1 | /* |
2 | * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "jvm.h" |
26 | #include "logging/log.hpp" |
27 | #include "memory/allocation.inline.hpp" |
28 | #include "os_posix.inline.hpp" |
29 | #include "utilities/globalDefinitions.hpp" |
30 | #include "runtime/frame.inline.hpp" |
31 | #include "runtime/interfaceSupport.inline.hpp" |
32 | #include "services/memTracker.hpp" |
33 | #include "utilities/align.hpp" |
34 | #include "utilities/events.hpp" |
35 | #include "utilities/formatBuffer.hpp" |
36 | #include "utilities/macros.hpp" |
37 | #include "utilities/vmError.hpp" |
38 | |
39 | #include <dirent.h> |
40 | #include <dlfcn.h> |
41 | #include <grp.h> |
42 | #include <pwd.h> |
43 | #include <pthread.h> |
44 | #include <signal.h> |
45 | #include <sys/mman.h> |
46 | #include <sys/resource.h> |
47 | #include <sys/utsname.h> |
48 | #include <time.h> |
49 | #include <unistd.h> |
50 | |
51 | // Todo: provide a os::get_max_process_id() or similar. Number of processes |
52 | // may have been configured, can be read more accurately from proc fs etc. |
53 | #ifndef MAX_PID |
54 | #define MAX_PID INT_MAX |
55 | #endif |
56 | #define IS_VALID_PID(p) (p > 0 && p < MAX_PID) |
57 | |
58 | #define ROOT_UID 0 |
59 | |
60 | #ifndef MAP_ANONYMOUS |
61 | #define MAP_ANONYMOUS MAP_ANON |
62 | #endif |
63 | |
64 | #define check_with_errno(check_type, cond, msg) \ |
65 | do { \ |
66 | int err = errno; \ |
67 | check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err), \ |
68 | os::errno_name(err)); \ |
69 | } while (false) |
70 | |
71 | #define assert_with_errno(cond, msg) check_with_errno(assert, cond, msg) |
72 | #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg) |
73 | |
74 | // Check core dump limit and report possible place where core can be found |
75 | void os::check_dump_limit(char* buffer, size_t bufferSize) { |
76 | if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) { |
77 | jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line" ); |
78 | VMError::record_coredump_status(buffer, false); |
79 | return; |
80 | } |
81 | |
82 | int n; |
83 | struct rlimit rlim; |
84 | bool success; |
85 | |
86 | char core_path[PATH_MAX]; |
87 | n = get_core_path(core_path, PATH_MAX); |
88 | |
89 | if (n <= 0) { |
90 | jio_snprintf(buffer, bufferSize, "core.%d (may not exist)" , current_process_id()); |
91 | success = true; |
92 | #ifdef LINUX |
93 | } else if (core_path[0] == '"') { // redirect to user process |
94 | jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s" , core_path); |
95 | success = true; |
96 | #endif |
97 | } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) { |
98 | jio_snprintf(buffer, bufferSize, "%s (may not exist)" , core_path); |
99 | success = true; |
100 | } else { |
101 | switch(rlim.rlim_cur) { |
102 | case RLIM_INFINITY: |
103 | jio_snprintf(buffer, bufferSize, "%s" , core_path); |
104 | success = true; |
105 | break; |
106 | case 0: |
107 | jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again" ); |
108 | success = false; |
109 | break; |
110 | default: |
111 | jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again" , core_path, uint64_t(rlim.rlim_cur) / 1024); |
112 | success = true; |
113 | break; |
114 | } |
115 | } |
116 | |
117 | VMError::record_coredump_status(buffer, success); |
118 | } |
119 | |
120 | int os::get_native_stack(address* stack, int frames, int toSkip) { |
121 | int frame_idx = 0; |
122 | int num_of_frames; // number of frames captured |
123 | frame fr = os::current_frame(); |
124 | while (fr.pc() && frame_idx < frames) { |
125 | if (toSkip > 0) { |
126 | toSkip --; |
127 | } else { |
128 | stack[frame_idx ++] = fr.pc(); |
129 | } |
130 | if (fr.fp() == NULL || fr.cb() != NULL || |
131 | fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break; |
132 | |
133 | if (fr.sender_pc() && !os::is_first_C_frame(&fr)) { |
134 | fr = os::get_sender_for_C_frame(&fr); |
135 | } else { |
136 | break; |
137 | } |
138 | } |
139 | num_of_frames = frame_idx; |
140 | for (; frame_idx < frames; frame_idx ++) { |
141 | stack[frame_idx] = NULL; |
142 | } |
143 | |
144 | return num_of_frames; |
145 | } |
146 | |
147 | |
148 | bool os::unsetenv(const char* name) { |
149 | assert(name != NULL, "Null pointer" ); |
150 | return (::unsetenv(name) == 0); |
151 | } |
152 | |
153 | int os::get_last_error() { |
154 | return errno; |
155 | } |
156 | |
157 | size_t os::lasterror(char *buf, size_t len) { |
158 | if (errno == 0) return 0; |
159 | |
160 | const char *s = os::strerror(errno); |
161 | size_t n = ::strlen(s); |
162 | if (n >= len) { |
163 | n = len - 1; |
164 | } |
165 | ::strncpy(buf, s, n); |
166 | buf[n] = '\0'; |
167 | return n; |
168 | } |
169 | |
170 | bool os::is_debugger_attached() { |
171 | // not implemented |
172 | return false; |
173 | } |
174 | |
175 | void os::wait_for_keypress_at_exit(void) { |
176 | // don't do anything on posix platforms |
177 | return; |
178 | } |
179 | |
180 | int os::create_file_for_heap(const char* dir) { |
181 | |
182 | const char name_template[] = "/jvmheap.XXXXXX" ; |
183 | |
184 | size_t fullname_len = strlen(dir) + strlen(name_template); |
185 | char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal); |
186 | if (fullname == NULL) { |
187 | vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)" , os::strerror(errno))); |
188 | return -1; |
189 | } |
190 | int n = snprintf(fullname, fullname_len + 1, "%s%s" , dir, name_template); |
191 | assert((size_t)n == fullname_len, "Unexpected number of characters in string" ); |
192 | |
193 | os::native_path(fullname); |
194 | |
195 | // set the file creation mask. |
196 | mode_t file_mode = S_IRUSR | S_IWUSR; |
197 | |
198 | // create a new file. |
199 | int fd = mkstemp(fullname); |
200 | |
201 | if (fd < 0) { |
202 | warning("Could not create file for heap with template %s" , fullname); |
203 | os::free(fullname); |
204 | return -1; |
205 | } |
206 | |
207 | // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted. |
208 | int ret = unlink(fullname); |
209 | assert_with_errno(ret == 0, "unlink returned error" ); |
210 | |
211 | os::free(fullname); |
212 | return fd; |
213 | } |
214 | |
215 | static char* reserve_mmapped_memory(size_t bytes, char* requested_addr) { |
216 | char * addr; |
217 | int flags = MAP_PRIVATE NOT_AIX( | MAP_NORESERVE ) | MAP_ANONYMOUS; |
218 | if (requested_addr != NULL) { |
219 | assert((uintptr_t)requested_addr % os::vm_page_size() == 0, "Requested address should be aligned to OS page size" ); |
220 | flags |= MAP_FIXED; |
221 | } |
222 | |
223 | // Map reserved/uncommitted pages PROT_NONE so we fail early if we |
224 | // touch an uncommitted page. Otherwise, the read/write might |
225 | // succeed if we have enough swap space to back the physical page. |
226 | addr = (char*)::mmap(requested_addr, bytes, PROT_NONE, |
227 | flags, -1, 0); |
228 | |
229 | if (addr != MAP_FAILED) { |
230 | MemTracker::record_virtual_memory_reserve((address)addr, bytes, CALLER_PC); |
231 | return addr; |
232 | } |
233 | return NULL; |
234 | } |
235 | |
236 | static int util_posix_fallocate(int fd, off_t offset, off_t len) { |
237 | #ifdef __APPLE__ |
238 | fstore_t store = { F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, len }; |
239 | // First we try to get a continuous chunk of disk space |
240 | int ret = fcntl(fd, F_PREALLOCATE, &store); |
241 | if (ret == -1) { |
242 | // Maybe we are too fragmented, try to allocate non-continuous range |
243 | store.fst_flags = F_ALLOCATEALL; |
244 | ret = fcntl(fd, F_PREALLOCATE, &store); |
245 | } |
246 | if(ret != -1) { |
247 | return ftruncate(fd, len); |
248 | } |
249 | return -1; |
250 | #else |
251 | return posix_fallocate(fd, offset, len); |
252 | #endif |
253 | } |
254 | |
255 | // Map the given address range to the provided file descriptor. |
256 | char* os::map_memory_to_file(char* base, size_t size, int fd) { |
257 | assert(fd != -1, "File descriptor is not valid" ); |
258 | |
259 | // allocate space for the file |
260 | int ret = util_posix_fallocate(fd, 0, (off_t)size); |
261 | if (ret != 0) { |
262 | vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory. error(%d)" , ret)); |
263 | return NULL; |
264 | } |
265 | |
266 | int prot = PROT_READ | PROT_WRITE; |
267 | int flags = MAP_SHARED; |
268 | if (base != NULL) { |
269 | flags |= MAP_FIXED; |
270 | } |
271 | char* addr = (char*)mmap(base, size, prot, flags, fd, 0); |
272 | |
273 | if (addr == MAP_FAILED) { |
274 | warning("Failed mmap to file. (%s)" , os::strerror(errno)); |
275 | return NULL; |
276 | } |
277 | if (base != NULL && addr != base) { |
278 | if (!os::release_memory(addr, size)) { |
279 | warning("Could not release memory on unsuccessful file mapping" ); |
280 | } |
281 | return NULL; |
282 | } |
283 | return addr; |
284 | } |
285 | |
286 | char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) { |
287 | assert(fd != -1, "File descriptor is not valid" ); |
288 | assert(base != NULL, "Base cannot be NULL" ); |
289 | |
290 | return map_memory_to_file(base, size, fd); |
291 | } |
292 | |
293 | // Multiple threads can race in this code, and can remap over each other with MAP_FIXED, |
294 | // so on posix, unmap the section at the start and at the end of the chunk that we mapped |
295 | // rather than unmapping and remapping the whole chunk to get requested alignment. |
296 | char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) { |
297 | assert((alignment & (os::vm_allocation_granularity() - 1)) == 0, |
298 | "Alignment must be a multiple of allocation granularity (page size)" ); |
299 | assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned" ); |
300 | |
301 | size_t = size + alignment; |
302 | assert(extra_size >= size, "overflow, size is too large to allow alignment" ); |
303 | |
304 | char* ; |
305 | if (file_desc != -1) { |
306 | // For file mapping, we do not call os:reserve_memory(extra_size, NULL, alignment, file_desc) because |
307 | // we need to deal with shrinking of the file space later when we release extra memory after alignment. |
308 | // We also cannot called os:reserve_memory() with file_desc set to -1 because on aix we might get SHM memory. |
309 | // So here to call a helper function while reserve memory for us. After we have a aligned base, |
310 | // we will replace anonymous mapping with file mapping. |
311 | extra_base = reserve_mmapped_memory(extra_size, NULL); |
312 | if (extra_base != NULL) { |
313 | MemTracker::record_virtual_memory_reserve((address)extra_base, extra_size, CALLER_PC); |
314 | } |
315 | } else { |
316 | extra_base = os::reserve_memory(extra_size, NULL, alignment); |
317 | } |
318 | |
319 | if (extra_base == NULL) { |
320 | return NULL; |
321 | } |
322 | |
323 | // Do manual alignment |
324 | char* aligned_base = align_up(extra_base, alignment); |
325 | |
326 | // [ | | ] |
327 | // ^ extra_base |
328 | // ^ extra_base + begin_offset == aligned_base |
329 | // extra_base + begin_offset + size ^ |
330 | // extra_base + extra_size ^ |
331 | // |<>| == begin_offset |
332 | // end_offset == |<>| |
333 | size_t begin_offset = aligned_base - extra_base; |
334 | size_t end_offset = (extra_base + extra_size) - (aligned_base + size); |
335 | |
336 | if (begin_offset > 0) { |
337 | os::release_memory(extra_base, begin_offset); |
338 | } |
339 | |
340 | if (end_offset > 0) { |
341 | os::release_memory(extra_base + begin_offset + size, end_offset); |
342 | } |
343 | |
344 | if (file_desc != -1) { |
345 | // After we have an aligned address, we can replace anonymous mapping with file mapping |
346 | if (replace_existing_mapping_with_file_mapping(aligned_base, size, file_desc) == NULL) { |
347 | vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory" )); |
348 | } |
349 | MemTracker::record_virtual_memory_commit((address)aligned_base, size, CALLER_PC); |
350 | } |
351 | return aligned_base; |
352 | } |
353 | |
354 | int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) { |
355 | // All supported POSIX platforms provide C99 semantics. |
356 | int result = ::vsnprintf(buf, len, fmt, args); |
357 | // If an encoding error occurred (result < 0) then it's not clear |
358 | // whether the buffer is NUL terminated, so ensure it is. |
359 | if ((result < 0) && (len > 0)) { |
360 | buf[len - 1] = '\0'; |
361 | } |
362 | return result; |
363 | } |
364 | |
365 | int os::get_fileno(FILE* fp) { |
366 | return NOT_AIX(::)fileno(fp); |
367 | } |
368 | |
369 | struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) { |
370 | return gmtime_r(clock, res); |
371 | } |
372 | |
373 | void os::Posix::print_load_average(outputStream* st) { |
374 | st->print("load average:" ); |
375 | double loadavg[3]; |
376 | os::loadavg(loadavg, 3); |
377 | st->print("%0.02f %0.02f %0.02f" , loadavg[0], loadavg[1], loadavg[2]); |
378 | st->cr(); |
379 | } |
380 | |
381 | void os::Posix::print_rlimit_info(outputStream* st) { |
382 | st->print("rlimit:" ); |
383 | struct rlimit rlim; |
384 | |
385 | st->print(" STACK " ); |
386 | getrlimit(RLIMIT_STACK, &rlim); |
387 | if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity" ); |
388 | else st->print(UINT64_FORMAT "k" , uint64_t(rlim.rlim_cur) / 1024); |
389 | |
390 | st->print(", CORE " ); |
391 | getrlimit(RLIMIT_CORE, &rlim); |
392 | if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity" ); |
393 | else st->print(UINT64_FORMAT "k" , uint64_t(rlim.rlim_cur) / 1024); |
394 | |
395 | // Isn't there on solaris |
396 | #if defined(AIX) |
397 | st->print(", NPROC " ); |
398 | st->print("%d" , sysconf(_SC_CHILD_MAX)); |
399 | #elif !defined(SOLARIS) |
400 | st->print(", NPROC " ); |
401 | getrlimit(RLIMIT_NPROC, &rlim); |
402 | if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity" ); |
403 | else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur)); |
404 | #endif |
405 | |
406 | st->print(", NOFILE " ); |
407 | getrlimit(RLIMIT_NOFILE, &rlim); |
408 | if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity" ); |
409 | else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur)); |
410 | |
411 | st->print(", AS " ); |
412 | getrlimit(RLIMIT_AS, &rlim); |
413 | if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity" ); |
414 | else st->print(UINT64_FORMAT "k" , uint64_t(rlim.rlim_cur) / 1024); |
415 | |
416 | st->print(", DATA " ); |
417 | getrlimit(RLIMIT_DATA, &rlim); |
418 | if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity" ); |
419 | else st->print(UINT64_FORMAT "k" , uint64_t(rlim.rlim_cur) / 1024); |
420 | |
421 | st->print(", FSIZE " ); |
422 | getrlimit(RLIMIT_FSIZE, &rlim); |
423 | if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity" ); |
424 | else st->print(UINT64_FORMAT "k" , uint64_t(rlim.rlim_cur) / 1024); |
425 | |
426 | st->cr(); |
427 | } |
428 | |
429 | void os::Posix::print_uname_info(outputStream* st) { |
430 | // kernel |
431 | st->print("uname:" ); |
432 | struct utsname name; |
433 | uname(&name); |
434 | st->print("%s " , name.sysname); |
435 | #ifdef ASSERT |
436 | st->print("%s " , name.nodename); |
437 | #endif |
438 | st->print("%s " , name.release); |
439 | st->print("%s " , name.version); |
440 | st->print("%s" , name.machine); |
441 | st->cr(); |
442 | } |
443 | |
444 | void os::Posix::print_umask(outputStream* st, mode_t umsk) { |
445 | st->print((umsk & S_IRUSR) ? "r" : "-" ); |
446 | st->print((umsk & S_IWUSR) ? "w" : "-" ); |
447 | st->print((umsk & S_IXUSR) ? "x" : "-" ); |
448 | st->print((umsk & S_IRGRP) ? "r" : "-" ); |
449 | st->print((umsk & S_IWGRP) ? "w" : "-" ); |
450 | st->print((umsk & S_IXGRP) ? "x" : "-" ); |
451 | st->print((umsk & S_IROTH) ? "r" : "-" ); |
452 | st->print((umsk & S_IWOTH) ? "w" : "-" ); |
453 | st->print((umsk & S_IXOTH) ? "x" : "-" ); |
454 | } |
455 | |
456 | void os::Posix::print_user_info(outputStream* st) { |
457 | unsigned id = (unsigned) ::getuid(); |
458 | st->print("uid : %u " , id); |
459 | id = (unsigned) ::geteuid(); |
460 | st->print("euid : %u " , id); |
461 | id = (unsigned) ::getgid(); |
462 | st->print("gid : %u " , id); |
463 | id = (unsigned) ::getegid(); |
464 | st->print_cr("egid : %u" , id); |
465 | st->cr(); |
466 | |
467 | mode_t umsk = ::umask(0); |
468 | ::umask(umsk); |
469 | st->print("umask: %04o (" , (unsigned) umsk); |
470 | print_umask(st, umsk); |
471 | st->print_cr(")" ); |
472 | st->cr(); |
473 | } |
474 | |
475 | |
476 | bool os::get_host_name(char* buf, size_t buflen) { |
477 | struct utsname name; |
478 | uname(&name); |
479 | jio_snprintf(buf, buflen, "%s" , name.nodename); |
480 | return true; |
481 | } |
482 | |
483 | bool os::has_allocatable_memory_limit(julong* limit) { |
484 | struct rlimit rlim; |
485 | int getrlimit_res = getrlimit(RLIMIT_AS, &rlim); |
486 | // if there was an error when calling getrlimit, assume that there is no limitation |
487 | // on virtual memory. |
488 | bool result; |
489 | if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) { |
490 | result = false; |
491 | } else { |
492 | *limit = (julong)rlim.rlim_cur; |
493 | result = true; |
494 | } |
495 | #ifdef _LP64 |
496 | return result; |
497 | #else |
498 | // arbitrary virtual space limit for 32 bit Unices found by testing. If |
499 | // getrlimit above returned a limit, bound it with this limit. Otherwise |
500 | // directly use it. |
501 | const julong max_virtual_limit = (julong)3800*M; |
502 | if (result) { |
503 | *limit = MIN2(*limit, max_virtual_limit); |
504 | } else { |
505 | *limit = max_virtual_limit; |
506 | } |
507 | |
508 | // bound by actually allocatable memory. The algorithm uses two bounds, an |
509 | // upper and a lower limit. The upper limit is the current highest amount of |
510 | // memory that could not be allocated, the lower limit is the current highest |
511 | // amount of memory that could be allocated. |
512 | // The algorithm iteratively refines the result by halving the difference |
513 | // between these limits, updating either the upper limit (if that value could |
514 | // not be allocated) or the lower limit (if the that value could be allocated) |
515 | // until the difference between these limits is "small". |
516 | |
517 | // the minimum amount of memory we care about allocating. |
518 | const julong min_allocation_size = M; |
519 | |
520 | julong upper_limit = *limit; |
521 | |
522 | // first check a few trivial cases |
523 | if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) { |
524 | *limit = upper_limit; |
525 | } else if (!is_allocatable(min_allocation_size)) { |
526 | // we found that not even min_allocation_size is allocatable. Return it |
527 | // anyway. There is no point to search for a better value any more. |
528 | *limit = min_allocation_size; |
529 | } else { |
530 | // perform the binary search. |
531 | julong lower_limit = min_allocation_size; |
532 | while ((upper_limit - lower_limit) > min_allocation_size) { |
533 | julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit; |
534 | temp_limit = align_down(temp_limit, min_allocation_size); |
535 | if (is_allocatable(temp_limit)) { |
536 | lower_limit = temp_limit; |
537 | } else { |
538 | upper_limit = temp_limit; |
539 | } |
540 | } |
541 | *limit = lower_limit; |
542 | } |
543 | return true; |
544 | #endif |
545 | } |
546 | |
547 | const char* os::get_current_directory(char *buf, size_t buflen) { |
548 | return getcwd(buf, buflen); |
549 | } |
550 | |
551 | FILE* os::open(int fd, const char* mode) { |
552 | return ::fdopen(fd, mode); |
553 | } |
554 | |
555 | ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) { |
556 | return ::pread(fd, buf, nBytes, offset); |
557 | } |
558 | |
559 | void os::flockfile(FILE* fp) { |
560 | ::flockfile(fp); |
561 | } |
562 | |
563 | void os::funlockfile(FILE* fp) { |
564 | ::funlockfile(fp); |
565 | } |
566 | |
567 | DIR* os::opendir(const char* dirname) { |
568 | assert(dirname != NULL, "just checking" ); |
569 | return ::opendir(dirname); |
570 | } |
571 | |
572 | struct dirent* os::readdir(DIR* dirp) { |
573 | assert(dirp != NULL, "just checking" ); |
574 | return ::readdir(dirp); |
575 | } |
576 | |
577 | int os::closedir(DIR *dirp) { |
578 | assert(dirp != NULL, "just checking" ); |
579 | return ::closedir(dirp); |
580 | } |
581 | |
582 | // Builds a platform dependent Agent_OnLoad_<lib_name> function name |
583 | // which is used to find statically linked in agents. |
584 | // Parameters: |
585 | // sym_name: Symbol in library we are looking for |
586 | // lib_name: Name of library to look in, NULL for shared libs. |
587 | // is_absolute_path == true if lib_name is absolute path to agent |
588 | // such as "/a/b/libL.so" |
589 | // == false if only the base name of the library is passed in |
590 | // such as "L" |
591 | char* os::build_agent_function_name(const char *sym_name, const char *lib_name, |
592 | bool is_absolute_path) { |
593 | char *agent_entry_name; |
594 | size_t len; |
595 | size_t name_len; |
596 | size_t prefix_len = strlen(JNI_LIB_PREFIX); |
597 | size_t suffix_len = strlen(JNI_LIB_SUFFIX); |
598 | const char *start; |
599 | |
600 | if (lib_name != NULL) { |
601 | name_len = strlen(lib_name); |
602 | if (is_absolute_path) { |
603 | // Need to strip path, prefix and suffix |
604 | if ((start = strrchr(lib_name, *os::file_separator())) != NULL) { |
605 | lib_name = ++start; |
606 | } |
607 | if (strlen(lib_name) <= (prefix_len + suffix_len)) { |
608 | return NULL; |
609 | } |
610 | lib_name += prefix_len; |
611 | name_len = strlen(lib_name) - suffix_len; |
612 | } |
613 | } |
614 | len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2; |
615 | agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread); |
616 | if (agent_entry_name == NULL) { |
617 | return NULL; |
618 | } |
619 | strcpy(agent_entry_name, sym_name); |
620 | if (lib_name != NULL) { |
621 | strcat(agent_entry_name, "_" ); |
622 | strncat(agent_entry_name, lib_name, name_len); |
623 | } |
624 | return agent_entry_name; |
625 | } |
626 | |
627 | int os::sleep(Thread* thread, jlong millis, bool interruptible) { |
628 | assert(thread == Thread::current(), "thread consistency check" ); |
629 | |
630 | ParkEvent * const slp = thread->_SleepEvent ; |
631 | slp->reset() ; |
632 | OrderAccess::fence() ; |
633 | |
634 | if (interruptible) { |
635 | jlong prevtime = javaTimeNanos(); |
636 | |
637 | for (;;) { |
638 | if (os::is_interrupted(thread, true)) { |
639 | return OS_INTRPT; |
640 | } |
641 | |
642 | jlong newtime = javaTimeNanos(); |
643 | |
644 | if (newtime - prevtime < 0) { |
645 | // time moving backwards, should only happen if no monotonic clock |
646 | // not a guarantee() because JVM should not abort on kernel/glibc bugs |
647 | assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)" ); |
648 | } else { |
649 | millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC; |
650 | } |
651 | |
652 | if (millis <= 0) { |
653 | return OS_OK; |
654 | } |
655 | |
656 | prevtime = newtime; |
657 | |
658 | { |
659 | assert(thread->is_Java_thread(), "sanity check" ); |
660 | JavaThread *jt = (JavaThread *) thread; |
661 | ThreadBlockInVM tbivm(jt); |
662 | OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */); |
663 | |
664 | jt->set_suspend_equivalent(); |
665 | // cleared by handle_special_suspend_equivalent_condition() or |
666 | // java_suspend_self() via check_and_wait_while_suspended() |
667 | |
668 | slp->park(millis); |
669 | |
670 | // were we externally suspended while we were waiting? |
671 | jt->check_and_wait_while_suspended(); |
672 | } |
673 | } |
674 | } else { |
675 | OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */); |
676 | jlong prevtime = javaTimeNanos(); |
677 | |
678 | for (;;) { |
679 | // It'd be nice to avoid the back-to-back javaTimeNanos() calls on |
680 | // the 1st iteration ... |
681 | jlong newtime = javaTimeNanos(); |
682 | |
683 | if (newtime - prevtime < 0) { |
684 | // time moving backwards, should only happen if no monotonic clock |
685 | // not a guarantee() because JVM should not abort on kernel/glibc bugs |
686 | assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)" ); |
687 | } else { |
688 | millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC; |
689 | } |
690 | |
691 | if (millis <= 0) break ; |
692 | |
693 | prevtime = newtime; |
694 | slp->park(millis); |
695 | } |
696 | return OS_OK ; |
697 | } |
698 | } |
699 | |
700 | void os::naked_short_nanosleep(jlong ns) { |
701 | struct timespec req; |
702 | assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only" ); |
703 | req.tv_sec = 0; |
704 | req.tv_nsec = ns; |
705 | ::nanosleep(&req, NULL); |
706 | return; |
707 | } |
708 | |
709 | void os::naked_short_sleep(jlong ms) { |
710 | assert(ms < MILLIUNITS, "Un-interruptable sleep, short time use only" ); |
711 | os::naked_short_nanosleep(ms * (NANOUNITS / MILLIUNITS)); |
712 | return; |
713 | } |
714 | |
715 | //////////////////////////////////////////////////////////////////////////////// |
716 | // interrupt support |
717 | |
718 | void os::interrupt(Thread* thread) { |
719 | debug_only(Thread::check_for_dangling_thread_pointer(thread);) |
720 | |
721 | OSThread* osthread = thread->osthread(); |
722 | |
723 | if (!osthread->interrupted()) { |
724 | osthread->set_interrupted(true); |
725 | // More than one thread can get here with the same value of osthread, |
726 | // resulting in multiple notifications. We do, however, want the store |
727 | // to interrupted() to be visible to other threads before we execute unpark(). |
728 | OrderAccess::fence(); |
729 | ParkEvent * const slp = thread->_SleepEvent ; |
730 | if (slp != NULL) slp->unpark() ; |
731 | } |
732 | |
733 | // For JSR166. Unpark even if interrupt status already was set |
734 | if (thread->is_Java_thread()) |
735 | ((JavaThread*)thread)->parker()->unpark(); |
736 | |
737 | ParkEvent * ev = thread->_ParkEvent ; |
738 | if (ev != NULL) ev->unpark() ; |
739 | } |
740 | |
741 | bool os::is_interrupted(Thread* thread, bool clear_interrupted) { |
742 | debug_only(Thread::check_for_dangling_thread_pointer(thread);) |
743 | |
744 | OSThread* osthread = thread->osthread(); |
745 | |
746 | bool interrupted = osthread->interrupted(); |
747 | |
748 | // NOTE that since there is no "lock" around the interrupt and |
749 | // is_interrupted operations, there is the possibility that the |
750 | // interrupted flag (in osThread) will be "false" but that the |
751 | // low-level events will be in the signaled state. This is |
752 | // intentional. The effect of this is that Object.wait() and |
753 | // LockSupport.park() will appear to have a spurious wakeup, which |
754 | // is allowed and not harmful, and the possibility is so rare that |
755 | // it is not worth the added complexity to add yet another lock. |
756 | // For the sleep event an explicit reset is performed on entry |
757 | // to os::sleep, so there is no early return. It has also been |
758 | // recommended not to put the interrupted flag into the "event" |
759 | // structure because it hides the issue. |
760 | if (interrupted && clear_interrupted) { |
761 | osthread->set_interrupted(false); |
762 | // consider thread->_SleepEvent->reset() ... optional optimization |
763 | } |
764 | |
765 | return interrupted; |
766 | } |
767 | |
768 | |
769 | |
770 | static const struct { |
771 | int sig; const char* name; |
772 | } |
773 | g_signal_info[] = |
774 | { |
775 | { SIGABRT, "SIGABRT" }, |
776 | #ifdef SIGAIO |
777 | { SIGAIO, "SIGAIO" }, |
778 | #endif |
779 | { SIGALRM, "SIGALRM" }, |
780 | #ifdef SIGALRM1 |
781 | { SIGALRM1, "SIGALRM1" }, |
782 | #endif |
783 | { SIGBUS, "SIGBUS" }, |
784 | #ifdef SIGCANCEL |
785 | { SIGCANCEL, "SIGCANCEL" }, |
786 | #endif |
787 | { SIGCHLD, "SIGCHLD" }, |
788 | #ifdef SIGCLD |
789 | { SIGCLD, "SIGCLD" }, |
790 | #endif |
791 | { SIGCONT, "SIGCONT" }, |
792 | #ifdef SIGCPUFAIL |
793 | { SIGCPUFAIL, "SIGCPUFAIL" }, |
794 | #endif |
795 | #ifdef SIGDANGER |
796 | { SIGDANGER, "SIGDANGER" }, |
797 | #endif |
798 | #ifdef SIGDIL |
799 | { SIGDIL, "SIGDIL" }, |
800 | #endif |
801 | #ifdef SIGEMT |
802 | { SIGEMT, "SIGEMT" }, |
803 | #endif |
804 | { SIGFPE, "SIGFPE" }, |
805 | #ifdef SIGFREEZE |
806 | { SIGFREEZE, "SIGFREEZE" }, |
807 | #endif |
808 | #ifdef SIGGFAULT |
809 | { SIGGFAULT, "SIGGFAULT" }, |
810 | #endif |
811 | #ifdef SIGGRANT |
812 | { SIGGRANT, "SIGGRANT" }, |
813 | #endif |
814 | { SIGHUP, "SIGHUP" }, |
815 | { SIGILL, "SIGILL" }, |
816 | { SIGINT, "SIGINT" }, |
817 | #ifdef SIGIO |
818 | { SIGIO, "SIGIO" }, |
819 | #endif |
820 | #ifdef SIGIOINT |
821 | { SIGIOINT, "SIGIOINT" }, |
822 | #endif |
823 | #ifdef SIGIOT |
824 | // SIGIOT is there for BSD compatibility, but on most Unices just a |
825 | // synonym for SIGABRT. The result should be "SIGABRT", not |
826 | // "SIGIOT". |
827 | #if (SIGIOT != SIGABRT ) |
828 | { SIGIOT, "SIGIOT" }, |
829 | #endif |
830 | #endif |
831 | #ifdef SIGKAP |
832 | { SIGKAP, "SIGKAP" }, |
833 | #endif |
834 | { SIGKILL, "SIGKILL" }, |
835 | #ifdef SIGLOST |
836 | { SIGLOST, "SIGLOST" }, |
837 | #endif |
838 | #ifdef SIGLWP |
839 | { SIGLWP, "SIGLWP" }, |
840 | #endif |
841 | #ifdef SIGLWPTIMER |
842 | { SIGLWPTIMER, "SIGLWPTIMER" }, |
843 | #endif |
844 | #ifdef SIGMIGRATE |
845 | { SIGMIGRATE, "SIGMIGRATE" }, |
846 | #endif |
847 | #ifdef SIGMSG |
848 | { SIGMSG, "SIGMSG" }, |
849 | #endif |
850 | { SIGPIPE, "SIGPIPE" }, |
851 | #ifdef SIGPOLL |
852 | { SIGPOLL, "SIGPOLL" }, |
853 | #endif |
854 | #ifdef SIGPRE |
855 | { SIGPRE, "SIGPRE" }, |
856 | #endif |
857 | { SIGPROF, "SIGPROF" }, |
858 | #ifdef SIGPTY |
859 | { SIGPTY, "SIGPTY" }, |
860 | #endif |
861 | #ifdef SIGPWR |
862 | { SIGPWR, "SIGPWR" }, |
863 | #endif |
864 | { SIGQUIT, "SIGQUIT" }, |
865 | #ifdef SIGRECONFIG |
866 | { SIGRECONFIG, "SIGRECONFIG" }, |
867 | #endif |
868 | #ifdef SIGRECOVERY |
869 | { SIGRECOVERY, "SIGRECOVERY" }, |
870 | #endif |
871 | #ifdef SIGRESERVE |
872 | { SIGRESERVE, "SIGRESERVE" }, |
873 | #endif |
874 | #ifdef SIGRETRACT |
875 | { SIGRETRACT, "SIGRETRACT" }, |
876 | #endif |
877 | #ifdef SIGSAK |
878 | { SIGSAK, "SIGSAK" }, |
879 | #endif |
880 | { SIGSEGV, "SIGSEGV" }, |
881 | #ifdef SIGSOUND |
882 | { SIGSOUND, "SIGSOUND" }, |
883 | #endif |
884 | #ifdef SIGSTKFLT |
885 | { SIGSTKFLT, "SIGSTKFLT" }, |
886 | #endif |
887 | { SIGSTOP, "SIGSTOP" }, |
888 | { SIGSYS, "SIGSYS" }, |
889 | #ifdef SIGSYSERROR |
890 | { SIGSYSERROR, "SIGSYSERROR" }, |
891 | #endif |
892 | #ifdef SIGTALRM |
893 | { SIGTALRM, "SIGTALRM" }, |
894 | #endif |
895 | { SIGTERM, "SIGTERM" }, |
896 | #ifdef SIGTHAW |
897 | { SIGTHAW, "SIGTHAW" }, |
898 | #endif |
899 | { SIGTRAP, "SIGTRAP" }, |
900 | #ifdef SIGTSTP |
901 | { SIGTSTP, "SIGTSTP" }, |
902 | #endif |
903 | { SIGTTIN, "SIGTTIN" }, |
904 | { SIGTTOU, "SIGTTOU" }, |
905 | #ifdef SIGURG |
906 | { SIGURG, "SIGURG" }, |
907 | #endif |
908 | { SIGUSR1, "SIGUSR1" }, |
909 | { SIGUSR2, "SIGUSR2" }, |
910 | #ifdef SIGVIRT |
911 | { SIGVIRT, "SIGVIRT" }, |
912 | #endif |
913 | { SIGVTALRM, "SIGVTALRM" }, |
914 | #ifdef SIGWAITING |
915 | { SIGWAITING, "SIGWAITING" }, |
916 | #endif |
917 | #ifdef SIGWINCH |
918 | { SIGWINCH, "SIGWINCH" }, |
919 | #endif |
920 | #ifdef SIGWINDOW |
921 | { SIGWINDOW, "SIGWINDOW" }, |
922 | #endif |
923 | { SIGXCPU, "SIGXCPU" }, |
924 | { SIGXFSZ, "SIGXFSZ" }, |
925 | #ifdef SIGXRES |
926 | { SIGXRES, "SIGXRES" }, |
927 | #endif |
928 | { -1, NULL } |
929 | }; |
930 | |
931 | // Returned string is a constant. For unknown signals "UNKNOWN" is returned. |
932 | const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) { |
933 | |
934 | const char* ret = NULL; |
935 | |
936 | #ifdef SIGRTMIN |
937 | if (sig >= SIGRTMIN && sig <= SIGRTMAX) { |
938 | if (sig == SIGRTMIN) { |
939 | ret = "SIGRTMIN" ; |
940 | } else if (sig == SIGRTMAX) { |
941 | ret = "SIGRTMAX" ; |
942 | } else { |
943 | jio_snprintf(out, outlen, "SIGRTMIN+%d" , sig - SIGRTMIN); |
944 | return out; |
945 | } |
946 | } |
947 | #endif |
948 | |
949 | if (sig > 0) { |
950 | for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) { |
951 | if (g_signal_info[idx].sig == sig) { |
952 | ret = g_signal_info[idx].name; |
953 | break; |
954 | } |
955 | } |
956 | } |
957 | |
958 | if (!ret) { |
959 | if (!is_valid_signal(sig)) { |
960 | ret = "INVALID" ; |
961 | } else { |
962 | ret = "UNKNOWN" ; |
963 | } |
964 | } |
965 | |
966 | if (out && outlen > 0) { |
967 | strncpy(out, ret, outlen); |
968 | out[outlen - 1] = '\0'; |
969 | } |
970 | return out; |
971 | } |
972 | |
973 | int os::Posix::get_signal_number(const char* signal_name) { |
974 | char tmp[30]; |
975 | const char* s = signal_name; |
976 | if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') { |
977 | jio_snprintf(tmp, sizeof(tmp), "SIG%s" , signal_name); |
978 | s = tmp; |
979 | } |
980 | for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) { |
981 | if (strcmp(g_signal_info[idx].name, s) == 0) { |
982 | return g_signal_info[idx].sig; |
983 | } |
984 | } |
985 | return -1; |
986 | } |
987 | |
988 | int os::get_signal_number(const char* signal_name) { |
989 | return os::Posix::get_signal_number(signal_name); |
990 | } |
991 | |
992 | // Returns true if signal number is valid. |
993 | bool os::Posix::is_valid_signal(int sig) { |
994 | // MacOS not really POSIX compliant: sigaddset does not return |
995 | // an error for invalid signal numbers. However, MacOS does not |
996 | // support real time signals and simply seems to have just 33 |
997 | // signals with no holes in the signal range. |
998 | #ifdef __APPLE__ |
999 | return sig >= 1 && sig < NSIG; |
1000 | #else |
1001 | // Use sigaddset to check for signal validity. |
1002 | sigset_t set; |
1003 | sigemptyset(&set); |
1004 | if (sigaddset(&set, sig) == -1 && errno == EINVAL) { |
1005 | return false; |
1006 | } |
1007 | return true; |
1008 | #endif |
1009 | } |
1010 | |
1011 | bool os::Posix::is_sig_ignored(int sig) { |
1012 | struct sigaction oact; |
1013 | sigaction(sig, (struct sigaction*)NULL, &oact); |
1014 | void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction) |
1015 | : CAST_FROM_FN_PTR(void*, oact.sa_handler); |
1016 | if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) { |
1017 | return true; |
1018 | } else { |
1019 | return false; |
1020 | } |
1021 | } |
1022 | |
1023 | // Returns: |
1024 | // NULL for an invalid signal number |
1025 | // "SIG<num>" for a valid but unknown signal number |
1026 | // signal name otherwise. |
1027 | const char* os::exception_name(int sig, char* buf, size_t size) { |
1028 | if (!os::Posix::is_valid_signal(sig)) { |
1029 | return NULL; |
1030 | } |
1031 | const char* const name = os::Posix::get_signal_name(sig, buf, size); |
1032 | if (strcmp(name, "UNKNOWN" ) == 0) { |
1033 | jio_snprintf(buf, size, "SIG%d" , sig); |
1034 | } |
1035 | return buf; |
1036 | } |
1037 | |
1038 | #define NUM_IMPORTANT_SIGS 32 |
1039 | // Returns one-line short description of a signal set in a user provided buffer. |
1040 | const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) { |
1041 | assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size" ); |
1042 | // Note: for shortness, just print out the first 32. That should |
1043 | // cover most of the useful ones, apart from realtime signals. |
1044 | for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) { |
1045 | const int rc = sigismember(set, sig); |
1046 | if (rc == -1 && errno == EINVAL) { |
1047 | buffer[sig-1] = '?'; |
1048 | } else { |
1049 | buffer[sig-1] = rc == 0 ? '0' : '1'; |
1050 | } |
1051 | } |
1052 | buffer[NUM_IMPORTANT_SIGS] = 0; |
1053 | return buffer; |
1054 | } |
1055 | |
1056 | // Prints one-line description of a signal set. |
1057 | void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) { |
1058 | char buf[NUM_IMPORTANT_SIGS + 1]; |
1059 | os::Posix::describe_signal_set_short(set, buf, sizeof(buf)); |
1060 | st->print("%s" , buf); |
1061 | } |
1062 | |
1063 | // Writes one-line description of a combination of sigaction.sa_flags into a user |
1064 | // provided buffer. Returns that buffer. |
1065 | const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) { |
1066 | char* p = buffer; |
1067 | size_t remaining = size; |
1068 | bool first = true; |
1069 | int idx = 0; |
1070 | |
1071 | assert(buffer, "invalid argument" ); |
1072 | |
1073 | if (size == 0) { |
1074 | return buffer; |
1075 | } |
1076 | |
1077 | strncpy(buffer, "none" , size); |
1078 | |
1079 | const struct { |
1080 | // NB: i is an unsigned int here because SA_RESETHAND is on some |
1081 | // systems 0x80000000, which is implicitly unsigned. Assignining |
1082 | // it to an int field would be an overflow in unsigned-to-signed |
1083 | // conversion. |
1084 | unsigned int i; |
1085 | const char* s; |
1086 | } flaginfo [] = { |
1087 | { SA_NOCLDSTOP, "SA_NOCLDSTOP" }, |
1088 | { SA_ONSTACK, "SA_ONSTACK" }, |
1089 | { SA_RESETHAND, "SA_RESETHAND" }, |
1090 | { SA_RESTART, "SA_RESTART" }, |
1091 | { SA_SIGINFO, "SA_SIGINFO" }, |
1092 | { SA_NOCLDWAIT, "SA_NOCLDWAIT" }, |
1093 | { SA_NODEFER, "SA_NODEFER" }, |
1094 | #ifdef AIX |
1095 | { SA_ONSTACK, "SA_ONSTACK" }, |
1096 | { SA_OLDSTYLE, "SA_OLDSTYLE" }, |
1097 | #endif |
1098 | { 0, NULL } |
1099 | }; |
1100 | |
1101 | for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) { |
1102 | if (flags & flaginfo[idx].i) { |
1103 | if (first) { |
1104 | jio_snprintf(p, remaining, "%s" , flaginfo[idx].s); |
1105 | first = false; |
1106 | } else { |
1107 | jio_snprintf(p, remaining, "|%s" , flaginfo[idx].s); |
1108 | } |
1109 | const size_t len = strlen(p); |
1110 | p += len; |
1111 | remaining -= len; |
1112 | } |
1113 | } |
1114 | |
1115 | buffer[size - 1] = '\0'; |
1116 | |
1117 | return buffer; |
1118 | } |
1119 | |
1120 | // Prints one-line description of a combination of sigaction.sa_flags. |
1121 | void os::Posix::print_sa_flags(outputStream* st, int flags) { |
1122 | char buffer[0x100]; |
1123 | os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer)); |
1124 | st->print("%s" , buffer); |
1125 | } |
1126 | |
1127 | // Helper function for os::Posix::print_siginfo_...(): |
1128 | // return a textual description for signal code. |
1129 | struct enum_sigcode_desc_t { |
1130 | const char* s_name; |
1131 | const char* s_desc; |
1132 | }; |
1133 | |
1134 | static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) { |
1135 | |
1136 | const struct { |
1137 | int sig; int code; const char* s_code; const char* s_desc; |
1138 | } t1 [] = { |
1139 | { SIGILL, ILL_ILLOPC, "ILL_ILLOPC" , "Illegal opcode." }, |
1140 | { SIGILL, ILL_ILLOPN, "ILL_ILLOPN" , "Illegal operand." }, |
1141 | { SIGILL, ILL_ILLADR, "ILL_ILLADR" , "Illegal addressing mode." }, |
1142 | { SIGILL, ILL_ILLTRP, "ILL_ILLTRP" , "Illegal trap." }, |
1143 | { SIGILL, ILL_PRVOPC, "ILL_PRVOPC" , "Privileged opcode." }, |
1144 | { SIGILL, ILL_PRVREG, "ILL_PRVREG" , "Privileged register." }, |
1145 | { SIGILL, ILL_COPROC, "ILL_COPROC" , "Coprocessor error." }, |
1146 | { SIGILL, ILL_BADSTK, "ILL_BADSTK" , "Internal stack error." }, |
1147 | #if defined(IA64) && defined(LINUX) |
1148 | { SIGILL, ILL_BADIADDR, "ILL_BADIADDR" , "Unimplemented instruction address" }, |
1149 | { SIGILL, ILL_BREAK, "ILL_BREAK" , "Application Break instruction" }, |
1150 | #endif |
1151 | { SIGFPE, FPE_INTDIV, "FPE_INTDIV" , "Integer divide by zero." }, |
1152 | { SIGFPE, FPE_INTOVF, "FPE_INTOVF" , "Integer overflow." }, |
1153 | { SIGFPE, FPE_FLTDIV, "FPE_FLTDIV" , "Floating-point divide by zero." }, |
1154 | { SIGFPE, FPE_FLTOVF, "FPE_FLTOVF" , "Floating-point overflow." }, |
1155 | { SIGFPE, FPE_FLTUND, "FPE_FLTUND" , "Floating-point underflow." }, |
1156 | { SIGFPE, FPE_FLTRES, "FPE_FLTRES" , "Floating-point inexact result." }, |
1157 | { SIGFPE, FPE_FLTINV, "FPE_FLTINV" , "Invalid floating-point operation." }, |
1158 | { SIGFPE, FPE_FLTSUB, "FPE_FLTSUB" , "Subscript out of range." }, |
1159 | { SIGSEGV, SEGV_MAPERR, "SEGV_MAPERR" , "Address not mapped to object." }, |
1160 | { SIGSEGV, SEGV_ACCERR, "SEGV_ACCERR" , "Invalid permissions for mapped object." }, |
1161 | #ifdef AIX |
1162 | // no explanation found what keyerr would be |
1163 | { SIGSEGV, SEGV_KEYERR, "SEGV_KEYERR" , "key error" }, |
1164 | #endif |
1165 | #if defined(IA64) && !defined(AIX) |
1166 | { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF" , "Paragraph stack overflow" }, |
1167 | #endif |
1168 | #if defined(__sparc) && defined(SOLARIS) |
1169 | // define Solaris Sparc M7 ADI SEGV signals |
1170 | #if !defined(SEGV_ACCADI) |
1171 | #define SEGV_ACCADI 3 |
1172 | #endif |
1173 | { SIGSEGV, SEGV_ACCADI, "SEGV_ACCADI" , "ADI not enabled for mapped object." }, |
1174 | #if !defined(SEGV_ACCDERR) |
1175 | #define SEGV_ACCDERR 4 |
1176 | #endif |
1177 | { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR" , "ADI disrupting exception." }, |
1178 | #if !defined(SEGV_ACCPERR) |
1179 | #define SEGV_ACCPERR 5 |
1180 | #endif |
1181 | { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR" , "ADI precise exception." }, |
1182 | #endif // defined(__sparc) && defined(SOLARIS) |
1183 | { SIGBUS, BUS_ADRALN, "BUS_ADRALN" , "Invalid address alignment." }, |
1184 | { SIGBUS, BUS_ADRERR, "BUS_ADRERR" , "Nonexistent physical address." }, |
1185 | { SIGBUS, BUS_OBJERR, "BUS_OBJERR" , "Object-specific hardware error." }, |
1186 | { SIGTRAP, TRAP_BRKPT, "TRAP_BRKPT" , "Process breakpoint." }, |
1187 | { SIGTRAP, TRAP_TRACE, "TRAP_TRACE" , "Process trace trap." }, |
1188 | { SIGCHLD, CLD_EXITED, "CLD_EXITED" , "Child has exited." }, |
1189 | { SIGCHLD, CLD_KILLED, "CLD_KILLED" , "Child has terminated abnormally and did not create a core file." }, |
1190 | { SIGCHLD, CLD_DUMPED, "CLD_DUMPED" , "Child has terminated abnormally and created a core file." }, |
1191 | { SIGCHLD, CLD_TRAPPED, "CLD_TRAPPED" , "Traced child has trapped." }, |
1192 | { SIGCHLD, CLD_STOPPED, "CLD_STOPPED" , "Child has stopped." }, |
1193 | { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED" ,"Stopped child has continued." }, |
1194 | #ifdef SIGPOLL |
1195 | { SIGPOLL, POLL_OUT, "POLL_OUT" , "Output buffers available." }, |
1196 | { SIGPOLL, POLL_MSG, "POLL_MSG" , "Input message available." }, |
1197 | { SIGPOLL, POLL_ERR, "POLL_ERR" , "I/O error." }, |
1198 | { SIGPOLL, POLL_PRI, "POLL_PRI" , "High priority input available." }, |
1199 | { SIGPOLL, POLL_HUP, "POLL_HUP" , "Device disconnected. [Option End]" }, |
1200 | #endif |
1201 | { -1, -1, NULL, NULL } |
1202 | }; |
1203 | |
1204 | // Codes valid in any signal context. |
1205 | const struct { |
1206 | int code; const char* s_code; const char* s_desc; |
1207 | } t2 [] = { |
1208 | { SI_USER, "SI_USER" , "Signal sent by kill()." }, |
1209 | { SI_QUEUE, "SI_QUEUE" , "Signal sent by the sigqueue()." }, |
1210 | { SI_TIMER, "SI_TIMER" , "Signal generated by expiration of a timer set by timer_settime()." }, |
1211 | { SI_ASYNCIO, "SI_ASYNCIO" , "Signal generated by completion of an asynchronous I/O request." }, |
1212 | { SI_MESGQ, "SI_MESGQ" , "Signal generated by arrival of a message on an empty message queue." }, |
1213 | // Linux specific |
1214 | #ifdef SI_TKILL |
1215 | { SI_TKILL, "SI_TKILL" , "Signal sent by tkill (pthread_kill)" }, |
1216 | #endif |
1217 | #ifdef SI_DETHREAD |
1218 | { SI_DETHREAD, "SI_DETHREAD" , "Signal sent by execve() killing subsidiary threads" }, |
1219 | #endif |
1220 | #ifdef SI_KERNEL |
1221 | { SI_KERNEL, "SI_KERNEL" , "Signal sent by kernel." }, |
1222 | #endif |
1223 | #ifdef SI_SIGIO |
1224 | { SI_SIGIO, "SI_SIGIO" , "Signal sent by queued SIGIO" }, |
1225 | #endif |
1226 | |
1227 | #ifdef AIX |
1228 | { SI_UNDEFINED, "SI_UNDEFINED" ,"siginfo contains partial information" }, |
1229 | { SI_EMPTY, "SI_EMPTY" , "siginfo contains no useful information" }, |
1230 | #endif |
1231 | |
1232 | #ifdef __sun |
1233 | { SI_NOINFO, "SI_NOINFO" , "No signal information" }, |
1234 | { SI_RCTL, "SI_RCTL" , "kernel generated signal via rctl action" }, |
1235 | { SI_LWP, "SI_LWP" , "Signal sent via lwp_kill" }, |
1236 | #endif |
1237 | |
1238 | { -1, NULL, NULL } |
1239 | }; |
1240 | |
1241 | const char* s_code = NULL; |
1242 | const char* s_desc = NULL; |
1243 | |
1244 | for (int i = 0; t1[i].sig != -1; i ++) { |
1245 | if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) { |
1246 | s_code = t1[i].s_code; |
1247 | s_desc = t1[i].s_desc; |
1248 | break; |
1249 | } |
1250 | } |
1251 | |
1252 | if (s_code == NULL) { |
1253 | for (int i = 0; t2[i].s_code != NULL; i ++) { |
1254 | if (t2[i].code == si->si_code) { |
1255 | s_code = t2[i].s_code; |
1256 | s_desc = t2[i].s_desc; |
1257 | } |
1258 | } |
1259 | } |
1260 | |
1261 | if (s_code == NULL) { |
1262 | out->s_name = "unknown" ; |
1263 | out->s_desc = "unknown" ; |
1264 | return false; |
1265 | } |
1266 | |
1267 | out->s_name = s_code; |
1268 | out->s_desc = s_desc; |
1269 | |
1270 | return true; |
1271 | } |
1272 | |
1273 | bool os::signal_sent_by_kill(const void* siginfo) { |
1274 | const siginfo_t* const si = (const siginfo_t*)siginfo; |
1275 | return si->si_code == SI_USER || si->si_code == SI_QUEUE |
1276 | #ifdef SI_TKILL |
1277 | || si->si_code == SI_TKILL |
1278 | #endif |
1279 | ; |
1280 | } |
1281 | |
1282 | void os::print_siginfo(outputStream* os, const void* si0) { |
1283 | |
1284 | const siginfo_t* const si = (const siginfo_t*) si0; |
1285 | |
1286 | char buf[20]; |
1287 | os->print("siginfo:" ); |
1288 | |
1289 | if (!si) { |
1290 | os->print(" <null>" ); |
1291 | return; |
1292 | } |
1293 | |
1294 | const int sig = si->si_signo; |
1295 | |
1296 | os->print(" si_signo: %d (%s)" , sig, os::Posix::get_signal_name(sig, buf, sizeof(buf))); |
1297 | |
1298 | enum_sigcode_desc_t ed; |
1299 | get_signal_code_description(si, &ed); |
1300 | os->print(", si_code: %d (%s)" , si->si_code, ed.s_name); |
1301 | |
1302 | if (si->si_errno) { |
1303 | os->print(", si_errno: %d" , si->si_errno); |
1304 | } |
1305 | |
1306 | // Output additional information depending on the signal code. |
1307 | |
1308 | // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions, |
1309 | // so it depends on the context which member to use. For synchronous error signals, |
1310 | // we print si_addr, unless the signal was sent by another process or thread, in |
1311 | // which case we print out pid or tid of the sender. |
1312 | if (signal_sent_by_kill(si)) { |
1313 | const pid_t pid = si->si_pid; |
1314 | os->print(", si_pid: %ld" , (long) pid); |
1315 | if (IS_VALID_PID(pid)) { |
1316 | const pid_t me = getpid(); |
1317 | if (me == pid) { |
1318 | os->print(" (current process)" ); |
1319 | } |
1320 | } else { |
1321 | os->print(" (invalid)" ); |
1322 | } |
1323 | os->print(", si_uid: %ld" , (long) si->si_uid); |
1324 | if (sig == SIGCHLD) { |
1325 | os->print(", si_status: %d" , si->si_status); |
1326 | } |
1327 | } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || |
1328 | sig == SIGTRAP || sig == SIGFPE) { |
1329 | os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr)); |
1330 | #ifdef SIGPOLL |
1331 | } else if (sig == SIGPOLL) { |
1332 | os->print(", si_band: %ld" , si->si_band); |
1333 | #endif |
1334 | } |
1335 | |
1336 | } |
1337 | |
1338 | bool os::signal_thread(Thread* thread, int sig, const char* reason) { |
1339 | OSThread* osthread = thread->osthread(); |
1340 | if (osthread) { |
1341 | #if defined (SOLARIS) |
1342 | // Note: we cannot use pthread_kill on Solaris - not because |
1343 | // its missing, but because we do not have the pthread_t id. |
1344 | int status = thr_kill(osthread->thread_id(), sig); |
1345 | #else |
1346 | int status = pthread_kill(osthread->pthread_id(), sig); |
1347 | #endif |
1348 | if (status == 0) { |
1349 | Events::log(Thread::current(), "sent signal %d to Thread " INTPTR_FORMAT " because %s." , |
1350 | sig, p2i(thread), reason); |
1351 | return true; |
1352 | } |
1353 | } |
1354 | return false; |
1355 | } |
1356 | |
1357 | int os::Posix::unblock_thread_signal_mask(const sigset_t *set) { |
1358 | return pthread_sigmask(SIG_UNBLOCK, set, NULL); |
1359 | } |
1360 | |
1361 | address os::Posix::ucontext_get_pc(const ucontext_t* ctx) { |
1362 | #if defined(AIX) |
1363 | return Aix::ucontext_get_pc(ctx); |
1364 | #elif defined(BSD) |
1365 | return Bsd::ucontext_get_pc(ctx); |
1366 | #elif defined(LINUX) |
1367 | return Linux::ucontext_get_pc(ctx); |
1368 | #elif defined(SOLARIS) |
1369 | return Solaris::ucontext_get_pc(ctx); |
1370 | #else |
1371 | VMError::report_and_die("unimplemented ucontext_get_pc" ); |
1372 | #endif |
1373 | } |
1374 | |
1375 | void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) { |
1376 | #if defined(AIX) |
1377 | Aix::ucontext_set_pc(ctx, pc); |
1378 | #elif defined(BSD) |
1379 | Bsd::ucontext_set_pc(ctx, pc); |
1380 | #elif defined(LINUX) |
1381 | Linux::ucontext_set_pc(ctx, pc); |
1382 | #elif defined(SOLARIS) |
1383 | Solaris::ucontext_set_pc(ctx, pc); |
1384 | #else |
1385 | VMError::report_and_die("unimplemented ucontext_get_pc" ); |
1386 | #endif |
1387 | } |
1388 | |
1389 | char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) { |
1390 | size_t stack_size = 0; |
1391 | size_t guard_size = 0; |
1392 | int detachstate = 0; |
1393 | pthread_attr_getstacksize(attr, &stack_size); |
1394 | pthread_attr_getguardsize(attr, &guard_size); |
1395 | // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp. |
1396 | LINUX_ONLY(stack_size -= guard_size); |
1397 | pthread_attr_getdetachstate(attr, &detachstate); |
1398 | jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s" , |
1399 | stack_size / 1024, guard_size / 1024, |
1400 | (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable" )); |
1401 | return buf; |
1402 | } |
1403 | |
1404 | char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) { |
1405 | |
1406 | if (filename == NULL || outbuf == NULL || outbuflen < 1) { |
1407 | assert(false, "os::Posix::realpath: invalid arguments." ); |
1408 | errno = EINVAL; |
1409 | return NULL; |
1410 | } |
1411 | |
1412 | char* result = NULL; |
1413 | |
1414 | // This assumes platform realpath() is implemented according to POSIX.1-2008. |
1415 | // POSIX.1-2008 allows to specify NULL for the output buffer, in which case |
1416 | // output buffer is dynamically allocated and must be ::free()'d by the caller. |
1417 | char* p = ::realpath(filename, NULL); |
1418 | if (p != NULL) { |
1419 | if (strlen(p) < outbuflen) { |
1420 | strcpy(outbuf, p); |
1421 | result = outbuf; |
1422 | } else { |
1423 | errno = ENAMETOOLONG; |
1424 | } |
1425 | ::free(p); // *not* os::free |
1426 | } else { |
1427 | // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath |
1428 | // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and |
1429 | // that it complains about the NULL we handed down as user buffer. |
1430 | // In this case, use the user provided buffer but at least check whether realpath caused |
1431 | // a memory overwrite. |
1432 | if (errno == EINVAL) { |
1433 | outbuf[outbuflen - 1] = '\0'; |
1434 | p = ::realpath(filename, outbuf); |
1435 | if (p != NULL) { |
1436 | guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected." ); |
1437 | result = p; |
1438 | } |
1439 | } |
1440 | } |
1441 | return result; |
1442 | |
1443 | } |
1444 | |
1445 | int os::stat(const char *path, struct stat *sbuf) { |
1446 | return ::stat(path, sbuf); |
1447 | } |
1448 | |
1449 | char * os::native_path(char *path) { |
1450 | return path; |
1451 | } |
1452 | |
1453 | // Check minimum allowable stack sizes for thread creation and to initialize |
1454 | // the java system classes, including StackOverflowError - depends on page |
1455 | // size. |
1456 | // The space needed for frames during startup is platform dependent. It |
1457 | // depends on word size, platform calling conventions, C frame layout and |
1458 | // interpreter/C1/C2 design decisions. Therefore this is given in a |
1459 | // platform (os/cpu) dependent constant. |
1460 | // To this, space for guard mechanisms is added, which depends on the |
1461 | // page size which again depends on the concrete system the VM is running |
1462 | // on. Space for libc guard pages is not included in this size. |
1463 | jint os::Posix::set_minimum_stack_sizes() { |
1464 | size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN); |
1465 | |
1466 | _java_thread_min_stack_allowed = _java_thread_min_stack_allowed + |
1467 | JavaThread::stack_guard_zone_size() + |
1468 | JavaThread::stack_shadow_zone_size(); |
1469 | |
1470 | _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size()); |
1471 | _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed); |
1472 | |
1473 | size_t stack_size_in_bytes = ThreadStackSize * K; |
1474 | if (stack_size_in_bytes != 0 && |
1475 | stack_size_in_bytes < _java_thread_min_stack_allowed) { |
1476 | // The '-Xss' and '-XX:ThreadStackSize=N' options both set |
1477 | // ThreadStackSize so we go with "Java thread stack size" instead |
1478 | // of "ThreadStackSize" to be more friendly. |
1479 | tty->print_cr("\nThe Java thread stack size specified is too small. " |
1480 | "Specify at least " SIZE_FORMAT "k" , |
1481 | _java_thread_min_stack_allowed / K); |
1482 | return JNI_ERR; |
1483 | } |
1484 | |
1485 | // Make the stack size a multiple of the page size so that |
1486 | // the yellow/red zones can be guarded. |
1487 | JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size())); |
1488 | |
1489 | // Reminder: a compiler thread is a Java thread. |
1490 | _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed + |
1491 | JavaThread::stack_guard_zone_size() + |
1492 | JavaThread::stack_shadow_zone_size(); |
1493 | |
1494 | _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size()); |
1495 | _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed); |
1496 | |
1497 | stack_size_in_bytes = CompilerThreadStackSize * K; |
1498 | if (stack_size_in_bytes != 0 && |
1499 | stack_size_in_bytes < _compiler_thread_min_stack_allowed) { |
1500 | tty->print_cr("\nThe CompilerThreadStackSize specified is too small. " |
1501 | "Specify at least " SIZE_FORMAT "k" , |
1502 | _compiler_thread_min_stack_allowed / K); |
1503 | return JNI_ERR; |
1504 | } |
1505 | |
1506 | _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size()); |
1507 | _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed); |
1508 | |
1509 | stack_size_in_bytes = VMThreadStackSize * K; |
1510 | if (stack_size_in_bytes != 0 && |
1511 | stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) { |
1512 | tty->print_cr("\nThe VMThreadStackSize specified is too small. " |
1513 | "Specify at least " SIZE_FORMAT "k" , |
1514 | _vm_internal_thread_min_stack_allowed / K); |
1515 | return JNI_ERR; |
1516 | } |
1517 | return JNI_OK; |
1518 | } |
1519 | |
1520 | // Called when creating the thread. The minimum stack sizes have already been calculated |
1521 | size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) { |
1522 | size_t stack_size; |
1523 | if (req_stack_size == 0) { |
1524 | stack_size = default_stack_size(thr_type); |
1525 | } else { |
1526 | stack_size = req_stack_size; |
1527 | } |
1528 | |
1529 | switch (thr_type) { |
1530 | case os::java_thread: |
1531 | // Java threads use ThreadStackSize which default value can be |
1532 | // changed with the flag -Xss |
1533 | if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) { |
1534 | // no requested size and we have a more specific default value |
1535 | stack_size = JavaThread::stack_size_at_create(); |
1536 | } |
1537 | stack_size = MAX2(stack_size, |
1538 | _java_thread_min_stack_allowed); |
1539 | break; |
1540 | case os::compiler_thread: |
1541 | if (req_stack_size == 0 && CompilerThreadStackSize > 0) { |
1542 | // no requested size and we have a more specific default value |
1543 | stack_size = (size_t)(CompilerThreadStackSize * K); |
1544 | } |
1545 | stack_size = MAX2(stack_size, |
1546 | _compiler_thread_min_stack_allowed); |
1547 | break; |
1548 | case os::vm_thread: |
1549 | case os::pgc_thread: |
1550 | case os::cgc_thread: |
1551 | case os::watcher_thread: |
1552 | default: // presume the unknown thr_type is a VM internal |
1553 | if (req_stack_size == 0 && VMThreadStackSize > 0) { |
1554 | // no requested size and we have a more specific default value |
1555 | stack_size = (size_t)(VMThreadStackSize * K); |
1556 | } |
1557 | |
1558 | stack_size = MAX2(stack_size, |
1559 | _vm_internal_thread_min_stack_allowed); |
1560 | break; |
1561 | } |
1562 | |
1563 | // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size. |
1564 | // Be careful not to round up to 0. Align down in that case. |
1565 | if (stack_size <= SIZE_MAX - vm_page_size()) { |
1566 | stack_size = align_up(stack_size, vm_page_size()); |
1567 | } else { |
1568 | stack_size = align_down(stack_size, vm_page_size()); |
1569 | } |
1570 | |
1571 | return stack_size; |
1572 | } |
1573 | |
1574 | bool os::Posix::is_root(uid_t uid){ |
1575 | return ROOT_UID == uid; |
1576 | } |
1577 | |
1578 | bool os::Posix::matches_effective_uid_or_root(uid_t uid) { |
1579 | return is_root(uid) || geteuid() == uid; |
1580 | } |
1581 | |
1582 | bool os::Posix::matches_effective_uid_and_gid_or_root(uid_t uid, gid_t gid) { |
1583 | return is_root(uid) || (geteuid() == uid && getegid() == gid); |
1584 | } |
1585 | |
1586 | Thread* os::ThreadCrashProtection::_protected_thread = NULL; |
1587 | os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL; |
1588 | volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0; |
1589 | |
1590 | os::ThreadCrashProtection::ThreadCrashProtection() { |
1591 | } |
1592 | |
1593 | /* |
1594 | * See the caveats for this class in os_posix.hpp |
1595 | * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this |
1596 | * method and returns false. If none of the signals are raised, returns true. |
1597 | * The callback is supposed to provide the method that should be protected. |
1598 | */ |
1599 | bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) { |
1600 | sigset_t saved_sig_mask; |
1601 | |
1602 | Thread::muxAcquire(&_crash_mux, "CrashProtection" ); |
1603 | |
1604 | _protected_thread = Thread::current_or_null(); |
1605 | assert(_protected_thread != NULL, "Cannot crash protect a NULL thread" ); |
1606 | |
1607 | // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask |
1608 | // since on at least some systems (OS X) siglongjmp will restore the mask |
1609 | // for the process, not the thread |
1610 | pthread_sigmask(0, NULL, &saved_sig_mask); |
1611 | if (sigsetjmp(_jmpbuf, 0) == 0) { |
1612 | // make sure we can see in the signal handler that we have crash protection |
1613 | // installed |
1614 | _crash_protection = this; |
1615 | cb.call(); |
1616 | // and clear the crash protection |
1617 | _crash_protection = NULL; |
1618 | _protected_thread = NULL; |
1619 | Thread::muxRelease(&_crash_mux); |
1620 | return true; |
1621 | } |
1622 | // this happens when we siglongjmp() back |
1623 | pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL); |
1624 | _crash_protection = NULL; |
1625 | _protected_thread = NULL; |
1626 | Thread::muxRelease(&_crash_mux); |
1627 | return false; |
1628 | } |
1629 | |
1630 | void os::ThreadCrashProtection::restore() { |
1631 | assert(_crash_protection != NULL, "must have crash protection" ); |
1632 | siglongjmp(_jmpbuf, 1); |
1633 | } |
1634 | |
1635 | void os::ThreadCrashProtection::check_crash_protection(int sig, |
1636 | Thread* thread) { |
1637 | |
1638 | if (thread != NULL && |
1639 | thread == _protected_thread && |
1640 | _crash_protection != NULL) { |
1641 | |
1642 | if (sig == SIGSEGV || sig == SIGBUS) { |
1643 | _crash_protection->restore(); |
1644 | } |
1645 | } |
1646 | } |
1647 | |
1648 | // Shared clock/time and other supporting routines for pthread_mutex/cond |
1649 | // initialization. This is enabled on Solaris but only some of the clock/time |
1650 | // functionality is actually used there. |
1651 | |
1652 | // Shared condattr object for use with relative timed-waits. Will be associated |
1653 | // with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes, |
1654 | // but otherwise whatever default is used by the platform - generally the |
1655 | // time-of-day clock. |
1656 | static pthread_condattr_t _condAttr[1]; |
1657 | |
1658 | // Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not |
1659 | // all systems (e.g. FreeBSD) map the default to "normal". |
1660 | static pthread_mutexattr_t _mutexAttr[1]; |
1661 | |
1662 | // common basic initialization that is always supported |
1663 | static void pthread_init_common(void) { |
1664 | int status; |
1665 | if ((status = pthread_condattr_init(_condAttr)) != 0) { |
1666 | fatal("pthread_condattr_init: %s" , os::strerror(status)); |
1667 | } |
1668 | if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) { |
1669 | fatal("pthread_mutexattr_init: %s" , os::strerror(status)); |
1670 | } |
1671 | if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) { |
1672 | fatal("pthread_mutexattr_settype: %s" , os::strerror(status)); |
1673 | } |
1674 | // Solaris has it's own PlatformMonitor, distinct from the one for POSIX. |
1675 | NOT_SOLARIS(os::PlatformMonitor::init();) |
1676 | } |
1677 | |
1678 | #ifndef SOLARIS |
1679 | sigset_t sigs; |
1680 | struct sigaction sigact[NSIG]; |
1681 | |
1682 | struct sigaction* os::Posix::get_preinstalled_handler(int sig) { |
1683 | if (sigismember(&sigs, sig)) { |
1684 | return &sigact[sig]; |
1685 | } |
1686 | return NULL; |
1687 | } |
1688 | |
1689 | void os::Posix::save_preinstalled_handler(int sig, struct sigaction& oldAct) { |
1690 | assert(sig > 0 && sig < NSIG, "vm signal out of expected range" ); |
1691 | sigact[sig] = oldAct; |
1692 | sigaddset(&sigs, sig); |
1693 | } |
1694 | #endif |
1695 | |
1696 | // Not all POSIX types and API's are available on all notionally "posix" |
1697 | // platforms. If we have build-time support then we will check for actual |
1698 | // runtime support via dlopen/dlsym lookup. This allows for running on an |
1699 | // older OS version compared to the build platform. But if there is no |
1700 | // build time support then there cannot be any runtime support as we do not |
1701 | // know what the runtime types would be (for example clockid_t might be an |
1702 | // int or int64_t). |
1703 | // |
1704 | #ifdef SUPPORTS_CLOCK_MONOTONIC |
1705 | |
1706 | // This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC |
1707 | |
1708 | int (*os::Posix::_clock_gettime)(clockid_t, struct timespec *) = NULL; |
1709 | int (*os::Posix::_clock_getres)(clockid_t, struct timespec *) = NULL; |
1710 | |
1711 | static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t) = NULL; |
1712 | |
1713 | static bool _use_clock_monotonic_condattr = false; |
1714 | |
1715 | // Determine what POSIX API's are present and do appropriate |
1716 | // configuration. |
1717 | void os::Posix::init(void) { |
1718 | |
1719 | // NOTE: no logging available when this is called. Put logging |
1720 | // statements in init_2(). |
1721 | |
1722 | // 1. Check for CLOCK_MONOTONIC support. |
1723 | |
1724 | void* handle = NULL; |
1725 | |
1726 | // For linux we need librt, for other OS we can find |
1727 | // this function in regular libc. |
1728 | #ifdef NEEDS_LIBRT |
1729 | // We do dlopen's in this particular order due to bug in linux |
1730 | // dynamic loader (see 6348968) leading to crash on exit. |
1731 | handle = dlopen("librt.so.1" , RTLD_LAZY); |
1732 | if (handle == NULL) { |
1733 | handle = dlopen("librt.so" , RTLD_LAZY); |
1734 | } |
1735 | #endif |
1736 | |
1737 | if (handle == NULL) { |
1738 | handle = RTLD_DEFAULT; |
1739 | } |
1740 | |
1741 | int (*clock_getres_func)(clockid_t, struct timespec*) = |
1742 | (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres" ); |
1743 | int (*clock_gettime_func)(clockid_t, struct timespec*) = |
1744 | (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime" ); |
1745 | if (clock_getres_func != NULL && clock_gettime_func != NULL) { |
1746 | // We assume that if both clock_gettime and clock_getres support |
1747 | // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock. |
1748 | struct timespec res; |
1749 | struct timespec tp; |
1750 | if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 && |
1751 | clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) { |
1752 | // Yes, monotonic clock is supported. |
1753 | _clock_gettime = clock_gettime_func; |
1754 | _clock_getres = clock_getres_func; |
1755 | } else { |
1756 | #ifdef NEEDS_LIBRT |
1757 | // Close librt if there is no monotonic clock. |
1758 | if (handle != RTLD_DEFAULT) { |
1759 | dlclose(handle); |
1760 | } |
1761 | #endif |
1762 | } |
1763 | } |
1764 | |
1765 | // 2. Check for pthread_condattr_setclock support. |
1766 | |
1767 | // libpthread is already loaded. |
1768 | int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) = |
1769 | (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT, |
1770 | "pthread_condattr_setclock" ); |
1771 | if (condattr_setclock_func != NULL) { |
1772 | _pthread_condattr_setclock = condattr_setclock_func; |
1773 | } |
1774 | |
1775 | // Now do general initialization. |
1776 | |
1777 | pthread_init_common(); |
1778 | |
1779 | #ifndef SOLARIS |
1780 | int status; |
1781 | if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) { |
1782 | if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) { |
1783 | if (status == EINVAL) { |
1784 | _use_clock_monotonic_condattr = false; |
1785 | warning("Unable to use monotonic clock with relative timed-waits" \ |
1786 | " - changes to the time-of-day clock may have adverse affects" ); |
1787 | } else { |
1788 | fatal("pthread_condattr_setclock: %s" , os::strerror(status)); |
1789 | } |
1790 | } else { |
1791 | _use_clock_monotonic_condattr = true; |
1792 | } |
1793 | } |
1794 | #endif // !SOLARIS |
1795 | |
1796 | } |
1797 | |
1798 | void os::Posix::init_2(void) { |
1799 | #ifndef SOLARIS |
1800 | log_info(os)("Use of CLOCK_MONOTONIC is%s supported" , |
1801 | (_clock_gettime != NULL ? "" : " not" )); |
1802 | log_info(os)("Use of pthread_condattr_setclock is%s supported" , |
1803 | (_pthread_condattr_setclock != NULL ? "" : " not" )); |
1804 | log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s" , |
1805 | _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock" ); |
1806 | sigemptyset(&sigs); |
1807 | #endif // !SOLARIS |
1808 | } |
1809 | |
1810 | #else // !SUPPORTS_CLOCK_MONOTONIC |
1811 | |
1812 | void os::Posix::init(void) { |
1813 | pthread_init_common(); |
1814 | } |
1815 | |
1816 | void os::Posix::init_2(void) { |
1817 | #ifndef SOLARIS |
1818 | log_info(os)("Use of CLOCK_MONOTONIC is not supported" ); |
1819 | log_info(os)("Use of pthread_condattr_setclock is not supported" ); |
1820 | log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock" ); |
1821 | sigemptyset(&sigs); |
1822 | #endif // !SOLARIS |
1823 | } |
1824 | |
1825 | #endif // SUPPORTS_CLOCK_MONOTONIC |
1826 | |
1827 | // Utility to convert the given timeout to an absolute timespec |
1828 | // (based on the appropriate clock) to use with pthread_cond_timewait, |
1829 | // and sem_timedwait(). |
1830 | // The clock queried here must be the clock used to manage the |
1831 | // timeout of the condition variable or semaphore. |
1832 | // |
1833 | // The passed in timeout value is either a relative time in nanoseconds |
1834 | // or an absolute time in milliseconds. A relative timeout will be |
1835 | // associated with CLOCK_MONOTONIC if available, unless the real-time clock |
1836 | // is explicitly requested; otherwise, or if absolute, |
1837 | // the default time-of-day clock will be used. |
1838 | |
1839 | // Given time is a 64-bit value and the time_t used in the timespec is |
1840 | // sometimes a signed-32-bit value we have to watch for overflow if times |
1841 | // way in the future are given. Further on Solaris versions |
1842 | // prior to 10 there is a restriction (see cond_timedwait) that the specified |
1843 | // number of seconds, in abstime, is less than current_time + 100000000. |
1844 | // As it will be over 20 years before "now + 100000000" will overflow we can |
1845 | // ignore overflow and just impose a hard-limit on seconds using the value |
1846 | // of "now + 100000000". This places a limit on the timeout of about 3.17 |
1847 | // years from "now". |
1848 | // |
1849 | #define MAX_SECS 100000000 |
1850 | |
1851 | // Calculate a new absolute time that is "timeout" nanoseconds from "now". |
1852 | // "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending |
1853 | // on which clock API is being used). |
1854 | static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec, |
1855 | jlong now_part_sec, jlong unit) { |
1856 | time_t max_secs = now_sec + MAX_SECS; |
1857 | |
1858 | jlong seconds = timeout / NANOUNITS; |
1859 | timeout %= NANOUNITS; // remaining nanos |
1860 | |
1861 | if (seconds >= MAX_SECS) { |
1862 | // More seconds than we can add, so pin to max_secs. |
1863 | abstime->tv_sec = max_secs; |
1864 | abstime->tv_nsec = 0; |
1865 | } else { |
1866 | abstime->tv_sec = now_sec + seconds; |
1867 | long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout; |
1868 | if (nanos >= NANOUNITS) { // overflow |
1869 | abstime->tv_sec += 1; |
1870 | nanos -= NANOUNITS; |
1871 | } |
1872 | abstime->tv_nsec = nanos; |
1873 | } |
1874 | } |
1875 | |
1876 | // Unpack the given deadline in milliseconds since the epoch, into the given timespec. |
1877 | // The current time in seconds is also passed in to enforce an upper bound as discussed above. |
1878 | // This is only used with gettimeofday, when clock_gettime is not available. |
1879 | static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) { |
1880 | time_t max_secs = now_sec + MAX_SECS; |
1881 | |
1882 | jlong seconds = deadline / MILLIUNITS; |
1883 | jlong millis = deadline % MILLIUNITS; |
1884 | |
1885 | if (seconds >= max_secs) { |
1886 | // Absolute seconds exceeds allowed max, so pin to max_secs. |
1887 | abstime->tv_sec = max_secs; |
1888 | abstime->tv_nsec = 0; |
1889 | } else { |
1890 | abstime->tv_sec = seconds; |
1891 | abstime->tv_nsec = millis * (NANOUNITS / MILLIUNITS); |
1892 | } |
1893 | } |
1894 | |
1895 | static jlong millis_to_nanos(jlong millis) { |
1896 | // We have to watch for overflow when converting millis to nanos, |
1897 | // but if millis is that large then we will end up limiting to |
1898 | // MAX_SECS anyway, so just do that here. |
1899 | if (millis / MILLIUNITS > MAX_SECS) { |
1900 | millis = jlong(MAX_SECS) * MILLIUNITS; |
1901 | } |
1902 | return millis * (NANOUNITS / MILLIUNITS); |
1903 | } |
1904 | |
1905 | static void to_abstime(timespec* abstime, jlong timeout, |
1906 | bool isAbsolute, bool isRealtime) { |
1907 | DEBUG_ONLY(int max_secs = MAX_SECS;) |
1908 | |
1909 | if (timeout < 0) { |
1910 | timeout = 0; |
1911 | } |
1912 | |
1913 | #ifdef SUPPORTS_CLOCK_MONOTONIC |
1914 | |
1915 | clockid_t clock = CLOCK_MONOTONIC; |
1916 | // need to ensure we have a runtime check for clock_gettime support |
1917 | if (!isAbsolute && os::Posix::supports_monotonic_clock()) { |
1918 | if (!_use_clock_monotonic_condattr || isRealtime) { |
1919 | clock = CLOCK_REALTIME; |
1920 | } |
1921 | struct timespec now; |
1922 | int status = os::Posix::clock_gettime(clock, &now); |
1923 | assert_status(status == 0, status, "clock_gettime" ); |
1924 | calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS); |
1925 | DEBUG_ONLY(max_secs += now.tv_sec;) |
1926 | } else { |
1927 | |
1928 | #else |
1929 | |
1930 | { // Match the block scope. |
1931 | |
1932 | #endif // SUPPORTS_CLOCK_MONOTONIC |
1933 | |
1934 | // Time-of-day clock is all we can reliably use. |
1935 | struct timeval now; |
1936 | int status = gettimeofday(&now, NULL); |
1937 | assert_status(status == 0, errno, "gettimeofday" ); |
1938 | if (isAbsolute) { |
1939 | unpack_abs_time(abstime, timeout, now.tv_sec); |
1940 | } else { |
1941 | calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS); |
1942 | } |
1943 | DEBUG_ONLY(max_secs += now.tv_sec;) |
1944 | } |
1945 | |
1946 | assert(abstime->tv_sec >= 0, "tv_sec < 0" ); |
1947 | assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs" ); |
1948 | assert(abstime->tv_nsec >= 0, "tv_nsec < 0" ); |
1949 | assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS" ); |
1950 | } |
1951 | |
1952 | // Create an absolute time 'millis' milliseconds in the future, using the |
1953 | // real-time (time-of-day) clock. Used by PosixSemaphore. |
1954 | void os::Posix::to_RTC_abstime(timespec* abstime, int64_t millis) { |
1955 | to_abstime(abstime, millis_to_nanos(millis), |
1956 | false /* not absolute */, |
1957 | true /* use real-time clock */); |
1958 | } |
1959 | |
1960 | // Shared pthread_mutex/cond based PlatformEvent implementation. |
1961 | // Not currently usable by Solaris. |
1962 | |
1963 | #ifndef SOLARIS |
1964 | |
1965 | // PlatformEvent |
1966 | // |
1967 | // Assumption: |
1968 | // Only one parker can exist on an event, which is why we allocate |
1969 | // them per-thread. Multiple unparkers can coexist. |
1970 | // |
1971 | // _event serves as a restricted-range semaphore. |
1972 | // -1 : thread is blocked, i.e. there is a waiter |
1973 | // 0 : neutral: thread is running or ready, |
1974 | // could have been signaled after a wait started |
1975 | // 1 : signaled - thread is running or ready |
1976 | // |
1977 | // Having three states allows for some detection of bad usage - see |
1978 | // comments on unpark(). |
1979 | |
1980 | os::PlatformEvent::PlatformEvent() { |
1981 | int status = pthread_cond_init(_cond, _condAttr); |
1982 | assert_status(status == 0, status, "cond_init" ); |
1983 | status = pthread_mutex_init(_mutex, _mutexAttr); |
1984 | assert_status(status == 0, status, "mutex_init" ); |
1985 | _event = 0; |
1986 | _nParked = 0; |
1987 | } |
1988 | |
1989 | void os::PlatformEvent::park() { // AKA "down()" |
1990 | // Transitions for _event: |
1991 | // -1 => -1 : illegal |
1992 | // 1 => 0 : pass - return immediately |
1993 | // 0 => -1 : block; then set _event to 0 before returning |
1994 | |
1995 | // Invariant: Only the thread associated with the PlatformEvent |
1996 | // may call park(). |
1997 | assert(_nParked == 0, "invariant" ); |
1998 | |
1999 | int v; |
2000 | |
2001 | // atomically decrement _event |
2002 | for (;;) { |
2003 | v = _event; |
2004 | if (Atomic::cmpxchg(v - 1, &_event, v) == v) break; |
2005 | } |
2006 | guarantee(v >= 0, "invariant" ); |
2007 | |
2008 | if (v == 0) { // Do this the hard way by blocking ... |
2009 | int status = pthread_mutex_lock(_mutex); |
2010 | assert_status(status == 0, status, "mutex_lock" ); |
2011 | guarantee(_nParked == 0, "invariant" ); |
2012 | ++_nParked; |
2013 | while (_event < 0) { |
2014 | // OS-level "spurious wakeups" are ignored |
2015 | status = pthread_cond_wait(_cond, _mutex); |
2016 | assert_status(status == 0, status, "cond_wait" ); |
2017 | } |
2018 | --_nParked; |
2019 | |
2020 | _event = 0; |
2021 | status = pthread_mutex_unlock(_mutex); |
2022 | assert_status(status == 0, status, "mutex_unlock" ); |
2023 | // Paranoia to ensure our locked and lock-free paths interact |
2024 | // correctly with each other. |
2025 | OrderAccess::fence(); |
2026 | } |
2027 | guarantee(_event >= 0, "invariant" ); |
2028 | } |
2029 | |
2030 | int os::PlatformEvent::park(jlong millis) { |
2031 | // Transitions for _event: |
2032 | // -1 => -1 : illegal |
2033 | // 1 => 0 : pass - return immediately |
2034 | // 0 => -1 : block; then set _event to 0 before returning |
2035 | |
2036 | // Invariant: Only the thread associated with the Event/PlatformEvent |
2037 | // may call park(). |
2038 | assert(_nParked == 0, "invariant" ); |
2039 | |
2040 | int v; |
2041 | // atomically decrement _event |
2042 | for (;;) { |
2043 | v = _event; |
2044 | if (Atomic::cmpxchg(v - 1, &_event, v) == v) break; |
2045 | } |
2046 | guarantee(v >= 0, "invariant" ); |
2047 | |
2048 | if (v == 0) { // Do this the hard way by blocking ... |
2049 | struct timespec abst; |
2050 | to_abstime(&abst, millis_to_nanos(millis), false, false); |
2051 | |
2052 | int ret = OS_TIMEOUT; |
2053 | int status = pthread_mutex_lock(_mutex); |
2054 | assert_status(status == 0, status, "mutex_lock" ); |
2055 | guarantee(_nParked == 0, "invariant" ); |
2056 | ++_nParked; |
2057 | |
2058 | while (_event < 0) { |
2059 | status = pthread_cond_timedwait(_cond, _mutex, &abst); |
2060 | assert_status(status == 0 || status == ETIMEDOUT, |
2061 | status, "cond_timedwait" ); |
2062 | // OS-level "spurious wakeups" are ignored unless the archaic |
2063 | // FilterSpuriousWakeups is set false. That flag should be obsoleted. |
2064 | if (!FilterSpuriousWakeups) break; |
2065 | if (status == ETIMEDOUT) break; |
2066 | } |
2067 | --_nParked; |
2068 | |
2069 | if (_event >= 0) { |
2070 | ret = OS_OK; |
2071 | } |
2072 | |
2073 | _event = 0; |
2074 | status = pthread_mutex_unlock(_mutex); |
2075 | assert_status(status == 0, status, "mutex_unlock" ); |
2076 | // Paranoia to ensure our locked and lock-free paths interact |
2077 | // correctly with each other. |
2078 | OrderAccess::fence(); |
2079 | return ret; |
2080 | } |
2081 | return OS_OK; |
2082 | } |
2083 | |
2084 | void os::PlatformEvent::unpark() { |
2085 | // Transitions for _event: |
2086 | // 0 => 1 : just return |
2087 | // 1 => 1 : just return |
2088 | // -1 => either 0 or 1; must signal target thread |
2089 | // That is, we can safely transition _event from -1 to either |
2090 | // 0 or 1. |
2091 | // See also: "Semaphores in Plan 9" by Mullender & Cox |
2092 | // |
2093 | // Note: Forcing a transition from "-1" to "1" on an unpark() means |
2094 | // that it will take two back-to-back park() calls for the owning |
2095 | // thread to block. This has the benefit of forcing a spurious return |
2096 | // from the first park() call after an unpark() call which will help |
2097 | // shake out uses of park() and unpark() without checking state conditions |
2098 | // properly. This spurious return doesn't manifest itself in any user code |
2099 | // but only in the correctly written condition checking loops of ObjectMonitor, |
2100 | // Mutex/Monitor, Thread::muxAcquire and os::sleep |
2101 | |
2102 | if (Atomic::xchg(1, &_event) >= 0) return; |
2103 | |
2104 | int status = pthread_mutex_lock(_mutex); |
2105 | assert_status(status == 0, status, "mutex_lock" ); |
2106 | int anyWaiters = _nParked; |
2107 | assert(anyWaiters == 0 || anyWaiters == 1, "invariant" ); |
2108 | status = pthread_mutex_unlock(_mutex); |
2109 | assert_status(status == 0, status, "mutex_unlock" ); |
2110 | |
2111 | // Note that we signal() *after* dropping the lock for "immortal" Events. |
2112 | // This is safe and avoids a common class of futile wakeups. In rare |
2113 | // circumstances this can cause a thread to return prematurely from |
2114 | // cond_{timed}wait() but the spurious wakeup is benign and the victim |
2115 | // will simply re-test the condition and re-park itself. |
2116 | // This provides particular benefit if the underlying platform does not |
2117 | // provide wait morphing. |
2118 | |
2119 | if (anyWaiters != 0) { |
2120 | status = pthread_cond_signal(_cond); |
2121 | assert_status(status == 0, status, "cond_signal" ); |
2122 | } |
2123 | } |
2124 | |
2125 | // JSR166 support |
2126 | |
2127 | os::PlatformParker::PlatformParker() { |
2128 | int status; |
2129 | status = pthread_cond_init(&_cond[REL_INDEX], _condAttr); |
2130 | assert_status(status == 0, status, "cond_init rel" ); |
2131 | status = pthread_cond_init(&_cond[ABS_INDEX], NULL); |
2132 | assert_status(status == 0, status, "cond_init abs" ); |
2133 | status = pthread_mutex_init(_mutex, _mutexAttr); |
2134 | assert_status(status == 0, status, "mutex_init" ); |
2135 | _cur_index = -1; // mark as unused |
2136 | } |
2137 | |
2138 | // Parker::park decrements count if > 0, else does a condvar wait. Unpark |
2139 | // sets count to 1 and signals condvar. Only one thread ever waits |
2140 | // on the condvar. Contention seen when trying to park implies that someone |
2141 | // is unparking you, so don't wait. And spurious returns are fine, so there |
2142 | // is no need to track notifications. |
2143 | |
2144 | void Parker::park(bool isAbsolute, jlong time) { |
2145 | |
2146 | // Optional fast-path check: |
2147 | // Return immediately if a permit is available. |
2148 | // We depend on Atomic::xchg() having full barrier semantics |
2149 | // since we are doing a lock-free update to _counter. |
2150 | if (Atomic::xchg(0, &_counter) > 0) return; |
2151 | |
2152 | Thread* thread = Thread::current(); |
2153 | assert(thread->is_Java_thread(), "Must be JavaThread" ); |
2154 | JavaThread *jt = (JavaThread *)thread; |
2155 | |
2156 | // Optional optimization -- avoid state transitions if there's |
2157 | // an interrupt pending. |
2158 | if (Thread::is_interrupted(thread, false)) { |
2159 | return; |
2160 | } |
2161 | |
2162 | // Next, demultiplex/decode time arguments |
2163 | struct timespec absTime; |
2164 | if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all |
2165 | return; |
2166 | } |
2167 | if (time > 0) { |
2168 | to_abstime(&absTime, time, isAbsolute, false); |
2169 | } |
2170 | |
2171 | // Enter safepoint region |
2172 | // Beware of deadlocks such as 6317397. |
2173 | // The per-thread Parker:: mutex is a classic leaf-lock. |
2174 | // In particular a thread must never block on the Threads_lock while |
2175 | // holding the Parker:: mutex. If safepoints are pending both the |
2176 | // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock. |
2177 | ThreadBlockInVM tbivm(jt); |
2178 | |
2179 | // Don't wait if cannot get lock since interference arises from |
2180 | // unparking. Also re-check interrupt before trying wait. |
2181 | if (Thread::is_interrupted(thread, false) || |
2182 | pthread_mutex_trylock(_mutex) != 0) { |
2183 | return; |
2184 | } |
2185 | |
2186 | int status; |
2187 | if (_counter > 0) { // no wait needed |
2188 | _counter = 0; |
2189 | status = pthread_mutex_unlock(_mutex); |
2190 | assert_status(status == 0, status, "invariant" ); |
2191 | // Paranoia to ensure our locked and lock-free paths interact |
2192 | // correctly with each other and Java-level accesses. |
2193 | OrderAccess::fence(); |
2194 | return; |
2195 | } |
2196 | |
2197 | OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */); |
2198 | jt->set_suspend_equivalent(); |
2199 | // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self() |
2200 | |
2201 | assert(_cur_index == -1, "invariant" ); |
2202 | if (time == 0) { |
2203 | _cur_index = REL_INDEX; // arbitrary choice when not timed |
2204 | status = pthread_cond_wait(&_cond[_cur_index], _mutex); |
2205 | assert_status(status == 0, status, "cond_timedwait" ); |
2206 | } |
2207 | else { |
2208 | _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX; |
2209 | status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime); |
2210 | assert_status(status == 0 || status == ETIMEDOUT, |
2211 | status, "cond_timedwait" ); |
2212 | } |
2213 | _cur_index = -1; |
2214 | |
2215 | _counter = 0; |
2216 | status = pthread_mutex_unlock(_mutex); |
2217 | assert_status(status == 0, status, "invariant" ); |
2218 | // Paranoia to ensure our locked and lock-free paths interact |
2219 | // correctly with each other and Java-level accesses. |
2220 | OrderAccess::fence(); |
2221 | |
2222 | // If externally suspended while waiting, re-suspend |
2223 | if (jt->handle_special_suspend_equivalent_condition()) { |
2224 | jt->java_suspend_self(); |
2225 | } |
2226 | } |
2227 | |
2228 | void Parker::unpark() { |
2229 | int status = pthread_mutex_lock(_mutex); |
2230 | assert_status(status == 0, status, "invariant" ); |
2231 | const int s = _counter; |
2232 | _counter = 1; |
2233 | // must capture correct index before unlocking |
2234 | int index = _cur_index; |
2235 | status = pthread_mutex_unlock(_mutex); |
2236 | assert_status(status == 0, status, "invariant" ); |
2237 | |
2238 | // Note that we signal() *after* dropping the lock for "immortal" Events. |
2239 | // This is safe and avoids a common class of futile wakeups. In rare |
2240 | // circumstances this can cause a thread to return prematurely from |
2241 | // cond_{timed}wait() but the spurious wakeup is benign and the victim |
2242 | // will simply re-test the condition and re-park itself. |
2243 | // This provides particular benefit if the underlying platform does not |
2244 | // provide wait morphing. |
2245 | |
2246 | if (s < 1 && index != -1) { |
2247 | // thread is definitely parked |
2248 | status = pthread_cond_signal(&_cond[index]); |
2249 | assert_status(status == 0, status, "invariant" ); |
2250 | } |
2251 | } |
2252 | |
2253 | // Platform Monitor implementation |
2254 | |
2255 | os::PlatformMonitor::Impl::Impl() : _next(NULL) { |
2256 | int status = pthread_cond_init(&_cond, _condAttr); |
2257 | assert_status(status == 0, status, "cond_init" ); |
2258 | status = pthread_mutex_init(&_mutex, _mutexAttr); |
2259 | assert_status(status == 0, status, "mutex_init" ); |
2260 | } |
2261 | |
2262 | os::PlatformMonitor::Impl::~Impl() { |
2263 | int status = pthread_cond_destroy(&_cond); |
2264 | assert_status(status == 0, status, "cond_destroy" ); |
2265 | status = pthread_mutex_destroy(&_mutex); |
2266 | assert_status(status == 0, status, "mutex_destroy" ); |
2267 | } |
2268 | |
2269 | #if PLATFORM_MONITOR_IMPL_INDIRECT |
2270 | |
2271 | pthread_mutex_t os::PlatformMonitor::_freelist_lock; |
2272 | os::PlatformMonitor::Impl* os::PlatformMonitor::_freelist = NULL; |
2273 | |
2274 | void os::PlatformMonitor::init() { |
2275 | int status = pthread_mutex_init(&_freelist_lock, _mutexAttr); |
2276 | assert_status(status == 0, status, "freelist lock init" ); |
2277 | } |
2278 | |
2279 | struct os::PlatformMonitor::WithFreeListLocked : public StackObj { |
2280 | WithFreeListLocked() { |
2281 | int status = pthread_mutex_lock(&_freelist_lock); |
2282 | assert_status(status == 0, status, "freelist lock" ); |
2283 | } |
2284 | |
2285 | ~WithFreeListLocked() { |
2286 | int status = pthread_mutex_unlock(&_freelist_lock); |
2287 | assert_status(status == 0, status, "freelist unlock" ); |
2288 | } |
2289 | }; |
2290 | |
2291 | os::PlatformMonitor::PlatformMonitor() { |
2292 | { |
2293 | WithFreeListLocked wfl; |
2294 | _impl = _freelist; |
2295 | if (_impl != NULL) { |
2296 | _freelist = _impl->_next; |
2297 | _impl->_next = NULL; |
2298 | return; |
2299 | } |
2300 | } |
2301 | _impl = new Impl(); |
2302 | } |
2303 | |
2304 | os::PlatformMonitor::~PlatformMonitor() { |
2305 | WithFreeListLocked wfl; |
2306 | assert(_impl->_next == NULL, "invariant" ); |
2307 | _impl->_next = _freelist; |
2308 | _freelist = _impl; |
2309 | } |
2310 | |
2311 | #endif // PLATFORM_MONITOR_IMPL_INDIRECT |
2312 | |
2313 | // Must already be locked |
2314 | int os::PlatformMonitor::wait(jlong millis) { |
2315 | assert(millis >= 0, "negative timeout" ); |
2316 | if (millis > 0) { |
2317 | struct timespec abst; |
2318 | // We have to watch for overflow when converting millis to nanos, |
2319 | // but if millis is that large then we will end up limiting to |
2320 | // MAX_SECS anyway, so just do that here. |
2321 | if (millis / MILLIUNITS > MAX_SECS) { |
2322 | millis = jlong(MAX_SECS) * MILLIUNITS; |
2323 | } |
2324 | to_abstime(&abst, millis * (NANOUNITS / MILLIUNITS), false, false); |
2325 | |
2326 | int ret = OS_TIMEOUT; |
2327 | int status = pthread_cond_timedwait(cond(), mutex(), &abst); |
2328 | assert_status(status == 0 || status == ETIMEDOUT, |
2329 | status, "cond_timedwait" ); |
2330 | if (status == 0) { |
2331 | ret = OS_OK; |
2332 | } |
2333 | return ret; |
2334 | } else { |
2335 | int status = pthread_cond_wait(cond(), mutex()); |
2336 | assert_status(status == 0, status, "cond_wait" ); |
2337 | return OS_OK; |
2338 | } |
2339 | } |
2340 | |
2341 | #endif // !SOLARIS |
2342 | |