1 | /* |
2 | * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/g1/g1CollectedHeap.inline.hpp" |
27 | #include "gc/g1/g1ConcurrentRefine.hpp" |
28 | #include "gc/g1/g1ConcurrentRefineThread.hpp" |
29 | #include "gc/g1/g1DirtyCardQueue.hpp" |
30 | #include "gc/g1/g1RemSet.hpp" |
31 | #include "gc/g1/g1RemSetSummary.hpp" |
32 | #include "gc/g1/g1YoungRemSetSamplingThread.hpp" |
33 | #include "gc/g1/heapRegion.hpp" |
34 | #include "gc/g1/heapRegionRemSet.hpp" |
35 | #include "memory/allocation.inline.hpp" |
36 | #include "runtime/thread.inline.hpp" |
37 | |
38 | class GetRSThreadVTimeClosure : public ThreadClosure { |
39 | private: |
40 | G1RemSetSummary* _summary; |
41 | uint _counter; |
42 | |
43 | public: |
44 | GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) { |
45 | assert(_summary != NULL, "just checking" ); |
46 | } |
47 | |
48 | virtual void do_thread(Thread* t) { |
49 | G1ConcurrentRefineThread* crt = (G1ConcurrentRefineThread*) t; |
50 | _summary->set_rs_thread_vtime(_counter, crt->vtime_accum()); |
51 | _counter++; |
52 | } |
53 | }; |
54 | |
55 | void G1RemSetSummary::update() { |
56 | _num_conc_refined_cards = _rem_set->num_conc_refined_cards(); |
57 | G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); |
58 | _num_processed_buf_mutator = dcqs.processed_buffers_mut(); |
59 | _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread(); |
60 | |
61 | _num_coarsenings = HeapRegionRemSet::n_coarsenings(); |
62 | |
63 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
64 | G1ConcurrentRefine* cg1r = g1h->concurrent_refine(); |
65 | if (_rs_threads_vtimes != NULL) { |
66 | GetRSThreadVTimeClosure p(this); |
67 | cg1r->threads_do(&p); |
68 | } |
69 | set_sampling_thread_vtime(g1h->sampling_thread()->vtime_accum()); |
70 | } |
71 | |
72 | void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) { |
73 | assert(_rs_threads_vtimes != NULL, "just checking" ); |
74 | assert(thread < _num_vtimes, "just checking" ); |
75 | _rs_threads_vtimes[thread] = value; |
76 | } |
77 | |
78 | double G1RemSetSummary::rs_thread_vtime(uint thread) const { |
79 | assert(_rs_threads_vtimes != NULL, "just checking" ); |
80 | assert(thread < _num_vtimes, "just checking" ); |
81 | return _rs_threads_vtimes[thread]; |
82 | } |
83 | |
84 | G1RemSetSummary::G1RemSetSummary() : |
85 | _rem_set(NULL), |
86 | _num_conc_refined_cards(0), |
87 | _num_processed_buf_mutator(0), |
88 | _num_processed_buf_rs_threads(0), |
89 | _num_coarsenings(0), |
90 | _num_vtimes(G1ConcurrentRefine::max_num_threads()), |
91 | _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), |
92 | _sampling_thread_vtime(0.0f) { |
93 | |
94 | memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes); |
95 | } |
96 | |
97 | G1RemSetSummary::G1RemSetSummary(G1RemSet* rem_set) : |
98 | _rem_set(rem_set), |
99 | _num_conc_refined_cards(0), |
100 | _num_processed_buf_mutator(0), |
101 | _num_processed_buf_rs_threads(0), |
102 | _num_coarsenings(0), |
103 | _num_vtimes(G1ConcurrentRefine::max_num_threads()), |
104 | _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), |
105 | _sampling_thread_vtime(0.0f) { |
106 | update(); |
107 | } |
108 | |
109 | G1RemSetSummary::~G1RemSetSummary() { |
110 | if (_rs_threads_vtimes) { |
111 | FREE_C_HEAP_ARRAY(double, _rs_threads_vtimes); |
112 | } |
113 | } |
114 | |
115 | void G1RemSetSummary::set(G1RemSetSummary* other) { |
116 | assert(other != NULL, "just checking" ); |
117 | assert(_num_vtimes == other->_num_vtimes, "just checking" ); |
118 | |
119 | _num_conc_refined_cards = other->num_conc_refined_cards(); |
120 | |
121 | _num_processed_buf_mutator = other->num_processed_buf_mutator(); |
122 | _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads(); |
123 | |
124 | _num_coarsenings = other->_num_coarsenings; |
125 | |
126 | memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes); |
127 | |
128 | set_sampling_thread_vtime(other->sampling_thread_vtime()); |
129 | } |
130 | |
131 | void G1RemSetSummary::subtract_from(G1RemSetSummary* other) { |
132 | assert(other != NULL, "just checking" ); |
133 | assert(_num_vtimes == other->_num_vtimes, "just checking" ); |
134 | |
135 | _num_conc_refined_cards = other->num_conc_refined_cards() - _num_conc_refined_cards; |
136 | |
137 | _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator; |
138 | _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads; |
139 | |
140 | _num_coarsenings = other->num_coarsenings() - _num_coarsenings; |
141 | |
142 | for (uint i = 0; i < _num_vtimes; i++) { |
143 | set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i)); |
144 | } |
145 | |
146 | _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime; |
147 | } |
148 | |
149 | class RegionTypeCounter { |
150 | private: |
151 | const char* _name; |
152 | |
153 | size_t _rs_mem_size; |
154 | size_t _cards_occupied; |
155 | size_t _amount; |
156 | |
157 | size_t _code_root_mem_size; |
158 | size_t _code_root_elems; |
159 | |
160 | double rs_mem_size_percent_of(size_t total) { |
161 | return percent_of(_rs_mem_size, total); |
162 | } |
163 | |
164 | double cards_occupied_percent_of(size_t total) { |
165 | return percent_of(_cards_occupied, total); |
166 | } |
167 | |
168 | double code_root_mem_size_percent_of(size_t total) { |
169 | return percent_of(_code_root_mem_size, total); |
170 | } |
171 | |
172 | double code_root_elems_percent_of(size_t total) { |
173 | return percent_of(_code_root_elems, total); |
174 | } |
175 | |
176 | size_t amount() const { return _amount; } |
177 | |
178 | public: |
179 | |
180 | RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0), |
181 | _amount(0), _code_root_mem_size(0), _code_root_elems(0) { } |
182 | |
183 | void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size, |
184 | size_t code_root_elems) { |
185 | _rs_mem_size += rs_mem_size; |
186 | _cards_occupied += cards_occupied; |
187 | _code_root_mem_size += code_root_mem_size; |
188 | _code_root_elems += code_root_elems; |
189 | _amount++; |
190 | } |
191 | |
192 | size_t rs_mem_size() const { return _rs_mem_size; } |
193 | size_t cards_occupied() const { return _cards_occupied; } |
194 | |
195 | size_t code_root_mem_size() const { return _code_root_mem_size; } |
196 | size_t code_root_elems() const { return _code_root_elems; } |
197 | |
198 | void print_rs_mem_info_on(outputStream * out, size_t total) { |
199 | out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions" , |
200 | byte_size_in_proper_unit(rs_mem_size()), |
201 | proper_unit_for_byte_size(rs_mem_size()), |
202 | rs_mem_size_percent_of(total), amount(), _name); |
203 | } |
204 | |
205 | void print_cards_occupied_info_on(outputStream * out, size_t total) { |
206 | out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions" , |
207 | cards_occupied(), cards_occupied_percent_of(total), amount(), _name); |
208 | } |
209 | |
210 | void print_code_root_mem_info_on(outputStream * out, size_t total) { |
211 | out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions" , |
212 | byte_size_in_proper_unit(code_root_mem_size()), |
213 | proper_unit_for_byte_size(code_root_mem_size()), |
214 | code_root_mem_size_percent_of(total), amount(), _name); |
215 | } |
216 | |
217 | void print_code_root_elems_info_on(outputStream * out, size_t total) { |
218 | out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions" , |
219 | code_root_elems(), code_root_elems_percent_of(total), amount(), _name); |
220 | } |
221 | }; |
222 | |
223 | |
224 | class : public HeapRegionClosure { |
225 | private: |
226 | RegionTypeCounter ; |
227 | RegionTypeCounter ; |
228 | RegionTypeCounter ; |
229 | RegionTypeCounter ; |
230 | RegionTypeCounter ; |
231 | RegionTypeCounter ; |
232 | |
233 | size_t ; |
234 | HeapRegion* ; |
235 | |
236 | size_t () const { return _all.rs_mem_size(); } |
237 | size_t () const { return _all.cards_occupied(); } |
238 | |
239 | size_t () const { return _max_rs_mem_sz; } |
240 | HeapRegion* () const { return _max_rs_mem_sz_region; } |
241 | |
242 | size_t ; |
243 | HeapRegion* ; |
244 | |
245 | size_t () const { return _all.code_root_mem_size(); } |
246 | size_t () const { return _all.code_root_elems(); } |
247 | |
248 | size_t () const { return _max_code_root_mem_sz; } |
249 | HeapRegion* () const { return _max_code_root_mem_sz_region; } |
250 | |
251 | public: |
252 | () : _young("Young" ), _humongous("Humongous" ), |
253 | _free("Free" ), _old("Old" ), _archive("Archive" ), _all("All" ), |
254 | _max_rs_mem_sz(0), _max_rs_mem_sz_region(NULL), |
255 | _max_code_root_mem_sz(0), _max_code_root_mem_sz_region(NULL) |
256 | {} |
257 | |
258 | bool (HeapRegion* r) { |
259 | HeapRegionRemSet* hrrs = r->rem_set(); |
260 | |
261 | // HeapRegionRemSet::mem_size() includes the |
262 | // size of the strong code roots |
263 | size_t rs_mem_sz = hrrs->mem_size(); |
264 | if (rs_mem_sz > _max_rs_mem_sz) { |
265 | _max_rs_mem_sz = rs_mem_sz; |
266 | _max_rs_mem_sz_region = r; |
267 | } |
268 | size_t occupied_cards = hrrs->occupied(); |
269 | size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size(); |
270 | if (code_root_mem_sz > max_code_root_mem_sz()) { |
271 | _max_code_root_mem_sz = code_root_mem_sz; |
272 | _max_code_root_mem_sz_region = r; |
273 | } |
274 | size_t code_root_elems = hrrs->strong_code_roots_list_length(); |
275 | |
276 | RegionTypeCounter* current = NULL; |
277 | if (r->is_free()) { |
278 | current = &_free; |
279 | } else if (r->is_young()) { |
280 | current = &_young; |
281 | } else if (r->is_humongous()) { |
282 | current = &_humongous; |
283 | } else if (r->is_old()) { |
284 | current = &_old; |
285 | } else if (r->is_archive()) { |
286 | current = &_archive; |
287 | } else { |
288 | ShouldNotReachHere(); |
289 | } |
290 | current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); |
291 | _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); |
292 | |
293 | return false; |
294 | } |
295 | |
296 | void (outputStream* out) { |
297 | RegionTypeCounter* counters[] = { &_young, &_humongous, &_free, &_old, &_archive, NULL }; |
298 | |
299 | out->print_cr(" Current rem set statistics" ); |
300 | out->print_cr(" Total per region rem sets sizes = " SIZE_FORMAT "%s." |
301 | " Max = " SIZE_FORMAT "%s." , |
302 | byte_size_in_proper_unit(total_rs_mem_sz()), |
303 | proper_unit_for_byte_size(total_rs_mem_sz()), |
304 | byte_size_in_proper_unit(max_rs_mem_sz()), |
305 | proper_unit_for_byte_size(max_rs_mem_sz())); |
306 | for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { |
307 | (*current)->print_rs_mem_info_on(out, total_rs_mem_sz()); |
308 | } |
309 | |
310 | out->print_cr(" Static structures = " SIZE_FORMAT "%s," |
311 | " free_lists = " SIZE_FORMAT "%s." , |
312 | byte_size_in_proper_unit(HeapRegionRemSet::static_mem_size()), |
313 | proper_unit_for_byte_size(HeapRegionRemSet::static_mem_size()), |
314 | byte_size_in_proper_unit(HeapRegionRemSet::fl_mem_size()), |
315 | proper_unit_for_byte_size(HeapRegionRemSet::fl_mem_size())); |
316 | |
317 | out->print_cr(" " SIZE_FORMAT " occupied cards represented." , |
318 | total_cards_occupied()); |
319 | for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { |
320 | (*current)->print_cards_occupied_info_on(out, total_cards_occupied()); |
321 | } |
322 | |
323 | // Largest sized rem set region statistics |
324 | HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set(); |
325 | out->print_cr(" Region with largest rem set = " HR_FORMAT ", " |
326 | "size = " SIZE_FORMAT "%s, occupied = " SIZE_FORMAT "%s." , |
327 | HR_FORMAT_PARAMS(max_rs_mem_sz_region()), |
328 | byte_size_in_proper_unit(rem_set->mem_size()), |
329 | proper_unit_for_byte_size(rem_set->mem_size()), |
330 | byte_size_in_proper_unit(rem_set->occupied()), |
331 | proper_unit_for_byte_size(rem_set->occupied())); |
332 | // Strong code root statistics |
333 | HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set(); |
334 | out->print_cr(" Total heap region code root sets sizes = " SIZE_FORMAT "%s." |
335 | " Max = " SIZE_FORMAT "%s." , |
336 | byte_size_in_proper_unit(total_code_root_mem_sz()), |
337 | proper_unit_for_byte_size(total_code_root_mem_sz()), |
338 | byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), |
339 | proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size())); |
340 | for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { |
341 | (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz()); |
342 | } |
343 | |
344 | out->print_cr(" " SIZE_FORMAT " code roots represented." , |
345 | total_code_root_elems()); |
346 | for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { |
347 | (*current)->print_code_root_elems_info_on(out, total_code_root_elems()); |
348 | } |
349 | |
350 | out->print_cr(" Region with largest amount of code roots = " HR_FORMAT ", " |
351 | "size = " SIZE_FORMAT "%s, num_elems = " SIZE_FORMAT "." , |
352 | HR_FORMAT_PARAMS(max_code_root_mem_sz_region()), |
353 | byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), |
354 | proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()), |
355 | max_code_root_rem_set->strong_code_roots_list_length()); |
356 | } |
357 | }; |
358 | |
359 | void G1RemSetSummary::print_on(outputStream* out) { |
360 | out->print_cr(" Recent concurrent refinement statistics" ); |
361 | out->print_cr(" Processed " SIZE_FORMAT " cards concurrently" , num_conc_refined_cards()); |
362 | out->print_cr(" Of " SIZE_FORMAT " completed buffers:" , num_processed_buf_total()); |
363 | out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent RS threads." , |
364 | num_processed_buf_total(), |
365 | percent_of(num_processed_buf_rs_threads(), num_processed_buf_total())); |
366 | out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads." , |
367 | num_processed_buf_mutator(), |
368 | percent_of(num_processed_buf_mutator(), num_processed_buf_total())); |
369 | out->print_cr(" Did " SIZE_FORMAT " coarsenings." , num_coarsenings()); |
370 | out->print_cr(" Concurrent RS threads times (s)" ); |
371 | out->print(" " ); |
372 | for (uint i = 0; i < _num_vtimes; i++) { |
373 | out->print(" %5.2f" , rs_thread_vtime(i)); |
374 | } |
375 | out->cr(); |
376 | out->print_cr(" Concurrent sampling threads times (s)" ); |
377 | out->print_cr(" %5.2f" , sampling_thread_vtime()); |
378 | |
379 | HRRSStatsIter blk; |
380 | G1CollectedHeap::heap()->heap_region_iterate(&blk); |
381 | blk.print_summary_on(out); |
382 | } |
383 | |