { |
| 266 | // Must be zero, so bite the bullet and take the virtual call. |
| 267 | s = klass->oop_size(this); |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | assert(s > 0, "Oop size must be greater than zero, not %d" , s); |
| 272 | assert(is_object_aligned(s), "Oop size is not properly aligned: %d" , s); |
| 273 | return s; |
| 274 | } |
| 275 | |
| 276 | bool oopDesc::is_instance() const { return klass()->is_instance_klass(); } |
| 277 | bool oopDesc::is_array() const { return klass()->is_array_klass(); } |
| 278 | bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); } |
| 279 | bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); } |
| 280 | |
| 281 | void* oopDesc::field_addr_raw(int offset) const { return reinterpret_cast<void*>(cast_from_oop<intptr_t>(as_oop()) + offset); } |
| 282 | void* oopDesc::field_addr(int offset) const { return Access<>::resolve(as_oop())->field_addr_raw(offset); } |
| 283 | |
| 284 | template <class T> |
| 285 | T* oopDesc::obj_field_addr_raw(int offset) const { return (T*) field_addr_raw(offset); } |
| 286 | |
| 287 | template <typename T> |
| 288 | size_t oopDesc::field_offset(T* p) const { return pointer_delta((void*)p, (void*)this, 1); } |
| 289 | |
| 290 | template <DecoratorSet decorators> |
| 291 | inline oop oopDesc::obj_field_access(int offset) const { return HeapAccess<decorators>::oop_load_at(as_oop(), offset); } |
| 292 | inline oop oopDesc::obj_field(int offset) const { return HeapAccess<>::oop_load_at(as_oop(), offset); } |
| 293 | |
| 294 | inline void oopDesc::obj_field_put(int offset, oop value) { HeapAccess<>::oop_store_at(as_oop(), offset, value); } |
| 295 | |
| 296 | inline jbyte oopDesc::byte_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } |
| 297 | inline void oopDesc::byte_field_put(int offset, jbyte value) { HeapAccess<>::store_at(as_oop(), offset, value); } |
| 298 | |
| 299 | inline jchar oopDesc::char_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } |
| 300 | inline void oopDesc::char_field_put(int offset, jchar value) { HeapAccess<>::store_at(as_oop(), offset, value); } |
| 301 | |
| 302 | inline jboolean oopDesc::bool_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } |
| 303 | inline void oopDesc::bool_field_put(int offset, jboolean value) { HeapAccess<>::store_at(as_oop(), offset, jboolean(value & 1)); } |
| 304 | |
| 305 | inline jshort oopDesc::short_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } |
| 306 | inline void oopDesc::short_field_put(int offset, jshort value) { HeapAccess<>::store_at(as_oop(), offset, value); } |
| 307 | |
| 308 | inline jint oopDesc::int_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } |
| 309 | inline jint oopDesc::int_field_raw(int offset) const { return RawAccess<>::load_at(as_oop(), offset); } |
| 310 | inline void oopDesc::int_field_put(int offset, jint value) { HeapAccess<>::store_at(as_oop(), offset, value); } |
| 311 | |
| 312 | inline jlong oopDesc::long_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } |
| 313 | inline void oopDesc::long_field_put(int offset, jlong value) { HeapAccess<>::store_at(as_oop(), offset, value); } |
| 314 | |
| 315 | inline jfloat oopDesc::float_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } |
| 316 | inline void oopDesc::float_field_put(int offset, jfloat value) { HeapAccess<>::store_at(as_oop(), offset, value); } |
| 317 | |
| 318 | inline jdouble oopDesc::double_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } |
| 319 | inline void oopDesc::double_field_put(int offset, jdouble value) { HeapAccess<>::store_at(as_oop(), offset, value); } |
| 320 | |
| 321 | bool oopDesc::is_locked() const { |
| 322 | return mark()->is_locked(); |
| 323 | } |
| 324 | |
| 325 | bool oopDesc::is_unlocked() const { |
| 326 | return mark()->is_unlocked(); |
| 327 | } |
| 328 | |
| 329 | bool oopDesc::has_bias_pattern() const { |
| 330 | return mark()->has_bias_pattern(); |
| 331 | } |
| 332 | |
| 333 | bool oopDesc::has_bias_pattern_raw() const { |
| 334 | return mark_raw()->has_bias_pattern(); |
| 335 | } |
| 336 | |
| 337 | // Used only for markSweep, scavenging |
| 338 | bool oopDesc::is_gc_marked() const { |
| 339 | return mark_raw()->is_marked(); |
| 340 | } |
| 341 | |
| 342 | // Used by scavengers |
| 343 | bool oopDesc::is_forwarded() const { |
| 344 | // The extra heap check is needed since the obj might be locked, in which case the |
| 345 | // mark would point to a stack location and have the sentinel bit cleared |
| 346 | return mark_raw()->is_marked(); |
| 347 | } |
| 348 | |
| 349 | // Used by scavengers |
| 350 | void oopDesc::forward_to(oop p) { |
| 351 | assert(check_obj_alignment(p), |
| 352 | "forwarding to something not aligned" ); |
| 353 | assert(Universe::heap()->is_in_reserved(p), |
| 354 | "forwarding to something not in heap" ); |
| 355 | assert(!is_archived_object(oop(this)) && |
| 356 | !is_archived_object(p), |
| 357 | "forwarding archive object" ); |
| 358 | markOop m = markOopDesc::encode_pointer_as_mark(p); |
| 359 | assert(m->decode_pointer() == p, "encoding must be reversable" ); |
| 360 | set_mark_raw(m); |
| 361 | } |
| 362 | |
| 363 | // Used by parallel scavengers |
| 364 | bool oopDesc::cas_forward_to(oop p, markOop compare, atomic_memory_order order) { |
| 365 | assert(check_obj_alignment(p), |
| 366 | "forwarding to something not aligned" ); |
| 367 | assert(Universe::heap()->is_in_reserved(p), |
| 368 | "forwarding to something not in heap" ); |
| 369 | markOop m = markOopDesc::encode_pointer_as_mark(p); |
| 370 | assert(m->decode_pointer() == p, "encoding must be reversable" ); |
| 371 | return cas_set_mark_raw(m, compare, order) == compare; |
| 372 | } |
| 373 | |
| 374 | oop oopDesc::forward_to_atomic(oop p, markOop compare, atomic_memory_order order) { |
| 375 | // CMS forwards some non-heap value into the mark oop to reserve oops during |
| 376 | // promotion, so the next two asserts do not hold. |
| 377 | assert(UseConcMarkSweepGC || check_obj_alignment(p), |
| 378 | "forwarding to something not aligned" ); |
| 379 | assert(UseConcMarkSweepGC || Universe::heap()->is_in_reserved(p), |
| 380 | "forwarding to something not in heap" ); |
| 381 | markOop m = markOopDesc::encode_pointer_as_mark(p); |
| 382 | assert(m->decode_pointer() == p, "encoding must be reversable" ); |
| 383 | markOop old_mark = cas_set_mark_raw(m, compare, order); |
| 384 | if (old_mark == compare) { |
| 385 | return NULL; |
| 386 | } else { |
| 387 | return (oop)old_mark->decode_pointer(); |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | // Note that the forwardee is not the same thing as the displaced_mark. |
| 392 | // The forwardee is used when copying during scavenge and mark-sweep. |
| 393 | // It does need to clear the low two locking- and GC-related bits. |
| 394 | oop oopDesc::forwardee() const { |
| 395 | return (oop) mark_raw()->decode_pointer(); |
| 396 | } |
| 397 | |
| 398 | // Note that the forwardee is not the same thing as the displaced_mark. |
| 399 | // The forwardee is used when copying during scavenge and mark-sweep. |
| 400 | // It does need to clear the low two locking- and GC-related bits. |
| 401 | oop oopDesc::forwardee_acquire() const { |
| 402 | markOop m = OrderAccess::load_acquire(&_mark); |
| 403 | return (oop) m->decode_pointer(); |
| 404 | } |
| 405 | |
| 406 | // The following method needs to be MT safe. |
| 407 | uint oopDesc::age() const { |
| 408 | assert(!is_forwarded(), "Attempt to read age from forwarded mark" ); |
| 409 | if (has_displaced_mark_raw()) { |
| 410 | return displaced_mark_raw()->age(); |
| 411 | } else { |
| 412 | return mark_raw()->age(); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | void oopDesc::incr_age() { |
| 417 | assert(!is_forwarded(), "Attempt to increment age of forwarded mark" ); |
| 418 | if (has_displaced_mark_raw()) { |
| 419 | set_displaced_mark_raw(displaced_mark_raw()->incr_age()); |
| 420 | } else { |
| 421 | set_mark_raw(mark_raw()->incr_age()); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | template <typename OopClosureType> |
| 426 | void oopDesc::oop_iterate(OopClosureType* cl) { |
| 427 | OopIteratorClosureDispatch::oop_oop_iterate(cl, this, klass()); |
| 428 | } |
| 429 | |
| 430 | template <typename OopClosureType> |
| 431 | void oopDesc::oop_iterate(OopClosureType* cl, MemRegion mr) { |
| 432 | OopIteratorClosureDispatch::oop_oop_iterate(cl, this, klass(), mr); |
| 433 | } |
| 434 | |
| 435 | template <typename OopClosureType> |
| 436 | int oopDesc::oop_iterate_size(OopClosureType* cl) { |
| 437 | Klass* k = klass(); |
| 438 | int size = size_given_klass(k); |
| 439 | OopIteratorClosureDispatch::oop_oop_iterate(cl, this, k); |
| 440 | return size; |
| 441 | } |
| 442 | |
| 443 | template <typename OopClosureType> |
| 444 | int oopDesc::oop_iterate_size(OopClosureType* cl, MemRegion mr) { |
| 445 | Klass* k = klass(); |
| 446 | int size = size_given_klass(k); |
| 447 | OopIteratorClosureDispatch::oop_oop_iterate(cl, this, k, mr); |
| 448 | return size; |
| 449 | } |
| 450 | |
| 451 | template <typename OopClosureType> |
| 452 | void oopDesc::oop_iterate_backwards(OopClosureType* cl) { |
| 453 | OopIteratorClosureDispatch::oop_oop_iterate_backwards(cl, this, klass()); |
| 454 | } |
| 455 | |
| 456 | bool oopDesc::is_instanceof_or_null(oop obj, Klass* klass) { |
| 457 | return obj == NULL || obj->klass()->is_subtype_of(klass); |
| 458 | } |
| 459 | |
| 460 | intptr_t oopDesc::identity_hash() { |
| 461 | // Fast case; if the object is unlocked and the hash value is set, no locking is needed |
| 462 | // Note: The mark must be read into local variable to avoid concurrent updates. |
| 463 | markOop mrk = mark(); |
| 464 | if (mrk->is_unlocked() && !mrk->has_no_hash()) { |
| 465 | return mrk->hash(); |
| 466 | } else if (mrk->is_marked()) { |
| 467 | return mrk->hash(); |
| 468 | } else { |
| 469 | return slow_identity_hash(); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | bool oopDesc::has_displaced_mark_raw() const { |
| 474 | return mark_raw()->has_displaced_mark_helper(); |
| 475 | } |
| 476 | |
| 477 | markOop oopDesc::displaced_mark_raw() const { |
| 478 | return mark_raw()->displaced_mark_helper(); |
| 479 | } |
| 480 | |
| 481 | void oopDesc::set_displaced_mark_raw(markOop m) { |
| 482 | mark_raw()->set_displaced_mark_helper(m); |
| 483 | } |
| 484 | |
| 485 | #endif // SHARE_OOPS_OOP_INLINE_HPP |
| 486 | |