| 1 | /* |
| 2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_GC_G1_HEAPREGION_HPP |
| 26 | #define SHARE_GC_G1_HEAPREGION_HPP |
| 27 | |
| 28 | #include "gc/g1/g1BlockOffsetTable.hpp" |
| 29 | #include "gc/g1/g1HeapRegionTraceType.hpp" |
| 30 | #include "gc/g1/heapRegionTracer.hpp" |
| 31 | #include "gc/g1/heapRegionType.hpp" |
| 32 | #include "gc/g1/survRateGroup.hpp" |
| 33 | #include "gc/shared/ageTable.hpp" |
| 34 | #include "gc/shared/cardTable.hpp" |
| 35 | #include "gc/shared/verifyOption.hpp" |
| 36 | #include "gc/shared/spaceDecorator.hpp" |
| 37 | #include "utilities/macros.hpp" |
| 38 | |
| 39 | // A HeapRegion is the smallest piece of a G1CollectedHeap that |
| 40 | // can be collected independently. |
| 41 | |
| 42 | // NOTE: Although a HeapRegion is a Space, its |
| 43 | // Space::initDirtyCardClosure method must not be called. |
| 44 | // The problem is that the existence of this method breaks |
| 45 | // the independence of barrier sets from remembered sets. |
| 46 | // The solution is to remove this method from the definition |
| 47 | // of a Space. |
| 48 | |
| 49 | // Each heap region is self contained. top() and end() can never |
| 50 | // be set beyond the end of the region. For humongous objects, |
| 51 | // the first region is a StartsHumongous region. If the humongous |
| 52 | // object is larger than a heap region, the following regions will |
| 53 | // be of type ContinuesHumongous. In this case the top() of the |
| 54 | // StartHumongous region and all ContinuesHumongous regions except |
| 55 | // the last will point to their own end. The last ContinuesHumongous |
| 56 | // region may have top() equal the end of object if there isn't |
| 57 | // room for filler objects to pad out to the end of the region. |
| 58 | |
| 59 | class G1CollectedHeap; |
| 60 | class G1CMBitMap; |
| 61 | class G1IsAliveAndApplyClosure; |
| 62 | class HeapRegionRemSet; |
| 63 | class HeapRegionRemSetIterator; |
| 64 | class HeapRegion; |
| 65 | class HeapRegionSetBase; |
| 66 | class nmethod; |
| 67 | |
| 68 | #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]" |
| 69 | #define HR_FORMAT_PARAMS(_hr_) \ |
| 70 | (_hr_)->hrm_index(), \ |
| 71 | (_hr_)->get_short_type_str(), \ |
| 72 | p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end()) |
| 73 | |
| 74 | // sentinel value for hrm_index |
| 75 | #define G1_NO_HRM_INDEX ((uint) -1) |
| 76 | |
| 77 | // The complicating factor is that BlockOffsetTable diverged |
| 78 | // significantly, and we need functionality that is only in the G1 version. |
| 79 | // So I copied that code, which led to an alternate G1 version of |
| 80 | // OffsetTableContigSpace. If the two versions of BlockOffsetTable could |
| 81 | // be reconciled, then G1OffsetTableContigSpace could go away. |
| 82 | |
| 83 | // The idea behind time stamps is the following. We want to keep track of |
| 84 | // the highest address where it's safe to scan objects for each region. |
| 85 | // This is only relevant for current GC alloc regions so we keep a time stamp |
| 86 | // per region to determine if the region has been allocated during the current |
| 87 | // GC or not. If the time stamp is current we report a scan_top value which |
| 88 | // was saved at the end of the previous GC for retained alloc regions and which is |
| 89 | // equal to the bottom for all other regions. |
| 90 | // There is a race between card scanners and allocating gc workers where we must ensure |
| 91 | // that card scanners do not read the memory allocated by the gc workers. |
| 92 | // In order to enforce that, we must not return a value of _top which is more recent than the |
| 93 | // time stamp. This is due to the fact that a region may become a gc alloc region at |
| 94 | // some point after we've read the timestamp value as being < the current time stamp. |
| 95 | // The time stamps are re-initialized to zero at cleanup and at Full GCs. |
| 96 | // The current scheme that uses sequential unsigned ints will fail only if we have 4b |
| 97 | // evacuation pauses between two cleanups, which is _highly_ unlikely. |
| 98 | class G1ContiguousSpace: public CompactibleSpace { |
| 99 | friend class VMStructs; |
| 100 | HeapWord* volatile _top; |
| 101 | protected: |
| 102 | G1BlockOffsetTablePart _bot_part; |
| 103 | Mutex _par_alloc_lock; |
| 104 | // When we need to retire an allocation region, while other threads |
| 105 | // are also concurrently trying to allocate into it, we typically |
| 106 | // allocate a dummy object at the end of the region to ensure that |
| 107 | // no more allocations can take place in it. However, sometimes we |
| 108 | // want to know where the end of the last "real" object we allocated |
| 109 | // into the region was and this is what this keeps track. |
| 110 | HeapWord* _pre_dummy_top; |
| 111 | |
| 112 | public: |
| 113 | G1ContiguousSpace(G1BlockOffsetTable* bot); |
| 114 | |
| 115 | void set_top(HeapWord* value) { _top = value; } |
| 116 | HeapWord* top() const { return _top; } |
| 117 | |
| 118 | protected: |
| 119 | // Reset the G1ContiguousSpace. |
| 120 | virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space); |
| 121 | |
| 122 | HeapWord* volatile* top_addr() { return &_top; } |
| 123 | // Try to allocate at least min_word_size and up to desired_size from this Space. |
| 124 | // Returns NULL if not possible, otherwise sets actual_word_size to the amount of |
| 125 | // space allocated. |
| 126 | // This version assumes that all allocation requests to this Space are properly |
| 127 | // synchronized. |
| 128 | inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size); |
| 129 | // Try to allocate at least min_word_size and up to desired_size from this Space. |
| 130 | // Returns NULL if not possible, otherwise sets actual_word_size to the amount of |
| 131 | // space allocated. |
| 132 | // This version synchronizes with other calls to par_allocate_impl(). |
| 133 | inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size); |
| 134 | |
| 135 | public: |
| 136 | void reset_after_compaction() { set_top(compaction_top()); } |
| 137 | |
| 138 | size_t used() const { return byte_size(bottom(), top()); } |
| 139 | size_t free() const { return byte_size(top(), end()); } |
| 140 | bool is_free_block(const HeapWord* p) const { return p >= top(); } |
| 141 | |
| 142 | MemRegion used_region() const { return MemRegion(bottom(), top()); } |
| 143 | |
| 144 | void object_iterate(ObjectClosure* blk); |
| 145 | void safe_object_iterate(ObjectClosure* blk); |
| 146 | |
| 147 | void mangle_unused_area() PRODUCT_RETURN; |
| 148 | void mangle_unused_area_complete() PRODUCT_RETURN; |
| 149 | |
| 150 | // See the comment above in the declaration of _pre_dummy_top for an |
| 151 | // explanation of what it is. |
| 152 | void set_pre_dummy_top(HeapWord* pre_dummy_top) { |
| 153 | assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition" ); |
| 154 | _pre_dummy_top = pre_dummy_top; |
| 155 | } |
| 156 | HeapWord* pre_dummy_top() { |
| 157 | return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top; |
| 158 | } |
| 159 | void reset_pre_dummy_top() { _pre_dummy_top = NULL; } |
| 160 | |
| 161 | virtual void clear(bool mangle_space); |
| 162 | |
| 163 | HeapWord* block_start(const void* p); |
| 164 | HeapWord* block_start_const(const void* p) const; |
| 165 | |
| 166 | // Allocation (return NULL if full). Assumes the caller has established |
| 167 | // mutually exclusive access to the space. |
| 168 | HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size); |
| 169 | // Allocation (return NULL if full). Enforces mutual exclusion internally. |
| 170 | HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size); |
| 171 | |
| 172 | virtual HeapWord* allocate(size_t word_size); |
| 173 | virtual HeapWord* par_allocate(size_t word_size); |
| 174 | |
| 175 | HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; } |
| 176 | |
| 177 | // MarkSweep support phase3 |
| 178 | virtual HeapWord* initialize_threshold(); |
| 179 | virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end); |
| 180 | |
| 181 | virtual void print() const; |
| 182 | |
| 183 | void reset_bot() { |
| 184 | _bot_part.reset_bot(); |
| 185 | } |
| 186 | |
| 187 | void print_bot_on(outputStream* out) { |
| 188 | _bot_part.print_on(out); |
| 189 | } |
| 190 | }; |
| 191 | |
| 192 | class HeapRegion: public G1ContiguousSpace { |
| 193 | friend class VMStructs; |
| 194 | // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class |
| 195 | template <typename SpaceType> |
| 196 | friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp); |
| 197 | private: |
| 198 | |
| 199 | // The remembered set for this region. |
| 200 | // (Might want to make this "inline" later, to avoid some alloc failure |
| 201 | // issues.) |
| 202 | HeapRegionRemSet* _rem_set; |
| 203 | |
| 204 | // Auxiliary functions for scan_and_forward support. |
| 205 | // See comments for CompactibleSpace for more information. |
| 206 | inline HeapWord* scan_limit() const { |
| 207 | return top(); |
| 208 | } |
| 209 | |
| 210 | inline bool scanned_block_is_obj(const HeapWord* addr) const { |
| 211 | return true; // Always true, since scan_limit is top |
| 212 | } |
| 213 | |
| 214 | inline size_t scanned_block_size(const HeapWord* addr) const { |
| 215 | return HeapRegion::block_size(addr); // Avoid virtual call |
| 216 | } |
| 217 | |
| 218 | void report_region_type_change(G1HeapRegionTraceType::Type to); |
| 219 | |
| 220 | // Returns whether the given object address refers to a dead object, and either the |
| 221 | // size of the object (if live) or the size of the block (if dead) in size. |
| 222 | // May |
| 223 | // - only called with obj < top() |
| 224 | // - not called on humongous objects or archive regions |
| 225 | inline bool is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const; |
| 226 | |
| 227 | protected: |
| 228 | // The index of this region in the heap region sequence. |
| 229 | uint _hrm_index; |
| 230 | |
| 231 | HeapRegionType _type; |
| 232 | |
| 233 | // For a humongous region, region in which it starts. |
| 234 | HeapRegion* _humongous_start_region; |
| 235 | |
| 236 | // True iff an attempt to evacuate an object in the region failed. |
| 237 | bool _evacuation_failed; |
| 238 | |
| 239 | // Fields used by the HeapRegionSetBase class and subclasses. |
| 240 | HeapRegion* _next; |
| 241 | HeapRegion* _prev; |
| 242 | #ifdef ASSERT |
| 243 | HeapRegionSetBase* _containing_set; |
| 244 | #endif // ASSERT |
| 245 | |
| 246 | // We use concurrent marking to determine the amount of live data |
| 247 | // in each heap region. |
| 248 | size_t _prev_marked_bytes; // Bytes known to be live via last completed marking. |
| 249 | size_t _next_marked_bytes; // Bytes known to be live via in-progress marking. |
| 250 | |
| 251 | // The calculated GC efficiency of the region. |
| 252 | double _gc_efficiency; |
| 253 | |
| 254 | static const uint InvalidCSetIndex = UINT_MAX; |
| 255 | |
| 256 | // The index in the optional regions array, if this region |
| 257 | // is considered optional during a mixed collections. |
| 258 | uint _index_in_opt_cset; |
| 259 | int _young_index_in_cset; |
| 260 | SurvRateGroup* _surv_rate_group; |
| 261 | int _age_index; |
| 262 | |
| 263 | // The start of the unmarked area. The unmarked area extends from this |
| 264 | // word until the top and/or end of the region, and is the part |
| 265 | // of the region for which no marking was done, i.e. objects may |
| 266 | // have been allocated in this part since the last mark phase. |
| 267 | // "prev" is the top at the start of the last completed marking. |
| 268 | // "next" is the top at the start of the in-progress marking (if any.) |
| 269 | HeapWord* _prev_top_at_mark_start; |
| 270 | HeapWord* _next_top_at_mark_start; |
| 271 | // If a collection pause is in progress, this is the top at the start |
| 272 | // of that pause. |
| 273 | |
| 274 | void init_top_at_mark_start() { |
| 275 | assert(_prev_marked_bytes == 0 && |
| 276 | _next_marked_bytes == 0, |
| 277 | "Must be called after zero_marked_bytes." ); |
| 278 | HeapWord* bot = bottom(); |
| 279 | _prev_top_at_mark_start = bot; |
| 280 | _next_top_at_mark_start = bot; |
| 281 | } |
| 282 | |
| 283 | // Cached attributes used in the collection set policy information |
| 284 | |
| 285 | // The RSet length that was added to the total value |
| 286 | // for the collection set. |
| 287 | size_t _recorded_rs_length; |
| 288 | |
| 289 | // The predicted elapsed time that was added to total value |
| 290 | // for the collection set. |
| 291 | double _predicted_elapsed_time_ms; |
| 292 | |
| 293 | // Iterate over the references in a humongous objects and apply the given closure |
| 294 | // to them. |
| 295 | // Humongous objects are allocated directly in the old-gen. So we need special |
| 296 | // handling for concurrent processing encountering an in-progress allocation. |
| 297 | template <class Closure, bool is_gc_active> |
| 298 | inline bool do_oops_on_card_in_humongous(MemRegion mr, |
| 299 | Closure* cl, |
| 300 | G1CollectedHeap* g1h); |
| 301 | |
| 302 | // Returns the block size of the given (dead, potentially having its class unloaded) object |
| 303 | // starting at p extending to at most the prev TAMS using the given mark bitmap. |
| 304 | inline size_t block_size_using_bitmap(const HeapWord* p, const G1CMBitMap* const prev_bitmap) const; |
| 305 | public: |
| 306 | HeapRegion(uint hrm_index, |
| 307 | G1BlockOffsetTable* bot, |
| 308 | MemRegion mr); |
| 309 | |
| 310 | // Initializing the HeapRegion not only resets the data structure, but also |
| 311 | // resets the BOT for that heap region. |
| 312 | // The default values for clear_space means that we will do the clearing if |
| 313 | // there's clearing to be done ourselves. We also always mangle the space. |
| 314 | virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle); |
| 315 | |
| 316 | static int LogOfHRGrainBytes; |
| 317 | static int LogOfHRGrainWords; |
| 318 | |
| 319 | static size_t GrainBytes; |
| 320 | static size_t GrainWords; |
| 321 | static size_t CardsPerRegion; |
| 322 | |
| 323 | static size_t align_up_to_region_byte_size(size_t sz) { |
| 324 | return (sz + (size_t) GrainBytes - 1) & |
| 325 | ~((1 << (size_t) LogOfHRGrainBytes) - 1); |
| 326 | } |
| 327 | |
| 328 | |
| 329 | // Returns whether a field is in the same region as the obj it points to. |
| 330 | template <typename T> |
| 331 | static bool is_in_same_region(T* p, oop obj) { |
| 332 | assert(p != NULL, "p can't be NULL" ); |
| 333 | assert(obj != NULL, "obj can't be NULL" ); |
| 334 | return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0; |
| 335 | } |
| 336 | |
| 337 | static size_t max_region_size(); |
| 338 | static size_t min_region_size_in_words(); |
| 339 | |
| 340 | // It sets up the heap region size (GrainBytes / GrainWords), as |
| 341 | // well as other related fields that are based on the heap region |
| 342 | // size (LogOfHRGrainBytes / LogOfHRGrainWords / |
| 343 | // CardsPerRegion). All those fields are considered constant |
| 344 | // throughout the JVM's execution, therefore they should only be set |
| 345 | // up once during initialization time. |
| 346 | static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size); |
| 347 | |
| 348 | // All allocated blocks are occupied by objects in a HeapRegion |
| 349 | bool block_is_obj(const HeapWord* p) const; |
| 350 | |
| 351 | // Returns whether the given object is dead based on TAMS and bitmap. |
| 352 | bool is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const; |
| 353 | |
| 354 | // Returns the object size for all valid block starts |
| 355 | // and the amount of unallocated words if called on top() |
| 356 | size_t block_size(const HeapWord* p) const; |
| 357 | |
| 358 | // Scans through the region using the bitmap to determine what |
| 359 | // objects to call size_t ApplyToMarkedClosure::apply(oop) for. |
| 360 | template<typename ApplyToMarkedClosure> |
| 361 | inline void apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure); |
| 362 | // Override for scan_and_forward support. |
| 363 | void prepare_for_compaction(CompactPoint* cp); |
| 364 | // Update heap region to be consistent after compaction. |
| 365 | void complete_compaction(); |
| 366 | |
| 367 | inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size); |
| 368 | inline HeapWord* allocate_no_bot_updates(size_t word_size); |
| 369 | inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size); |
| 370 | |
| 371 | // If this region is a member of a HeapRegionManager, the index in that |
| 372 | // sequence, otherwise -1. |
| 373 | uint hrm_index() const { return _hrm_index; } |
| 374 | |
| 375 | // The number of bytes marked live in the region in the last marking phase. |
| 376 | size_t marked_bytes() { return _prev_marked_bytes; } |
| 377 | size_t live_bytes() { |
| 378 | return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes(); |
| 379 | } |
| 380 | |
| 381 | // The number of bytes counted in the next marking. |
| 382 | size_t next_marked_bytes() { return _next_marked_bytes; } |
| 383 | // The number of bytes live wrt the next marking. |
| 384 | size_t next_live_bytes() { |
| 385 | return |
| 386 | (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes(); |
| 387 | } |
| 388 | |
| 389 | // A lower bound on the amount of garbage bytes in the region. |
| 390 | size_t garbage_bytes() { |
| 391 | size_t used_at_mark_start_bytes = |
| 392 | (prev_top_at_mark_start() - bottom()) * HeapWordSize; |
| 393 | return used_at_mark_start_bytes - marked_bytes(); |
| 394 | } |
| 395 | |
| 396 | // Return the amount of bytes we'll reclaim if we collect this |
| 397 | // region. This includes not only the known garbage bytes in the |
| 398 | // region but also any unallocated space in it, i.e., [top, end), |
| 399 | // since it will also be reclaimed if we collect the region. |
| 400 | size_t reclaimable_bytes() { |
| 401 | size_t known_live_bytes = live_bytes(); |
| 402 | assert(known_live_bytes <= capacity(), "sanity" ); |
| 403 | return capacity() - known_live_bytes; |
| 404 | } |
| 405 | |
| 406 | // An upper bound on the number of live bytes in the region. |
| 407 | size_t max_live_bytes() { return used() - garbage_bytes(); } |
| 408 | |
| 409 | void add_to_marked_bytes(size_t incr_bytes) { |
| 410 | _next_marked_bytes = _next_marked_bytes + incr_bytes; |
| 411 | } |
| 412 | |
| 413 | void zero_marked_bytes() { |
| 414 | _prev_marked_bytes = _next_marked_bytes = 0; |
| 415 | } |
| 416 | |
| 417 | const char* get_type_str() const { return _type.get_str(); } |
| 418 | const char* get_short_type_str() const { return _type.get_short_str(); } |
| 419 | G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); } |
| 420 | |
| 421 | bool is_free() const { return _type.is_free(); } |
| 422 | |
| 423 | bool is_young() const { return _type.is_young(); } |
| 424 | bool is_eden() const { return _type.is_eden(); } |
| 425 | bool is_survivor() const { return _type.is_survivor(); } |
| 426 | |
| 427 | bool is_humongous() const { return _type.is_humongous(); } |
| 428 | bool is_starts_humongous() const { return _type.is_starts_humongous(); } |
| 429 | bool is_continues_humongous() const { return _type.is_continues_humongous(); } |
| 430 | |
| 431 | bool is_old() const { return _type.is_old(); } |
| 432 | |
| 433 | bool is_old_or_humongous() const { return _type.is_old_or_humongous(); } |
| 434 | |
| 435 | bool is_old_or_humongous_or_archive() const { return _type.is_old_or_humongous_or_archive(); } |
| 436 | |
| 437 | // A pinned region contains objects which are not moved by garbage collections. |
| 438 | // Humongous regions and archive regions are pinned. |
| 439 | bool is_pinned() const { return _type.is_pinned(); } |
| 440 | |
| 441 | // An archive region is a pinned region, also tagged as old, which |
| 442 | // should not be marked during mark/sweep. This allows the address |
| 443 | // space to be shared by JVM instances. |
| 444 | bool is_archive() const { return _type.is_archive(); } |
| 445 | bool is_open_archive() const { return _type.is_open_archive(); } |
| 446 | bool is_closed_archive() const { return _type.is_closed_archive(); } |
| 447 | |
| 448 | // For a humongous region, region in which it starts. |
| 449 | HeapRegion* humongous_start_region() const { |
| 450 | return _humongous_start_region; |
| 451 | } |
| 452 | |
| 453 | // Makes the current region be a "starts humongous" region, i.e., |
| 454 | // the first region in a series of one or more contiguous regions |
| 455 | // that will contain a single "humongous" object. |
| 456 | // |
| 457 | // obj_top : points to the top of the humongous object. |
| 458 | // fill_size : size of the filler object at the end of the region series. |
| 459 | void set_starts_humongous(HeapWord* obj_top, size_t fill_size); |
| 460 | |
| 461 | // Makes the current region be a "continues humongous' |
| 462 | // region. first_hr is the "start humongous" region of the series |
| 463 | // which this region will be part of. |
| 464 | void set_continues_humongous(HeapRegion* first_hr); |
| 465 | |
| 466 | // Unsets the humongous-related fields on the region. |
| 467 | void clear_humongous(); |
| 468 | |
| 469 | // If the region has a remembered set, return a pointer to it. |
| 470 | HeapRegionRemSet* rem_set() const { |
| 471 | return _rem_set; |
| 472 | } |
| 473 | |
| 474 | inline bool in_collection_set() const; |
| 475 | |
| 476 | // Methods used by the HeapRegionSetBase class and subclasses. |
| 477 | |
| 478 | // Getter and setter for the next and prev fields used to link regions into |
| 479 | // linked lists. |
| 480 | HeapRegion* next() { return _next; } |
| 481 | HeapRegion* prev() { return _prev; } |
| 482 | |
| 483 | void set_next(HeapRegion* next) { _next = next; } |
| 484 | void set_prev(HeapRegion* prev) { _prev = prev; } |
| 485 | |
| 486 | // Every region added to a set is tagged with a reference to that |
| 487 | // set. This is used for doing consistency checking to make sure that |
| 488 | // the contents of a set are as they should be and it's only |
| 489 | // available in non-product builds. |
| 490 | #ifdef ASSERT |
| 491 | void set_containing_set(HeapRegionSetBase* containing_set) { |
| 492 | assert((containing_set == NULL && _containing_set != NULL) || |
| 493 | (containing_set != NULL && _containing_set == NULL), |
| 494 | "containing_set: " PTR_FORMAT " " |
| 495 | "_containing_set: " PTR_FORMAT, |
| 496 | p2i(containing_set), p2i(_containing_set)); |
| 497 | |
| 498 | _containing_set = containing_set; |
| 499 | } |
| 500 | |
| 501 | HeapRegionSetBase* containing_set() { return _containing_set; } |
| 502 | #else // ASSERT |
| 503 | void set_containing_set(HeapRegionSetBase* containing_set) { } |
| 504 | |
| 505 | // containing_set() is only used in asserts so there's no reason |
| 506 | // to provide a dummy version of it. |
| 507 | #endif // ASSERT |
| 508 | |
| 509 | |
| 510 | // Reset the HeapRegion to default values. |
| 511 | // If skip_remset is true, do not clear the remembered set. |
| 512 | // If clear_space is true, clear the HeapRegion's memory. |
| 513 | // If locked is true, assume we are the only thread doing this operation. |
| 514 | void hr_clear(bool skip_remset, bool clear_space, bool locked = false); |
| 515 | // Clear the card table corresponding to this region. |
| 516 | void clear_cardtable(); |
| 517 | |
| 518 | // Get the start of the unmarked area in this region. |
| 519 | HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; } |
| 520 | HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; } |
| 521 | |
| 522 | // Note the start or end of marking. This tells the heap region |
| 523 | // that the collector is about to start or has finished (concurrently) |
| 524 | // marking the heap. |
| 525 | |
| 526 | // Notify the region that concurrent marking is starting. Initialize |
| 527 | // all fields related to the next marking info. |
| 528 | inline void note_start_of_marking(); |
| 529 | |
| 530 | // Notify the region that concurrent marking has finished. Copy the |
| 531 | // (now finalized) next marking info fields into the prev marking |
| 532 | // info fields. |
| 533 | inline void note_end_of_marking(); |
| 534 | |
| 535 | // Notify the region that we are about to start processing |
| 536 | // self-forwarded objects during evac failure handling. |
| 537 | void note_self_forwarding_removal_start(bool during_initial_mark, |
| 538 | bool during_conc_mark); |
| 539 | |
| 540 | // Notify the region that we have finished processing self-forwarded |
| 541 | // objects during evac failure handling. |
| 542 | void note_self_forwarding_removal_end(size_t marked_bytes); |
| 543 | |
| 544 | void reset_during_compaction() { |
| 545 | assert(is_humongous(), |
| 546 | "should only be called for humongous regions" ); |
| 547 | |
| 548 | zero_marked_bytes(); |
| 549 | init_top_at_mark_start(); |
| 550 | } |
| 551 | |
| 552 | void calc_gc_efficiency(void); |
| 553 | double gc_efficiency() const { return _gc_efficiency;} |
| 554 | |
| 555 | uint index_in_opt_cset() const { |
| 556 | assert(has_index_in_opt_cset(), "Opt cset index not set." ); |
| 557 | return _index_in_opt_cset; |
| 558 | } |
| 559 | bool has_index_in_opt_cset() const { return _index_in_opt_cset != InvalidCSetIndex; } |
| 560 | void set_index_in_opt_cset(uint index) { _index_in_opt_cset = index; } |
| 561 | void clear_index_in_opt_cset() { _index_in_opt_cset = InvalidCSetIndex; } |
| 562 | |
| 563 | int young_index_in_cset() const { return _young_index_in_cset; } |
| 564 | void set_young_index_in_cset(int index) { |
| 565 | assert( (index == -1) || is_young(), "pre-condition" ); |
| 566 | _young_index_in_cset = index; |
| 567 | } |
| 568 | |
| 569 | int age_in_surv_rate_group() { |
| 570 | assert( _surv_rate_group != NULL, "pre-condition" ); |
| 571 | assert( _age_index > -1, "pre-condition" ); |
| 572 | return _surv_rate_group->age_in_group(_age_index); |
| 573 | } |
| 574 | |
| 575 | void record_surv_words_in_group(size_t words_survived) { |
| 576 | assert( _surv_rate_group != NULL, "pre-condition" ); |
| 577 | assert( _age_index > -1, "pre-condition" ); |
| 578 | int age_in_group = age_in_surv_rate_group(); |
| 579 | _surv_rate_group->record_surviving_words(age_in_group, words_survived); |
| 580 | } |
| 581 | |
| 582 | int age_in_surv_rate_group_cond() { |
| 583 | if (_surv_rate_group != NULL) |
| 584 | return age_in_surv_rate_group(); |
| 585 | else |
| 586 | return -1; |
| 587 | } |
| 588 | |
| 589 | SurvRateGroup* surv_rate_group() { |
| 590 | return _surv_rate_group; |
| 591 | } |
| 592 | |
| 593 | void install_surv_rate_group(SurvRateGroup* surv_rate_group) { |
| 594 | assert( surv_rate_group != NULL, "pre-condition" ); |
| 595 | assert( _surv_rate_group == NULL, "pre-condition" ); |
| 596 | assert( is_young(), "pre-condition" ); |
| 597 | |
| 598 | _surv_rate_group = surv_rate_group; |
| 599 | _age_index = surv_rate_group->next_age_index(); |
| 600 | } |
| 601 | |
| 602 | void uninstall_surv_rate_group() { |
| 603 | if (_surv_rate_group != NULL) { |
| 604 | assert( _age_index > -1, "pre-condition" ); |
| 605 | assert( is_young(), "pre-condition" ); |
| 606 | |
| 607 | _surv_rate_group = NULL; |
| 608 | _age_index = -1; |
| 609 | } else { |
| 610 | assert( _age_index == -1, "pre-condition" ); |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | void set_free(); |
| 615 | |
| 616 | void set_eden(); |
| 617 | void set_eden_pre_gc(); |
| 618 | void set_survivor(); |
| 619 | |
| 620 | void move_to_old(); |
| 621 | void set_old(); |
| 622 | |
| 623 | void set_open_archive(); |
| 624 | void set_closed_archive(); |
| 625 | |
| 626 | // Determine if an object has been allocated since the last |
| 627 | // mark performed by the collector. This returns true iff the object |
| 628 | // is within the unmarked area of the region. |
| 629 | bool obj_allocated_since_prev_marking(oop obj) const { |
| 630 | return (HeapWord *) obj >= prev_top_at_mark_start(); |
| 631 | } |
| 632 | bool obj_allocated_since_next_marking(oop obj) const { |
| 633 | return (HeapWord *) obj >= next_top_at_mark_start(); |
| 634 | } |
| 635 | |
| 636 | // Returns the "evacuation_failed" property of the region. |
| 637 | bool evacuation_failed() { return _evacuation_failed; } |
| 638 | |
| 639 | // Sets the "evacuation_failed" property of the region. |
| 640 | void set_evacuation_failed(bool b) { |
| 641 | _evacuation_failed = b; |
| 642 | |
| 643 | if (b) { |
| 644 | _next_marked_bytes = 0; |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | // Iterate over the objects overlapping part of a card, applying cl |
| 649 | // to all references in the region. This is a helper for |
| 650 | // G1RemSet::refine_card*, and is tightly coupled with them. |
| 651 | // mr is the memory region covered by the card, trimmed to the |
| 652 | // allocated space for this region. Must not be empty. |
| 653 | // This region must be old or humongous. |
| 654 | // Returns true if the designated objects were successfully |
| 655 | // processed, false if an unparsable part of the heap was |
| 656 | // encountered; that only happens when invoked concurrently with the |
| 657 | // mutator. |
| 658 | template <bool is_gc_active, class Closure> |
| 659 | inline bool oops_on_card_seq_iterate_careful(MemRegion mr, Closure* cl); |
| 660 | |
| 661 | size_t recorded_rs_length() const { return _recorded_rs_length; } |
| 662 | double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; } |
| 663 | |
| 664 | void set_recorded_rs_length(size_t rs_length) { |
| 665 | _recorded_rs_length = rs_length; |
| 666 | } |
| 667 | |
| 668 | void set_predicted_elapsed_time_ms(double ms) { |
| 669 | _predicted_elapsed_time_ms = ms; |
| 670 | } |
| 671 | |
| 672 | // Routines for managing a list of code roots (attached to the |
| 673 | // this region's RSet) that point into this heap region. |
| 674 | void add_strong_code_root(nmethod* nm); |
| 675 | void add_strong_code_root_locked(nmethod* nm); |
| 676 | void remove_strong_code_root(nmethod* nm); |
| 677 | |
| 678 | // Applies blk->do_code_blob() to each of the entries in |
| 679 | // the strong code roots list for this region |
| 680 | void strong_code_roots_do(CodeBlobClosure* blk) const; |
| 681 | |
| 682 | // Verify that the entries on the strong code root list for this |
| 683 | // region are live and include at least one pointer into this region. |
| 684 | void verify_strong_code_roots(VerifyOption vo, bool* failures) const; |
| 685 | |
| 686 | void print() const; |
| 687 | void print_on(outputStream* st) const; |
| 688 | |
| 689 | // vo == UsePrevMarking -> use "prev" marking information, |
| 690 | // vo == UseNextMarking -> use "next" marking information |
| 691 | // vo == UseFullMarking -> use "next" marking bitmap but no TAMS |
| 692 | // |
| 693 | // NOTE: Only the "prev" marking information is guaranteed to be |
| 694 | // consistent most of the time, so most calls to this should use |
| 695 | // vo == UsePrevMarking. |
| 696 | // Currently, there is only one case where this is called with |
| 697 | // vo == UseNextMarking, which is to verify the "next" marking |
| 698 | // information at the end of remark. |
| 699 | // Currently there is only one place where this is called with |
| 700 | // vo == UseFullMarking, which is to verify the marking during a |
| 701 | // full GC. |
| 702 | void verify(VerifyOption vo, bool *failures) const; |
| 703 | |
| 704 | // Override; it uses the "prev" marking information |
| 705 | virtual void verify() const; |
| 706 | |
| 707 | void verify_rem_set(VerifyOption vo, bool *failures) const; |
| 708 | void verify_rem_set() const; |
| 709 | }; |
| 710 | |
| 711 | // HeapRegionClosure is used for iterating over regions. |
| 712 | // Terminates the iteration when the "do_heap_region" method returns "true". |
| 713 | class HeapRegionClosure : public StackObj { |
| 714 | friend class HeapRegionManager; |
| 715 | friend class G1CollectionSet; |
| 716 | friend class G1CollectionSetCandidates; |
| 717 | |
| 718 | bool _is_complete; |
| 719 | void set_incomplete() { _is_complete = false; } |
| 720 | |
| 721 | public: |
| 722 | HeapRegionClosure(): _is_complete(true) {} |
| 723 | |
| 724 | // Typically called on each region until it returns true. |
| 725 | virtual bool do_heap_region(HeapRegion* r) = 0; |
| 726 | |
| 727 | // True after iteration if the closure was applied to all heap regions |
| 728 | // and returned "false" in all cases. |
| 729 | bool is_complete() { return _is_complete; } |
| 730 | }; |
| 731 | |
| 732 | #endif // SHARE_GC_G1_HEAPREGION_HPP |
| 733 | |