1 | /* |
2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_GC_G1_HEAPREGION_HPP |
26 | #define SHARE_GC_G1_HEAPREGION_HPP |
27 | |
28 | #include "gc/g1/g1BlockOffsetTable.hpp" |
29 | #include "gc/g1/g1HeapRegionTraceType.hpp" |
30 | #include "gc/g1/heapRegionTracer.hpp" |
31 | #include "gc/g1/heapRegionType.hpp" |
32 | #include "gc/g1/survRateGroup.hpp" |
33 | #include "gc/shared/ageTable.hpp" |
34 | #include "gc/shared/cardTable.hpp" |
35 | #include "gc/shared/verifyOption.hpp" |
36 | #include "gc/shared/spaceDecorator.hpp" |
37 | #include "utilities/macros.hpp" |
38 | |
39 | // A HeapRegion is the smallest piece of a G1CollectedHeap that |
40 | // can be collected independently. |
41 | |
42 | // NOTE: Although a HeapRegion is a Space, its |
43 | // Space::initDirtyCardClosure method must not be called. |
44 | // The problem is that the existence of this method breaks |
45 | // the independence of barrier sets from remembered sets. |
46 | // The solution is to remove this method from the definition |
47 | // of a Space. |
48 | |
49 | // Each heap region is self contained. top() and end() can never |
50 | // be set beyond the end of the region. For humongous objects, |
51 | // the first region is a StartsHumongous region. If the humongous |
52 | // object is larger than a heap region, the following regions will |
53 | // be of type ContinuesHumongous. In this case the top() of the |
54 | // StartHumongous region and all ContinuesHumongous regions except |
55 | // the last will point to their own end. The last ContinuesHumongous |
56 | // region may have top() equal the end of object if there isn't |
57 | // room for filler objects to pad out to the end of the region. |
58 | |
59 | class G1CollectedHeap; |
60 | class G1CMBitMap; |
61 | class G1IsAliveAndApplyClosure; |
62 | class HeapRegionRemSet; |
63 | class HeapRegionRemSetIterator; |
64 | class HeapRegion; |
65 | class HeapRegionSetBase; |
66 | class nmethod; |
67 | |
68 | #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]" |
69 | #define HR_FORMAT_PARAMS(_hr_) \ |
70 | (_hr_)->hrm_index(), \ |
71 | (_hr_)->get_short_type_str(), \ |
72 | p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end()) |
73 | |
74 | // sentinel value for hrm_index |
75 | #define G1_NO_HRM_INDEX ((uint) -1) |
76 | |
77 | // The complicating factor is that BlockOffsetTable diverged |
78 | // significantly, and we need functionality that is only in the G1 version. |
79 | // So I copied that code, which led to an alternate G1 version of |
80 | // OffsetTableContigSpace. If the two versions of BlockOffsetTable could |
81 | // be reconciled, then G1OffsetTableContigSpace could go away. |
82 | |
83 | // The idea behind time stamps is the following. We want to keep track of |
84 | // the highest address where it's safe to scan objects for each region. |
85 | // This is only relevant for current GC alloc regions so we keep a time stamp |
86 | // per region to determine if the region has been allocated during the current |
87 | // GC or not. If the time stamp is current we report a scan_top value which |
88 | // was saved at the end of the previous GC for retained alloc regions and which is |
89 | // equal to the bottom for all other regions. |
90 | // There is a race between card scanners and allocating gc workers where we must ensure |
91 | // that card scanners do not read the memory allocated by the gc workers. |
92 | // In order to enforce that, we must not return a value of _top which is more recent than the |
93 | // time stamp. This is due to the fact that a region may become a gc alloc region at |
94 | // some point after we've read the timestamp value as being < the current time stamp. |
95 | // The time stamps are re-initialized to zero at cleanup and at Full GCs. |
96 | // The current scheme that uses sequential unsigned ints will fail only if we have 4b |
97 | // evacuation pauses between two cleanups, which is _highly_ unlikely. |
98 | class G1ContiguousSpace: public CompactibleSpace { |
99 | friend class VMStructs; |
100 | HeapWord* volatile _top; |
101 | protected: |
102 | G1BlockOffsetTablePart _bot_part; |
103 | Mutex _par_alloc_lock; |
104 | // When we need to retire an allocation region, while other threads |
105 | // are also concurrently trying to allocate into it, we typically |
106 | // allocate a dummy object at the end of the region to ensure that |
107 | // no more allocations can take place in it. However, sometimes we |
108 | // want to know where the end of the last "real" object we allocated |
109 | // into the region was and this is what this keeps track. |
110 | HeapWord* _pre_dummy_top; |
111 | |
112 | public: |
113 | G1ContiguousSpace(G1BlockOffsetTable* bot); |
114 | |
115 | void set_top(HeapWord* value) { _top = value; } |
116 | HeapWord* top() const { return _top; } |
117 | |
118 | protected: |
119 | // Reset the G1ContiguousSpace. |
120 | virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space); |
121 | |
122 | HeapWord* volatile* top_addr() { return &_top; } |
123 | // Try to allocate at least min_word_size and up to desired_size from this Space. |
124 | // Returns NULL if not possible, otherwise sets actual_word_size to the amount of |
125 | // space allocated. |
126 | // This version assumes that all allocation requests to this Space are properly |
127 | // synchronized. |
128 | inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size); |
129 | // Try to allocate at least min_word_size and up to desired_size from this Space. |
130 | // Returns NULL if not possible, otherwise sets actual_word_size to the amount of |
131 | // space allocated. |
132 | // This version synchronizes with other calls to par_allocate_impl(). |
133 | inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size); |
134 | |
135 | public: |
136 | void reset_after_compaction() { set_top(compaction_top()); } |
137 | |
138 | size_t used() const { return byte_size(bottom(), top()); } |
139 | size_t free() const { return byte_size(top(), end()); } |
140 | bool is_free_block(const HeapWord* p) const { return p >= top(); } |
141 | |
142 | MemRegion used_region() const { return MemRegion(bottom(), top()); } |
143 | |
144 | void object_iterate(ObjectClosure* blk); |
145 | void safe_object_iterate(ObjectClosure* blk); |
146 | |
147 | void mangle_unused_area() PRODUCT_RETURN; |
148 | void mangle_unused_area_complete() PRODUCT_RETURN; |
149 | |
150 | // See the comment above in the declaration of _pre_dummy_top for an |
151 | // explanation of what it is. |
152 | void set_pre_dummy_top(HeapWord* pre_dummy_top) { |
153 | assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition" ); |
154 | _pre_dummy_top = pre_dummy_top; |
155 | } |
156 | HeapWord* pre_dummy_top() { |
157 | return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top; |
158 | } |
159 | void reset_pre_dummy_top() { _pre_dummy_top = NULL; } |
160 | |
161 | virtual void clear(bool mangle_space); |
162 | |
163 | HeapWord* block_start(const void* p); |
164 | HeapWord* block_start_const(const void* p) const; |
165 | |
166 | // Allocation (return NULL if full). Assumes the caller has established |
167 | // mutually exclusive access to the space. |
168 | HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size); |
169 | // Allocation (return NULL if full). Enforces mutual exclusion internally. |
170 | HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size); |
171 | |
172 | virtual HeapWord* allocate(size_t word_size); |
173 | virtual HeapWord* par_allocate(size_t word_size); |
174 | |
175 | HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; } |
176 | |
177 | // MarkSweep support phase3 |
178 | virtual HeapWord* initialize_threshold(); |
179 | virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end); |
180 | |
181 | virtual void print() const; |
182 | |
183 | void reset_bot() { |
184 | _bot_part.reset_bot(); |
185 | } |
186 | |
187 | void print_bot_on(outputStream* out) { |
188 | _bot_part.print_on(out); |
189 | } |
190 | }; |
191 | |
192 | class HeapRegion: public G1ContiguousSpace { |
193 | friend class VMStructs; |
194 | // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class |
195 | template <typename SpaceType> |
196 | friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp); |
197 | private: |
198 | |
199 | // The remembered set for this region. |
200 | // (Might want to make this "inline" later, to avoid some alloc failure |
201 | // issues.) |
202 | HeapRegionRemSet* _rem_set; |
203 | |
204 | // Auxiliary functions for scan_and_forward support. |
205 | // See comments for CompactibleSpace for more information. |
206 | inline HeapWord* scan_limit() const { |
207 | return top(); |
208 | } |
209 | |
210 | inline bool scanned_block_is_obj(const HeapWord* addr) const { |
211 | return true; // Always true, since scan_limit is top |
212 | } |
213 | |
214 | inline size_t scanned_block_size(const HeapWord* addr) const { |
215 | return HeapRegion::block_size(addr); // Avoid virtual call |
216 | } |
217 | |
218 | void report_region_type_change(G1HeapRegionTraceType::Type to); |
219 | |
220 | // Returns whether the given object address refers to a dead object, and either the |
221 | // size of the object (if live) or the size of the block (if dead) in size. |
222 | // May |
223 | // - only called with obj < top() |
224 | // - not called on humongous objects or archive regions |
225 | inline bool is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const; |
226 | |
227 | protected: |
228 | // The index of this region in the heap region sequence. |
229 | uint _hrm_index; |
230 | |
231 | HeapRegionType _type; |
232 | |
233 | // For a humongous region, region in which it starts. |
234 | HeapRegion* _humongous_start_region; |
235 | |
236 | // True iff an attempt to evacuate an object in the region failed. |
237 | bool _evacuation_failed; |
238 | |
239 | // Fields used by the HeapRegionSetBase class and subclasses. |
240 | HeapRegion* _next; |
241 | HeapRegion* _prev; |
242 | #ifdef ASSERT |
243 | HeapRegionSetBase* _containing_set; |
244 | #endif // ASSERT |
245 | |
246 | // We use concurrent marking to determine the amount of live data |
247 | // in each heap region. |
248 | size_t _prev_marked_bytes; // Bytes known to be live via last completed marking. |
249 | size_t _next_marked_bytes; // Bytes known to be live via in-progress marking. |
250 | |
251 | // The calculated GC efficiency of the region. |
252 | double _gc_efficiency; |
253 | |
254 | static const uint InvalidCSetIndex = UINT_MAX; |
255 | |
256 | // The index in the optional regions array, if this region |
257 | // is considered optional during a mixed collections. |
258 | uint _index_in_opt_cset; |
259 | int _young_index_in_cset; |
260 | SurvRateGroup* _surv_rate_group; |
261 | int _age_index; |
262 | |
263 | // The start of the unmarked area. The unmarked area extends from this |
264 | // word until the top and/or end of the region, and is the part |
265 | // of the region for which no marking was done, i.e. objects may |
266 | // have been allocated in this part since the last mark phase. |
267 | // "prev" is the top at the start of the last completed marking. |
268 | // "next" is the top at the start of the in-progress marking (if any.) |
269 | HeapWord* _prev_top_at_mark_start; |
270 | HeapWord* _next_top_at_mark_start; |
271 | // If a collection pause is in progress, this is the top at the start |
272 | // of that pause. |
273 | |
274 | void init_top_at_mark_start() { |
275 | assert(_prev_marked_bytes == 0 && |
276 | _next_marked_bytes == 0, |
277 | "Must be called after zero_marked_bytes." ); |
278 | HeapWord* bot = bottom(); |
279 | _prev_top_at_mark_start = bot; |
280 | _next_top_at_mark_start = bot; |
281 | } |
282 | |
283 | // Cached attributes used in the collection set policy information |
284 | |
285 | // The RSet length that was added to the total value |
286 | // for the collection set. |
287 | size_t _recorded_rs_length; |
288 | |
289 | // The predicted elapsed time that was added to total value |
290 | // for the collection set. |
291 | double _predicted_elapsed_time_ms; |
292 | |
293 | // Iterate over the references in a humongous objects and apply the given closure |
294 | // to them. |
295 | // Humongous objects are allocated directly in the old-gen. So we need special |
296 | // handling for concurrent processing encountering an in-progress allocation. |
297 | template <class Closure, bool is_gc_active> |
298 | inline bool do_oops_on_card_in_humongous(MemRegion mr, |
299 | Closure* cl, |
300 | G1CollectedHeap* g1h); |
301 | |
302 | // Returns the block size of the given (dead, potentially having its class unloaded) object |
303 | // starting at p extending to at most the prev TAMS using the given mark bitmap. |
304 | inline size_t block_size_using_bitmap(const HeapWord* p, const G1CMBitMap* const prev_bitmap) const; |
305 | public: |
306 | HeapRegion(uint hrm_index, |
307 | G1BlockOffsetTable* bot, |
308 | MemRegion mr); |
309 | |
310 | // Initializing the HeapRegion not only resets the data structure, but also |
311 | // resets the BOT for that heap region. |
312 | // The default values for clear_space means that we will do the clearing if |
313 | // there's clearing to be done ourselves. We also always mangle the space. |
314 | virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle); |
315 | |
316 | static int LogOfHRGrainBytes; |
317 | static int LogOfHRGrainWords; |
318 | |
319 | static size_t GrainBytes; |
320 | static size_t GrainWords; |
321 | static size_t CardsPerRegion; |
322 | |
323 | static size_t align_up_to_region_byte_size(size_t sz) { |
324 | return (sz + (size_t) GrainBytes - 1) & |
325 | ~((1 << (size_t) LogOfHRGrainBytes) - 1); |
326 | } |
327 | |
328 | |
329 | // Returns whether a field is in the same region as the obj it points to. |
330 | template <typename T> |
331 | static bool is_in_same_region(T* p, oop obj) { |
332 | assert(p != NULL, "p can't be NULL" ); |
333 | assert(obj != NULL, "obj can't be NULL" ); |
334 | return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0; |
335 | } |
336 | |
337 | static size_t max_region_size(); |
338 | static size_t min_region_size_in_words(); |
339 | |
340 | // It sets up the heap region size (GrainBytes / GrainWords), as |
341 | // well as other related fields that are based on the heap region |
342 | // size (LogOfHRGrainBytes / LogOfHRGrainWords / |
343 | // CardsPerRegion). All those fields are considered constant |
344 | // throughout the JVM's execution, therefore they should only be set |
345 | // up once during initialization time. |
346 | static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size); |
347 | |
348 | // All allocated blocks are occupied by objects in a HeapRegion |
349 | bool block_is_obj(const HeapWord* p) const; |
350 | |
351 | // Returns whether the given object is dead based on TAMS and bitmap. |
352 | bool is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const; |
353 | |
354 | // Returns the object size for all valid block starts |
355 | // and the amount of unallocated words if called on top() |
356 | size_t block_size(const HeapWord* p) const; |
357 | |
358 | // Scans through the region using the bitmap to determine what |
359 | // objects to call size_t ApplyToMarkedClosure::apply(oop) for. |
360 | template<typename ApplyToMarkedClosure> |
361 | inline void apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure); |
362 | // Override for scan_and_forward support. |
363 | void prepare_for_compaction(CompactPoint* cp); |
364 | // Update heap region to be consistent after compaction. |
365 | void complete_compaction(); |
366 | |
367 | inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size); |
368 | inline HeapWord* allocate_no_bot_updates(size_t word_size); |
369 | inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size); |
370 | |
371 | // If this region is a member of a HeapRegionManager, the index in that |
372 | // sequence, otherwise -1. |
373 | uint hrm_index() const { return _hrm_index; } |
374 | |
375 | // The number of bytes marked live in the region in the last marking phase. |
376 | size_t marked_bytes() { return _prev_marked_bytes; } |
377 | size_t live_bytes() { |
378 | return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes(); |
379 | } |
380 | |
381 | // The number of bytes counted in the next marking. |
382 | size_t next_marked_bytes() { return _next_marked_bytes; } |
383 | // The number of bytes live wrt the next marking. |
384 | size_t next_live_bytes() { |
385 | return |
386 | (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes(); |
387 | } |
388 | |
389 | // A lower bound on the amount of garbage bytes in the region. |
390 | size_t garbage_bytes() { |
391 | size_t used_at_mark_start_bytes = |
392 | (prev_top_at_mark_start() - bottom()) * HeapWordSize; |
393 | return used_at_mark_start_bytes - marked_bytes(); |
394 | } |
395 | |
396 | // Return the amount of bytes we'll reclaim if we collect this |
397 | // region. This includes not only the known garbage bytes in the |
398 | // region but also any unallocated space in it, i.e., [top, end), |
399 | // since it will also be reclaimed if we collect the region. |
400 | size_t reclaimable_bytes() { |
401 | size_t known_live_bytes = live_bytes(); |
402 | assert(known_live_bytes <= capacity(), "sanity" ); |
403 | return capacity() - known_live_bytes; |
404 | } |
405 | |
406 | // An upper bound on the number of live bytes in the region. |
407 | size_t max_live_bytes() { return used() - garbage_bytes(); } |
408 | |
409 | void add_to_marked_bytes(size_t incr_bytes) { |
410 | _next_marked_bytes = _next_marked_bytes + incr_bytes; |
411 | } |
412 | |
413 | void zero_marked_bytes() { |
414 | _prev_marked_bytes = _next_marked_bytes = 0; |
415 | } |
416 | |
417 | const char* get_type_str() const { return _type.get_str(); } |
418 | const char* get_short_type_str() const { return _type.get_short_str(); } |
419 | G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); } |
420 | |
421 | bool is_free() const { return _type.is_free(); } |
422 | |
423 | bool is_young() const { return _type.is_young(); } |
424 | bool is_eden() const { return _type.is_eden(); } |
425 | bool is_survivor() const { return _type.is_survivor(); } |
426 | |
427 | bool is_humongous() const { return _type.is_humongous(); } |
428 | bool is_starts_humongous() const { return _type.is_starts_humongous(); } |
429 | bool is_continues_humongous() const { return _type.is_continues_humongous(); } |
430 | |
431 | bool is_old() const { return _type.is_old(); } |
432 | |
433 | bool is_old_or_humongous() const { return _type.is_old_or_humongous(); } |
434 | |
435 | bool is_old_or_humongous_or_archive() const { return _type.is_old_or_humongous_or_archive(); } |
436 | |
437 | // A pinned region contains objects which are not moved by garbage collections. |
438 | // Humongous regions and archive regions are pinned. |
439 | bool is_pinned() const { return _type.is_pinned(); } |
440 | |
441 | // An archive region is a pinned region, also tagged as old, which |
442 | // should not be marked during mark/sweep. This allows the address |
443 | // space to be shared by JVM instances. |
444 | bool is_archive() const { return _type.is_archive(); } |
445 | bool is_open_archive() const { return _type.is_open_archive(); } |
446 | bool is_closed_archive() const { return _type.is_closed_archive(); } |
447 | |
448 | // For a humongous region, region in which it starts. |
449 | HeapRegion* humongous_start_region() const { |
450 | return _humongous_start_region; |
451 | } |
452 | |
453 | // Makes the current region be a "starts humongous" region, i.e., |
454 | // the first region in a series of one or more contiguous regions |
455 | // that will contain a single "humongous" object. |
456 | // |
457 | // obj_top : points to the top of the humongous object. |
458 | // fill_size : size of the filler object at the end of the region series. |
459 | void set_starts_humongous(HeapWord* obj_top, size_t fill_size); |
460 | |
461 | // Makes the current region be a "continues humongous' |
462 | // region. first_hr is the "start humongous" region of the series |
463 | // which this region will be part of. |
464 | void set_continues_humongous(HeapRegion* first_hr); |
465 | |
466 | // Unsets the humongous-related fields on the region. |
467 | void clear_humongous(); |
468 | |
469 | // If the region has a remembered set, return a pointer to it. |
470 | HeapRegionRemSet* rem_set() const { |
471 | return _rem_set; |
472 | } |
473 | |
474 | inline bool in_collection_set() const; |
475 | |
476 | // Methods used by the HeapRegionSetBase class and subclasses. |
477 | |
478 | // Getter and setter for the next and prev fields used to link regions into |
479 | // linked lists. |
480 | HeapRegion* next() { return _next; } |
481 | HeapRegion* prev() { return _prev; } |
482 | |
483 | void set_next(HeapRegion* next) { _next = next; } |
484 | void set_prev(HeapRegion* prev) { _prev = prev; } |
485 | |
486 | // Every region added to a set is tagged with a reference to that |
487 | // set. This is used for doing consistency checking to make sure that |
488 | // the contents of a set are as they should be and it's only |
489 | // available in non-product builds. |
490 | #ifdef ASSERT |
491 | void set_containing_set(HeapRegionSetBase* containing_set) { |
492 | assert((containing_set == NULL && _containing_set != NULL) || |
493 | (containing_set != NULL && _containing_set == NULL), |
494 | "containing_set: " PTR_FORMAT " " |
495 | "_containing_set: " PTR_FORMAT, |
496 | p2i(containing_set), p2i(_containing_set)); |
497 | |
498 | _containing_set = containing_set; |
499 | } |
500 | |
501 | HeapRegionSetBase* containing_set() { return _containing_set; } |
502 | #else // ASSERT |
503 | void set_containing_set(HeapRegionSetBase* containing_set) { } |
504 | |
505 | // containing_set() is only used in asserts so there's no reason |
506 | // to provide a dummy version of it. |
507 | #endif // ASSERT |
508 | |
509 | |
510 | // Reset the HeapRegion to default values. |
511 | // If skip_remset is true, do not clear the remembered set. |
512 | // If clear_space is true, clear the HeapRegion's memory. |
513 | // If locked is true, assume we are the only thread doing this operation. |
514 | void hr_clear(bool skip_remset, bool clear_space, bool locked = false); |
515 | // Clear the card table corresponding to this region. |
516 | void clear_cardtable(); |
517 | |
518 | // Get the start of the unmarked area in this region. |
519 | HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; } |
520 | HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; } |
521 | |
522 | // Note the start or end of marking. This tells the heap region |
523 | // that the collector is about to start or has finished (concurrently) |
524 | // marking the heap. |
525 | |
526 | // Notify the region that concurrent marking is starting. Initialize |
527 | // all fields related to the next marking info. |
528 | inline void note_start_of_marking(); |
529 | |
530 | // Notify the region that concurrent marking has finished. Copy the |
531 | // (now finalized) next marking info fields into the prev marking |
532 | // info fields. |
533 | inline void note_end_of_marking(); |
534 | |
535 | // Notify the region that we are about to start processing |
536 | // self-forwarded objects during evac failure handling. |
537 | void note_self_forwarding_removal_start(bool during_initial_mark, |
538 | bool during_conc_mark); |
539 | |
540 | // Notify the region that we have finished processing self-forwarded |
541 | // objects during evac failure handling. |
542 | void note_self_forwarding_removal_end(size_t marked_bytes); |
543 | |
544 | void reset_during_compaction() { |
545 | assert(is_humongous(), |
546 | "should only be called for humongous regions" ); |
547 | |
548 | zero_marked_bytes(); |
549 | init_top_at_mark_start(); |
550 | } |
551 | |
552 | void calc_gc_efficiency(void); |
553 | double gc_efficiency() const { return _gc_efficiency;} |
554 | |
555 | uint index_in_opt_cset() const { |
556 | assert(has_index_in_opt_cset(), "Opt cset index not set." ); |
557 | return _index_in_opt_cset; |
558 | } |
559 | bool has_index_in_opt_cset() const { return _index_in_opt_cset != InvalidCSetIndex; } |
560 | void set_index_in_opt_cset(uint index) { _index_in_opt_cset = index; } |
561 | void clear_index_in_opt_cset() { _index_in_opt_cset = InvalidCSetIndex; } |
562 | |
563 | int young_index_in_cset() const { return _young_index_in_cset; } |
564 | void set_young_index_in_cset(int index) { |
565 | assert( (index == -1) || is_young(), "pre-condition" ); |
566 | _young_index_in_cset = index; |
567 | } |
568 | |
569 | int age_in_surv_rate_group() { |
570 | assert( _surv_rate_group != NULL, "pre-condition" ); |
571 | assert( _age_index > -1, "pre-condition" ); |
572 | return _surv_rate_group->age_in_group(_age_index); |
573 | } |
574 | |
575 | void record_surv_words_in_group(size_t words_survived) { |
576 | assert( _surv_rate_group != NULL, "pre-condition" ); |
577 | assert( _age_index > -1, "pre-condition" ); |
578 | int age_in_group = age_in_surv_rate_group(); |
579 | _surv_rate_group->record_surviving_words(age_in_group, words_survived); |
580 | } |
581 | |
582 | int age_in_surv_rate_group_cond() { |
583 | if (_surv_rate_group != NULL) |
584 | return age_in_surv_rate_group(); |
585 | else |
586 | return -1; |
587 | } |
588 | |
589 | SurvRateGroup* surv_rate_group() { |
590 | return _surv_rate_group; |
591 | } |
592 | |
593 | void install_surv_rate_group(SurvRateGroup* surv_rate_group) { |
594 | assert( surv_rate_group != NULL, "pre-condition" ); |
595 | assert( _surv_rate_group == NULL, "pre-condition" ); |
596 | assert( is_young(), "pre-condition" ); |
597 | |
598 | _surv_rate_group = surv_rate_group; |
599 | _age_index = surv_rate_group->next_age_index(); |
600 | } |
601 | |
602 | void uninstall_surv_rate_group() { |
603 | if (_surv_rate_group != NULL) { |
604 | assert( _age_index > -1, "pre-condition" ); |
605 | assert( is_young(), "pre-condition" ); |
606 | |
607 | _surv_rate_group = NULL; |
608 | _age_index = -1; |
609 | } else { |
610 | assert( _age_index == -1, "pre-condition" ); |
611 | } |
612 | } |
613 | |
614 | void set_free(); |
615 | |
616 | void set_eden(); |
617 | void set_eden_pre_gc(); |
618 | void set_survivor(); |
619 | |
620 | void move_to_old(); |
621 | void set_old(); |
622 | |
623 | void set_open_archive(); |
624 | void set_closed_archive(); |
625 | |
626 | // Determine if an object has been allocated since the last |
627 | // mark performed by the collector. This returns true iff the object |
628 | // is within the unmarked area of the region. |
629 | bool obj_allocated_since_prev_marking(oop obj) const { |
630 | return (HeapWord *) obj >= prev_top_at_mark_start(); |
631 | } |
632 | bool obj_allocated_since_next_marking(oop obj) const { |
633 | return (HeapWord *) obj >= next_top_at_mark_start(); |
634 | } |
635 | |
636 | // Returns the "evacuation_failed" property of the region. |
637 | bool evacuation_failed() { return _evacuation_failed; } |
638 | |
639 | // Sets the "evacuation_failed" property of the region. |
640 | void set_evacuation_failed(bool b) { |
641 | _evacuation_failed = b; |
642 | |
643 | if (b) { |
644 | _next_marked_bytes = 0; |
645 | } |
646 | } |
647 | |
648 | // Iterate over the objects overlapping part of a card, applying cl |
649 | // to all references in the region. This is a helper for |
650 | // G1RemSet::refine_card*, and is tightly coupled with them. |
651 | // mr is the memory region covered by the card, trimmed to the |
652 | // allocated space for this region. Must not be empty. |
653 | // This region must be old or humongous. |
654 | // Returns true if the designated objects were successfully |
655 | // processed, false if an unparsable part of the heap was |
656 | // encountered; that only happens when invoked concurrently with the |
657 | // mutator. |
658 | template <bool is_gc_active, class Closure> |
659 | inline bool oops_on_card_seq_iterate_careful(MemRegion mr, Closure* cl); |
660 | |
661 | size_t recorded_rs_length() const { return _recorded_rs_length; } |
662 | double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; } |
663 | |
664 | void set_recorded_rs_length(size_t rs_length) { |
665 | _recorded_rs_length = rs_length; |
666 | } |
667 | |
668 | void set_predicted_elapsed_time_ms(double ms) { |
669 | _predicted_elapsed_time_ms = ms; |
670 | } |
671 | |
672 | // Routines for managing a list of code roots (attached to the |
673 | // this region's RSet) that point into this heap region. |
674 | void add_strong_code_root(nmethod* nm); |
675 | void add_strong_code_root_locked(nmethod* nm); |
676 | void remove_strong_code_root(nmethod* nm); |
677 | |
678 | // Applies blk->do_code_blob() to each of the entries in |
679 | // the strong code roots list for this region |
680 | void strong_code_roots_do(CodeBlobClosure* blk) const; |
681 | |
682 | // Verify that the entries on the strong code root list for this |
683 | // region are live and include at least one pointer into this region. |
684 | void verify_strong_code_roots(VerifyOption vo, bool* failures) const; |
685 | |
686 | void print() const; |
687 | void print_on(outputStream* st) const; |
688 | |
689 | // vo == UsePrevMarking -> use "prev" marking information, |
690 | // vo == UseNextMarking -> use "next" marking information |
691 | // vo == UseFullMarking -> use "next" marking bitmap but no TAMS |
692 | // |
693 | // NOTE: Only the "prev" marking information is guaranteed to be |
694 | // consistent most of the time, so most calls to this should use |
695 | // vo == UsePrevMarking. |
696 | // Currently, there is only one case where this is called with |
697 | // vo == UseNextMarking, which is to verify the "next" marking |
698 | // information at the end of remark. |
699 | // Currently there is only one place where this is called with |
700 | // vo == UseFullMarking, which is to verify the marking during a |
701 | // full GC. |
702 | void verify(VerifyOption vo, bool *failures) const; |
703 | |
704 | // Override; it uses the "prev" marking information |
705 | virtual void verify() const; |
706 | |
707 | void verify_rem_set(VerifyOption vo, bool *failures) const; |
708 | void verify_rem_set() const; |
709 | }; |
710 | |
711 | // HeapRegionClosure is used for iterating over regions. |
712 | // Terminates the iteration when the "do_heap_region" method returns "true". |
713 | class HeapRegionClosure : public StackObj { |
714 | friend class HeapRegionManager; |
715 | friend class G1CollectionSet; |
716 | friend class G1CollectionSetCandidates; |
717 | |
718 | bool _is_complete; |
719 | void set_incomplete() { _is_complete = false; } |
720 | |
721 | public: |
722 | HeapRegionClosure(): _is_complete(true) {} |
723 | |
724 | // Typically called on each region until it returns true. |
725 | virtual bool do_heap_region(HeapRegion* r) = 0; |
726 | |
727 | // True after iteration if the closure was applied to all heap regions |
728 | // and returned "false" in all cases. |
729 | bool is_complete() { return _is_complete; } |
730 | }; |
731 | |
732 | #endif // SHARE_GC_G1_HEAPREGION_HPP |
733 | |