1 | /* |
2 | * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/parallel/objectStartArray.inline.hpp" |
27 | #include "gc/parallel/parallelArguments.hpp" |
28 | #include "gc/parallel/parallelScavengeHeap.hpp" |
29 | #include "gc/parallel/psAdaptiveSizePolicy.hpp" |
30 | #include "gc/parallel/psCardTable.hpp" |
31 | #include "gc/parallel/psFileBackedVirtualspace.hpp" |
32 | #include "gc/parallel/psMarkSweepDecorator.hpp" |
33 | #include "gc/parallel/psOldGen.hpp" |
34 | #include "gc/shared/cardTableBarrierSet.hpp" |
35 | #include "gc/shared/gcLocker.hpp" |
36 | #include "gc/shared/spaceDecorator.hpp" |
37 | #include "logging/log.hpp" |
38 | #include "oops/oop.inline.hpp" |
39 | #include "runtime/java.hpp" |
40 | #include "utilities/align.hpp" |
41 | |
42 | inline const char* PSOldGen::select_name() { |
43 | return UseParallelOldGC ? "ParOldGen" : "PSOldGen" ; |
44 | } |
45 | |
46 | PSOldGen::PSOldGen(ReservedSpace rs, size_t alignment, |
47 | size_t initial_size, size_t min_size, size_t max_size, |
48 | const char* perf_data_name, int level): |
49 | _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size), |
50 | _max_gen_size(max_size) |
51 | { |
52 | initialize(rs, alignment, perf_data_name, level); |
53 | } |
54 | |
55 | PSOldGen::PSOldGen(size_t initial_size, |
56 | size_t min_size, size_t max_size, |
57 | const char* perf_data_name, int level): |
58 | _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size), |
59 | _max_gen_size(max_size) |
60 | {} |
61 | |
62 | void PSOldGen::initialize(ReservedSpace rs, size_t alignment, |
63 | const char* perf_data_name, int level) { |
64 | initialize_virtual_space(rs, alignment); |
65 | initialize_work(perf_data_name, level); |
66 | |
67 | // The old gen can grow to gen_size_limit(). _reserve reflects only |
68 | // the current maximum that can be committed. |
69 | assert(_reserved.byte_size() <= gen_size_limit(), "Consistency check" ); |
70 | |
71 | initialize_performance_counters(perf_data_name, level); |
72 | } |
73 | |
74 | void PSOldGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) { |
75 | |
76 | if(ParallelArguments::is_heterogeneous_heap()) { |
77 | _virtual_space = new PSFileBackedVirtualSpace(rs, alignment, AllocateOldGenAt); |
78 | if (!(static_cast <PSFileBackedVirtualSpace*>(_virtual_space))->initialize()) { |
79 | vm_exit_during_initialization("Could not map space for PSOldGen at given AllocateOldGenAt path" ); |
80 | } |
81 | } else { |
82 | _virtual_space = new PSVirtualSpace(rs, alignment); |
83 | } |
84 | if (!_virtual_space->expand_by(_init_gen_size)) { |
85 | vm_exit_during_initialization("Could not reserve enough space for " |
86 | "object heap" ); |
87 | } |
88 | } |
89 | |
90 | void PSOldGen::initialize_work(const char* perf_data_name, int level) { |
91 | // |
92 | // Basic memory initialization |
93 | // |
94 | |
95 | MemRegion limit_reserved((HeapWord*)virtual_space()->low_boundary(), |
96 | heap_word_size(_max_gen_size)); |
97 | assert(limit_reserved.byte_size() == _max_gen_size, |
98 | "word vs bytes confusion" ); |
99 | // |
100 | // Object start stuff |
101 | // |
102 | |
103 | start_array()->initialize(limit_reserved); |
104 | |
105 | _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(), |
106 | (HeapWord*)virtual_space()->high_boundary()); |
107 | |
108 | // |
109 | // Card table stuff |
110 | // |
111 | |
112 | MemRegion cmr((HeapWord*)virtual_space()->low(), |
113 | (HeapWord*)virtual_space()->high()); |
114 | if (ZapUnusedHeapArea) { |
115 | // Mangle newly committed space immediately rather than |
116 | // waiting for the initialization of the space even though |
117 | // mangling is related to spaces. Doing it here eliminates |
118 | // the need to carry along information that a complete mangling |
119 | // (bottom to end) needs to be done. |
120 | SpaceMangler::mangle_region(cmr); |
121 | } |
122 | |
123 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
124 | PSCardTable* ct = heap->card_table(); |
125 | ct->resize_covered_region(cmr); |
126 | |
127 | // Verify that the start and end of this generation is the start of a card. |
128 | // If this wasn't true, a single card could span more than one generation, |
129 | // which would cause problems when we commit/uncommit memory, and when we |
130 | // clear and dirty cards. |
131 | guarantee(ct->is_card_aligned(_reserved.start()), "generation must be card aligned" ); |
132 | if (_reserved.end() != heap->reserved_region().end()) { |
133 | // Don't check at the very end of the heap as we'll assert that we're probing off |
134 | // the end if we try. |
135 | guarantee(ct->is_card_aligned(_reserved.end()), "generation must be card aligned" ); |
136 | } |
137 | |
138 | // |
139 | // ObjectSpace stuff |
140 | // |
141 | |
142 | _object_space = new MutableSpace(virtual_space()->alignment()); |
143 | |
144 | if (_object_space == NULL) |
145 | vm_exit_during_initialization("Could not allocate an old gen space" ); |
146 | |
147 | object_space()->initialize(cmr, |
148 | SpaceDecorator::Clear, |
149 | SpaceDecorator::Mangle); |
150 | |
151 | #if INCLUDE_SERIALGC |
152 | _object_mark_sweep = new PSMarkSweepDecorator(_object_space, start_array(), MarkSweepDeadRatio); |
153 | |
154 | if (_object_mark_sweep == NULL) { |
155 | vm_exit_during_initialization("Could not complete allocation of old generation" ); |
156 | } |
157 | #endif // INCLUDE_SERIALGC |
158 | |
159 | // Update the start_array |
160 | start_array()->set_covered_region(cmr); |
161 | } |
162 | |
163 | void PSOldGen::initialize_performance_counters(const char* perf_data_name, int level) { |
164 | // Generation Counters, generation 'level', 1 subspace |
165 | _gen_counters = new PSGenerationCounters(perf_data_name, level, 1, _min_gen_size, |
166 | _max_gen_size, virtual_space()); |
167 | _space_counters = new SpaceCounters(perf_data_name, 0, |
168 | virtual_space()->reserved_size(), |
169 | _object_space, _gen_counters); |
170 | } |
171 | |
172 | // Assume that the generation has been allocated if its |
173 | // reserved size is not 0. |
174 | bool PSOldGen::is_allocated() { |
175 | return virtual_space()->reserved_size() != 0; |
176 | } |
177 | |
178 | #if INCLUDE_SERIALGC |
179 | |
180 | void PSOldGen::precompact() { |
181 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
182 | |
183 | // Reset start array first. |
184 | start_array()->reset(); |
185 | |
186 | object_mark_sweep()->precompact(); |
187 | |
188 | // Now compact the young gen |
189 | heap->young_gen()->precompact(); |
190 | } |
191 | |
192 | void PSOldGen::adjust_pointers() { |
193 | object_mark_sweep()->adjust_pointers(); |
194 | } |
195 | |
196 | void PSOldGen::compact() { |
197 | object_mark_sweep()->compact(ZapUnusedHeapArea); |
198 | } |
199 | |
200 | #endif // INCLUDE_SERIALGC |
201 | |
202 | size_t PSOldGen::contiguous_available() const { |
203 | return object_space()->free_in_bytes() + virtual_space()->uncommitted_size(); |
204 | } |
205 | |
206 | // Allocation. We report all successful allocations to the size policy |
207 | // Note that the perm gen does not use this method, and should not! |
208 | HeapWord* PSOldGen::allocate(size_t word_size) { |
209 | assert_locked_or_safepoint(Heap_lock); |
210 | HeapWord* res = allocate_noexpand(word_size); |
211 | |
212 | if (res == NULL) { |
213 | res = expand_and_allocate(word_size); |
214 | } |
215 | |
216 | // Allocations in the old generation need to be reported |
217 | if (res != NULL) { |
218 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
219 | heap->size_policy()->tenured_allocation(word_size * HeapWordSize); |
220 | } |
221 | |
222 | return res; |
223 | } |
224 | |
225 | HeapWord* PSOldGen::expand_and_allocate(size_t word_size) { |
226 | expand(word_size*HeapWordSize); |
227 | if (GCExpandToAllocateDelayMillis > 0) { |
228 | os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); |
229 | } |
230 | return allocate_noexpand(word_size); |
231 | } |
232 | |
233 | HeapWord* PSOldGen::expand_and_cas_allocate(size_t word_size) { |
234 | expand(word_size*HeapWordSize); |
235 | if (GCExpandToAllocateDelayMillis > 0) { |
236 | os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); |
237 | } |
238 | return cas_allocate_noexpand(word_size); |
239 | } |
240 | |
241 | void PSOldGen::expand(size_t bytes) { |
242 | if (bytes == 0) { |
243 | return; |
244 | } |
245 | MutexLocker x(ExpandHeap_lock); |
246 | const size_t alignment = virtual_space()->alignment(); |
247 | size_t aligned_bytes = align_up(bytes, alignment); |
248 | size_t aligned_expand_bytes = align_up(MinHeapDeltaBytes, alignment); |
249 | |
250 | if (UseNUMA) { |
251 | // With NUMA we use round-robin page allocation for the old gen. Expand by at least |
252 | // providing a page per lgroup. Alignment is larger or equal to the page size. |
253 | aligned_expand_bytes = MAX2(aligned_expand_bytes, alignment * os::numa_get_groups_num()); |
254 | } |
255 | if (aligned_bytes == 0){ |
256 | // The alignment caused the number of bytes to wrap. An expand_by(0) will |
257 | // return true with the implication that and expansion was done when it |
258 | // was not. A call to expand implies a best effort to expand by "bytes" |
259 | // but not a guarantee. Align down to give a best effort. This is likely |
260 | // the most that the generation can expand since it has some capacity to |
261 | // start with. |
262 | aligned_bytes = align_down(bytes, alignment); |
263 | } |
264 | |
265 | bool success = false; |
266 | if (aligned_expand_bytes > aligned_bytes) { |
267 | success = expand_by(aligned_expand_bytes); |
268 | } |
269 | if (!success) { |
270 | success = expand_by(aligned_bytes); |
271 | } |
272 | if (!success) { |
273 | success = expand_to_reserved(); |
274 | } |
275 | |
276 | if (success && GCLocker::is_active_and_needs_gc()) { |
277 | log_debug(gc)("Garbage collection disabled, expanded heap instead" ); |
278 | } |
279 | } |
280 | |
281 | bool PSOldGen::expand_by(size_t bytes) { |
282 | assert_lock_strong(ExpandHeap_lock); |
283 | assert_locked_or_safepoint(Heap_lock); |
284 | if (bytes == 0) { |
285 | return true; // That's what virtual_space()->expand_by(0) would return |
286 | } |
287 | bool result = virtual_space()->expand_by(bytes); |
288 | if (result) { |
289 | if (ZapUnusedHeapArea) { |
290 | // We need to mangle the newly expanded area. The memregion spans |
291 | // end -> new_end, we assume that top -> end is already mangled. |
292 | // Do the mangling before post_resize() is called because |
293 | // the space is available for allocation after post_resize(); |
294 | HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high(); |
295 | assert(object_space()->end() < virtual_space_high, |
296 | "Should be true before post_resize()" ); |
297 | MemRegion mangle_region(object_space()->end(), virtual_space_high); |
298 | // Note that the object space has not yet been updated to |
299 | // coincide with the new underlying virtual space. |
300 | SpaceMangler::mangle_region(mangle_region); |
301 | } |
302 | post_resize(); |
303 | if (UsePerfData) { |
304 | _space_counters->update_capacity(); |
305 | _gen_counters->update_all(); |
306 | } |
307 | } |
308 | |
309 | if (result) { |
310 | size_t new_mem_size = virtual_space()->committed_size(); |
311 | size_t old_mem_size = new_mem_size - bytes; |
312 | log_debug(gc)("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K" , |
313 | name(), old_mem_size/K, bytes/K, new_mem_size/K); |
314 | } |
315 | |
316 | return result; |
317 | } |
318 | |
319 | bool PSOldGen::expand_to_reserved() { |
320 | assert_lock_strong(ExpandHeap_lock); |
321 | assert_locked_or_safepoint(Heap_lock); |
322 | |
323 | bool result = true; |
324 | const size_t remaining_bytes = virtual_space()->uncommitted_size(); |
325 | if (remaining_bytes > 0) { |
326 | result = expand_by(remaining_bytes); |
327 | DEBUG_ONLY(if (!result) log_warning(gc)("grow to reserve failed" )); |
328 | } |
329 | return result; |
330 | } |
331 | |
332 | void PSOldGen::shrink(size_t bytes) { |
333 | assert_lock_strong(ExpandHeap_lock); |
334 | assert_locked_or_safepoint(Heap_lock); |
335 | |
336 | size_t size = align_down(bytes, virtual_space()->alignment()); |
337 | if (size > 0) { |
338 | assert_lock_strong(ExpandHeap_lock); |
339 | virtual_space()->shrink_by(bytes); |
340 | post_resize(); |
341 | |
342 | size_t new_mem_size = virtual_space()->committed_size(); |
343 | size_t old_mem_size = new_mem_size + bytes; |
344 | log_debug(gc)("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K" , |
345 | name(), old_mem_size/K, bytes/K, new_mem_size/K); |
346 | } |
347 | } |
348 | |
349 | void PSOldGen::resize(size_t desired_free_space) { |
350 | const size_t alignment = virtual_space()->alignment(); |
351 | const size_t size_before = virtual_space()->committed_size(); |
352 | size_t new_size = used_in_bytes() + desired_free_space; |
353 | if (new_size < used_in_bytes()) { |
354 | // Overflowed the addition. |
355 | new_size = gen_size_limit(); |
356 | } |
357 | // Adjust according to our min and max |
358 | new_size = MAX2(MIN2(new_size, gen_size_limit()), min_gen_size()); |
359 | |
360 | assert(gen_size_limit() >= reserved().byte_size(), "max new size problem?" ); |
361 | new_size = align_up(new_size, alignment); |
362 | |
363 | const size_t current_size = capacity_in_bytes(); |
364 | |
365 | log_trace(gc, ergo)("AdaptiveSizePolicy::old generation size: " |
366 | "desired free: " SIZE_FORMAT " used: " SIZE_FORMAT |
367 | " new size: " SIZE_FORMAT " current size " SIZE_FORMAT |
368 | " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT, |
369 | desired_free_space, used_in_bytes(), new_size, current_size, |
370 | gen_size_limit(), min_gen_size()); |
371 | |
372 | if (new_size == current_size) { |
373 | // No change requested |
374 | return; |
375 | } |
376 | if (new_size > current_size) { |
377 | size_t change_bytes = new_size - current_size; |
378 | expand(change_bytes); |
379 | } else { |
380 | size_t change_bytes = current_size - new_size; |
381 | // shrink doesn't grab this lock, expand does. Is that right? |
382 | MutexLocker x(ExpandHeap_lock); |
383 | shrink(change_bytes); |
384 | } |
385 | |
386 | log_trace(gc, ergo)("AdaptiveSizePolicy::old generation size: collection: %d (" SIZE_FORMAT ") -> (" SIZE_FORMAT ") " , |
387 | ParallelScavengeHeap::heap()->total_collections(), |
388 | size_before, |
389 | virtual_space()->committed_size()); |
390 | } |
391 | |
392 | // NOTE! We need to be careful about resizing. During a GC, multiple |
393 | // allocators may be active during heap expansion. If we allow the |
394 | // heap resizing to become visible before we have correctly resized |
395 | // all heap related data structures, we may cause program failures. |
396 | void PSOldGen::post_resize() { |
397 | // First construct a memregion representing the new size |
398 | MemRegion new_memregion((HeapWord*)virtual_space()->low(), |
399 | (HeapWord*)virtual_space()->high()); |
400 | size_t new_word_size = new_memregion.word_size(); |
401 | |
402 | start_array()->set_covered_region(new_memregion); |
403 | ParallelScavengeHeap::heap()->card_table()->resize_covered_region(new_memregion); |
404 | |
405 | // ALWAYS do this last!! |
406 | object_space()->initialize(new_memregion, |
407 | SpaceDecorator::DontClear, |
408 | SpaceDecorator::DontMangle); |
409 | |
410 | assert(new_word_size == heap_word_size(object_space()->capacity_in_bytes()), |
411 | "Sanity" ); |
412 | } |
413 | |
414 | size_t PSOldGen::gen_size_limit() { |
415 | return _max_gen_size; |
416 | } |
417 | |
418 | void PSOldGen::reset_after_change() { |
419 | ShouldNotReachHere(); |
420 | return; |
421 | } |
422 | |
423 | size_t PSOldGen::available_for_expansion() { |
424 | ShouldNotReachHere(); |
425 | return 0; |
426 | } |
427 | |
428 | size_t PSOldGen::available_for_contraction() { |
429 | ShouldNotReachHere(); |
430 | return 0; |
431 | } |
432 | |
433 | void PSOldGen::print() const { print_on(tty);} |
434 | void PSOldGen::print_on(outputStream* st) const { |
435 | st->print(" %-15s" , name()); |
436 | st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K" , |
437 | capacity_in_bytes()/K, used_in_bytes()/K); |
438 | st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")" , |
439 | p2i(virtual_space()->low_boundary()), |
440 | p2i(virtual_space()->high()), |
441 | p2i(virtual_space()->high_boundary())); |
442 | |
443 | st->print(" object" ); object_space()->print_on(st); |
444 | } |
445 | |
446 | void PSOldGen::print_used_change(size_t prev_used) const { |
447 | log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K(" SIZE_FORMAT "K)" , |
448 | name(), prev_used / K, used_in_bytes() / K, capacity_in_bytes() / K); |
449 | } |
450 | |
451 | void PSOldGen::update_counters() { |
452 | if (UsePerfData) { |
453 | _space_counters->update_all(); |
454 | _gen_counters->update_all(); |
455 | } |
456 | } |
457 | |
458 | #ifndef PRODUCT |
459 | |
460 | void PSOldGen::space_invariants() { |
461 | assert(object_space()->end() == (HeapWord*) virtual_space()->high(), |
462 | "Space invariant" ); |
463 | assert(object_space()->bottom() == (HeapWord*) virtual_space()->low(), |
464 | "Space invariant" ); |
465 | assert(virtual_space()->low_boundary() <= virtual_space()->low(), |
466 | "Space invariant" ); |
467 | assert(virtual_space()->high_boundary() >= virtual_space()->high(), |
468 | "Space invariant" ); |
469 | assert(virtual_space()->low_boundary() == (char*) _reserved.start(), |
470 | "Space invariant" ); |
471 | assert(virtual_space()->high_boundary() == (char*) _reserved.end(), |
472 | "Space invariant" ); |
473 | assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(), |
474 | "Space invariant" ); |
475 | } |
476 | #endif |
477 | |
478 | void PSOldGen::verify() { |
479 | object_space()->verify(); |
480 | } |
481 | class VerifyObjectStartArrayClosure : public ObjectClosure { |
482 | PSOldGen* _old_gen; |
483 | ObjectStartArray* _start_array; |
484 | |
485 | public: |
486 | VerifyObjectStartArrayClosure(PSOldGen* old_gen, ObjectStartArray* start_array) : |
487 | _old_gen(old_gen), _start_array(start_array) { } |
488 | |
489 | virtual void do_object(oop obj) { |
490 | HeapWord* test_addr = (HeapWord*)obj + 1; |
491 | guarantee(_start_array->object_start(test_addr) == (HeapWord*)obj, "ObjectStartArray cannot find start of object" ); |
492 | guarantee(_start_array->is_block_allocated((HeapWord*)obj), "ObjectStartArray missing block allocation" ); |
493 | } |
494 | }; |
495 | |
496 | void PSOldGen::verify_object_start_array() { |
497 | VerifyObjectStartArrayClosure check( this, &_start_array ); |
498 | object_iterate(&check); |
499 | } |
500 | |
501 | #ifndef PRODUCT |
502 | void PSOldGen::record_spaces_top() { |
503 | assert(ZapUnusedHeapArea, "Not mangling unused space" ); |
504 | object_space()->set_top_for_allocations(); |
505 | } |
506 | #endif |
507 | |