| 1 | /* |
| 2 | * Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/parallel/parallelScavengeHeap.hpp" |
| 27 | #include "gc/parallel/psAdaptiveSizePolicy.hpp" |
| 28 | #include "gc/parallel/psGCAdaptivePolicyCounters.hpp" |
| 29 | #include "gc/parallel/psScavenge.hpp" |
| 30 | #include "gc/shared/gcCause.hpp" |
| 31 | #include "gc/shared/gcUtil.inline.hpp" |
| 32 | #include "gc/shared/gcPolicyCounters.hpp" |
| 33 | #include "logging/log.hpp" |
| 34 | #include "runtime/timer.hpp" |
| 35 | #include "utilities/align.hpp" |
| 36 | |
| 37 | #include <math.h> |
| 38 | |
| 39 | PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size, |
| 40 | size_t init_promo_size, |
| 41 | size_t init_survivor_size, |
| 42 | size_t space_alignment, |
| 43 | double gc_pause_goal_sec, |
| 44 | double gc_minor_pause_goal_sec, |
| 45 | uint gc_cost_ratio) : |
| 46 | AdaptiveSizePolicy(init_eden_size, |
| 47 | init_promo_size, |
| 48 | init_survivor_size, |
| 49 | gc_pause_goal_sec, |
| 50 | gc_cost_ratio), |
| 51 | _avg_major_pause(new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding)), |
| 52 | _avg_base_footprint(new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight)), |
| 53 | _gc_stats(), |
| 54 | _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin / 100.0), |
| 55 | _major_pause_old_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)), |
| 56 | _major_pause_young_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)), |
| 57 | _latest_major_mutator_interval_seconds(0), |
| 58 | _space_alignment(space_alignment), |
| 59 | _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec), |
| 60 | _live_at_last_full_gc(init_promo_size), |
| 61 | _change_old_gen_for_min_pauses(0), |
| 62 | _change_young_gen_for_maj_pauses(0), |
| 63 | _old_gen_policy_is_ready(false), |
| 64 | _young_gen_size_increment_supplement(YoungGenerationSizeSupplement), |
| 65 | _old_gen_size_increment_supplement(TenuredGenerationSizeSupplement), |
| 66 | _bytes_absorbed_from_eden(0) |
| 67 | { |
| 68 | // Start the timers |
| 69 | _major_timer.start(); |
| 70 | } |
| 71 | |
| 72 | size_t PSAdaptiveSizePolicy::calculate_free_based_on_live(size_t live, uintx ratio_as_percentage) { |
| 73 | // We want to calculate how much free memory there can be based on the |
| 74 | // amount of live data currently in the old gen. Using the formula: |
| 75 | // ratio * (free + live) = free |
| 76 | // Some equation solving later we get: |
| 77 | // free = (live * ratio) / (1 - ratio) |
| 78 | |
| 79 | const double ratio = ratio_as_percentage / 100.0; |
| 80 | const double ratio_inverse = 1.0 - ratio; |
| 81 | const double tmp = live * ratio; |
| 82 | size_t free = (size_t)(tmp / ratio_inverse); |
| 83 | |
| 84 | return free; |
| 85 | } |
| 86 | |
| 87 | size_t PSAdaptiveSizePolicy::calculated_old_free_size_in_bytes() const { |
| 88 | size_t free_size = (size_t)(_promo_size + avg_promoted()->padded_average()); |
| 89 | size_t live = ParallelScavengeHeap::heap()->old_gen()->used_in_bytes(); |
| 90 | |
| 91 | if (MinHeapFreeRatio != 0) { |
| 92 | size_t min_free = calculate_free_based_on_live(live, MinHeapFreeRatio); |
| 93 | free_size = MAX2(free_size, min_free); |
| 94 | } |
| 95 | |
| 96 | if (MaxHeapFreeRatio != 100) { |
| 97 | size_t max_free = calculate_free_based_on_live(live, MaxHeapFreeRatio); |
| 98 | free_size = MIN2(max_free, free_size); |
| 99 | } |
| 100 | |
| 101 | return free_size; |
| 102 | } |
| 103 | |
| 104 | void PSAdaptiveSizePolicy::major_collection_begin() { |
| 105 | // Update the interval time |
| 106 | _major_timer.stop(); |
| 107 | // Save most recent collection time |
| 108 | _latest_major_mutator_interval_seconds = _major_timer.seconds(); |
| 109 | _major_timer.reset(); |
| 110 | _major_timer.start(); |
| 111 | } |
| 112 | |
| 113 | void PSAdaptiveSizePolicy::update_minor_pause_old_estimator( |
| 114 | double minor_pause_in_ms) { |
| 115 | double promo_size_in_mbytes = ((double)_promo_size)/((double)M); |
| 116 | _minor_pause_old_estimator->update(promo_size_in_mbytes, |
| 117 | minor_pause_in_ms); |
| 118 | } |
| 119 | |
| 120 | void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live, |
| 121 | GCCause::Cause gc_cause) { |
| 122 | // Update the pause time. |
| 123 | _major_timer.stop(); |
| 124 | |
| 125 | if (should_update_promo_stats(gc_cause)) { |
| 126 | double major_pause_in_seconds = _major_timer.seconds(); |
| 127 | double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS; |
| 128 | |
| 129 | // Sample for performance counter |
| 130 | _avg_major_pause->sample(major_pause_in_seconds); |
| 131 | |
| 132 | // Cost of collection (unit-less) |
| 133 | double collection_cost = 0.0; |
| 134 | if ((_latest_major_mutator_interval_seconds > 0.0) && |
| 135 | (major_pause_in_seconds > 0.0)) { |
| 136 | double interval_in_seconds = |
| 137 | _latest_major_mutator_interval_seconds + major_pause_in_seconds; |
| 138 | collection_cost = |
| 139 | major_pause_in_seconds / interval_in_seconds; |
| 140 | avg_major_gc_cost()->sample(collection_cost); |
| 141 | |
| 142 | // Sample for performance counter |
| 143 | _avg_major_interval->sample(interval_in_seconds); |
| 144 | } |
| 145 | |
| 146 | // Calculate variables used to estimate pause time vs. gen sizes |
| 147 | double eden_size_in_mbytes = ((double)_eden_size)/((double)M); |
| 148 | double promo_size_in_mbytes = ((double)_promo_size)/((double)M); |
| 149 | _major_pause_old_estimator->update(promo_size_in_mbytes, |
| 150 | major_pause_in_ms); |
| 151 | _major_pause_young_estimator->update(eden_size_in_mbytes, |
| 152 | major_pause_in_ms); |
| 153 | |
| 154 | log_trace(gc, ergo)("psAdaptiveSizePolicy::major_collection_end: major gc cost: %f average: %f" , |
| 155 | collection_cost,avg_major_gc_cost()->average()); |
| 156 | log_trace(gc, ergo)(" major pause: %f major period %f" , |
| 157 | major_pause_in_ms, _latest_major_mutator_interval_seconds * MILLIUNITS); |
| 158 | |
| 159 | // Calculate variable used to estimate collection cost vs. gen sizes |
| 160 | assert(collection_cost >= 0.0, "Expected to be non-negative" ); |
| 161 | _major_collection_estimator->update(promo_size_in_mbytes, |
| 162 | collection_cost); |
| 163 | } |
| 164 | |
| 165 | // Update the amount live at the end of a full GC |
| 166 | _live_at_last_full_gc = amount_live; |
| 167 | |
| 168 | // The policy does not have enough data until at least some major collections |
| 169 | // have been done. |
| 170 | if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) { |
| 171 | _old_gen_policy_is_ready = true; |
| 172 | } |
| 173 | |
| 174 | // Interval times use this timer to measure the interval that |
| 175 | // the mutator runs. Reset after the GC pause has been measured. |
| 176 | _major_timer.reset(); |
| 177 | _major_timer.start(); |
| 178 | } |
| 179 | |
| 180 | // If the remaining free space in the old generation is less that |
| 181 | // that expected to be needed by the next collection, do a full |
| 182 | // collection now. |
| 183 | bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) { |
| 184 | |
| 185 | // A similar test is done in the scavenge's should_attempt_scavenge(). If |
| 186 | // this is changed, decide if that test should also be changed. |
| 187 | bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes; |
| 188 | log_trace(gc, ergo)("%s after scavenge average_promoted " SIZE_FORMAT " padded_average_promoted " SIZE_FORMAT " free in old gen " SIZE_FORMAT, |
| 189 | result ? "Full" : "No full" , |
| 190 | (size_t) average_promoted_in_bytes(), |
| 191 | (size_t) padded_average_promoted_in_bytes(), |
| 192 | old_free_in_bytes); |
| 193 | return result; |
| 194 | } |
| 195 | |
| 196 | void PSAdaptiveSizePolicy::clear_generation_free_space_flags() { |
| 197 | |
| 198 | AdaptiveSizePolicy::clear_generation_free_space_flags(); |
| 199 | |
| 200 | set_change_old_gen_for_min_pauses(0); |
| 201 | |
| 202 | set_change_young_gen_for_maj_pauses(0); |
| 203 | } |
| 204 | |
| 205 | // If this is not a full GC, only test and modify the young generation. |
| 206 | |
| 207 | void PSAdaptiveSizePolicy::compute_generations_free_space( |
| 208 | size_t young_live, |
| 209 | size_t eden_live, |
| 210 | size_t old_live, |
| 211 | size_t cur_eden, |
| 212 | size_t max_old_gen_size, |
| 213 | size_t max_eden_size, |
| 214 | bool is_full_gc) { |
| 215 | compute_eden_space_size(young_live, |
| 216 | eden_live, |
| 217 | cur_eden, |
| 218 | max_eden_size, |
| 219 | is_full_gc); |
| 220 | |
| 221 | compute_old_gen_free_space(old_live, |
| 222 | cur_eden, |
| 223 | max_old_gen_size, |
| 224 | is_full_gc); |
| 225 | } |
| 226 | |
| 227 | void PSAdaptiveSizePolicy::compute_eden_space_size( |
| 228 | size_t young_live, |
| 229 | size_t eden_live, |
| 230 | size_t cur_eden, |
| 231 | size_t max_eden_size, |
| 232 | bool is_full_gc) { |
| 233 | |
| 234 | // Update statistics |
| 235 | // Time statistics are updated as we go, update footprint stats here |
| 236 | _avg_base_footprint->sample(BaseFootPrintEstimate); |
| 237 | avg_young_live()->sample(young_live); |
| 238 | avg_eden_live()->sample(eden_live); |
| 239 | |
| 240 | // This code used to return if the policy was not ready , i.e., |
| 241 | // policy_is_ready() returning false. The intent was that |
| 242 | // decisions below needed major collection times and so could |
| 243 | // not be made before two major collections. A consequence was |
| 244 | // adjustments to the young generation were not done until after |
| 245 | // two major collections even if the minor collections times |
| 246 | // exceeded the requested goals. Now let the young generation |
| 247 | // adjust for the minor collection times. Major collection times |
| 248 | // will be zero for the first collection and will naturally be |
| 249 | // ignored. Tenured generation adjustments are only made at the |
| 250 | // full collections so until the second major collection has |
| 251 | // been reached, no tenured generation adjustments will be made. |
| 252 | |
| 253 | // Until we know better, desired promotion size uses the last calculation |
| 254 | size_t desired_promo_size = _promo_size; |
| 255 | |
| 256 | // Start eden at the current value. The desired value that is stored |
| 257 | // in _eden_size is not bounded by constraints of the heap and can |
| 258 | // run away. |
| 259 | // |
| 260 | // As expected setting desired_eden_size to the current |
| 261 | // value of desired_eden_size as a starting point |
| 262 | // caused desired_eden_size to grow way too large and caused |
| 263 | // an overflow down stream. It may have improved performance in |
| 264 | // some case but is dangerous. |
| 265 | size_t desired_eden_size = cur_eden; |
| 266 | |
| 267 | // Cache some values. There's a bit of work getting these, so |
| 268 | // we might save a little time. |
| 269 | const double major_cost = major_gc_cost(); |
| 270 | const double minor_cost = minor_gc_cost(); |
| 271 | |
| 272 | // This method sets the desired eden size. That plus the |
| 273 | // desired survivor space sizes sets the desired young generation |
| 274 | // size. This methods does not know what the desired survivor |
| 275 | // size is but expects that other policy will attempt to make |
| 276 | // the survivor sizes compatible with the live data in the |
| 277 | // young generation. This limit is an estimate of the space left |
| 278 | // in the young generation after the survivor spaces have been |
| 279 | // subtracted out. |
| 280 | size_t eden_limit = max_eden_size; |
| 281 | |
| 282 | const double gc_cost_limit = GCTimeLimit / 100.0; |
| 283 | |
| 284 | // Which way should we go? |
| 285 | // if pause requirement is not met |
| 286 | // adjust size of any generation with average paus exceeding |
| 287 | // the pause limit. Adjust one pause at a time (the larger) |
| 288 | // and only make adjustments for the major pause at full collections. |
| 289 | // else if throughput requirement not met |
| 290 | // adjust the size of the generation with larger gc time. Only |
| 291 | // adjust one generation at a time. |
| 292 | // else |
| 293 | // adjust down the total heap size. Adjust down the larger of the |
| 294 | // generations. |
| 295 | |
| 296 | // Add some checks for a threshold for a change. For example, |
| 297 | // a change less than the necessary alignment is probably not worth |
| 298 | // attempting. |
| 299 | |
| 300 | |
| 301 | if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) || |
| 302 | (_avg_major_pause->padded_average() > gc_pause_goal_sec())) { |
| 303 | // |
| 304 | // Check pauses |
| 305 | // |
| 306 | // Make changes only to affect one of the pauses (the larger) |
| 307 | // at a time. |
| 308 | adjust_eden_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size); |
| 309 | |
| 310 | } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) { |
| 311 | // Adjust only for the minor pause time goal |
| 312 | adjust_eden_for_minor_pause_time(is_full_gc, &desired_eden_size); |
| 313 | |
| 314 | } else if(adjusted_mutator_cost() < _throughput_goal) { |
| 315 | // This branch used to require that (mutator_cost() > 0.0 in 1.4.2. |
| 316 | // This sometimes resulted in skipping to the minimize footprint |
| 317 | // code. Change this to try and reduce GC time if mutator time is |
| 318 | // negative for whatever reason. Or for future consideration, |
| 319 | // bail out of the code if mutator time is negative. |
| 320 | // |
| 321 | // Throughput |
| 322 | // |
| 323 | assert(major_cost >= 0.0, "major cost is < 0.0" ); |
| 324 | assert(minor_cost >= 0.0, "minor cost is < 0.0" ); |
| 325 | // Try to reduce the GC times. |
| 326 | adjust_eden_for_throughput(is_full_gc, &desired_eden_size); |
| 327 | |
| 328 | } else { |
| 329 | |
| 330 | // Be conservative about reducing the footprint. |
| 331 | // Do a minimum number of major collections first. |
| 332 | // Have reasonable averages for major and minor collections costs. |
| 333 | if (UseAdaptiveSizePolicyFootprintGoal && |
| 334 | young_gen_policy_is_ready() && |
| 335 | avg_major_gc_cost()->average() >= 0.0 && |
| 336 | avg_minor_gc_cost()->average() >= 0.0) { |
| 337 | size_t desired_sum = desired_eden_size + desired_promo_size; |
| 338 | desired_eden_size = adjust_eden_for_footprint(desired_eden_size, desired_sum); |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | // Note we make the same tests as in the code block below; the code |
| 343 | // seems a little easier to read with the printing in another block. |
| 344 | if (desired_eden_size > eden_limit) { |
| 345 | log_debug(gc, ergo)( |
| 346 | "PSAdaptiveSizePolicy::compute_eden_space_size limits:" |
| 347 | " desired_eden_size: " SIZE_FORMAT |
| 348 | " old_eden_size: " SIZE_FORMAT |
| 349 | " eden_limit: " SIZE_FORMAT |
| 350 | " cur_eden: " SIZE_FORMAT |
| 351 | " max_eden_size: " SIZE_FORMAT |
| 352 | " avg_young_live: " SIZE_FORMAT, |
| 353 | desired_eden_size, _eden_size, eden_limit, cur_eden, |
| 354 | max_eden_size, (size_t)avg_young_live()->average()); |
| 355 | } |
| 356 | if (gc_cost() > gc_cost_limit) { |
| 357 | log_debug(gc, ergo)( |
| 358 | "PSAdaptiveSizePolicy::compute_eden_space_size: gc time limit" |
| 359 | " gc_cost: %f " |
| 360 | " GCTimeLimit: " UINTX_FORMAT, |
| 361 | gc_cost(), GCTimeLimit); |
| 362 | } |
| 363 | |
| 364 | // Align everything and make a final limit check |
| 365 | desired_eden_size = align_up(desired_eden_size, _space_alignment); |
| 366 | desired_eden_size = MAX2(desired_eden_size, _space_alignment); |
| 367 | |
| 368 | eden_limit = align_down(eden_limit, _space_alignment); |
| 369 | |
| 370 | // And one last limit check, now that we've aligned things. |
| 371 | if (desired_eden_size > eden_limit) { |
| 372 | // If the policy says to get a larger eden but |
| 373 | // is hitting the limit, don't decrease eden. |
| 374 | // This can lead to a general drifting down of the |
| 375 | // eden size. Let the tenuring calculation push more |
| 376 | // into the old gen. |
| 377 | desired_eden_size = MAX2(eden_limit, cur_eden); |
| 378 | } |
| 379 | |
| 380 | log_debug(gc, ergo)("PSAdaptiveSizePolicy::compute_eden_space_size: costs minor_time: %f major_cost: %f mutator_cost: %f throughput_goal: %f" , |
| 381 | minor_gc_cost(), major_gc_cost(), mutator_cost(), _throughput_goal); |
| 382 | |
| 383 | log_trace(gc, ergo)("Minor_pause: %f major_pause: %f minor_interval: %f major_interval: %fpause_goal: %f" , |
| 384 | _avg_minor_pause->padded_average(), |
| 385 | _avg_major_pause->padded_average(), |
| 386 | _avg_minor_interval->average(), |
| 387 | _avg_major_interval->average(), |
| 388 | gc_pause_goal_sec()); |
| 389 | |
| 390 | log_debug(gc, ergo)("Live_space: " SIZE_FORMAT " free_space: " SIZE_FORMAT, |
| 391 | live_space(), free_space()); |
| 392 | |
| 393 | log_trace(gc, ergo)("Base_footprint: " SIZE_FORMAT " avg_young_live: " SIZE_FORMAT " avg_old_live: " SIZE_FORMAT, |
| 394 | (size_t)_avg_base_footprint->average(), |
| 395 | (size_t)avg_young_live()->average(), |
| 396 | (size_t)avg_old_live()->average()); |
| 397 | |
| 398 | log_debug(gc, ergo)("Old eden_size: " SIZE_FORMAT " desired_eden_size: " SIZE_FORMAT, |
| 399 | _eden_size, desired_eden_size); |
| 400 | |
| 401 | set_eden_size(desired_eden_size); |
| 402 | } |
| 403 | |
| 404 | void PSAdaptiveSizePolicy::compute_old_gen_free_space( |
| 405 | size_t old_live, |
| 406 | size_t cur_eden, |
| 407 | size_t max_old_gen_size, |
| 408 | bool is_full_gc) { |
| 409 | |
| 410 | // Update statistics |
| 411 | // Time statistics are updated as we go, update footprint stats here |
| 412 | if (is_full_gc) { |
| 413 | // old_live is only accurate after a full gc |
| 414 | avg_old_live()->sample(old_live); |
| 415 | } |
| 416 | |
| 417 | // This code used to return if the policy was not ready , i.e., |
| 418 | // policy_is_ready() returning false. The intent was that |
| 419 | // decisions below needed major collection times and so could |
| 420 | // not be made before two major collections. A consequence was |
| 421 | // adjustments to the young generation were not done until after |
| 422 | // two major collections even if the minor collections times |
| 423 | // exceeded the requested goals. Now let the young generation |
| 424 | // adjust for the minor collection times. Major collection times |
| 425 | // will be zero for the first collection and will naturally be |
| 426 | // ignored. Tenured generation adjustments are only made at the |
| 427 | // full collections so until the second major collection has |
| 428 | // been reached, no tenured generation adjustments will be made. |
| 429 | |
| 430 | // Until we know better, desired promotion size uses the last calculation |
| 431 | size_t desired_promo_size = _promo_size; |
| 432 | |
| 433 | // Start eden at the current value. The desired value that is stored |
| 434 | // in _eden_size is not bounded by constraints of the heap and can |
| 435 | // run away. |
| 436 | // |
| 437 | // As expected setting desired_eden_size to the current |
| 438 | // value of desired_eden_size as a starting point |
| 439 | // caused desired_eden_size to grow way too large and caused |
| 440 | // an overflow down stream. It may have improved performance in |
| 441 | // some case but is dangerous. |
| 442 | size_t desired_eden_size = cur_eden; |
| 443 | |
| 444 | // Cache some values. There's a bit of work getting these, so |
| 445 | // we might save a little time. |
| 446 | const double major_cost = major_gc_cost(); |
| 447 | const double minor_cost = minor_gc_cost(); |
| 448 | |
| 449 | // Limits on our growth |
| 450 | size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average()); |
| 451 | |
| 452 | // But don't force a promo size below the current promo size. Otherwise, |
| 453 | // the promo size will shrink for no good reason. |
| 454 | promo_limit = MAX2(promo_limit, _promo_size); |
| 455 | |
| 456 | const double gc_cost_limit = GCTimeLimit/100.0; |
| 457 | |
| 458 | // Which way should we go? |
| 459 | // if pause requirement is not met |
| 460 | // adjust size of any generation with average paus exceeding |
| 461 | // the pause limit. Adjust one pause at a time (the larger) |
| 462 | // and only make adjustments for the major pause at full collections. |
| 463 | // else if throughput requirement not met |
| 464 | // adjust the size of the generation with larger gc time. Only |
| 465 | // adjust one generation at a time. |
| 466 | // else |
| 467 | // adjust down the total heap size. Adjust down the larger of the |
| 468 | // generations. |
| 469 | |
| 470 | // Add some checks for a threshold for a change. For example, |
| 471 | // a change less than the necessary alignment is probably not worth |
| 472 | // attempting. |
| 473 | |
| 474 | if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) || |
| 475 | (_avg_major_pause->padded_average() > gc_pause_goal_sec())) { |
| 476 | // |
| 477 | // Check pauses |
| 478 | // |
| 479 | // Make changes only to affect one of the pauses (the larger) |
| 480 | // at a time. |
| 481 | if (is_full_gc) { |
| 482 | set_decide_at_full_gc(decide_at_full_gc_true); |
| 483 | adjust_promo_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size); |
| 484 | } |
| 485 | } else if (adjusted_mutator_cost() < _throughput_goal) { |
| 486 | // This branch used to require that (mutator_cost() > 0.0 in 1.4.2. |
| 487 | // This sometimes resulted in skipping to the minimize footprint |
| 488 | // code. Change this to try and reduce GC time if mutator time is |
| 489 | // negative for whatever reason. Or for future consideration, |
| 490 | // bail out of the code if mutator time is negative. |
| 491 | // |
| 492 | // Throughput |
| 493 | // |
| 494 | assert(major_cost >= 0.0, "major cost is < 0.0" ); |
| 495 | assert(minor_cost >= 0.0, "minor cost is < 0.0" ); |
| 496 | // Try to reduce the GC times. |
| 497 | if (is_full_gc) { |
| 498 | set_decide_at_full_gc(decide_at_full_gc_true); |
| 499 | adjust_promo_for_throughput(is_full_gc, &desired_promo_size); |
| 500 | } |
| 501 | } else { |
| 502 | |
| 503 | // Be conservative about reducing the footprint. |
| 504 | // Do a minimum number of major collections first. |
| 505 | // Have reasonable averages for major and minor collections costs. |
| 506 | if (UseAdaptiveSizePolicyFootprintGoal && |
| 507 | young_gen_policy_is_ready() && |
| 508 | avg_major_gc_cost()->average() >= 0.0 && |
| 509 | avg_minor_gc_cost()->average() >= 0.0) { |
| 510 | if (is_full_gc) { |
| 511 | set_decide_at_full_gc(decide_at_full_gc_true); |
| 512 | size_t desired_sum = desired_eden_size + desired_promo_size; |
| 513 | desired_promo_size = adjust_promo_for_footprint(desired_promo_size, desired_sum); |
| 514 | } |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | // Note we make the same tests as in the code block below; the code |
| 519 | // seems a little easier to read with the printing in another block. |
| 520 | if (desired_promo_size > promo_limit) { |
| 521 | // "free_in_old_gen" was the original value for used for promo_limit |
| 522 | size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average()); |
| 523 | log_debug(gc, ergo)( |
| 524 | "PSAdaptiveSizePolicy::compute_old_gen_free_space limits:" |
| 525 | " desired_promo_size: " SIZE_FORMAT |
| 526 | " promo_limit: " SIZE_FORMAT |
| 527 | " free_in_old_gen: " SIZE_FORMAT |
| 528 | " max_old_gen_size: " SIZE_FORMAT |
| 529 | " avg_old_live: " SIZE_FORMAT, |
| 530 | desired_promo_size, promo_limit, free_in_old_gen, |
| 531 | max_old_gen_size, (size_t) avg_old_live()->average()); |
| 532 | } |
| 533 | if (gc_cost() > gc_cost_limit) { |
| 534 | log_debug(gc, ergo)( |
| 535 | "PSAdaptiveSizePolicy::compute_old_gen_free_space: gc time limit" |
| 536 | " gc_cost: %f " |
| 537 | " GCTimeLimit: " UINTX_FORMAT, |
| 538 | gc_cost(), GCTimeLimit); |
| 539 | } |
| 540 | |
| 541 | // Align everything and make a final limit check |
| 542 | desired_promo_size = align_up(desired_promo_size, _space_alignment); |
| 543 | desired_promo_size = MAX2(desired_promo_size, _space_alignment); |
| 544 | |
| 545 | promo_limit = align_down(promo_limit, _space_alignment); |
| 546 | |
| 547 | // And one last limit check, now that we've aligned things. |
| 548 | desired_promo_size = MIN2(desired_promo_size, promo_limit); |
| 549 | |
| 550 | // Timing stats |
| 551 | log_debug(gc, ergo)("PSAdaptiveSizePolicy::compute_old_gen_free_space: costs minor_time: %f major_cost: %f mutator_cost: %f throughput_goal: %f" , |
| 552 | minor_gc_cost(), major_gc_cost(), mutator_cost(), _throughput_goal); |
| 553 | |
| 554 | log_trace(gc, ergo)("Minor_pause: %f major_pause: %f minor_interval: %f major_interval: %f pause_goal: %f" , |
| 555 | _avg_minor_pause->padded_average(), |
| 556 | _avg_major_pause->padded_average(), |
| 557 | _avg_minor_interval->average(), |
| 558 | _avg_major_interval->average(), |
| 559 | gc_pause_goal_sec()); |
| 560 | |
| 561 | // Footprint stats |
| 562 | log_debug(gc, ergo)("Live_space: " SIZE_FORMAT " free_space: " SIZE_FORMAT, |
| 563 | live_space(), free_space()); |
| 564 | |
| 565 | log_trace(gc, ergo)("Base_footprint: " SIZE_FORMAT " avg_young_live: " SIZE_FORMAT " avg_old_live: " SIZE_FORMAT, |
| 566 | (size_t)_avg_base_footprint->average(), |
| 567 | (size_t)avg_young_live()->average(), |
| 568 | (size_t)avg_old_live()->average()); |
| 569 | |
| 570 | log_debug(gc, ergo)("Old promo_size: " SIZE_FORMAT " desired_promo_size: " SIZE_FORMAT, |
| 571 | _promo_size, desired_promo_size); |
| 572 | |
| 573 | set_promo_size(desired_promo_size); |
| 574 | } |
| 575 | |
| 576 | void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) { |
| 577 | // Decay the supplemental increment? Decay the supplement growth |
| 578 | // factor even if it is not used. It is only meant to give a boost |
| 579 | // to the initial growth and if it is not used, then it was not |
| 580 | // needed. |
| 581 | if (is_full_gc) { |
| 582 | // Don't wait for the threshold value for the major collections. If |
| 583 | // here, the supplemental growth term was used and should decay. |
| 584 | if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay) |
| 585 | == 0) { |
| 586 | _old_gen_size_increment_supplement = |
| 587 | _old_gen_size_increment_supplement >> 1; |
| 588 | } |
| 589 | } else { |
| 590 | if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) && |
| 591 | (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) { |
| 592 | _young_gen_size_increment_supplement = |
| 593 | _young_gen_size_increment_supplement >> 1; |
| 594 | } |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | void PSAdaptiveSizePolicy::adjust_eden_for_minor_pause_time(bool is_full_gc, |
| 599 | size_t* desired_eden_size_ptr) { |
| 600 | |
| 601 | // Adjust the young generation size to reduce pause time of |
| 602 | // of collections. |
| 603 | // |
| 604 | // The AdaptiveSizePolicyInitializingSteps test is not used |
| 605 | // here. It has not seemed to be needed but perhaps should |
| 606 | // be added for consistency. |
| 607 | if (minor_pause_young_estimator()->decrement_will_decrease()) { |
| 608 | // reduce eden size |
| 609 | set_change_young_gen_for_min_pauses( |
| 610 | decrease_young_gen_for_min_pauses_true); |
| 611 | *desired_eden_size_ptr = *desired_eden_size_ptr - |
| 612 | eden_decrement_aligned_down(*desired_eden_size_ptr); |
| 613 | } else { |
| 614 | // EXPERIMENTAL ADJUSTMENT |
| 615 | // Only record that the estimator indicated such an action. |
| 616 | // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta; |
| 617 | set_change_young_gen_for_min_pauses( |
| 618 | increase_young_gen_for_min_pauses_true); |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | void PSAdaptiveSizePolicy::adjust_promo_for_pause_time(bool is_full_gc, |
| 623 | size_t* desired_promo_size_ptr, |
| 624 | size_t* desired_eden_size_ptr) { |
| 625 | |
| 626 | size_t promo_heap_delta = 0; |
| 627 | // Add some checks for a threshold for a change. For example, |
| 628 | // a change less than the required alignment is probably not worth |
| 629 | // attempting. |
| 630 | |
| 631 | if (_avg_minor_pause->padded_average() <= _avg_major_pause->padded_average() && is_full_gc) { |
| 632 | // Adjust for the major pause time only at full gc's because the |
| 633 | // affects of a change can only be seen at full gc's. |
| 634 | |
| 635 | // Reduce old generation size to reduce pause? |
| 636 | if (major_pause_old_estimator()->decrement_will_decrease()) { |
| 637 | // reduce old generation size |
| 638 | set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true); |
| 639 | promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr); |
| 640 | *desired_promo_size_ptr = _promo_size - promo_heap_delta; |
| 641 | } else { |
| 642 | // EXPERIMENTAL ADJUSTMENT |
| 643 | // Only record that the estimator indicated such an action. |
| 644 | // *desired_promo_size_ptr = _promo_size + |
| 645 | // promo_increment_aligned_up(*desired_promo_size_ptr); |
| 646 | set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | log_trace(gc, ergo)( |
| 651 | "PSAdaptiveSizePolicy::adjust_promo_for_pause_time " |
| 652 | "adjusting gen sizes for major pause (avg %f goal %f). " |
| 653 | "desired_promo_size " SIZE_FORMAT " promo delta " SIZE_FORMAT, |
| 654 | _avg_major_pause->average(), gc_pause_goal_sec(), |
| 655 | *desired_promo_size_ptr, promo_heap_delta); |
| 656 | } |
| 657 | |
| 658 | void PSAdaptiveSizePolicy::adjust_eden_for_pause_time(bool is_full_gc, |
| 659 | size_t* desired_promo_size_ptr, |
| 660 | size_t* desired_eden_size_ptr) { |
| 661 | |
| 662 | size_t eden_heap_delta = 0; |
| 663 | // Add some checks for a threshold for a change. For example, |
| 664 | // a change less than the required alignment is probably not worth |
| 665 | // attempting. |
| 666 | if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) { |
| 667 | adjust_eden_for_minor_pause_time(is_full_gc, desired_eden_size_ptr); |
| 668 | } |
| 669 | log_trace(gc, ergo)( |
| 670 | "PSAdaptiveSizePolicy::adjust_eden_for_pause_time " |
| 671 | "adjusting gen sizes for major pause (avg %f goal %f). " |
| 672 | "desired_eden_size " SIZE_FORMAT " eden delta " SIZE_FORMAT, |
| 673 | _avg_major_pause->average(), gc_pause_goal_sec(), |
| 674 | *desired_eden_size_ptr, eden_heap_delta); |
| 675 | } |
| 676 | |
| 677 | void PSAdaptiveSizePolicy::adjust_promo_for_throughput(bool is_full_gc, |
| 678 | size_t* desired_promo_size_ptr) { |
| 679 | |
| 680 | // Add some checks for a threshold for a change. For example, |
| 681 | // a change less than the required alignment is probably not worth |
| 682 | // attempting. |
| 683 | |
| 684 | if ((gc_cost() + mutator_cost()) == 0.0) { |
| 685 | return; |
| 686 | } |
| 687 | |
| 688 | log_trace(gc, ergo)("PSAdaptiveSizePolicy::adjust_promo_for_throughput(is_full: %d, promo: " SIZE_FORMAT "): mutator_cost %f major_gc_cost %f minor_gc_cost %f" , |
| 689 | is_full_gc, *desired_promo_size_ptr, mutator_cost(), major_gc_cost(), minor_gc_cost()); |
| 690 | |
| 691 | // Tenured generation |
| 692 | if (is_full_gc) { |
| 693 | // Calculate the change to use for the tenured gen. |
| 694 | size_t scaled_promo_heap_delta = 0; |
| 695 | // Can the increment to the generation be scaled? |
| 696 | if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) { |
| 697 | size_t promo_heap_delta = |
| 698 | promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr); |
| 699 | double scale_by_ratio = major_gc_cost() / gc_cost(); |
| 700 | scaled_promo_heap_delta = |
| 701 | (size_t) (scale_by_ratio * (double) promo_heap_delta); |
| 702 | log_trace(gc, ergo)("Scaled tenured increment: " SIZE_FORMAT " by %f down to " SIZE_FORMAT, |
| 703 | promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta); |
| 704 | } else if (major_gc_cost() >= 0.0) { |
| 705 | // Scaling is not going to work. If the major gc time is the |
| 706 | // larger, give it a full increment. |
| 707 | if (major_gc_cost() >= minor_gc_cost()) { |
| 708 | scaled_promo_heap_delta = |
| 709 | promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr); |
| 710 | } |
| 711 | } else { |
| 712 | // Don't expect to get here but it's ok if it does |
| 713 | // in the product build since the delta will be 0 |
| 714 | // and nothing will change. |
| 715 | assert(false, "Unexpected value for gc costs" ); |
| 716 | } |
| 717 | |
| 718 | switch (AdaptiveSizeThroughPutPolicy) { |
| 719 | case 1: |
| 720 | // Early in the run the statistics might not be good. Until |
| 721 | // a specific number of collections have been, use the heuristic |
| 722 | // that a larger generation size means lower collection costs. |
| 723 | if (major_collection_estimator()->increment_will_decrease() || |
| 724 | (_old_gen_change_for_major_throughput |
| 725 | <= AdaptiveSizePolicyInitializingSteps)) { |
| 726 | // Increase tenured generation size to reduce major collection cost |
| 727 | if ((*desired_promo_size_ptr + scaled_promo_heap_delta) > |
| 728 | *desired_promo_size_ptr) { |
| 729 | *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta; |
| 730 | } |
| 731 | set_change_old_gen_for_throughput( |
| 732 | increase_old_gen_for_throughput_true); |
| 733 | _old_gen_change_for_major_throughput++; |
| 734 | } else { |
| 735 | // EXPERIMENTAL ADJUSTMENT |
| 736 | // Record that decreasing the old gen size would decrease |
| 737 | // the major collection cost but don't do it. |
| 738 | // *desired_promo_size_ptr = _promo_size - |
| 739 | // promo_decrement_aligned_down(*desired_promo_size_ptr); |
| 740 | set_change_old_gen_for_throughput( |
| 741 | decrease_old_gen_for_throughput_true); |
| 742 | } |
| 743 | |
| 744 | break; |
| 745 | default: |
| 746 | // Simplest strategy |
| 747 | if ((*desired_promo_size_ptr + scaled_promo_heap_delta) > |
| 748 | *desired_promo_size_ptr) { |
| 749 | *desired_promo_size_ptr = *desired_promo_size_ptr + |
| 750 | scaled_promo_heap_delta; |
| 751 | } |
| 752 | set_change_old_gen_for_throughput( |
| 753 | increase_old_gen_for_throughput_true); |
| 754 | _old_gen_change_for_major_throughput++; |
| 755 | } |
| 756 | |
| 757 | log_trace(gc, ergo)("Adjusting tenured gen for throughput (avg %f goal %f). desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT , |
| 758 | mutator_cost(), |
| 759 | _throughput_goal, |
| 760 | *desired_promo_size_ptr, scaled_promo_heap_delta); |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | void PSAdaptiveSizePolicy::adjust_eden_for_throughput(bool is_full_gc, |
| 765 | size_t* desired_eden_size_ptr) { |
| 766 | |
| 767 | // Add some checks for a threshold for a change. For example, |
| 768 | // a change less than the required alignment is probably not worth |
| 769 | // attempting. |
| 770 | |
| 771 | if ((gc_cost() + mutator_cost()) == 0.0) { |
| 772 | return; |
| 773 | } |
| 774 | |
| 775 | log_trace(gc, ergo)("PSAdaptiveSizePolicy::adjust_eden_for_throughput(is_full: %d, cur_eden: " SIZE_FORMAT "): mutator_cost %f major_gc_cost %f minor_gc_cost %f" , |
| 776 | is_full_gc, *desired_eden_size_ptr, mutator_cost(), major_gc_cost(), minor_gc_cost()); |
| 777 | |
| 778 | // Young generation |
| 779 | size_t scaled_eden_heap_delta = 0; |
| 780 | // Can the increment to the generation be scaled? |
| 781 | if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) { |
| 782 | size_t eden_heap_delta = |
| 783 | eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr); |
| 784 | double scale_by_ratio = minor_gc_cost() / gc_cost(); |
| 785 | assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong" ); |
| 786 | scaled_eden_heap_delta = |
| 787 | (size_t) (scale_by_ratio * (double) eden_heap_delta); |
| 788 | log_trace(gc, ergo)("Scaled eden increment: " SIZE_FORMAT " by %f down to " SIZE_FORMAT, |
| 789 | eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta); |
| 790 | } else if (minor_gc_cost() >= 0.0) { |
| 791 | // Scaling is not going to work. If the minor gc time is the |
| 792 | // larger, give it a full increment. |
| 793 | if (minor_gc_cost() > major_gc_cost()) { |
| 794 | scaled_eden_heap_delta = |
| 795 | eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr); |
| 796 | } |
| 797 | } else { |
| 798 | // Don't expect to get here but it's ok if it does |
| 799 | // in the product build since the delta will be 0 |
| 800 | // and nothing will change. |
| 801 | assert(false, "Unexpected value for gc costs" ); |
| 802 | } |
| 803 | |
| 804 | // Use a heuristic for some number of collections to give |
| 805 | // the averages time to settle down. |
| 806 | switch (AdaptiveSizeThroughPutPolicy) { |
| 807 | case 1: |
| 808 | if (minor_collection_estimator()->increment_will_decrease() || |
| 809 | (_young_gen_change_for_minor_throughput |
| 810 | <= AdaptiveSizePolicyInitializingSteps)) { |
| 811 | // Expand young generation size to reduce frequency of |
| 812 | // of collections. |
| 813 | if ((*desired_eden_size_ptr + scaled_eden_heap_delta) > |
| 814 | *desired_eden_size_ptr) { |
| 815 | *desired_eden_size_ptr = |
| 816 | *desired_eden_size_ptr + scaled_eden_heap_delta; |
| 817 | } |
| 818 | set_change_young_gen_for_throughput( |
| 819 | increase_young_gen_for_througput_true); |
| 820 | _young_gen_change_for_minor_throughput++; |
| 821 | } else { |
| 822 | // EXPERIMENTAL ADJUSTMENT |
| 823 | // Record that decreasing the young gen size would decrease |
| 824 | // the minor collection cost but don't do it. |
| 825 | // *desired_eden_size_ptr = _eden_size - |
| 826 | // eden_decrement_aligned_down(*desired_eden_size_ptr); |
| 827 | set_change_young_gen_for_throughput( |
| 828 | decrease_young_gen_for_througput_true); |
| 829 | } |
| 830 | break; |
| 831 | default: |
| 832 | if ((*desired_eden_size_ptr + scaled_eden_heap_delta) > |
| 833 | *desired_eden_size_ptr) { |
| 834 | *desired_eden_size_ptr = |
| 835 | *desired_eden_size_ptr + scaled_eden_heap_delta; |
| 836 | } |
| 837 | set_change_young_gen_for_throughput( |
| 838 | increase_young_gen_for_througput_true); |
| 839 | _young_gen_change_for_minor_throughput++; |
| 840 | } |
| 841 | |
| 842 | log_trace(gc, ergo)("Adjusting eden for throughput (avg %f goal %f). desired_eden_size " SIZE_FORMAT " eden delta " SIZE_FORMAT, |
| 843 | mutator_cost(), _throughput_goal, *desired_eden_size_ptr, scaled_eden_heap_delta); |
| 844 | } |
| 845 | |
| 846 | size_t PSAdaptiveSizePolicy::( |
| 847 | size_t desired_promo_size, size_t desired_sum) { |
| 848 | assert(desired_promo_size <= desired_sum, "Inconsistent parameters" ); |
| 849 | set_decrease_for_footprint(decrease_old_gen_for_footprint_true); |
| 850 | |
| 851 | size_t change = promo_decrement(desired_promo_size); |
| 852 | change = scale_down(change, desired_promo_size, desired_sum); |
| 853 | |
| 854 | size_t reduced_size = desired_promo_size - change; |
| 855 | |
| 856 | log_trace(gc, ergo)( |
| 857 | "AdaptiveSizePolicy::adjust_promo_for_footprint " |
| 858 | "adjusting tenured gen for footprint. " |
| 859 | "starting promo size " SIZE_FORMAT |
| 860 | " reduced promo size " SIZE_FORMAT |
| 861 | " promo delta " SIZE_FORMAT, |
| 862 | desired_promo_size, reduced_size, change ); |
| 863 | |
| 864 | assert(reduced_size <= desired_promo_size, "Inconsistent result" ); |
| 865 | return reduced_size; |
| 866 | } |
| 867 | |
| 868 | size_t PSAdaptiveSizePolicy::( |
| 869 | size_t desired_eden_size, size_t desired_sum) { |
| 870 | assert(desired_eden_size <= desired_sum, "Inconsistent parameters" ); |
| 871 | set_decrease_for_footprint(decrease_young_gen_for_footprint_true); |
| 872 | |
| 873 | size_t change = eden_decrement(desired_eden_size); |
| 874 | change = scale_down(change, desired_eden_size, desired_sum); |
| 875 | |
| 876 | size_t reduced_size = desired_eden_size - change; |
| 877 | |
| 878 | log_trace(gc, ergo)( |
| 879 | "AdaptiveSizePolicy::adjust_eden_for_footprint " |
| 880 | "adjusting eden for footprint. " |
| 881 | " starting eden size " SIZE_FORMAT |
| 882 | " reduced eden size " SIZE_FORMAT |
| 883 | " eden delta " SIZE_FORMAT, |
| 884 | desired_eden_size, reduced_size, change); |
| 885 | |
| 886 | assert(reduced_size <= desired_eden_size, "Inconsistent result" ); |
| 887 | return reduced_size; |
| 888 | } |
| 889 | |
| 890 | // Scale down "change" by the factor |
| 891 | // part / total |
| 892 | // Don't align the results. |
| 893 | |
| 894 | size_t PSAdaptiveSizePolicy::scale_down(size_t change, |
| 895 | double part, |
| 896 | double total) { |
| 897 | assert(part <= total, "Inconsistent input" ); |
| 898 | size_t reduced_change = change; |
| 899 | if (total > 0) { |
| 900 | double fraction = part / total; |
| 901 | reduced_change = (size_t) (fraction * (double) change); |
| 902 | } |
| 903 | assert(reduced_change <= change, "Inconsistent result" ); |
| 904 | return reduced_change; |
| 905 | } |
| 906 | |
| 907 | size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden, |
| 908 | uint percent_change) { |
| 909 | size_t eden_heap_delta; |
| 910 | eden_heap_delta = cur_eden / 100 * percent_change; |
| 911 | return eden_heap_delta; |
| 912 | } |
| 913 | |
| 914 | size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) { |
| 915 | return eden_increment(cur_eden, YoungGenerationSizeIncrement); |
| 916 | } |
| 917 | |
| 918 | size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) { |
| 919 | size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement); |
| 920 | return align_up(result, _space_alignment); |
| 921 | } |
| 922 | |
| 923 | size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) { |
| 924 | size_t result = eden_increment(cur_eden); |
| 925 | return align_down(result, _space_alignment); |
| 926 | } |
| 927 | |
| 928 | size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up( |
| 929 | size_t cur_eden) { |
| 930 | size_t result = eden_increment(cur_eden, |
| 931 | YoungGenerationSizeIncrement + _young_gen_size_increment_supplement); |
| 932 | return align_up(result, _space_alignment); |
| 933 | } |
| 934 | |
| 935 | size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) { |
| 936 | size_t eden_heap_delta = eden_decrement(cur_eden); |
| 937 | return align_down(eden_heap_delta, _space_alignment); |
| 938 | } |
| 939 | |
| 940 | size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) { |
| 941 | size_t eden_heap_delta = eden_increment(cur_eden) / |
| 942 | AdaptiveSizeDecrementScaleFactor; |
| 943 | return eden_heap_delta; |
| 944 | } |
| 945 | |
| 946 | size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo, |
| 947 | uint percent_change) { |
| 948 | size_t promo_heap_delta; |
| 949 | promo_heap_delta = cur_promo / 100 * percent_change; |
| 950 | return promo_heap_delta; |
| 951 | } |
| 952 | |
| 953 | size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) { |
| 954 | return promo_increment(cur_promo, TenuredGenerationSizeIncrement); |
| 955 | } |
| 956 | |
| 957 | size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) { |
| 958 | size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement); |
| 959 | return align_up(result, _space_alignment); |
| 960 | } |
| 961 | |
| 962 | size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) { |
| 963 | size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement); |
| 964 | return align_down(result, _space_alignment); |
| 965 | } |
| 966 | |
| 967 | size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up( |
| 968 | size_t cur_promo) { |
| 969 | size_t result = promo_increment(cur_promo, |
| 970 | TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement); |
| 971 | return align_up(result, _space_alignment); |
| 972 | } |
| 973 | |
| 974 | size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) { |
| 975 | size_t promo_heap_delta = promo_decrement(cur_promo); |
| 976 | return align_down(promo_heap_delta, _space_alignment); |
| 977 | } |
| 978 | |
| 979 | size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) { |
| 980 | size_t promo_heap_delta = promo_increment(cur_promo); |
| 981 | promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor; |
| 982 | return promo_heap_delta; |
| 983 | } |
| 984 | |
| 985 | uint PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold( |
| 986 | bool is_survivor_overflow, |
| 987 | uint tenuring_threshold, |
| 988 | size_t survivor_limit) { |
| 989 | assert(survivor_limit >= _space_alignment, |
| 990 | "survivor_limit too small" ); |
| 991 | assert(is_aligned(survivor_limit, _space_alignment), |
| 992 | "survivor_limit not aligned" ); |
| 993 | |
| 994 | // This method is called even if the tenuring threshold and survivor |
| 995 | // spaces are not adjusted so that the averages are sampled above. |
| 996 | if (!UsePSAdaptiveSurvivorSizePolicy || |
| 997 | !young_gen_policy_is_ready()) { |
| 998 | return tenuring_threshold; |
| 999 | } |
| 1000 | |
| 1001 | // We'll decide whether to increase or decrease the tenuring |
| 1002 | // threshold based partly on the newly computed survivor size |
| 1003 | // (if we hit the maximum limit allowed, we'll always choose to |
| 1004 | // decrement the threshold). |
| 1005 | bool incr_tenuring_threshold = false; |
| 1006 | bool decr_tenuring_threshold = false; |
| 1007 | |
| 1008 | set_decrement_tenuring_threshold_for_gc_cost(false); |
| 1009 | set_increment_tenuring_threshold_for_gc_cost(false); |
| 1010 | set_decrement_tenuring_threshold_for_survivor_limit(false); |
| 1011 | |
| 1012 | if (!is_survivor_overflow) { |
| 1013 | // Keep running averages on how much survived |
| 1014 | |
| 1015 | // We use the tenuring threshold to equalize the cost of major |
| 1016 | // and minor collections. |
| 1017 | // ThresholdTolerance is used to indicate how sensitive the |
| 1018 | // tenuring threshold is to differences in cost between the |
| 1019 | // collection types. |
| 1020 | |
| 1021 | // Get the times of interest. This involves a little work, so |
| 1022 | // we cache the values here. |
| 1023 | const double major_cost = major_gc_cost(); |
| 1024 | const double minor_cost = minor_gc_cost(); |
| 1025 | |
| 1026 | if (minor_cost > major_cost * _threshold_tolerance_percent) { |
| 1027 | // Minor times are getting too long; lower the threshold so |
| 1028 | // less survives and more is promoted. |
| 1029 | decr_tenuring_threshold = true; |
| 1030 | set_decrement_tenuring_threshold_for_gc_cost(true); |
| 1031 | } else if (major_cost > minor_cost * _threshold_tolerance_percent) { |
| 1032 | // Major times are too long, so we want less promotion. |
| 1033 | incr_tenuring_threshold = true; |
| 1034 | set_increment_tenuring_threshold_for_gc_cost(true); |
| 1035 | } |
| 1036 | |
| 1037 | } else { |
| 1038 | // Survivor space overflow occurred, so promoted and survived are |
| 1039 | // not accurate. We'll make our best guess by combining survived |
| 1040 | // and promoted and count them as survivors. |
| 1041 | // |
| 1042 | // We'll lower the tenuring threshold to see if we can correct |
| 1043 | // things. Also, set the survivor size conservatively. We're |
| 1044 | // trying to avoid many overflows from occurring if defnew size |
| 1045 | // is just too small. |
| 1046 | |
| 1047 | decr_tenuring_threshold = true; |
| 1048 | } |
| 1049 | |
| 1050 | // The padded average also maintains a deviation from the average; |
| 1051 | // we use this to see how good of an estimate we have of what survived. |
| 1052 | // We're trying to pad the survivor size as little as possible without |
| 1053 | // overflowing the survivor spaces. |
| 1054 | size_t target_size = align_up((size_t)_avg_survived->padded_average(), |
| 1055 | _space_alignment); |
| 1056 | target_size = MAX2(target_size, _space_alignment); |
| 1057 | |
| 1058 | if (target_size > survivor_limit) { |
| 1059 | // Target size is bigger than we can handle. Let's also reduce |
| 1060 | // the tenuring threshold. |
| 1061 | target_size = survivor_limit; |
| 1062 | decr_tenuring_threshold = true; |
| 1063 | set_decrement_tenuring_threshold_for_survivor_limit(true); |
| 1064 | } |
| 1065 | |
| 1066 | // Finally, increment or decrement the tenuring threshold, as decided above. |
| 1067 | // We test for decrementing first, as we might have hit the target size |
| 1068 | // limit. |
| 1069 | if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { |
| 1070 | if (tenuring_threshold > 1) { |
| 1071 | tenuring_threshold--; |
| 1072 | } |
| 1073 | } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { |
| 1074 | if (tenuring_threshold < MaxTenuringThreshold) { |
| 1075 | tenuring_threshold++; |
| 1076 | } |
| 1077 | } |
| 1078 | |
| 1079 | // We keep a running average of the amount promoted which is used |
| 1080 | // to decide when we should collect the old generation (when |
| 1081 | // the amount of old gen free space is less than what we expect to |
| 1082 | // promote). |
| 1083 | |
| 1084 | log_trace(gc, ergo)("avg_survived: %f avg_deviation: %f" , _avg_survived->average(), _avg_survived->deviation()); |
| 1085 | log_debug(gc, ergo)("avg_survived_padded_avg: %f" , _avg_survived->padded_average()); |
| 1086 | |
| 1087 | log_trace(gc, ergo)("avg_promoted_avg: %f avg_promoted_dev: %f" , avg_promoted()->average(), avg_promoted()->deviation()); |
| 1088 | log_debug(gc, ergo)("avg_promoted_padded_avg: %f avg_pretenured_padded_avg: %f tenuring_thresh: %d target_size: " SIZE_FORMAT, |
| 1089 | avg_promoted()->padded_average(), |
| 1090 | _avg_pretenured->padded_average(), |
| 1091 | tenuring_threshold, target_size); |
| 1092 | |
| 1093 | set_survivor_size(target_size); |
| 1094 | |
| 1095 | return tenuring_threshold; |
| 1096 | } |
| 1097 | |
| 1098 | void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow, |
| 1099 | size_t survived, |
| 1100 | size_t promoted) { |
| 1101 | // Update averages |
| 1102 | if (!is_survivor_overflow) { |
| 1103 | // Keep running averages on how much survived |
| 1104 | _avg_survived->sample(survived); |
| 1105 | } else { |
| 1106 | size_t survived_guess = survived + promoted; |
| 1107 | _avg_survived->sample(survived_guess); |
| 1108 | } |
| 1109 | avg_promoted()->sample(promoted); |
| 1110 | |
| 1111 | log_trace(gc, ergo)("AdaptiveSizePolicy::update_averages: survived: " SIZE_FORMAT " promoted: " SIZE_FORMAT " overflow: %s" , |
| 1112 | survived, promoted, is_survivor_overflow ? "true" : "false" ); |
| 1113 | } |
| 1114 | |
| 1115 | bool PSAdaptiveSizePolicy::print() const { |
| 1116 | |
| 1117 | if (!UseAdaptiveSizePolicy) { |
| 1118 | return false; |
| 1119 | } |
| 1120 | |
| 1121 | if (AdaptiveSizePolicy::print()) { |
| 1122 | AdaptiveSizePolicy::print_tenuring_threshold(PSScavenge::tenuring_threshold()); |
| 1123 | return true; |
| 1124 | } |
| 1125 | |
| 1126 | return false; |
| 1127 | } |
| 1128 | |