1 | /* |
2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP |
26 | #define SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP |
27 | |
28 | #include "gc/parallel/mutableSpace.hpp" |
29 | #include "gc/parallel/objectStartArray.hpp" |
30 | #include "gc/parallel/parMarkBitMap.hpp" |
31 | #include "gc/parallel/parallelScavengeHeap.hpp" |
32 | #include "gc/shared/collectedHeap.hpp" |
33 | #include "gc/shared/collectorCounters.hpp" |
34 | #include "oops/oop.hpp" |
35 | |
36 | class ParallelScavengeHeap; |
37 | class PSAdaptiveSizePolicy; |
38 | class PSYoungGen; |
39 | class PSOldGen; |
40 | class ParCompactionManager; |
41 | class ParallelTaskTerminator; |
42 | class PSParallelCompact; |
43 | class GCTaskManager; |
44 | class GCTaskQueue; |
45 | class PreGCValues; |
46 | class MoveAndUpdateClosure; |
47 | class RefProcTaskExecutor; |
48 | class ParallelOldTracer; |
49 | class STWGCTimer; |
50 | |
51 | // The SplitInfo class holds the information needed to 'split' a source region |
52 | // so that the live data can be copied to two destination *spaces*. Normally, |
53 | // all the live data in a region is copied to a single destination space (e.g., |
54 | // everything live in a region in eden is copied entirely into the old gen). |
55 | // However, when the heap is nearly full, all the live data in eden may not fit |
56 | // into the old gen. Copying only some of the regions from eden to old gen |
57 | // requires finding a region that does not contain a partial object (i.e., no |
58 | // live object crosses the region boundary) somewhere near the last object that |
59 | // does fit into the old gen. Since it's not always possible to find such a |
60 | // region, splitting is necessary for predictable behavior. |
61 | // |
62 | // A region is always split at the end of the partial object. This avoids |
63 | // additional tests when calculating the new location of a pointer, which is a |
64 | // very hot code path. The partial object and everything to its left will be |
65 | // copied to another space (call it dest_space_1). The live data to the right |
66 | // of the partial object will be copied either within the space itself, or to a |
67 | // different destination space (distinct from dest_space_1). |
68 | // |
69 | // Split points are identified during the summary phase, when region |
70 | // destinations are computed: data about the split, including the |
71 | // partial_object_size, is recorded in a SplitInfo record and the |
72 | // partial_object_size field in the summary data is set to zero. The zeroing is |
73 | // possible (and necessary) since the partial object will move to a different |
74 | // destination space than anything to its right, thus the partial object should |
75 | // not affect the locations of any objects to its right. |
76 | // |
77 | // The recorded data is used during the compaction phase, but only rarely: when |
78 | // the partial object on the split region will be copied across a destination |
79 | // region boundary. This test is made once each time a region is filled, and is |
80 | // a simple address comparison, so the overhead is negligible (see |
81 | // PSParallelCompact::first_src_addr()). |
82 | // |
83 | // Notes: |
84 | // |
85 | // Only regions with partial objects are split; a region without a partial |
86 | // object does not need any extra bookkeeping. |
87 | // |
88 | // At most one region is split per space, so the amount of data required is |
89 | // constant. |
90 | // |
91 | // A region is split only when the destination space would overflow. Once that |
92 | // happens, the destination space is abandoned and no other data (even from |
93 | // other source spaces) is targeted to that destination space. Abandoning the |
94 | // destination space may leave a somewhat large unused area at the end, if a |
95 | // large object caused the overflow. |
96 | // |
97 | // Future work: |
98 | // |
99 | // More bookkeeping would be required to continue to use the destination space. |
100 | // The most general solution would allow data from regions in two different |
101 | // source spaces to be "joined" in a single destination region. At the very |
102 | // least, additional code would be required in next_src_region() to detect the |
103 | // join and skip to an out-of-order source region. If the join region was also |
104 | // the last destination region to which a split region was copied (the most |
105 | // likely case), then additional work would be needed to get fill_region() to |
106 | // stop iteration and switch to a new source region at the right point. Basic |
107 | // idea would be to use a fake value for the top of the source space. It is |
108 | // doable, if a bit tricky. |
109 | // |
110 | // A simpler (but less general) solution would fill the remainder of the |
111 | // destination region with a dummy object and continue filling the next |
112 | // destination region. |
113 | |
114 | class SplitInfo |
115 | { |
116 | public: |
117 | // Return true if this split info is valid (i.e., if a split has been |
118 | // recorded). The very first region cannot have a partial object and thus is |
119 | // never split, so 0 is the 'invalid' value. |
120 | bool is_valid() const { return _src_region_idx > 0; } |
121 | |
122 | // Return true if this split holds data for the specified source region. |
123 | inline bool is_split(size_t source_region) const; |
124 | |
125 | // The index of the split region, the size of the partial object on that |
126 | // region and the destination of the partial object. |
127 | size_t src_region_idx() const { return _src_region_idx; } |
128 | size_t partial_obj_size() const { return _partial_obj_size; } |
129 | HeapWord* destination() const { return _destination; } |
130 | |
131 | // The destination count of the partial object referenced by this split |
132 | // (either 1 or 2). This must be added to the destination count of the |
133 | // remainder of the source region. |
134 | unsigned int destination_count() const { return _destination_count; } |
135 | |
136 | // If a word within the partial object will be written to the first word of a |
137 | // destination region, this is the address of the destination region; |
138 | // otherwise this is NULL. |
139 | HeapWord* dest_region_addr() const { return _dest_region_addr; } |
140 | |
141 | // If a word within the partial object will be written to the first word of a |
142 | // destination region, this is the address of that word within the partial |
143 | // object; otherwise this is NULL. |
144 | HeapWord* first_src_addr() const { return _first_src_addr; } |
145 | |
146 | // Record the data necessary to split the region src_region_idx. |
147 | void record(size_t src_region_idx, size_t partial_obj_size, |
148 | HeapWord* destination); |
149 | |
150 | void clear(); |
151 | |
152 | DEBUG_ONLY(void verify_clear();) |
153 | |
154 | private: |
155 | size_t _src_region_idx; |
156 | size_t _partial_obj_size; |
157 | HeapWord* _destination; |
158 | unsigned int _destination_count; |
159 | HeapWord* _dest_region_addr; |
160 | HeapWord* _first_src_addr; |
161 | }; |
162 | |
163 | inline bool SplitInfo::is_split(size_t region_idx) const |
164 | { |
165 | return _src_region_idx == region_idx && is_valid(); |
166 | } |
167 | |
168 | class SpaceInfo |
169 | { |
170 | public: |
171 | MutableSpace* space() const { return _space; } |
172 | |
173 | // Where the free space will start after the collection. Valid only after the |
174 | // summary phase completes. |
175 | HeapWord* new_top() const { return _new_top; } |
176 | |
177 | // Allows new_top to be set. |
178 | HeapWord** new_top_addr() { return &_new_top; } |
179 | |
180 | // Where the smallest allowable dense prefix ends (used only for perm gen). |
181 | HeapWord* min_dense_prefix() const { return _min_dense_prefix; } |
182 | |
183 | // Where the dense prefix ends, or the compacted region begins. |
184 | HeapWord* dense_prefix() const { return _dense_prefix; } |
185 | |
186 | // The start array for the (generation containing the) space, or NULL if there |
187 | // is no start array. |
188 | ObjectStartArray* start_array() const { return _start_array; } |
189 | |
190 | SplitInfo& split_info() { return _split_info; } |
191 | |
192 | void set_space(MutableSpace* s) { _space = s; } |
193 | void set_new_top(HeapWord* addr) { _new_top = addr; } |
194 | void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; } |
195 | void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; } |
196 | void set_start_array(ObjectStartArray* s) { _start_array = s; } |
197 | |
198 | void publish_new_top() const { _space->set_top(_new_top); } |
199 | |
200 | private: |
201 | MutableSpace* _space; |
202 | HeapWord* _new_top; |
203 | HeapWord* _min_dense_prefix; |
204 | HeapWord* _dense_prefix; |
205 | ObjectStartArray* _start_array; |
206 | SplitInfo _split_info; |
207 | }; |
208 | |
209 | class ParallelCompactData |
210 | { |
211 | public: |
212 | // Sizes are in HeapWords, unless indicated otherwise. |
213 | static const size_t Log2RegionSize; |
214 | static const size_t RegionSize; |
215 | static const size_t RegionSizeBytes; |
216 | |
217 | // Mask for the bits in a size_t to get an offset within a region. |
218 | static const size_t RegionSizeOffsetMask; |
219 | // Mask for the bits in a pointer to get an offset within a region. |
220 | static const size_t RegionAddrOffsetMask; |
221 | // Mask for the bits in a pointer to get the address of the start of a region. |
222 | static const size_t RegionAddrMask; |
223 | |
224 | static const size_t Log2BlockSize; |
225 | static const size_t BlockSize; |
226 | static const size_t BlockSizeBytes; |
227 | |
228 | static const size_t BlockSizeOffsetMask; |
229 | static const size_t BlockAddrOffsetMask; |
230 | static const size_t BlockAddrMask; |
231 | |
232 | static const size_t BlocksPerRegion; |
233 | static const size_t Log2BlocksPerRegion; |
234 | |
235 | class RegionData |
236 | { |
237 | public: |
238 | // Destination address of the region. |
239 | HeapWord* destination() const { return _destination; } |
240 | |
241 | // The first region containing data destined for this region. |
242 | size_t source_region() const { return _source_region; } |
243 | |
244 | // The object (if any) starting in this region and ending in a different |
245 | // region that could not be updated during the main (parallel) compaction |
246 | // phase. This is different from _partial_obj_addr, which is an object that |
247 | // extends onto a source region. However, the two uses do not overlap in |
248 | // time, so the same field is used to save space. |
249 | HeapWord* deferred_obj_addr() const { return _partial_obj_addr; } |
250 | |
251 | // The starting address of the partial object extending onto the region. |
252 | HeapWord* partial_obj_addr() const { return _partial_obj_addr; } |
253 | |
254 | // Size of the partial object extending onto the region (words). |
255 | size_t partial_obj_size() const { return _partial_obj_size; } |
256 | |
257 | // Size of live data that lies within this region due to objects that start |
258 | // in this region (words). This does not include the partial object |
259 | // extending onto the region (if any), or the part of an object that extends |
260 | // onto the next region (if any). |
261 | size_t live_obj_size() const { return _dc_and_los & los_mask; } |
262 | |
263 | // Total live data that lies within the region (words). |
264 | size_t data_size() const { return partial_obj_size() + live_obj_size(); } |
265 | |
266 | // The destination_count is the number of other regions to which data from |
267 | // this region will be copied. At the end of the summary phase, the valid |
268 | // values of destination_count are |
269 | // |
270 | // 0 - data from the region will be compacted completely into itself, or the |
271 | // region is empty. The region can be claimed and then filled. |
272 | // 1 - data from the region will be compacted into 1 other region; some |
273 | // data from the region may also be compacted into the region itself. |
274 | // 2 - data from the region will be copied to 2 other regions. |
275 | // |
276 | // During compaction as regions are emptied, the destination_count is |
277 | // decremented (atomically) and when it reaches 0, it can be claimed and |
278 | // then filled. |
279 | // |
280 | // A region is claimed for processing by atomically changing the |
281 | // destination_count to the claimed value (dc_claimed). After a region has |
282 | // been filled, the destination_count should be set to the completed value |
283 | // (dc_completed). |
284 | inline uint destination_count() const; |
285 | inline uint destination_count_raw() const; |
286 | |
287 | // Whether the block table for this region has been filled. |
288 | inline bool blocks_filled() const; |
289 | |
290 | // Number of times the block table was filled. |
291 | DEBUG_ONLY(inline size_t blocks_filled_count() const;) |
292 | |
293 | // The location of the java heap data that corresponds to this region. |
294 | inline HeapWord* data_location() const; |
295 | |
296 | // The highest address referenced by objects in this region. |
297 | inline HeapWord* highest_ref() const; |
298 | |
299 | // Whether this region is available to be claimed, has been claimed, or has |
300 | // been completed. |
301 | // |
302 | // Minor subtlety: claimed() returns true if the region is marked |
303 | // completed(), which is desirable since a region must be claimed before it |
304 | // can be completed. |
305 | bool available() const { return _dc_and_los < dc_one; } |
306 | bool claimed() const { return _dc_and_los >= dc_claimed; } |
307 | bool completed() const { return _dc_and_los >= dc_completed; } |
308 | |
309 | // These are not atomic. |
310 | void set_destination(HeapWord* addr) { _destination = addr; } |
311 | void set_source_region(size_t region) { _source_region = region; } |
312 | void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; } |
313 | void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; } |
314 | void set_partial_obj_size(size_t words) { |
315 | _partial_obj_size = (region_sz_t) words; |
316 | } |
317 | inline void set_blocks_filled(); |
318 | |
319 | inline void set_destination_count(uint count); |
320 | inline void set_live_obj_size(size_t words); |
321 | inline void set_data_location(HeapWord* addr); |
322 | inline void set_completed(); |
323 | inline bool claim_unsafe(); |
324 | |
325 | // These are atomic. |
326 | inline void add_live_obj(size_t words); |
327 | inline void set_highest_ref(HeapWord* addr); |
328 | inline void decrement_destination_count(); |
329 | inline bool claim(); |
330 | |
331 | private: |
332 | // The type used to represent object sizes within a region. |
333 | typedef uint region_sz_t; |
334 | |
335 | // Constants for manipulating the _dc_and_los field, which holds both the |
336 | // destination count and live obj size. The live obj size lives at the |
337 | // least significant end so no masking is necessary when adding. |
338 | static const region_sz_t dc_shift; // Shift amount. |
339 | static const region_sz_t dc_mask; // Mask for destination count. |
340 | static const region_sz_t dc_one; // 1, shifted appropriately. |
341 | static const region_sz_t dc_claimed; // Region has been claimed. |
342 | static const region_sz_t dc_completed; // Region has been completed. |
343 | static const region_sz_t los_mask; // Mask for live obj size. |
344 | |
345 | HeapWord* _destination; |
346 | size_t _source_region; |
347 | HeapWord* _partial_obj_addr; |
348 | region_sz_t _partial_obj_size; |
349 | region_sz_t volatile _dc_and_los; |
350 | bool volatile _blocks_filled; |
351 | |
352 | #ifdef ASSERT |
353 | size_t _blocks_filled_count; // Number of block table fills. |
354 | |
355 | // These enable optimizations that are only partially implemented. Use |
356 | // debug builds to prevent the code fragments from breaking. |
357 | HeapWord* _data_location; |
358 | HeapWord* _highest_ref; |
359 | #endif // #ifdef ASSERT |
360 | |
361 | #ifdef ASSERT |
362 | public: |
363 | uint _pushed; // 0 until region is pushed onto a stack |
364 | private: |
365 | #endif |
366 | }; |
367 | |
368 | // "Blocks" allow shorter sections of the bitmap to be searched. Each Block |
369 | // holds an offset, which is the amount of live data in the Region to the left |
370 | // of the first live object that starts in the Block. |
371 | class BlockData |
372 | { |
373 | public: |
374 | typedef unsigned short int blk_ofs_t; |
375 | |
376 | blk_ofs_t offset() const { return _offset; } |
377 | void set_offset(size_t val) { _offset = (blk_ofs_t)val; } |
378 | |
379 | private: |
380 | blk_ofs_t _offset; |
381 | }; |
382 | |
383 | public: |
384 | ParallelCompactData(); |
385 | bool initialize(MemRegion covered_region); |
386 | |
387 | size_t region_count() const { return _region_count; } |
388 | size_t reserved_byte_size() const { return _reserved_byte_size; } |
389 | |
390 | // Convert region indices to/from RegionData pointers. |
391 | inline RegionData* region(size_t region_idx) const; |
392 | inline size_t region(const RegionData* const region_ptr) const; |
393 | |
394 | size_t block_count() const { return _block_count; } |
395 | inline BlockData* block(size_t block_idx) const; |
396 | inline size_t block(const BlockData* block_ptr) const; |
397 | |
398 | void add_obj(HeapWord* addr, size_t len); |
399 | void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); } |
400 | |
401 | // Fill in the regions covering [beg, end) so that no data moves; i.e., the |
402 | // destination of region n is simply the start of region n. The argument beg |
403 | // must be region-aligned; end need not be. |
404 | void summarize_dense_prefix(HeapWord* beg, HeapWord* end); |
405 | |
406 | HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info, |
407 | HeapWord* destination, HeapWord* target_end, |
408 | HeapWord** target_next); |
409 | bool summarize(SplitInfo& split_info, |
410 | HeapWord* source_beg, HeapWord* source_end, |
411 | HeapWord** source_next, |
412 | HeapWord* target_beg, HeapWord* target_end, |
413 | HeapWord** target_next); |
414 | |
415 | void clear(); |
416 | void clear_range(size_t beg_region, size_t end_region); |
417 | void clear_range(HeapWord* beg, HeapWord* end) { |
418 | clear_range(addr_to_region_idx(beg), addr_to_region_idx(end)); |
419 | } |
420 | |
421 | // Return the number of words between addr and the start of the region |
422 | // containing addr. |
423 | inline size_t region_offset(const HeapWord* addr) const; |
424 | |
425 | // Convert addresses to/from a region index or region pointer. |
426 | inline size_t addr_to_region_idx(const HeapWord* addr) const; |
427 | inline RegionData* addr_to_region_ptr(const HeapWord* addr) const; |
428 | inline HeapWord* region_to_addr(size_t region) const; |
429 | inline HeapWord* region_to_addr(size_t region, size_t offset) const; |
430 | inline HeapWord* region_to_addr(const RegionData* region) const; |
431 | |
432 | inline HeapWord* region_align_down(HeapWord* addr) const; |
433 | inline HeapWord* region_align_up(HeapWord* addr) const; |
434 | inline bool is_region_aligned(HeapWord* addr) const; |
435 | |
436 | // Analogous to region_offset() for blocks. |
437 | size_t block_offset(const HeapWord* addr) const; |
438 | size_t addr_to_block_idx(const HeapWord* addr) const; |
439 | size_t addr_to_block_idx(const oop obj) const { |
440 | return addr_to_block_idx((HeapWord*) obj); |
441 | } |
442 | inline BlockData* addr_to_block_ptr(const HeapWord* addr) const; |
443 | inline HeapWord* block_to_addr(size_t block) const; |
444 | inline size_t region_to_block_idx(size_t region) const; |
445 | |
446 | inline HeapWord* block_align_down(HeapWord* addr) const; |
447 | inline HeapWord* block_align_up(HeapWord* addr) const; |
448 | inline bool is_block_aligned(HeapWord* addr) const; |
449 | |
450 | // Return the address one past the end of the partial object. |
451 | HeapWord* partial_obj_end(size_t region_idx) const; |
452 | |
453 | // Return the location of the object after compaction. |
454 | HeapWord* calc_new_pointer(HeapWord* addr, ParCompactionManager* cm); |
455 | |
456 | HeapWord* calc_new_pointer(oop p, ParCompactionManager* cm) { |
457 | return calc_new_pointer((HeapWord*) p, cm); |
458 | } |
459 | |
460 | #ifdef ASSERT |
461 | void verify_clear(const PSVirtualSpace* vspace); |
462 | void verify_clear(); |
463 | #endif // #ifdef ASSERT |
464 | |
465 | private: |
466 | bool initialize_block_data(); |
467 | bool initialize_region_data(size_t region_size); |
468 | PSVirtualSpace* create_vspace(size_t count, size_t element_size); |
469 | |
470 | private: |
471 | HeapWord* _region_start; |
472 | #ifdef ASSERT |
473 | HeapWord* _region_end; |
474 | #endif // #ifdef ASSERT |
475 | |
476 | PSVirtualSpace* _region_vspace; |
477 | size_t _reserved_byte_size; |
478 | RegionData* _region_data; |
479 | size_t _region_count; |
480 | |
481 | PSVirtualSpace* _block_vspace; |
482 | BlockData* _block_data; |
483 | size_t _block_count; |
484 | }; |
485 | |
486 | inline uint |
487 | ParallelCompactData::RegionData::destination_count_raw() const |
488 | { |
489 | return _dc_and_los & dc_mask; |
490 | } |
491 | |
492 | inline uint |
493 | ParallelCompactData::RegionData::destination_count() const |
494 | { |
495 | return destination_count_raw() >> dc_shift; |
496 | } |
497 | |
498 | inline bool |
499 | ParallelCompactData::RegionData::blocks_filled() const |
500 | { |
501 | bool result = _blocks_filled; |
502 | OrderAccess::acquire(); |
503 | return result; |
504 | } |
505 | |
506 | #ifdef ASSERT |
507 | inline size_t |
508 | ParallelCompactData::RegionData::blocks_filled_count() const |
509 | { |
510 | return _blocks_filled_count; |
511 | } |
512 | #endif // #ifdef ASSERT |
513 | |
514 | inline void |
515 | ParallelCompactData::RegionData::set_blocks_filled() |
516 | { |
517 | OrderAccess::release(); |
518 | _blocks_filled = true; |
519 | // Debug builds count the number of times the table was filled. |
520 | DEBUG_ONLY(Atomic::inc(&_blocks_filled_count)); |
521 | } |
522 | |
523 | inline void |
524 | ParallelCompactData::RegionData::set_destination_count(uint count) |
525 | { |
526 | assert(count <= (dc_completed >> dc_shift), "count too large" ); |
527 | const region_sz_t live_sz = (region_sz_t) live_obj_size(); |
528 | _dc_and_los = (count << dc_shift) | live_sz; |
529 | } |
530 | |
531 | inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words) |
532 | { |
533 | assert(words <= los_mask, "would overflow" ); |
534 | _dc_and_los = destination_count_raw() | (region_sz_t)words; |
535 | } |
536 | |
537 | inline void ParallelCompactData::RegionData::decrement_destination_count() |
538 | { |
539 | assert(_dc_and_los < dc_claimed, "already claimed" ); |
540 | assert(_dc_and_los >= dc_one, "count would go negative" ); |
541 | Atomic::add(dc_mask, &_dc_and_los); |
542 | } |
543 | |
544 | inline HeapWord* ParallelCompactData::RegionData::data_location() const |
545 | { |
546 | DEBUG_ONLY(return _data_location;) |
547 | NOT_DEBUG(return NULL;) |
548 | } |
549 | |
550 | inline HeapWord* ParallelCompactData::RegionData::highest_ref() const |
551 | { |
552 | DEBUG_ONLY(return _highest_ref;) |
553 | NOT_DEBUG(return NULL;) |
554 | } |
555 | |
556 | inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr) |
557 | { |
558 | DEBUG_ONLY(_data_location = addr;) |
559 | } |
560 | |
561 | inline void ParallelCompactData::RegionData::set_completed() |
562 | { |
563 | assert(claimed(), "must be claimed first" ); |
564 | _dc_and_los = dc_completed | (region_sz_t) live_obj_size(); |
565 | } |
566 | |
567 | // MT-unsafe claiming of a region. Should only be used during single threaded |
568 | // execution. |
569 | inline bool ParallelCompactData::RegionData::claim_unsafe() |
570 | { |
571 | if (available()) { |
572 | _dc_and_los |= dc_claimed; |
573 | return true; |
574 | } |
575 | return false; |
576 | } |
577 | |
578 | inline void ParallelCompactData::RegionData::add_live_obj(size_t words) |
579 | { |
580 | assert(words <= (size_t)los_mask - live_obj_size(), "overflow" ); |
581 | Atomic::add(static_cast<region_sz_t>(words), &_dc_and_los); |
582 | } |
583 | |
584 | inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr) |
585 | { |
586 | #ifdef ASSERT |
587 | HeapWord* tmp = _highest_ref; |
588 | while (addr > tmp) { |
589 | tmp = Atomic::cmpxchg(addr, &_highest_ref, tmp); |
590 | } |
591 | #endif // #ifdef ASSERT |
592 | } |
593 | |
594 | inline bool ParallelCompactData::RegionData::claim() |
595 | { |
596 | const region_sz_t los = static_cast<region_sz_t>(live_obj_size()); |
597 | const region_sz_t old = Atomic::cmpxchg(dc_claimed | los, &_dc_and_los, los); |
598 | return old == los; |
599 | } |
600 | |
601 | inline ParallelCompactData::RegionData* |
602 | ParallelCompactData::region(size_t region_idx) const |
603 | { |
604 | assert(region_idx <= region_count(), "bad arg" ); |
605 | return _region_data + region_idx; |
606 | } |
607 | |
608 | inline size_t |
609 | ParallelCompactData::region(const RegionData* const region_ptr) const |
610 | { |
611 | assert(region_ptr >= _region_data, "bad arg" ); |
612 | assert(region_ptr <= _region_data + region_count(), "bad arg" ); |
613 | return pointer_delta(region_ptr, _region_data, sizeof(RegionData)); |
614 | } |
615 | |
616 | inline ParallelCompactData::BlockData* |
617 | ParallelCompactData::block(size_t n) const { |
618 | assert(n < block_count(), "bad arg" ); |
619 | return _block_data + n; |
620 | } |
621 | |
622 | inline size_t |
623 | ParallelCompactData::region_offset(const HeapWord* addr) const |
624 | { |
625 | assert(addr >= _region_start, "bad addr" ); |
626 | assert(addr <= _region_end, "bad addr" ); |
627 | return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize; |
628 | } |
629 | |
630 | inline size_t |
631 | ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const |
632 | { |
633 | assert(addr >= _region_start, "bad addr " PTR_FORMAT " _region_start " PTR_FORMAT, p2i(addr), p2i(_region_start)); |
634 | assert(addr <= _region_end, "bad addr " PTR_FORMAT " _region_end " PTR_FORMAT, p2i(addr), p2i(_region_end)); |
635 | return pointer_delta(addr, _region_start) >> Log2RegionSize; |
636 | } |
637 | |
638 | inline ParallelCompactData::RegionData* |
639 | ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const |
640 | { |
641 | return region(addr_to_region_idx(addr)); |
642 | } |
643 | |
644 | inline HeapWord* |
645 | ParallelCompactData::region_to_addr(size_t region) const |
646 | { |
647 | assert(region <= _region_count, "region out of range" ); |
648 | return _region_start + (region << Log2RegionSize); |
649 | } |
650 | |
651 | inline HeapWord* |
652 | ParallelCompactData::region_to_addr(const RegionData* region) const |
653 | { |
654 | return region_to_addr(pointer_delta(region, _region_data, |
655 | sizeof(RegionData))); |
656 | } |
657 | |
658 | inline HeapWord* |
659 | ParallelCompactData::region_to_addr(size_t region, size_t offset) const |
660 | { |
661 | assert(region <= _region_count, "region out of range" ); |
662 | assert(offset < RegionSize, "offset too big" ); // This may be too strict. |
663 | return region_to_addr(region) + offset; |
664 | } |
665 | |
666 | inline HeapWord* |
667 | ParallelCompactData::region_align_down(HeapWord* addr) const |
668 | { |
669 | assert(addr >= _region_start, "bad addr" ); |
670 | assert(addr < _region_end + RegionSize, "bad addr" ); |
671 | return (HeapWord*)(size_t(addr) & RegionAddrMask); |
672 | } |
673 | |
674 | inline HeapWord* |
675 | ParallelCompactData::region_align_up(HeapWord* addr) const |
676 | { |
677 | assert(addr >= _region_start, "bad addr" ); |
678 | assert(addr <= _region_end, "bad addr" ); |
679 | return region_align_down(addr + RegionSizeOffsetMask); |
680 | } |
681 | |
682 | inline bool |
683 | ParallelCompactData::is_region_aligned(HeapWord* addr) const |
684 | { |
685 | return region_offset(addr) == 0; |
686 | } |
687 | |
688 | inline size_t |
689 | ParallelCompactData::block_offset(const HeapWord* addr) const |
690 | { |
691 | assert(addr >= _region_start, "bad addr" ); |
692 | assert(addr <= _region_end, "bad addr" ); |
693 | return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize; |
694 | } |
695 | |
696 | inline size_t |
697 | ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const |
698 | { |
699 | assert(addr >= _region_start, "bad addr" ); |
700 | assert(addr <= _region_end, "bad addr" ); |
701 | return pointer_delta(addr, _region_start) >> Log2BlockSize; |
702 | } |
703 | |
704 | inline ParallelCompactData::BlockData* |
705 | ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const |
706 | { |
707 | return block(addr_to_block_idx(addr)); |
708 | } |
709 | |
710 | inline HeapWord* |
711 | ParallelCompactData::block_to_addr(size_t block) const |
712 | { |
713 | assert(block < _block_count, "block out of range" ); |
714 | return _region_start + (block << Log2BlockSize); |
715 | } |
716 | |
717 | inline size_t |
718 | ParallelCompactData::region_to_block_idx(size_t region) const |
719 | { |
720 | return region << Log2BlocksPerRegion; |
721 | } |
722 | |
723 | inline HeapWord* |
724 | ParallelCompactData::block_align_down(HeapWord* addr) const |
725 | { |
726 | assert(addr >= _region_start, "bad addr" ); |
727 | assert(addr < _region_end + RegionSize, "bad addr" ); |
728 | return (HeapWord*)(size_t(addr) & BlockAddrMask); |
729 | } |
730 | |
731 | inline HeapWord* |
732 | ParallelCompactData::block_align_up(HeapWord* addr) const |
733 | { |
734 | assert(addr >= _region_start, "bad addr" ); |
735 | assert(addr <= _region_end, "bad addr" ); |
736 | return block_align_down(addr + BlockSizeOffsetMask); |
737 | } |
738 | |
739 | inline bool |
740 | ParallelCompactData::is_block_aligned(HeapWord* addr) const |
741 | { |
742 | return block_offset(addr) == 0; |
743 | } |
744 | |
745 | // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the |
746 | // do_addr() method. |
747 | // |
748 | // The closure is initialized with the number of heap words to process |
749 | // (words_remaining()), and becomes 'full' when it reaches 0. The do_addr() |
750 | // methods in subclasses should update the total as words are processed. Since |
751 | // only one subclass actually uses this mechanism to terminate iteration, the |
752 | // default initial value is > 0. The implementation is here and not in the |
753 | // single subclass that uses it to avoid making is_full() virtual, and thus |
754 | // adding a virtual call per live object. |
755 | |
756 | class ParMarkBitMapClosure: public StackObj { |
757 | public: |
758 | typedef ParMarkBitMap::idx_t idx_t; |
759 | typedef ParMarkBitMap::IterationStatus IterationStatus; |
760 | |
761 | public: |
762 | inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm, |
763 | size_t words = max_uintx); |
764 | |
765 | inline ParCompactionManager* compaction_manager() const; |
766 | inline ParMarkBitMap* bitmap() const; |
767 | inline size_t words_remaining() const; |
768 | inline bool is_full() const; |
769 | inline HeapWord* source() const; |
770 | |
771 | inline void set_source(HeapWord* addr); |
772 | |
773 | virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0; |
774 | |
775 | protected: |
776 | inline void decrement_words_remaining(size_t words); |
777 | |
778 | private: |
779 | ParMarkBitMap* const _bitmap; |
780 | ParCompactionManager* const _compaction_manager; |
781 | DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger. |
782 | size_t _words_remaining; // Words left to copy. |
783 | |
784 | protected: |
785 | HeapWord* _source; // Next addr that would be read. |
786 | }; |
787 | |
788 | inline |
789 | ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap, |
790 | ParCompactionManager* cm, |
791 | size_t words): |
792 | _bitmap(bitmap), _compaction_manager(cm) |
793 | #ifdef ASSERT |
794 | , _initial_words_remaining(words) |
795 | #endif |
796 | { |
797 | _words_remaining = words; |
798 | _source = NULL; |
799 | } |
800 | |
801 | inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const { |
802 | return _compaction_manager; |
803 | } |
804 | |
805 | inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const { |
806 | return _bitmap; |
807 | } |
808 | |
809 | inline size_t ParMarkBitMapClosure::words_remaining() const { |
810 | return _words_remaining; |
811 | } |
812 | |
813 | inline bool ParMarkBitMapClosure::is_full() const { |
814 | return words_remaining() == 0; |
815 | } |
816 | |
817 | inline HeapWord* ParMarkBitMapClosure::source() const { |
818 | return _source; |
819 | } |
820 | |
821 | inline void ParMarkBitMapClosure::set_source(HeapWord* addr) { |
822 | _source = addr; |
823 | } |
824 | |
825 | inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) { |
826 | assert(_words_remaining >= words, "processed too many words" ); |
827 | _words_remaining -= words; |
828 | } |
829 | |
830 | // The UseParallelOldGC collector is a stop-the-world garbage collector that |
831 | // does parts of the collection using parallel threads. The collection includes |
832 | // the tenured generation and the young generation. The permanent generation is |
833 | // collected at the same time as the other two generations but the permanent |
834 | // generation is collect by a single GC thread. The permanent generation is |
835 | // collected serially because of the requirement that during the processing of a |
836 | // klass AAA, any objects reference by AAA must already have been processed. |
837 | // This requirement is enforced by a left (lower address) to right (higher |
838 | // address) sliding compaction. |
839 | // |
840 | // There are four phases of the collection. |
841 | // |
842 | // - marking phase |
843 | // - summary phase |
844 | // - compacting phase |
845 | // - clean up phase |
846 | // |
847 | // Roughly speaking these phases correspond, respectively, to |
848 | // - mark all the live objects |
849 | // - calculate the destination of each object at the end of the collection |
850 | // - move the objects to their destination |
851 | // - update some references and reinitialize some variables |
852 | // |
853 | // These three phases are invoked in PSParallelCompact::invoke_no_policy(). The |
854 | // marking phase is implemented in PSParallelCompact::marking_phase() and does a |
855 | // complete marking of the heap. The summary phase is implemented in |
856 | // PSParallelCompact::summary_phase(). The move and update phase is implemented |
857 | // in PSParallelCompact::compact(). |
858 | // |
859 | // A space that is being collected is divided into regions and with each region |
860 | // is associated an object of type ParallelCompactData. Each region is of a |
861 | // fixed size and typically will contain more than 1 object and may have parts |
862 | // of objects at the front and back of the region. |
863 | // |
864 | // region -----+---------------------+---------- |
865 | // objects covered [ AAA )[ BBB )[ CCC )[ DDD ) |
866 | // |
867 | // The marking phase does a complete marking of all live objects in the heap. |
868 | // The marking also compiles the size of the data for all live objects covered |
869 | // by the region. This size includes the part of any live object spanning onto |
870 | // the region (part of AAA if it is live) from the front, all live objects |
871 | // contained in the region (BBB and/or CCC if they are live), and the part of |
872 | // any live objects covered by the region that extends off the region (part of |
873 | // DDD if it is live). The marking phase uses multiple GC threads and marking |
874 | // is done in a bit array of type ParMarkBitMap. The marking of the bit map is |
875 | // done atomically as is the accumulation of the size of the live objects |
876 | // covered by a region. |
877 | // |
878 | // The summary phase calculates the total live data to the left of each region |
879 | // XXX. Based on that total and the bottom of the space, it can calculate the |
880 | // starting location of the live data in XXX. The summary phase calculates for |
881 | // each region XXX quantities such as |
882 | // |
883 | // - the amount of live data at the beginning of a region from an object |
884 | // entering the region. |
885 | // - the location of the first live data on the region |
886 | // - a count of the number of regions receiving live data from XXX. |
887 | // |
888 | // See ParallelCompactData for precise details. The summary phase also |
889 | // calculates the dense prefix for the compaction. The dense prefix is a |
890 | // portion at the beginning of the space that is not moved. The objects in the |
891 | // dense prefix do need to have their object references updated. See method |
892 | // summarize_dense_prefix(). |
893 | // |
894 | // The summary phase is done using 1 GC thread. |
895 | // |
896 | // The compaction phase moves objects to their new location and updates all |
897 | // references in the object. |
898 | // |
899 | // A current exception is that objects that cross a region boundary are moved |
900 | // but do not have their references updated. References are not updated because |
901 | // it cannot easily be determined if the klass pointer KKK for the object AAA |
902 | // has been updated. KKK likely resides in a region to the left of the region |
903 | // containing AAA. These AAA's have there references updated at the end in a |
904 | // clean up phase. See the method PSParallelCompact::update_deferred_objects(). |
905 | // An alternate strategy is being investigated for this deferral of updating. |
906 | // |
907 | // Compaction is done on a region basis. A region that is ready to be filled is |
908 | // put on a ready list and GC threads take region off the list and fill them. A |
909 | // region is ready to be filled if it empty of live objects. Such a region may |
910 | // have been initially empty (only contained dead objects) or may have had all |
911 | // its live objects copied out already. A region that compacts into itself is |
912 | // also ready for filling. The ready list is initially filled with empty |
913 | // regions and regions compacting into themselves. There is always at least 1 |
914 | // region that can be put on the ready list. The regions are atomically added |
915 | // and removed from the ready list. |
916 | |
917 | class PSParallelCompact : AllStatic { |
918 | public: |
919 | // Convenient access to type names. |
920 | typedef ParMarkBitMap::idx_t idx_t; |
921 | typedef ParallelCompactData::RegionData RegionData; |
922 | typedef ParallelCompactData::BlockData BlockData; |
923 | |
924 | typedef enum { |
925 | old_space_id, eden_space_id, |
926 | from_space_id, to_space_id, last_space_id |
927 | } SpaceId; |
928 | |
929 | public: |
930 | // Inline closure decls |
931 | // |
932 | class IsAliveClosure: public BoolObjectClosure { |
933 | public: |
934 | virtual bool do_object_b(oop p); |
935 | }; |
936 | |
937 | friend class RefProcTaskProxy; |
938 | friend class PSParallelCompactTest; |
939 | |
940 | private: |
941 | static STWGCTimer _gc_timer; |
942 | static ParallelOldTracer _gc_tracer; |
943 | static elapsedTimer _accumulated_time; |
944 | static unsigned int _total_invocations; |
945 | static unsigned int _maximum_compaction_gc_num; |
946 | static jlong _time_of_last_gc; // ms |
947 | static CollectorCounters* _counters; |
948 | static ParMarkBitMap _mark_bitmap; |
949 | static ParallelCompactData _summary_data; |
950 | static IsAliveClosure _is_alive_closure; |
951 | static SpaceInfo _space_info[last_space_id]; |
952 | |
953 | // Reference processing (used in ...follow_contents) |
954 | static SpanSubjectToDiscoveryClosure _span_based_discoverer; |
955 | static ReferenceProcessor* _ref_processor; |
956 | |
957 | // Values computed at initialization and used by dead_wood_limiter(). |
958 | static double _dwl_mean; |
959 | static double _dwl_std_dev; |
960 | static double _dwl_first_term; |
961 | static double _dwl_adjustment; |
962 | #ifdef ASSERT |
963 | static bool _dwl_initialized; |
964 | #endif // #ifdef ASSERT |
965 | |
966 | public: |
967 | static ParallelOldTracer* gc_tracer() { return &_gc_tracer; } |
968 | |
969 | private: |
970 | |
971 | static void initialize_space_info(); |
972 | |
973 | // Clear the marking bitmap and summary data that cover the specified space. |
974 | static void clear_data_covering_space(SpaceId id); |
975 | |
976 | static void pre_compact(); |
977 | static void post_compact(); |
978 | |
979 | // Mark live objects |
980 | static void marking_phase(ParCompactionManager* cm, |
981 | bool maximum_heap_compaction, |
982 | ParallelOldTracer *gc_tracer); |
983 | |
984 | // Compute the dense prefix for the designated space. This is an experimental |
985 | // implementation currently not used in production. |
986 | static HeapWord* compute_dense_prefix_via_density(const SpaceId id, |
987 | bool maximum_compaction); |
988 | |
989 | // Methods used to compute the dense prefix. |
990 | |
991 | // Compute the value of the normal distribution at x = density. The mean and |
992 | // standard deviation are values saved by initialize_dead_wood_limiter(). |
993 | static inline double normal_distribution(double density); |
994 | |
995 | // Initialize the static vars used by dead_wood_limiter(). |
996 | static void initialize_dead_wood_limiter(); |
997 | |
998 | // Return the percentage of space that can be treated as "dead wood" (i.e., |
999 | // not reclaimed). |
1000 | static double dead_wood_limiter(double density, size_t min_percent); |
1001 | |
1002 | // Find the first (left-most) region in the range [beg, end) that has at least |
1003 | // dead_words of dead space to the left. The argument beg must be the first |
1004 | // region in the space that is not completely live. |
1005 | static RegionData* dead_wood_limit_region(const RegionData* beg, |
1006 | const RegionData* end, |
1007 | size_t dead_words); |
1008 | |
1009 | // Return a pointer to the first region in the range [beg, end) that is not |
1010 | // completely full. |
1011 | static RegionData* first_dead_space_region(const RegionData* beg, |
1012 | const RegionData* end); |
1013 | |
1014 | // Return a value indicating the benefit or 'yield' if the compacted region |
1015 | // were to start (or equivalently if the dense prefix were to end) at the |
1016 | // candidate region. Higher values are better. |
1017 | // |
1018 | // The value is based on the amount of space reclaimed vs. the costs of (a) |
1019 | // updating references in the dense prefix plus (b) copying objects and |
1020 | // updating references in the compacted region. |
1021 | static inline double reclaimed_ratio(const RegionData* const candidate, |
1022 | HeapWord* const bottom, |
1023 | HeapWord* const top, |
1024 | HeapWord* const new_top); |
1025 | |
1026 | // Compute the dense prefix for the designated space. |
1027 | static HeapWord* compute_dense_prefix(const SpaceId id, |
1028 | bool maximum_compaction); |
1029 | |
1030 | // Return true if dead space crosses onto the specified Region; bit must be |
1031 | // the bit index corresponding to the first word of the Region. |
1032 | static inline bool dead_space_crosses_boundary(const RegionData* region, |
1033 | idx_t bit); |
1034 | |
1035 | // Summary phase utility routine to fill dead space (if any) at the dense |
1036 | // prefix boundary. Should only be called if the the dense prefix is |
1037 | // non-empty. |
1038 | static void fill_dense_prefix_end(SpaceId id); |
1039 | |
1040 | static void summarize_spaces_quick(); |
1041 | static void summarize_space(SpaceId id, bool maximum_compaction); |
1042 | static void summary_phase(ParCompactionManager* cm, bool maximum_compaction); |
1043 | |
1044 | // Adjust addresses in roots. Does not adjust addresses in heap. |
1045 | static void adjust_roots(ParCompactionManager* cm); |
1046 | |
1047 | DEBUG_ONLY(static void write_block_fill_histogram();) |
1048 | |
1049 | // Move objects to new locations. |
1050 | static void compact_perm(ParCompactionManager* cm); |
1051 | static void compact(); |
1052 | |
1053 | // Add available regions to the stack and draining tasks to the task queue. |
1054 | static void prepare_region_draining_tasks(GCTaskQueue* q, |
1055 | uint parallel_gc_threads); |
1056 | |
1057 | // Add dense prefix update tasks to the task queue. |
1058 | static void enqueue_dense_prefix_tasks(GCTaskQueue* q, |
1059 | uint parallel_gc_threads); |
1060 | |
1061 | // Add region stealing tasks to the task queue. |
1062 | static void enqueue_region_stealing_tasks( |
1063 | GCTaskQueue* q, |
1064 | ParallelTaskTerminator* terminator_ptr, |
1065 | uint parallel_gc_threads); |
1066 | |
1067 | // If objects are left in eden after a collection, try to move the boundary |
1068 | // and absorb them into the old gen. Returns true if eden was emptied. |
1069 | static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, |
1070 | PSYoungGen* young_gen, |
1071 | PSOldGen* old_gen); |
1072 | |
1073 | // Reset time since last full gc |
1074 | static void reset_millis_since_last_gc(); |
1075 | |
1076 | #ifndef PRODUCT |
1077 | // Print generic summary data |
1078 | static void print_generic_summary_data(ParallelCompactData& summary_data, |
1079 | HeapWord* const beg_addr, |
1080 | HeapWord* const end_addr); |
1081 | #endif // #ifndef PRODUCT |
1082 | |
1083 | public: |
1084 | |
1085 | PSParallelCompact(); |
1086 | |
1087 | static void invoke(bool maximum_heap_compaction); |
1088 | static bool invoke_no_policy(bool maximum_heap_compaction); |
1089 | |
1090 | static void post_initialize(); |
1091 | // Perform initialization for PSParallelCompact that requires |
1092 | // allocations. This should be called during the VM initialization |
1093 | // at a pointer where it would be appropriate to return a JNI_ENOMEM |
1094 | // in the event of a failure. |
1095 | static bool initialize(); |
1096 | |
1097 | // Closure accessors |
1098 | static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; } |
1099 | |
1100 | // Public accessors |
1101 | static elapsedTimer* accumulated_time() { return &_accumulated_time; } |
1102 | static unsigned int total_invocations() { return _total_invocations; } |
1103 | static CollectorCounters* counters() { return _counters; } |
1104 | |
1105 | // Used to add tasks |
1106 | static GCTaskManager* const gc_task_manager(); |
1107 | |
1108 | // Marking support |
1109 | static inline bool mark_obj(oop obj); |
1110 | static inline bool is_marked(oop obj); |
1111 | |
1112 | template <class T> static inline void adjust_pointer(T* p, ParCompactionManager* cm); |
1113 | |
1114 | // Compaction support. |
1115 | // Return true if p is in the range [beg_addr, end_addr). |
1116 | static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr); |
1117 | static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr); |
1118 | |
1119 | // Convenience wrappers for per-space data kept in _space_info. |
1120 | static inline MutableSpace* space(SpaceId space_id); |
1121 | static inline HeapWord* new_top(SpaceId space_id); |
1122 | static inline HeapWord* dense_prefix(SpaceId space_id); |
1123 | static inline ObjectStartArray* start_array(SpaceId space_id); |
1124 | |
1125 | // Move and update the live objects in the specified space. |
1126 | static void move_and_update(ParCompactionManager* cm, SpaceId space_id); |
1127 | |
1128 | // Process the end of the given region range in the dense prefix. |
1129 | // This includes saving any object not updated. |
1130 | static void dense_prefix_regions_epilogue(ParCompactionManager* cm, |
1131 | size_t region_start_index, |
1132 | size_t region_end_index, |
1133 | idx_t exiting_object_offset, |
1134 | idx_t region_offset_start, |
1135 | idx_t region_offset_end); |
1136 | |
1137 | // Update a region in the dense prefix. For each live object |
1138 | // in the region, update it's interior references. For each |
1139 | // dead object, fill it with deadwood. Dead space at the end |
1140 | // of a region range will be filled to the start of the next |
1141 | // live object regardless of the region_index_end. None of the |
1142 | // objects in the dense prefix move and dead space is dead |
1143 | // (holds only dead objects that don't need any processing), so |
1144 | // dead space can be filled in any order. |
1145 | static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, |
1146 | SpaceId space_id, |
1147 | size_t region_index_start, |
1148 | size_t region_index_end); |
1149 | |
1150 | // Return the address of the count + 1st live word in the range [beg, end). |
1151 | static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count); |
1152 | |
1153 | // Return the address of the word to be copied to dest_addr, which must be |
1154 | // aligned to a region boundary. |
1155 | static HeapWord* first_src_addr(HeapWord* const dest_addr, |
1156 | SpaceId src_space_id, |
1157 | size_t src_region_idx); |
1158 | |
1159 | // Determine the next source region, set closure.source() to the start of the |
1160 | // new region return the region index. Parameter end_addr is the address one |
1161 | // beyond the end of source range just processed. If necessary, switch to a |
1162 | // new source space and set src_space_id (in-out parameter) and src_space_top |
1163 | // (out parameter) accordingly. |
1164 | static size_t next_src_region(MoveAndUpdateClosure& closure, |
1165 | SpaceId& src_space_id, |
1166 | HeapWord*& src_space_top, |
1167 | HeapWord* end_addr); |
1168 | |
1169 | // Decrement the destination count for each non-empty source region in the |
1170 | // range [beg_region, region(region_align_up(end_addr))). If the destination |
1171 | // count for a region goes to 0 and it needs to be filled, enqueue it. |
1172 | static void decrement_destination_counts(ParCompactionManager* cm, |
1173 | SpaceId src_space_id, |
1174 | size_t beg_region, |
1175 | HeapWord* end_addr); |
1176 | |
1177 | // Fill a region, copying objects from one or more source regions. |
1178 | static void fill_region(ParCompactionManager* cm, size_t region_idx); |
1179 | static void fill_and_update_region(ParCompactionManager* cm, size_t region) { |
1180 | fill_region(cm, region); |
1181 | } |
1182 | |
1183 | // Fill in the block table for the specified region. |
1184 | static void fill_blocks(size_t region_idx); |
1185 | |
1186 | // Update the deferred objects in the space. |
1187 | static void update_deferred_objects(ParCompactionManager* cm, SpaceId id); |
1188 | |
1189 | static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; } |
1190 | static ParallelCompactData& summary_data() { return _summary_data; } |
1191 | |
1192 | // Reference Processing |
1193 | static ReferenceProcessor* const ref_processor() { return _ref_processor; } |
1194 | |
1195 | static STWGCTimer* gc_timer() { return &_gc_timer; } |
1196 | |
1197 | // Return the SpaceId for the given address. |
1198 | static SpaceId space_id(HeapWord* addr); |
1199 | |
1200 | // Time since last full gc (in milliseconds). |
1201 | static jlong millis_since_last_gc(); |
1202 | |
1203 | static void print_on_error(outputStream* st); |
1204 | |
1205 | #ifndef PRODUCT |
1206 | // Debugging support. |
1207 | static const char* space_names[last_space_id]; |
1208 | static void print_region_ranges(); |
1209 | static void print_dense_prefix_stats(const char* const algorithm, |
1210 | const SpaceId id, |
1211 | const bool maximum_compaction, |
1212 | HeapWord* const addr); |
1213 | static void summary_phase_msg(SpaceId dst_space_id, |
1214 | HeapWord* dst_beg, HeapWord* dst_end, |
1215 | SpaceId src_space_id, |
1216 | HeapWord* src_beg, HeapWord* src_end); |
1217 | #endif // #ifndef PRODUCT |
1218 | |
1219 | #ifdef ASSERT |
1220 | // Sanity check the new location of a word in the heap. |
1221 | static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr); |
1222 | // Verify that all the regions have been emptied. |
1223 | static void verify_complete(SpaceId space_id); |
1224 | #endif // #ifdef ASSERT |
1225 | }; |
1226 | |
1227 | class MoveAndUpdateClosure: public ParMarkBitMapClosure { |
1228 | public: |
1229 | inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm, |
1230 | ObjectStartArray* start_array, |
1231 | HeapWord* destination, size_t words); |
1232 | |
1233 | // Accessors. |
1234 | HeapWord* destination() const { return _destination; } |
1235 | |
1236 | // If the object will fit (size <= words_remaining()), copy it to the current |
1237 | // destination, update the interior oops and the start array and return either |
1238 | // full (if the closure is full) or incomplete. If the object will not fit, |
1239 | // return would_overflow. |
1240 | virtual IterationStatus do_addr(HeapWord* addr, size_t size); |
1241 | |
1242 | // Copy enough words to fill this closure, starting at source(). Interior |
1243 | // oops and the start array are not updated. Return full. |
1244 | IterationStatus copy_until_full(); |
1245 | |
1246 | // Copy enough words to fill this closure or to the end of an object, |
1247 | // whichever is smaller, starting at source(). Interior oops and the start |
1248 | // array are not updated. |
1249 | void copy_partial_obj(); |
1250 | |
1251 | protected: |
1252 | // Update variables to indicate that word_count words were processed. |
1253 | inline void update_state(size_t word_count); |
1254 | |
1255 | protected: |
1256 | ObjectStartArray* const _start_array; |
1257 | HeapWord* _destination; // Next addr to be written. |
1258 | }; |
1259 | |
1260 | inline |
1261 | MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap, |
1262 | ParCompactionManager* cm, |
1263 | ObjectStartArray* start_array, |
1264 | HeapWord* destination, |
1265 | size_t words) : |
1266 | ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array) |
1267 | { |
1268 | _destination = destination; |
1269 | } |
1270 | |
1271 | inline void MoveAndUpdateClosure::update_state(size_t words) |
1272 | { |
1273 | decrement_words_remaining(words); |
1274 | _source += words; |
1275 | _destination += words; |
1276 | } |
1277 | |
1278 | class UpdateOnlyClosure: public ParMarkBitMapClosure { |
1279 | private: |
1280 | const PSParallelCompact::SpaceId _space_id; |
1281 | ObjectStartArray* const _start_array; |
1282 | |
1283 | public: |
1284 | UpdateOnlyClosure(ParMarkBitMap* mbm, |
1285 | ParCompactionManager* cm, |
1286 | PSParallelCompact::SpaceId space_id); |
1287 | |
1288 | // Update the object. |
1289 | virtual IterationStatus do_addr(HeapWord* addr, size_t words); |
1290 | |
1291 | inline void do_addr(HeapWord* addr); |
1292 | }; |
1293 | |
1294 | class FillClosure: public ParMarkBitMapClosure { |
1295 | public: |
1296 | FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id); |
1297 | |
1298 | virtual IterationStatus do_addr(HeapWord* addr, size_t size); |
1299 | |
1300 | private: |
1301 | ObjectStartArray* const _start_array; |
1302 | }; |
1303 | |
1304 | #endif // SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP |
1305 | |