| 1 | /* |
| 2 | * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/g1/g1CollectedHeap.inline.hpp" |
| 27 | #include "gc/g1/g1ConcurrentRefine.hpp" |
| 28 | #include "gc/g1/g1ConcurrentRefineThread.hpp" |
| 29 | #include "gc/g1/g1DirtyCardQueue.hpp" |
| 30 | #include "gc/g1/g1RemSet.hpp" |
| 31 | #include "gc/g1/g1RemSetSummary.hpp" |
| 32 | #include "gc/g1/g1YoungRemSetSamplingThread.hpp" |
| 33 | #include "gc/g1/heapRegion.hpp" |
| 34 | #include "gc/g1/heapRegionRemSet.hpp" |
| 35 | #include "memory/allocation.inline.hpp" |
| 36 | #include "runtime/thread.inline.hpp" |
| 37 | |
| 38 | class GetRSThreadVTimeClosure : public ThreadClosure { |
| 39 | private: |
| 40 | G1RemSetSummary* _summary; |
| 41 | uint _counter; |
| 42 | |
| 43 | public: |
| 44 | GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) { |
| 45 | assert(_summary != NULL, "just checking" ); |
| 46 | } |
| 47 | |
| 48 | virtual void do_thread(Thread* t) { |
| 49 | G1ConcurrentRefineThread* crt = (G1ConcurrentRefineThread*) t; |
| 50 | _summary->set_rs_thread_vtime(_counter, crt->vtime_accum()); |
| 51 | _counter++; |
| 52 | } |
| 53 | }; |
| 54 | |
| 55 | void G1RemSetSummary::update() { |
| 56 | _num_conc_refined_cards = _rem_set->num_conc_refined_cards(); |
| 57 | G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); |
| 58 | _num_processed_buf_mutator = dcqs.processed_buffers_mut(); |
| 59 | _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread(); |
| 60 | |
| 61 | _num_coarsenings = HeapRegionRemSet::n_coarsenings(); |
| 62 | |
| 63 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| 64 | G1ConcurrentRefine* cg1r = g1h->concurrent_refine(); |
| 65 | if (_rs_threads_vtimes != NULL) { |
| 66 | GetRSThreadVTimeClosure p(this); |
| 67 | cg1r->threads_do(&p); |
| 68 | } |
| 69 | set_sampling_thread_vtime(g1h->sampling_thread()->vtime_accum()); |
| 70 | } |
| 71 | |
| 72 | void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) { |
| 73 | assert(_rs_threads_vtimes != NULL, "just checking" ); |
| 74 | assert(thread < _num_vtimes, "just checking" ); |
| 75 | _rs_threads_vtimes[thread] = value; |
| 76 | } |
| 77 | |
| 78 | double G1RemSetSummary::rs_thread_vtime(uint thread) const { |
| 79 | assert(_rs_threads_vtimes != NULL, "just checking" ); |
| 80 | assert(thread < _num_vtimes, "just checking" ); |
| 81 | return _rs_threads_vtimes[thread]; |
| 82 | } |
| 83 | |
| 84 | G1RemSetSummary::G1RemSetSummary() : |
| 85 | _rem_set(NULL), |
| 86 | _num_conc_refined_cards(0), |
| 87 | _num_processed_buf_mutator(0), |
| 88 | _num_processed_buf_rs_threads(0), |
| 89 | _num_coarsenings(0), |
| 90 | _num_vtimes(G1ConcurrentRefine::max_num_threads()), |
| 91 | _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), |
| 92 | _sampling_thread_vtime(0.0f) { |
| 93 | |
| 94 | memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes); |
| 95 | } |
| 96 | |
| 97 | G1RemSetSummary::G1RemSetSummary(G1RemSet* rem_set) : |
| 98 | _rem_set(rem_set), |
| 99 | _num_conc_refined_cards(0), |
| 100 | _num_processed_buf_mutator(0), |
| 101 | _num_processed_buf_rs_threads(0), |
| 102 | _num_coarsenings(0), |
| 103 | _num_vtimes(G1ConcurrentRefine::max_num_threads()), |
| 104 | _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), |
| 105 | _sampling_thread_vtime(0.0f) { |
| 106 | update(); |
| 107 | } |
| 108 | |
| 109 | G1RemSetSummary::~G1RemSetSummary() { |
| 110 | if (_rs_threads_vtimes) { |
| 111 | FREE_C_HEAP_ARRAY(double, _rs_threads_vtimes); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | void G1RemSetSummary::set(G1RemSetSummary* other) { |
| 116 | assert(other != NULL, "just checking" ); |
| 117 | assert(_num_vtimes == other->_num_vtimes, "just checking" ); |
| 118 | |
| 119 | _num_conc_refined_cards = other->num_conc_refined_cards(); |
| 120 | |
| 121 | _num_processed_buf_mutator = other->num_processed_buf_mutator(); |
| 122 | _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads(); |
| 123 | |
| 124 | _num_coarsenings = other->_num_coarsenings; |
| 125 | |
| 126 | memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes); |
| 127 | |
| 128 | set_sampling_thread_vtime(other->sampling_thread_vtime()); |
| 129 | } |
| 130 | |
| 131 | void G1RemSetSummary::subtract_from(G1RemSetSummary* other) { |
| 132 | assert(other != NULL, "just checking" ); |
| 133 | assert(_num_vtimes == other->_num_vtimes, "just checking" ); |
| 134 | |
| 135 | _num_conc_refined_cards = other->num_conc_refined_cards() - _num_conc_refined_cards; |
| 136 | |
| 137 | _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator; |
| 138 | _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads; |
| 139 | |
| 140 | _num_coarsenings = other->num_coarsenings() - _num_coarsenings; |
| 141 | |
| 142 | for (uint i = 0; i < _num_vtimes; i++) { |
| 143 | set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i)); |
| 144 | } |
| 145 | |
| 146 | _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime; |
| 147 | } |
| 148 | |
| 149 | class RegionTypeCounter { |
| 150 | private: |
| 151 | const char* _name; |
| 152 | |
| 153 | size_t _rs_mem_size; |
| 154 | size_t _cards_occupied; |
| 155 | size_t _amount; |
| 156 | |
| 157 | size_t _code_root_mem_size; |
| 158 | size_t _code_root_elems; |
| 159 | |
| 160 | double rs_mem_size_percent_of(size_t total) { |
| 161 | return percent_of(_rs_mem_size, total); |
| 162 | } |
| 163 | |
| 164 | double cards_occupied_percent_of(size_t total) { |
| 165 | return percent_of(_cards_occupied, total); |
| 166 | } |
| 167 | |
| 168 | double code_root_mem_size_percent_of(size_t total) { |
| 169 | return percent_of(_code_root_mem_size, total); |
| 170 | } |
| 171 | |
| 172 | double code_root_elems_percent_of(size_t total) { |
| 173 | return percent_of(_code_root_elems, total); |
| 174 | } |
| 175 | |
| 176 | size_t amount() const { return _amount; } |
| 177 | |
| 178 | public: |
| 179 | |
| 180 | RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0), |
| 181 | _amount(0), _code_root_mem_size(0), _code_root_elems(0) { } |
| 182 | |
| 183 | void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size, |
| 184 | size_t code_root_elems) { |
| 185 | _rs_mem_size += rs_mem_size; |
| 186 | _cards_occupied += cards_occupied; |
| 187 | _code_root_mem_size += code_root_mem_size; |
| 188 | _code_root_elems += code_root_elems; |
| 189 | _amount++; |
| 190 | } |
| 191 | |
| 192 | size_t rs_mem_size() const { return _rs_mem_size; } |
| 193 | size_t cards_occupied() const { return _cards_occupied; } |
| 194 | |
| 195 | size_t code_root_mem_size() const { return _code_root_mem_size; } |
| 196 | size_t code_root_elems() const { return _code_root_elems; } |
| 197 | |
| 198 | void print_rs_mem_info_on(outputStream * out, size_t total) { |
| 199 | out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions" , |
| 200 | byte_size_in_proper_unit(rs_mem_size()), |
| 201 | proper_unit_for_byte_size(rs_mem_size()), |
| 202 | rs_mem_size_percent_of(total), amount(), _name); |
| 203 | } |
| 204 | |
| 205 | void print_cards_occupied_info_on(outputStream * out, size_t total) { |
| 206 | out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions" , |
| 207 | cards_occupied(), cards_occupied_percent_of(total), amount(), _name); |
| 208 | } |
| 209 | |
| 210 | void print_code_root_mem_info_on(outputStream * out, size_t total) { |
| 211 | out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions" , |
| 212 | byte_size_in_proper_unit(code_root_mem_size()), |
| 213 | proper_unit_for_byte_size(code_root_mem_size()), |
| 214 | code_root_mem_size_percent_of(total), amount(), _name); |
| 215 | } |
| 216 | |
| 217 | void print_code_root_elems_info_on(outputStream * out, size_t total) { |
| 218 | out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions" , |
| 219 | code_root_elems(), code_root_elems_percent_of(total), amount(), _name); |
| 220 | } |
| 221 | }; |
| 222 | |
| 223 | |
| 224 | class : public HeapRegionClosure { |
| 225 | private: |
| 226 | RegionTypeCounter ; |
| 227 | RegionTypeCounter ; |
| 228 | RegionTypeCounter ; |
| 229 | RegionTypeCounter ; |
| 230 | RegionTypeCounter ; |
| 231 | RegionTypeCounter ; |
| 232 | |
| 233 | size_t ; |
| 234 | HeapRegion* ; |
| 235 | |
| 236 | size_t () const { return _all.rs_mem_size(); } |
| 237 | size_t () const { return _all.cards_occupied(); } |
| 238 | |
| 239 | size_t () const { return _max_rs_mem_sz; } |
| 240 | HeapRegion* () const { return _max_rs_mem_sz_region; } |
| 241 | |
| 242 | size_t ; |
| 243 | HeapRegion* ; |
| 244 | |
| 245 | size_t () const { return _all.code_root_mem_size(); } |
| 246 | size_t () const { return _all.code_root_elems(); } |
| 247 | |
| 248 | size_t () const { return _max_code_root_mem_sz; } |
| 249 | HeapRegion* () const { return _max_code_root_mem_sz_region; } |
| 250 | |
| 251 | public: |
| 252 | () : _young("Young" ), _humongous("Humongous" ), |
| 253 | _free("Free" ), _old("Old" ), _archive("Archive" ), _all("All" ), |
| 254 | _max_rs_mem_sz(0), _max_rs_mem_sz_region(NULL), |
| 255 | _max_code_root_mem_sz(0), _max_code_root_mem_sz_region(NULL) |
| 256 | {} |
| 257 | |
| 258 | bool (HeapRegion* r) { |
| 259 | HeapRegionRemSet* hrrs = r->rem_set(); |
| 260 | |
| 261 | // HeapRegionRemSet::mem_size() includes the |
| 262 | // size of the strong code roots |
| 263 | size_t rs_mem_sz = hrrs->mem_size(); |
| 264 | if (rs_mem_sz > _max_rs_mem_sz) { |
| 265 | _max_rs_mem_sz = rs_mem_sz; |
| 266 | _max_rs_mem_sz_region = r; |
| 267 | } |
| 268 | size_t occupied_cards = hrrs->occupied(); |
| 269 | size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size(); |
| 270 | if (code_root_mem_sz > max_code_root_mem_sz()) { |
| 271 | _max_code_root_mem_sz = code_root_mem_sz; |
| 272 | _max_code_root_mem_sz_region = r; |
| 273 | } |
| 274 | size_t code_root_elems = hrrs->strong_code_roots_list_length(); |
| 275 | |
| 276 | RegionTypeCounter* current = NULL; |
| 277 | if (r->is_free()) { |
| 278 | current = &_free; |
| 279 | } else if (r->is_young()) { |
| 280 | current = &_young; |
| 281 | } else if (r->is_humongous()) { |
| 282 | current = &_humongous; |
| 283 | } else if (r->is_old()) { |
| 284 | current = &_old; |
| 285 | } else if (r->is_archive()) { |
| 286 | current = &_archive; |
| 287 | } else { |
| 288 | ShouldNotReachHere(); |
| 289 | } |
| 290 | current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); |
| 291 | _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); |
| 292 | |
| 293 | return false; |
| 294 | } |
| 295 | |
| 296 | void (outputStream* out) { |
| 297 | RegionTypeCounter* counters[] = { &_young, &_humongous, &_free, &_old, &_archive, NULL }; |
| 298 | |
| 299 | out->print_cr(" Current rem set statistics" ); |
| 300 | out->print_cr(" Total per region rem sets sizes = " SIZE_FORMAT "%s." |
| 301 | " Max = " SIZE_FORMAT "%s." , |
| 302 | byte_size_in_proper_unit(total_rs_mem_sz()), |
| 303 | proper_unit_for_byte_size(total_rs_mem_sz()), |
| 304 | byte_size_in_proper_unit(max_rs_mem_sz()), |
| 305 | proper_unit_for_byte_size(max_rs_mem_sz())); |
| 306 | for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { |
| 307 | (*current)->print_rs_mem_info_on(out, total_rs_mem_sz()); |
| 308 | } |
| 309 | |
| 310 | out->print_cr(" Static structures = " SIZE_FORMAT "%s," |
| 311 | " free_lists = " SIZE_FORMAT "%s." , |
| 312 | byte_size_in_proper_unit(HeapRegionRemSet::static_mem_size()), |
| 313 | proper_unit_for_byte_size(HeapRegionRemSet::static_mem_size()), |
| 314 | byte_size_in_proper_unit(HeapRegionRemSet::fl_mem_size()), |
| 315 | proper_unit_for_byte_size(HeapRegionRemSet::fl_mem_size())); |
| 316 | |
| 317 | out->print_cr(" " SIZE_FORMAT " occupied cards represented." , |
| 318 | total_cards_occupied()); |
| 319 | for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { |
| 320 | (*current)->print_cards_occupied_info_on(out, total_cards_occupied()); |
| 321 | } |
| 322 | |
| 323 | // Largest sized rem set region statistics |
| 324 | HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set(); |
| 325 | out->print_cr(" Region with largest rem set = " HR_FORMAT ", " |
| 326 | "size = " SIZE_FORMAT "%s, occupied = " SIZE_FORMAT "%s." , |
| 327 | HR_FORMAT_PARAMS(max_rs_mem_sz_region()), |
| 328 | byte_size_in_proper_unit(rem_set->mem_size()), |
| 329 | proper_unit_for_byte_size(rem_set->mem_size()), |
| 330 | byte_size_in_proper_unit(rem_set->occupied()), |
| 331 | proper_unit_for_byte_size(rem_set->occupied())); |
| 332 | // Strong code root statistics |
| 333 | HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set(); |
| 334 | out->print_cr(" Total heap region code root sets sizes = " SIZE_FORMAT "%s." |
| 335 | " Max = " SIZE_FORMAT "%s." , |
| 336 | byte_size_in_proper_unit(total_code_root_mem_sz()), |
| 337 | proper_unit_for_byte_size(total_code_root_mem_sz()), |
| 338 | byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), |
| 339 | proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size())); |
| 340 | for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { |
| 341 | (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz()); |
| 342 | } |
| 343 | |
| 344 | out->print_cr(" " SIZE_FORMAT " code roots represented." , |
| 345 | total_code_root_elems()); |
| 346 | for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { |
| 347 | (*current)->print_code_root_elems_info_on(out, total_code_root_elems()); |
| 348 | } |
| 349 | |
| 350 | out->print_cr(" Region with largest amount of code roots = " HR_FORMAT ", " |
| 351 | "size = " SIZE_FORMAT "%s, num_elems = " SIZE_FORMAT "." , |
| 352 | HR_FORMAT_PARAMS(max_code_root_mem_sz_region()), |
| 353 | byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), |
| 354 | proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()), |
| 355 | max_code_root_rem_set->strong_code_roots_list_length()); |
| 356 | } |
| 357 | }; |
| 358 | |
| 359 | void G1RemSetSummary::print_on(outputStream* out) { |
| 360 | out->print_cr(" Recent concurrent refinement statistics" ); |
| 361 | out->print_cr(" Processed " SIZE_FORMAT " cards concurrently" , num_conc_refined_cards()); |
| 362 | out->print_cr(" Of " SIZE_FORMAT " completed buffers:" , num_processed_buf_total()); |
| 363 | out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent RS threads." , |
| 364 | num_processed_buf_total(), |
| 365 | percent_of(num_processed_buf_rs_threads(), num_processed_buf_total())); |
| 366 | out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads." , |
| 367 | num_processed_buf_mutator(), |
| 368 | percent_of(num_processed_buf_mutator(), num_processed_buf_total())); |
| 369 | out->print_cr(" Did " SIZE_FORMAT " coarsenings." , num_coarsenings()); |
| 370 | out->print_cr(" Concurrent RS threads times (s)" ); |
| 371 | out->print(" " ); |
| 372 | for (uint i = 0; i < _num_vtimes; i++) { |
| 373 | out->print(" %5.2f" , rs_thread_vtime(i)); |
| 374 | } |
| 375 | out->cr(); |
| 376 | out->print_cr(" Concurrent sampling threads times (s)" ); |
| 377 | out->print_cr(" %5.2f" , sampling_thread_vtime()); |
| 378 | |
| 379 | HRRSStatsIter blk; |
| 380 | G1CollectedHeap::heap()->heap_region_iterate(&blk); |
| 381 | blk.print_summary_on(out); |
| 382 | } |
| 383 | |