| 1 | /* |
| 2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP |
| 26 | #define SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP |
| 27 | |
| 28 | #include "gc/parallel/mutableSpace.hpp" |
| 29 | #include "gc/parallel/objectStartArray.hpp" |
| 30 | #include "gc/parallel/parMarkBitMap.hpp" |
| 31 | #include "gc/parallel/parallelScavengeHeap.hpp" |
| 32 | #include "gc/shared/collectedHeap.hpp" |
| 33 | #include "gc/shared/collectorCounters.hpp" |
| 34 | #include "oops/oop.hpp" |
| 35 | |
| 36 | class ParallelScavengeHeap; |
| 37 | class PSAdaptiveSizePolicy; |
| 38 | class PSYoungGen; |
| 39 | class PSOldGen; |
| 40 | class ParCompactionManager; |
| 41 | class ParallelTaskTerminator; |
| 42 | class PSParallelCompact; |
| 43 | class GCTaskManager; |
| 44 | class GCTaskQueue; |
| 45 | class PreGCValues; |
| 46 | class MoveAndUpdateClosure; |
| 47 | class RefProcTaskExecutor; |
| 48 | class ParallelOldTracer; |
| 49 | class STWGCTimer; |
| 50 | |
| 51 | // The SplitInfo class holds the information needed to 'split' a source region |
| 52 | // so that the live data can be copied to two destination *spaces*. Normally, |
| 53 | // all the live data in a region is copied to a single destination space (e.g., |
| 54 | // everything live in a region in eden is copied entirely into the old gen). |
| 55 | // However, when the heap is nearly full, all the live data in eden may not fit |
| 56 | // into the old gen. Copying only some of the regions from eden to old gen |
| 57 | // requires finding a region that does not contain a partial object (i.e., no |
| 58 | // live object crosses the region boundary) somewhere near the last object that |
| 59 | // does fit into the old gen. Since it's not always possible to find such a |
| 60 | // region, splitting is necessary for predictable behavior. |
| 61 | // |
| 62 | // A region is always split at the end of the partial object. This avoids |
| 63 | // additional tests when calculating the new location of a pointer, which is a |
| 64 | // very hot code path. The partial object and everything to its left will be |
| 65 | // copied to another space (call it dest_space_1). The live data to the right |
| 66 | // of the partial object will be copied either within the space itself, or to a |
| 67 | // different destination space (distinct from dest_space_1). |
| 68 | // |
| 69 | // Split points are identified during the summary phase, when region |
| 70 | // destinations are computed: data about the split, including the |
| 71 | // partial_object_size, is recorded in a SplitInfo record and the |
| 72 | // partial_object_size field in the summary data is set to zero. The zeroing is |
| 73 | // possible (and necessary) since the partial object will move to a different |
| 74 | // destination space than anything to its right, thus the partial object should |
| 75 | // not affect the locations of any objects to its right. |
| 76 | // |
| 77 | // The recorded data is used during the compaction phase, but only rarely: when |
| 78 | // the partial object on the split region will be copied across a destination |
| 79 | // region boundary. This test is made once each time a region is filled, and is |
| 80 | // a simple address comparison, so the overhead is negligible (see |
| 81 | // PSParallelCompact::first_src_addr()). |
| 82 | // |
| 83 | // Notes: |
| 84 | // |
| 85 | // Only regions with partial objects are split; a region without a partial |
| 86 | // object does not need any extra bookkeeping. |
| 87 | // |
| 88 | // At most one region is split per space, so the amount of data required is |
| 89 | // constant. |
| 90 | // |
| 91 | // A region is split only when the destination space would overflow. Once that |
| 92 | // happens, the destination space is abandoned and no other data (even from |
| 93 | // other source spaces) is targeted to that destination space. Abandoning the |
| 94 | // destination space may leave a somewhat large unused area at the end, if a |
| 95 | // large object caused the overflow. |
| 96 | // |
| 97 | // Future work: |
| 98 | // |
| 99 | // More bookkeeping would be required to continue to use the destination space. |
| 100 | // The most general solution would allow data from regions in two different |
| 101 | // source spaces to be "joined" in a single destination region. At the very |
| 102 | // least, additional code would be required in next_src_region() to detect the |
| 103 | // join and skip to an out-of-order source region. If the join region was also |
| 104 | // the last destination region to which a split region was copied (the most |
| 105 | // likely case), then additional work would be needed to get fill_region() to |
| 106 | // stop iteration and switch to a new source region at the right point. Basic |
| 107 | // idea would be to use a fake value for the top of the source space. It is |
| 108 | // doable, if a bit tricky. |
| 109 | // |
| 110 | // A simpler (but less general) solution would fill the remainder of the |
| 111 | // destination region with a dummy object and continue filling the next |
| 112 | // destination region. |
| 113 | |
| 114 | class SplitInfo |
| 115 | { |
| 116 | public: |
| 117 | // Return true if this split info is valid (i.e., if a split has been |
| 118 | // recorded). The very first region cannot have a partial object and thus is |
| 119 | // never split, so 0 is the 'invalid' value. |
| 120 | bool is_valid() const { return _src_region_idx > 0; } |
| 121 | |
| 122 | // Return true if this split holds data for the specified source region. |
| 123 | inline bool is_split(size_t source_region) const; |
| 124 | |
| 125 | // The index of the split region, the size of the partial object on that |
| 126 | // region and the destination of the partial object. |
| 127 | size_t src_region_idx() const { return _src_region_idx; } |
| 128 | size_t partial_obj_size() const { return _partial_obj_size; } |
| 129 | HeapWord* destination() const { return _destination; } |
| 130 | |
| 131 | // The destination count of the partial object referenced by this split |
| 132 | // (either 1 or 2). This must be added to the destination count of the |
| 133 | // remainder of the source region. |
| 134 | unsigned int destination_count() const { return _destination_count; } |
| 135 | |
| 136 | // If a word within the partial object will be written to the first word of a |
| 137 | // destination region, this is the address of the destination region; |
| 138 | // otherwise this is NULL. |
| 139 | HeapWord* dest_region_addr() const { return _dest_region_addr; } |
| 140 | |
| 141 | // If a word within the partial object will be written to the first word of a |
| 142 | // destination region, this is the address of that word within the partial |
| 143 | // object; otherwise this is NULL. |
| 144 | HeapWord* first_src_addr() const { return _first_src_addr; } |
| 145 | |
| 146 | // Record the data necessary to split the region src_region_idx. |
| 147 | void record(size_t src_region_idx, size_t partial_obj_size, |
| 148 | HeapWord* destination); |
| 149 | |
| 150 | void clear(); |
| 151 | |
| 152 | DEBUG_ONLY(void verify_clear();) |
| 153 | |
| 154 | private: |
| 155 | size_t _src_region_idx; |
| 156 | size_t _partial_obj_size; |
| 157 | HeapWord* _destination; |
| 158 | unsigned int _destination_count; |
| 159 | HeapWord* _dest_region_addr; |
| 160 | HeapWord* _first_src_addr; |
| 161 | }; |
| 162 | |
| 163 | inline bool SplitInfo::is_split(size_t region_idx) const |
| 164 | { |
| 165 | return _src_region_idx == region_idx && is_valid(); |
| 166 | } |
| 167 | |
| 168 | class SpaceInfo |
| 169 | { |
| 170 | public: |
| 171 | MutableSpace* space() const { return _space; } |
| 172 | |
| 173 | // Where the free space will start after the collection. Valid only after the |
| 174 | // summary phase completes. |
| 175 | HeapWord* new_top() const { return _new_top; } |
| 176 | |
| 177 | // Allows new_top to be set. |
| 178 | HeapWord** new_top_addr() { return &_new_top; } |
| 179 | |
| 180 | // Where the smallest allowable dense prefix ends (used only for perm gen). |
| 181 | HeapWord* min_dense_prefix() const { return _min_dense_prefix; } |
| 182 | |
| 183 | // Where the dense prefix ends, or the compacted region begins. |
| 184 | HeapWord* dense_prefix() const { return _dense_prefix; } |
| 185 | |
| 186 | // The start array for the (generation containing the) space, or NULL if there |
| 187 | // is no start array. |
| 188 | ObjectStartArray* start_array() const { return _start_array; } |
| 189 | |
| 190 | SplitInfo& split_info() { return _split_info; } |
| 191 | |
| 192 | void set_space(MutableSpace* s) { _space = s; } |
| 193 | void set_new_top(HeapWord* addr) { _new_top = addr; } |
| 194 | void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; } |
| 195 | void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; } |
| 196 | void set_start_array(ObjectStartArray* s) { _start_array = s; } |
| 197 | |
| 198 | void publish_new_top() const { _space->set_top(_new_top); } |
| 199 | |
| 200 | private: |
| 201 | MutableSpace* _space; |
| 202 | HeapWord* _new_top; |
| 203 | HeapWord* _min_dense_prefix; |
| 204 | HeapWord* _dense_prefix; |
| 205 | ObjectStartArray* _start_array; |
| 206 | SplitInfo _split_info; |
| 207 | }; |
| 208 | |
| 209 | class ParallelCompactData |
| 210 | { |
| 211 | public: |
| 212 | // Sizes are in HeapWords, unless indicated otherwise. |
| 213 | static const size_t Log2RegionSize; |
| 214 | static const size_t RegionSize; |
| 215 | static const size_t RegionSizeBytes; |
| 216 | |
| 217 | // Mask for the bits in a size_t to get an offset within a region. |
| 218 | static const size_t RegionSizeOffsetMask; |
| 219 | // Mask for the bits in a pointer to get an offset within a region. |
| 220 | static const size_t RegionAddrOffsetMask; |
| 221 | // Mask for the bits in a pointer to get the address of the start of a region. |
| 222 | static const size_t RegionAddrMask; |
| 223 | |
| 224 | static const size_t Log2BlockSize; |
| 225 | static const size_t BlockSize; |
| 226 | static const size_t BlockSizeBytes; |
| 227 | |
| 228 | static const size_t BlockSizeOffsetMask; |
| 229 | static const size_t BlockAddrOffsetMask; |
| 230 | static const size_t BlockAddrMask; |
| 231 | |
| 232 | static const size_t BlocksPerRegion; |
| 233 | static const size_t Log2BlocksPerRegion; |
| 234 | |
| 235 | class RegionData |
| 236 | { |
| 237 | public: |
| 238 | // Destination address of the region. |
| 239 | HeapWord* destination() const { return _destination; } |
| 240 | |
| 241 | // The first region containing data destined for this region. |
| 242 | size_t source_region() const { return _source_region; } |
| 243 | |
| 244 | // The object (if any) starting in this region and ending in a different |
| 245 | // region that could not be updated during the main (parallel) compaction |
| 246 | // phase. This is different from _partial_obj_addr, which is an object that |
| 247 | // extends onto a source region. However, the two uses do not overlap in |
| 248 | // time, so the same field is used to save space. |
| 249 | HeapWord* deferred_obj_addr() const { return _partial_obj_addr; } |
| 250 | |
| 251 | // The starting address of the partial object extending onto the region. |
| 252 | HeapWord* partial_obj_addr() const { return _partial_obj_addr; } |
| 253 | |
| 254 | // Size of the partial object extending onto the region (words). |
| 255 | size_t partial_obj_size() const { return _partial_obj_size; } |
| 256 | |
| 257 | // Size of live data that lies within this region due to objects that start |
| 258 | // in this region (words). This does not include the partial object |
| 259 | // extending onto the region (if any), or the part of an object that extends |
| 260 | // onto the next region (if any). |
| 261 | size_t live_obj_size() const { return _dc_and_los & los_mask; } |
| 262 | |
| 263 | // Total live data that lies within the region (words). |
| 264 | size_t data_size() const { return partial_obj_size() + live_obj_size(); } |
| 265 | |
| 266 | // The destination_count is the number of other regions to which data from |
| 267 | // this region will be copied. At the end of the summary phase, the valid |
| 268 | // values of destination_count are |
| 269 | // |
| 270 | // 0 - data from the region will be compacted completely into itself, or the |
| 271 | // region is empty. The region can be claimed and then filled. |
| 272 | // 1 - data from the region will be compacted into 1 other region; some |
| 273 | // data from the region may also be compacted into the region itself. |
| 274 | // 2 - data from the region will be copied to 2 other regions. |
| 275 | // |
| 276 | // During compaction as regions are emptied, the destination_count is |
| 277 | // decremented (atomically) and when it reaches 0, it can be claimed and |
| 278 | // then filled. |
| 279 | // |
| 280 | // A region is claimed for processing by atomically changing the |
| 281 | // destination_count to the claimed value (dc_claimed). After a region has |
| 282 | // been filled, the destination_count should be set to the completed value |
| 283 | // (dc_completed). |
| 284 | inline uint destination_count() const; |
| 285 | inline uint destination_count_raw() const; |
| 286 | |
| 287 | // Whether the block table for this region has been filled. |
| 288 | inline bool blocks_filled() const; |
| 289 | |
| 290 | // Number of times the block table was filled. |
| 291 | DEBUG_ONLY(inline size_t blocks_filled_count() const;) |
| 292 | |
| 293 | // The location of the java heap data that corresponds to this region. |
| 294 | inline HeapWord* data_location() const; |
| 295 | |
| 296 | // The highest address referenced by objects in this region. |
| 297 | inline HeapWord* highest_ref() const; |
| 298 | |
| 299 | // Whether this region is available to be claimed, has been claimed, or has |
| 300 | // been completed. |
| 301 | // |
| 302 | // Minor subtlety: claimed() returns true if the region is marked |
| 303 | // completed(), which is desirable since a region must be claimed before it |
| 304 | // can be completed. |
| 305 | bool available() const { return _dc_and_los < dc_one; } |
| 306 | bool claimed() const { return _dc_and_los >= dc_claimed; } |
| 307 | bool completed() const { return _dc_and_los >= dc_completed; } |
| 308 | |
| 309 | // These are not atomic. |
| 310 | void set_destination(HeapWord* addr) { _destination = addr; } |
| 311 | void set_source_region(size_t region) { _source_region = region; } |
| 312 | void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; } |
| 313 | void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; } |
| 314 | void set_partial_obj_size(size_t words) { |
| 315 | _partial_obj_size = (region_sz_t) words; |
| 316 | } |
| 317 | inline void set_blocks_filled(); |
| 318 | |
| 319 | inline void set_destination_count(uint count); |
| 320 | inline void set_live_obj_size(size_t words); |
| 321 | inline void set_data_location(HeapWord* addr); |
| 322 | inline void set_completed(); |
| 323 | inline bool claim_unsafe(); |
| 324 | |
| 325 | // These are atomic. |
| 326 | inline void add_live_obj(size_t words); |
| 327 | inline void set_highest_ref(HeapWord* addr); |
| 328 | inline void decrement_destination_count(); |
| 329 | inline bool claim(); |
| 330 | |
| 331 | private: |
| 332 | // The type used to represent object sizes within a region. |
| 333 | typedef uint region_sz_t; |
| 334 | |
| 335 | // Constants for manipulating the _dc_and_los field, which holds both the |
| 336 | // destination count and live obj size. The live obj size lives at the |
| 337 | // least significant end so no masking is necessary when adding. |
| 338 | static const region_sz_t dc_shift; // Shift amount. |
| 339 | static const region_sz_t dc_mask; // Mask for destination count. |
| 340 | static const region_sz_t dc_one; // 1, shifted appropriately. |
| 341 | static const region_sz_t dc_claimed; // Region has been claimed. |
| 342 | static const region_sz_t dc_completed; // Region has been completed. |
| 343 | static const region_sz_t los_mask; // Mask for live obj size. |
| 344 | |
| 345 | HeapWord* _destination; |
| 346 | size_t _source_region; |
| 347 | HeapWord* _partial_obj_addr; |
| 348 | region_sz_t _partial_obj_size; |
| 349 | region_sz_t volatile _dc_and_los; |
| 350 | bool volatile _blocks_filled; |
| 351 | |
| 352 | #ifdef ASSERT |
| 353 | size_t _blocks_filled_count; // Number of block table fills. |
| 354 | |
| 355 | // These enable optimizations that are only partially implemented. Use |
| 356 | // debug builds to prevent the code fragments from breaking. |
| 357 | HeapWord* _data_location; |
| 358 | HeapWord* _highest_ref; |
| 359 | #endif // #ifdef ASSERT |
| 360 | |
| 361 | #ifdef ASSERT |
| 362 | public: |
| 363 | uint _pushed; // 0 until region is pushed onto a stack |
| 364 | private: |
| 365 | #endif |
| 366 | }; |
| 367 | |
| 368 | // "Blocks" allow shorter sections of the bitmap to be searched. Each Block |
| 369 | // holds an offset, which is the amount of live data in the Region to the left |
| 370 | // of the first live object that starts in the Block. |
| 371 | class BlockData |
| 372 | { |
| 373 | public: |
| 374 | typedef unsigned short int blk_ofs_t; |
| 375 | |
| 376 | blk_ofs_t offset() const { return _offset; } |
| 377 | void set_offset(size_t val) { _offset = (blk_ofs_t)val; } |
| 378 | |
| 379 | private: |
| 380 | blk_ofs_t _offset; |
| 381 | }; |
| 382 | |
| 383 | public: |
| 384 | ParallelCompactData(); |
| 385 | bool initialize(MemRegion covered_region); |
| 386 | |
| 387 | size_t region_count() const { return _region_count; } |
| 388 | size_t reserved_byte_size() const { return _reserved_byte_size; } |
| 389 | |
| 390 | // Convert region indices to/from RegionData pointers. |
| 391 | inline RegionData* region(size_t region_idx) const; |
| 392 | inline size_t region(const RegionData* const region_ptr) const; |
| 393 | |
| 394 | size_t block_count() const { return _block_count; } |
| 395 | inline BlockData* block(size_t block_idx) const; |
| 396 | inline size_t block(const BlockData* block_ptr) const; |
| 397 | |
| 398 | void add_obj(HeapWord* addr, size_t len); |
| 399 | void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); } |
| 400 | |
| 401 | // Fill in the regions covering [beg, end) so that no data moves; i.e., the |
| 402 | // destination of region n is simply the start of region n. The argument beg |
| 403 | // must be region-aligned; end need not be. |
| 404 | void summarize_dense_prefix(HeapWord* beg, HeapWord* end); |
| 405 | |
| 406 | HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info, |
| 407 | HeapWord* destination, HeapWord* target_end, |
| 408 | HeapWord** target_next); |
| 409 | bool summarize(SplitInfo& split_info, |
| 410 | HeapWord* source_beg, HeapWord* source_end, |
| 411 | HeapWord** source_next, |
| 412 | HeapWord* target_beg, HeapWord* target_end, |
| 413 | HeapWord** target_next); |
| 414 | |
| 415 | void clear(); |
| 416 | void clear_range(size_t beg_region, size_t end_region); |
| 417 | void clear_range(HeapWord* beg, HeapWord* end) { |
| 418 | clear_range(addr_to_region_idx(beg), addr_to_region_idx(end)); |
| 419 | } |
| 420 | |
| 421 | // Return the number of words between addr and the start of the region |
| 422 | // containing addr. |
| 423 | inline size_t region_offset(const HeapWord* addr) const; |
| 424 | |
| 425 | // Convert addresses to/from a region index or region pointer. |
| 426 | inline size_t addr_to_region_idx(const HeapWord* addr) const; |
| 427 | inline RegionData* addr_to_region_ptr(const HeapWord* addr) const; |
| 428 | inline HeapWord* region_to_addr(size_t region) const; |
| 429 | inline HeapWord* region_to_addr(size_t region, size_t offset) const; |
| 430 | inline HeapWord* region_to_addr(const RegionData* region) const; |
| 431 | |
| 432 | inline HeapWord* region_align_down(HeapWord* addr) const; |
| 433 | inline HeapWord* region_align_up(HeapWord* addr) const; |
| 434 | inline bool is_region_aligned(HeapWord* addr) const; |
| 435 | |
| 436 | // Analogous to region_offset() for blocks. |
| 437 | size_t block_offset(const HeapWord* addr) const; |
| 438 | size_t addr_to_block_idx(const HeapWord* addr) const; |
| 439 | size_t addr_to_block_idx(const oop obj) const { |
| 440 | return addr_to_block_idx((HeapWord*) obj); |
| 441 | } |
| 442 | inline BlockData* addr_to_block_ptr(const HeapWord* addr) const; |
| 443 | inline HeapWord* block_to_addr(size_t block) const; |
| 444 | inline size_t region_to_block_idx(size_t region) const; |
| 445 | |
| 446 | inline HeapWord* block_align_down(HeapWord* addr) const; |
| 447 | inline HeapWord* block_align_up(HeapWord* addr) const; |
| 448 | inline bool is_block_aligned(HeapWord* addr) const; |
| 449 | |
| 450 | // Return the address one past the end of the partial object. |
| 451 | HeapWord* partial_obj_end(size_t region_idx) const; |
| 452 | |
| 453 | // Return the location of the object after compaction. |
| 454 | HeapWord* calc_new_pointer(HeapWord* addr, ParCompactionManager* cm); |
| 455 | |
| 456 | HeapWord* calc_new_pointer(oop p, ParCompactionManager* cm) { |
| 457 | return calc_new_pointer((HeapWord*) p, cm); |
| 458 | } |
| 459 | |
| 460 | #ifdef ASSERT |
| 461 | void verify_clear(const PSVirtualSpace* vspace); |
| 462 | void verify_clear(); |
| 463 | #endif // #ifdef ASSERT |
| 464 | |
| 465 | private: |
| 466 | bool initialize_block_data(); |
| 467 | bool initialize_region_data(size_t region_size); |
| 468 | PSVirtualSpace* create_vspace(size_t count, size_t element_size); |
| 469 | |
| 470 | private: |
| 471 | HeapWord* _region_start; |
| 472 | #ifdef ASSERT |
| 473 | HeapWord* _region_end; |
| 474 | #endif // #ifdef ASSERT |
| 475 | |
| 476 | PSVirtualSpace* _region_vspace; |
| 477 | size_t _reserved_byte_size; |
| 478 | RegionData* _region_data; |
| 479 | size_t _region_count; |
| 480 | |
| 481 | PSVirtualSpace* _block_vspace; |
| 482 | BlockData* _block_data; |
| 483 | size_t _block_count; |
| 484 | }; |
| 485 | |
| 486 | inline uint |
| 487 | ParallelCompactData::RegionData::destination_count_raw() const |
| 488 | { |
| 489 | return _dc_and_los & dc_mask; |
| 490 | } |
| 491 | |
| 492 | inline uint |
| 493 | ParallelCompactData::RegionData::destination_count() const |
| 494 | { |
| 495 | return destination_count_raw() >> dc_shift; |
| 496 | } |
| 497 | |
| 498 | inline bool |
| 499 | ParallelCompactData::RegionData::blocks_filled() const |
| 500 | { |
| 501 | bool result = _blocks_filled; |
| 502 | OrderAccess::acquire(); |
| 503 | return result; |
| 504 | } |
| 505 | |
| 506 | #ifdef ASSERT |
| 507 | inline size_t |
| 508 | ParallelCompactData::RegionData::blocks_filled_count() const |
| 509 | { |
| 510 | return _blocks_filled_count; |
| 511 | } |
| 512 | #endif // #ifdef ASSERT |
| 513 | |
| 514 | inline void |
| 515 | ParallelCompactData::RegionData::set_blocks_filled() |
| 516 | { |
| 517 | OrderAccess::release(); |
| 518 | _blocks_filled = true; |
| 519 | // Debug builds count the number of times the table was filled. |
| 520 | DEBUG_ONLY(Atomic::inc(&_blocks_filled_count)); |
| 521 | } |
| 522 | |
| 523 | inline void |
| 524 | ParallelCompactData::RegionData::set_destination_count(uint count) |
| 525 | { |
| 526 | assert(count <= (dc_completed >> dc_shift), "count too large" ); |
| 527 | const region_sz_t live_sz = (region_sz_t) live_obj_size(); |
| 528 | _dc_and_los = (count << dc_shift) | live_sz; |
| 529 | } |
| 530 | |
| 531 | inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words) |
| 532 | { |
| 533 | assert(words <= los_mask, "would overflow" ); |
| 534 | _dc_and_los = destination_count_raw() | (region_sz_t)words; |
| 535 | } |
| 536 | |
| 537 | inline void ParallelCompactData::RegionData::decrement_destination_count() |
| 538 | { |
| 539 | assert(_dc_and_los < dc_claimed, "already claimed" ); |
| 540 | assert(_dc_and_los >= dc_one, "count would go negative" ); |
| 541 | Atomic::add(dc_mask, &_dc_and_los); |
| 542 | } |
| 543 | |
| 544 | inline HeapWord* ParallelCompactData::RegionData::data_location() const |
| 545 | { |
| 546 | DEBUG_ONLY(return _data_location;) |
| 547 | NOT_DEBUG(return NULL;) |
| 548 | } |
| 549 | |
| 550 | inline HeapWord* ParallelCompactData::RegionData::highest_ref() const |
| 551 | { |
| 552 | DEBUG_ONLY(return _highest_ref;) |
| 553 | NOT_DEBUG(return NULL;) |
| 554 | } |
| 555 | |
| 556 | inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr) |
| 557 | { |
| 558 | DEBUG_ONLY(_data_location = addr;) |
| 559 | } |
| 560 | |
| 561 | inline void ParallelCompactData::RegionData::set_completed() |
| 562 | { |
| 563 | assert(claimed(), "must be claimed first" ); |
| 564 | _dc_and_los = dc_completed | (region_sz_t) live_obj_size(); |
| 565 | } |
| 566 | |
| 567 | // MT-unsafe claiming of a region. Should only be used during single threaded |
| 568 | // execution. |
| 569 | inline bool ParallelCompactData::RegionData::claim_unsafe() |
| 570 | { |
| 571 | if (available()) { |
| 572 | _dc_and_los |= dc_claimed; |
| 573 | return true; |
| 574 | } |
| 575 | return false; |
| 576 | } |
| 577 | |
| 578 | inline void ParallelCompactData::RegionData::add_live_obj(size_t words) |
| 579 | { |
| 580 | assert(words <= (size_t)los_mask - live_obj_size(), "overflow" ); |
| 581 | Atomic::add(static_cast<region_sz_t>(words), &_dc_and_los); |
| 582 | } |
| 583 | |
| 584 | inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr) |
| 585 | { |
| 586 | #ifdef ASSERT |
| 587 | HeapWord* tmp = _highest_ref; |
| 588 | while (addr > tmp) { |
| 589 | tmp = Atomic::cmpxchg(addr, &_highest_ref, tmp); |
| 590 | } |
| 591 | #endif // #ifdef ASSERT |
| 592 | } |
| 593 | |
| 594 | inline bool ParallelCompactData::RegionData::claim() |
| 595 | { |
| 596 | const region_sz_t los = static_cast<region_sz_t>(live_obj_size()); |
| 597 | const region_sz_t old = Atomic::cmpxchg(dc_claimed | los, &_dc_and_los, los); |
| 598 | return old == los; |
| 599 | } |
| 600 | |
| 601 | inline ParallelCompactData::RegionData* |
| 602 | ParallelCompactData::region(size_t region_idx) const |
| 603 | { |
| 604 | assert(region_idx <= region_count(), "bad arg" ); |
| 605 | return _region_data + region_idx; |
| 606 | } |
| 607 | |
| 608 | inline size_t |
| 609 | ParallelCompactData::region(const RegionData* const region_ptr) const |
| 610 | { |
| 611 | assert(region_ptr >= _region_data, "bad arg" ); |
| 612 | assert(region_ptr <= _region_data + region_count(), "bad arg" ); |
| 613 | return pointer_delta(region_ptr, _region_data, sizeof(RegionData)); |
| 614 | } |
| 615 | |
| 616 | inline ParallelCompactData::BlockData* |
| 617 | ParallelCompactData::block(size_t n) const { |
| 618 | assert(n < block_count(), "bad arg" ); |
| 619 | return _block_data + n; |
| 620 | } |
| 621 | |
| 622 | inline size_t |
| 623 | ParallelCompactData::region_offset(const HeapWord* addr) const |
| 624 | { |
| 625 | assert(addr >= _region_start, "bad addr" ); |
| 626 | assert(addr <= _region_end, "bad addr" ); |
| 627 | return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize; |
| 628 | } |
| 629 | |
| 630 | inline size_t |
| 631 | ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const |
| 632 | { |
| 633 | assert(addr >= _region_start, "bad addr " PTR_FORMAT " _region_start " PTR_FORMAT, p2i(addr), p2i(_region_start)); |
| 634 | assert(addr <= _region_end, "bad addr " PTR_FORMAT " _region_end " PTR_FORMAT, p2i(addr), p2i(_region_end)); |
| 635 | return pointer_delta(addr, _region_start) >> Log2RegionSize; |
| 636 | } |
| 637 | |
| 638 | inline ParallelCompactData::RegionData* |
| 639 | ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const |
| 640 | { |
| 641 | return region(addr_to_region_idx(addr)); |
| 642 | } |
| 643 | |
| 644 | inline HeapWord* |
| 645 | ParallelCompactData::region_to_addr(size_t region) const |
| 646 | { |
| 647 | assert(region <= _region_count, "region out of range" ); |
| 648 | return _region_start + (region << Log2RegionSize); |
| 649 | } |
| 650 | |
| 651 | inline HeapWord* |
| 652 | ParallelCompactData::region_to_addr(const RegionData* region) const |
| 653 | { |
| 654 | return region_to_addr(pointer_delta(region, _region_data, |
| 655 | sizeof(RegionData))); |
| 656 | } |
| 657 | |
| 658 | inline HeapWord* |
| 659 | ParallelCompactData::region_to_addr(size_t region, size_t offset) const |
| 660 | { |
| 661 | assert(region <= _region_count, "region out of range" ); |
| 662 | assert(offset < RegionSize, "offset too big" ); // This may be too strict. |
| 663 | return region_to_addr(region) + offset; |
| 664 | } |
| 665 | |
| 666 | inline HeapWord* |
| 667 | ParallelCompactData::region_align_down(HeapWord* addr) const |
| 668 | { |
| 669 | assert(addr >= _region_start, "bad addr" ); |
| 670 | assert(addr < _region_end + RegionSize, "bad addr" ); |
| 671 | return (HeapWord*)(size_t(addr) & RegionAddrMask); |
| 672 | } |
| 673 | |
| 674 | inline HeapWord* |
| 675 | ParallelCompactData::region_align_up(HeapWord* addr) const |
| 676 | { |
| 677 | assert(addr >= _region_start, "bad addr" ); |
| 678 | assert(addr <= _region_end, "bad addr" ); |
| 679 | return region_align_down(addr + RegionSizeOffsetMask); |
| 680 | } |
| 681 | |
| 682 | inline bool |
| 683 | ParallelCompactData::is_region_aligned(HeapWord* addr) const |
| 684 | { |
| 685 | return region_offset(addr) == 0; |
| 686 | } |
| 687 | |
| 688 | inline size_t |
| 689 | ParallelCompactData::block_offset(const HeapWord* addr) const |
| 690 | { |
| 691 | assert(addr >= _region_start, "bad addr" ); |
| 692 | assert(addr <= _region_end, "bad addr" ); |
| 693 | return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize; |
| 694 | } |
| 695 | |
| 696 | inline size_t |
| 697 | ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const |
| 698 | { |
| 699 | assert(addr >= _region_start, "bad addr" ); |
| 700 | assert(addr <= _region_end, "bad addr" ); |
| 701 | return pointer_delta(addr, _region_start) >> Log2BlockSize; |
| 702 | } |
| 703 | |
| 704 | inline ParallelCompactData::BlockData* |
| 705 | ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const |
| 706 | { |
| 707 | return block(addr_to_block_idx(addr)); |
| 708 | } |
| 709 | |
| 710 | inline HeapWord* |
| 711 | ParallelCompactData::block_to_addr(size_t block) const |
| 712 | { |
| 713 | assert(block < _block_count, "block out of range" ); |
| 714 | return _region_start + (block << Log2BlockSize); |
| 715 | } |
| 716 | |
| 717 | inline size_t |
| 718 | ParallelCompactData::region_to_block_idx(size_t region) const |
| 719 | { |
| 720 | return region << Log2BlocksPerRegion; |
| 721 | } |
| 722 | |
| 723 | inline HeapWord* |
| 724 | ParallelCompactData::block_align_down(HeapWord* addr) const |
| 725 | { |
| 726 | assert(addr >= _region_start, "bad addr" ); |
| 727 | assert(addr < _region_end + RegionSize, "bad addr" ); |
| 728 | return (HeapWord*)(size_t(addr) & BlockAddrMask); |
| 729 | } |
| 730 | |
| 731 | inline HeapWord* |
| 732 | ParallelCompactData::block_align_up(HeapWord* addr) const |
| 733 | { |
| 734 | assert(addr >= _region_start, "bad addr" ); |
| 735 | assert(addr <= _region_end, "bad addr" ); |
| 736 | return block_align_down(addr + BlockSizeOffsetMask); |
| 737 | } |
| 738 | |
| 739 | inline bool |
| 740 | ParallelCompactData::is_block_aligned(HeapWord* addr) const |
| 741 | { |
| 742 | return block_offset(addr) == 0; |
| 743 | } |
| 744 | |
| 745 | // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the |
| 746 | // do_addr() method. |
| 747 | // |
| 748 | // The closure is initialized with the number of heap words to process |
| 749 | // (words_remaining()), and becomes 'full' when it reaches 0. The do_addr() |
| 750 | // methods in subclasses should update the total as words are processed. Since |
| 751 | // only one subclass actually uses this mechanism to terminate iteration, the |
| 752 | // default initial value is > 0. The implementation is here and not in the |
| 753 | // single subclass that uses it to avoid making is_full() virtual, and thus |
| 754 | // adding a virtual call per live object. |
| 755 | |
| 756 | class ParMarkBitMapClosure: public StackObj { |
| 757 | public: |
| 758 | typedef ParMarkBitMap::idx_t idx_t; |
| 759 | typedef ParMarkBitMap::IterationStatus IterationStatus; |
| 760 | |
| 761 | public: |
| 762 | inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm, |
| 763 | size_t words = max_uintx); |
| 764 | |
| 765 | inline ParCompactionManager* compaction_manager() const; |
| 766 | inline ParMarkBitMap* bitmap() const; |
| 767 | inline size_t words_remaining() const; |
| 768 | inline bool is_full() const; |
| 769 | inline HeapWord* source() const; |
| 770 | |
| 771 | inline void set_source(HeapWord* addr); |
| 772 | |
| 773 | virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0; |
| 774 | |
| 775 | protected: |
| 776 | inline void decrement_words_remaining(size_t words); |
| 777 | |
| 778 | private: |
| 779 | ParMarkBitMap* const _bitmap; |
| 780 | ParCompactionManager* const _compaction_manager; |
| 781 | DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger. |
| 782 | size_t _words_remaining; // Words left to copy. |
| 783 | |
| 784 | protected: |
| 785 | HeapWord* _source; // Next addr that would be read. |
| 786 | }; |
| 787 | |
| 788 | inline |
| 789 | ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap, |
| 790 | ParCompactionManager* cm, |
| 791 | size_t words): |
| 792 | _bitmap(bitmap), _compaction_manager(cm) |
| 793 | #ifdef ASSERT |
| 794 | , _initial_words_remaining(words) |
| 795 | #endif |
| 796 | { |
| 797 | _words_remaining = words; |
| 798 | _source = NULL; |
| 799 | } |
| 800 | |
| 801 | inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const { |
| 802 | return _compaction_manager; |
| 803 | } |
| 804 | |
| 805 | inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const { |
| 806 | return _bitmap; |
| 807 | } |
| 808 | |
| 809 | inline size_t ParMarkBitMapClosure::words_remaining() const { |
| 810 | return _words_remaining; |
| 811 | } |
| 812 | |
| 813 | inline bool ParMarkBitMapClosure::is_full() const { |
| 814 | return words_remaining() == 0; |
| 815 | } |
| 816 | |
| 817 | inline HeapWord* ParMarkBitMapClosure::source() const { |
| 818 | return _source; |
| 819 | } |
| 820 | |
| 821 | inline void ParMarkBitMapClosure::set_source(HeapWord* addr) { |
| 822 | _source = addr; |
| 823 | } |
| 824 | |
| 825 | inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) { |
| 826 | assert(_words_remaining >= words, "processed too many words" ); |
| 827 | _words_remaining -= words; |
| 828 | } |
| 829 | |
| 830 | // The UseParallelOldGC collector is a stop-the-world garbage collector that |
| 831 | // does parts of the collection using parallel threads. The collection includes |
| 832 | // the tenured generation and the young generation. The permanent generation is |
| 833 | // collected at the same time as the other two generations but the permanent |
| 834 | // generation is collect by a single GC thread. The permanent generation is |
| 835 | // collected serially because of the requirement that during the processing of a |
| 836 | // klass AAA, any objects reference by AAA must already have been processed. |
| 837 | // This requirement is enforced by a left (lower address) to right (higher |
| 838 | // address) sliding compaction. |
| 839 | // |
| 840 | // There are four phases of the collection. |
| 841 | // |
| 842 | // - marking phase |
| 843 | // - summary phase |
| 844 | // - compacting phase |
| 845 | // - clean up phase |
| 846 | // |
| 847 | // Roughly speaking these phases correspond, respectively, to |
| 848 | // - mark all the live objects |
| 849 | // - calculate the destination of each object at the end of the collection |
| 850 | // - move the objects to their destination |
| 851 | // - update some references and reinitialize some variables |
| 852 | // |
| 853 | // These three phases are invoked in PSParallelCompact::invoke_no_policy(). The |
| 854 | // marking phase is implemented in PSParallelCompact::marking_phase() and does a |
| 855 | // complete marking of the heap. The summary phase is implemented in |
| 856 | // PSParallelCompact::summary_phase(). The move and update phase is implemented |
| 857 | // in PSParallelCompact::compact(). |
| 858 | // |
| 859 | // A space that is being collected is divided into regions and with each region |
| 860 | // is associated an object of type ParallelCompactData. Each region is of a |
| 861 | // fixed size and typically will contain more than 1 object and may have parts |
| 862 | // of objects at the front and back of the region. |
| 863 | // |
| 864 | // region -----+---------------------+---------- |
| 865 | // objects covered [ AAA )[ BBB )[ CCC )[ DDD ) |
| 866 | // |
| 867 | // The marking phase does a complete marking of all live objects in the heap. |
| 868 | // The marking also compiles the size of the data for all live objects covered |
| 869 | // by the region. This size includes the part of any live object spanning onto |
| 870 | // the region (part of AAA if it is live) from the front, all live objects |
| 871 | // contained in the region (BBB and/or CCC if they are live), and the part of |
| 872 | // any live objects covered by the region that extends off the region (part of |
| 873 | // DDD if it is live). The marking phase uses multiple GC threads and marking |
| 874 | // is done in a bit array of type ParMarkBitMap. The marking of the bit map is |
| 875 | // done atomically as is the accumulation of the size of the live objects |
| 876 | // covered by a region. |
| 877 | // |
| 878 | // The summary phase calculates the total live data to the left of each region |
| 879 | // XXX. Based on that total and the bottom of the space, it can calculate the |
| 880 | // starting location of the live data in XXX. The summary phase calculates for |
| 881 | // each region XXX quantities such as |
| 882 | // |
| 883 | // - the amount of live data at the beginning of a region from an object |
| 884 | // entering the region. |
| 885 | // - the location of the first live data on the region |
| 886 | // - a count of the number of regions receiving live data from XXX. |
| 887 | // |
| 888 | // See ParallelCompactData for precise details. The summary phase also |
| 889 | // calculates the dense prefix for the compaction. The dense prefix is a |
| 890 | // portion at the beginning of the space that is not moved. The objects in the |
| 891 | // dense prefix do need to have their object references updated. See method |
| 892 | // summarize_dense_prefix(). |
| 893 | // |
| 894 | // The summary phase is done using 1 GC thread. |
| 895 | // |
| 896 | // The compaction phase moves objects to their new location and updates all |
| 897 | // references in the object. |
| 898 | // |
| 899 | // A current exception is that objects that cross a region boundary are moved |
| 900 | // but do not have their references updated. References are not updated because |
| 901 | // it cannot easily be determined if the klass pointer KKK for the object AAA |
| 902 | // has been updated. KKK likely resides in a region to the left of the region |
| 903 | // containing AAA. These AAA's have there references updated at the end in a |
| 904 | // clean up phase. See the method PSParallelCompact::update_deferred_objects(). |
| 905 | // An alternate strategy is being investigated for this deferral of updating. |
| 906 | // |
| 907 | // Compaction is done on a region basis. A region that is ready to be filled is |
| 908 | // put on a ready list and GC threads take region off the list and fill them. A |
| 909 | // region is ready to be filled if it empty of live objects. Such a region may |
| 910 | // have been initially empty (only contained dead objects) or may have had all |
| 911 | // its live objects copied out already. A region that compacts into itself is |
| 912 | // also ready for filling. The ready list is initially filled with empty |
| 913 | // regions and regions compacting into themselves. There is always at least 1 |
| 914 | // region that can be put on the ready list. The regions are atomically added |
| 915 | // and removed from the ready list. |
| 916 | |
| 917 | class PSParallelCompact : AllStatic { |
| 918 | public: |
| 919 | // Convenient access to type names. |
| 920 | typedef ParMarkBitMap::idx_t idx_t; |
| 921 | typedef ParallelCompactData::RegionData RegionData; |
| 922 | typedef ParallelCompactData::BlockData BlockData; |
| 923 | |
| 924 | typedef enum { |
| 925 | old_space_id, eden_space_id, |
| 926 | from_space_id, to_space_id, last_space_id |
| 927 | } SpaceId; |
| 928 | |
| 929 | public: |
| 930 | // Inline closure decls |
| 931 | // |
| 932 | class IsAliveClosure: public BoolObjectClosure { |
| 933 | public: |
| 934 | virtual bool do_object_b(oop p); |
| 935 | }; |
| 936 | |
| 937 | friend class RefProcTaskProxy; |
| 938 | friend class PSParallelCompactTest; |
| 939 | |
| 940 | private: |
| 941 | static STWGCTimer _gc_timer; |
| 942 | static ParallelOldTracer _gc_tracer; |
| 943 | static elapsedTimer _accumulated_time; |
| 944 | static unsigned int _total_invocations; |
| 945 | static unsigned int _maximum_compaction_gc_num; |
| 946 | static jlong _time_of_last_gc; // ms |
| 947 | static CollectorCounters* _counters; |
| 948 | static ParMarkBitMap _mark_bitmap; |
| 949 | static ParallelCompactData _summary_data; |
| 950 | static IsAliveClosure _is_alive_closure; |
| 951 | static SpaceInfo _space_info[last_space_id]; |
| 952 | |
| 953 | // Reference processing (used in ...follow_contents) |
| 954 | static SpanSubjectToDiscoveryClosure _span_based_discoverer; |
| 955 | static ReferenceProcessor* _ref_processor; |
| 956 | |
| 957 | // Values computed at initialization and used by dead_wood_limiter(). |
| 958 | static double _dwl_mean; |
| 959 | static double _dwl_std_dev; |
| 960 | static double _dwl_first_term; |
| 961 | static double _dwl_adjustment; |
| 962 | #ifdef ASSERT |
| 963 | static bool _dwl_initialized; |
| 964 | #endif // #ifdef ASSERT |
| 965 | |
| 966 | public: |
| 967 | static ParallelOldTracer* gc_tracer() { return &_gc_tracer; } |
| 968 | |
| 969 | private: |
| 970 | |
| 971 | static void initialize_space_info(); |
| 972 | |
| 973 | // Clear the marking bitmap and summary data that cover the specified space. |
| 974 | static void clear_data_covering_space(SpaceId id); |
| 975 | |
| 976 | static void pre_compact(); |
| 977 | static void post_compact(); |
| 978 | |
| 979 | // Mark live objects |
| 980 | static void marking_phase(ParCompactionManager* cm, |
| 981 | bool maximum_heap_compaction, |
| 982 | ParallelOldTracer *gc_tracer); |
| 983 | |
| 984 | // Compute the dense prefix for the designated space. This is an experimental |
| 985 | // implementation currently not used in production. |
| 986 | static HeapWord* compute_dense_prefix_via_density(const SpaceId id, |
| 987 | bool maximum_compaction); |
| 988 | |
| 989 | // Methods used to compute the dense prefix. |
| 990 | |
| 991 | // Compute the value of the normal distribution at x = density. The mean and |
| 992 | // standard deviation are values saved by initialize_dead_wood_limiter(). |
| 993 | static inline double normal_distribution(double density); |
| 994 | |
| 995 | // Initialize the static vars used by dead_wood_limiter(). |
| 996 | static void initialize_dead_wood_limiter(); |
| 997 | |
| 998 | // Return the percentage of space that can be treated as "dead wood" (i.e., |
| 999 | // not reclaimed). |
| 1000 | static double dead_wood_limiter(double density, size_t min_percent); |
| 1001 | |
| 1002 | // Find the first (left-most) region in the range [beg, end) that has at least |
| 1003 | // dead_words of dead space to the left. The argument beg must be the first |
| 1004 | // region in the space that is not completely live. |
| 1005 | static RegionData* dead_wood_limit_region(const RegionData* beg, |
| 1006 | const RegionData* end, |
| 1007 | size_t dead_words); |
| 1008 | |
| 1009 | // Return a pointer to the first region in the range [beg, end) that is not |
| 1010 | // completely full. |
| 1011 | static RegionData* first_dead_space_region(const RegionData* beg, |
| 1012 | const RegionData* end); |
| 1013 | |
| 1014 | // Return a value indicating the benefit or 'yield' if the compacted region |
| 1015 | // were to start (or equivalently if the dense prefix were to end) at the |
| 1016 | // candidate region. Higher values are better. |
| 1017 | // |
| 1018 | // The value is based on the amount of space reclaimed vs. the costs of (a) |
| 1019 | // updating references in the dense prefix plus (b) copying objects and |
| 1020 | // updating references in the compacted region. |
| 1021 | static inline double reclaimed_ratio(const RegionData* const candidate, |
| 1022 | HeapWord* const bottom, |
| 1023 | HeapWord* const top, |
| 1024 | HeapWord* const new_top); |
| 1025 | |
| 1026 | // Compute the dense prefix for the designated space. |
| 1027 | static HeapWord* compute_dense_prefix(const SpaceId id, |
| 1028 | bool maximum_compaction); |
| 1029 | |
| 1030 | // Return true if dead space crosses onto the specified Region; bit must be |
| 1031 | // the bit index corresponding to the first word of the Region. |
| 1032 | static inline bool dead_space_crosses_boundary(const RegionData* region, |
| 1033 | idx_t bit); |
| 1034 | |
| 1035 | // Summary phase utility routine to fill dead space (if any) at the dense |
| 1036 | // prefix boundary. Should only be called if the the dense prefix is |
| 1037 | // non-empty. |
| 1038 | static void fill_dense_prefix_end(SpaceId id); |
| 1039 | |
| 1040 | static void summarize_spaces_quick(); |
| 1041 | static void summarize_space(SpaceId id, bool maximum_compaction); |
| 1042 | static void summary_phase(ParCompactionManager* cm, bool maximum_compaction); |
| 1043 | |
| 1044 | // Adjust addresses in roots. Does not adjust addresses in heap. |
| 1045 | static void adjust_roots(ParCompactionManager* cm); |
| 1046 | |
| 1047 | DEBUG_ONLY(static void write_block_fill_histogram();) |
| 1048 | |
| 1049 | // Move objects to new locations. |
| 1050 | static void compact_perm(ParCompactionManager* cm); |
| 1051 | static void compact(); |
| 1052 | |
| 1053 | // Add available regions to the stack and draining tasks to the task queue. |
| 1054 | static void prepare_region_draining_tasks(GCTaskQueue* q, |
| 1055 | uint parallel_gc_threads); |
| 1056 | |
| 1057 | // Add dense prefix update tasks to the task queue. |
| 1058 | static void enqueue_dense_prefix_tasks(GCTaskQueue* q, |
| 1059 | uint parallel_gc_threads); |
| 1060 | |
| 1061 | // Add region stealing tasks to the task queue. |
| 1062 | static void enqueue_region_stealing_tasks( |
| 1063 | GCTaskQueue* q, |
| 1064 | ParallelTaskTerminator* terminator_ptr, |
| 1065 | uint parallel_gc_threads); |
| 1066 | |
| 1067 | // If objects are left in eden after a collection, try to move the boundary |
| 1068 | // and absorb them into the old gen. Returns true if eden was emptied. |
| 1069 | static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, |
| 1070 | PSYoungGen* young_gen, |
| 1071 | PSOldGen* old_gen); |
| 1072 | |
| 1073 | // Reset time since last full gc |
| 1074 | static void reset_millis_since_last_gc(); |
| 1075 | |
| 1076 | #ifndef PRODUCT |
| 1077 | // Print generic summary data |
| 1078 | static void print_generic_summary_data(ParallelCompactData& summary_data, |
| 1079 | HeapWord* const beg_addr, |
| 1080 | HeapWord* const end_addr); |
| 1081 | #endif // #ifndef PRODUCT |
| 1082 | |
| 1083 | public: |
| 1084 | |
| 1085 | PSParallelCompact(); |
| 1086 | |
| 1087 | static void invoke(bool maximum_heap_compaction); |
| 1088 | static bool invoke_no_policy(bool maximum_heap_compaction); |
| 1089 | |
| 1090 | static void post_initialize(); |
| 1091 | // Perform initialization for PSParallelCompact that requires |
| 1092 | // allocations. This should be called during the VM initialization |
| 1093 | // at a pointer where it would be appropriate to return a JNI_ENOMEM |
| 1094 | // in the event of a failure. |
| 1095 | static bool initialize(); |
| 1096 | |
| 1097 | // Closure accessors |
| 1098 | static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; } |
| 1099 | |
| 1100 | // Public accessors |
| 1101 | static elapsedTimer* accumulated_time() { return &_accumulated_time; } |
| 1102 | static unsigned int total_invocations() { return _total_invocations; } |
| 1103 | static CollectorCounters* counters() { return _counters; } |
| 1104 | |
| 1105 | // Used to add tasks |
| 1106 | static GCTaskManager* const gc_task_manager(); |
| 1107 | |
| 1108 | // Marking support |
| 1109 | static inline bool mark_obj(oop obj); |
| 1110 | static inline bool is_marked(oop obj); |
| 1111 | |
| 1112 | template <class T> static inline void adjust_pointer(T* p, ParCompactionManager* cm); |
| 1113 | |
| 1114 | // Compaction support. |
| 1115 | // Return true if p is in the range [beg_addr, end_addr). |
| 1116 | static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr); |
| 1117 | static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr); |
| 1118 | |
| 1119 | // Convenience wrappers for per-space data kept in _space_info. |
| 1120 | static inline MutableSpace* space(SpaceId space_id); |
| 1121 | static inline HeapWord* new_top(SpaceId space_id); |
| 1122 | static inline HeapWord* dense_prefix(SpaceId space_id); |
| 1123 | static inline ObjectStartArray* start_array(SpaceId space_id); |
| 1124 | |
| 1125 | // Move and update the live objects in the specified space. |
| 1126 | static void move_and_update(ParCompactionManager* cm, SpaceId space_id); |
| 1127 | |
| 1128 | // Process the end of the given region range in the dense prefix. |
| 1129 | // This includes saving any object not updated. |
| 1130 | static void dense_prefix_regions_epilogue(ParCompactionManager* cm, |
| 1131 | size_t region_start_index, |
| 1132 | size_t region_end_index, |
| 1133 | idx_t exiting_object_offset, |
| 1134 | idx_t region_offset_start, |
| 1135 | idx_t region_offset_end); |
| 1136 | |
| 1137 | // Update a region in the dense prefix. For each live object |
| 1138 | // in the region, update it's interior references. For each |
| 1139 | // dead object, fill it with deadwood. Dead space at the end |
| 1140 | // of a region range will be filled to the start of the next |
| 1141 | // live object regardless of the region_index_end. None of the |
| 1142 | // objects in the dense prefix move and dead space is dead |
| 1143 | // (holds only dead objects that don't need any processing), so |
| 1144 | // dead space can be filled in any order. |
| 1145 | static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, |
| 1146 | SpaceId space_id, |
| 1147 | size_t region_index_start, |
| 1148 | size_t region_index_end); |
| 1149 | |
| 1150 | // Return the address of the count + 1st live word in the range [beg, end). |
| 1151 | static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count); |
| 1152 | |
| 1153 | // Return the address of the word to be copied to dest_addr, which must be |
| 1154 | // aligned to a region boundary. |
| 1155 | static HeapWord* first_src_addr(HeapWord* const dest_addr, |
| 1156 | SpaceId src_space_id, |
| 1157 | size_t src_region_idx); |
| 1158 | |
| 1159 | // Determine the next source region, set closure.source() to the start of the |
| 1160 | // new region return the region index. Parameter end_addr is the address one |
| 1161 | // beyond the end of source range just processed. If necessary, switch to a |
| 1162 | // new source space and set src_space_id (in-out parameter) and src_space_top |
| 1163 | // (out parameter) accordingly. |
| 1164 | static size_t next_src_region(MoveAndUpdateClosure& closure, |
| 1165 | SpaceId& src_space_id, |
| 1166 | HeapWord*& src_space_top, |
| 1167 | HeapWord* end_addr); |
| 1168 | |
| 1169 | // Decrement the destination count for each non-empty source region in the |
| 1170 | // range [beg_region, region(region_align_up(end_addr))). If the destination |
| 1171 | // count for a region goes to 0 and it needs to be filled, enqueue it. |
| 1172 | static void decrement_destination_counts(ParCompactionManager* cm, |
| 1173 | SpaceId src_space_id, |
| 1174 | size_t beg_region, |
| 1175 | HeapWord* end_addr); |
| 1176 | |
| 1177 | // Fill a region, copying objects from one or more source regions. |
| 1178 | static void fill_region(ParCompactionManager* cm, size_t region_idx); |
| 1179 | static void fill_and_update_region(ParCompactionManager* cm, size_t region) { |
| 1180 | fill_region(cm, region); |
| 1181 | } |
| 1182 | |
| 1183 | // Fill in the block table for the specified region. |
| 1184 | static void fill_blocks(size_t region_idx); |
| 1185 | |
| 1186 | // Update the deferred objects in the space. |
| 1187 | static void update_deferred_objects(ParCompactionManager* cm, SpaceId id); |
| 1188 | |
| 1189 | static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; } |
| 1190 | static ParallelCompactData& summary_data() { return _summary_data; } |
| 1191 | |
| 1192 | // Reference Processing |
| 1193 | static ReferenceProcessor* const ref_processor() { return _ref_processor; } |
| 1194 | |
| 1195 | static STWGCTimer* gc_timer() { return &_gc_timer; } |
| 1196 | |
| 1197 | // Return the SpaceId for the given address. |
| 1198 | static SpaceId space_id(HeapWord* addr); |
| 1199 | |
| 1200 | // Time since last full gc (in milliseconds). |
| 1201 | static jlong millis_since_last_gc(); |
| 1202 | |
| 1203 | static void print_on_error(outputStream* st); |
| 1204 | |
| 1205 | #ifndef PRODUCT |
| 1206 | // Debugging support. |
| 1207 | static const char* space_names[last_space_id]; |
| 1208 | static void print_region_ranges(); |
| 1209 | static void print_dense_prefix_stats(const char* const algorithm, |
| 1210 | const SpaceId id, |
| 1211 | const bool maximum_compaction, |
| 1212 | HeapWord* const addr); |
| 1213 | static void summary_phase_msg(SpaceId dst_space_id, |
| 1214 | HeapWord* dst_beg, HeapWord* dst_end, |
| 1215 | SpaceId src_space_id, |
| 1216 | HeapWord* src_beg, HeapWord* src_end); |
| 1217 | #endif // #ifndef PRODUCT |
| 1218 | |
| 1219 | #ifdef ASSERT |
| 1220 | // Sanity check the new location of a word in the heap. |
| 1221 | static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr); |
| 1222 | // Verify that all the regions have been emptied. |
| 1223 | static void verify_complete(SpaceId space_id); |
| 1224 | #endif // #ifdef ASSERT |
| 1225 | }; |
| 1226 | |
| 1227 | class MoveAndUpdateClosure: public ParMarkBitMapClosure { |
| 1228 | public: |
| 1229 | inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm, |
| 1230 | ObjectStartArray* start_array, |
| 1231 | HeapWord* destination, size_t words); |
| 1232 | |
| 1233 | // Accessors. |
| 1234 | HeapWord* destination() const { return _destination; } |
| 1235 | |
| 1236 | // If the object will fit (size <= words_remaining()), copy it to the current |
| 1237 | // destination, update the interior oops and the start array and return either |
| 1238 | // full (if the closure is full) or incomplete. If the object will not fit, |
| 1239 | // return would_overflow. |
| 1240 | virtual IterationStatus do_addr(HeapWord* addr, size_t size); |
| 1241 | |
| 1242 | // Copy enough words to fill this closure, starting at source(). Interior |
| 1243 | // oops and the start array are not updated. Return full. |
| 1244 | IterationStatus copy_until_full(); |
| 1245 | |
| 1246 | // Copy enough words to fill this closure or to the end of an object, |
| 1247 | // whichever is smaller, starting at source(). Interior oops and the start |
| 1248 | // array are not updated. |
| 1249 | void copy_partial_obj(); |
| 1250 | |
| 1251 | protected: |
| 1252 | // Update variables to indicate that word_count words were processed. |
| 1253 | inline void update_state(size_t word_count); |
| 1254 | |
| 1255 | protected: |
| 1256 | ObjectStartArray* const _start_array; |
| 1257 | HeapWord* _destination; // Next addr to be written. |
| 1258 | }; |
| 1259 | |
| 1260 | inline |
| 1261 | MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap, |
| 1262 | ParCompactionManager* cm, |
| 1263 | ObjectStartArray* start_array, |
| 1264 | HeapWord* destination, |
| 1265 | size_t words) : |
| 1266 | ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array) |
| 1267 | { |
| 1268 | _destination = destination; |
| 1269 | } |
| 1270 | |
| 1271 | inline void MoveAndUpdateClosure::update_state(size_t words) |
| 1272 | { |
| 1273 | decrement_words_remaining(words); |
| 1274 | _source += words; |
| 1275 | _destination += words; |
| 1276 | } |
| 1277 | |
| 1278 | class UpdateOnlyClosure: public ParMarkBitMapClosure { |
| 1279 | private: |
| 1280 | const PSParallelCompact::SpaceId _space_id; |
| 1281 | ObjectStartArray* const _start_array; |
| 1282 | |
| 1283 | public: |
| 1284 | UpdateOnlyClosure(ParMarkBitMap* mbm, |
| 1285 | ParCompactionManager* cm, |
| 1286 | PSParallelCompact::SpaceId space_id); |
| 1287 | |
| 1288 | // Update the object. |
| 1289 | virtual IterationStatus do_addr(HeapWord* addr, size_t words); |
| 1290 | |
| 1291 | inline void do_addr(HeapWord* addr); |
| 1292 | }; |
| 1293 | |
| 1294 | class FillClosure: public ParMarkBitMapClosure { |
| 1295 | public: |
| 1296 | FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id); |
| 1297 | |
| 1298 | virtual IterationStatus do_addr(HeapWord* addr, size_t size); |
| 1299 | |
| 1300 | private: |
| 1301 | ObjectStartArray* const _start_array; |
| 1302 | }; |
| 1303 | |
| 1304 | #endif // SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP |
| 1305 | |