1 | /* |
2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/classLoaderDataGraph.hpp" |
27 | #include "classfile/systemDictionary.hpp" |
28 | #include "code/codeCache.hpp" |
29 | #include "gc/cms/cmsGCStats.hpp" |
30 | #include "gc/cms/cmsHeap.hpp" |
31 | #include "gc/cms/cmsOopClosures.inline.hpp" |
32 | #include "gc/cms/cmsVMOperations.hpp" |
33 | #include "gc/cms/compactibleFreeListSpace.hpp" |
34 | #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp" |
35 | #include "gc/cms/concurrentMarkSweepThread.hpp" |
36 | #include "gc/cms/parNewGeneration.hpp" |
37 | #include "gc/cms/promotionInfo.inline.hpp" |
38 | #include "gc/serial/genMarkSweep.hpp" |
39 | #include "gc/serial/tenuredGeneration.hpp" |
40 | #include "gc/shared/adaptiveSizePolicy.hpp" |
41 | #include "gc/shared/cardGeneration.inline.hpp" |
42 | #include "gc/shared/cardTableRS.hpp" |
43 | #include "gc/shared/collectedHeap.inline.hpp" |
44 | #include "gc/shared/collectorCounters.hpp" |
45 | #include "gc/shared/gcLocker.hpp" |
46 | #include "gc/shared/gcPolicyCounters.hpp" |
47 | #include "gc/shared/gcTimer.hpp" |
48 | #include "gc/shared/gcTrace.hpp" |
49 | #include "gc/shared/gcTraceTime.inline.hpp" |
50 | #include "gc/shared/genCollectedHeap.hpp" |
51 | #include "gc/shared/genOopClosures.inline.hpp" |
52 | #include "gc/shared/isGCActiveMark.hpp" |
53 | #include "gc/shared/owstTaskTerminator.hpp" |
54 | #include "gc/shared/referencePolicy.hpp" |
55 | #include "gc/shared/referenceProcessorPhaseTimes.hpp" |
56 | #include "gc/shared/space.inline.hpp" |
57 | #include "gc/shared/strongRootsScope.hpp" |
58 | #include "gc/shared/taskqueue.inline.hpp" |
59 | #include "gc/shared/weakProcessor.hpp" |
60 | #include "gc/shared/workerPolicy.hpp" |
61 | #include "logging/log.hpp" |
62 | #include "logging/logStream.hpp" |
63 | #include "memory/allocation.hpp" |
64 | #include "memory/binaryTreeDictionary.inline.hpp" |
65 | #include "memory/iterator.inline.hpp" |
66 | #include "memory/padded.hpp" |
67 | #include "memory/resourceArea.hpp" |
68 | #include "memory/universe.hpp" |
69 | #include "oops/access.inline.hpp" |
70 | #include "oops/oop.inline.hpp" |
71 | #include "prims/jvmtiExport.hpp" |
72 | #include "runtime/atomic.hpp" |
73 | #include "runtime/flags/flagSetting.hpp" |
74 | #include "runtime/globals_extension.hpp" |
75 | #include "runtime/handles.inline.hpp" |
76 | #include "runtime/java.hpp" |
77 | #include "runtime/orderAccess.hpp" |
78 | #include "runtime/timer.hpp" |
79 | #include "runtime/vmThread.hpp" |
80 | #include "services/memoryService.hpp" |
81 | #include "services/runtimeService.hpp" |
82 | #include "utilities/align.hpp" |
83 | #include "utilities/stack.inline.hpp" |
84 | #if INCLUDE_JVMCI |
85 | #include "jvmci/jvmci.hpp" |
86 | #endif |
87 | |
88 | // statics |
89 | CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL; |
90 | bool CMSCollector::_full_gc_requested = false; |
91 | GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc; |
92 | |
93 | ////////////////////////////////////////////////////////////////// |
94 | // In support of CMS/VM thread synchronization |
95 | ////////////////////////////////////////////////////////////////// |
96 | // We split use of the CGC_lock into 2 "levels". |
97 | // The low-level locking is of the usual CGC_lock monitor. We introduce |
98 | // a higher level "token" (hereafter "CMS token") built on top of the |
99 | // low level monitor (hereafter "CGC lock"). |
100 | // The token-passing protocol gives priority to the VM thread. The |
101 | // CMS-lock doesn't provide any fairness guarantees, but clients |
102 | // should ensure that it is only held for very short, bounded |
103 | // durations. |
104 | // |
105 | // When either of the CMS thread or the VM thread is involved in |
106 | // collection operations during which it does not want the other |
107 | // thread to interfere, it obtains the CMS token. |
108 | // |
109 | // If either thread tries to get the token while the other has |
110 | // it, that thread waits. However, if the VM thread and CMS thread |
111 | // both want the token, then the VM thread gets priority while the |
112 | // CMS thread waits. This ensures, for instance, that the "concurrent" |
113 | // phases of the CMS thread's work do not block out the VM thread |
114 | // for long periods of time as the CMS thread continues to hog |
115 | // the token. (See bug 4616232). |
116 | // |
117 | // The baton-passing functions are, however, controlled by the |
118 | // flags _foregroundGCShouldWait and _foregroundGCIsActive, |
119 | // and here the low-level CMS lock, not the high level token, |
120 | // ensures mutual exclusion. |
121 | // |
122 | // Two important conditions that we have to satisfy: |
123 | // 1. if a thread does a low-level wait on the CMS lock, then it |
124 | // relinquishes the CMS token if it were holding that token |
125 | // when it acquired the low-level CMS lock. |
126 | // 2. any low-level notifications on the low-level lock |
127 | // should only be sent when a thread has relinquished the token. |
128 | // |
129 | // In the absence of either property, we'd have potential deadlock. |
130 | // |
131 | // We protect each of the CMS (concurrent and sequential) phases |
132 | // with the CMS _token_, not the CMS _lock_. |
133 | // |
134 | // The only code protected by CMS lock is the token acquisition code |
135 | // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the |
136 | // baton-passing code. |
137 | // |
138 | // Unfortunately, i couldn't come up with a good abstraction to factor and |
139 | // hide the naked CGC_lock manipulation in the baton-passing code |
140 | // further below. That's something we should try to do. Also, the proof |
141 | // of correctness of this 2-level locking scheme is far from obvious, |
142 | // and potentially quite slippery. We have an uneasy suspicion, for instance, |
143 | // that there may be a theoretical possibility of delay/starvation in the |
144 | // low-level lock/wait/notify scheme used for the baton-passing because of |
145 | // potential interference with the priority scheme embodied in the |
146 | // CMS-token-passing protocol. See related comments at a CGC_lock->wait() |
147 | // invocation further below and marked with "XXX 20011219YSR". |
148 | // Indeed, as we note elsewhere, this may become yet more slippery |
149 | // in the presence of multiple CMS and/or multiple VM threads. XXX |
150 | |
151 | class CMSTokenSync: public StackObj { |
152 | private: |
153 | bool _is_cms_thread; |
154 | public: |
155 | CMSTokenSync(bool is_cms_thread): |
156 | _is_cms_thread(is_cms_thread) { |
157 | assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(), |
158 | "Incorrect argument to constructor" ); |
159 | ConcurrentMarkSweepThread::synchronize(_is_cms_thread); |
160 | } |
161 | |
162 | ~CMSTokenSync() { |
163 | assert(_is_cms_thread ? |
164 | ConcurrentMarkSweepThread::cms_thread_has_cms_token() : |
165 | ConcurrentMarkSweepThread::vm_thread_has_cms_token(), |
166 | "Incorrect state" ); |
167 | ConcurrentMarkSweepThread::desynchronize(_is_cms_thread); |
168 | } |
169 | }; |
170 | |
171 | // Convenience class that does a CMSTokenSync, and then acquires |
172 | // upto three locks. |
173 | class CMSTokenSyncWithLocks: public CMSTokenSync { |
174 | private: |
175 | // Note: locks are acquired in textual declaration order |
176 | // and released in the opposite order |
177 | MutexLocker _locker1, _locker2, _locker3; |
178 | public: |
179 | CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1, |
180 | Mutex* mutex2 = NULL, Mutex* mutex3 = NULL): |
181 | CMSTokenSync(is_cms_thread), |
182 | _locker1(mutex1, Mutex::_no_safepoint_check_flag), |
183 | _locker2(mutex2, Mutex::_no_safepoint_check_flag), |
184 | _locker3(mutex3, Mutex::_no_safepoint_check_flag) |
185 | { } |
186 | }; |
187 | |
188 | |
189 | ////////////////////////////////////////////////////////////////// |
190 | // Concurrent Mark-Sweep Generation ///////////////////////////// |
191 | ////////////////////////////////////////////////////////////////// |
192 | |
193 | NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;) |
194 | |
195 | // This struct contains per-thread things necessary to support parallel |
196 | // young-gen collection. |
197 | class CMSParGCThreadState: public CHeapObj<mtGC> { |
198 | public: |
199 | CompactibleFreeListSpaceLAB lab; |
200 | PromotionInfo promo; |
201 | |
202 | // Constructor. |
203 | CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) { |
204 | promo.setSpace(cfls); |
205 | } |
206 | }; |
207 | |
208 | ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration( |
209 | ReservedSpace rs, |
210 | size_t initial_byte_size, |
211 | size_t min_byte_size, |
212 | size_t max_byte_size, |
213 | CardTableRS* ct) : |
214 | CardGeneration(rs, initial_byte_size, ct), |
215 | _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))), |
216 | _did_compact(false) |
217 | { |
218 | HeapWord* bottom = (HeapWord*) _virtual_space.low(); |
219 | HeapWord* end = (HeapWord*) _virtual_space.high(); |
220 | |
221 | _direct_allocated_words = 0; |
222 | NOT_PRODUCT( |
223 | _numObjectsPromoted = 0; |
224 | _numWordsPromoted = 0; |
225 | _numObjectsAllocated = 0; |
226 | _numWordsAllocated = 0; |
227 | ) |
228 | |
229 | _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end)); |
230 | NOT_PRODUCT(debug_cms_space = _cmsSpace;) |
231 | _cmsSpace->_old_gen = this; |
232 | |
233 | _gc_stats = new CMSGCStats(); |
234 | |
235 | // Verify the assumption that FreeChunk::_prev and OopDesc::_klass |
236 | // offsets match. The ability to tell free chunks from objects |
237 | // depends on this property. |
238 | debug_only( |
239 | FreeChunk* junk = NULL; |
240 | assert(UseCompressedClassPointers || |
241 | junk->prev_addr() == (void*)(oop(junk)->klass_addr()), |
242 | "Offset of FreeChunk::_prev within FreeChunk must match" |
243 | " that of OopDesc::_klass within OopDesc" ); |
244 | ) |
245 | |
246 | _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC); |
247 | for (uint i = 0; i < ParallelGCThreads; i++) { |
248 | _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace()); |
249 | } |
250 | |
251 | _incremental_collection_failed = false; |
252 | // The "dilatation_factor" is the expansion that can occur on |
253 | // account of the fact that the minimum object size in the CMS |
254 | // generation may be larger than that in, say, a contiguous young |
255 | // generation. |
256 | // Ideally, in the calculation below, we'd compute the dilatation |
257 | // factor as: MinChunkSize/(promoting_gen's min object size) |
258 | // Since we do not have such a general query interface for the |
259 | // promoting generation, we'll instead just use the minimum |
260 | // object size (which today is a header's worth of space); |
261 | // note that all arithmetic is in units of HeapWords. |
262 | assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking" ); |
263 | assert(_dilatation_factor >= 1.0, "from previous assert" ); |
264 | |
265 | initialize_performance_counters(min_byte_size, max_byte_size); |
266 | } |
267 | |
268 | |
269 | // The field "_initiating_occupancy" represents the occupancy percentage |
270 | // at which we trigger a new collection cycle. Unless explicitly specified |
271 | // via CMSInitiatingOccupancyFraction (argument "io" below), it |
272 | // is calculated by: |
273 | // |
274 | // Let "f" be MinHeapFreeRatio in |
275 | // |
276 | // _initiating_occupancy = 100-f + |
277 | // f * (CMSTriggerRatio/100) |
278 | // where CMSTriggerRatio is the argument "tr" below. |
279 | // |
280 | // That is, if we assume the heap is at its desired maximum occupancy at the |
281 | // end of a collection, we let CMSTriggerRatio of the (purported) free |
282 | // space be allocated before initiating a new collection cycle. |
283 | // |
284 | void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) { |
285 | assert(io <= 100 && tr <= 100, "Check the arguments" ); |
286 | if (io >= 0) { |
287 | _initiating_occupancy = (double)io / 100.0; |
288 | } else { |
289 | _initiating_occupancy = ((100 - MinHeapFreeRatio) + |
290 | (double)(tr * MinHeapFreeRatio) / 100.0) |
291 | / 100.0; |
292 | } |
293 | } |
294 | |
295 | void ConcurrentMarkSweepGeneration::ref_processor_init() { |
296 | assert(collector() != NULL, "no collector" ); |
297 | collector()->ref_processor_init(); |
298 | } |
299 | |
300 | void CMSCollector::ref_processor_init() { |
301 | if (_ref_processor == NULL) { |
302 | // Allocate and initialize a reference processor |
303 | _ref_processor = |
304 | new ReferenceProcessor(&_span_based_discoverer, |
305 | (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing |
306 | ParallelGCThreads, // mt processing degree |
307 | _cmsGen->refs_discovery_is_mt(), // mt discovery |
308 | MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree |
309 | _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic |
310 | &_is_alive_closure, // closure for liveness info |
311 | false); // disable adjusting number of processing threads |
312 | // Initialize the _ref_processor field of CMSGen |
313 | _cmsGen->set_ref_processor(_ref_processor); |
314 | |
315 | } |
316 | } |
317 | |
318 | AdaptiveSizePolicy* CMSCollector::size_policy() { |
319 | return CMSHeap::heap()->size_policy(); |
320 | } |
321 | |
322 | void ConcurrentMarkSweepGeneration::initialize_performance_counters(size_t min_old_size, |
323 | size_t max_old_size) { |
324 | |
325 | const char* gen_name = "old" ; |
326 | // Generation Counters - generation 1, 1 subspace |
327 | _gen_counters = new GenerationCounters(gen_name, 1, 1, |
328 | min_old_size, max_old_size, &_virtual_space); |
329 | |
330 | _space_counters = new GSpaceCounters(gen_name, 0, |
331 | _virtual_space.reserved_size(), |
332 | this, _gen_counters); |
333 | } |
334 | |
335 | CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha): |
336 | _cms_gen(cms_gen) |
337 | { |
338 | assert(alpha <= 100, "bad value" ); |
339 | _saved_alpha = alpha; |
340 | |
341 | // Initialize the alphas to the bootstrap value of 100. |
342 | _gc0_alpha = _cms_alpha = 100; |
343 | |
344 | _cms_begin_time.update(); |
345 | _cms_end_time.update(); |
346 | |
347 | _gc0_duration = 0.0; |
348 | _gc0_period = 0.0; |
349 | _gc0_promoted = 0; |
350 | |
351 | _cms_duration = 0.0; |
352 | _cms_period = 0.0; |
353 | _cms_allocated = 0; |
354 | |
355 | _cms_used_at_gc0_begin = 0; |
356 | _cms_used_at_gc0_end = 0; |
357 | _allow_duty_cycle_reduction = false; |
358 | _valid_bits = 0; |
359 | } |
360 | |
361 | double CMSStats::cms_free_adjustment_factor(size_t free) const { |
362 | // TBD: CR 6909490 |
363 | return 1.0; |
364 | } |
365 | |
366 | void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) { |
367 | } |
368 | |
369 | // If promotion failure handling is on use |
370 | // the padded average size of the promotion for each |
371 | // young generation collection. |
372 | double CMSStats::time_until_cms_gen_full() const { |
373 | size_t cms_free = _cms_gen->cmsSpace()->free(); |
374 | CMSHeap* heap = CMSHeap::heap(); |
375 | size_t expected_promotion = MIN2(heap->young_gen()->capacity(), |
376 | (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average()); |
377 | if (cms_free > expected_promotion) { |
378 | // Start a cms collection if there isn't enough space to promote |
379 | // for the next young collection. Use the padded average as |
380 | // a safety factor. |
381 | cms_free -= expected_promotion; |
382 | |
383 | // Adjust by the safety factor. |
384 | double cms_free_dbl = (double)cms_free; |
385 | double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0; |
386 | // Apply a further correction factor which tries to adjust |
387 | // for recent occurance of concurrent mode failures. |
388 | cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free); |
389 | cms_free_dbl = cms_free_dbl * cms_adjustment; |
390 | |
391 | log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT, |
392 | cms_free, expected_promotion); |
393 | log_trace(gc)(" cms_free_dbl %f cms_consumption_rate %f" , cms_free_dbl, cms_consumption_rate() + 1.0); |
394 | // Add 1 in case the consumption rate goes to zero. |
395 | return cms_free_dbl / (cms_consumption_rate() + 1.0); |
396 | } |
397 | return 0.0; |
398 | } |
399 | |
400 | // Compare the duration of the cms collection to the |
401 | // time remaining before the cms generation is empty. |
402 | // Note that the time from the start of the cms collection |
403 | // to the start of the cms sweep (less than the total |
404 | // duration of the cms collection) can be used. This |
405 | // has been tried and some applications experienced |
406 | // promotion failures early in execution. This was |
407 | // possibly because the averages were not accurate |
408 | // enough at the beginning. |
409 | double CMSStats::time_until_cms_start() const { |
410 | // We add "gc0_period" to the "work" calculation |
411 | // below because this query is done (mostly) at the |
412 | // end of a scavenge, so we need to conservatively |
413 | // account for that much possible delay |
414 | // in the query so as to avoid concurrent mode failures |
415 | // due to starting the collection just a wee bit too |
416 | // late. |
417 | double work = cms_duration() + gc0_period(); |
418 | double deadline = time_until_cms_gen_full(); |
419 | // If a concurrent mode failure occurred recently, we want to be |
420 | // more conservative and halve our expected time_until_cms_gen_full() |
421 | if (work > deadline) { |
422 | log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f " , |
423 | cms_duration(), gc0_period(), time_until_cms_gen_full()); |
424 | return 0.0; |
425 | } |
426 | return work - deadline; |
427 | } |
428 | |
429 | #ifndef PRODUCT |
430 | void CMSStats::print_on(outputStream *st) const { |
431 | st->print(" gc0_alpha=%d,cms_alpha=%d" , _gc0_alpha, _cms_alpha); |
432 | st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, |
433 | gc0_duration(), gc0_period(), gc0_promoted()); |
434 | st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, |
435 | cms_duration(), cms_period(), cms_allocated()); |
436 | st->print(",cms_since_beg=%g,cms_since_end=%g" , |
437 | cms_time_since_begin(), cms_time_since_end()); |
438 | st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, |
439 | _cms_used_at_gc0_begin, _cms_used_at_gc0_end); |
440 | |
441 | if (valid()) { |
442 | st->print(",promo_rate=%g,cms_alloc_rate=%g" , |
443 | promotion_rate(), cms_allocation_rate()); |
444 | st->print(",cms_consumption_rate=%g,time_until_full=%g" , |
445 | cms_consumption_rate(), time_until_cms_gen_full()); |
446 | } |
447 | st->cr(); |
448 | } |
449 | #endif // #ifndef PRODUCT |
450 | |
451 | CMSCollector::CollectorState CMSCollector::_collectorState = |
452 | CMSCollector::Idling; |
453 | bool CMSCollector::_foregroundGCIsActive = false; |
454 | bool CMSCollector::_foregroundGCShouldWait = false; |
455 | |
456 | CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen, |
457 | CardTableRS* ct): |
458 | _overflow_list(NULL), |
459 | _conc_workers(NULL), // may be set later |
460 | _completed_initialization(false), |
461 | _collection_count_start(0), |
462 | _should_unload_classes(CMSClassUnloadingEnabled), |
463 | _concurrent_cycles_since_last_unload(0), |
464 | _roots_scanning_options(GenCollectedHeap::SO_None), |
465 | _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock" ), |
466 | _verifying(false), |
467 | _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), |
468 | _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), |
469 | _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()), |
470 | _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), |
471 | _cms_start_registered(false), |
472 | _cmsGen(cmsGen), |
473 | // Adjust span to cover old (cms) gen |
474 | _span(cmsGen->reserved()), |
475 | _ct(ct), |
476 | _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock" ), |
477 | _modUnionTable((CardTable::card_shift - LogHeapWordSize), |
478 | -1 /* lock-free */, "No_lock" /* dummy */), |
479 | _restart_addr(NULL), |
480 | _ser_pmc_preclean_ovflw(0), |
481 | _ser_pmc_remark_ovflw(0), |
482 | _par_pmc_remark_ovflw(0), |
483 | _ser_kac_preclean_ovflw(0), |
484 | _ser_kac_ovflw(0), |
485 | _par_kac_ovflw(0), |
486 | #ifndef PRODUCT |
487 | _num_par_pushes(0), |
488 | #endif |
489 | _span_based_discoverer(_span), |
490 | _ref_processor(NULL), // will be set later |
491 | // Construct the is_alive_closure with _span & markBitMap |
492 | _is_alive_closure(_span, &_markBitMap), |
493 | _modUnionClosurePar(&_modUnionTable), |
494 | _between_prologue_and_epilogue(false), |
495 | _abort_preclean(false), |
496 | _start_sampling(false), |
497 | _stats(cmsGen), |
498 | _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock" , true, |
499 | //verify that this lock should be acquired with safepoint check. |
500 | Monitor::_safepoint_check_never)), |
501 | _eden_chunk_array(NULL), // may be set in ctor body |
502 | _eden_chunk_index(0), // -- ditto -- |
503 | _eden_chunk_capacity(0), // -- ditto -- |
504 | _survivor_chunk_array(NULL), // -- ditto -- |
505 | _survivor_chunk_index(0), // -- ditto -- |
506 | _survivor_chunk_capacity(0), // -- ditto -- |
507 | _survivor_plab_array(NULL) // -- ditto -- |
508 | { |
509 | // Now expand the span and allocate the collection support structures |
510 | // (MUT, marking bit map etc.) to cover both generations subject to |
511 | // collection. |
512 | |
513 | // For use by dirty card to oop closures. |
514 | _cmsGen->cmsSpace()->set_collector(this); |
515 | |
516 | // Allocate MUT and marking bit map |
517 | { |
518 | MutexLocker x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag); |
519 | if (!_markBitMap.allocate(_span)) { |
520 | log_warning(gc)("Failed to allocate CMS Bit Map" ); |
521 | return; |
522 | } |
523 | assert(_markBitMap.covers(_span), "_markBitMap inconsistency?" ); |
524 | } |
525 | { |
526 | _modUnionTable.allocate(_span); |
527 | assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?" ); |
528 | } |
529 | |
530 | if (!_markStack.allocate(MarkStackSize)) { |
531 | log_warning(gc)("Failed to allocate CMS Marking Stack" ); |
532 | return; |
533 | } |
534 | |
535 | // Support for multi-threaded concurrent phases |
536 | if (CMSConcurrentMTEnabled) { |
537 | if (FLAG_IS_DEFAULT(ConcGCThreads)) { |
538 | // just for now |
539 | FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4); |
540 | } |
541 | if (ConcGCThreads > 1) { |
542 | _conc_workers = new YieldingFlexibleWorkGang("CMS Thread" , |
543 | ConcGCThreads, true); |
544 | if (_conc_workers == NULL) { |
545 | log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled" ); |
546 | CMSConcurrentMTEnabled = false; |
547 | } else { |
548 | _conc_workers->initialize_workers(); |
549 | } |
550 | } else { |
551 | CMSConcurrentMTEnabled = false; |
552 | } |
553 | } |
554 | if (!CMSConcurrentMTEnabled) { |
555 | ConcGCThreads = 0; |
556 | } else { |
557 | // Turn off CMSCleanOnEnter optimization temporarily for |
558 | // the MT case where it's not fixed yet; see 6178663. |
559 | CMSCleanOnEnter = false; |
560 | } |
561 | assert((_conc_workers != NULL) == (ConcGCThreads > 1), |
562 | "Inconsistency" ); |
563 | log_debug(gc)("ConcGCThreads: %u" , ConcGCThreads); |
564 | log_debug(gc)("ParallelGCThreads: %u" , ParallelGCThreads); |
565 | |
566 | // Parallel task queues; these are shared for the |
567 | // concurrent and stop-world phases of CMS, but |
568 | // are not shared with parallel scavenge (ParNew). |
569 | { |
570 | uint i; |
571 | uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads); |
572 | |
573 | if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled |
574 | || ParallelRefProcEnabled) |
575 | && num_queues > 0) { |
576 | _task_queues = new OopTaskQueueSet(num_queues); |
577 | if (_task_queues == NULL) { |
578 | log_warning(gc)("task_queues allocation failure." ); |
579 | return; |
580 | } |
581 | typedef Padded<OopTaskQueue> PaddedOopTaskQueue; |
582 | for (i = 0; i < num_queues; i++) { |
583 | PaddedOopTaskQueue *q = new PaddedOopTaskQueue(); |
584 | if (q == NULL) { |
585 | log_warning(gc)("work_queue allocation failure." ); |
586 | return; |
587 | } |
588 | _task_queues->register_queue(i, q); |
589 | } |
590 | for (i = 0; i < num_queues; i++) { |
591 | _task_queues->queue(i)->initialize(); |
592 | } |
593 | } |
594 | } |
595 | |
596 | _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio); |
597 | |
598 | // Clip CMSBootstrapOccupancy between 0 and 100. |
599 | _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0; |
600 | |
601 | // Now tell CMS generations the identity of their collector |
602 | ConcurrentMarkSweepGeneration::set_collector(this); |
603 | |
604 | // Create & start a CMS thread for this CMS collector |
605 | _cmsThread = ConcurrentMarkSweepThread::start(this); |
606 | assert(cmsThread() != NULL, "CMS Thread should have been created" ); |
607 | assert(cmsThread()->collector() == this, |
608 | "CMS Thread should refer to this gen" ); |
609 | assert(CGC_lock != NULL, "Where's the CGC_lock?" ); |
610 | |
611 | // Support for parallelizing young gen rescan |
612 | CMSHeap* heap = CMSHeap::heap(); |
613 | _young_gen = heap->young_gen(); |
614 | if (heap->supports_inline_contig_alloc()) { |
615 | _top_addr = heap->top_addr(); |
616 | _end_addr = heap->end_addr(); |
617 | assert(_young_gen != NULL, "no _young_gen" ); |
618 | _eden_chunk_index = 0; |
619 | _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain; |
620 | _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC); |
621 | } |
622 | |
623 | // Support for parallelizing survivor space rescan |
624 | if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) { |
625 | const size_t max_plab_samples = |
626 | _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize); |
627 | |
628 | _survivor_plab_array = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC); |
629 | _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); |
630 | _cursor = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC); |
631 | _survivor_chunk_capacity = max_plab_samples; |
632 | for (uint i = 0; i < ParallelGCThreads; i++) { |
633 | HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); |
634 | ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples); |
635 | assert(cur->end() == 0, "Should be 0" ); |
636 | assert(cur->array() == vec, "Should be vec" ); |
637 | assert(cur->capacity() == max_plab_samples, "Error" ); |
638 | } |
639 | } |
640 | |
641 | NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;) |
642 | _gc_counters = new CollectorCounters("CMS full collection pauses" , 1); |
643 | _cgc_counters = new CollectorCounters("CMS concurrent cycle pauses" , 2); |
644 | _completed_initialization = true; |
645 | _inter_sweep_timer.start(); // start of time |
646 | } |
647 | |
648 | const char* ConcurrentMarkSweepGeneration::name() const { |
649 | return "concurrent mark-sweep generation" ; |
650 | } |
651 | void ConcurrentMarkSweepGeneration::update_counters() { |
652 | if (UsePerfData) { |
653 | _space_counters->update_all(); |
654 | _gen_counters->update_all(); |
655 | } |
656 | } |
657 | |
658 | // this is an optimized version of update_counters(). it takes the |
659 | // used value as a parameter rather than computing it. |
660 | // |
661 | void ConcurrentMarkSweepGeneration::update_counters(size_t used) { |
662 | if (UsePerfData) { |
663 | _space_counters->update_used(used); |
664 | _space_counters->update_capacity(); |
665 | _gen_counters->update_all(); |
666 | } |
667 | } |
668 | |
669 | void ConcurrentMarkSweepGeneration::print() const { |
670 | Generation::print(); |
671 | cmsSpace()->print(); |
672 | } |
673 | |
674 | #ifndef PRODUCT |
675 | void ConcurrentMarkSweepGeneration::print_statistics() { |
676 | cmsSpace()->printFLCensus(0); |
677 | } |
678 | #endif |
679 | |
680 | size_t |
681 | ConcurrentMarkSweepGeneration::contiguous_available() const { |
682 | // dld proposes an improvement in precision here. If the committed |
683 | // part of the space ends in a free block we should add that to |
684 | // uncommitted size in the calculation below. Will make this |
685 | // change later, staying with the approximation below for the |
686 | // time being. -- ysr. |
687 | return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc()); |
688 | } |
689 | |
690 | size_t |
691 | ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const { |
692 | return _cmsSpace->max_alloc_in_words() * HeapWordSize; |
693 | } |
694 | |
695 | size_t ConcurrentMarkSweepGeneration::max_available() const { |
696 | return free() + _virtual_space.uncommitted_size(); |
697 | } |
698 | |
699 | bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { |
700 | size_t available = max_available(); |
701 | size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); |
702 | bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); |
703 | log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")" , |
704 | res? "" :" not" , available, res? ">=" :"<" , av_promo, max_promotion_in_bytes); |
705 | return res; |
706 | } |
707 | |
708 | // At a promotion failure dump information on block layout in heap |
709 | // (cms old generation). |
710 | void ConcurrentMarkSweepGeneration::promotion_failure_occurred() { |
711 | Log(gc, promotion) log; |
712 | if (log.is_trace()) { |
713 | LogStream ls(log.trace()); |
714 | cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls); |
715 | } |
716 | } |
717 | |
718 | void ConcurrentMarkSweepGeneration::reset_after_compaction() { |
719 | // Clear the promotion information. These pointers can be adjusted |
720 | // along with all the other pointers into the heap but |
721 | // compaction is expected to be a rare event with |
722 | // a heap using cms so don't do it without seeing the need. |
723 | for (uint i = 0; i < ParallelGCThreads; i++) { |
724 | _par_gc_thread_states[i]->promo.reset(); |
725 | } |
726 | } |
727 | |
728 | void ConcurrentMarkSweepGeneration::compute_new_size() { |
729 | assert_locked_or_safepoint(Heap_lock); |
730 | |
731 | // If incremental collection failed, we just want to expand |
732 | // to the limit. |
733 | if (incremental_collection_failed()) { |
734 | clear_incremental_collection_failed(); |
735 | grow_to_reserved(); |
736 | return; |
737 | } |
738 | |
739 | // The heap has been compacted but not reset yet. |
740 | // Any metric such as free() or used() will be incorrect. |
741 | |
742 | CardGeneration::compute_new_size(); |
743 | |
744 | // Reset again after a possible resizing |
745 | if (did_compact()) { |
746 | cmsSpace()->reset_after_compaction(); |
747 | } |
748 | } |
749 | |
750 | void ConcurrentMarkSweepGeneration::compute_new_size_free_list() { |
751 | assert_locked_or_safepoint(Heap_lock); |
752 | |
753 | // If incremental collection failed, we just want to expand |
754 | // to the limit. |
755 | if (incremental_collection_failed()) { |
756 | clear_incremental_collection_failed(); |
757 | grow_to_reserved(); |
758 | return; |
759 | } |
760 | |
761 | double free_percentage = ((double) free()) / capacity(); |
762 | double desired_free_percentage = (double) MinHeapFreeRatio / 100; |
763 | double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; |
764 | |
765 | // compute expansion delta needed for reaching desired free percentage |
766 | if (free_percentage < desired_free_percentage) { |
767 | size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); |
768 | assert(desired_capacity >= capacity(), "invalid expansion size" ); |
769 | size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes); |
770 | Log(gc) log; |
771 | if (log.is_trace()) { |
772 | size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); |
773 | log.trace("From compute_new_size: " ); |
774 | log.trace(" Free fraction %f" , free_percentage); |
775 | log.trace(" Desired free fraction %f" , desired_free_percentage); |
776 | log.trace(" Maximum free fraction %f" , maximum_free_percentage); |
777 | log.trace(" Capacity " SIZE_FORMAT, capacity() / 1000); |
778 | log.trace(" Desired capacity " SIZE_FORMAT, desired_capacity / 1000); |
779 | CMSHeap* heap = CMSHeap::heap(); |
780 | size_t young_size = heap->young_gen()->capacity(); |
781 | log.trace(" Young gen size " SIZE_FORMAT, young_size / 1000); |
782 | log.trace(" unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000); |
783 | log.trace(" contiguous available " SIZE_FORMAT, contiguous_available() / 1000); |
784 | log.trace(" Expand by " SIZE_FORMAT " (bytes)" , expand_bytes); |
785 | } |
786 | // safe if expansion fails |
787 | expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio); |
788 | log.trace(" Expanded free fraction %f" , ((double) free()) / capacity()); |
789 | } else { |
790 | size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); |
791 | assert(desired_capacity <= capacity(), "invalid expansion size" ); |
792 | size_t shrink_bytes = capacity() - desired_capacity; |
793 | // Don't shrink unless the delta is greater than the minimum shrink we want |
794 | if (shrink_bytes >= MinHeapDeltaBytes) { |
795 | shrink_free_list_by(shrink_bytes); |
796 | } |
797 | } |
798 | } |
799 | |
800 | Mutex* ConcurrentMarkSweepGeneration::freelistLock() const { |
801 | return cmsSpace()->freelistLock(); |
802 | } |
803 | |
804 | HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) { |
805 | CMSSynchronousYieldRequest yr; |
806 | MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag); |
807 | return have_lock_and_allocate(size, tlab); |
808 | } |
809 | |
810 | HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size, |
811 | bool tlab /* ignored */) { |
812 | assert_lock_strong(freelistLock()); |
813 | size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size); |
814 | HeapWord* res = cmsSpace()->allocate(adjustedSize); |
815 | // Allocate the object live (grey) if the background collector has |
816 | // started marking. This is necessary because the marker may |
817 | // have passed this address and consequently this object will |
818 | // not otherwise be greyed and would be incorrectly swept up. |
819 | // Note that if this object contains references, the writing |
820 | // of those references will dirty the card containing this object |
821 | // allowing the object to be blackened (and its references scanned) |
822 | // either during a preclean phase or at the final checkpoint. |
823 | if (res != NULL) { |
824 | // We may block here with an uninitialized object with |
825 | // its mark-bit or P-bits not yet set. Such objects need |
826 | // to be safely navigable by block_start(). |
827 | assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here." ); |
828 | assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size" ); |
829 | collector()->direct_allocated(res, adjustedSize); |
830 | _direct_allocated_words += adjustedSize; |
831 | // allocation counters |
832 | NOT_PRODUCT( |
833 | _numObjectsAllocated++; |
834 | _numWordsAllocated += (int)adjustedSize; |
835 | ) |
836 | } |
837 | return res; |
838 | } |
839 | |
840 | // In the case of direct allocation by mutators in a generation that |
841 | // is being concurrently collected, the object must be allocated |
842 | // live (grey) if the background collector has started marking. |
843 | // This is necessary because the marker may |
844 | // have passed this address and consequently this object will |
845 | // not otherwise be greyed and would be incorrectly swept up. |
846 | // Note that if this object contains references, the writing |
847 | // of those references will dirty the card containing this object |
848 | // allowing the object to be blackened (and its references scanned) |
849 | // either during a preclean phase or at the final checkpoint. |
850 | void CMSCollector::direct_allocated(HeapWord* start, size_t size) { |
851 | assert(_markBitMap.covers(start, size), "Out of bounds" ); |
852 | if (_collectorState >= Marking) { |
853 | MutexLocker y(_markBitMap.lock(), |
854 | Mutex::_no_safepoint_check_flag); |
855 | // [see comments preceding SweepClosure::do_blk() below for details] |
856 | // |
857 | // Can the P-bits be deleted now? JJJ |
858 | // |
859 | // 1. need to mark the object as live so it isn't collected |
860 | // 2. need to mark the 2nd bit to indicate the object may be uninitialized |
861 | // 3. need to mark the end of the object so marking, precleaning or sweeping |
862 | // can skip over uninitialized or unparsable objects. An allocated |
863 | // object is considered uninitialized for our purposes as long as |
864 | // its klass word is NULL. All old gen objects are parsable |
865 | // as soon as they are initialized.) |
866 | _markBitMap.mark(start); // object is live |
867 | _markBitMap.mark(start + 1); // object is potentially uninitialized? |
868 | _markBitMap.mark(start + size - 1); |
869 | // mark end of object |
870 | } |
871 | // check that oop looks uninitialized |
872 | assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL" ); |
873 | } |
874 | |
875 | void CMSCollector::promoted(bool par, HeapWord* start, |
876 | bool is_obj_array, size_t obj_size) { |
877 | assert(_markBitMap.covers(start), "Out of bounds" ); |
878 | // See comment in direct_allocated() about when objects should |
879 | // be allocated live. |
880 | if (_collectorState >= Marking) { |
881 | // we already hold the marking bit map lock, taken in |
882 | // the prologue |
883 | if (par) { |
884 | _markBitMap.par_mark(start); |
885 | } else { |
886 | _markBitMap.mark(start); |
887 | } |
888 | // We don't need to mark the object as uninitialized (as |
889 | // in direct_allocated above) because this is being done with the |
890 | // world stopped and the object will be initialized by the |
891 | // time the marking, precleaning or sweeping get to look at it. |
892 | // But see the code for copying objects into the CMS generation, |
893 | // where we need to ensure that concurrent readers of the |
894 | // block offset table are able to safely navigate a block that |
895 | // is in flux from being free to being allocated (and in |
896 | // transition while being copied into) and subsequently |
897 | // becoming a bona-fide object when the copy/promotion is complete. |
898 | assert(SafepointSynchronize::is_at_safepoint(), |
899 | "expect promotion only at safepoints" ); |
900 | |
901 | if (_collectorState < Sweeping) { |
902 | // Mark the appropriate cards in the modUnionTable, so that |
903 | // this object gets scanned before the sweep. If this is |
904 | // not done, CMS generation references in the object might |
905 | // not get marked. |
906 | // For the case of arrays, which are otherwise precisely |
907 | // marked, we need to dirty the entire array, not just its head. |
908 | if (is_obj_array) { |
909 | // The [par_]mark_range() method expects mr.end() below to |
910 | // be aligned to the granularity of a bit's representation |
911 | // in the heap. In the case of the MUT below, that's a |
912 | // card size. |
913 | MemRegion mr(start, |
914 | align_up(start + obj_size, |
915 | CardTable::card_size /* bytes */)); |
916 | if (par) { |
917 | _modUnionTable.par_mark_range(mr); |
918 | } else { |
919 | _modUnionTable.mark_range(mr); |
920 | } |
921 | } else { // not an obj array; we can just mark the head |
922 | if (par) { |
923 | _modUnionTable.par_mark(start); |
924 | } else { |
925 | _modUnionTable.mark(start); |
926 | } |
927 | } |
928 | } |
929 | } |
930 | } |
931 | |
932 | oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { |
933 | assert(obj_size == (size_t)obj->size(), "bad obj_size passed in" ); |
934 | // allocate, copy and if necessary update promoinfo -- |
935 | // delegate to underlying space. |
936 | assert_lock_strong(freelistLock()); |
937 | |
938 | #ifndef PRODUCT |
939 | if (CMSHeap::heap()->promotion_should_fail()) { |
940 | return NULL; |
941 | } |
942 | #endif // #ifndef PRODUCT |
943 | |
944 | oop res = _cmsSpace->promote(obj, obj_size); |
945 | if (res == NULL) { |
946 | // expand and retry |
947 | size_t s = _cmsSpace->expansionSpaceRequired(obj_size); // HeapWords |
948 | expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion); |
949 | // Since this is the old generation, we don't try to promote |
950 | // into a more senior generation. |
951 | res = _cmsSpace->promote(obj, obj_size); |
952 | } |
953 | if (res != NULL) { |
954 | // See comment in allocate() about when objects should |
955 | // be allocated live. |
956 | assert(oopDesc::is_oop(obj), "Will dereference klass pointer below" ); |
957 | collector()->promoted(false, // Not parallel |
958 | (HeapWord*)res, obj->is_objArray(), obj_size); |
959 | // promotion counters |
960 | NOT_PRODUCT( |
961 | _numObjectsPromoted++; |
962 | _numWordsPromoted += |
963 | (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size())); |
964 | ) |
965 | } |
966 | return res; |
967 | } |
968 | |
969 | |
970 | // IMPORTANT: Notes on object size recognition in CMS. |
971 | // --------------------------------------------------- |
972 | // A block of storage in the CMS generation is always in |
973 | // one of three states. A free block (FREE), an allocated |
974 | // object (OBJECT) whose size() method reports the correct size, |
975 | // and an intermediate state (TRANSIENT) in which its size cannot |
976 | // be accurately determined. |
977 | // STATE IDENTIFICATION: (32 bit and 64 bit w/o COOPS) |
978 | // ----------------------------------------------------- |
979 | // FREE: klass_word & 1 == 1; mark_word holds block size |
980 | // |
981 | // OBJECT: klass_word installed; klass_word != 0 && klass_word & 1 == 0; |
982 | // obj->size() computes correct size |
983 | // |
984 | // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT |
985 | // |
986 | // STATE IDENTIFICATION: (64 bit+COOPS) |
987 | // ------------------------------------ |
988 | // FREE: mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size |
989 | // |
990 | // OBJECT: klass_word installed; klass_word != 0; |
991 | // obj->size() computes correct size |
992 | // |
993 | // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT |
994 | // |
995 | // |
996 | // STATE TRANSITION DIAGRAM |
997 | // |
998 | // mut / parnew mut / parnew |
999 | // FREE --------------------> TRANSIENT ---------------------> OBJECT --| |
1000 | // ^ | |
1001 | // |------------------------ DEAD <------------------------------------| |
1002 | // sweep mut |
1003 | // |
1004 | // While a block is in TRANSIENT state its size cannot be determined |
1005 | // so readers will either need to come back later or stall until |
1006 | // the size can be determined. Note that for the case of direct |
1007 | // allocation, P-bits, when available, may be used to determine the |
1008 | // size of an object that may not yet have been initialized. |
1009 | |
1010 | // Things to support parallel young-gen collection. |
1011 | oop |
1012 | ConcurrentMarkSweepGeneration::par_promote(int thread_num, |
1013 | oop old, markOop m, |
1014 | size_t word_sz) { |
1015 | #ifndef PRODUCT |
1016 | if (CMSHeap::heap()->promotion_should_fail()) { |
1017 | return NULL; |
1018 | } |
1019 | #endif // #ifndef PRODUCT |
1020 | |
1021 | CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; |
1022 | PromotionInfo* promoInfo = &ps->promo; |
1023 | // if we are tracking promotions, then first ensure space for |
1024 | // promotion (including spooling space for saving header if necessary). |
1025 | // then allocate and copy, then track promoted info if needed. |
1026 | // When tracking (see PromotionInfo::track()), the mark word may |
1027 | // be displaced and in this case restoration of the mark word |
1028 | // occurs in the (oop_since_save_marks_)iterate phase. |
1029 | if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) { |
1030 | // Out of space for allocating spooling buffers; |
1031 | // try expanding and allocating spooling buffers. |
1032 | if (!expand_and_ensure_spooling_space(promoInfo)) { |
1033 | return NULL; |
1034 | } |
1035 | } |
1036 | assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant" ); |
1037 | const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz); |
1038 | HeapWord* obj_ptr = ps->lab.alloc(alloc_sz); |
1039 | if (obj_ptr == NULL) { |
1040 | obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz); |
1041 | if (obj_ptr == NULL) { |
1042 | return NULL; |
1043 | } |
1044 | } |
1045 | oop obj = oop(obj_ptr); |
1046 | OrderAccess::storestore(); |
1047 | assert(obj->klass_or_null() == NULL, "Object should be uninitialized here." ); |
1048 | assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size" ); |
1049 | // IMPORTANT: See note on object initialization for CMS above. |
1050 | // Otherwise, copy the object. Here we must be careful to insert the |
1051 | // klass pointer last, since this marks the block as an allocated object. |
1052 | // Except with compressed oops it's the mark word. |
1053 | HeapWord* old_ptr = (HeapWord*)old; |
1054 | // Restore the mark word copied above. |
1055 | obj->set_mark_raw(m); |
1056 | assert(obj->klass_or_null() == NULL, "Object should be uninitialized here." ); |
1057 | assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size" ); |
1058 | OrderAccess::storestore(); |
1059 | |
1060 | if (UseCompressedClassPointers) { |
1061 | // Copy gap missed by (aligned) header size calculation below |
1062 | obj->set_klass_gap(old->klass_gap()); |
1063 | } |
1064 | if (word_sz > (size_t)oopDesc::header_size()) { |
1065 | Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(), |
1066 | obj_ptr + oopDesc::header_size(), |
1067 | word_sz - oopDesc::header_size()); |
1068 | } |
1069 | |
1070 | // Now we can track the promoted object, if necessary. We take care |
1071 | // to delay the transition from uninitialized to full object |
1072 | // (i.e., insertion of klass pointer) until after, so that it |
1073 | // atomically becomes a promoted object. |
1074 | if (promoInfo->tracking()) { |
1075 | promoInfo->track((PromotedObject*)obj, old->klass()); |
1076 | } |
1077 | assert(obj->klass_or_null() == NULL, "Object should be uninitialized here." ); |
1078 | assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size" ); |
1079 | assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below" ); |
1080 | |
1081 | // Finally, install the klass pointer (this should be volatile). |
1082 | OrderAccess::storestore(); |
1083 | obj->set_klass(old->klass()); |
1084 | // We should now be able to calculate the right size for this object |
1085 | assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object" ); |
1086 | |
1087 | collector()->promoted(true, // parallel |
1088 | obj_ptr, old->is_objArray(), word_sz); |
1089 | |
1090 | NOT_PRODUCT( |
1091 | Atomic::inc(&_numObjectsPromoted); |
1092 | Atomic::add(alloc_sz, &_numWordsPromoted); |
1093 | ) |
1094 | |
1095 | return obj; |
1096 | } |
1097 | |
1098 | void |
1099 | ConcurrentMarkSweepGeneration:: |
1100 | par_promote_alloc_done(int thread_num) { |
1101 | CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; |
1102 | ps->lab.retire(thread_num); |
1103 | } |
1104 | |
1105 | void |
1106 | ConcurrentMarkSweepGeneration:: |
1107 | par_oop_since_save_marks_iterate_done(int thread_num) { |
1108 | CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; |
1109 | ParScanWithoutBarrierClosure* dummy_cl = NULL; |
1110 | ps->promo.promoted_oops_iterate(dummy_cl); |
1111 | |
1112 | // Because card-scanning has been completed, subsequent phases |
1113 | // (e.g., reference processing) will not need to recognize which |
1114 | // objects have been promoted during this GC. So, we can now disable |
1115 | // promotion tracking. |
1116 | ps->promo.stopTrackingPromotions(); |
1117 | } |
1118 | |
1119 | bool ConcurrentMarkSweepGeneration::should_collect(bool full, |
1120 | size_t size, |
1121 | bool tlab) |
1122 | { |
1123 | // We allow a STW collection only if a full |
1124 | // collection was requested. |
1125 | return full || should_allocate(size, tlab); // FIX ME !!! |
1126 | // This and promotion failure handling are connected at the |
1127 | // hip and should be fixed by untying them. |
1128 | } |
1129 | |
1130 | bool CMSCollector::shouldConcurrentCollect() { |
1131 | LogTarget(Trace, gc) log; |
1132 | |
1133 | if (_full_gc_requested) { |
1134 | log.print("CMSCollector: collect because of explicit gc request (or GCLocker)" ); |
1135 | return true; |
1136 | } |
1137 | |
1138 | FreelistLocker x(this); |
1139 | // ------------------------------------------------------------------ |
1140 | // Print out lots of information which affects the initiation of |
1141 | // a collection. |
1142 | if (log.is_enabled() && stats().valid()) { |
1143 | log.print("CMSCollector shouldConcurrentCollect: " ); |
1144 | |
1145 | LogStream out(log); |
1146 | stats().print_on(&out); |
1147 | |
1148 | log.print("time_until_cms_gen_full %3.7f" , stats().time_until_cms_gen_full()); |
1149 | log.print("free=" SIZE_FORMAT, _cmsGen->free()); |
1150 | log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available()); |
1151 | log.print("promotion_rate=%g" , stats().promotion_rate()); |
1152 | log.print("cms_allocation_rate=%g" , stats().cms_allocation_rate()); |
1153 | log.print("occupancy=%3.7f" , _cmsGen->occupancy()); |
1154 | log.print("initiatingOccupancy=%3.7f" , _cmsGen->initiating_occupancy()); |
1155 | log.print("cms_time_since_begin=%3.7f" , stats().cms_time_since_begin()); |
1156 | log.print("cms_time_since_end=%3.7f" , stats().cms_time_since_end()); |
1157 | log.print("metadata initialized %d" , MetaspaceGC::should_concurrent_collect()); |
1158 | } |
1159 | // ------------------------------------------------------------------ |
1160 | |
1161 | // If the estimated time to complete a cms collection (cms_duration()) |
1162 | // is less than the estimated time remaining until the cms generation |
1163 | // is full, start a collection. |
1164 | if (!UseCMSInitiatingOccupancyOnly) { |
1165 | if (stats().valid()) { |
1166 | if (stats().time_until_cms_start() == 0.0) { |
1167 | return true; |
1168 | } |
1169 | } else { |
1170 | // We want to conservatively collect somewhat early in order |
1171 | // to try and "bootstrap" our CMS/promotion statistics; |
1172 | // this branch will not fire after the first successful CMS |
1173 | // collection because the stats should then be valid. |
1174 | if (_cmsGen->occupancy() >= _bootstrap_occupancy) { |
1175 | log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f" , |
1176 | _cmsGen->occupancy(), _bootstrap_occupancy); |
1177 | return true; |
1178 | } |
1179 | } |
1180 | } |
1181 | |
1182 | // Otherwise, we start a collection cycle if |
1183 | // old gen want a collection cycle started. Each may use |
1184 | // an appropriate criterion for making this decision. |
1185 | // XXX We need to make sure that the gen expansion |
1186 | // criterion dovetails well with this. XXX NEED TO FIX THIS |
1187 | if (_cmsGen->should_concurrent_collect()) { |
1188 | log.print("CMS old gen initiated" ); |
1189 | return true; |
1190 | } |
1191 | |
1192 | // We start a collection if we believe an incremental collection may fail; |
1193 | // this is not likely to be productive in practice because it's probably too |
1194 | // late anyway. |
1195 | CMSHeap* heap = CMSHeap::heap(); |
1196 | if (heap->incremental_collection_will_fail(true /* consult_young */)) { |
1197 | log.print("CMSCollector: collect because incremental collection will fail " ); |
1198 | return true; |
1199 | } |
1200 | |
1201 | if (MetaspaceGC::should_concurrent_collect()) { |
1202 | log.print("CMSCollector: collect for metadata allocation " ); |
1203 | return true; |
1204 | } |
1205 | |
1206 | // CMSTriggerInterval starts a CMS cycle if enough time has passed. |
1207 | if (CMSTriggerInterval >= 0) { |
1208 | if (CMSTriggerInterval == 0) { |
1209 | // Trigger always |
1210 | return true; |
1211 | } |
1212 | |
1213 | // Check the CMS time since begin (we do not check the stats validity |
1214 | // as we want to be able to trigger the first CMS cycle as well) |
1215 | if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) { |
1216 | if (stats().valid()) { |
1217 | log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)" , |
1218 | stats().cms_time_since_begin()); |
1219 | } else { |
1220 | log.print("CMSCollector: collect because of trigger interval (first collection)" ); |
1221 | } |
1222 | return true; |
1223 | } |
1224 | } |
1225 | |
1226 | return false; |
1227 | } |
1228 | |
1229 | void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); } |
1230 | |
1231 | // Clear _expansion_cause fields of constituent generations |
1232 | void CMSCollector::clear_expansion_cause() { |
1233 | _cmsGen->clear_expansion_cause(); |
1234 | } |
1235 | |
1236 | // We should be conservative in starting a collection cycle. To |
1237 | // start too eagerly runs the risk of collecting too often in the |
1238 | // extreme. To collect too rarely falls back on full collections, |
1239 | // which works, even if not optimum in terms of concurrent work. |
1240 | // As a work around for too eagerly collecting, use the flag |
1241 | // UseCMSInitiatingOccupancyOnly. This also has the advantage of |
1242 | // giving the user an easily understandable way of controlling the |
1243 | // collections. |
1244 | // We want to start a new collection cycle if any of the following |
1245 | // conditions hold: |
1246 | // . our current occupancy exceeds the configured initiating occupancy |
1247 | // for this generation, or |
1248 | // . we recently needed to expand this space and have not, since that |
1249 | // expansion, done a collection of this generation, or |
1250 | // . the underlying space believes that it may be a good idea to initiate |
1251 | // a concurrent collection (this may be based on criteria such as the |
1252 | // following: the space uses linear allocation and linear allocation is |
1253 | // going to fail, or there is believed to be excessive fragmentation in |
1254 | // the generation, etc... or ... |
1255 | // [.(currently done by CMSCollector::shouldConcurrentCollect() only for |
1256 | // the case of the old generation; see CR 6543076): |
1257 | // we may be approaching a point at which allocation requests may fail because |
1258 | // we will be out of sufficient free space given allocation rate estimates.] |
1259 | bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const { |
1260 | |
1261 | assert_lock_strong(freelistLock()); |
1262 | if (occupancy() > initiating_occupancy()) { |
1263 | log_trace(gc)(" %s: collect because of occupancy %f / %f " , |
1264 | short_name(), occupancy(), initiating_occupancy()); |
1265 | return true; |
1266 | } |
1267 | if (UseCMSInitiatingOccupancyOnly) { |
1268 | return false; |
1269 | } |
1270 | if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) { |
1271 | log_trace(gc)(" %s: collect because expanded for allocation " , short_name()); |
1272 | return true; |
1273 | } |
1274 | return false; |
1275 | } |
1276 | |
1277 | void ConcurrentMarkSweepGeneration::collect(bool full, |
1278 | bool clear_all_soft_refs, |
1279 | size_t size, |
1280 | bool tlab) |
1281 | { |
1282 | collector()->collect(full, clear_all_soft_refs, size, tlab); |
1283 | } |
1284 | |
1285 | void CMSCollector::collect(bool full, |
1286 | bool clear_all_soft_refs, |
1287 | size_t size, |
1288 | bool tlab) |
1289 | { |
1290 | // The following "if" branch is present for defensive reasons. |
1291 | // In the current uses of this interface, it can be replaced with: |
1292 | // assert(!GCLocker.is_active(), "Can't be called otherwise"); |
1293 | // But I am not placing that assert here to allow future |
1294 | // generality in invoking this interface. |
1295 | if (GCLocker::is_active()) { |
1296 | // A consistency test for GCLocker |
1297 | assert(GCLocker::needs_gc(), "Should have been set already" ); |
1298 | // Skip this foreground collection, instead |
1299 | // expanding the heap if necessary. |
1300 | // Need the free list locks for the call to free() in compute_new_size() |
1301 | compute_new_size(); |
1302 | return; |
1303 | } |
1304 | acquire_control_and_collect(full, clear_all_soft_refs); |
1305 | } |
1306 | |
1307 | void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) { |
1308 | CMSHeap* heap = CMSHeap::heap(); |
1309 | unsigned int gc_count = heap->total_full_collections(); |
1310 | if (gc_count == full_gc_count) { |
1311 | MutexLocker y(CGC_lock, Mutex::_no_safepoint_check_flag); |
1312 | _full_gc_requested = true; |
1313 | _full_gc_cause = cause; |
1314 | CGC_lock->notify(); // nudge CMS thread |
1315 | } else { |
1316 | assert(gc_count > full_gc_count, "Error: causal loop" ); |
1317 | } |
1318 | } |
1319 | |
1320 | bool CMSCollector::is_external_interruption() { |
1321 | GCCause::Cause cause = CMSHeap::heap()->gc_cause(); |
1322 | return GCCause::is_user_requested_gc(cause) || |
1323 | GCCause::is_serviceability_requested_gc(cause); |
1324 | } |
1325 | |
1326 | void CMSCollector::report_concurrent_mode_interruption() { |
1327 | if (is_external_interruption()) { |
1328 | log_debug(gc)("Concurrent mode interrupted" ); |
1329 | } else { |
1330 | log_debug(gc)("Concurrent mode failure" ); |
1331 | _gc_tracer_cm->report_concurrent_mode_failure(); |
1332 | } |
1333 | } |
1334 | |
1335 | |
1336 | // The foreground and background collectors need to coordinate in order |
1337 | // to make sure that they do not mutually interfere with CMS collections. |
1338 | // When a background collection is active, |
1339 | // the foreground collector may need to take over (preempt) and |
1340 | // synchronously complete an ongoing collection. Depending on the |
1341 | // frequency of the background collections and the heap usage |
1342 | // of the application, this preemption can be seldom or frequent. |
1343 | // There are only certain |
1344 | // points in the background collection that the "collection-baton" |
1345 | // can be passed to the foreground collector. |
1346 | // |
1347 | // The foreground collector will wait for the baton before |
1348 | // starting any part of the collection. The foreground collector |
1349 | // will only wait at one location. |
1350 | // |
1351 | // The background collector will yield the baton before starting a new |
1352 | // phase of the collection (e.g., before initial marking, marking from roots, |
1353 | // precleaning, final re-mark, sweep etc.) This is normally done at the head |
1354 | // of the loop which switches the phases. The background collector does some |
1355 | // of the phases (initial mark, final re-mark) with the world stopped. |
1356 | // Because of locking involved in stopping the world, |
1357 | // the foreground collector should not block waiting for the background |
1358 | // collector when it is doing a stop-the-world phase. The background |
1359 | // collector will yield the baton at an additional point just before |
1360 | // it enters a stop-the-world phase. Once the world is stopped, the |
1361 | // background collector checks the phase of the collection. If the |
1362 | // phase has not changed, it proceeds with the collection. If the |
1363 | // phase has changed, it skips that phase of the collection. See |
1364 | // the comments on the use of the Heap_lock in collect_in_background(). |
1365 | // |
1366 | // Variable used in baton passing. |
1367 | // _foregroundGCIsActive - Set to true by the foreground collector when |
1368 | // it wants the baton. The foreground clears it when it has finished |
1369 | // the collection. |
1370 | // _foregroundGCShouldWait - Set to true by the background collector |
1371 | // when it is running. The foreground collector waits while |
1372 | // _foregroundGCShouldWait is true. |
1373 | // CGC_lock - monitor used to protect access to the above variables |
1374 | // and to notify the foreground and background collectors. |
1375 | // _collectorState - current state of the CMS collection. |
1376 | // |
1377 | // The foreground collector |
1378 | // acquires the CGC_lock |
1379 | // sets _foregroundGCIsActive |
1380 | // waits on the CGC_lock for _foregroundGCShouldWait to be false |
1381 | // various locks acquired in preparation for the collection |
1382 | // are released so as not to block the background collector |
1383 | // that is in the midst of a collection |
1384 | // proceeds with the collection |
1385 | // clears _foregroundGCIsActive |
1386 | // returns |
1387 | // |
1388 | // The background collector in a loop iterating on the phases of the |
1389 | // collection |
1390 | // acquires the CGC_lock |
1391 | // sets _foregroundGCShouldWait |
1392 | // if _foregroundGCIsActive is set |
1393 | // clears _foregroundGCShouldWait, notifies _CGC_lock |
1394 | // waits on _CGC_lock for _foregroundGCIsActive to become false |
1395 | // and exits the loop. |
1396 | // otherwise |
1397 | // proceed with that phase of the collection |
1398 | // if the phase is a stop-the-world phase, |
1399 | // yield the baton once more just before enqueueing |
1400 | // the stop-world CMS operation (executed by the VM thread). |
1401 | // returns after all phases of the collection are done |
1402 | // |
1403 | |
1404 | void CMSCollector::acquire_control_and_collect(bool full, |
1405 | bool clear_all_soft_refs) { |
1406 | assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint" ); |
1407 | assert(!Thread::current()->is_ConcurrentGC_thread(), |
1408 | "shouldn't try to acquire control from self!" ); |
1409 | |
1410 | // Start the protocol for acquiring control of the |
1411 | // collection from the background collector (aka CMS thread). |
1412 | assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), |
1413 | "VM thread should have CMS token" ); |
1414 | // Remember the possibly interrupted state of an ongoing |
1415 | // concurrent collection |
1416 | CollectorState first_state = _collectorState; |
1417 | |
1418 | // Signal to a possibly ongoing concurrent collection that |
1419 | // we want to do a foreground collection. |
1420 | _foregroundGCIsActive = true; |
1421 | |
1422 | // release locks and wait for a notify from the background collector |
1423 | // releasing the locks in only necessary for phases which |
1424 | // do yields to improve the granularity of the collection. |
1425 | assert_lock_strong(bitMapLock()); |
1426 | // We need to lock the Free list lock for the space that we are |
1427 | // currently collecting. |
1428 | assert(haveFreelistLocks(), "Must be holding free list locks" ); |
1429 | bitMapLock()->unlock(); |
1430 | releaseFreelistLocks(); |
1431 | { |
1432 | MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); |
1433 | if (_foregroundGCShouldWait) { |
1434 | // We are going to be waiting for action for the CMS thread; |
1435 | // it had better not be gone (for instance at shutdown)! |
1436 | assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(), |
1437 | "CMS thread must be running" ); |
1438 | // Wait here until the background collector gives us the go-ahead |
1439 | ConcurrentMarkSweepThread::clear_CMS_flag( |
1440 | ConcurrentMarkSweepThread::CMS_vm_has_token); // release token |
1441 | // Get a possibly blocked CMS thread going: |
1442 | // Note that we set _foregroundGCIsActive true above, |
1443 | // without protection of the CGC_lock. |
1444 | CGC_lock->notify(); |
1445 | assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(), |
1446 | "Possible deadlock" ); |
1447 | while (_foregroundGCShouldWait) { |
1448 | // wait for notification |
1449 | CGC_lock->wait_without_safepoint_check(); |
1450 | // Possibility of delay/starvation here, since CMS token does |
1451 | // not know to give priority to VM thread? Actually, i think |
1452 | // there wouldn't be any delay/starvation, but the proof of |
1453 | // that "fact" (?) appears non-trivial. XXX 20011219YSR |
1454 | } |
1455 | ConcurrentMarkSweepThread::set_CMS_flag( |
1456 | ConcurrentMarkSweepThread::CMS_vm_has_token); |
1457 | } |
1458 | } |
1459 | // The CMS_token is already held. Get back the other locks. |
1460 | assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), |
1461 | "VM thread should have CMS token" ); |
1462 | getFreelistLocks(); |
1463 | bitMapLock()->lock_without_safepoint_check(); |
1464 | log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d" , |
1465 | p2i(Thread::current()), first_state); |
1466 | log_debug(gc, state)(" gets control with state %d" , _collectorState); |
1467 | |
1468 | // Inform cms gen if this was due to partial collection failing. |
1469 | // The CMS gen may use this fact to determine its expansion policy. |
1470 | CMSHeap* heap = CMSHeap::heap(); |
1471 | if (heap->incremental_collection_will_fail(false /* don't consult_young */)) { |
1472 | assert(!_cmsGen->incremental_collection_failed(), |
1473 | "Should have been noticed, reacted to and cleared" ); |
1474 | _cmsGen->set_incremental_collection_failed(); |
1475 | } |
1476 | |
1477 | if (first_state > Idling) { |
1478 | report_concurrent_mode_interruption(); |
1479 | } |
1480 | |
1481 | set_did_compact(true); |
1482 | |
1483 | // If the collection is being acquired from the background |
1484 | // collector, there may be references on the discovered |
1485 | // references lists. Abandon those references, since some |
1486 | // of them may have become unreachable after concurrent |
1487 | // discovery; the STW compacting collector will redo discovery |
1488 | // more precisely, without being subject to floating garbage. |
1489 | // Leaving otherwise unreachable references in the discovered |
1490 | // lists would require special handling. |
1491 | ref_processor()->disable_discovery(); |
1492 | ref_processor()->abandon_partial_discovery(); |
1493 | ref_processor()->verify_no_references_recorded(); |
1494 | |
1495 | if (first_state > Idling) { |
1496 | save_heap_summary(); |
1497 | } |
1498 | |
1499 | do_compaction_work(clear_all_soft_refs); |
1500 | |
1501 | // Has the GC time limit been exceeded? |
1502 | size_t max_eden_size = _young_gen->max_eden_size(); |
1503 | GCCause::Cause gc_cause = heap->gc_cause(); |
1504 | size_policy()->check_gc_overhead_limit(_young_gen->eden()->used(), |
1505 | _cmsGen->max_capacity(), |
1506 | max_eden_size, |
1507 | full, |
1508 | gc_cause, |
1509 | heap->soft_ref_policy()); |
1510 | |
1511 | // Reset the expansion cause, now that we just completed |
1512 | // a collection cycle. |
1513 | clear_expansion_cause(); |
1514 | _foregroundGCIsActive = false; |
1515 | return; |
1516 | } |
1517 | |
1518 | // Resize the tenured generation |
1519 | // after obtaining the free list locks for the |
1520 | // two generations. |
1521 | void CMSCollector::compute_new_size() { |
1522 | assert_locked_or_safepoint(Heap_lock); |
1523 | FreelistLocker z(this); |
1524 | MetaspaceGC::compute_new_size(); |
1525 | _cmsGen->compute_new_size_free_list(); |
1526 | } |
1527 | |
1528 | // A work method used by the foreground collector to do |
1529 | // a mark-sweep-compact. |
1530 | void CMSCollector::do_compaction_work(bool clear_all_soft_refs) { |
1531 | CMSHeap* heap = CMSHeap::heap(); |
1532 | |
1533 | STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); |
1534 | gc_timer->register_gc_start(); |
1535 | |
1536 | SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); |
1537 | gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start()); |
1538 | |
1539 | heap->pre_full_gc_dump(gc_timer); |
1540 | |
1541 | GCTraceTime(Trace, gc, phases) t("CMS:MSC" ); |
1542 | |
1543 | // Temporarily widen the span of the weak reference processing to |
1544 | // the entire heap. |
1545 | MemRegion new_span(CMSHeap::heap()->reserved_region()); |
1546 | ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span); |
1547 | // Temporarily, clear the "is_alive_non_header" field of the |
1548 | // reference processor. |
1549 | ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL); |
1550 | // Temporarily make reference _processing_ single threaded (non-MT). |
1551 | ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false); |
1552 | // Temporarily make refs discovery atomic |
1553 | ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true); |
1554 | // Temporarily make reference _discovery_ single threaded (non-MT) |
1555 | ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); |
1556 | |
1557 | ref_processor()->set_enqueuing_is_done(false); |
1558 | ref_processor()->enable_discovery(); |
1559 | ref_processor()->setup_policy(clear_all_soft_refs); |
1560 | // If an asynchronous collection finishes, the _modUnionTable is |
1561 | // all clear. If we are assuming the collection from an asynchronous |
1562 | // collection, clear the _modUnionTable. |
1563 | assert(_collectorState != Idling || _modUnionTable.isAllClear(), |
1564 | "_modUnionTable should be clear if the baton was not passed" ); |
1565 | _modUnionTable.clear_all(); |
1566 | assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(), |
1567 | "mod union for klasses should be clear if the baton was passed" ); |
1568 | _ct->cld_rem_set()->clear_mod_union(); |
1569 | |
1570 | |
1571 | // We must adjust the allocation statistics being maintained |
1572 | // in the free list space. We do so by reading and clearing |
1573 | // the sweep timer and updating the block flux rate estimates below. |
1574 | assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive" ); |
1575 | if (_inter_sweep_timer.is_active()) { |
1576 | _inter_sweep_timer.stop(); |
1577 | // Note that we do not use this sample to update the _inter_sweep_estimate. |
1578 | _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), |
1579 | _inter_sweep_estimate.padded_average(), |
1580 | _intra_sweep_estimate.padded_average()); |
1581 | } |
1582 | |
1583 | GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs); |
1584 | #ifdef ASSERT |
1585 | CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); |
1586 | size_t free_size = cms_space->free(); |
1587 | assert(free_size == |
1588 | pointer_delta(cms_space->end(), cms_space->compaction_top()) |
1589 | * HeapWordSize, |
1590 | "All the free space should be compacted into one chunk at top" ); |
1591 | assert(cms_space->dictionary()->total_chunk_size( |
1592 | debug_only(cms_space->freelistLock())) == 0 || |
1593 | cms_space->totalSizeInIndexedFreeLists() == 0, |
1594 | "All the free space should be in a single chunk" ); |
1595 | size_t num = cms_space->totalCount(); |
1596 | assert((free_size == 0 && num == 0) || |
1597 | (free_size > 0 && (num == 1 || num == 2)), |
1598 | "There should be at most 2 free chunks after compaction" ); |
1599 | #endif // ASSERT |
1600 | _collectorState = Resetting; |
1601 | assert(_restart_addr == NULL, |
1602 | "Should have been NULL'd before baton was passed" ); |
1603 | reset_stw(); |
1604 | _cmsGen->reset_after_compaction(); |
1605 | _concurrent_cycles_since_last_unload = 0; |
1606 | |
1607 | // Clear any data recorded in the PLAB chunk arrays. |
1608 | if (_survivor_plab_array != NULL) { |
1609 | reset_survivor_plab_arrays(); |
1610 | } |
1611 | |
1612 | // Adjust the per-size allocation stats for the next epoch. |
1613 | _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */); |
1614 | // Restart the "inter sweep timer" for the next epoch. |
1615 | _inter_sweep_timer.reset(); |
1616 | _inter_sweep_timer.start(); |
1617 | |
1618 | // No longer a need to do a concurrent collection for Metaspace. |
1619 | MetaspaceGC::set_should_concurrent_collect(false); |
1620 | |
1621 | heap->post_full_gc_dump(gc_timer); |
1622 | |
1623 | gc_timer->register_gc_end(); |
1624 | |
1625 | gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); |
1626 | |
1627 | // For a mark-sweep-compact, compute_new_size() will be called |
1628 | // in the heap's do_collection() method. |
1629 | } |
1630 | |
1631 | void CMSCollector::print_eden_and_survivor_chunk_arrays() { |
1632 | Log(gc, heap) log; |
1633 | if (!log.is_trace()) { |
1634 | return; |
1635 | } |
1636 | |
1637 | ContiguousSpace* eden_space = _young_gen->eden(); |
1638 | ContiguousSpace* from_space = _young_gen->from(); |
1639 | ContiguousSpace* to_space = _young_gen->to(); |
1640 | // Eden |
1641 | if (_eden_chunk_array != NULL) { |
1642 | log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")" , |
1643 | p2i(eden_space->bottom()), p2i(eden_space->top()), |
1644 | p2i(eden_space->end()), eden_space->capacity()); |
1645 | log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT, |
1646 | _eden_chunk_index, _eden_chunk_capacity); |
1647 | for (size_t i = 0; i < _eden_chunk_index; i++) { |
1648 | log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i])); |
1649 | } |
1650 | } |
1651 | // Survivor |
1652 | if (_survivor_chunk_array != NULL) { |
1653 | log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")" , |
1654 | p2i(from_space->bottom()), p2i(from_space->top()), |
1655 | p2i(from_space->end()), from_space->capacity()); |
1656 | log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT, |
1657 | _survivor_chunk_index, _survivor_chunk_capacity); |
1658 | for (size_t i = 0; i < _survivor_chunk_index; i++) { |
1659 | log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i])); |
1660 | } |
1661 | } |
1662 | } |
1663 | |
1664 | void CMSCollector::getFreelistLocks() const { |
1665 | // Get locks for all free lists in all generations that this |
1666 | // collector is responsible for |
1667 | _cmsGen->freelistLock()->lock_without_safepoint_check(); |
1668 | } |
1669 | |
1670 | void CMSCollector::releaseFreelistLocks() const { |
1671 | // Release locks for all free lists in all generations that this |
1672 | // collector is responsible for |
1673 | _cmsGen->freelistLock()->unlock(); |
1674 | } |
1675 | |
1676 | bool CMSCollector::haveFreelistLocks() const { |
1677 | // Check locks for all free lists in all generations that this |
1678 | // collector is responsible for |
1679 | assert_lock_strong(_cmsGen->freelistLock()); |
1680 | PRODUCT_ONLY(ShouldNotReachHere()); |
1681 | return true; |
1682 | } |
1683 | |
1684 | // A utility class that is used by the CMS collector to |
1685 | // temporarily "release" the foreground collector from its |
1686 | // usual obligation to wait for the background collector to |
1687 | // complete an ongoing phase before proceeding. |
1688 | class ReleaseForegroundGC: public StackObj { |
1689 | private: |
1690 | CMSCollector* _c; |
1691 | public: |
1692 | ReleaseForegroundGC(CMSCollector* c) : _c(c) { |
1693 | assert(_c->_foregroundGCShouldWait, "Else should not need to call" ); |
1694 | MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); |
1695 | // allow a potentially blocked foreground collector to proceed |
1696 | _c->_foregroundGCShouldWait = false; |
1697 | if (_c->_foregroundGCIsActive) { |
1698 | CGC_lock->notify(); |
1699 | } |
1700 | assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
1701 | "Possible deadlock" ); |
1702 | } |
1703 | |
1704 | ~ReleaseForegroundGC() { |
1705 | assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?" ); |
1706 | MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); |
1707 | _c->_foregroundGCShouldWait = true; |
1708 | } |
1709 | }; |
1710 | |
1711 | void CMSCollector::collect_in_background(GCCause::Cause cause) { |
1712 | assert(Thread::current()->is_ConcurrentGC_thread(), |
1713 | "A CMS asynchronous collection is only allowed on a CMS thread." ); |
1714 | |
1715 | CMSHeap* heap = CMSHeap::heap(); |
1716 | { |
1717 | MutexLocker hl(Heap_lock, Mutex::_no_safepoint_check_flag); |
1718 | FreelistLocker fll(this); |
1719 | MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); |
1720 | if (_foregroundGCIsActive) { |
1721 | // The foreground collector is. Skip this |
1722 | // background collection. |
1723 | assert(!_foregroundGCShouldWait, "Should be clear" ); |
1724 | return; |
1725 | } else { |
1726 | assert(_collectorState == Idling, "Should be idling before start." ); |
1727 | _collectorState = InitialMarking; |
1728 | register_gc_start(cause); |
1729 | // Reset the expansion cause, now that we are about to begin |
1730 | // a new cycle. |
1731 | clear_expansion_cause(); |
1732 | |
1733 | // Clear the MetaspaceGC flag since a concurrent collection |
1734 | // is starting but also clear it after the collection. |
1735 | MetaspaceGC::set_should_concurrent_collect(false); |
1736 | } |
1737 | // Decide if we want to enable class unloading as part of the |
1738 | // ensuing concurrent GC cycle. |
1739 | update_should_unload_classes(); |
1740 | _full_gc_requested = false; // acks all outstanding full gc requests |
1741 | _full_gc_cause = GCCause::_no_gc; |
1742 | // Signal that we are about to start a collection |
1743 | heap->increment_total_full_collections(); // ... starting a collection cycle |
1744 | _collection_count_start = heap->total_full_collections(); |
1745 | } |
1746 | |
1747 | size_t prev_used = _cmsGen->used(); |
1748 | |
1749 | // The change of the collection state is normally done at this level; |
1750 | // the exceptions are phases that are executed while the world is |
1751 | // stopped. For those phases the change of state is done while the |
1752 | // world is stopped. For baton passing purposes this allows the |
1753 | // background collector to finish the phase and change state atomically. |
1754 | // The foreground collector cannot wait on a phase that is done |
1755 | // while the world is stopped because the foreground collector already |
1756 | // has the world stopped and would deadlock. |
1757 | while (_collectorState != Idling) { |
1758 | log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d" , |
1759 | p2i(Thread::current()), _collectorState); |
1760 | // The foreground collector |
1761 | // holds the Heap_lock throughout its collection. |
1762 | // holds the CMS token (but not the lock) |
1763 | // except while it is waiting for the background collector to yield. |
1764 | // |
1765 | // The foreground collector should be blocked (not for long) |
1766 | // if the background collector is about to start a phase |
1767 | // executed with world stopped. If the background |
1768 | // collector has already started such a phase, the |
1769 | // foreground collector is blocked waiting for the |
1770 | // Heap_lock. The stop-world phases (InitialMarking and FinalMarking) |
1771 | // are executed in the VM thread. |
1772 | // |
1773 | // The locking order is |
1774 | // PendingListLock (PLL) -- if applicable (FinalMarking) |
1775 | // Heap_lock (both this & PLL locked in VM_CMS_Operation::prologue()) |
1776 | // CMS token (claimed in |
1777 | // stop_world_and_do() --> |
1778 | // safepoint_synchronize() --> |
1779 | // CMSThread::synchronize()) |
1780 | |
1781 | { |
1782 | // Check if the FG collector wants us to yield. |
1783 | CMSTokenSync x(true); // is cms thread |
1784 | if (waitForForegroundGC()) { |
1785 | // We yielded to a foreground GC, nothing more to be |
1786 | // done this round. |
1787 | assert(_foregroundGCShouldWait == false, "We set it to false in " |
1788 | "waitForForegroundGC()" ); |
1789 | log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d" , |
1790 | p2i(Thread::current()), _collectorState); |
1791 | return; |
1792 | } else { |
1793 | // The background collector can run but check to see if the |
1794 | // foreground collector has done a collection while the |
1795 | // background collector was waiting to get the CGC_lock |
1796 | // above. If yes, break so that _foregroundGCShouldWait |
1797 | // is cleared before returning. |
1798 | if (_collectorState == Idling) { |
1799 | break; |
1800 | } |
1801 | } |
1802 | } |
1803 | |
1804 | assert(_foregroundGCShouldWait, "Foreground collector, if active, " |
1805 | "should be waiting" ); |
1806 | |
1807 | switch (_collectorState) { |
1808 | case InitialMarking: |
1809 | { |
1810 | ReleaseForegroundGC x(this); |
1811 | stats().record_cms_begin(); |
1812 | VM_CMS_Initial_Mark initial_mark_op(this); |
1813 | VMThread::execute(&initial_mark_op); |
1814 | } |
1815 | // The collector state may be any legal state at this point |
1816 | // since the background collector may have yielded to the |
1817 | // foreground collector. |
1818 | break; |
1819 | case Marking: |
1820 | // initial marking in checkpointRootsInitialWork has been completed |
1821 | if (markFromRoots()) { // we were successful |
1822 | assert(_collectorState == Precleaning, "Collector state should " |
1823 | "have changed" ); |
1824 | } else { |
1825 | assert(_foregroundGCIsActive, "Internal state inconsistency" ); |
1826 | } |
1827 | break; |
1828 | case Precleaning: |
1829 | // marking from roots in markFromRoots has been completed |
1830 | preclean(); |
1831 | assert(_collectorState == AbortablePreclean || |
1832 | _collectorState == FinalMarking, |
1833 | "Collector state should have changed" ); |
1834 | break; |
1835 | case AbortablePreclean: |
1836 | abortable_preclean(); |
1837 | assert(_collectorState == FinalMarking, "Collector state should " |
1838 | "have changed" ); |
1839 | break; |
1840 | case FinalMarking: |
1841 | { |
1842 | ReleaseForegroundGC x(this); |
1843 | |
1844 | VM_CMS_Final_Remark (this); |
1845 | VMThread::execute(&final_remark_op); |
1846 | } |
1847 | assert(_foregroundGCShouldWait, "block post-condition" ); |
1848 | break; |
1849 | case Sweeping: |
1850 | // final marking in checkpointRootsFinal has been completed |
1851 | sweep(); |
1852 | assert(_collectorState == Resizing, "Collector state change " |
1853 | "to Resizing must be done under the free_list_lock" ); |
1854 | |
1855 | case Resizing: { |
1856 | // Sweeping has been completed... |
1857 | // At this point the background collection has completed. |
1858 | // Don't move the call to compute_new_size() down |
1859 | // into code that might be executed if the background |
1860 | // collection was preempted. |
1861 | { |
1862 | ReleaseForegroundGC x(this); // unblock FG collection |
1863 | MutexLocker y(Heap_lock, Mutex::_no_safepoint_check_flag); |
1864 | CMSTokenSync z(true); // not strictly needed. |
1865 | if (_collectorState == Resizing) { |
1866 | compute_new_size(); |
1867 | save_heap_summary(); |
1868 | _collectorState = Resetting; |
1869 | } else { |
1870 | assert(_collectorState == Idling, "The state should only change" |
1871 | " because the foreground collector has finished the collection" ); |
1872 | } |
1873 | } |
1874 | break; |
1875 | } |
1876 | case Resetting: |
1877 | // CMS heap resizing has been completed |
1878 | reset_concurrent(); |
1879 | assert(_collectorState == Idling, "Collector state should " |
1880 | "have changed" ); |
1881 | |
1882 | MetaspaceGC::set_should_concurrent_collect(false); |
1883 | |
1884 | stats().record_cms_end(); |
1885 | // Don't move the concurrent_phases_end() and compute_new_size() |
1886 | // calls to here because a preempted background collection |
1887 | // has it's state set to "Resetting". |
1888 | break; |
1889 | case Idling: |
1890 | default: |
1891 | ShouldNotReachHere(); |
1892 | break; |
1893 | } |
1894 | log_debug(gc, state)(" Thread " INTPTR_FORMAT " done - next CMS state %d" , |
1895 | p2i(Thread::current()), _collectorState); |
1896 | assert(_foregroundGCShouldWait, "block post-condition" ); |
1897 | } |
1898 | |
1899 | // Should this be in gc_epilogue? |
1900 | heap->counters()->update_counters(); |
1901 | |
1902 | { |
1903 | // Clear _foregroundGCShouldWait and, in the event that the |
1904 | // foreground collector is waiting, notify it, before |
1905 | // returning. |
1906 | MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); |
1907 | _foregroundGCShouldWait = false; |
1908 | if (_foregroundGCIsActive) { |
1909 | CGC_lock->notify(); |
1910 | } |
1911 | assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
1912 | "Possible deadlock" ); |
1913 | } |
1914 | log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d" , |
1915 | p2i(Thread::current()), _collectorState); |
1916 | log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K(" SIZE_FORMAT "K)" , |
1917 | prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K); |
1918 | } |
1919 | |
1920 | void CMSCollector::register_gc_start(GCCause::Cause cause) { |
1921 | _cms_start_registered = true; |
1922 | _gc_timer_cm->register_gc_start(); |
1923 | _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start()); |
1924 | } |
1925 | |
1926 | void CMSCollector::register_gc_end() { |
1927 | if (_cms_start_registered) { |
1928 | report_heap_summary(GCWhen::AfterGC); |
1929 | |
1930 | _gc_timer_cm->register_gc_end(); |
1931 | _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); |
1932 | _cms_start_registered = false; |
1933 | } |
1934 | } |
1935 | |
1936 | void CMSCollector::save_heap_summary() { |
1937 | CMSHeap* heap = CMSHeap::heap(); |
1938 | _last_heap_summary = heap->create_heap_summary(); |
1939 | _last_metaspace_summary = heap->create_metaspace_summary(); |
1940 | } |
1941 | |
1942 | void CMSCollector::report_heap_summary(GCWhen::Type when) { |
1943 | _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary); |
1944 | _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary); |
1945 | } |
1946 | |
1947 | bool CMSCollector::waitForForegroundGC() { |
1948 | bool res = false; |
1949 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
1950 | "CMS thread should have CMS token" ); |
1951 | // Block the foreground collector until the |
1952 | // background collectors decides whether to |
1953 | // yield. |
1954 | MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); |
1955 | _foregroundGCShouldWait = true; |
1956 | if (_foregroundGCIsActive) { |
1957 | // The background collector yields to the |
1958 | // foreground collector and returns a value |
1959 | // indicating that it has yielded. The foreground |
1960 | // collector can proceed. |
1961 | res = true; |
1962 | _foregroundGCShouldWait = false; |
1963 | ConcurrentMarkSweepThread::clear_CMS_flag( |
1964 | ConcurrentMarkSweepThread::CMS_cms_has_token); |
1965 | ConcurrentMarkSweepThread::set_CMS_flag( |
1966 | ConcurrentMarkSweepThread::CMS_cms_wants_token); |
1967 | // Get a possibly blocked foreground thread going |
1968 | CGC_lock->notify(); |
1969 | log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d" , |
1970 | p2i(Thread::current()), _collectorState); |
1971 | while (_foregroundGCIsActive) { |
1972 | CGC_lock->wait_without_safepoint_check(); |
1973 | } |
1974 | ConcurrentMarkSweepThread::set_CMS_flag( |
1975 | ConcurrentMarkSweepThread::CMS_cms_has_token); |
1976 | ConcurrentMarkSweepThread::clear_CMS_flag( |
1977 | ConcurrentMarkSweepThread::CMS_cms_wants_token); |
1978 | } |
1979 | log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d" , |
1980 | p2i(Thread::current()), _collectorState); |
1981 | return res; |
1982 | } |
1983 | |
1984 | // Because of the need to lock the free lists and other structures in |
1985 | // the collector, common to all the generations that the collector is |
1986 | // collecting, we need the gc_prologues of individual CMS generations |
1987 | // delegate to their collector. It may have been simpler had the |
1988 | // current infrastructure allowed one to call a prologue on a |
1989 | // collector. In the absence of that we have the generation's |
1990 | // prologue delegate to the collector, which delegates back |
1991 | // some "local" work to a worker method in the individual generations |
1992 | // that it's responsible for collecting, while itself doing any |
1993 | // work common to all generations it's responsible for. A similar |
1994 | // comment applies to the gc_epilogue()'s. |
1995 | // The role of the variable _between_prologue_and_epilogue is to |
1996 | // enforce the invocation protocol. |
1997 | void CMSCollector::gc_prologue(bool full) { |
1998 | // Call gc_prologue_work() for the CMSGen |
1999 | // we are responsible for. |
2000 | |
2001 | // The following locking discipline assumes that we are only called |
2002 | // when the world is stopped. |
2003 | assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption" ); |
2004 | |
2005 | // The CMSCollector prologue must call the gc_prologues for the |
2006 | // "generations" that it's responsible |
2007 | // for. |
2008 | |
2009 | assert( Thread::current()->is_VM_thread() |
2010 | || ( CMSScavengeBeforeRemark |
2011 | && Thread::current()->is_ConcurrentGC_thread()), |
2012 | "Incorrect thread type for prologue execution" ); |
2013 | |
2014 | if (_between_prologue_and_epilogue) { |
2015 | // We have already been invoked; this is a gc_prologue delegation |
2016 | // from yet another CMS generation that we are responsible for, just |
2017 | // ignore it since all relevant work has already been done. |
2018 | return; |
2019 | } |
2020 | |
2021 | // set a bit saying prologue has been called; cleared in epilogue |
2022 | _between_prologue_and_epilogue = true; |
2023 | // Claim locks for common data structures, then call gc_prologue_work() |
2024 | // for each CMSGen. |
2025 | |
2026 | getFreelistLocks(); // gets free list locks on constituent spaces |
2027 | bitMapLock()->lock_without_safepoint_check(); |
2028 | |
2029 | // Should call gc_prologue_work() for all cms gens we are responsible for |
2030 | bool duringMarking = _collectorState >= Marking |
2031 | && _collectorState < Sweeping; |
2032 | |
2033 | // The young collections clear the modified oops state, which tells if |
2034 | // there are any modified oops in the class. The remark phase also needs |
2035 | // that information. Tell the young collection to save the union of all |
2036 | // modified klasses. |
2037 | if (duringMarking) { |
2038 | _ct->cld_rem_set()->set_accumulate_modified_oops(true); |
2039 | } |
2040 | |
2041 | bool registerClosure = duringMarking; |
2042 | |
2043 | _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar); |
2044 | |
2045 | if (!full) { |
2046 | stats().record_gc0_begin(); |
2047 | } |
2048 | } |
2049 | |
2050 | void ConcurrentMarkSweepGeneration::gc_prologue(bool full) { |
2051 | |
2052 | _capacity_at_prologue = capacity(); |
2053 | _used_at_prologue = used(); |
2054 | |
2055 | // We enable promotion tracking so that card-scanning can recognize |
2056 | // which objects have been promoted during this GC and skip them. |
2057 | for (uint i = 0; i < ParallelGCThreads; i++) { |
2058 | _par_gc_thread_states[i]->promo.startTrackingPromotions(); |
2059 | } |
2060 | |
2061 | // Delegate to CMScollector which knows how to coordinate between |
2062 | // this and any other CMS generations that it is responsible for |
2063 | // collecting. |
2064 | collector()->gc_prologue(full); |
2065 | } |
2066 | |
2067 | // This is a "private" interface for use by this generation's CMSCollector. |
2068 | // Not to be called directly by any other entity (for instance, |
2069 | // GenCollectedHeap, which calls the "public" gc_prologue method above). |
2070 | void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full, |
2071 | bool registerClosure, ModUnionClosure* modUnionClosure) { |
2072 | assert(!incremental_collection_failed(), "Shouldn't be set yet" ); |
2073 | assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL, |
2074 | "Should be NULL" ); |
2075 | if (registerClosure) { |
2076 | cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure); |
2077 | } |
2078 | cmsSpace()->gc_prologue(); |
2079 | // Clear stat counters |
2080 | NOT_PRODUCT( |
2081 | assert(_numObjectsPromoted == 0, "check" ); |
2082 | assert(_numWordsPromoted == 0, "check" ); |
2083 | log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently" , |
2084 | _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord)); |
2085 | _numObjectsAllocated = 0; |
2086 | _numWordsAllocated = 0; |
2087 | ) |
2088 | } |
2089 | |
2090 | void CMSCollector::gc_epilogue(bool full) { |
2091 | // The following locking discipline assumes that we are only called |
2092 | // when the world is stopped. |
2093 | assert(SafepointSynchronize::is_at_safepoint(), |
2094 | "world is stopped assumption" ); |
2095 | |
2096 | // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks |
2097 | // if linear allocation blocks need to be appropriately marked to allow the |
2098 | // the blocks to be parsable. We also check here whether we need to nudge the |
2099 | // CMS collector thread to start a new cycle (if it's not already active). |
2100 | assert( Thread::current()->is_VM_thread() |
2101 | || ( CMSScavengeBeforeRemark |
2102 | && Thread::current()->is_ConcurrentGC_thread()), |
2103 | "Incorrect thread type for epilogue execution" ); |
2104 | |
2105 | if (!_between_prologue_and_epilogue) { |
2106 | // We have already been invoked; this is a gc_epilogue delegation |
2107 | // from yet another CMS generation that we are responsible for, just |
2108 | // ignore it since all relevant work has already been done. |
2109 | return; |
2110 | } |
2111 | assert(haveFreelistLocks(), "must have freelist locks" ); |
2112 | assert_lock_strong(bitMapLock()); |
2113 | |
2114 | _ct->cld_rem_set()->set_accumulate_modified_oops(false); |
2115 | |
2116 | _cmsGen->gc_epilogue_work(full); |
2117 | |
2118 | if (_collectorState == AbortablePreclean || _collectorState == Precleaning) { |
2119 | // in case sampling was not already enabled, enable it |
2120 | _start_sampling = true; |
2121 | } |
2122 | // reset _eden_chunk_array so sampling starts afresh |
2123 | _eden_chunk_index = 0; |
2124 | |
2125 | size_t cms_used = _cmsGen->cmsSpace()->used(); |
2126 | |
2127 | // update performance counters - this uses a special version of |
2128 | // update_counters() that allows the utilization to be passed as a |
2129 | // parameter, avoiding multiple calls to used(). |
2130 | // |
2131 | _cmsGen->update_counters(cms_used); |
2132 | |
2133 | bitMapLock()->unlock(); |
2134 | releaseFreelistLocks(); |
2135 | |
2136 | if (!CleanChunkPoolAsync) { |
2137 | Chunk::clean_chunk_pool(); |
2138 | } |
2139 | |
2140 | set_did_compact(false); |
2141 | _between_prologue_and_epilogue = false; // ready for next cycle |
2142 | } |
2143 | |
2144 | void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) { |
2145 | collector()->gc_epilogue(full); |
2146 | |
2147 | // When using ParNew, promotion tracking should have already been |
2148 | // disabled. However, the prologue (which enables promotion |
2149 | // tracking) and epilogue are called irrespective of the type of |
2150 | // GC. So they will also be called before and after Full GCs, during |
2151 | // which promotion tracking will not be explicitly disabled. So, |
2152 | // it's safer to also disable it here too (to be symmetric with |
2153 | // enabling it in the prologue). |
2154 | for (uint i = 0; i < ParallelGCThreads; i++) { |
2155 | _par_gc_thread_states[i]->promo.stopTrackingPromotions(); |
2156 | } |
2157 | } |
2158 | |
2159 | void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) { |
2160 | assert(!incremental_collection_failed(), "Should have been cleared" ); |
2161 | cmsSpace()->setPreconsumptionDirtyCardClosure(NULL); |
2162 | cmsSpace()->gc_epilogue(); |
2163 | // Print stat counters |
2164 | NOT_PRODUCT( |
2165 | assert(_numObjectsAllocated == 0, "check" ); |
2166 | assert(_numWordsAllocated == 0, "check" ); |
2167 | log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes" , |
2168 | _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord)); |
2169 | _numObjectsPromoted = 0; |
2170 | _numWordsPromoted = 0; |
2171 | ) |
2172 | |
2173 | // Call down the chain in contiguous_available needs the freelistLock |
2174 | // so print this out before releasing the freeListLock. |
2175 | log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes " , contiguous_available()); |
2176 | } |
2177 | |
2178 | #ifndef PRODUCT |
2179 | bool CMSCollector::have_cms_token() { |
2180 | Thread* thr = Thread::current(); |
2181 | if (thr->is_VM_thread()) { |
2182 | return ConcurrentMarkSweepThread::vm_thread_has_cms_token(); |
2183 | } else if (thr->is_ConcurrentGC_thread()) { |
2184 | return ConcurrentMarkSweepThread::cms_thread_has_cms_token(); |
2185 | } else if (thr->is_GC_task_thread()) { |
2186 | return ConcurrentMarkSweepThread::vm_thread_has_cms_token() && |
2187 | ParGCRareEvent_lock->owned_by_self(); |
2188 | } |
2189 | return false; |
2190 | } |
2191 | |
2192 | // Check reachability of the given heap address in CMS generation, |
2193 | // treating all other generations as roots. |
2194 | bool CMSCollector::is_cms_reachable(HeapWord* addr) { |
2195 | // We could "guarantee" below, rather than assert, but I'll |
2196 | // leave these as "asserts" so that an adventurous debugger |
2197 | // could try this in the product build provided some subset of |
2198 | // the conditions were met, provided they were interested in the |
2199 | // results and knew that the computation below wouldn't interfere |
2200 | // with other concurrent computations mutating the structures |
2201 | // being read or written. |
2202 | assert(SafepointSynchronize::is_at_safepoint(), |
2203 | "Else mutations in object graph will make answer suspect" ); |
2204 | assert(have_cms_token(), "Should hold cms token" ); |
2205 | assert(haveFreelistLocks(), "must hold free list locks" ); |
2206 | assert_lock_strong(bitMapLock()); |
2207 | |
2208 | // Clear the marking bit map array before starting, but, just |
2209 | // for kicks, first report if the given address is already marked |
2210 | tty->print_cr("Start: Address " PTR_FORMAT " is%s marked" , p2i(addr), |
2211 | _markBitMap.isMarked(addr) ? "" : " not" ); |
2212 | |
2213 | if (verify_after_remark()) { |
2214 | MutexLocker x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); |
2215 | bool result = verification_mark_bm()->isMarked(addr); |
2216 | tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked" , p2i(addr), |
2217 | result ? "IS" : "is NOT" ); |
2218 | return result; |
2219 | } else { |
2220 | tty->print_cr("Could not compute result" ); |
2221 | return false; |
2222 | } |
2223 | } |
2224 | #endif |
2225 | |
2226 | void |
2227 | CMSCollector::print_on_error(outputStream* st) { |
2228 | CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector; |
2229 | if (collector != NULL) { |
2230 | CMSBitMap* bitmap = &collector->_markBitMap; |
2231 | st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap)); |
2232 | bitmap->print_on_error(st, " Bits: " ); |
2233 | |
2234 | st->cr(); |
2235 | |
2236 | CMSBitMap* mut_bitmap = &collector->_modUnionTable; |
2237 | st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap)); |
2238 | mut_bitmap->print_on_error(st, " Bits: " ); |
2239 | } |
2240 | } |
2241 | |
2242 | //////////////////////////////////////////////////////// |
2243 | // CMS Verification Support |
2244 | //////////////////////////////////////////////////////// |
2245 | // Following the remark phase, the following invariant |
2246 | // should hold -- each object in the CMS heap which is |
2247 | // marked in markBitMap() should be marked in the verification_mark_bm(). |
2248 | |
2249 | class VerifyMarkedClosure: public BitMapClosure { |
2250 | CMSBitMap* _marks; |
2251 | bool _failed; |
2252 | |
2253 | public: |
2254 | VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {} |
2255 | |
2256 | bool do_bit(size_t offset) { |
2257 | HeapWord* addr = _marks->offsetToHeapWord(offset); |
2258 | if (!_marks->isMarked(addr)) { |
2259 | Log(gc, verify) log; |
2260 | ResourceMark rm; |
2261 | LogStream ls(log.error()); |
2262 | oop(addr)->print_on(&ls); |
2263 | log.error(" (" INTPTR_FORMAT " should have been marked)" , p2i(addr)); |
2264 | _failed = true; |
2265 | } |
2266 | return true; |
2267 | } |
2268 | |
2269 | bool failed() { return _failed; } |
2270 | }; |
2271 | |
2272 | bool CMSCollector::() { |
2273 | GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking." ); |
2274 | MutexLocker ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); |
2275 | static bool init = false; |
2276 | |
2277 | assert(SafepointSynchronize::is_at_safepoint(), |
2278 | "Else mutations in object graph will make answer suspect" ); |
2279 | assert(have_cms_token(), |
2280 | "Else there may be mutual interference in use of " |
2281 | " verification data structures" ); |
2282 | assert(_collectorState > Marking && _collectorState <= Sweeping, |
2283 | "Else marking info checked here may be obsolete" ); |
2284 | assert(haveFreelistLocks(), "must hold free list locks" ); |
2285 | assert_lock_strong(bitMapLock()); |
2286 | |
2287 | |
2288 | // Allocate marking bit map if not already allocated |
2289 | if (!init) { // first time |
2290 | if (!verification_mark_bm()->allocate(_span)) { |
2291 | return false; |
2292 | } |
2293 | init = true; |
2294 | } |
2295 | |
2296 | assert(verification_mark_stack()->isEmpty(), "Should be empty" ); |
2297 | |
2298 | // Turn off refs discovery -- so we will be tracing through refs. |
2299 | // This is as intended, because by this time |
2300 | // GC must already have cleared any refs that need to be cleared, |
2301 | // and traced those that need to be marked; moreover, |
2302 | // the marking done here is not going to interfere in any |
2303 | // way with the marking information used by GC. |
2304 | NoRefDiscovery no_discovery(ref_processor()); |
2305 | |
2306 | #if COMPILER2_OR_JVMCI |
2307 | DerivedPointerTableDeactivate dpt_deact; |
2308 | #endif |
2309 | |
2310 | // Clear any marks from a previous round |
2311 | verification_mark_bm()->clear_all(); |
2312 | assert(verification_mark_stack()->isEmpty(), "markStack should be empty" ); |
2313 | verify_work_stacks_empty(); |
2314 | |
2315 | CMSHeap* heap = CMSHeap::heap(); |
2316 | heap->ensure_parsability(false); // fill TLABs, but no need to retire them |
2317 | // Update the saved marks which may affect the root scans. |
2318 | heap->save_marks(); |
2319 | |
2320 | if (CMSRemarkVerifyVariant == 1) { |
2321 | // In this first variant of verification, we complete |
2322 | // all marking, then check if the new marks-vector is |
2323 | // a subset of the CMS marks-vector. |
2324 | verify_after_remark_work_1(); |
2325 | } else { |
2326 | guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2" ); |
2327 | // In this second variant of verification, we flag an error |
2328 | // (i.e. an object reachable in the new marks-vector not reachable |
2329 | // in the CMS marks-vector) immediately, also indicating the |
2330 | // identify of an object (A) that references the unmarked object (B) -- |
2331 | // presumably, a mutation to A failed to be picked up by preclean/remark? |
2332 | verify_after_remark_work_2(); |
2333 | } |
2334 | |
2335 | return true; |
2336 | } |
2337 | |
2338 | void CMSCollector::() { |
2339 | ResourceMark rm; |
2340 | HandleMark hm; |
2341 | CMSHeap* heap = CMSHeap::heap(); |
2342 | |
2343 | // Get a clear set of claim bits for the roots processing to work with. |
2344 | ClassLoaderDataGraph::clear_claimed_marks(); |
2345 | |
2346 | // Mark from roots one level into CMS |
2347 | MarkRefsIntoClosure notOlder(_span, verification_mark_bm()); |
2348 | heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. |
2349 | |
2350 | { |
2351 | StrongRootsScope srs(1); |
2352 | |
2353 | heap->cms_process_roots(&srs, |
2354 | true, // young gen as roots |
2355 | GenCollectedHeap::ScanningOption(roots_scanning_options()), |
2356 | should_unload_classes(), |
2357 | ¬Older, |
2358 | NULL); |
2359 | } |
2360 | |
2361 | // Now mark from the roots |
2362 | MarkFromRootsClosure markFromRootsClosure(this, _span, |
2363 | verification_mark_bm(), verification_mark_stack(), |
2364 | false /* don't yield */, true /* verifying */); |
2365 | assert(_restart_addr == NULL, "Expected pre-condition" ); |
2366 | verification_mark_bm()->iterate(&markFromRootsClosure); |
2367 | while (_restart_addr != NULL) { |
2368 | // Deal with stack overflow: by restarting at the indicated |
2369 | // address. |
2370 | HeapWord* ra = _restart_addr; |
2371 | markFromRootsClosure.reset(ra); |
2372 | _restart_addr = NULL; |
2373 | verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); |
2374 | } |
2375 | assert(verification_mark_stack()->isEmpty(), "Should have been drained" ); |
2376 | verify_work_stacks_empty(); |
2377 | |
2378 | // Marking completed -- now verify that each bit marked in |
2379 | // verification_mark_bm() is also marked in markBitMap(); flag all |
2380 | // errors by printing corresponding objects. |
2381 | VerifyMarkedClosure vcl(markBitMap()); |
2382 | verification_mark_bm()->iterate(&vcl); |
2383 | if (vcl.failed()) { |
2384 | Log(gc, verify) log; |
2385 | log.error("Failed marking verification after remark" ); |
2386 | ResourceMark rm; |
2387 | LogStream ls(log.error()); |
2388 | heap->print_on(&ls); |
2389 | fatal("CMS: failed marking verification after remark" ); |
2390 | } |
2391 | } |
2392 | |
2393 | class VerifyCLDOopsCLDClosure : public CLDClosure { |
2394 | class VerifyCLDOopsClosure : public OopClosure { |
2395 | CMSBitMap* _bitmap; |
2396 | public: |
2397 | VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { } |
2398 | void do_oop(oop* p) { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked" ); } |
2399 | void do_oop(narrowOop* p) { ShouldNotReachHere(); } |
2400 | } _oop_closure; |
2401 | public: |
2402 | VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {} |
2403 | void do_cld(ClassLoaderData* cld) { |
2404 | cld->oops_do(&_oop_closure, ClassLoaderData::_claim_none, false); |
2405 | } |
2406 | }; |
2407 | |
2408 | void CMSCollector::() { |
2409 | ResourceMark rm; |
2410 | HandleMark hm; |
2411 | CMSHeap* heap = CMSHeap::heap(); |
2412 | |
2413 | // Get a clear set of claim bits for the roots processing to work with. |
2414 | ClassLoaderDataGraph::clear_claimed_marks(); |
2415 | |
2416 | // Mark from roots one level into CMS |
2417 | MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(), |
2418 | markBitMap()); |
2419 | CLDToOopClosure cld_closure(¬Older, ClassLoaderData::_claim_strong); |
2420 | |
2421 | heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. |
2422 | |
2423 | { |
2424 | StrongRootsScope srs(1); |
2425 | |
2426 | heap->cms_process_roots(&srs, |
2427 | true, // young gen as roots |
2428 | GenCollectedHeap::ScanningOption(roots_scanning_options()), |
2429 | should_unload_classes(), |
2430 | ¬Older, |
2431 | &cld_closure); |
2432 | } |
2433 | |
2434 | // Now mark from the roots |
2435 | MarkFromRootsVerifyClosure markFromRootsClosure(this, _span, |
2436 | verification_mark_bm(), markBitMap(), verification_mark_stack()); |
2437 | assert(_restart_addr == NULL, "Expected pre-condition" ); |
2438 | verification_mark_bm()->iterate(&markFromRootsClosure); |
2439 | while (_restart_addr != NULL) { |
2440 | // Deal with stack overflow: by restarting at the indicated |
2441 | // address. |
2442 | HeapWord* ra = _restart_addr; |
2443 | markFromRootsClosure.reset(ra); |
2444 | _restart_addr = NULL; |
2445 | verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); |
2446 | } |
2447 | assert(verification_mark_stack()->isEmpty(), "Should have been drained" ); |
2448 | verify_work_stacks_empty(); |
2449 | |
2450 | VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm()); |
2451 | ClassLoaderDataGraph::cld_do(&verify_cld_oops); |
2452 | |
2453 | // Marking completed -- now verify that each bit marked in |
2454 | // verification_mark_bm() is also marked in markBitMap(); flag all |
2455 | // errors by printing corresponding objects. |
2456 | VerifyMarkedClosure vcl(markBitMap()); |
2457 | verification_mark_bm()->iterate(&vcl); |
2458 | assert(!vcl.failed(), "Else verification above should not have succeeded" ); |
2459 | } |
2460 | |
2461 | void ConcurrentMarkSweepGeneration::save_marks() { |
2462 | // delegate to CMS space |
2463 | cmsSpace()->save_marks(); |
2464 | } |
2465 | |
2466 | bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() { |
2467 | return cmsSpace()->no_allocs_since_save_marks(); |
2468 | } |
2469 | |
2470 | void |
2471 | ConcurrentMarkSweepGeneration::oop_iterate(OopIterateClosure* cl) { |
2472 | if (freelistLock()->owned_by_self()) { |
2473 | Generation::oop_iterate(cl); |
2474 | } else { |
2475 | MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag); |
2476 | Generation::oop_iterate(cl); |
2477 | } |
2478 | } |
2479 | |
2480 | void |
2481 | ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) { |
2482 | if (freelistLock()->owned_by_self()) { |
2483 | Generation::object_iterate(cl); |
2484 | } else { |
2485 | MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag); |
2486 | Generation::object_iterate(cl); |
2487 | } |
2488 | } |
2489 | |
2490 | void |
2491 | ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) { |
2492 | if (freelistLock()->owned_by_self()) { |
2493 | Generation::safe_object_iterate(cl); |
2494 | } else { |
2495 | MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag); |
2496 | Generation::safe_object_iterate(cl); |
2497 | } |
2498 | } |
2499 | |
2500 | void |
2501 | ConcurrentMarkSweepGeneration::post_compact() { |
2502 | } |
2503 | |
2504 | void |
2505 | ConcurrentMarkSweepGeneration::prepare_for_verify() { |
2506 | // Fix the linear allocation blocks to look like free blocks. |
2507 | |
2508 | // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those |
2509 | // are not called when the heap is verified during universe initialization and |
2510 | // at vm shutdown. |
2511 | if (freelistLock()->owned_by_self()) { |
2512 | cmsSpace()->prepare_for_verify(); |
2513 | } else { |
2514 | MutexLocker fll(freelistLock(), Mutex::_no_safepoint_check_flag); |
2515 | cmsSpace()->prepare_for_verify(); |
2516 | } |
2517 | } |
2518 | |
2519 | void |
2520 | ConcurrentMarkSweepGeneration::verify() { |
2521 | // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those |
2522 | // are not called when the heap is verified during universe initialization and |
2523 | // at vm shutdown. |
2524 | if (freelistLock()->owned_by_self()) { |
2525 | cmsSpace()->verify(); |
2526 | } else { |
2527 | MutexLocker fll(freelistLock(), Mutex::_no_safepoint_check_flag); |
2528 | cmsSpace()->verify(); |
2529 | } |
2530 | } |
2531 | |
2532 | void CMSCollector::verify() { |
2533 | _cmsGen->verify(); |
2534 | } |
2535 | |
2536 | #ifndef PRODUCT |
2537 | bool CMSCollector::overflow_list_is_empty() const { |
2538 | assert(_num_par_pushes >= 0, "Inconsistency" ); |
2539 | if (_overflow_list == NULL) { |
2540 | assert(_num_par_pushes == 0, "Inconsistency" ); |
2541 | } |
2542 | return _overflow_list == NULL; |
2543 | } |
2544 | |
2545 | // The methods verify_work_stacks_empty() and verify_overflow_empty() |
2546 | // merely consolidate assertion checks that appear to occur together frequently. |
2547 | void CMSCollector::verify_work_stacks_empty() const { |
2548 | assert(_markStack.isEmpty(), "Marking stack should be empty" ); |
2549 | assert(overflow_list_is_empty(), "Overflow list should be empty" ); |
2550 | } |
2551 | |
2552 | void CMSCollector::verify_overflow_empty() const { |
2553 | assert(overflow_list_is_empty(), "Overflow list should be empty" ); |
2554 | assert(no_preserved_marks(), "No preserved marks" ); |
2555 | } |
2556 | #endif // PRODUCT |
2557 | |
2558 | // Decide if we want to enable class unloading as part of the |
2559 | // ensuing concurrent GC cycle. We will collect and |
2560 | // unload classes if it's the case that: |
2561 | // (a) class unloading is enabled at the command line, and |
2562 | // (b) old gen is getting really full |
2563 | // NOTE: Provided there is no change in the state of the heap between |
2564 | // calls to this method, it should have idempotent results. Moreover, |
2565 | // its results should be monotonically increasing (i.e. going from 0 to 1, |
2566 | // but not 1 to 0) between successive calls between which the heap was |
2567 | // not collected. For the implementation below, it must thus rely on |
2568 | // the property that concurrent_cycles_since_last_unload() |
2569 | // will not decrease unless a collection cycle happened and that |
2570 | // _cmsGen->is_too_full() are |
2571 | // themselves also monotonic in that sense. See check_monotonicity() |
2572 | // below. |
2573 | void CMSCollector::update_should_unload_classes() { |
2574 | _should_unload_classes = false; |
2575 | if (CMSClassUnloadingEnabled) { |
2576 | _should_unload_classes = (concurrent_cycles_since_last_unload() >= |
2577 | CMSClassUnloadingMaxInterval) |
2578 | || _cmsGen->is_too_full(); |
2579 | } |
2580 | } |
2581 | |
2582 | bool ConcurrentMarkSweepGeneration::is_too_full() const { |
2583 | bool res = should_concurrent_collect(); |
2584 | res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0); |
2585 | return res; |
2586 | } |
2587 | |
2588 | void CMSCollector::setup_cms_unloading_and_verification_state() { |
2589 | const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC |
2590 | || VerifyBeforeExit; |
2591 | const int rso = GenCollectedHeap::SO_AllCodeCache; |
2592 | |
2593 | // We set the proper root for this CMS cycle here. |
2594 | if (should_unload_classes()) { // Should unload classes this cycle |
2595 | remove_root_scanning_option(rso); // Shrink the root set appropriately |
2596 | set_verifying(should_verify); // Set verification state for this cycle |
2597 | return; // Nothing else needs to be done at this time |
2598 | } |
2599 | |
2600 | // Not unloading classes this cycle |
2601 | assert(!should_unload_classes(), "Inconsistency!" ); |
2602 | |
2603 | // If we are not unloading classes then add SO_AllCodeCache to root |
2604 | // scanning options. |
2605 | add_root_scanning_option(rso); |
2606 | |
2607 | if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) { |
2608 | set_verifying(true); |
2609 | } else if (verifying() && !should_verify) { |
2610 | // We were verifying, but some verification flags got disabled. |
2611 | set_verifying(false); |
2612 | // Exclude symbols, strings and code cache elements from root scanning to |
2613 | // reduce IM and RM pauses. |
2614 | remove_root_scanning_option(rso); |
2615 | } |
2616 | } |
2617 | |
2618 | |
2619 | #ifndef PRODUCT |
2620 | HeapWord* CMSCollector::block_start(const void* p) const { |
2621 | const HeapWord* addr = (HeapWord*)p; |
2622 | if (_span.contains(p)) { |
2623 | if (_cmsGen->cmsSpace()->is_in_reserved(addr)) { |
2624 | return _cmsGen->cmsSpace()->block_start(p); |
2625 | } |
2626 | } |
2627 | return NULL; |
2628 | } |
2629 | #endif |
2630 | |
2631 | HeapWord* |
2632 | ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size, |
2633 | bool tlab, |
2634 | bool parallel) { |
2635 | CMSSynchronousYieldRequest yr; |
2636 | assert(!tlab, "Can't deal with TLAB allocation" ); |
2637 | MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag); |
2638 | expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation); |
2639 | if (GCExpandToAllocateDelayMillis > 0) { |
2640 | os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); |
2641 | } |
2642 | return have_lock_and_allocate(word_size, tlab); |
2643 | } |
2644 | |
2645 | void ConcurrentMarkSweepGeneration::expand_for_gc_cause( |
2646 | size_t bytes, |
2647 | size_t expand_bytes, |
2648 | CMSExpansionCause::Cause cause) |
2649 | { |
2650 | |
2651 | bool success = expand(bytes, expand_bytes); |
2652 | |
2653 | // remember why we expanded; this information is used |
2654 | // by shouldConcurrentCollect() when making decisions on whether to start |
2655 | // a new CMS cycle. |
2656 | if (success) { |
2657 | set_expansion_cause(cause); |
2658 | log_trace(gc)("Expanded CMS gen for %s" , CMSExpansionCause::to_string(cause)); |
2659 | } |
2660 | } |
2661 | |
2662 | HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) { |
2663 | HeapWord* res = NULL; |
2664 | MutexLocker x(ParGCRareEvent_lock); |
2665 | while (true) { |
2666 | // Expansion by some other thread might make alloc OK now: |
2667 | res = ps->lab.alloc(word_sz); |
2668 | if (res != NULL) return res; |
2669 | // If there's not enough expansion space available, give up. |
2670 | if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) { |
2671 | return NULL; |
2672 | } |
2673 | // Otherwise, we try expansion. |
2674 | expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab); |
2675 | // Now go around the loop and try alloc again; |
2676 | // A competing par_promote might beat us to the expansion space, |
2677 | // so we may go around the loop again if promotion fails again. |
2678 | if (GCExpandToAllocateDelayMillis > 0) { |
2679 | os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); |
2680 | } |
2681 | } |
2682 | } |
2683 | |
2684 | |
2685 | bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space( |
2686 | PromotionInfo* promo) { |
2687 | MutexLocker x(ParGCRareEvent_lock); |
2688 | size_t refill_size_bytes = promo->refillSize() * HeapWordSize; |
2689 | while (true) { |
2690 | // Expansion by some other thread might make alloc OK now: |
2691 | if (promo->ensure_spooling_space()) { |
2692 | assert(promo->has_spooling_space(), |
2693 | "Post-condition of successful ensure_spooling_space()" ); |
2694 | return true; |
2695 | } |
2696 | // If there's not enough expansion space available, give up. |
2697 | if (_virtual_space.uncommitted_size() < refill_size_bytes) { |
2698 | return false; |
2699 | } |
2700 | // Otherwise, we try expansion. |
2701 | expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space); |
2702 | // Now go around the loop and try alloc again; |
2703 | // A competing allocation might beat us to the expansion space, |
2704 | // so we may go around the loop again if allocation fails again. |
2705 | if (GCExpandToAllocateDelayMillis > 0) { |
2706 | os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); |
2707 | } |
2708 | } |
2709 | } |
2710 | |
2711 | void ConcurrentMarkSweepGeneration::shrink(size_t bytes) { |
2712 | // Only shrink if a compaction was done so that all the free space |
2713 | // in the generation is in a contiguous block at the end. |
2714 | if (did_compact()) { |
2715 | CardGeneration::shrink(bytes); |
2716 | } |
2717 | } |
2718 | |
2719 | void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() { |
2720 | assert_locked_or_safepoint(Heap_lock); |
2721 | } |
2722 | |
2723 | void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) { |
2724 | assert_locked_or_safepoint(Heap_lock); |
2725 | assert_lock_strong(freelistLock()); |
2726 | log_trace(gc)("Shrinking of CMS not yet implemented" ); |
2727 | return; |
2728 | } |
2729 | |
2730 | |
2731 | // Simple ctor/dtor wrapper for accounting & timer chores around concurrent |
2732 | // phases. |
2733 | class CMSPhaseAccounting: public StackObj { |
2734 | public: |
2735 | CMSPhaseAccounting(CMSCollector *collector, |
2736 | const char *title); |
2737 | ~CMSPhaseAccounting(); |
2738 | |
2739 | private: |
2740 | CMSCollector *_collector; |
2741 | const char *_title; |
2742 | GCTraceConcTime(Info, gc) _trace_time; |
2743 | |
2744 | public: |
2745 | // Not MT-safe; so do not pass around these StackObj's |
2746 | // where they may be accessed by other threads. |
2747 | double wallclock_millis() { |
2748 | return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time()); |
2749 | } |
2750 | }; |
2751 | |
2752 | CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector, |
2753 | const char *title) : |
2754 | _collector(collector), _title(title), _trace_time(title) { |
2755 | |
2756 | _collector->resetYields(); |
2757 | _collector->resetTimer(); |
2758 | _collector->startTimer(); |
2759 | _collector->gc_timer_cm()->register_gc_concurrent_start(title); |
2760 | } |
2761 | |
2762 | CMSPhaseAccounting::~CMSPhaseAccounting() { |
2763 | _collector->gc_timer_cm()->register_gc_concurrent_end(); |
2764 | _collector->stopTimer(); |
2765 | log_debug(gc)("Concurrent active time: %.3fms" , TimeHelper::counter_to_millis(_collector->timerTicks())); |
2766 | log_trace(gc)(" (CMS %s yielded %d times)" , _title, _collector->yields()); |
2767 | } |
2768 | |
2769 | // CMS work |
2770 | |
2771 | // The common parts of CMSParInitialMarkTask and CMSParRemarkTask. |
2772 | class CMSParMarkTask : public AbstractGangTask { |
2773 | protected: |
2774 | CMSCollector* _collector; |
2775 | uint _n_workers; |
2776 | CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) : |
2777 | AbstractGangTask(name), |
2778 | _collector(collector), |
2779 | _n_workers(n_workers) {} |
2780 | // Work method in support of parallel rescan ... of young gen spaces |
2781 | void do_young_space_rescan(OopsInGenClosure* cl, |
2782 | ContiguousSpace* space, |
2783 | HeapWord** chunk_array, size_t chunk_top); |
2784 | void work_on_young_gen_roots(OopsInGenClosure* cl); |
2785 | }; |
2786 | |
2787 | // Parallel initial mark task |
2788 | class CMSParInitialMarkTask: public CMSParMarkTask { |
2789 | StrongRootsScope* _strong_roots_scope; |
2790 | public: |
2791 | CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) : |
2792 | CMSParMarkTask("Scan roots and young gen for initial mark in parallel" , collector, n_workers), |
2793 | _strong_roots_scope(strong_roots_scope) {} |
2794 | void work(uint worker_id); |
2795 | }; |
2796 | |
2797 | // Checkpoint the roots into this generation from outside |
2798 | // this generation. [Note this initial checkpoint need only |
2799 | // be approximate -- we'll do a catch up phase subsequently.] |
2800 | void CMSCollector::checkpointRootsInitial() { |
2801 | assert(_collectorState == InitialMarking, "Wrong collector state" ); |
2802 | check_correct_thread_executing(); |
2803 | TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause()); |
2804 | |
2805 | save_heap_summary(); |
2806 | report_heap_summary(GCWhen::BeforeGC); |
2807 | |
2808 | ReferenceProcessor* rp = ref_processor(); |
2809 | assert(_restart_addr == NULL, "Control point invariant" ); |
2810 | { |
2811 | // acquire locks for subsequent manipulations |
2812 | MutexLocker x(bitMapLock(), |
2813 | Mutex::_no_safepoint_check_flag); |
2814 | checkpointRootsInitialWork(); |
2815 | // enable ("weak") refs discovery |
2816 | rp->enable_discovery(); |
2817 | _collectorState = Marking; |
2818 | } |
2819 | } |
2820 | |
2821 | void CMSCollector::checkpointRootsInitialWork() { |
2822 | assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped" ); |
2823 | assert(_collectorState == InitialMarking, "just checking" ); |
2824 | |
2825 | // Already have locks. |
2826 | assert_lock_strong(bitMapLock()); |
2827 | assert(_markBitMap.isAllClear(), "was reset at end of previous cycle" ); |
2828 | |
2829 | // Setup the verification and class unloading state for this |
2830 | // CMS collection cycle. |
2831 | setup_cms_unloading_and_verification_state(); |
2832 | |
2833 | GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork" , _gc_timer_cm); |
2834 | |
2835 | // Reset all the PLAB chunk arrays if necessary. |
2836 | if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) { |
2837 | reset_survivor_plab_arrays(); |
2838 | } |
2839 | |
2840 | ResourceMark rm; |
2841 | HandleMark hm; |
2842 | |
2843 | MarkRefsIntoClosure notOlder(_span, &_markBitMap); |
2844 | CMSHeap* heap = CMSHeap::heap(); |
2845 | |
2846 | verify_work_stacks_empty(); |
2847 | verify_overflow_empty(); |
2848 | |
2849 | heap->ensure_parsability(false); // fill TLABs, but no need to retire them |
2850 | // Update the saved marks which may affect the root scans. |
2851 | heap->save_marks(); |
2852 | |
2853 | // weak reference processing has not started yet. |
2854 | ref_processor()->set_enqueuing_is_done(false); |
2855 | |
2856 | // Need to remember all newly created CLDs, |
2857 | // so that we can guarantee that the remark finds them. |
2858 | ClassLoaderDataGraph::remember_new_clds(true); |
2859 | |
2860 | // Whenever a CLD is found, it will be claimed before proceeding to mark |
2861 | // the klasses. The claimed marks need to be cleared before marking starts. |
2862 | ClassLoaderDataGraph::clear_claimed_marks(); |
2863 | |
2864 | print_eden_and_survivor_chunk_arrays(); |
2865 | |
2866 | { |
2867 | #if COMPILER2_OR_JVMCI |
2868 | DerivedPointerTableDeactivate dpt_deact; |
2869 | #endif |
2870 | if (CMSParallelInitialMarkEnabled) { |
2871 | // The parallel version. |
2872 | WorkGang* workers = heap->workers(); |
2873 | assert(workers != NULL, "Need parallel worker threads." ); |
2874 | uint n_workers = workers->active_workers(); |
2875 | |
2876 | StrongRootsScope srs(n_workers); |
2877 | |
2878 | CMSParInitialMarkTask tsk(this, &srs, n_workers); |
2879 | initialize_sequential_subtasks_for_young_gen_rescan(n_workers); |
2880 | // If the total workers is greater than 1, then multiple workers |
2881 | // may be used at some time and the initialization has been set |
2882 | // such that the single threaded path cannot be used. |
2883 | if (workers->total_workers() > 1) { |
2884 | workers->run_task(&tsk); |
2885 | } else { |
2886 | tsk.work(0); |
2887 | } |
2888 | } else { |
2889 | // The serial version. |
2890 | CLDToOopClosure cld_closure(¬Older, ClassLoaderData::_claim_strong); |
2891 | heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. |
2892 | |
2893 | StrongRootsScope srs(1); |
2894 | |
2895 | heap->cms_process_roots(&srs, |
2896 | true, // young gen as roots |
2897 | GenCollectedHeap::ScanningOption(roots_scanning_options()), |
2898 | should_unload_classes(), |
2899 | ¬Older, |
2900 | &cld_closure); |
2901 | } |
2902 | } |
2903 | |
2904 | // Clear mod-union table; it will be dirtied in the prologue of |
2905 | // CMS generation per each young generation collection. |
2906 | |
2907 | assert(_modUnionTable.isAllClear(), |
2908 | "Was cleared in most recent final checkpoint phase" |
2909 | " or no bits are set in the gc_prologue before the start of the next " |
2910 | "subsequent marking phase." ); |
2911 | |
2912 | assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be" ); |
2913 | |
2914 | // Save the end of the used_region of the constituent generations |
2915 | // to be used to limit the extent of sweep in each generation. |
2916 | save_sweep_limits(); |
2917 | verify_overflow_empty(); |
2918 | } |
2919 | |
2920 | bool CMSCollector::markFromRoots() { |
2921 | // we might be tempted to assert that: |
2922 | // assert(!SafepointSynchronize::is_at_safepoint(), |
2923 | // "inconsistent argument?"); |
2924 | // However that wouldn't be right, because it's possible that |
2925 | // a safepoint is indeed in progress as a young generation |
2926 | // stop-the-world GC happens even as we mark in this generation. |
2927 | assert(_collectorState == Marking, "inconsistent state?" ); |
2928 | check_correct_thread_executing(); |
2929 | verify_overflow_empty(); |
2930 | |
2931 | // Weak ref discovery note: We may be discovering weak |
2932 | // refs in this generation concurrent (but interleaved) with |
2933 | // weak ref discovery by the young generation collector. |
2934 | |
2935 | CMSTokenSyncWithLocks ts(true, bitMapLock()); |
2936 | GCTraceCPUTime tcpu; |
2937 | CMSPhaseAccounting pa(this, "Concurrent Mark" ); |
2938 | bool res = markFromRootsWork(); |
2939 | if (res) { |
2940 | _collectorState = Precleaning; |
2941 | } else { // We failed and a foreground collection wants to take over |
2942 | assert(_foregroundGCIsActive, "internal state inconsistency" ); |
2943 | assert(_restart_addr == NULL, "foreground will restart from scratch" ); |
2944 | log_debug(gc)("bailing out to foreground collection" ); |
2945 | } |
2946 | verify_overflow_empty(); |
2947 | return res; |
2948 | } |
2949 | |
2950 | bool CMSCollector::markFromRootsWork() { |
2951 | // iterate over marked bits in bit map, doing a full scan and mark |
2952 | // from these roots using the following algorithm: |
2953 | // . if oop is to the right of the current scan pointer, |
2954 | // mark corresponding bit (we'll process it later) |
2955 | // . else (oop is to left of current scan pointer) |
2956 | // push oop on marking stack |
2957 | // . drain the marking stack |
2958 | |
2959 | // Note that when we do a marking step we need to hold the |
2960 | // bit map lock -- recall that direct allocation (by mutators) |
2961 | // and promotion (by the young generation collector) is also |
2962 | // marking the bit map. [the so-called allocate live policy.] |
2963 | // Because the implementation of bit map marking is not |
2964 | // robust wrt simultaneous marking of bits in the same word, |
2965 | // we need to make sure that there is no such interference |
2966 | // between concurrent such updates. |
2967 | |
2968 | // already have locks |
2969 | assert_lock_strong(bitMapLock()); |
2970 | |
2971 | verify_work_stacks_empty(); |
2972 | verify_overflow_empty(); |
2973 | bool result = false; |
2974 | if (CMSConcurrentMTEnabled && ConcGCThreads > 0) { |
2975 | result = do_marking_mt(); |
2976 | } else { |
2977 | result = do_marking_st(); |
2978 | } |
2979 | return result; |
2980 | } |
2981 | |
2982 | // Forward decl |
2983 | class CMSConcMarkingTask; |
2984 | |
2985 | class CMSConcMarkingParallelTerminator: public ParallelTaskTerminator { |
2986 | CMSCollector* _collector; |
2987 | CMSConcMarkingTask* _task; |
2988 | public: |
2989 | virtual void yield(); |
2990 | |
2991 | // "n_threads" is the number of threads to be terminated. |
2992 | // "queue_set" is a set of work queues of other threads. |
2993 | // "collector" is the CMS collector associated with this task terminator. |
2994 | // "yield" indicates whether we need the gang as a whole to yield. |
2995 | CMSConcMarkingParallelTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : |
2996 | ParallelTaskTerminator(n_threads, queue_set), |
2997 | _collector(collector) { } |
2998 | |
2999 | void set_task(CMSConcMarkingTask* task) { |
3000 | _task = task; |
3001 | } |
3002 | }; |
3003 | |
3004 | class CMSConcMarkingOWSTTerminator: public OWSTTaskTerminator { |
3005 | CMSCollector* _collector; |
3006 | CMSConcMarkingTask* _task; |
3007 | public: |
3008 | virtual void yield(); |
3009 | |
3010 | // "n_threads" is the number of threads to be terminated. |
3011 | // "queue_set" is a set of work queues of other threads. |
3012 | // "collector" is the CMS collector associated with this task terminator. |
3013 | // "yield" indicates whether we need the gang as a whole to yield. |
3014 | CMSConcMarkingOWSTTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : |
3015 | OWSTTaskTerminator(n_threads, queue_set), |
3016 | _collector(collector) { } |
3017 | |
3018 | void set_task(CMSConcMarkingTask* task) { |
3019 | _task = task; |
3020 | } |
3021 | }; |
3022 | |
3023 | class CMSConcMarkingTaskTerminator { |
3024 | private: |
3025 | ParallelTaskTerminator* _term; |
3026 | public: |
3027 | CMSConcMarkingTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) { |
3028 | if (UseOWSTTaskTerminator) { |
3029 | _term = new CMSConcMarkingOWSTTerminator(n_threads, queue_set, collector); |
3030 | } else { |
3031 | _term = new CMSConcMarkingParallelTerminator(n_threads, queue_set, collector); |
3032 | } |
3033 | } |
3034 | ~CMSConcMarkingTaskTerminator() { |
3035 | assert(_term != NULL, "Must not be NULL" ); |
3036 | delete _term; |
3037 | } |
3038 | |
3039 | void set_task(CMSConcMarkingTask* task); |
3040 | ParallelTaskTerminator* terminator() const { return _term; } |
3041 | }; |
3042 | |
3043 | class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator { |
3044 | CMSConcMarkingTask* _task; |
3045 | public: |
3046 | bool should_exit_termination(); |
3047 | void set_task(CMSConcMarkingTask* task) { |
3048 | _task = task; |
3049 | } |
3050 | }; |
3051 | |
3052 | // MT Concurrent Marking Task |
3053 | class CMSConcMarkingTask: public YieldingFlexibleGangTask { |
3054 | CMSCollector* _collector; |
3055 | uint _n_workers; // requested/desired # workers |
3056 | bool _result; |
3057 | CompactibleFreeListSpace* _cms_space; |
3058 | char _pad_front[64]; // padding to ... |
3059 | HeapWord* volatile _global_finger; // ... avoid sharing cache line |
3060 | char _pad_back[64]; |
3061 | HeapWord* _restart_addr; |
3062 | |
3063 | // Exposed here for yielding support |
3064 | Mutex* const _bit_map_lock; |
3065 | |
3066 | // The per thread work queues, available here for stealing |
3067 | OopTaskQueueSet* _task_queues; |
3068 | |
3069 | // Termination (and yielding) support |
3070 | CMSConcMarkingTaskTerminator _term; |
3071 | CMSConcMarkingTerminatorTerminator _term_term; |
3072 | |
3073 | public: |
3074 | CMSConcMarkingTask(CMSCollector* collector, |
3075 | CompactibleFreeListSpace* cms_space, |
3076 | YieldingFlexibleWorkGang* workers, |
3077 | OopTaskQueueSet* task_queues): |
3078 | YieldingFlexibleGangTask("Concurrent marking done multi-threaded" ), |
3079 | _collector(collector), |
3080 | _n_workers(0), |
3081 | _result(true), |
3082 | _cms_space(cms_space), |
3083 | _bit_map_lock(collector->bitMapLock()), |
3084 | _task_queues(task_queues), |
3085 | _term(_n_workers, task_queues, _collector) |
3086 | { |
3087 | _requested_size = _n_workers; |
3088 | _term.set_task(this); |
3089 | _term_term.set_task(this); |
3090 | _restart_addr = _global_finger = _cms_space->bottom(); |
3091 | } |
3092 | |
3093 | |
3094 | OopTaskQueueSet* task_queues() { return _task_queues; } |
3095 | |
3096 | OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } |
3097 | |
3098 | HeapWord* volatile* global_finger_addr() { return &_global_finger; } |
3099 | |
3100 | ParallelTaskTerminator* terminator() { return _term.terminator(); } |
3101 | |
3102 | virtual void set_for_termination(uint active_workers) { |
3103 | terminator()->reset_for_reuse(active_workers); |
3104 | } |
3105 | |
3106 | void work(uint worker_id); |
3107 | bool should_yield() { |
3108 | return ConcurrentMarkSweepThread::should_yield() |
3109 | && !_collector->foregroundGCIsActive(); |
3110 | } |
3111 | |
3112 | virtual void coordinator_yield(); // stuff done by coordinator |
3113 | bool result() { return _result; } |
3114 | |
3115 | void reset(HeapWord* ra) { |
3116 | assert(_global_finger >= _cms_space->end(), "Postcondition of ::work(i)" ); |
3117 | _restart_addr = _global_finger = ra; |
3118 | _term.terminator()->reset_for_reuse(); |
3119 | } |
3120 | |
3121 | static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, |
3122 | OopTaskQueue* work_q); |
3123 | |
3124 | private: |
3125 | void do_scan_and_mark(int i, CompactibleFreeListSpace* sp); |
3126 | void do_work_steal(int i); |
3127 | void bump_global_finger(HeapWord* f); |
3128 | }; |
3129 | |
3130 | bool CMSConcMarkingTerminatorTerminator::should_exit_termination() { |
3131 | assert(_task != NULL, "Error" ); |
3132 | return _task->yielding(); |
3133 | // Note that we do not need the disjunct || _task->should_yield() above |
3134 | // because we want terminating threads to yield only if the task |
3135 | // is already in the midst of yielding, which happens only after at least one |
3136 | // thread has yielded. |
3137 | } |
3138 | |
3139 | void CMSConcMarkingParallelTerminator::yield() { |
3140 | if (_task->should_yield()) { |
3141 | _task->yield(); |
3142 | } else { |
3143 | ParallelTaskTerminator::yield(); |
3144 | } |
3145 | } |
3146 | |
3147 | void CMSConcMarkingOWSTTerminator::yield() { |
3148 | if (_task->should_yield()) { |
3149 | _task->yield(); |
3150 | } else { |
3151 | OWSTTaskTerminator::yield(); |
3152 | } |
3153 | } |
3154 | |
3155 | void CMSConcMarkingTaskTerminator::set_task(CMSConcMarkingTask* task) { |
3156 | if (UseOWSTTaskTerminator) { |
3157 | ((CMSConcMarkingOWSTTerminator*)_term)->set_task(task); |
3158 | } else { |
3159 | ((CMSConcMarkingParallelTerminator*)_term)->set_task(task); |
3160 | } |
3161 | } |
3162 | |
3163 | //////////////////////////////////////////////////////////////// |
3164 | // Concurrent Marking Algorithm Sketch |
3165 | //////////////////////////////////////////////////////////////// |
3166 | // Until all tasks exhausted (both spaces): |
3167 | // -- claim next available chunk |
3168 | // -- bump global finger via CAS |
3169 | // -- find first object that starts in this chunk |
3170 | // and start scanning bitmap from that position |
3171 | // -- scan marked objects for oops |
3172 | // -- CAS-mark target, and if successful: |
3173 | // . if target oop is above global finger (volatile read) |
3174 | // nothing to do |
3175 | // . if target oop is in chunk and above local finger |
3176 | // then nothing to do |
3177 | // . else push on work-queue |
3178 | // -- Deal with possible overflow issues: |
3179 | // . local work-queue overflow causes stuff to be pushed on |
3180 | // global (common) overflow queue |
3181 | // . always first empty local work queue |
3182 | // . then get a batch of oops from global work queue if any |
3183 | // . then do work stealing |
3184 | // -- When all tasks claimed (both spaces) |
3185 | // and local work queue empty, |
3186 | // then in a loop do: |
3187 | // . check global overflow stack; steal a batch of oops and trace |
3188 | // . try to steal from other threads oif GOS is empty |
3189 | // . if neither is available, offer termination |
3190 | // -- Terminate and return result |
3191 | // |
3192 | void CMSConcMarkingTask::work(uint worker_id) { |
3193 | elapsedTimer _timer; |
3194 | ResourceMark rm; |
3195 | HandleMark hm; |
3196 | |
3197 | DEBUG_ONLY(_collector->verify_overflow_empty();) |
3198 | |
3199 | // Before we begin work, our work queue should be empty |
3200 | assert(work_queue(worker_id)->size() == 0, "Expected to be empty" ); |
3201 | // Scan the bitmap covering _cms_space, tracing through grey objects. |
3202 | _timer.start(); |
3203 | do_scan_and_mark(worker_id, _cms_space); |
3204 | _timer.stop(); |
3205 | log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
3206 | |
3207 | // ... do work stealing |
3208 | _timer.reset(); |
3209 | _timer.start(); |
3210 | do_work_steal(worker_id); |
3211 | _timer.stop(); |
3212 | log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
3213 | assert(_collector->_markStack.isEmpty(), "Should have been emptied" ); |
3214 | assert(work_queue(worker_id)->size() == 0, "Should have been emptied" ); |
3215 | // Note that under the current task protocol, the |
3216 | // following assertion is true even of the spaces |
3217 | // expanded since the completion of the concurrent |
3218 | // marking. XXX This will likely change under a strict |
3219 | // ABORT semantics. |
3220 | // After perm removal the comparison was changed to |
3221 | // greater than or equal to from strictly greater than. |
3222 | // Before perm removal the highest address sweep would |
3223 | // have been at the end of perm gen but now is at the |
3224 | // end of the tenured gen. |
3225 | assert(_global_finger >= _cms_space->end(), |
3226 | "All tasks have been completed" ); |
3227 | DEBUG_ONLY(_collector->verify_overflow_empty();) |
3228 | } |
3229 | |
3230 | void CMSConcMarkingTask::bump_global_finger(HeapWord* f) { |
3231 | HeapWord* read = _global_finger; |
3232 | HeapWord* cur = read; |
3233 | while (f > read) { |
3234 | cur = read; |
3235 | read = Atomic::cmpxchg(f, &_global_finger, cur); |
3236 | if (cur == read) { |
3237 | // our cas succeeded |
3238 | assert(_global_finger >= f, "protocol consistency" ); |
3239 | break; |
3240 | } |
3241 | } |
3242 | } |
3243 | |
3244 | // This is really inefficient, and should be redone by |
3245 | // using (not yet available) block-read and -write interfaces to the |
3246 | // stack and the work_queue. XXX FIX ME !!! |
3247 | bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, |
3248 | OopTaskQueue* work_q) { |
3249 | // Fast lock-free check |
3250 | if (ovflw_stk->length() == 0) { |
3251 | return false; |
3252 | } |
3253 | assert(work_q->size() == 0, "Shouldn't steal" ); |
3254 | MutexLocker ml(ovflw_stk->par_lock(), |
3255 | Mutex::_no_safepoint_check_flag); |
3256 | // Grab up to 1/4 the size of the work queue |
3257 | size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, |
3258 | (size_t)ParGCDesiredObjsFromOverflowList); |
3259 | num = MIN2(num, ovflw_stk->length()); |
3260 | for (int i = (int) num; i > 0; i--) { |
3261 | oop cur = ovflw_stk->pop(); |
3262 | assert(cur != NULL, "Counted wrong?" ); |
3263 | work_q->push(cur); |
3264 | } |
3265 | return num > 0; |
3266 | } |
3267 | |
3268 | void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) { |
3269 | SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); |
3270 | int n_tasks = pst->n_tasks(); |
3271 | // We allow that there may be no tasks to do here because |
3272 | // we are restarting after a stack overflow. |
3273 | assert(pst->valid() || n_tasks == 0, "Uninitialized use?" ); |
3274 | uint nth_task = 0; |
3275 | |
3276 | HeapWord* aligned_start = sp->bottom(); |
3277 | if (sp->used_region().contains(_restart_addr)) { |
3278 | // Align down to a card boundary for the start of 0th task |
3279 | // for this space. |
3280 | aligned_start = align_down(_restart_addr, CardTable::card_size); |
3281 | } |
3282 | |
3283 | size_t chunk_size = sp->marking_task_size(); |
3284 | while (pst->try_claim_task(/* reference */ nth_task)) { |
3285 | // Having claimed the nth task in this space, |
3286 | // compute the chunk that it corresponds to: |
3287 | MemRegion span = MemRegion(aligned_start + nth_task*chunk_size, |
3288 | aligned_start + (nth_task+1)*chunk_size); |
3289 | // Try and bump the global finger via a CAS; |
3290 | // note that we need to do the global finger bump |
3291 | // _before_ taking the intersection below, because |
3292 | // the task corresponding to that region will be |
3293 | // deemed done even if the used_region() expands |
3294 | // because of allocation -- as it almost certainly will |
3295 | // during start-up while the threads yield in the |
3296 | // closure below. |
3297 | HeapWord* finger = span.end(); |
3298 | bump_global_finger(finger); // atomically |
3299 | // There are null tasks here corresponding to chunks |
3300 | // beyond the "top" address of the space. |
3301 | span = span.intersection(sp->used_region()); |
3302 | if (!span.is_empty()) { // Non-null task |
3303 | HeapWord* prev_obj; |
3304 | assert(!span.contains(_restart_addr) || nth_task == 0, |
3305 | "Inconsistency" ); |
3306 | if (nth_task == 0) { |
3307 | // For the 0th task, we'll not need to compute a block_start. |
3308 | if (span.contains(_restart_addr)) { |
3309 | // In the case of a restart because of stack overflow, |
3310 | // we might additionally skip a chunk prefix. |
3311 | prev_obj = _restart_addr; |
3312 | } else { |
3313 | prev_obj = span.start(); |
3314 | } |
3315 | } else { |
3316 | // We want to skip the first object because |
3317 | // the protocol is to scan any object in its entirety |
3318 | // that _starts_ in this span; a fortiori, any |
3319 | // object starting in an earlier span is scanned |
3320 | // as part of an earlier claimed task. |
3321 | // Below we use the "careful" version of block_start |
3322 | // so we do not try to navigate uninitialized objects. |
3323 | prev_obj = sp->block_start_careful(span.start()); |
3324 | // Below we use a variant of block_size that uses the |
3325 | // Printezis bits to avoid waiting for allocated |
3326 | // objects to become initialized/parsable. |
3327 | while (prev_obj < span.start()) { |
3328 | size_t sz = sp->block_size_no_stall(prev_obj, _collector); |
3329 | if (sz > 0) { |
3330 | prev_obj += sz; |
3331 | } else { |
3332 | // In this case we may end up doing a bit of redundant |
3333 | // scanning, but that appears unavoidable, short of |
3334 | // locking the free list locks; see bug 6324141. |
3335 | break; |
3336 | } |
3337 | } |
3338 | } |
3339 | if (prev_obj < span.end()) { |
3340 | MemRegion my_span = MemRegion(prev_obj, span.end()); |
3341 | // Do the marking work within a non-empty span -- |
3342 | // the last argument to the constructor indicates whether the |
3343 | // iteration should be incremental with periodic yields. |
3344 | ParMarkFromRootsClosure cl(this, _collector, my_span, |
3345 | &_collector->_markBitMap, |
3346 | work_queue(i), |
3347 | &_collector->_markStack); |
3348 | _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end()); |
3349 | } // else nothing to do for this task |
3350 | } // else nothing to do for this task |
3351 | } |
3352 | // We'd be tempted to assert here that since there are no |
3353 | // more tasks left to claim in this space, the global_finger |
3354 | // must exceed space->top() and a fortiori space->end(). However, |
3355 | // that would not quite be correct because the bumping of |
3356 | // global_finger occurs strictly after the claiming of a task, |
3357 | // so by the time we reach here the global finger may not yet |
3358 | // have been bumped up by the thread that claimed the last |
3359 | // task. |
3360 | pst->all_tasks_completed(); |
3361 | } |
3362 | |
3363 | class ParConcMarkingClosure: public MetadataVisitingOopIterateClosure { |
3364 | private: |
3365 | CMSCollector* _collector; |
3366 | CMSConcMarkingTask* _task; |
3367 | MemRegion _span; |
3368 | CMSBitMap* _bit_map; |
3369 | CMSMarkStack* _overflow_stack; |
3370 | OopTaskQueue* _work_queue; |
3371 | protected: |
3372 | DO_OOP_WORK_DEFN |
3373 | public: |
3374 | ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue, |
3375 | CMSBitMap* bit_map, CMSMarkStack* overflow_stack): |
3376 | MetadataVisitingOopIterateClosure(collector->ref_processor()), |
3377 | _collector(collector), |
3378 | _task(task), |
3379 | _span(collector->_span), |
3380 | _bit_map(bit_map), |
3381 | _overflow_stack(overflow_stack), |
3382 | _work_queue(work_queue) |
3383 | { } |
3384 | virtual void do_oop(oop* p); |
3385 | virtual void do_oop(narrowOop* p); |
3386 | |
3387 | void trim_queue(size_t max); |
3388 | void handle_stack_overflow(HeapWord* lost); |
3389 | void do_yield_check() { |
3390 | if (_task->should_yield()) { |
3391 | _task->yield(); |
3392 | } |
3393 | } |
3394 | }; |
3395 | |
3396 | DO_OOP_WORK_IMPL(ParConcMarkingClosure) |
3397 | |
3398 | // Grey object scanning during work stealing phase -- |
3399 | // the salient assumption here is that any references |
3400 | // that are in these stolen objects being scanned must |
3401 | // already have been initialized (else they would not have |
3402 | // been published), so we do not need to check for |
3403 | // uninitialized objects before pushing here. |
3404 | void ParConcMarkingClosure::do_oop(oop obj) { |
3405 | assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); |
3406 | HeapWord* addr = (HeapWord*)obj; |
3407 | // Check if oop points into the CMS generation |
3408 | // and is not marked |
3409 | if (_span.contains(addr) && !_bit_map->isMarked(addr)) { |
3410 | // a white object ... |
3411 | // If we manage to "claim" the object, by being the |
3412 | // first thread to mark it, then we push it on our |
3413 | // marking stack |
3414 | if (_bit_map->par_mark(addr)) { // ... now grey |
3415 | // push on work queue (grey set) |
3416 | bool simulate_overflow = false; |
3417 | NOT_PRODUCT( |
3418 | if (CMSMarkStackOverflowALot && |
3419 | _collector->simulate_overflow()) { |
3420 | // simulate a stack overflow |
3421 | simulate_overflow = true; |
3422 | } |
3423 | ) |
3424 | if (simulate_overflow || |
3425 | !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { |
3426 | // stack overflow |
3427 | log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity()); |
3428 | // We cannot assert that the overflow stack is full because |
3429 | // it may have been emptied since. |
3430 | assert(simulate_overflow || |
3431 | _work_queue->size() == _work_queue->max_elems(), |
3432 | "Else push should have succeeded" ); |
3433 | handle_stack_overflow(addr); |
3434 | } |
3435 | } // Else, some other thread got there first |
3436 | do_yield_check(); |
3437 | } |
3438 | } |
3439 | |
3440 | void ParConcMarkingClosure::trim_queue(size_t max) { |
3441 | while (_work_queue->size() > max) { |
3442 | oop new_oop; |
3443 | if (_work_queue->pop_local(new_oop)) { |
3444 | assert(oopDesc::is_oop(new_oop), "Should be an oop" ); |
3445 | assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object" ); |
3446 | assert(_span.contains((HeapWord*)new_oop), "Not in span" ); |
3447 | new_oop->oop_iterate(this); // do_oop() above |
3448 | do_yield_check(); |
3449 | } |
3450 | } |
3451 | } |
3452 | |
3453 | // Upon stack overflow, we discard (part of) the stack, |
3454 | // remembering the least address amongst those discarded |
3455 | // in CMSCollector's _restart_address. |
3456 | void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) { |
3457 | // We need to do this under a mutex to prevent other |
3458 | // workers from interfering with the work done below. |
3459 | MutexLocker ml(_overflow_stack->par_lock(), |
3460 | Mutex::_no_safepoint_check_flag); |
3461 | // Remember the least grey address discarded |
3462 | HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); |
3463 | _collector->lower_restart_addr(ra); |
3464 | _overflow_stack->reset(); // discard stack contents |
3465 | _overflow_stack->expand(); // expand the stack if possible |
3466 | } |
3467 | |
3468 | |
3469 | void CMSConcMarkingTask::do_work_steal(int i) { |
3470 | OopTaskQueue* work_q = work_queue(i); |
3471 | oop obj_to_scan; |
3472 | CMSBitMap* bm = &(_collector->_markBitMap); |
3473 | CMSMarkStack* ovflw = &(_collector->_markStack); |
3474 | ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw); |
3475 | while (true) { |
3476 | cl.trim_queue(0); |
3477 | assert(work_q->size() == 0, "Should have been emptied above" ); |
3478 | if (get_work_from_overflow_stack(ovflw, work_q)) { |
3479 | // Can't assert below because the work obtained from the |
3480 | // overflow stack may already have been stolen from us. |
3481 | // assert(work_q->size() > 0, "Work from overflow stack"); |
3482 | continue; |
3483 | } else if (task_queues()->steal(i, /* reference */ obj_to_scan)) { |
3484 | assert(oopDesc::is_oop(obj_to_scan), "Should be an oop" ); |
3485 | assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object" ); |
3486 | obj_to_scan->oop_iterate(&cl); |
3487 | } else if (terminator()->offer_termination(&_term_term)) { |
3488 | assert(work_q->size() == 0, "Impossible!" ); |
3489 | break; |
3490 | } else if (yielding() || should_yield()) { |
3491 | yield(); |
3492 | } |
3493 | } |
3494 | } |
3495 | |
3496 | // This is run by the CMS (coordinator) thread. |
3497 | void CMSConcMarkingTask::coordinator_yield() { |
3498 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
3499 | "CMS thread should hold CMS token" ); |
3500 | // First give up the locks, then yield, then re-lock |
3501 | // We should probably use a constructor/destructor idiom to |
3502 | // do this unlock/lock or modify the MutexUnlocker class to |
3503 | // serve our purpose. XXX |
3504 | assert_lock_strong(_bit_map_lock); |
3505 | _bit_map_lock->unlock(); |
3506 | ConcurrentMarkSweepThread::desynchronize(true); |
3507 | _collector->stopTimer(); |
3508 | _collector->incrementYields(); |
3509 | |
3510 | // It is possible for whichever thread initiated the yield request |
3511 | // not to get a chance to wake up and take the bitmap lock between |
3512 | // this thread releasing it and reacquiring it. So, while the |
3513 | // should_yield() flag is on, let's sleep for a bit to give the |
3514 | // other thread a chance to wake up. The limit imposed on the number |
3515 | // of iterations is defensive, to avoid any unforseen circumstances |
3516 | // putting us into an infinite loop. Since it's always been this |
3517 | // (coordinator_yield()) method that was observed to cause the |
3518 | // problem, we are using a parameter (CMSCoordinatorYieldSleepCount) |
3519 | // which is by default non-zero. For the other seven methods that |
3520 | // also perform the yield operation, as are using a different |
3521 | // parameter (CMSYieldSleepCount) which is by default zero. This way we |
3522 | // can enable the sleeping for those methods too, if necessary. |
3523 | // See 6442774. |
3524 | // |
3525 | // We really need to reconsider the synchronization between the GC |
3526 | // thread and the yield-requesting threads in the future and we |
3527 | // should really use wait/notify, which is the recommended |
3528 | // way of doing this type of interaction. Additionally, we should |
3529 | // consolidate the eight methods that do the yield operation and they |
3530 | // are almost identical into one for better maintainability and |
3531 | // readability. See 6445193. |
3532 | // |
3533 | // Tony 2006.06.29 |
3534 | for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount && |
3535 | ConcurrentMarkSweepThread::should_yield() && |
3536 | !CMSCollector::foregroundGCIsActive(); ++i) { |
3537 | os::sleep(Thread::current(), 1, false); |
3538 | } |
3539 | |
3540 | ConcurrentMarkSweepThread::synchronize(true); |
3541 | _bit_map_lock->lock_without_safepoint_check(); |
3542 | _collector->startTimer(); |
3543 | } |
3544 | |
3545 | bool CMSCollector::do_marking_mt() { |
3546 | assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition" ); |
3547 | uint num_workers = WorkerPolicy::calc_active_conc_workers(conc_workers()->total_workers(), |
3548 | conc_workers()->active_workers(), |
3549 | Threads::number_of_non_daemon_threads()); |
3550 | num_workers = conc_workers()->update_active_workers(num_workers); |
3551 | log_info(gc,task)("Using %u workers of %u for marking" , num_workers, conc_workers()->total_workers()); |
3552 | |
3553 | CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); |
3554 | |
3555 | CMSConcMarkingTask tsk(this, |
3556 | cms_space, |
3557 | conc_workers(), |
3558 | task_queues()); |
3559 | |
3560 | // Since the actual number of workers we get may be different |
3561 | // from the number we requested above, do we need to do anything different |
3562 | // below? In particular, may be we need to subclass the SequantialSubTasksDone |
3563 | // class?? XXX |
3564 | cms_space ->initialize_sequential_subtasks_for_marking(num_workers); |
3565 | |
3566 | // Refs discovery is already non-atomic. |
3567 | assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic" ); |
3568 | assert(ref_processor()->discovery_is_mt(), "Discovery should be MT" ); |
3569 | conc_workers()->start_task(&tsk); |
3570 | while (tsk.yielded()) { |
3571 | tsk.coordinator_yield(); |
3572 | conc_workers()->continue_task(&tsk); |
3573 | } |
3574 | // If the task was aborted, _restart_addr will be non-NULL |
3575 | assert(tsk.completed() || _restart_addr != NULL, "Inconsistency" ); |
3576 | while (_restart_addr != NULL) { |
3577 | // XXX For now we do not make use of ABORTED state and have not |
3578 | // yet implemented the right abort semantics (even in the original |
3579 | // single-threaded CMS case). That needs some more investigation |
3580 | // and is deferred for now; see CR# TBF. 07252005YSR. XXX |
3581 | assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency" ); |
3582 | // If _restart_addr is non-NULL, a marking stack overflow |
3583 | // occurred; we need to do a fresh marking iteration from the |
3584 | // indicated restart address. |
3585 | if (_foregroundGCIsActive) { |
3586 | // We may be running into repeated stack overflows, having |
3587 | // reached the limit of the stack size, while making very |
3588 | // slow forward progress. It may be best to bail out and |
3589 | // let the foreground collector do its job. |
3590 | // Clear _restart_addr, so that foreground GC |
3591 | // works from scratch. This avoids the headache of |
3592 | // a "rescan" which would otherwise be needed because |
3593 | // of the dirty mod union table & card table. |
3594 | _restart_addr = NULL; |
3595 | return false; |
3596 | } |
3597 | // Adjust the task to restart from _restart_addr |
3598 | tsk.reset(_restart_addr); |
3599 | cms_space ->initialize_sequential_subtasks_for_marking(num_workers, |
3600 | _restart_addr); |
3601 | _restart_addr = NULL; |
3602 | // Get the workers going again |
3603 | conc_workers()->start_task(&tsk); |
3604 | while (tsk.yielded()) { |
3605 | tsk.coordinator_yield(); |
3606 | conc_workers()->continue_task(&tsk); |
3607 | } |
3608 | } |
3609 | assert(tsk.completed(), "Inconsistency" ); |
3610 | assert(tsk.result() == true, "Inconsistency" ); |
3611 | return true; |
3612 | } |
3613 | |
3614 | bool CMSCollector::do_marking_st() { |
3615 | ResourceMark rm; |
3616 | HandleMark hm; |
3617 | |
3618 | // Temporarily make refs discovery single threaded (non-MT) |
3619 | ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); |
3620 | MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap, |
3621 | &_markStack, CMSYield); |
3622 | // the last argument to iterate indicates whether the iteration |
3623 | // should be incremental with periodic yields. |
3624 | _markBitMap.iterate(&markFromRootsClosure); |
3625 | // If _restart_addr is non-NULL, a marking stack overflow |
3626 | // occurred; we need to do a fresh iteration from the |
3627 | // indicated restart address. |
3628 | while (_restart_addr != NULL) { |
3629 | if (_foregroundGCIsActive) { |
3630 | // We may be running into repeated stack overflows, having |
3631 | // reached the limit of the stack size, while making very |
3632 | // slow forward progress. It may be best to bail out and |
3633 | // let the foreground collector do its job. |
3634 | // Clear _restart_addr, so that foreground GC |
3635 | // works from scratch. This avoids the headache of |
3636 | // a "rescan" which would otherwise be needed because |
3637 | // of the dirty mod union table & card table. |
3638 | _restart_addr = NULL; |
3639 | return false; // indicating failure to complete marking |
3640 | } |
3641 | // Deal with stack overflow: |
3642 | // we restart marking from _restart_addr |
3643 | HeapWord* ra = _restart_addr; |
3644 | markFromRootsClosure.reset(ra); |
3645 | _restart_addr = NULL; |
3646 | _markBitMap.iterate(&markFromRootsClosure, ra, _span.end()); |
3647 | } |
3648 | return true; |
3649 | } |
3650 | |
3651 | void CMSCollector::preclean() { |
3652 | check_correct_thread_executing(); |
3653 | assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread" ); |
3654 | verify_work_stacks_empty(); |
3655 | verify_overflow_empty(); |
3656 | _abort_preclean = false; |
3657 | if (CMSPrecleaningEnabled) { |
3658 | if (!CMSEdenChunksRecordAlways) { |
3659 | _eden_chunk_index = 0; |
3660 | } |
3661 | size_t used = get_eden_used(); |
3662 | size_t capacity = get_eden_capacity(); |
3663 | // Don't start sampling unless we will get sufficiently |
3664 | // many samples. |
3665 | if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100) |
3666 | * CMSScheduleRemarkEdenPenetration)) { |
3667 | _start_sampling = true; |
3668 | } else { |
3669 | _start_sampling = false; |
3670 | } |
3671 | GCTraceCPUTime tcpu; |
3672 | CMSPhaseAccounting pa(this, "Concurrent Preclean" ); |
3673 | preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1); |
3674 | } |
3675 | CMSTokenSync x(true); // is cms thread |
3676 | if (CMSPrecleaningEnabled) { |
3677 | sample_eden(); |
3678 | _collectorState = AbortablePreclean; |
3679 | } else { |
3680 | _collectorState = FinalMarking; |
3681 | } |
3682 | verify_work_stacks_empty(); |
3683 | verify_overflow_empty(); |
3684 | } |
3685 | |
3686 | // Try and schedule the remark such that young gen |
3687 | // occupancy is CMSScheduleRemarkEdenPenetration %. |
3688 | void CMSCollector::abortable_preclean() { |
3689 | check_correct_thread_executing(); |
3690 | assert(CMSPrecleaningEnabled, "Inconsistent control state" ); |
3691 | assert(_collectorState == AbortablePreclean, "Inconsistent control state" ); |
3692 | |
3693 | // If Eden's current occupancy is below this threshold, |
3694 | // immediately schedule the remark; else preclean |
3695 | // past the next scavenge in an effort to |
3696 | // schedule the pause as described above. By choosing |
3697 | // CMSScheduleRemarkEdenSizeThreshold >= max eden size |
3698 | // we will never do an actual abortable preclean cycle. |
3699 | if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) { |
3700 | GCTraceCPUTime tcpu; |
3701 | CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean" ); |
3702 | // We need more smarts in the abortable preclean |
3703 | // loop below to deal with cases where allocation |
3704 | // in young gen is very very slow, and our precleaning |
3705 | // is running a losing race against a horde of |
3706 | // mutators intent on flooding us with CMS updates |
3707 | // (dirty cards). |
3708 | // One, admittedly dumb, strategy is to give up |
3709 | // after a certain number of abortable precleaning loops |
3710 | // or after a certain maximum time. We want to make |
3711 | // this smarter in the next iteration. |
3712 | // XXX FIX ME!!! YSR |
3713 | size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0; |
3714 | while (!(should_abort_preclean() || |
3715 | ConcurrentMarkSweepThread::cmst()->should_terminate())) { |
3716 | workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2); |
3717 | cumworkdone += workdone; |
3718 | loops++; |
3719 | // Voluntarily terminate abortable preclean phase if we have |
3720 | // been at it for too long. |
3721 | if ((CMSMaxAbortablePrecleanLoops != 0) && |
3722 | loops >= CMSMaxAbortablePrecleanLoops) { |
3723 | log_debug(gc)(" CMS: abort preclean due to loops " ); |
3724 | break; |
3725 | } |
3726 | if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) { |
3727 | log_debug(gc)(" CMS: abort preclean due to time " ); |
3728 | break; |
3729 | } |
3730 | // If we are doing little work each iteration, we should |
3731 | // take a short break. |
3732 | if (workdone < CMSAbortablePrecleanMinWorkPerIteration) { |
3733 | // Sleep for some time, waiting for work to accumulate |
3734 | stopTimer(); |
3735 | cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis); |
3736 | startTimer(); |
3737 | waited++; |
3738 | } |
3739 | } |
3740 | log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] " , |
3741 | loops, waited, cumworkdone); |
3742 | } |
3743 | CMSTokenSync x(true); // is cms thread |
3744 | if (_collectorState != Idling) { |
3745 | assert(_collectorState == AbortablePreclean, |
3746 | "Spontaneous state transition?" ); |
3747 | _collectorState = FinalMarking; |
3748 | } // Else, a foreground collection completed this CMS cycle. |
3749 | return; |
3750 | } |
3751 | |
3752 | // Respond to an Eden sampling opportunity |
3753 | void CMSCollector::sample_eden() { |
3754 | // Make sure a young gc cannot sneak in between our |
3755 | // reading and recording of a sample. |
3756 | assert(Thread::current()->is_ConcurrentGC_thread(), |
3757 | "Only the cms thread may collect Eden samples" ); |
3758 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
3759 | "Should collect samples while holding CMS token" ); |
3760 | if (!_start_sampling) { |
3761 | return; |
3762 | } |
3763 | // When CMSEdenChunksRecordAlways is true, the eden chunk array |
3764 | // is populated by the young generation. |
3765 | if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) { |
3766 | if (_eden_chunk_index < _eden_chunk_capacity) { |
3767 | _eden_chunk_array[_eden_chunk_index] = *_top_addr; // take sample |
3768 | assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, |
3769 | "Unexpected state of Eden" ); |
3770 | // We'd like to check that what we just sampled is an oop-start address; |
3771 | // however, we cannot do that here since the object may not yet have been |
3772 | // initialized. So we'll instead do the check when we _use_ this sample |
3773 | // later. |
3774 | if (_eden_chunk_index == 0 || |
3775 | (pointer_delta(_eden_chunk_array[_eden_chunk_index], |
3776 | _eden_chunk_array[_eden_chunk_index-1]) |
3777 | >= CMSSamplingGrain)) { |
3778 | _eden_chunk_index++; // commit sample |
3779 | } |
3780 | } |
3781 | } |
3782 | if ((_collectorState == AbortablePreclean) && !_abort_preclean) { |
3783 | size_t used = get_eden_used(); |
3784 | size_t capacity = get_eden_capacity(); |
3785 | assert(used <= capacity, "Unexpected state of Eden" ); |
3786 | if (used > (capacity/100 * CMSScheduleRemarkEdenPenetration)) { |
3787 | _abort_preclean = true; |
3788 | } |
3789 | } |
3790 | } |
3791 | |
3792 | size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) { |
3793 | assert(_collectorState == Precleaning || |
3794 | _collectorState == AbortablePreclean, "incorrect state" ); |
3795 | ResourceMark rm; |
3796 | HandleMark hm; |
3797 | |
3798 | // Precleaning is currently not MT but the reference processor |
3799 | // may be set for MT. Disable it temporarily here. |
3800 | ReferenceProcessor* rp = ref_processor(); |
3801 | ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); |
3802 | |
3803 | // Do one pass of scrubbing the discovered reference lists |
3804 | // to remove any reference objects with strongly-reachable |
3805 | // referents. |
3806 | if (clean_refs) { |
3807 | CMSPrecleanRefsYieldClosure yield_cl(this); |
3808 | assert(_span_based_discoverer.span().equals(_span), "Spans should be equal" ); |
3809 | CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap, |
3810 | &_markStack, true /* preclean */); |
3811 | CMSDrainMarkingStackClosure complete_trace(this, |
3812 | _span, &_markBitMap, &_markStack, |
3813 | &keep_alive, true /* preclean */); |
3814 | |
3815 | // We don't want this step to interfere with a young |
3816 | // collection because we don't want to take CPU |
3817 | // or memory bandwidth away from the young GC threads |
3818 | // (which may be as many as there are CPUs). |
3819 | // Note that we don't need to protect ourselves from |
3820 | // interference with mutators because they can't |
3821 | // manipulate the discovered reference lists nor affect |
3822 | // the computed reachability of the referents, the |
3823 | // only properties manipulated by the precleaning |
3824 | // of these reference lists. |
3825 | stopTimer(); |
3826 | CMSTokenSyncWithLocks x(true /* is cms thread */, |
3827 | bitMapLock()); |
3828 | startTimer(); |
3829 | sample_eden(); |
3830 | |
3831 | // The following will yield to allow foreground |
3832 | // collection to proceed promptly. XXX YSR: |
3833 | // The code in this method may need further |
3834 | // tweaking for better performance and some restructuring |
3835 | // for cleaner interfaces. |
3836 | GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases |
3837 | rp->preclean_discovered_references( |
3838 | rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl, |
3839 | gc_timer); |
3840 | } |
3841 | |
3842 | if (clean_survivor) { // preclean the active survivor space(s) |
3843 | PushAndMarkClosure pam_cl(this, _span, ref_processor(), |
3844 | &_markBitMap, &_modUnionTable, |
3845 | &_markStack, true /* precleaning phase */); |
3846 | stopTimer(); |
3847 | CMSTokenSyncWithLocks ts(true /* is cms thread */, |
3848 | bitMapLock()); |
3849 | startTimer(); |
3850 | unsigned int before_count = |
3851 | CMSHeap::heap()->total_collections(); |
3852 | SurvivorSpacePrecleanClosure |
3853 | sss_cl(this, _span, &_markBitMap, &_markStack, |
3854 | &pam_cl, before_count, CMSYield); |
3855 | _young_gen->from()->object_iterate_careful(&sss_cl); |
3856 | _young_gen->to()->object_iterate_careful(&sss_cl); |
3857 | } |
3858 | MarkRefsIntoAndScanClosure |
3859 | mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, |
3860 | &_markStack, this, CMSYield, |
3861 | true /* precleaning phase */); |
3862 | // CAUTION: The following closure has persistent state that may need to |
3863 | // be reset upon a decrease in the sequence of addresses it |
3864 | // processes. |
3865 | ScanMarkedObjectsAgainCarefullyClosure |
3866 | smoac_cl(this, _span, |
3867 | &_markBitMap, &_markStack, &mrias_cl, CMSYield); |
3868 | |
3869 | // Preclean dirty cards in ModUnionTable and CardTable using |
3870 | // appropriate convergence criterion; |
3871 | // repeat CMSPrecleanIter times unless we find that |
3872 | // we are losing. |
3873 | assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large" ); |
3874 | assert(CMSPrecleanNumerator < CMSPrecleanDenominator, |
3875 | "Bad convergence multiplier" ); |
3876 | assert(CMSPrecleanThreshold >= 100, |
3877 | "Unreasonably low CMSPrecleanThreshold" ); |
3878 | |
3879 | size_t numIter, cumNumCards, lastNumCards, curNumCards; |
3880 | for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0; |
3881 | numIter < CMSPrecleanIter; |
3882 | numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) { |
3883 | curNumCards = preclean_mod_union_table(_cmsGen, &smoac_cl); |
3884 | log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)" , curNumCards); |
3885 | // Either there are very few dirty cards, so re-mark |
3886 | // pause will be small anyway, or our pre-cleaning isn't |
3887 | // that much faster than the rate at which cards are being |
3888 | // dirtied, so we might as well stop and re-mark since |
3889 | // precleaning won't improve our re-mark time by much. |
3890 | if (curNumCards <= CMSPrecleanThreshold || |
3891 | (numIter > 0 && |
3892 | (curNumCards * CMSPrecleanDenominator > |
3893 | lastNumCards * CMSPrecleanNumerator))) { |
3894 | numIter++; |
3895 | cumNumCards += curNumCards; |
3896 | break; |
3897 | } |
3898 | } |
3899 | |
3900 | preclean_cld(&mrias_cl, _cmsGen->freelistLock()); |
3901 | |
3902 | curNumCards = preclean_card_table(_cmsGen, &smoac_cl); |
3903 | cumNumCards += curNumCards; |
3904 | log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)" , |
3905 | curNumCards, cumNumCards, numIter); |
3906 | return cumNumCards; // as a measure of useful work done |
3907 | } |
3908 | |
3909 | // PRECLEANING NOTES: |
3910 | // Precleaning involves: |
3911 | // . reading the bits of the modUnionTable and clearing the set bits. |
3912 | // . For the cards corresponding to the set bits, we scan the |
3913 | // objects on those cards. This means we need the free_list_lock |
3914 | // so that we can safely iterate over the CMS space when scanning |
3915 | // for oops. |
3916 | // . When we scan the objects, we'll be both reading and setting |
3917 | // marks in the marking bit map, so we'll need the marking bit map. |
3918 | // . For protecting _collector_state transitions, we take the CGC_lock. |
3919 | // Note that any races in the reading of of card table entries by the |
3920 | // CMS thread on the one hand and the clearing of those entries by the |
3921 | // VM thread or the setting of those entries by the mutator threads on the |
3922 | // other are quite benign. However, for efficiency it makes sense to keep |
3923 | // the VM thread from racing with the CMS thread while the latter is |
3924 | // dirty card info to the modUnionTable. We therefore also use the |
3925 | // CGC_lock to protect the reading of the card table and the mod union |
3926 | // table by the CM thread. |
3927 | // . We run concurrently with mutator updates, so scanning |
3928 | // needs to be done carefully -- we should not try to scan |
3929 | // potentially uninitialized objects. |
3930 | // |
3931 | // Locking strategy: While holding the CGC_lock, we scan over and |
3932 | // reset a maximal dirty range of the mod union / card tables, then lock |
3933 | // the free_list_lock and bitmap lock to do a full marking, then |
3934 | // release these locks; and repeat the cycle. This allows for a |
3935 | // certain amount of fairness in the sharing of these locks between |
3936 | // the CMS collector on the one hand, and the VM thread and the |
3937 | // mutators on the other. |
3938 | |
3939 | // NOTE: preclean_mod_union_table() and preclean_card_table() |
3940 | // further below are largely identical; if you need to modify |
3941 | // one of these methods, please check the other method too. |
3942 | |
3943 | size_t CMSCollector::preclean_mod_union_table( |
3944 | ConcurrentMarkSweepGeneration* old_gen, |
3945 | ScanMarkedObjectsAgainCarefullyClosure* cl) { |
3946 | verify_work_stacks_empty(); |
3947 | verify_overflow_empty(); |
3948 | |
3949 | // strategy: starting with the first card, accumulate contiguous |
3950 | // ranges of dirty cards; clear these cards, then scan the region |
3951 | // covered by these cards. |
3952 | |
3953 | // Since all of the MUT is committed ahead, we can just use |
3954 | // that, in case the generations expand while we are precleaning. |
3955 | // It might also be fine to just use the committed part of the |
3956 | // generation, but we might potentially miss cards when the |
3957 | // generation is rapidly expanding while we are in the midst |
3958 | // of precleaning. |
3959 | HeapWord* startAddr = old_gen->reserved().start(); |
3960 | HeapWord* endAddr = old_gen->reserved().end(); |
3961 | |
3962 | cl->setFreelistLock(old_gen->freelistLock()); // needed for yielding |
3963 | |
3964 | size_t numDirtyCards, cumNumDirtyCards; |
3965 | HeapWord *nextAddr, *lastAddr; |
3966 | for (cumNumDirtyCards = numDirtyCards = 0, |
3967 | nextAddr = lastAddr = startAddr; |
3968 | nextAddr < endAddr; |
3969 | nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { |
3970 | |
3971 | ResourceMark rm; |
3972 | HandleMark hm; |
3973 | |
3974 | MemRegion dirtyRegion; |
3975 | { |
3976 | stopTimer(); |
3977 | // Potential yield point |
3978 | CMSTokenSync ts(true); |
3979 | startTimer(); |
3980 | sample_eden(); |
3981 | // Get dirty region starting at nextOffset (inclusive), |
3982 | // simultaneously clearing it. |
3983 | dirtyRegion = |
3984 | _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr); |
3985 | assert(dirtyRegion.start() >= nextAddr, |
3986 | "returned region inconsistent?" ); |
3987 | } |
3988 | // Remember where the next search should begin. |
3989 | // The returned region (if non-empty) is a right open interval, |
3990 | // so lastOffset is obtained from the right end of that |
3991 | // interval. |
3992 | lastAddr = dirtyRegion.end(); |
3993 | // Should do something more transparent and less hacky XXX |
3994 | numDirtyCards = |
3995 | _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size()); |
3996 | |
3997 | // We'll scan the cards in the dirty region (with periodic |
3998 | // yields for foreground GC as needed). |
3999 | if (!dirtyRegion.is_empty()) { |
4000 | assert(numDirtyCards > 0, "consistency check" ); |
4001 | HeapWord* stop_point = NULL; |
4002 | stopTimer(); |
4003 | // Potential yield point |
4004 | CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), |
4005 | bitMapLock()); |
4006 | startTimer(); |
4007 | { |
4008 | verify_work_stacks_empty(); |
4009 | verify_overflow_empty(); |
4010 | sample_eden(); |
4011 | stop_point = |
4012 | old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); |
4013 | } |
4014 | if (stop_point != NULL) { |
4015 | // The careful iteration stopped early either because it found an |
4016 | // uninitialized object, or because we were in the midst of an |
4017 | // "abortable preclean", which should now be aborted. Redirty |
4018 | // the bits corresponding to the partially-scanned or unscanned |
4019 | // cards. We'll either restart at the next block boundary or |
4020 | // abort the preclean. |
4021 | assert((_collectorState == AbortablePreclean && should_abort_preclean()), |
4022 | "Should only be AbortablePreclean." ); |
4023 | _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end())); |
4024 | if (should_abort_preclean()) { |
4025 | break; // out of preclean loop |
4026 | } else { |
4027 | // Compute the next address at which preclean should pick up; |
4028 | // might need bitMapLock in order to read P-bits. |
4029 | lastAddr = next_card_start_after_block(stop_point); |
4030 | } |
4031 | } |
4032 | } else { |
4033 | assert(lastAddr == endAddr, "consistency check" ); |
4034 | assert(numDirtyCards == 0, "consistency check" ); |
4035 | break; |
4036 | } |
4037 | } |
4038 | verify_work_stacks_empty(); |
4039 | verify_overflow_empty(); |
4040 | return cumNumDirtyCards; |
4041 | } |
4042 | |
4043 | // NOTE: preclean_mod_union_table() above and preclean_card_table() |
4044 | // below are largely identical; if you need to modify |
4045 | // one of these methods, please check the other method too. |
4046 | |
4047 | size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen, |
4048 | ScanMarkedObjectsAgainCarefullyClosure* cl) { |
4049 | // strategy: it's similar to precleamModUnionTable above, in that |
4050 | // we accumulate contiguous ranges of dirty cards, mark these cards |
4051 | // precleaned, then scan the region covered by these cards. |
4052 | HeapWord* endAddr = (HeapWord*)(old_gen->_virtual_space.high()); |
4053 | HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low()); |
4054 | |
4055 | cl->setFreelistLock(old_gen->freelistLock()); // needed for yielding |
4056 | |
4057 | size_t numDirtyCards, cumNumDirtyCards; |
4058 | HeapWord *lastAddr, *nextAddr; |
4059 | |
4060 | for (cumNumDirtyCards = numDirtyCards = 0, |
4061 | nextAddr = lastAddr = startAddr; |
4062 | nextAddr < endAddr; |
4063 | nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { |
4064 | |
4065 | ResourceMark rm; |
4066 | HandleMark hm; |
4067 | |
4068 | MemRegion dirtyRegion; |
4069 | { |
4070 | // See comments in "Precleaning notes" above on why we |
4071 | // do this locking. XXX Could the locking overheads be |
4072 | // too high when dirty cards are sparse? [I don't think so.] |
4073 | stopTimer(); |
4074 | CMSTokenSync x(true); // is cms thread |
4075 | startTimer(); |
4076 | sample_eden(); |
4077 | // Get and clear dirty region from card table |
4078 | dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr), |
4079 | true, |
4080 | CardTable::precleaned_card_val()); |
4081 | |
4082 | assert(dirtyRegion.start() >= nextAddr, |
4083 | "returned region inconsistent?" ); |
4084 | } |
4085 | lastAddr = dirtyRegion.end(); |
4086 | numDirtyCards = |
4087 | dirtyRegion.word_size()/CardTable::card_size_in_words; |
4088 | |
4089 | if (!dirtyRegion.is_empty()) { |
4090 | stopTimer(); |
4091 | CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock()); |
4092 | startTimer(); |
4093 | sample_eden(); |
4094 | verify_work_stacks_empty(); |
4095 | verify_overflow_empty(); |
4096 | HeapWord* stop_point = |
4097 | old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); |
4098 | if (stop_point != NULL) { |
4099 | assert((_collectorState == AbortablePreclean && should_abort_preclean()), |
4100 | "Should only be AbortablePreclean." ); |
4101 | _ct->invalidate(MemRegion(stop_point, dirtyRegion.end())); |
4102 | if (should_abort_preclean()) { |
4103 | break; // out of preclean loop |
4104 | } else { |
4105 | // Compute the next address at which preclean should pick up. |
4106 | lastAddr = next_card_start_after_block(stop_point); |
4107 | } |
4108 | } |
4109 | } else { |
4110 | break; |
4111 | } |
4112 | } |
4113 | verify_work_stacks_empty(); |
4114 | verify_overflow_empty(); |
4115 | return cumNumDirtyCards; |
4116 | } |
4117 | |
4118 | class PrecleanCLDClosure : public CLDClosure { |
4119 | MetadataVisitingOopsInGenClosure* _cm_closure; |
4120 | public: |
4121 | PrecleanCLDClosure(MetadataVisitingOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {} |
4122 | void do_cld(ClassLoaderData* cld) { |
4123 | if (cld->has_accumulated_modified_oops()) { |
4124 | cld->clear_accumulated_modified_oops(); |
4125 | |
4126 | _cm_closure->do_cld(cld); |
4127 | } |
4128 | } |
4129 | }; |
4130 | |
4131 | // The freelist lock is needed to prevent asserts, is it really needed? |
4132 | void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) { |
4133 | // Needed to walk CLDG |
4134 | MutexLocker ml(ClassLoaderDataGraph_lock); |
4135 | |
4136 | cl->set_freelistLock(freelistLock); |
4137 | |
4138 | CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock()); |
4139 | |
4140 | // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean? |
4141 | // SSS: We should probably check if precleaning should be aborted, at suitable intervals? |
4142 | PrecleanCLDClosure preclean_closure(cl); |
4143 | ClassLoaderDataGraph::cld_do(&preclean_closure); |
4144 | |
4145 | verify_work_stacks_empty(); |
4146 | verify_overflow_empty(); |
4147 | } |
4148 | |
4149 | void CMSCollector::checkpointRootsFinal() { |
4150 | assert(_collectorState == FinalMarking, "incorrect state transition?" ); |
4151 | check_correct_thread_executing(); |
4152 | // world is stopped at this checkpoint |
4153 | assert(SafepointSynchronize::is_at_safepoint(), |
4154 | "world should be stopped" ); |
4155 | TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause()); |
4156 | |
4157 | verify_work_stacks_empty(); |
4158 | verify_overflow_empty(); |
4159 | |
4160 | log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)" , |
4161 | _young_gen->used() / K, _young_gen->capacity() / K); |
4162 | { |
4163 | if (CMSScavengeBeforeRemark) { |
4164 | CMSHeap* heap = CMSHeap::heap(); |
4165 | // Temporarily set flag to false, GCH->do_collection will |
4166 | // expect it to be false and set to true |
4167 | FlagSetting fl(heap->_is_gc_active, false); |
4168 | |
4169 | heap->do_collection(true, // full (i.e. force, see below) |
4170 | false, // !clear_all_soft_refs |
4171 | 0, // size |
4172 | false, // is_tlab |
4173 | GenCollectedHeap::YoungGen // type |
4174 | ); |
4175 | } |
4176 | FreelistLocker x(this); |
4177 | MutexLocker y(bitMapLock(), |
4178 | Mutex::_no_safepoint_check_flag); |
4179 | checkpointRootsFinalWork(); |
4180 | } |
4181 | verify_work_stacks_empty(); |
4182 | verify_overflow_empty(); |
4183 | } |
4184 | |
4185 | void CMSCollector::checkpointRootsFinalWork() { |
4186 | GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork" , _gc_timer_cm); |
4187 | |
4188 | assert(haveFreelistLocks(), "must have free list locks" ); |
4189 | assert_lock_strong(bitMapLock()); |
4190 | |
4191 | ResourceMark rm; |
4192 | HandleMark hm; |
4193 | |
4194 | CMSHeap* heap = CMSHeap::heap(); |
4195 | |
4196 | assert(haveFreelistLocks(), "must have free list locks" ); |
4197 | assert_lock_strong(bitMapLock()); |
4198 | |
4199 | // We might assume that we need not fill TLAB's when |
4200 | // CMSScavengeBeforeRemark is set, because we may have just done |
4201 | // a scavenge which would have filled all TLAB's -- and besides |
4202 | // Eden would be empty. This however may not always be the case -- |
4203 | // for instance although we asked for a scavenge, it may not have |
4204 | // happened because of a JNI critical section. We probably need |
4205 | // a policy for deciding whether we can in that case wait until |
4206 | // the critical section releases and then do the remark following |
4207 | // the scavenge, and skip it here. In the absence of that policy, |
4208 | // or of an indication of whether the scavenge did indeed occur, |
4209 | // we cannot rely on TLAB's having been filled and must do |
4210 | // so here just in case a scavenge did not happen. |
4211 | heap->ensure_parsability(false); // fill TLAB's, but no need to retire them |
4212 | // Update the saved marks which may affect the root scans. |
4213 | heap->save_marks(); |
4214 | |
4215 | print_eden_and_survivor_chunk_arrays(); |
4216 | |
4217 | { |
4218 | #if COMPILER2_OR_JVMCI |
4219 | DerivedPointerTableDeactivate dpt_deact; |
4220 | #endif |
4221 | |
4222 | // Note on the role of the mod union table: |
4223 | // Since the marker in "markFromRoots" marks concurrently with |
4224 | // mutators, it is possible for some reachable objects not to have been |
4225 | // scanned. For instance, an only reference to an object A was |
4226 | // placed in object B after the marker scanned B. Unless B is rescanned, |
4227 | // A would be collected. Such updates to references in marked objects |
4228 | // are detected via the mod union table which is the set of all cards |
4229 | // dirtied since the first checkpoint in this GC cycle and prior to |
4230 | // the most recent young generation GC, minus those cleaned up by the |
4231 | // concurrent precleaning. |
4232 | if (CMSParallelRemarkEnabled) { |
4233 | GCTraceTime(Debug, gc, phases) t("Rescan (parallel)" , _gc_timer_cm); |
4234 | do_remark_parallel(); |
4235 | } else { |
4236 | GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)" , _gc_timer_cm); |
4237 | do_remark_non_parallel(); |
4238 | } |
4239 | } |
4240 | verify_work_stacks_empty(); |
4241 | verify_overflow_empty(); |
4242 | |
4243 | { |
4244 | GCTraceTime(Trace, gc, phases) ts("refProcessingWork" , _gc_timer_cm); |
4245 | refProcessingWork(); |
4246 | } |
4247 | verify_work_stacks_empty(); |
4248 | verify_overflow_empty(); |
4249 | |
4250 | if (should_unload_classes()) { |
4251 | heap->prune_scavengable_nmethods(); |
4252 | } |
4253 | JvmtiExport::gc_epilogue(); |
4254 | |
4255 | // If we encountered any (marking stack / work queue) overflow |
4256 | // events during the current CMS cycle, take appropriate |
4257 | // remedial measures, where possible, so as to try and avoid |
4258 | // recurrence of that condition. |
4259 | assert(_markStack.isEmpty(), "No grey objects" ); |
4260 | size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw + |
4261 | _ser_kac_ovflw + _ser_kac_preclean_ovflw; |
4262 | if (ser_ovflw > 0) { |
4263 | log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")" , |
4264 | _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw); |
4265 | _markStack.expand(); |
4266 | _ser_pmc_remark_ovflw = 0; |
4267 | _ser_pmc_preclean_ovflw = 0; |
4268 | _ser_kac_preclean_ovflw = 0; |
4269 | _ser_kac_ovflw = 0; |
4270 | } |
4271 | if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) { |
4272 | log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")" , |
4273 | _par_pmc_remark_ovflw, _par_kac_ovflw); |
4274 | _par_pmc_remark_ovflw = 0; |
4275 | _par_kac_ovflw = 0; |
4276 | } |
4277 | if (_markStack._hit_limit > 0) { |
4278 | log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")" , |
4279 | _markStack._hit_limit); |
4280 | } |
4281 | if (_markStack._failed_double > 0) { |
4282 | log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT, |
4283 | _markStack._failed_double, _markStack.capacity()); |
4284 | } |
4285 | _markStack._hit_limit = 0; |
4286 | _markStack._failed_double = 0; |
4287 | |
4288 | if ((VerifyAfterGC || VerifyDuringGC) && |
4289 | CMSHeap::heap()->total_collections() >= VerifyGCStartAt) { |
4290 | verify_after_remark(); |
4291 | } |
4292 | |
4293 | _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure); |
4294 | |
4295 | // Change under the freelistLocks. |
4296 | _collectorState = Sweeping; |
4297 | // Call isAllClear() under bitMapLock |
4298 | assert(_modUnionTable.isAllClear(), |
4299 | "Should be clear by end of the final marking" ); |
4300 | assert(_ct->cld_rem_set()->mod_union_is_clear(), |
4301 | "Should be clear by end of the final marking" ); |
4302 | } |
4303 | |
4304 | void CMSParInitialMarkTask::work(uint worker_id) { |
4305 | elapsedTimer _timer; |
4306 | ResourceMark rm; |
4307 | HandleMark hm; |
4308 | |
4309 | // ---------- scan from roots -------------- |
4310 | _timer.start(); |
4311 | CMSHeap* heap = CMSHeap::heap(); |
4312 | ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap)); |
4313 | |
4314 | // ---------- young gen roots -------------- |
4315 | { |
4316 | work_on_young_gen_roots(&par_mri_cl); |
4317 | _timer.stop(); |
4318 | log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
4319 | } |
4320 | |
4321 | // ---------- remaining roots -------------- |
4322 | _timer.reset(); |
4323 | _timer.start(); |
4324 | |
4325 | CLDToOopClosure cld_closure(&par_mri_cl, ClassLoaderData::_claim_strong); |
4326 | |
4327 | heap->cms_process_roots(_strong_roots_scope, |
4328 | false, // yg was scanned above |
4329 | GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), |
4330 | _collector->should_unload_classes(), |
4331 | &par_mri_cl, |
4332 | &cld_closure); |
4333 | |
4334 | assert(_collector->should_unload_classes() |
4335 | || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), |
4336 | "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops" ); |
4337 | _timer.stop(); |
4338 | log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
4339 | } |
4340 | |
4341 | // Parallel remark task |
4342 | class : public CMSParMarkTask { |
4343 | CompactibleFreeListSpace* ; |
4344 | |
4345 | // The per-thread work queues, available here for stealing. |
4346 | OopTaskQueueSet* ; |
4347 | TaskTerminator ; |
4348 | StrongRootsScope* ; |
4349 | |
4350 | public: |
4351 | // A value of 0 passed to n_workers will cause the number of |
4352 | // workers to be taken from the active workers in the work gang. |
4353 | (CMSCollector* collector, |
4354 | CompactibleFreeListSpace* cms_space, |
4355 | uint n_workers, WorkGang* workers, |
4356 | OopTaskQueueSet* task_queues, |
4357 | StrongRootsScope* strong_roots_scope): |
4358 | CMSParMarkTask("Rescan roots and grey objects in parallel" , |
4359 | collector, n_workers), |
4360 | _cms_space(cms_space), |
4361 | _task_queues(task_queues), |
4362 | _term(n_workers, task_queues), |
4363 | _strong_roots_scope(strong_roots_scope) { } |
4364 | |
4365 | OopTaskQueueSet* () { return _task_queues; } |
4366 | |
4367 | OopTaskQueue* (int i) { return task_queues()->queue(i); } |
4368 | |
4369 | ParallelTaskTerminator* () { return _term.terminator(); } |
4370 | uint () { return _n_workers; } |
4371 | |
4372 | void work(uint worker_id); |
4373 | |
4374 | private: |
4375 | // ... of dirty cards in old space |
4376 | void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i, |
4377 | ParMarkRefsIntoAndScanClosure* cl); |
4378 | |
4379 | // ... work stealing for the above |
4380 | void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl); |
4381 | }; |
4382 | |
4383 | class : public CLDClosure { |
4384 | CLDToOopClosure ; |
4385 | public: |
4386 | (OopClosure* oop_closure) : _cm_closure(oop_closure, ClassLoaderData::_claim_strong) {} |
4387 | void (ClassLoaderData* cld) { |
4388 | // Check if we have modified any oops in the CLD during the concurrent marking. |
4389 | if (cld->has_accumulated_modified_oops()) { |
4390 | cld->clear_accumulated_modified_oops(); |
4391 | |
4392 | // We could have transfered the current modified marks to the accumulated marks, |
4393 | // like we do with the Card Table to Mod Union Table. But it's not really necessary. |
4394 | } else if (cld->has_modified_oops()) { |
4395 | // Don't clear anything, this info is needed by the next young collection. |
4396 | } else { |
4397 | // No modified oops in the ClassLoaderData. |
4398 | return; |
4399 | } |
4400 | |
4401 | // The klass has modified fields, need to scan the klass. |
4402 | _cm_closure.do_cld(cld); |
4403 | } |
4404 | }; |
4405 | |
4406 | void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) { |
4407 | ParNewGeneration* young_gen = _collector->_young_gen; |
4408 | ContiguousSpace* eden_space = young_gen->eden(); |
4409 | ContiguousSpace* from_space = young_gen->from(); |
4410 | ContiguousSpace* to_space = young_gen->to(); |
4411 | |
4412 | HeapWord** eca = _collector->_eden_chunk_array; |
4413 | size_t ect = _collector->_eden_chunk_index; |
4414 | HeapWord** sca = _collector->_survivor_chunk_array; |
4415 | size_t sct = _collector->_survivor_chunk_index; |
4416 | |
4417 | assert(ect <= _collector->_eden_chunk_capacity, "out of bounds" ); |
4418 | assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds" ); |
4419 | |
4420 | do_young_space_rescan(cl, to_space, NULL, 0); |
4421 | do_young_space_rescan(cl, from_space, sca, sct); |
4422 | do_young_space_rescan(cl, eden_space, eca, ect); |
4423 | } |
4424 | |
4425 | // work_queue(i) is passed to the closure |
4426 | // ParMarkRefsIntoAndScanClosure. The "i" parameter |
4427 | // also is passed to do_dirty_card_rescan_tasks() and to |
4428 | // do_work_steal() to select the i-th task_queue. |
4429 | |
4430 | void CMSParRemarkTask::(uint worker_id) { |
4431 | elapsedTimer _timer; |
4432 | ResourceMark rm; |
4433 | HandleMark hm; |
4434 | |
4435 | // ---------- rescan from roots -------------- |
4436 | _timer.start(); |
4437 | CMSHeap* heap = CMSHeap::heap(); |
4438 | ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector, |
4439 | _collector->_span, _collector->ref_processor(), |
4440 | &(_collector->_markBitMap), |
4441 | work_queue(worker_id)); |
4442 | |
4443 | // Rescan young gen roots first since these are likely |
4444 | // coarsely partitioned and may, on that account, constitute |
4445 | // the critical path; thus, it's best to start off that |
4446 | // work first. |
4447 | // ---------- young gen roots -------------- |
4448 | { |
4449 | work_on_young_gen_roots(&par_mrias_cl); |
4450 | _timer.stop(); |
4451 | log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
4452 | } |
4453 | |
4454 | // ---------- remaining roots -------------- |
4455 | _timer.reset(); |
4456 | _timer.start(); |
4457 | heap->cms_process_roots(_strong_roots_scope, |
4458 | false, // yg was scanned above |
4459 | GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), |
4460 | _collector->should_unload_classes(), |
4461 | &par_mrias_cl, |
4462 | NULL); // The dirty klasses will be handled below |
4463 | |
4464 | assert(_collector->should_unload_classes() |
4465 | || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), |
4466 | "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops" ); |
4467 | _timer.stop(); |
4468 | log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
4469 | |
4470 | // ---------- unhandled CLD scanning ---------- |
4471 | if (worker_id == 0) { // Single threaded at the moment. |
4472 | _timer.reset(); |
4473 | _timer.start(); |
4474 | |
4475 | // Scan all new class loader data objects and new dependencies that were |
4476 | // introduced during concurrent marking. |
4477 | ResourceMark rm; |
4478 | GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); |
4479 | for (int i = 0; i < array->length(); i++) { |
4480 | Devirtualizer::do_cld(&par_mrias_cl, array->at(i)); |
4481 | } |
4482 | |
4483 | // We don't need to keep track of new CLDs anymore. |
4484 | ClassLoaderDataGraph::remember_new_clds(false); |
4485 | |
4486 | _timer.stop(); |
4487 | log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
4488 | } |
4489 | |
4490 | // We might have added oops to ClassLoaderData::_handles during the |
4491 | // concurrent marking phase. These oops do not always point to newly allocated objects |
4492 | // that are guaranteed to be kept alive. Hence, |
4493 | // we do have to revisit the _handles block during the remark phase. |
4494 | |
4495 | // ---------- dirty CLD scanning ---------- |
4496 | if (worker_id == 0) { // Single threaded at the moment. |
4497 | _timer.reset(); |
4498 | _timer.start(); |
4499 | |
4500 | // Scan all classes that was dirtied during the concurrent marking phase. |
4501 | RemarkCLDClosure (&par_mrias_cl); |
4502 | ClassLoaderDataGraph::cld_do(&remark_closure); |
4503 | |
4504 | _timer.stop(); |
4505 | log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
4506 | } |
4507 | |
4508 | |
4509 | // ---------- rescan dirty cards ------------ |
4510 | _timer.reset(); |
4511 | _timer.start(); |
4512 | |
4513 | // Do the rescan tasks for each of the two spaces |
4514 | // (cms_space) in turn. |
4515 | // "worker_id" is passed to select the task_queue for "worker_id" |
4516 | do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl); |
4517 | _timer.stop(); |
4518 | log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
4519 | |
4520 | // ---------- steal work from other threads ... |
4521 | // ---------- ... and drain overflow list. |
4522 | _timer.reset(); |
4523 | _timer.start(); |
4524 | do_work_steal(worker_id, &par_mrias_cl); |
4525 | _timer.stop(); |
4526 | log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec" , worker_id, _timer.seconds()); |
4527 | } |
4528 | |
4529 | void |
4530 | CMSParMarkTask::do_young_space_rescan( |
4531 | OopsInGenClosure* cl, ContiguousSpace* space, |
4532 | HeapWord** chunk_array, size_t chunk_top) { |
4533 | // Until all tasks completed: |
4534 | // . claim an unclaimed task |
4535 | // . compute region boundaries corresponding to task claimed |
4536 | // using chunk_array |
4537 | // . par_oop_iterate(cl) over that region |
4538 | |
4539 | ResourceMark rm; |
4540 | HandleMark hm; |
4541 | |
4542 | SequentialSubTasksDone* pst = space->par_seq_tasks(); |
4543 | |
4544 | uint nth_task = 0; |
4545 | uint n_tasks = pst->n_tasks(); |
4546 | |
4547 | if (n_tasks > 0) { |
4548 | assert(pst->valid(), "Uninitialized use?" ); |
4549 | HeapWord *start, *end; |
4550 | while (pst->try_claim_task(/* reference */ nth_task)) { |
4551 | // We claimed task # nth_task; compute its boundaries. |
4552 | if (chunk_top == 0) { // no samples were taken |
4553 | assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task" ); |
4554 | start = space->bottom(); |
4555 | end = space->top(); |
4556 | } else if (nth_task == 0) { |
4557 | start = space->bottom(); |
4558 | end = chunk_array[nth_task]; |
4559 | } else if (nth_task < (uint)chunk_top) { |
4560 | assert(nth_task >= 1, "Control point invariant" ); |
4561 | start = chunk_array[nth_task - 1]; |
4562 | end = chunk_array[nth_task]; |
4563 | } else { |
4564 | assert(nth_task == (uint)chunk_top, "Control point invariant" ); |
4565 | start = chunk_array[chunk_top - 1]; |
4566 | end = space->top(); |
4567 | } |
4568 | MemRegion mr(start, end); |
4569 | // Verify that mr is in space |
4570 | assert(mr.is_empty() || space->used_region().contains(mr), |
4571 | "Should be in space" ); |
4572 | // Verify that "start" is an object boundary |
4573 | assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())), |
4574 | "Should be an oop" ); |
4575 | space->par_oop_iterate(mr, cl); |
4576 | } |
4577 | pst->all_tasks_completed(); |
4578 | } |
4579 | } |
4580 | |
4581 | void |
4582 | CMSParRemarkTask::do_dirty_card_rescan_tasks( |
4583 | CompactibleFreeListSpace* sp, int i, |
4584 | ParMarkRefsIntoAndScanClosure* cl) { |
4585 | // Until all tasks completed: |
4586 | // . claim an unclaimed task |
4587 | // . compute region boundaries corresponding to task claimed |
4588 | // . transfer dirty bits ct->mut for that region |
4589 | // . apply rescanclosure to dirty mut bits for that region |
4590 | |
4591 | ResourceMark rm; |
4592 | HandleMark hm; |
4593 | |
4594 | OopTaskQueue* work_q = work_queue(i); |
4595 | ModUnionClosure modUnionClosure(&(_collector->_modUnionTable)); |
4596 | // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! |
4597 | // CAUTION: This closure has state that persists across calls to |
4598 | // the work method dirty_range_iterate_clear() in that it has |
4599 | // embedded in it a (subtype of) UpwardsObjectClosure. The |
4600 | // use of that state in the embedded UpwardsObjectClosure instance |
4601 | // assumes that the cards are always iterated (even if in parallel |
4602 | // by several threads) in monotonically increasing order per each |
4603 | // thread. This is true of the implementation below which picks |
4604 | // card ranges (chunks) in monotonically increasing order globally |
4605 | // and, a-fortiori, in monotonically increasing order per thread |
4606 | // (the latter order being a subsequence of the former). |
4607 | // If the work code below is ever reorganized into a more chaotic |
4608 | // work-partitioning form than the current "sequential tasks" |
4609 | // paradigm, the use of that persistent state will have to be |
4610 | // revisited and modified appropriately. See also related |
4611 | // bug 4756801 work on which should examine this code to make |
4612 | // sure that the changes there do not run counter to the |
4613 | // assumptions made here and necessary for correctness and |
4614 | // efficiency. Note also that this code might yield inefficient |
4615 | // behavior in the case of very large objects that span one or |
4616 | // more work chunks. Such objects would potentially be scanned |
4617 | // several times redundantly. Work on 4756801 should try and |
4618 | // address that performance anomaly if at all possible. XXX |
4619 | MemRegion full_span = _collector->_span; |
4620 | CMSBitMap* bm = &(_collector->_markBitMap); // shared |
4621 | MarkFromDirtyCardsClosure |
4622 | greyRescanClosure(_collector, full_span, // entire span of interest |
4623 | sp, bm, work_q, cl); |
4624 | |
4625 | SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); |
4626 | assert(pst->valid(), "Uninitialized use?" ); |
4627 | uint nth_task = 0; |
4628 | const int alignment = CardTable::card_size * BitsPerWord; |
4629 | MemRegion span = sp->used_region(); |
4630 | HeapWord* start_addr = span.start(); |
4631 | HeapWord* end_addr = align_up(span.end(), alignment); |
4632 | const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units |
4633 | assert(is_aligned(start_addr, alignment), "Check alignment" ); |
4634 | assert(is_aligned(chunk_size, alignment), "Check alignment" ); |
4635 | |
4636 | while (pst->try_claim_task(/* reference */ nth_task)) { |
4637 | // Having claimed the nth_task, compute corresponding mem-region, |
4638 | // which is a-fortiori aligned correctly (i.e. at a MUT boundary). |
4639 | // The alignment restriction ensures that we do not need any |
4640 | // synchronization with other gang-workers while setting or |
4641 | // clearing bits in thus chunk of the MUT. |
4642 | MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size, |
4643 | start_addr + (nth_task+1)*chunk_size); |
4644 | // The last chunk's end might be way beyond end of the |
4645 | // used region. In that case pull back appropriately. |
4646 | if (this_span.end() > end_addr) { |
4647 | this_span.set_end(end_addr); |
4648 | assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)" ); |
4649 | } |
4650 | // Iterate over the dirty cards covering this chunk, marking them |
4651 | // precleaned, and setting the corresponding bits in the mod union |
4652 | // table. Since we have been careful to partition at Card and MUT-word |
4653 | // boundaries no synchronization is needed between parallel threads. |
4654 | _collector->_ct->dirty_card_iterate(this_span, |
4655 | &modUnionClosure); |
4656 | |
4657 | // Having transferred these marks into the modUnionTable, |
4658 | // rescan the marked objects on the dirty cards in the modUnionTable. |
4659 | // Even if this is at a synchronous collection, the initial marking |
4660 | // may have been done during an asynchronous collection so there |
4661 | // may be dirty bits in the mod-union table. |
4662 | _collector->_modUnionTable.dirty_range_iterate_clear( |
4663 | this_span, &greyRescanClosure); |
4664 | _collector->_modUnionTable.verifyNoOneBitsInRange( |
4665 | this_span.start(), |
4666 | this_span.end()); |
4667 | } |
4668 | pst->all_tasks_completed(); // declare that i am done |
4669 | } |
4670 | |
4671 | // . see if we can share work_queues with ParNew? XXX |
4672 | void |
4673 | CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl) { |
4674 | OopTaskQueue* work_q = work_queue(i); |
4675 | NOT_PRODUCT(int num_steals = 0;) |
4676 | oop obj_to_scan; |
4677 | CMSBitMap* bm = &(_collector->_markBitMap); |
4678 | |
4679 | while (true) { |
4680 | // Completely finish any left over work from (an) earlier round(s) |
4681 | cl->trim_queue(0); |
4682 | size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, |
4683 | (size_t)ParGCDesiredObjsFromOverflowList); |
4684 | // Now check if there's any work in the overflow list |
4685 | // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, |
4686 | // only affects the number of attempts made to get work from the |
4687 | // overflow list and does not affect the number of workers. Just |
4688 | // pass ParallelGCThreads so this behavior is unchanged. |
4689 | if (_collector->par_take_from_overflow_list(num_from_overflow_list, |
4690 | work_q, |
4691 | ParallelGCThreads)) { |
4692 | // found something in global overflow list; |
4693 | // not yet ready to go stealing work from others. |
4694 | // We'd like to assert(work_q->size() != 0, ...) |
4695 | // because we just took work from the overflow list, |
4696 | // but of course we can't since all of that could have |
4697 | // been already stolen from us. |
4698 | // "He giveth and He taketh away." |
4699 | continue; |
4700 | } |
4701 | // Verify that we have no work before we resort to stealing |
4702 | assert(work_q->size() == 0, "Have work, shouldn't steal" ); |
4703 | // Try to steal from other queues that have work |
4704 | if (task_queues()->steal(i, /* reference */ obj_to_scan)) { |
4705 | NOT_PRODUCT(num_steals++;) |
4706 | assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!" ); |
4707 | assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?" ); |
4708 | // Do scanning work |
4709 | obj_to_scan->oop_iterate(cl); |
4710 | // Loop around, finish this work, and try to steal some more |
4711 | } else if (terminator()->offer_termination()) { |
4712 | break; // nirvana from the infinite cycle |
4713 | } |
4714 | } |
4715 | log_develop_trace(gc, task)("\t(%d: stole %d oops)" , i, num_steals); |
4716 | assert(work_q->size() == 0 && _collector->overflow_list_is_empty(), |
4717 | "Else our work is not yet done" ); |
4718 | } |
4719 | |
4720 | // Record object boundaries in _eden_chunk_array by sampling the eden |
4721 | // top in the slow-path eden object allocation code path and record |
4722 | // the boundaries, if CMSEdenChunksRecordAlways is true. If |
4723 | // CMSEdenChunksRecordAlways is false, we use the other asynchronous |
4724 | // sampling in sample_eden() that activates during the part of the |
4725 | // preclean phase. |
4726 | void CMSCollector::sample_eden_chunk() { |
4727 | if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) { |
4728 | if (_eden_chunk_lock->try_lock()) { |
4729 | // Record a sample. This is the critical section. The contents |
4730 | // of the _eden_chunk_array have to be non-decreasing in the |
4731 | // address order. |
4732 | _eden_chunk_array[_eden_chunk_index] = *_top_addr; |
4733 | assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, |
4734 | "Unexpected state of Eden" ); |
4735 | if (_eden_chunk_index == 0 || |
4736 | ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) && |
4737 | (pointer_delta(_eden_chunk_array[_eden_chunk_index], |
4738 | _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) { |
4739 | _eden_chunk_index++; // commit sample |
4740 | } |
4741 | _eden_chunk_lock->unlock(); |
4742 | } |
4743 | } |
4744 | } |
4745 | |
4746 | // Return a thread-local PLAB recording array, as appropriate. |
4747 | void* CMSCollector::get_data_recorder(int thr_num) { |
4748 | if (_survivor_plab_array != NULL && |
4749 | (CMSPLABRecordAlways || |
4750 | (_collectorState > Marking && _collectorState < FinalMarking))) { |
4751 | assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds" ); |
4752 | ChunkArray* ca = &_survivor_plab_array[thr_num]; |
4753 | ca->reset(); // clear it so that fresh data is recorded |
4754 | return (void*) ca; |
4755 | } else { |
4756 | return NULL; |
4757 | } |
4758 | } |
4759 | |
4760 | // Reset all the thread-local PLAB recording arrays |
4761 | void CMSCollector::reset_survivor_plab_arrays() { |
4762 | for (uint i = 0; i < ParallelGCThreads; i++) { |
4763 | _survivor_plab_array[i].reset(); |
4764 | } |
4765 | } |
4766 | |
4767 | // Merge the per-thread plab arrays into the global survivor chunk |
4768 | // array which will provide the partitioning of the survivor space |
4769 | // for CMS initial scan and rescan. |
4770 | void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv, |
4771 | int no_of_gc_threads) { |
4772 | assert(_survivor_plab_array != NULL, "Error" ); |
4773 | assert(_survivor_chunk_array != NULL, "Error" ); |
4774 | assert(_collectorState == FinalMarking || |
4775 | (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error" ); |
4776 | for (int j = 0; j < no_of_gc_threads; j++) { |
4777 | _cursor[j] = 0; |
4778 | } |
4779 | HeapWord* top = surv->top(); |
4780 | size_t i; |
4781 | for (i = 0; i < _survivor_chunk_capacity; i++) { // all sca entries |
4782 | HeapWord* min_val = top; // Higher than any PLAB address |
4783 | uint min_tid = 0; // position of min_val this round |
4784 | for (int j = 0; j < no_of_gc_threads; j++) { |
4785 | ChunkArray* cur_sca = &_survivor_plab_array[j]; |
4786 | if (_cursor[j] == cur_sca->end()) { |
4787 | continue; |
4788 | } |
4789 | assert(_cursor[j] < cur_sca->end(), "ctl pt invariant" ); |
4790 | HeapWord* cur_val = cur_sca->nth(_cursor[j]); |
4791 | assert(surv->used_region().contains(cur_val), "Out of bounds value" ); |
4792 | if (cur_val < min_val) { |
4793 | min_tid = j; |
4794 | min_val = cur_val; |
4795 | } else { |
4796 | assert(cur_val < top, "All recorded addresses should be less" ); |
4797 | } |
4798 | } |
4799 | // At this point min_val and min_tid are respectively |
4800 | // the least address in _survivor_plab_array[j]->nth(_cursor[j]) |
4801 | // and the thread (j) that witnesses that address. |
4802 | // We record this address in the _survivor_chunk_array[i] |
4803 | // and increment _cursor[min_tid] prior to the next round i. |
4804 | if (min_val == top) { |
4805 | break; |
4806 | } |
4807 | _survivor_chunk_array[i] = min_val; |
4808 | _cursor[min_tid]++; |
4809 | } |
4810 | // We are all done; record the size of the _survivor_chunk_array |
4811 | _survivor_chunk_index = i; // exclusive: [0, i) |
4812 | log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) " , i); |
4813 | // Verify that we used up all the recorded entries |
4814 | #ifdef ASSERT |
4815 | size_t total = 0; |
4816 | for (int j = 0; j < no_of_gc_threads; j++) { |
4817 | assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant" ); |
4818 | total += _cursor[j]; |
4819 | } |
4820 | assert(total == _survivor_chunk_index, "Ctl Pt Invariant" ); |
4821 | // Check that the merged array is in sorted order |
4822 | if (total > 0) { |
4823 | for (size_t i = 0; i < total - 1; i++) { |
4824 | log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") " , |
4825 | i, p2i(_survivor_chunk_array[i])); |
4826 | assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1], |
4827 | "Not sorted" ); |
4828 | } |
4829 | } |
4830 | #endif // ASSERT |
4831 | } |
4832 | |
4833 | // Set up the space's par_seq_tasks structure for work claiming |
4834 | // for parallel initial scan and rescan of young gen. |
4835 | // See ParRescanTask where this is currently used. |
4836 | void |
4837 | CMSCollector:: |
4838 | initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) { |
4839 | assert(n_threads > 0, "Unexpected n_threads argument" ); |
4840 | |
4841 | // Eden space |
4842 | if (!_young_gen->eden()->is_empty()) { |
4843 | SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks(); |
4844 | assert(!pst->valid(), "Clobbering existing data?" ); |
4845 | // Each valid entry in [0, _eden_chunk_index) represents a task. |
4846 | size_t n_tasks = _eden_chunk_index + 1; |
4847 | assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error" ); |
4848 | // Sets the condition for completion of the subtask (how many threads |
4849 | // need to finish in order to be done). |
4850 | pst->set_n_threads(n_threads); |
4851 | pst->set_n_tasks((int)n_tasks); |
4852 | } |
4853 | |
4854 | // Merge the survivor plab arrays into _survivor_chunk_array |
4855 | if (_survivor_plab_array != NULL) { |
4856 | merge_survivor_plab_arrays(_young_gen->from(), n_threads); |
4857 | } else { |
4858 | assert(_survivor_chunk_index == 0, "Error" ); |
4859 | } |
4860 | |
4861 | // To space |
4862 | { |
4863 | SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks(); |
4864 | assert(!pst->valid(), "Clobbering existing data?" ); |
4865 | // Sets the condition for completion of the subtask (how many threads |
4866 | // need to finish in order to be done). |
4867 | pst->set_n_threads(n_threads); |
4868 | pst->set_n_tasks(1); |
4869 | assert(pst->valid(), "Error" ); |
4870 | } |
4871 | |
4872 | // From space |
4873 | { |
4874 | SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks(); |
4875 | assert(!pst->valid(), "Clobbering existing data?" ); |
4876 | size_t n_tasks = _survivor_chunk_index + 1; |
4877 | assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error" ); |
4878 | // Sets the condition for completion of the subtask (how many threads |
4879 | // need to finish in order to be done). |
4880 | pst->set_n_threads(n_threads); |
4881 | pst->set_n_tasks((int)n_tasks); |
4882 | assert(pst->valid(), "Error" ); |
4883 | } |
4884 | } |
4885 | |
4886 | // Parallel version of remark |
4887 | void CMSCollector::() { |
4888 | CMSHeap* heap = CMSHeap::heap(); |
4889 | WorkGang* workers = heap->workers(); |
4890 | assert(workers != NULL, "Need parallel worker threads." ); |
4891 | // Choose to use the number of GC workers most recently set |
4892 | // into "active_workers". |
4893 | uint n_workers = workers->active_workers(); |
4894 | |
4895 | CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); |
4896 | |
4897 | StrongRootsScope srs(n_workers); |
4898 | |
4899 | CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs); |
4900 | |
4901 | // We won't be iterating over the cards in the card table updating |
4902 | // the younger_gen cards, so we shouldn't call the following else |
4903 | // the verification code as well as subsequent younger_refs_iterate |
4904 | // code would get confused. XXX |
4905 | // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel |
4906 | |
4907 | // The young gen rescan work will not be done as part of |
4908 | // process_roots (which currently doesn't know how to |
4909 | // parallelize such a scan), but rather will be broken up into |
4910 | // a set of parallel tasks (via the sampling that the [abortable] |
4911 | // preclean phase did of eden, plus the [two] tasks of |
4912 | // scanning the [two] survivor spaces. Further fine-grain |
4913 | // parallelization of the scanning of the survivor spaces |
4914 | // themselves, and of precleaning of the young gen itself |
4915 | // is deferred to the future. |
4916 | initialize_sequential_subtasks_for_young_gen_rescan(n_workers); |
4917 | |
4918 | // The dirty card rescan work is broken up into a "sequence" |
4919 | // of parallel tasks (per constituent space) that are dynamically |
4920 | // claimed by the parallel threads. |
4921 | cms_space->initialize_sequential_subtasks_for_rescan(n_workers); |
4922 | |
4923 | // It turns out that even when we're using 1 thread, doing the work in a |
4924 | // separate thread causes wide variance in run times. We can't help this |
4925 | // in the multi-threaded case, but we special-case n=1 here to get |
4926 | // repeatable measurements of the 1-thread overhead of the parallel code. |
4927 | if (n_workers > 1) { |
4928 | // Make refs discovery MT-safe, if it isn't already: it may not |
4929 | // necessarily be so, since it's possible that we are doing |
4930 | // ST marking. |
4931 | ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true); |
4932 | workers->run_task(&tsk); |
4933 | } else { |
4934 | ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); |
4935 | tsk.work(0); |
4936 | } |
4937 | |
4938 | // restore, single-threaded for now, any preserved marks |
4939 | // as a result of work_q overflow |
4940 | restore_preserved_marks_if_any(); |
4941 | } |
4942 | |
4943 | // Non-parallel version of remark |
4944 | void CMSCollector::() { |
4945 | ResourceMark rm; |
4946 | HandleMark hm; |
4947 | CMSHeap* heap = CMSHeap::heap(); |
4948 | ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); |
4949 | |
4950 | MarkRefsIntoAndScanClosure |
4951 | mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */, |
4952 | &_markStack, this, |
4953 | false /* should_yield */, false /* not precleaning */); |
4954 | MarkFromDirtyCardsClosure |
4955 | markFromDirtyCardsClosure(this, _span, |
4956 | NULL, // space is set further below |
4957 | &_markBitMap, &_markStack, &mrias_cl); |
4958 | { |
4959 | GCTraceTime(Trace, gc, phases) t("Grey Object Rescan" , _gc_timer_cm); |
4960 | // Iterate over the dirty cards, setting the corresponding bits in the |
4961 | // mod union table. |
4962 | { |
4963 | ModUnionClosure modUnionClosure(&_modUnionTable); |
4964 | _ct->dirty_card_iterate(_cmsGen->used_region(), |
4965 | &modUnionClosure); |
4966 | } |
4967 | // Having transferred these marks into the modUnionTable, we just need |
4968 | // to rescan the marked objects on the dirty cards in the modUnionTable. |
4969 | // The initial marking may have been done during an asynchronous |
4970 | // collection so there may be dirty bits in the mod-union table. |
4971 | const int alignment = CardTable::card_size * BitsPerWord; |
4972 | { |
4973 | // ... First handle dirty cards in CMS gen |
4974 | markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace()); |
4975 | MemRegion ur = _cmsGen->used_region(); |
4976 | HeapWord* lb = ur.start(); |
4977 | HeapWord* ub = align_up(ur.end(), alignment); |
4978 | MemRegion cms_span(lb, ub); |
4979 | _modUnionTable.dirty_range_iterate_clear(cms_span, |
4980 | &markFromDirtyCardsClosure); |
4981 | verify_work_stacks_empty(); |
4982 | log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) " , markFromDirtyCardsClosure.num_dirty_cards()); |
4983 | } |
4984 | } |
4985 | if (VerifyDuringGC && |
4986 | CMSHeap::heap()->total_collections() >= VerifyGCStartAt) { |
4987 | HandleMark hm; // Discard invalid handles created during verification |
4988 | Universe::verify(); |
4989 | } |
4990 | { |
4991 | GCTraceTime(Trace, gc, phases) t("Root Rescan" , _gc_timer_cm); |
4992 | |
4993 | verify_work_stacks_empty(); |
4994 | |
4995 | heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. |
4996 | StrongRootsScope srs(1); |
4997 | |
4998 | heap->cms_process_roots(&srs, |
4999 | true, // young gen as roots |
5000 | GenCollectedHeap::ScanningOption(roots_scanning_options()), |
5001 | should_unload_classes(), |
5002 | &mrias_cl, |
5003 | NULL); // The dirty klasses will be handled below |
5004 | |
5005 | assert(should_unload_classes() |
5006 | || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), |
5007 | "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops" ); |
5008 | } |
5009 | |
5010 | { |
5011 | GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs" , _gc_timer_cm); |
5012 | |
5013 | verify_work_stacks_empty(); |
5014 | |
5015 | // Scan all class loader data objects that might have been introduced |
5016 | // during concurrent marking. |
5017 | ResourceMark rm; |
5018 | GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); |
5019 | for (int i = 0; i < array->length(); i++) { |
5020 | Devirtualizer::do_cld(&mrias_cl, array->at(i)); |
5021 | } |
5022 | |
5023 | // We don't need to keep track of new CLDs anymore. |
5024 | ClassLoaderDataGraph::remember_new_clds(false); |
5025 | |
5026 | verify_work_stacks_empty(); |
5027 | } |
5028 | |
5029 | // We might have added oops to ClassLoaderData::_handles during the |
5030 | // concurrent marking phase. These oops do not point to newly allocated objects |
5031 | // that are guaranteed to be kept alive. Hence, |
5032 | // we do have to revisit the _handles block during the remark phase. |
5033 | { |
5034 | GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan" , _gc_timer_cm); |
5035 | |
5036 | verify_work_stacks_empty(); |
5037 | |
5038 | RemarkCLDClosure (&mrias_cl); |
5039 | ClassLoaderDataGraph::cld_do(&remark_closure); |
5040 | |
5041 | verify_work_stacks_empty(); |
5042 | } |
5043 | |
5044 | verify_work_stacks_empty(); |
5045 | // Restore evacuated mark words, if any, used for overflow list links |
5046 | restore_preserved_marks_if_any(); |
5047 | |
5048 | verify_overflow_empty(); |
5049 | } |
5050 | |
5051 | //////////////////////////////////////////////////////// |
5052 | // Parallel Reference Processing Task Proxy Class |
5053 | //////////////////////////////////////////////////////// |
5054 | class AbstractGangTaskWOopQueues : public AbstractGangTask { |
5055 | OopTaskQueueSet* _queues; |
5056 | TaskTerminator _terminator; |
5057 | public: |
5058 | AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) : |
5059 | AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {} |
5060 | ParallelTaskTerminator* terminator() { return _terminator.terminator(); } |
5061 | OopTaskQueueSet* queues() { return _queues; } |
5062 | }; |
5063 | |
5064 | class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues { |
5065 | typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; |
5066 | CMSCollector* _collector; |
5067 | CMSBitMap* _mark_bit_map; |
5068 | const MemRegion _span; |
5069 | ProcessTask& _task; |
5070 | |
5071 | public: |
5072 | CMSRefProcTaskProxy(ProcessTask& task, |
5073 | CMSCollector* collector, |
5074 | const MemRegion& span, |
5075 | CMSBitMap* mark_bit_map, |
5076 | AbstractWorkGang* workers, |
5077 | OopTaskQueueSet* task_queues): |
5078 | AbstractGangTaskWOopQueues("Process referents by policy in parallel" , |
5079 | task_queues, |
5080 | workers->active_workers()), |
5081 | _collector(collector), |
5082 | _mark_bit_map(mark_bit_map), |
5083 | _span(span), |
5084 | _task(task) |
5085 | { |
5086 | assert(_collector->_span.equals(_span) && !_span.is_empty(), |
5087 | "Inconsistency in _span" ); |
5088 | } |
5089 | |
5090 | OopTaskQueueSet* task_queues() { return queues(); } |
5091 | |
5092 | OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } |
5093 | |
5094 | void do_work_steal(int i, |
5095 | CMSParDrainMarkingStackClosure* drain, |
5096 | CMSParKeepAliveClosure* keep_alive); |
5097 | |
5098 | virtual void work(uint worker_id); |
5099 | }; |
5100 | |
5101 | void CMSRefProcTaskProxy::work(uint worker_id) { |
5102 | ResourceMark rm; |
5103 | HandleMark hm; |
5104 | assert(_collector->_span.equals(_span), "Inconsistency in _span" ); |
5105 | CMSParKeepAliveClosure par_keep_alive(_collector, _span, |
5106 | _mark_bit_map, |
5107 | work_queue(worker_id)); |
5108 | CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span, |
5109 | _mark_bit_map, |
5110 | work_queue(worker_id)); |
5111 | CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map); |
5112 | _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack); |
5113 | if (_task.marks_oops_alive()) { |
5114 | do_work_steal(worker_id, &par_drain_stack, &par_keep_alive); |
5115 | } |
5116 | assert(work_queue(worker_id)->size() == 0, "work_queue should be empty" ); |
5117 | assert(_collector->_overflow_list == NULL, "non-empty _overflow_list" ); |
5118 | } |
5119 | |
5120 | CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector, |
5121 | MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue): |
5122 | _span(span), |
5123 | _work_queue(work_queue), |
5124 | _bit_map(bit_map), |
5125 | _mark_and_push(collector, span, bit_map, work_queue), |
5126 | _low_water_mark(MIN2((work_queue->max_elems()/4), |
5127 | ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))) |
5128 | { } |
5129 | |
5130 | // . see if we can share work_queues with ParNew? XXX |
5131 | void CMSRefProcTaskProxy::do_work_steal(int i, |
5132 | CMSParDrainMarkingStackClosure* drain, |
5133 | CMSParKeepAliveClosure* keep_alive) { |
5134 | OopTaskQueue* work_q = work_queue(i); |
5135 | NOT_PRODUCT(int num_steals = 0;) |
5136 | oop obj_to_scan; |
5137 | |
5138 | while (true) { |
5139 | // Completely finish any left over work from (an) earlier round(s) |
5140 | drain->trim_queue(0); |
5141 | size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, |
5142 | (size_t)ParGCDesiredObjsFromOverflowList); |
5143 | // Now check if there's any work in the overflow list |
5144 | // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, |
5145 | // only affects the number of attempts made to get work from the |
5146 | // overflow list and does not affect the number of workers. Just |
5147 | // pass ParallelGCThreads so this behavior is unchanged. |
5148 | if (_collector->par_take_from_overflow_list(num_from_overflow_list, |
5149 | work_q, |
5150 | ParallelGCThreads)) { |
5151 | // Found something in global overflow list; |
5152 | // not yet ready to go stealing work from others. |
5153 | // We'd like to assert(work_q->size() != 0, ...) |
5154 | // because we just took work from the overflow list, |
5155 | // but of course we can't, since all of that might have |
5156 | // been already stolen from us. |
5157 | continue; |
5158 | } |
5159 | // Verify that we have no work before we resort to stealing |
5160 | assert(work_q->size() == 0, "Have work, shouldn't steal" ); |
5161 | // Try to steal from other queues that have work |
5162 | if (task_queues()->steal(i, /* reference */ obj_to_scan)) { |
5163 | NOT_PRODUCT(num_steals++;) |
5164 | assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!" ); |
5165 | assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?" ); |
5166 | // Do scanning work |
5167 | obj_to_scan->oop_iterate(keep_alive); |
5168 | // Loop around, finish this work, and try to steal some more |
5169 | } else if (terminator()->offer_termination()) { |
5170 | break; // nirvana from the infinite cycle |
5171 | } |
5172 | } |
5173 | log_develop_trace(gc, task)("\t(%d: stole %d oops)" , i, num_steals); |
5174 | } |
5175 | |
5176 | void CMSRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) { |
5177 | CMSHeap* heap = CMSHeap::heap(); |
5178 | WorkGang* workers = heap->workers(); |
5179 | assert(workers != NULL, "Need parallel worker threads." ); |
5180 | assert(workers->active_workers() == ergo_workers, |
5181 | "Ergonomically chosen workers (%u) must be equal to active workers (%u)" , |
5182 | ergo_workers, workers->active_workers()); |
5183 | CMSRefProcTaskProxy rp_task(task, &_collector, |
5184 | _collector.ref_processor_span(), |
5185 | _collector.markBitMap(), |
5186 | workers, _collector.task_queues()); |
5187 | workers->run_task(&rp_task, workers->active_workers()); |
5188 | } |
5189 | |
5190 | void CMSCollector::refProcessingWork() { |
5191 | ResourceMark rm; |
5192 | HandleMark hm; |
5193 | |
5194 | ReferenceProcessor* rp = ref_processor(); |
5195 | assert(_span_based_discoverer.span().equals(_span), "Spans should be equal" ); |
5196 | assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete" ); |
5197 | // Process weak references. |
5198 | rp->setup_policy(false); |
5199 | verify_work_stacks_empty(); |
5200 | |
5201 | ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues()); |
5202 | { |
5203 | GCTraceTime(Debug, gc, phases) t("Reference Processing" , _gc_timer_cm); |
5204 | |
5205 | // Setup keep_alive and complete closures. |
5206 | CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap, |
5207 | &_markStack, false /* !preclean */); |
5208 | CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this, |
5209 | _span, &_markBitMap, &_markStack, |
5210 | &cmsKeepAliveClosure, false /* !preclean */); |
5211 | |
5212 | ReferenceProcessorStats stats; |
5213 | if (rp->processing_is_mt()) { |
5214 | // Set the degree of MT here. If the discovery is done MT, there |
5215 | // may have been a different number of threads doing the discovery |
5216 | // and a different number of discovered lists may have Ref objects. |
5217 | // That is OK as long as the Reference lists are balanced (see |
5218 | // balance_all_queues() and balance_queues()). |
5219 | CMSHeap* heap = CMSHeap::heap(); |
5220 | uint active_workers = ParallelGCThreads; |
5221 | WorkGang* workers = heap->workers(); |
5222 | if (workers != NULL) { |
5223 | active_workers = workers->active_workers(); |
5224 | // The expectation is that active_workers will have already |
5225 | // been set to a reasonable value. If it has not been set, |
5226 | // investigate. |
5227 | assert(active_workers > 0, "Should have been set during scavenge" ); |
5228 | } |
5229 | rp->set_active_mt_degree(active_workers); |
5230 | CMSRefProcTaskExecutor task_executor(*this); |
5231 | stats = rp->process_discovered_references(&_is_alive_closure, |
5232 | &cmsKeepAliveClosure, |
5233 | &cmsDrainMarkingStackClosure, |
5234 | &task_executor, |
5235 | &pt); |
5236 | } else { |
5237 | stats = rp->process_discovered_references(&_is_alive_closure, |
5238 | &cmsKeepAliveClosure, |
5239 | &cmsDrainMarkingStackClosure, |
5240 | NULL, |
5241 | &pt); |
5242 | } |
5243 | _gc_tracer_cm->report_gc_reference_stats(stats); |
5244 | pt.print_all_references(); |
5245 | } |
5246 | |
5247 | // This is the point where the entire marking should have completed. |
5248 | verify_work_stacks_empty(); |
5249 | |
5250 | { |
5251 | GCTraceTime(Debug, gc, phases) t("Weak Processing" , _gc_timer_cm); |
5252 | WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl); |
5253 | } |
5254 | |
5255 | if (should_unload_classes()) { |
5256 | { |
5257 | GCTraceTime(Debug, gc, phases) t("Class Unloading" , _gc_timer_cm); |
5258 | |
5259 | // Unload classes and purge the SystemDictionary. |
5260 | bool purged_class = SystemDictionary::do_unloading(_gc_timer_cm); |
5261 | |
5262 | // Unload nmethods. |
5263 | CodeCache::do_unloading(&_is_alive_closure, purged_class); |
5264 | |
5265 | // Prune dead klasses from subklass/sibling/implementor lists. |
5266 | Klass::clean_weak_klass_links(purged_class); |
5267 | |
5268 | // Clean JVMCI metadata handles. |
5269 | JVMCI_ONLY(JVMCI::do_unloading(purged_class)); |
5270 | } |
5271 | } |
5272 | |
5273 | // Restore any preserved marks as a result of mark stack or |
5274 | // work queue overflow |
5275 | restore_preserved_marks_if_any(); // done single-threaded for now |
5276 | |
5277 | rp->set_enqueuing_is_done(true); |
5278 | rp->verify_no_references_recorded(); |
5279 | } |
5280 | |
5281 | #ifndef PRODUCT |
5282 | void CMSCollector::check_correct_thread_executing() { |
5283 | Thread* t = Thread::current(); |
5284 | // Only the VM thread or the CMS thread should be here. |
5285 | assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(), |
5286 | "Unexpected thread type" ); |
5287 | // If this is the vm thread, the foreground process |
5288 | // should not be waiting. Note that _foregroundGCIsActive is |
5289 | // true while the foreground collector is waiting. |
5290 | if (_foregroundGCShouldWait) { |
5291 | // We cannot be the VM thread |
5292 | assert(t->is_ConcurrentGC_thread(), |
5293 | "Should be CMS thread" ); |
5294 | } else { |
5295 | // We can be the CMS thread only if we are in a stop-world |
5296 | // phase of CMS collection. |
5297 | if (t->is_ConcurrentGC_thread()) { |
5298 | assert(_collectorState == InitialMarking || |
5299 | _collectorState == FinalMarking, |
5300 | "Should be a stop-world phase" ); |
5301 | // The CMS thread should be holding the CMS_token. |
5302 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
5303 | "Potential interference with concurrently " |
5304 | "executing VM thread" ); |
5305 | } |
5306 | } |
5307 | } |
5308 | #endif |
5309 | |
5310 | void CMSCollector::sweep() { |
5311 | assert(_collectorState == Sweeping, "just checking" ); |
5312 | check_correct_thread_executing(); |
5313 | verify_work_stacks_empty(); |
5314 | verify_overflow_empty(); |
5315 | increment_sweep_count(); |
5316 | TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause()); |
5317 | |
5318 | _inter_sweep_timer.stop(); |
5319 | _inter_sweep_estimate.sample(_inter_sweep_timer.seconds()); |
5320 | |
5321 | assert(!_intra_sweep_timer.is_active(), "Should not be active" ); |
5322 | _intra_sweep_timer.reset(); |
5323 | _intra_sweep_timer.start(); |
5324 | { |
5325 | GCTraceCPUTime tcpu; |
5326 | CMSPhaseAccounting pa(this, "Concurrent Sweep" ); |
5327 | // First sweep the old gen |
5328 | { |
5329 | CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), |
5330 | bitMapLock()); |
5331 | sweepWork(_cmsGen); |
5332 | } |
5333 | |
5334 | // Update Universe::_heap_*_at_gc figures. |
5335 | // We need all the free list locks to make the abstract state |
5336 | // transition from Sweeping to Resetting. See detailed note |
5337 | // further below. |
5338 | { |
5339 | CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock()); |
5340 | // Update heap occupancy information which is used as |
5341 | // input to soft ref clearing policy at the next gc. |
5342 | Universe::update_heap_info_at_gc(); |
5343 | _collectorState = Resizing; |
5344 | } |
5345 | } |
5346 | verify_work_stacks_empty(); |
5347 | verify_overflow_empty(); |
5348 | |
5349 | if (should_unload_classes()) { |
5350 | // Delay purge to the beginning of the next safepoint. Metaspace::contains |
5351 | // requires that the virtual spaces are stable and not deleted. |
5352 | ClassLoaderDataGraph::set_should_purge(true); |
5353 | } |
5354 | |
5355 | _intra_sweep_timer.stop(); |
5356 | _intra_sweep_estimate.sample(_intra_sweep_timer.seconds()); |
5357 | |
5358 | _inter_sweep_timer.reset(); |
5359 | _inter_sweep_timer.start(); |
5360 | |
5361 | // We need to use a monotonically non-decreasing time in ms |
5362 | // or we will see time-warp warnings and os::javaTimeMillis() |
5363 | // does not guarantee monotonicity. |
5364 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
5365 | update_time_of_last_gc(now); |
5366 | |
5367 | // NOTE on abstract state transitions: |
5368 | // Mutators allocate-live and/or mark the mod-union table dirty |
5369 | // based on the state of the collection. The former is done in |
5370 | // the interval [Marking, Sweeping] and the latter in the interval |
5371 | // [Marking, Sweeping). Thus the transitions into the Marking state |
5372 | // and out of the Sweeping state must be synchronously visible |
5373 | // globally to the mutators. |
5374 | // The transition into the Marking state happens with the world |
5375 | // stopped so the mutators will globally see it. Sweeping is |
5376 | // done asynchronously by the background collector so the transition |
5377 | // from the Sweeping state to the Resizing state must be done |
5378 | // under the freelistLock (as is the check for whether to |
5379 | // allocate-live and whether to dirty the mod-union table). |
5380 | assert(_collectorState == Resizing, "Change of collector state to" |
5381 | " Resizing must be done under the freelistLocks (plural)" ); |
5382 | |
5383 | // Now that sweeping has been completed, we clear |
5384 | // the incremental_collection_failed flag, |
5385 | // thus inviting a younger gen collection to promote into |
5386 | // this generation. If such a promotion may still fail, |
5387 | // the flag will be set again when a young collection is |
5388 | // attempted. |
5389 | CMSHeap* heap = CMSHeap::heap(); |
5390 | heap->clear_incremental_collection_failed(); // Worth retrying as fresh space may have been freed up |
5391 | heap->update_full_collections_completed(_collection_count_start); |
5392 | } |
5393 | |
5394 | // FIX ME!!! Looks like this belongs in CFLSpace, with |
5395 | // CMSGen merely delegating to it. |
5396 | void ConcurrentMarkSweepGeneration::setNearLargestChunk() { |
5397 | double nearLargestPercent = FLSLargestBlockCoalesceProximity; |
5398 | HeapWord* minAddr = _cmsSpace->bottom(); |
5399 | HeapWord* largestAddr = |
5400 | (HeapWord*) _cmsSpace->dictionary()->find_largest_dict(); |
5401 | if (largestAddr == NULL) { |
5402 | // The dictionary appears to be empty. In this case |
5403 | // try to coalesce at the end of the heap. |
5404 | largestAddr = _cmsSpace->end(); |
5405 | } |
5406 | size_t largestOffset = pointer_delta(largestAddr, minAddr); |
5407 | size_t nearLargestOffset = |
5408 | (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize; |
5409 | log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT, |
5410 | p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset)); |
5411 | _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset); |
5412 | } |
5413 | |
5414 | bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) { |
5415 | return addr >= _cmsSpace->nearLargestChunk(); |
5416 | } |
5417 | |
5418 | FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() { |
5419 | return _cmsSpace->find_chunk_at_end(); |
5420 | } |
5421 | |
5422 | void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation, |
5423 | bool full) { |
5424 | // If the young generation has been collected, gather any statistics |
5425 | // that are of interest at this point. |
5426 | bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation); |
5427 | if (!full && current_is_young) { |
5428 | // Gather statistics on the young generation collection. |
5429 | collector()->stats().record_gc0_end(used()); |
5430 | } |
5431 | } |
5432 | |
5433 | void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) { |
5434 | // We iterate over the space(s) underlying this generation, |
5435 | // checking the mark bit map to see if the bits corresponding |
5436 | // to specific blocks are marked or not. Blocks that are |
5437 | // marked are live and are not swept up. All remaining blocks |
5438 | // are swept up, with coalescing on-the-fly as we sweep up |
5439 | // contiguous free and/or garbage blocks: |
5440 | // We need to ensure that the sweeper synchronizes with allocators |
5441 | // and stop-the-world collectors. In particular, the following |
5442 | // locks are used: |
5443 | // . CMS token: if this is held, a stop the world collection cannot occur |
5444 | // . freelistLock: if this is held no allocation can occur from this |
5445 | // generation by another thread |
5446 | // . bitMapLock: if this is held, no other thread can access or update |
5447 | // |
5448 | |
5449 | // Note that we need to hold the freelistLock if we use |
5450 | // block iterate below; else the iterator might go awry if |
5451 | // a mutator (or promotion) causes block contents to change |
5452 | // (for instance if the allocator divvies up a block). |
5453 | // If we hold the free list lock, for all practical purposes |
5454 | // young generation GC's can't occur (they'll usually need to |
5455 | // promote), so we might as well prevent all young generation |
5456 | // GC's while we do a sweeping step. For the same reason, we might |
5457 | // as well take the bit map lock for the entire duration |
5458 | |
5459 | // check that we hold the requisite locks |
5460 | assert(have_cms_token(), "Should hold cms token" ); |
5461 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep" ); |
5462 | assert_lock_strong(old_gen->freelistLock()); |
5463 | assert_lock_strong(bitMapLock()); |
5464 | |
5465 | assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context" ); |
5466 | assert(_intra_sweep_timer.is_active(), "Was switched on in an outer context" ); |
5467 | old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), |
5468 | _inter_sweep_estimate.padded_average(), |
5469 | _intra_sweep_estimate.padded_average()); |
5470 | old_gen->setNearLargestChunk(); |
5471 | |
5472 | { |
5473 | SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield); |
5474 | old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure); |
5475 | // We need to free-up/coalesce garbage/blocks from a |
5476 | // co-terminal free run. This is done in the SweepClosure |
5477 | // destructor; so, do not remove this scope, else the |
5478 | // end-of-sweep-census below will be off by a little bit. |
5479 | } |
5480 | old_gen->cmsSpace()->sweep_completed(); |
5481 | old_gen->cmsSpace()->endSweepFLCensus(sweep_count()); |
5482 | if (should_unload_classes()) { // unloaded classes this cycle, |
5483 | _concurrent_cycles_since_last_unload = 0; // ... reset count |
5484 | } else { // did not unload classes, |
5485 | _concurrent_cycles_since_last_unload++; // ... increment count |
5486 | } |
5487 | } |
5488 | |
5489 | // Reset CMS data structures (for now just the marking bit map) |
5490 | // preparatory for the next cycle. |
5491 | void CMSCollector::reset_concurrent() { |
5492 | CMSTokenSyncWithLocks ts(true, bitMapLock()); |
5493 | |
5494 | // If the state is not "Resetting", the foreground thread |
5495 | // has done a collection and the resetting. |
5496 | if (_collectorState != Resetting) { |
5497 | assert(_collectorState == Idling, "The state should only change" |
5498 | " because the foreground collector has finished the collection" ); |
5499 | return; |
5500 | } |
5501 | |
5502 | { |
5503 | // Clear the mark bitmap (no grey objects to start with) |
5504 | // for the next cycle. |
5505 | GCTraceCPUTime tcpu; |
5506 | CMSPhaseAccounting cmspa(this, "Concurrent Reset" ); |
5507 | |
5508 | HeapWord* curAddr = _markBitMap.startWord(); |
5509 | while (curAddr < _markBitMap.endWord()) { |
5510 | size_t remaining = pointer_delta(_markBitMap.endWord(), curAddr); |
5511 | MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining)); |
5512 | _markBitMap.clear_large_range(chunk); |
5513 | if (ConcurrentMarkSweepThread::should_yield() && |
5514 | !foregroundGCIsActive() && |
5515 | CMSYield) { |
5516 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
5517 | "CMS thread should hold CMS token" ); |
5518 | assert_lock_strong(bitMapLock()); |
5519 | bitMapLock()->unlock(); |
5520 | ConcurrentMarkSweepThread::desynchronize(true); |
5521 | stopTimer(); |
5522 | incrementYields(); |
5523 | |
5524 | // See the comment in coordinator_yield() |
5525 | for (unsigned i = 0; i < CMSYieldSleepCount && |
5526 | ConcurrentMarkSweepThread::should_yield() && |
5527 | !CMSCollector::foregroundGCIsActive(); ++i) { |
5528 | os::sleep(Thread::current(), 1, false); |
5529 | } |
5530 | |
5531 | ConcurrentMarkSweepThread::synchronize(true); |
5532 | bitMapLock()->lock_without_safepoint_check(); |
5533 | startTimer(); |
5534 | } |
5535 | curAddr = chunk.end(); |
5536 | } |
5537 | // A successful mostly concurrent collection has been done. |
5538 | // Because only the full (i.e., concurrent mode failure) collections |
5539 | // are being measured for gc overhead limits, clean the "near" flag |
5540 | // and count. |
5541 | size_policy()->reset_gc_overhead_limit_count(); |
5542 | _collectorState = Idling; |
5543 | } |
5544 | |
5545 | register_gc_end(); |
5546 | } |
5547 | |
5548 | // Same as above but for STW paths |
5549 | void CMSCollector::reset_stw() { |
5550 | // already have the lock |
5551 | assert(_collectorState == Resetting, "just checking" ); |
5552 | assert_lock_strong(bitMapLock()); |
5553 | GCIdMark gc_id_mark(_cmsThread->gc_id()); |
5554 | _markBitMap.clear_all(); |
5555 | _collectorState = Idling; |
5556 | register_gc_end(); |
5557 | } |
5558 | |
5559 | void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) { |
5560 | GCTraceCPUTime tcpu; |
5561 | TraceCollectorStats tcs_cgc(cgc_counters()); |
5562 | |
5563 | switch (op) { |
5564 | case CMS_op_checkpointRootsInitial: { |
5565 | GCTraceTime(Info, gc) t("Pause Initial Mark" , NULL, GCCause::_no_gc, true); |
5566 | SvcGCMarker sgcm(SvcGCMarker::CONCURRENT); |
5567 | checkpointRootsInitial(); |
5568 | break; |
5569 | } |
5570 | case CMS_op_checkpointRootsFinal: { |
5571 | GCTraceTime(Info, gc) t("Pause Remark" , NULL, GCCause::_no_gc, true); |
5572 | SvcGCMarker sgcm(SvcGCMarker::CONCURRENT); |
5573 | checkpointRootsFinal(); |
5574 | break; |
5575 | } |
5576 | default: |
5577 | fatal("No such CMS_op" ); |
5578 | } |
5579 | } |
5580 | |
5581 | #ifndef PRODUCT |
5582 | size_t const CMSCollector::skip_header_HeapWords() { |
5583 | return FreeChunk::header_size(); |
5584 | } |
5585 | |
5586 | // Try and collect here conditions that should hold when |
5587 | // CMS thread is exiting. The idea is that the foreground GC |
5588 | // thread should not be blocked if it wants to terminate |
5589 | // the CMS thread and yet continue to run the VM for a while |
5590 | // after that. |
5591 | void CMSCollector::verify_ok_to_terminate() const { |
5592 | assert(Thread::current()->is_ConcurrentGC_thread(), |
5593 | "should be called by CMS thread" ); |
5594 | assert(!_foregroundGCShouldWait, "should be false" ); |
5595 | // We could check here that all the various low-level locks |
5596 | // are not held by the CMS thread, but that is overkill; see |
5597 | // also CMSThread::verify_ok_to_terminate() where the CGC_lock |
5598 | // is checked. |
5599 | } |
5600 | #endif |
5601 | |
5602 | size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const { |
5603 | assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1), |
5604 | "missing Printezis mark?" ); |
5605 | HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); |
5606 | size_t size = pointer_delta(nextOneAddr + 1, addr); |
5607 | assert(size == CompactibleFreeListSpace::adjustObjectSize(size), |
5608 | "alignment problem" ); |
5609 | assert(size >= 3, "Necessary for Printezis marks to work" ); |
5610 | return size; |
5611 | } |
5612 | |
5613 | // A variant of the above (block_size_using_printezis_bits()) except |
5614 | // that we return 0 if the P-bits are not yet set. |
5615 | size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const { |
5616 | if (_markBitMap.isMarked(addr + 1)) { |
5617 | assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects" ); |
5618 | HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); |
5619 | size_t size = pointer_delta(nextOneAddr + 1, addr); |
5620 | assert(size == CompactibleFreeListSpace::adjustObjectSize(size), |
5621 | "alignment problem" ); |
5622 | assert(size >= 3, "Necessary for Printezis marks to work" ); |
5623 | return size; |
5624 | } |
5625 | return 0; |
5626 | } |
5627 | |
5628 | HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const { |
5629 | size_t sz = 0; |
5630 | oop p = (oop)addr; |
5631 | if (p->klass_or_null_acquire() != NULL) { |
5632 | sz = CompactibleFreeListSpace::adjustObjectSize(p->size()); |
5633 | } else { |
5634 | sz = block_size_using_printezis_bits(addr); |
5635 | } |
5636 | assert(sz > 0, "size must be nonzero" ); |
5637 | HeapWord* next_block = addr + sz; |
5638 | HeapWord* next_card = align_up(next_block, CardTable::card_size); |
5639 | assert(align_down((uintptr_t)addr, CardTable::card_size) < |
5640 | align_down((uintptr_t)next_card, CardTable::card_size), |
5641 | "must be different cards" ); |
5642 | return next_card; |
5643 | } |
5644 | |
5645 | |
5646 | // CMS Bit Map Wrapper ///////////////////////////////////////// |
5647 | |
5648 | // Construct a CMS bit map infrastructure, but don't create the |
5649 | // bit vector itself. That is done by a separate call CMSBitMap::allocate() |
5650 | // further below. |
5651 | CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name): |
5652 | _shifter(shifter), |
5653 | _bm(), |
5654 | _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true, |
5655 | Monitor::_safepoint_check_never) : NULL) |
5656 | { |
5657 | _bmStartWord = 0; |
5658 | _bmWordSize = 0; |
5659 | } |
5660 | |
5661 | bool CMSBitMap::allocate(MemRegion mr) { |
5662 | _bmStartWord = mr.start(); |
5663 | _bmWordSize = mr.word_size(); |
5664 | ReservedSpace brs(ReservedSpace::allocation_align_size_up( |
5665 | (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1)); |
5666 | if (!brs.is_reserved()) { |
5667 | log_warning(gc)("CMS bit map allocation failure" ); |
5668 | return false; |
5669 | } |
5670 | // For now we'll just commit all of the bit map up front. |
5671 | // Later on we'll try to be more parsimonious with swap. |
5672 | if (!_virtual_space.initialize(brs, brs.size())) { |
5673 | log_warning(gc)("CMS bit map backing store failure" ); |
5674 | return false; |
5675 | } |
5676 | assert(_virtual_space.committed_size() == brs.size(), |
5677 | "didn't reserve backing store for all of CMS bit map?" ); |
5678 | assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >= |
5679 | _bmWordSize, "inconsistency in bit map sizing" ); |
5680 | _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter); |
5681 | |
5682 | // bm.clear(); // can we rely on getting zero'd memory? verify below |
5683 | assert(isAllClear(), |
5684 | "Expected zero'd memory from ReservedSpace constructor" ); |
5685 | assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()), |
5686 | "consistency check" ); |
5687 | return true; |
5688 | } |
5689 | |
5690 | void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) { |
5691 | HeapWord *next_addr, *end_addr, *last_addr; |
5692 | assert_locked(); |
5693 | assert(covers(mr), "out-of-range error" ); |
5694 | // XXX assert that start and end are appropriately aligned |
5695 | for (next_addr = mr.start(), end_addr = mr.end(); |
5696 | next_addr < end_addr; next_addr = last_addr) { |
5697 | MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr); |
5698 | last_addr = dirty_region.end(); |
5699 | if (!dirty_region.is_empty()) { |
5700 | cl->do_MemRegion(dirty_region); |
5701 | } else { |
5702 | assert(last_addr == end_addr, "program logic" ); |
5703 | return; |
5704 | } |
5705 | } |
5706 | } |
5707 | |
5708 | void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const { |
5709 | _bm.print_on_error(st, prefix); |
5710 | } |
5711 | |
5712 | #ifndef PRODUCT |
5713 | void CMSBitMap::assert_locked() const { |
5714 | CMSLockVerifier::assert_locked(lock()); |
5715 | } |
5716 | |
5717 | bool CMSBitMap::covers(MemRegion mr) const { |
5718 | // assert(_bm.map() == _virtual_space.low(), "map inconsistency"); |
5719 | assert((size_t)_bm.size() == (_bmWordSize >> _shifter), |
5720 | "size inconsistency" ); |
5721 | return (mr.start() >= _bmStartWord) && |
5722 | (mr.end() <= endWord()); |
5723 | } |
5724 | |
5725 | bool CMSBitMap::covers(HeapWord* start, size_t size) const { |
5726 | return (start >= _bmStartWord && (start + size) <= endWord()); |
5727 | } |
5728 | |
5729 | void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) { |
5730 | // verify that there are no 1 bits in the interval [left, right) |
5731 | FalseBitMapClosure falseBitMapClosure; |
5732 | iterate(&falseBitMapClosure, left, right); |
5733 | } |
5734 | |
5735 | void CMSBitMap::region_invariant(MemRegion mr) |
5736 | { |
5737 | assert_locked(); |
5738 | // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize)); |
5739 | assert(!mr.is_empty(), "unexpected empty region" ); |
5740 | assert(covers(mr), "mr should be covered by bit map" ); |
5741 | // convert address range into offset range |
5742 | size_t start_ofs = heapWordToOffset(mr.start()); |
5743 | // Make sure that end() is appropriately aligned |
5744 | assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))), |
5745 | "Misaligned mr.end()" ); |
5746 | size_t end_ofs = heapWordToOffset(mr.end()); |
5747 | assert(end_ofs > start_ofs, "Should mark at least one bit" ); |
5748 | } |
5749 | |
5750 | #endif |
5751 | |
5752 | bool CMSMarkStack::allocate(size_t size) { |
5753 | // allocate a stack of the requisite depth |
5754 | ReservedSpace rs(ReservedSpace::allocation_align_size_up( |
5755 | size * sizeof(oop))); |
5756 | if (!rs.is_reserved()) { |
5757 | log_warning(gc)("CMSMarkStack allocation failure" ); |
5758 | return false; |
5759 | } |
5760 | if (!_virtual_space.initialize(rs, rs.size())) { |
5761 | log_warning(gc)("CMSMarkStack backing store failure" ); |
5762 | return false; |
5763 | } |
5764 | assert(_virtual_space.committed_size() == rs.size(), |
5765 | "didn't reserve backing store for all of CMS stack?" ); |
5766 | _base = (oop*)(_virtual_space.low()); |
5767 | _index = 0; |
5768 | _capacity = size; |
5769 | NOT_PRODUCT(_max_depth = 0); |
5770 | return true; |
5771 | } |
5772 | |
5773 | // XXX FIX ME !!! In the MT case we come in here holding a |
5774 | // leaf lock. For printing we need to take a further lock |
5775 | // which has lower rank. We need to recalibrate the two |
5776 | // lock-ranks involved in order to be able to print the |
5777 | // messages below. (Or defer the printing to the caller. |
5778 | // For now we take the expedient path of just disabling the |
5779 | // messages for the problematic case.) |
5780 | void CMSMarkStack::expand() { |
5781 | assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted" ); |
5782 | if (_capacity == MarkStackSizeMax) { |
5783 | if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) { |
5784 | // We print a warning message only once per CMS cycle. |
5785 | log_debug(gc)(" (benign) Hit CMSMarkStack max size limit" ); |
5786 | } |
5787 | return; |
5788 | } |
5789 | // Double capacity if possible |
5790 | size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax); |
5791 | // Do not give up existing stack until we have managed to |
5792 | // get the double capacity that we desired. |
5793 | ReservedSpace rs(ReservedSpace::allocation_align_size_up( |
5794 | new_capacity * sizeof(oop))); |
5795 | if (rs.is_reserved()) { |
5796 | // Release the backing store associated with old stack |
5797 | _virtual_space.release(); |
5798 | // Reinitialize virtual space for new stack |
5799 | if (!_virtual_space.initialize(rs, rs.size())) { |
5800 | fatal("Not enough swap for expanded marking stack" ); |
5801 | } |
5802 | _base = (oop*)(_virtual_space.low()); |
5803 | _index = 0; |
5804 | _capacity = new_capacity; |
5805 | } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) { |
5806 | // Failed to double capacity, continue; |
5807 | // we print a detail message only once per CMS cycle. |
5808 | log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K" , |
5809 | _capacity / K, new_capacity / K); |
5810 | } |
5811 | } |
5812 | |
5813 | |
5814 | // Closures |
5815 | // XXX: there seems to be a lot of code duplication here; |
5816 | // should refactor and consolidate common code. |
5817 | |
5818 | // This closure is used to mark refs into the CMS generation in |
5819 | // the CMS bit map. Called at the first checkpoint. This closure |
5820 | // assumes that we do not need to re-mark dirty cards; if the CMS |
5821 | // generation on which this is used is not an oldest |
5822 | // generation then this will lose younger_gen cards! |
5823 | |
5824 | MarkRefsIntoClosure::MarkRefsIntoClosure( |
5825 | MemRegion span, CMSBitMap* bitMap): |
5826 | _span(span), |
5827 | _bitMap(bitMap) |
5828 | { |
5829 | assert(ref_discoverer() == NULL, "deliberately left NULL" ); |
5830 | assert(_bitMap->covers(_span), "_bitMap/_span mismatch" ); |
5831 | } |
5832 | |
5833 | void MarkRefsIntoClosure::do_oop(oop obj) { |
5834 | // if p points into _span, then mark corresponding bit in _markBitMap |
5835 | assert(oopDesc::is_oop(obj), "expected an oop" ); |
5836 | HeapWord* addr = (HeapWord*)obj; |
5837 | if (_span.contains(addr)) { |
5838 | // this should be made more efficient |
5839 | _bitMap->mark(addr); |
5840 | } |
5841 | } |
5842 | |
5843 | ParMarkRefsIntoClosure::ParMarkRefsIntoClosure( |
5844 | MemRegion span, CMSBitMap* bitMap): |
5845 | _span(span), |
5846 | _bitMap(bitMap) |
5847 | { |
5848 | assert(ref_discoverer() == NULL, "deliberately left NULL" ); |
5849 | assert(_bitMap->covers(_span), "_bitMap/_span mismatch" ); |
5850 | } |
5851 | |
5852 | void ParMarkRefsIntoClosure::do_oop(oop obj) { |
5853 | // if p points into _span, then mark corresponding bit in _markBitMap |
5854 | assert(oopDesc::is_oop(obj), "expected an oop" ); |
5855 | HeapWord* addr = (HeapWord*)obj; |
5856 | if (_span.contains(addr)) { |
5857 | // this should be made more efficient |
5858 | _bitMap->par_mark(addr); |
5859 | } |
5860 | } |
5861 | |
5862 | // A variant of the above, used for CMS marking verification. |
5863 | MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure( |
5864 | MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm): |
5865 | _span(span), |
5866 | _verification_bm(verification_bm), |
5867 | _cms_bm(cms_bm) |
5868 | { |
5869 | assert(ref_discoverer() == NULL, "deliberately left NULL" ); |
5870 | assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch" ); |
5871 | } |
5872 | |
5873 | void MarkRefsIntoVerifyClosure::do_oop(oop obj) { |
5874 | // if p points into _span, then mark corresponding bit in _markBitMap |
5875 | assert(oopDesc::is_oop(obj), "expected an oop" ); |
5876 | HeapWord* addr = (HeapWord*)obj; |
5877 | if (_span.contains(addr)) { |
5878 | _verification_bm->mark(addr); |
5879 | if (!_cms_bm->isMarked(addr)) { |
5880 | Log(gc, verify) log; |
5881 | ResourceMark rm; |
5882 | LogStream ls(log.error()); |
5883 | oop(addr)->print_on(&ls); |
5884 | log.error(" (" INTPTR_FORMAT " should have been marked)" , p2i(addr)); |
5885 | fatal("... aborting" ); |
5886 | } |
5887 | } |
5888 | } |
5889 | |
5890 | ////////////////////////////////////////////////// |
5891 | // MarkRefsIntoAndScanClosure |
5892 | ////////////////////////////////////////////////// |
5893 | |
5894 | MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span, |
5895 | ReferenceDiscoverer* rd, |
5896 | CMSBitMap* bit_map, |
5897 | CMSBitMap* mod_union_table, |
5898 | CMSMarkStack* mark_stack, |
5899 | CMSCollector* collector, |
5900 | bool should_yield, |
5901 | bool concurrent_precleaning): |
5902 | _span(span), |
5903 | _bit_map(bit_map), |
5904 | _mark_stack(mark_stack), |
5905 | _pushAndMarkClosure(collector, span, rd, bit_map, mod_union_table, |
5906 | mark_stack, concurrent_precleaning), |
5907 | _collector(collector), |
5908 | _freelistLock(NULL), |
5909 | _yield(should_yield), |
5910 | _concurrent_precleaning(concurrent_precleaning) |
5911 | { |
5912 | // FIXME: Should initialize in base class constructor. |
5913 | assert(rd != NULL, "ref_discoverer shouldn't be NULL" ); |
5914 | set_ref_discoverer_internal(rd); |
5915 | } |
5916 | |
5917 | // This closure is used to mark refs into the CMS generation at the |
5918 | // second (final) checkpoint, and to scan and transitively follow |
5919 | // the unmarked oops. It is also used during the concurrent precleaning |
5920 | // phase while scanning objects on dirty cards in the CMS generation. |
5921 | // The marks are made in the marking bit map and the marking stack is |
5922 | // used for keeping the (newly) grey objects during the scan. |
5923 | // The parallel version (Par_...) appears further below. |
5924 | void MarkRefsIntoAndScanClosure::do_oop(oop obj) { |
5925 | if (obj != NULL) { |
5926 | assert(oopDesc::is_oop(obj), "expected an oop" ); |
5927 | HeapWord* addr = (HeapWord*)obj; |
5928 | assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)" ); |
5929 | assert(_collector->overflow_list_is_empty(), |
5930 | "overflow list should be empty" ); |
5931 | if (_span.contains(addr) && |
5932 | !_bit_map->isMarked(addr)) { |
5933 | // mark bit map (object is now grey) |
5934 | _bit_map->mark(addr); |
5935 | // push on marking stack (stack should be empty), and drain the |
5936 | // stack by applying this closure to the oops in the oops popped |
5937 | // from the stack (i.e. blacken the grey objects) |
5938 | bool res = _mark_stack->push(obj); |
5939 | assert(res, "Should have space to push on empty stack" ); |
5940 | do { |
5941 | oop new_oop = _mark_stack->pop(); |
5942 | assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop" ); |
5943 | assert(_bit_map->isMarked((HeapWord*)new_oop), |
5944 | "only grey objects on this stack" ); |
5945 | // iterate over the oops in this oop, marking and pushing |
5946 | // the ones in CMS heap (i.e. in _span). |
5947 | new_oop->oop_iterate(&_pushAndMarkClosure); |
5948 | // check if it's time to yield |
5949 | do_yield_check(); |
5950 | } while (!_mark_stack->isEmpty() || |
5951 | (!_concurrent_precleaning && take_from_overflow_list())); |
5952 | // if marking stack is empty, and we are not doing this |
5953 | // during precleaning, then check the overflow list |
5954 | } |
5955 | assert(_mark_stack->isEmpty(), "post-condition (eager drainage)" ); |
5956 | assert(_collector->overflow_list_is_empty(), |
5957 | "overflow list was drained above" ); |
5958 | |
5959 | assert(_collector->no_preserved_marks(), |
5960 | "All preserved marks should have been restored above" ); |
5961 | } |
5962 | } |
5963 | |
5964 | void MarkRefsIntoAndScanClosure::do_yield_work() { |
5965 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
5966 | "CMS thread should hold CMS token" ); |
5967 | assert_lock_strong(_freelistLock); |
5968 | assert_lock_strong(_bit_map->lock()); |
5969 | // relinquish the free_list_lock and bitMaplock() |
5970 | _bit_map->lock()->unlock(); |
5971 | _freelistLock->unlock(); |
5972 | ConcurrentMarkSweepThread::desynchronize(true); |
5973 | _collector->stopTimer(); |
5974 | _collector->incrementYields(); |
5975 | |
5976 | // See the comment in coordinator_yield() |
5977 | for (unsigned i = 0; |
5978 | i < CMSYieldSleepCount && |
5979 | ConcurrentMarkSweepThread::should_yield() && |
5980 | !CMSCollector::foregroundGCIsActive(); |
5981 | ++i) { |
5982 | os::sleep(Thread::current(), 1, false); |
5983 | } |
5984 | |
5985 | ConcurrentMarkSweepThread::synchronize(true); |
5986 | _freelistLock->lock_without_safepoint_check(); |
5987 | _bit_map->lock()->lock_without_safepoint_check(); |
5988 | _collector->startTimer(); |
5989 | } |
5990 | |
5991 | /////////////////////////////////////////////////////////// |
5992 | // ParMarkRefsIntoAndScanClosure: a parallel version of |
5993 | // MarkRefsIntoAndScanClosure |
5994 | /////////////////////////////////////////////////////////// |
5995 | ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure( |
5996 | CMSCollector* collector, MemRegion span, ReferenceDiscoverer* rd, |
5997 | CMSBitMap* bit_map, OopTaskQueue* work_queue): |
5998 | _span(span), |
5999 | _bit_map(bit_map), |
6000 | _work_queue(work_queue), |
6001 | _low_water_mark(MIN2((work_queue->max_elems()/4), |
6002 | ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))), |
6003 | _parPushAndMarkClosure(collector, span, rd, bit_map, work_queue) |
6004 | { |
6005 | // FIXME: Should initialize in base class constructor. |
6006 | assert(rd != NULL, "ref_discoverer shouldn't be NULL" ); |
6007 | set_ref_discoverer_internal(rd); |
6008 | } |
6009 | |
6010 | // This closure is used to mark refs into the CMS generation at the |
6011 | // second (final) checkpoint, and to scan and transitively follow |
6012 | // the unmarked oops. The marks are made in the marking bit map and |
6013 | // the work_queue is used for keeping the (newly) grey objects during |
6014 | // the scan phase whence they are also available for stealing by parallel |
6015 | // threads. Since the marking bit map is shared, updates are |
6016 | // synchronized (via CAS). |
6017 | void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) { |
6018 | if (obj != NULL) { |
6019 | // Ignore mark word because this could be an already marked oop |
6020 | // that may be chained at the end of the overflow list. |
6021 | assert(oopDesc::is_oop(obj, true), "expected an oop" ); |
6022 | HeapWord* addr = (HeapWord*)obj; |
6023 | if (_span.contains(addr) && |
6024 | !_bit_map->isMarked(addr)) { |
6025 | // mark bit map (object will become grey): |
6026 | // It is possible for several threads to be |
6027 | // trying to "claim" this object concurrently; |
6028 | // the unique thread that succeeds in marking the |
6029 | // object first will do the subsequent push on |
6030 | // to the work queue (or overflow list). |
6031 | if (_bit_map->par_mark(addr)) { |
6032 | // push on work_queue (which may not be empty), and trim the |
6033 | // queue to an appropriate length by applying this closure to |
6034 | // the oops in the oops popped from the stack (i.e. blacken the |
6035 | // grey objects) |
6036 | bool res = _work_queue->push(obj); |
6037 | assert(res, "Low water mark should be less than capacity?" ); |
6038 | trim_queue(_low_water_mark); |
6039 | } // Else, another thread claimed the object |
6040 | } |
6041 | } |
6042 | } |
6043 | |
6044 | // This closure is used to rescan the marked objects on the dirty cards |
6045 | // in the mod union table and the card table proper. |
6046 | size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m( |
6047 | oop p, MemRegion mr) { |
6048 | |
6049 | size_t size = 0; |
6050 | HeapWord* addr = (HeapWord*)p; |
6051 | DEBUG_ONLY(_collector->verify_work_stacks_empty();) |
6052 | assert(_span.contains(addr), "we are scanning the CMS generation" ); |
6053 | // check if it's time to yield |
6054 | if (do_yield_check()) { |
6055 | // We yielded for some foreground stop-world work, |
6056 | // and we have been asked to abort this ongoing preclean cycle. |
6057 | return 0; |
6058 | } |
6059 | if (_bitMap->isMarked(addr)) { |
6060 | // it's marked; is it potentially uninitialized? |
6061 | if (p->klass_or_null_acquire() != NULL) { |
6062 | // an initialized object; ignore mark word in verification below |
6063 | // since we are running concurrent with mutators |
6064 | assert(oopDesc::is_oop(p, true), "should be an oop" ); |
6065 | if (p->is_objArray()) { |
6066 | // objArrays are precisely marked; restrict scanning |
6067 | // to dirty cards only. |
6068 | size = CompactibleFreeListSpace::adjustObjectSize( |
6069 | p->oop_iterate_size(_scanningClosure, mr)); |
6070 | } else { |
6071 | // A non-array may have been imprecisely marked; we need |
6072 | // to scan object in its entirety. |
6073 | size = CompactibleFreeListSpace::adjustObjectSize( |
6074 | p->oop_iterate_size(_scanningClosure)); |
6075 | } |
6076 | #ifdef ASSERT |
6077 | size_t direct_size = |
6078 | CompactibleFreeListSpace::adjustObjectSize(p->size()); |
6079 | assert(size == direct_size, "Inconsistency in size" ); |
6080 | assert(size >= 3, "Necessary for Printezis marks to work" ); |
6081 | HeapWord* start_pbit = addr + 1; |
6082 | HeapWord* end_pbit = addr + size - 1; |
6083 | assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit), |
6084 | "inconsistent Printezis mark" ); |
6085 | // Verify inner mark bits (between Printezis bits) are clear, |
6086 | // but don't repeat if there are multiple dirty regions for |
6087 | // the same object, to avoid potential O(N^2) performance. |
6088 | if (addr != _last_scanned_object) { |
6089 | _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit); |
6090 | _last_scanned_object = addr; |
6091 | } |
6092 | #endif // ASSERT |
6093 | } else { |
6094 | // An uninitialized object. |
6095 | assert(_bitMap->isMarked(addr+1), "missing Printezis mark?" ); |
6096 | HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); |
6097 | size = pointer_delta(nextOneAddr + 1, addr); |
6098 | assert(size == CompactibleFreeListSpace::adjustObjectSize(size), |
6099 | "alignment problem" ); |
6100 | // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass() |
6101 | // will dirty the card when the klass pointer is installed in the |
6102 | // object (signaling the completion of initialization). |
6103 | } |
6104 | } else { |
6105 | // Either a not yet marked object or an uninitialized object |
6106 | if (p->klass_or_null_acquire() == NULL) { |
6107 | // An uninitialized object, skip to the next card, since |
6108 | // we may not be able to read its P-bits yet. |
6109 | assert(size == 0, "Initial value" ); |
6110 | } else { |
6111 | // An object not (yet) reached by marking: we merely need to |
6112 | // compute its size so as to go look at the next block. |
6113 | assert(oopDesc::is_oop(p, true), "should be an oop" ); |
6114 | size = CompactibleFreeListSpace::adjustObjectSize(p->size()); |
6115 | } |
6116 | } |
6117 | DEBUG_ONLY(_collector->verify_work_stacks_empty();) |
6118 | return size; |
6119 | } |
6120 | |
6121 | void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() { |
6122 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
6123 | "CMS thread should hold CMS token" ); |
6124 | assert_lock_strong(_freelistLock); |
6125 | assert_lock_strong(_bitMap->lock()); |
6126 | // relinquish the free_list_lock and bitMaplock() |
6127 | _bitMap->lock()->unlock(); |
6128 | _freelistLock->unlock(); |
6129 | ConcurrentMarkSweepThread::desynchronize(true); |
6130 | _collector->stopTimer(); |
6131 | _collector->incrementYields(); |
6132 | |
6133 | // See the comment in coordinator_yield() |
6134 | for (unsigned i = 0; i < CMSYieldSleepCount && |
6135 | ConcurrentMarkSweepThread::should_yield() && |
6136 | !CMSCollector::foregroundGCIsActive(); ++i) { |
6137 | os::sleep(Thread::current(), 1, false); |
6138 | } |
6139 | |
6140 | ConcurrentMarkSweepThread::synchronize(true); |
6141 | _freelistLock->lock_without_safepoint_check(); |
6142 | _bitMap->lock()->lock_without_safepoint_check(); |
6143 | _collector->startTimer(); |
6144 | } |
6145 | |
6146 | |
6147 | ////////////////////////////////////////////////////////////////// |
6148 | // SurvivorSpacePrecleanClosure |
6149 | ////////////////////////////////////////////////////////////////// |
6150 | // This (single-threaded) closure is used to preclean the oops in |
6151 | // the survivor spaces. |
6152 | size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) { |
6153 | |
6154 | HeapWord* addr = (HeapWord*)p; |
6155 | DEBUG_ONLY(_collector->verify_work_stacks_empty();) |
6156 | assert(!_span.contains(addr), "we are scanning the survivor spaces" ); |
6157 | assert(p->klass_or_null() != NULL, "object should be initialized" ); |
6158 | // an initialized object; ignore mark word in verification below |
6159 | // since we are running concurrent with mutators |
6160 | assert(oopDesc::is_oop(p, true), "should be an oop" ); |
6161 | // Note that we do not yield while we iterate over |
6162 | // the interior oops of p, pushing the relevant ones |
6163 | // on our marking stack. |
6164 | size_t size = p->oop_iterate_size(_scanning_closure); |
6165 | do_yield_check(); |
6166 | // Observe that below, we do not abandon the preclean |
6167 | // phase as soon as we should; rather we empty the |
6168 | // marking stack before returning. This is to satisfy |
6169 | // some existing assertions. In general, it may be a |
6170 | // good idea to abort immediately and complete the marking |
6171 | // from the grey objects at a later time. |
6172 | while (!_mark_stack->isEmpty()) { |
6173 | oop new_oop = _mark_stack->pop(); |
6174 | assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop" ); |
6175 | assert(_bit_map->isMarked((HeapWord*)new_oop), |
6176 | "only grey objects on this stack" ); |
6177 | // iterate over the oops in this oop, marking and pushing |
6178 | // the ones in CMS heap (i.e. in _span). |
6179 | new_oop->oop_iterate(_scanning_closure); |
6180 | // check if it's time to yield |
6181 | do_yield_check(); |
6182 | } |
6183 | unsigned int after_count = |
6184 | CMSHeap::heap()->total_collections(); |
6185 | bool abort = (_before_count != after_count) || |
6186 | _collector->should_abort_preclean(); |
6187 | return abort ? 0 : size; |
6188 | } |
6189 | |
6190 | void SurvivorSpacePrecleanClosure::do_yield_work() { |
6191 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
6192 | "CMS thread should hold CMS token" ); |
6193 | assert_lock_strong(_bit_map->lock()); |
6194 | // Relinquish the bit map lock |
6195 | _bit_map->lock()->unlock(); |
6196 | ConcurrentMarkSweepThread::desynchronize(true); |
6197 | _collector->stopTimer(); |
6198 | _collector->incrementYields(); |
6199 | |
6200 | // See the comment in coordinator_yield() |
6201 | for (unsigned i = 0; i < CMSYieldSleepCount && |
6202 | ConcurrentMarkSweepThread::should_yield() && |
6203 | !CMSCollector::foregroundGCIsActive(); ++i) { |
6204 | os::sleep(Thread::current(), 1, false); |
6205 | } |
6206 | |
6207 | ConcurrentMarkSweepThread::synchronize(true); |
6208 | _bit_map->lock()->lock_without_safepoint_check(); |
6209 | _collector->startTimer(); |
6210 | } |
6211 | |
6212 | // This closure is used to rescan the marked objects on the dirty cards |
6213 | // in the mod union table and the card table proper. In the parallel |
6214 | // case, although the bitMap is shared, we do a single read so the |
6215 | // isMarked() query is "safe". |
6216 | bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { |
6217 | // Ignore mark word because we are running concurrent with mutators |
6218 | assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p)); |
6219 | HeapWord* addr = (HeapWord*)p; |
6220 | assert(_span.contains(addr), "we are scanning the CMS generation" ); |
6221 | bool is_obj_array = false; |
6222 | #ifdef ASSERT |
6223 | if (!_parallel) { |
6224 | assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)" ); |
6225 | assert(_collector->overflow_list_is_empty(), |
6226 | "overflow list should be empty" ); |
6227 | |
6228 | } |
6229 | #endif // ASSERT |
6230 | if (_bit_map->isMarked(addr)) { |
6231 | // Obj arrays are precisely marked, non-arrays are not; |
6232 | // so we scan objArrays precisely and non-arrays in their |
6233 | // entirety. |
6234 | if (p->is_objArray()) { |
6235 | is_obj_array = true; |
6236 | if (_parallel) { |
6237 | p->oop_iterate(_par_scan_closure, mr); |
6238 | } else { |
6239 | p->oop_iterate(_scan_closure, mr); |
6240 | } |
6241 | } else { |
6242 | if (_parallel) { |
6243 | p->oop_iterate(_par_scan_closure); |
6244 | } else { |
6245 | p->oop_iterate(_scan_closure); |
6246 | } |
6247 | } |
6248 | } |
6249 | #ifdef ASSERT |
6250 | if (!_parallel) { |
6251 | assert(_mark_stack->isEmpty(), "post-condition (eager drainage)" ); |
6252 | assert(_collector->overflow_list_is_empty(), |
6253 | "overflow list should be empty" ); |
6254 | |
6255 | } |
6256 | #endif // ASSERT |
6257 | return is_obj_array; |
6258 | } |
6259 | |
6260 | MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector, |
6261 | MemRegion span, |
6262 | CMSBitMap* bitMap, CMSMarkStack* markStack, |
6263 | bool should_yield, bool verifying): |
6264 | _collector(collector), |
6265 | _span(span), |
6266 | _bitMap(bitMap), |
6267 | _mut(&collector->_modUnionTable), |
6268 | _markStack(markStack), |
6269 | _yield(should_yield), |
6270 | _skipBits(0) |
6271 | { |
6272 | assert(_markStack->isEmpty(), "stack should be empty" ); |
6273 | _finger = _bitMap->startWord(); |
6274 | _threshold = _finger; |
6275 | assert(_collector->_restart_addr == NULL, "Sanity check" ); |
6276 | assert(_span.contains(_finger), "Out of bounds _finger?" ); |
6277 | DEBUG_ONLY(_verifying = verifying;) |
6278 | } |
6279 | |
6280 | void MarkFromRootsClosure::reset(HeapWord* addr) { |
6281 | assert(_markStack->isEmpty(), "would cause duplicates on stack" ); |
6282 | assert(_span.contains(addr), "Out of bounds _finger?" ); |
6283 | _finger = addr; |
6284 | _threshold = align_up(_finger, CardTable::card_size); |
6285 | } |
6286 | |
6287 | // Should revisit to see if this should be restructured for |
6288 | // greater efficiency. |
6289 | bool MarkFromRootsClosure::do_bit(size_t offset) { |
6290 | if (_skipBits > 0) { |
6291 | _skipBits--; |
6292 | return true; |
6293 | } |
6294 | // convert offset into a HeapWord* |
6295 | HeapWord* addr = _bitMap->startWord() + offset; |
6296 | assert(_bitMap->endWord() && addr < _bitMap->endWord(), |
6297 | "address out of range" ); |
6298 | assert(_bitMap->isMarked(addr), "tautology" ); |
6299 | if (_bitMap->isMarked(addr+1)) { |
6300 | // this is an allocated but not yet initialized object |
6301 | assert(_skipBits == 0, "tautology" ); |
6302 | _skipBits = 2; // skip next two marked bits ("Printezis-marks") |
6303 | oop p = oop(addr); |
6304 | if (p->klass_or_null_acquire() == NULL) { |
6305 | DEBUG_ONLY(if (!_verifying) {) |
6306 | // We re-dirty the cards on which this object lies and increase |
6307 | // the _threshold so that we'll come back to scan this object |
6308 | // during the preclean or remark phase. (CMSCleanOnEnter) |
6309 | if (CMSCleanOnEnter) { |
6310 | size_t sz = _collector->block_size_using_printezis_bits(addr); |
6311 | HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size); |
6312 | MemRegion redirty_range = MemRegion(addr, end_card_addr); |
6313 | assert(!redirty_range.is_empty(), "Arithmetical tautology" ); |
6314 | // Bump _threshold to end_card_addr; note that |
6315 | // _threshold cannot possibly exceed end_card_addr, anyhow. |
6316 | // This prevents future clearing of the card as the scan proceeds |
6317 | // to the right. |
6318 | assert(_threshold <= end_card_addr, |
6319 | "Because we are just scanning into this object" ); |
6320 | if (_threshold < end_card_addr) { |
6321 | _threshold = end_card_addr; |
6322 | } |
6323 | if (p->klass_or_null_acquire() != NULL) { |
6324 | // Redirty the range of cards... |
6325 | _mut->mark_range(redirty_range); |
6326 | } // ...else the setting of klass will dirty the card anyway. |
6327 | } |
6328 | DEBUG_ONLY(}) |
6329 | return true; |
6330 | } |
6331 | } |
6332 | scanOopsInOop(addr); |
6333 | return true; |
6334 | } |
6335 | |
6336 | // We take a break if we've been at this for a while, |
6337 | // so as to avoid monopolizing the locks involved. |
6338 | void MarkFromRootsClosure::do_yield_work() { |
6339 | // First give up the locks, then yield, then re-lock |
6340 | // We should probably use a constructor/destructor idiom to |
6341 | // do this unlock/lock or modify the MutexUnlocker class to |
6342 | // serve our purpose. XXX |
6343 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
6344 | "CMS thread should hold CMS token" ); |
6345 | assert_lock_strong(_bitMap->lock()); |
6346 | _bitMap->lock()->unlock(); |
6347 | ConcurrentMarkSweepThread::desynchronize(true); |
6348 | _collector->stopTimer(); |
6349 | _collector->incrementYields(); |
6350 | |
6351 | // See the comment in coordinator_yield() |
6352 | for (unsigned i = 0; i < CMSYieldSleepCount && |
6353 | ConcurrentMarkSweepThread::should_yield() && |
6354 | !CMSCollector::foregroundGCIsActive(); ++i) { |
6355 | os::sleep(Thread::current(), 1, false); |
6356 | } |
6357 | |
6358 | ConcurrentMarkSweepThread::synchronize(true); |
6359 | _bitMap->lock()->lock_without_safepoint_check(); |
6360 | _collector->startTimer(); |
6361 | } |
6362 | |
6363 | void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) { |
6364 | assert(_bitMap->isMarked(ptr), "expected bit to be set" ); |
6365 | assert(_markStack->isEmpty(), |
6366 | "should drain stack to limit stack usage" ); |
6367 | // convert ptr to an oop preparatory to scanning |
6368 | oop obj = oop(ptr); |
6369 | // Ignore mark word in verification below, since we |
6370 | // may be running concurrent with mutators. |
6371 | assert(oopDesc::is_oop(obj, true), "should be an oop" ); |
6372 | assert(_finger <= ptr, "_finger runneth ahead" ); |
6373 | // advance the finger to right end of this object |
6374 | _finger = ptr + obj->size(); |
6375 | assert(_finger > ptr, "we just incremented it above" ); |
6376 | // On large heaps, it may take us some time to get through |
6377 | // the marking phase. During |
6378 | // this time it's possible that a lot of mutations have |
6379 | // accumulated in the card table and the mod union table -- |
6380 | // these mutation records are redundant until we have |
6381 | // actually traced into the corresponding card. |
6382 | // Here, we check whether advancing the finger would make |
6383 | // us cross into a new card, and if so clear corresponding |
6384 | // cards in the MUT (preclean them in the card-table in the |
6385 | // future). |
6386 | |
6387 | DEBUG_ONLY(if (!_verifying) {) |
6388 | // The clean-on-enter optimization is disabled by default, |
6389 | // until we fix 6178663. |
6390 | if (CMSCleanOnEnter && (_finger > _threshold)) { |
6391 | // [_threshold, _finger) represents the interval |
6392 | // of cards to be cleared in MUT (or precleaned in card table). |
6393 | // The set of cards to be cleared is all those that overlap |
6394 | // with the interval [_threshold, _finger); note that |
6395 | // _threshold is always kept card-aligned but _finger isn't |
6396 | // always card-aligned. |
6397 | HeapWord* old_threshold = _threshold; |
6398 | assert(is_aligned(old_threshold, CardTable::card_size), |
6399 | "_threshold should always be card-aligned" ); |
6400 | _threshold = align_up(_finger, CardTable::card_size); |
6401 | MemRegion mr(old_threshold, _threshold); |
6402 | assert(!mr.is_empty(), "Control point invariant" ); |
6403 | assert(_span.contains(mr), "Should clear within span" ); |
6404 | _mut->clear_range(mr); |
6405 | } |
6406 | DEBUG_ONLY(}) |
6407 | // Note: the finger doesn't advance while we drain |
6408 | // the stack below. |
6409 | PushOrMarkClosure pushOrMarkClosure(_collector, |
6410 | _span, _bitMap, _markStack, |
6411 | _finger, this); |
6412 | bool res = _markStack->push(obj); |
6413 | assert(res, "Empty non-zero size stack should have space for single push" ); |
6414 | while (!_markStack->isEmpty()) { |
6415 | oop new_oop = _markStack->pop(); |
6416 | // Skip verifying header mark word below because we are |
6417 | // running concurrent with mutators. |
6418 | assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop" ); |
6419 | // now scan this oop's oops |
6420 | new_oop->oop_iterate(&pushOrMarkClosure); |
6421 | do_yield_check(); |
6422 | } |
6423 | assert(_markStack->isEmpty(), "tautology, emphasizing post-condition" ); |
6424 | } |
6425 | |
6426 | ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task, |
6427 | CMSCollector* collector, MemRegion span, |
6428 | CMSBitMap* bit_map, |
6429 | OopTaskQueue* work_queue, |
6430 | CMSMarkStack* overflow_stack): |
6431 | _collector(collector), |
6432 | _whole_span(collector->_span), |
6433 | _span(span), |
6434 | _bit_map(bit_map), |
6435 | _mut(&collector->_modUnionTable), |
6436 | _work_queue(work_queue), |
6437 | _overflow_stack(overflow_stack), |
6438 | _skip_bits(0), |
6439 | _task(task) |
6440 | { |
6441 | assert(_work_queue->size() == 0, "work_queue should be empty" ); |
6442 | _finger = span.start(); |
6443 | _threshold = _finger; // XXX Defer clear-on-enter optimization for now |
6444 | assert(_span.contains(_finger), "Out of bounds _finger?" ); |
6445 | } |
6446 | |
6447 | // Should revisit to see if this should be restructured for |
6448 | // greater efficiency. |
6449 | bool ParMarkFromRootsClosure::do_bit(size_t offset) { |
6450 | if (_skip_bits > 0) { |
6451 | _skip_bits--; |
6452 | return true; |
6453 | } |
6454 | // convert offset into a HeapWord* |
6455 | HeapWord* addr = _bit_map->startWord() + offset; |
6456 | assert(_bit_map->endWord() && addr < _bit_map->endWord(), |
6457 | "address out of range" ); |
6458 | assert(_bit_map->isMarked(addr), "tautology" ); |
6459 | if (_bit_map->isMarked(addr+1)) { |
6460 | // this is an allocated object that might not yet be initialized |
6461 | assert(_skip_bits == 0, "tautology" ); |
6462 | _skip_bits = 2; // skip next two marked bits ("Printezis-marks") |
6463 | oop p = oop(addr); |
6464 | if (p->klass_or_null_acquire() == NULL) { |
6465 | // in the case of Clean-on-Enter optimization, redirty card |
6466 | // and avoid clearing card by increasing the threshold. |
6467 | return true; |
6468 | } |
6469 | } |
6470 | scan_oops_in_oop(addr); |
6471 | return true; |
6472 | } |
6473 | |
6474 | void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) { |
6475 | assert(_bit_map->isMarked(ptr), "expected bit to be set" ); |
6476 | // Should we assert that our work queue is empty or |
6477 | // below some drain limit? |
6478 | assert(_work_queue->size() == 0, |
6479 | "should drain stack to limit stack usage" ); |
6480 | // convert ptr to an oop preparatory to scanning |
6481 | oop obj = oop(ptr); |
6482 | // Ignore mark word in verification below, since we |
6483 | // may be running concurrent with mutators. |
6484 | assert(oopDesc::is_oop(obj, true), "should be an oop" ); |
6485 | assert(_finger <= ptr, "_finger runneth ahead" ); |
6486 | // advance the finger to right end of this object |
6487 | _finger = ptr + obj->size(); |
6488 | assert(_finger > ptr, "we just incremented it above" ); |
6489 | // On large heaps, it may take us some time to get through |
6490 | // the marking phase. During |
6491 | // this time it's possible that a lot of mutations have |
6492 | // accumulated in the card table and the mod union table -- |
6493 | // these mutation records are redundant until we have |
6494 | // actually traced into the corresponding card. |
6495 | // Here, we check whether advancing the finger would make |
6496 | // us cross into a new card, and if so clear corresponding |
6497 | // cards in the MUT (preclean them in the card-table in the |
6498 | // future). |
6499 | |
6500 | // The clean-on-enter optimization is disabled by default, |
6501 | // until we fix 6178663. |
6502 | if (CMSCleanOnEnter && (_finger > _threshold)) { |
6503 | // [_threshold, _finger) represents the interval |
6504 | // of cards to be cleared in MUT (or precleaned in card table). |
6505 | // The set of cards to be cleared is all those that overlap |
6506 | // with the interval [_threshold, _finger); note that |
6507 | // _threshold is always kept card-aligned but _finger isn't |
6508 | // always card-aligned. |
6509 | HeapWord* old_threshold = _threshold; |
6510 | assert(is_aligned(old_threshold, CardTable::card_size), |
6511 | "_threshold should always be card-aligned" ); |
6512 | _threshold = align_up(_finger, CardTable::card_size); |
6513 | MemRegion mr(old_threshold, _threshold); |
6514 | assert(!mr.is_empty(), "Control point invariant" ); |
6515 | assert(_span.contains(mr), "Should clear within span" ); // _whole_span ?? |
6516 | _mut->clear_range(mr); |
6517 | } |
6518 | |
6519 | // Note: the local finger doesn't advance while we drain |
6520 | // the stack below, but the global finger sure can and will. |
6521 | HeapWord* volatile* gfa = _task->global_finger_addr(); |
6522 | ParPushOrMarkClosure pushOrMarkClosure(_collector, |
6523 | _span, _bit_map, |
6524 | _work_queue, |
6525 | _overflow_stack, |
6526 | _finger, |
6527 | gfa, this); |
6528 | bool res = _work_queue->push(obj); // overflow could occur here |
6529 | assert(res, "Will hold once we use workqueues" ); |
6530 | while (true) { |
6531 | oop new_oop; |
6532 | if (!_work_queue->pop_local(new_oop)) { |
6533 | // We emptied our work_queue; check if there's stuff that can |
6534 | // be gotten from the overflow stack. |
6535 | if (CMSConcMarkingTask::get_work_from_overflow_stack( |
6536 | _overflow_stack, _work_queue)) { |
6537 | do_yield_check(); |
6538 | continue; |
6539 | } else { // done |
6540 | break; |
6541 | } |
6542 | } |
6543 | // Skip verifying header mark word below because we are |
6544 | // running concurrent with mutators. |
6545 | assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop" ); |
6546 | // now scan this oop's oops |
6547 | new_oop->oop_iterate(&pushOrMarkClosure); |
6548 | do_yield_check(); |
6549 | } |
6550 | assert(_work_queue->size() == 0, "tautology, emphasizing post-condition" ); |
6551 | } |
6552 | |
6553 | // Yield in response to a request from VM Thread or |
6554 | // from mutators. |
6555 | void ParMarkFromRootsClosure::do_yield_work() { |
6556 | assert(_task != NULL, "sanity" ); |
6557 | _task->yield(); |
6558 | } |
6559 | |
6560 | // A variant of the above used for verifying CMS marking work. |
6561 | MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector, |
6562 | MemRegion span, |
6563 | CMSBitMap* verification_bm, CMSBitMap* cms_bm, |
6564 | CMSMarkStack* mark_stack): |
6565 | _collector(collector), |
6566 | _span(span), |
6567 | _verification_bm(verification_bm), |
6568 | _cms_bm(cms_bm), |
6569 | _mark_stack(mark_stack), |
6570 | _pam_verify_closure(collector, span, verification_bm, cms_bm, |
6571 | mark_stack) |
6572 | { |
6573 | assert(_mark_stack->isEmpty(), "stack should be empty" ); |
6574 | _finger = _verification_bm->startWord(); |
6575 | assert(_collector->_restart_addr == NULL, "Sanity check" ); |
6576 | assert(_span.contains(_finger), "Out of bounds _finger?" ); |
6577 | } |
6578 | |
6579 | void MarkFromRootsVerifyClosure::reset(HeapWord* addr) { |
6580 | assert(_mark_stack->isEmpty(), "would cause duplicates on stack" ); |
6581 | assert(_span.contains(addr), "Out of bounds _finger?" ); |
6582 | _finger = addr; |
6583 | } |
6584 | |
6585 | // Should revisit to see if this should be restructured for |
6586 | // greater efficiency. |
6587 | bool MarkFromRootsVerifyClosure::do_bit(size_t offset) { |
6588 | // convert offset into a HeapWord* |
6589 | HeapWord* addr = _verification_bm->startWord() + offset; |
6590 | assert(_verification_bm->endWord() && addr < _verification_bm->endWord(), |
6591 | "address out of range" ); |
6592 | assert(_verification_bm->isMarked(addr), "tautology" ); |
6593 | assert(_cms_bm->isMarked(addr), "tautology" ); |
6594 | |
6595 | assert(_mark_stack->isEmpty(), |
6596 | "should drain stack to limit stack usage" ); |
6597 | // convert addr to an oop preparatory to scanning |
6598 | oop obj = oop(addr); |
6599 | assert(oopDesc::is_oop(obj), "should be an oop" ); |
6600 | assert(_finger <= addr, "_finger runneth ahead" ); |
6601 | // advance the finger to right end of this object |
6602 | _finger = addr + obj->size(); |
6603 | assert(_finger > addr, "we just incremented it above" ); |
6604 | // Note: the finger doesn't advance while we drain |
6605 | // the stack below. |
6606 | bool res = _mark_stack->push(obj); |
6607 | assert(res, "Empty non-zero size stack should have space for single push" ); |
6608 | while (!_mark_stack->isEmpty()) { |
6609 | oop new_oop = _mark_stack->pop(); |
6610 | assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop" ); |
6611 | // now scan this oop's oops |
6612 | new_oop->oop_iterate(&_pam_verify_closure); |
6613 | } |
6614 | assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition" ); |
6615 | return true; |
6616 | } |
6617 | |
6618 | PushAndMarkVerifyClosure::PushAndMarkVerifyClosure( |
6619 | CMSCollector* collector, MemRegion span, |
6620 | CMSBitMap* verification_bm, CMSBitMap* cms_bm, |
6621 | CMSMarkStack* mark_stack): |
6622 | MetadataVisitingOopIterateClosure(collector->ref_processor()), |
6623 | _collector(collector), |
6624 | _span(span), |
6625 | _verification_bm(verification_bm), |
6626 | _cms_bm(cms_bm), |
6627 | _mark_stack(mark_stack) |
6628 | { } |
6629 | |
6630 | template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) { |
6631 | oop obj = RawAccess<>::oop_load(p); |
6632 | do_oop(obj); |
6633 | } |
6634 | |
6635 | void PushAndMarkVerifyClosure::do_oop(oop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } |
6636 | void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } |
6637 | |
6638 | // Upon stack overflow, we discard (part of) the stack, |
6639 | // remembering the least address amongst those discarded |
6640 | // in CMSCollector's _restart_address. |
6641 | void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) { |
6642 | // Remember the least grey address discarded |
6643 | HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost); |
6644 | _collector->lower_restart_addr(ra); |
6645 | _mark_stack->reset(); // discard stack contents |
6646 | _mark_stack->expand(); // expand the stack if possible |
6647 | } |
6648 | |
6649 | void PushAndMarkVerifyClosure::do_oop(oop obj) { |
6650 | assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); |
6651 | HeapWord* addr = (HeapWord*)obj; |
6652 | if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { |
6653 | // Oop lies in _span and isn't yet grey or black |
6654 | _verification_bm->mark(addr); // now grey |
6655 | if (!_cms_bm->isMarked(addr)) { |
6656 | Log(gc, verify) log; |
6657 | ResourceMark rm; |
6658 | LogStream ls(log.error()); |
6659 | oop(addr)->print_on(&ls); |
6660 | log.error(" (" INTPTR_FORMAT " should have been marked)" , p2i(addr)); |
6661 | fatal("... aborting" ); |
6662 | } |
6663 | |
6664 | if (!_mark_stack->push(obj)) { // stack overflow |
6665 | log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity()); |
6666 | assert(_mark_stack->isFull(), "Else push should have succeeded" ); |
6667 | handle_stack_overflow(addr); |
6668 | } |
6669 | // anything including and to the right of _finger |
6670 | // will be scanned as we iterate over the remainder of the |
6671 | // bit map |
6672 | } |
6673 | } |
6674 | |
6675 | PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector, |
6676 | MemRegion span, |
6677 | CMSBitMap* bitMap, CMSMarkStack* markStack, |
6678 | HeapWord* finger, MarkFromRootsClosure* parent) : |
6679 | MetadataVisitingOopIterateClosure(collector->ref_processor()), |
6680 | _collector(collector), |
6681 | _span(span), |
6682 | _bitMap(bitMap), |
6683 | _markStack(markStack), |
6684 | _finger(finger), |
6685 | _parent(parent) |
6686 | { } |
6687 | |
6688 | ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector, |
6689 | MemRegion span, |
6690 | CMSBitMap* bit_map, |
6691 | OopTaskQueue* work_queue, |
6692 | CMSMarkStack* overflow_stack, |
6693 | HeapWord* finger, |
6694 | HeapWord* volatile* global_finger_addr, |
6695 | ParMarkFromRootsClosure* parent) : |
6696 | MetadataVisitingOopIterateClosure(collector->ref_processor()), |
6697 | _collector(collector), |
6698 | _whole_span(collector->_span), |
6699 | _span(span), |
6700 | _bit_map(bit_map), |
6701 | _work_queue(work_queue), |
6702 | _overflow_stack(overflow_stack), |
6703 | _finger(finger), |
6704 | _global_finger_addr(global_finger_addr), |
6705 | _parent(parent) |
6706 | { } |
6707 | |
6708 | // Assumes thread-safe access by callers, who are |
6709 | // responsible for mutual exclusion. |
6710 | void CMSCollector::lower_restart_addr(HeapWord* low) { |
6711 | assert(_span.contains(low), "Out of bounds addr" ); |
6712 | if (_restart_addr == NULL) { |
6713 | _restart_addr = low; |
6714 | } else { |
6715 | _restart_addr = MIN2(_restart_addr, low); |
6716 | } |
6717 | } |
6718 | |
6719 | // Upon stack overflow, we discard (part of) the stack, |
6720 | // remembering the least address amongst those discarded |
6721 | // in CMSCollector's _restart_address. |
6722 | void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { |
6723 | // Remember the least grey address discarded |
6724 | HeapWord* ra = (HeapWord*)_markStack->least_value(lost); |
6725 | _collector->lower_restart_addr(ra); |
6726 | _markStack->reset(); // discard stack contents |
6727 | _markStack->expand(); // expand the stack if possible |
6728 | } |
6729 | |
6730 | // Upon stack overflow, we discard (part of) the stack, |
6731 | // remembering the least address amongst those discarded |
6732 | // in CMSCollector's _restart_address. |
6733 | void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { |
6734 | // We need to do this under a mutex to prevent other |
6735 | // workers from interfering with the work done below. |
6736 | MutexLocker ml(_overflow_stack->par_lock(), |
6737 | Mutex::_no_safepoint_check_flag); |
6738 | // Remember the least grey address discarded |
6739 | HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); |
6740 | _collector->lower_restart_addr(ra); |
6741 | _overflow_stack->reset(); // discard stack contents |
6742 | _overflow_stack->expand(); // expand the stack if possible |
6743 | } |
6744 | |
6745 | void PushOrMarkClosure::do_oop(oop obj) { |
6746 | // Ignore mark word because we are running concurrent with mutators. |
6747 | assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); |
6748 | HeapWord* addr = (HeapWord*)obj; |
6749 | if (_span.contains(addr) && !_bitMap->isMarked(addr)) { |
6750 | // Oop lies in _span and isn't yet grey or black |
6751 | _bitMap->mark(addr); // now grey |
6752 | if (addr < _finger) { |
6753 | // the bit map iteration has already either passed, or |
6754 | // sampled, this bit in the bit map; we'll need to |
6755 | // use the marking stack to scan this oop's oops. |
6756 | bool simulate_overflow = false; |
6757 | NOT_PRODUCT( |
6758 | if (CMSMarkStackOverflowALot && |
6759 | _collector->simulate_overflow()) { |
6760 | // simulate a stack overflow |
6761 | simulate_overflow = true; |
6762 | } |
6763 | ) |
6764 | if (simulate_overflow || !_markStack->push(obj)) { // stack overflow |
6765 | log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity()); |
6766 | assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded" ); |
6767 | handle_stack_overflow(addr); |
6768 | } |
6769 | } |
6770 | // anything including and to the right of _finger |
6771 | // will be scanned as we iterate over the remainder of the |
6772 | // bit map |
6773 | do_yield_check(); |
6774 | } |
6775 | } |
6776 | |
6777 | void ParPushOrMarkClosure::do_oop(oop obj) { |
6778 | // Ignore mark word because we are running concurrent with mutators. |
6779 | assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); |
6780 | HeapWord* addr = (HeapWord*)obj; |
6781 | if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { |
6782 | // Oop lies in _span and isn't yet grey or black |
6783 | // We read the global_finger (volatile read) strictly after marking oop |
6784 | bool res = _bit_map->par_mark(addr); // now grey |
6785 | volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr; |
6786 | // Should we push this marked oop on our stack? |
6787 | // -- if someone else marked it, nothing to do |
6788 | // -- if target oop is above global finger nothing to do |
6789 | // -- if target oop is in chunk and above local finger |
6790 | // then nothing to do |
6791 | // -- else push on work queue |
6792 | if ( !res // someone else marked it, they will deal with it |
6793 | || (addr >= *gfa) // will be scanned in a later task |
6794 | || (_span.contains(addr) && addr >= _finger)) { // later in this chunk |
6795 | return; |
6796 | } |
6797 | // the bit map iteration has already either passed, or |
6798 | // sampled, this bit in the bit map; we'll need to |
6799 | // use the marking stack to scan this oop's oops. |
6800 | bool simulate_overflow = false; |
6801 | NOT_PRODUCT( |
6802 | if (CMSMarkStackOverflowALot && |
6803 | _collector->simulate_overflow()) { |
6804 | // simulate a stack overflow |
6805 | simulate_overflow = true; |
6806 | } |
6807 | ) |
6808 | if (simulate_overflow || |
6809 | !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { |
6810 | // stack overflow |
6811 | log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity()); |
6812 | // We cannot assert that the overflow stack is full because |
6813 | // it may have been emptied since. |
6814 | assert(simulate_overflow || |
6815 | _work_queue->size() == _work_queue->max_elems(), |
6816 | "Else push should have succeeded" ); |
6817 | handle_stack_overflow(addr); |
6818 | } |
6819 | do_yield_check(); |
6820 | } |
6821 | } |
6822 | |
6823 | PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector, |
6824 | MemRegion span, |
6825 | ReferenceDiscoverer* rd, |
6826 | CMSBitMap* bit_map, |
6827 | CMSBitMap* mod_union_table, |
6828 | CMSMarkStack* mark_stack, |
6829 | bool concurrent_precleaning): |
6830 | MetadataVisitingOopIterateClosure(rd), |
6831 | _collector(collector), |
6832 | _span(span), |
6833 | _bit_map(bit_map), |
6834 | _mod_union_table(mod_union_table), |
6835 | _mark_stack(mark_stack), |
6836 | _concurrent_precleaning(concurrent_precleaning) |
6837 | { |
6838 | assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL" ); |
6839 | } |
6840 | |
6841 | // Grey object rescan during pre-cleaning and second checkpoint phases -- |
6842 | // the non-parallel version (the parallel version appears further below.) |
6843 | void PushAndMarkClosure::do_oop(oop obj) { |
6844 | // Ignore mark word verification. If during concurrent precleaning, |
6845 | // the object monitor may be locked. If during the checkpoint |
6846 | // phases, the object may already have been reached by a different |
6847 | // path and may be at the end of the global overflow list (so |
6848 | // the mark word may be NULL). |
6849 | assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */), |
6850 | "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); |
6851 | HeapWord* addr = (HeapWord*)obj; |
6852 | // Check if oop points into the CMS generation |
6853 | // and is not marked |
6854 | if (_span.contains(addr) && !_bit_map->isMarked(addr)) { |
6855 | // a white object ... |
6856 | _bit_map->mark(addr); // ... now grey |
6857 | // push on the marking stack (grey set) |
6858 | bool simulate_overflow = false; |
6859 | NOT_PRODUCT( |
6860 | if (CMSMarkStackOverflowALot && |
6861 | _collector->simulate_overflow()) { |
6862 | // simulate a stack overflow |
6863 | simulate_overflow = true; |
6864 | } |
6865 | ) |
6866 | if (simulate_overflow || !_mark_stack->push(obj)) { |
6867 | if (_concurrent_precleaning) { |
6868 | // During precleaning we can just dirty the appropriate card(s) |
6869 | // in the mod union table, thus ensuring that the object remains |
6870 | // in the grey set and continue. In the case of object arrays |
6871 | // we need to dirty all of the cards that the object spans, |
6872 | // since the rescan of object arrays will be limited to the |
6873 | // dirty cards. |
6874 | // Note that no one can be interfering with us in this action |
6875 | // of dirtying the mod union table, so no locking or atomics |
6876 | // are required. |
6877 | if (obj->is_objArray()) { |
6878 | size_t sz = obj->size(); |
6879 | HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size); |
6880 | MemRegion redirty_range = MemRegion(addr, end_card_addr); |
6881 | assert(!redirty_range.is_empty(), "Arithmetical tautology" ); |
6882 | _mod_union_table->mark_range(redirty_range); |
6883 | } else { |
6884 | _mod_union_table->mark(addr); |
6885 | } |
6886 | _collector->_ser_pmc_preclean_ovflw++; |
6887 | } else { |
6888 | // During the remark phase, we need to remember this oop |
6889 | // in the overflow list. |
6890 | _collector->push_on_overflow_list(obj); |
6891 | _collector->_ser_pmc_remark_ovflw++; |
6892 | } |
6893 | } |
6894 | } |
6895 | } |
6896 | |
6897 | ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector, |
6898 | MemRegion span, |
6899 | ReferenceDiscoverer* rd, |
6900 | CMSBitMap* bit_map, |
6901 | OopTaskQueue* work_queue): |
6902 | MetadataVisitingOopIterateClosure(rd), |
6903 | _collector(collector), |
6904 | _span(span), |
6905 | _bit_map(bit_map), |
6906 | _work_queue(work_queue) |
6907 | { |
6908 | assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL" ); |
6909 | } |
6910 | |
6911 | // Grey object rescan during second checkpoint phase -- |
6912 | // the parallel version. |
6913 | void ParPushAndMarkClosure::do_oop(oop obj) { |
6914 | // In the assert below, we ignore the mark word because |
6915 | // this oop may point to an already visited object that is |
6916 | // on the overflow stack (in which case the mark word has |
6917 | // been hijacked for chaining into the overflow stack -- |
6918 | // if this is the last object in the overflow stack then |
6919 | // its mark word will be NULL). Because this object may |
6920 | // have been subsequently popped off the global overflow |
6921 | // stack, and the mark word possibly restored to the prototypical |
6922 | // value, by the time we get to examined this failing assert in |
6923 | // the debugger, is_oop_or_null(false) may subsequently start |
6924 | // to hold. |
6925 | assert(oopDesc::is_oop_or_null(obj, true), |
6926 | "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); |
6927 | HeapWord* addr = (HeapWord*)obj; |
6928 | // Check if oop points into the CMS generation |
6929 | // and is not marked |
6930 | if (_span.contains(addr) && !_bit_map->isMarked(addr)) { |
6931 | // a white object ... |
6932 | // If we manage to "claim" the object, by being the |
6933 | // first thread to mark it, then we push it on our |
6934 | // marking stack |
6935 | if (_bit_map->par_mark(addr)) { // ... now grey |
6936 | // push on work queue (grey set) |
6937 | bool simulate_overflow = false; |
6938 | NOT_PRODUCT( |
6939 | if (CMSMarkStackOverflowALot && |
6940 | _collector->par_simulate_overflow()) { |
6941 | // simulate a stack overflow |
6942 | simulate_overflow = true; |
6943 | } |
6944 | ) |
6945 | if (simulate_overflow || !_work_queue->push(obj)) { |
6946 | _collector->par_push_on_overflow_list(obj); |
6947 | _collector->_par_pmc_remark_ovflw++; // imprecise OK: no need to CAS |
6948 | } |
6949 | } // Else, some other thread got there first |
6950 | } |
6951 | } |
6952 | |
6953 | void CMSPrecleanRefsYieldClosure::do_yield_work() { |
6954 | Mutex* bml = _collector->bitMapLock(); |
6955 | assert_lock_strong(bml); |
6956 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
6957 | "CMS thread should hold CMS token" ); |
6958 | |
6959 | bml->unlock(); |
6960 | ConcurrentMarkSweepThread::desynchronize(true); |
6961 | |
6962 | _collector->stopTimer(); |
6963 | _collector->incrementYields(); |
6964 | |
6965 | // See the comment in coordinator_yield() |
6966 | for (unsigned i = 0; i < CMSYieldSleepCount && |
6967 | ConcurrentMarkSweepThread::should_yield() && |
6968 | !CMSCollector::foregroundGCIsActive(); ++i) { |
6969 | os::sleep(Thread::current(), 1, false); |
6970 | } |
6971 | |
6972 | ConcurrentMarkSweepThread::synchronize(true); |
6973 | bml->lock(); |
6974 | |
6975 | _collector->startTimer(); |
6976 | } |
6977 | |
6978 | bool CMSPrecleanRefsYieldClosure::should_return() { |
6979 | if (ConcurrentMarkSweepThread::should_yield()) { |
6980 | do_yield_work(); |
6981 | } |
6982 | return _collector->foregroundGCIsActive(); |
6983 | } |
6984 | |
6985 | void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) { |
6986 | assert(((size_t)mr.start())%CardTable::card_size_in_words == 0, |
6987 | "mr should be aligned to start at a card boundary" ); |
6988 | // We'd like to assert: |
6989 | // assert(mr.word_size()%CardTable::card_size_in_words == 0, |
6990 | // "mr should be a range of cards"); |
6991 | // However, that would be too strong in one case -- the last |
6992 | // partition ends at _unallocated_block which, in general, can be |
6993 | // an arbitrary boundary, not necessarily card aligned. |
6994 | _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words; |
6995 | _space->object_iterate_mem(mr, &_scan_cl); |
6996 | } |
6997 | |
6998 | SweepClosure::SweepClosure(CMSCollector* collector, |
6999 | ConcurrentMarkSweepGeneration* g, |
7000 | CMSBitMap* bitMap, bool should_yield) : |
7001 | _collector(collector), |
7002 | _g(g), |
7003 | _sp(g->cmsSpace()), |
7004 | _limit(_sp->sweep_limit()), |
7005 | _freelistLock(_sp->freelistLock()), |
7006 | _bitMap(bitMap), |
7007 | _inFreeRange(false), // No free range at beginning of sweep |
7008 | _freeRangeInFreeLists(false), // No free range at beginning of sweep |
7009 | _lastFreeRangeCoalesced(false), |
7010 | _yield(should_yield), |
7011 | _freeFinger(g->used_region().start()) |
7012 | { |
7013 | NOT_PRODUCT( |
7014 | _numObjectsFreed = 0; |
7015 | _numWordsFreed = 0; |
7016 | _numObjectsLive = 0; |
7017 | _numWordsLive = 0; |
7018 | _numObjectsAlreadyFree = 0; |
7019 | _numWordsAlreadyFree = 0; |
7020 | _last_fc = NULL; |
7021 | |
7022 | _sp->initializeIndexedFreeListArrayReturnedBytes(); |
7023 | _sp->dictionary()->initialize_dict_returned_bytes(); |
7024 | ) |
7025 | assert(_limit >= _sp->bottom() && _limit <= _sp->end(), |
7026 | "sweep _limit out of bounds" ); |
7027 | log_develop_trace(gc, sweep)("====================" ); |
7028 | log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit)); |
7029 | } |
7030 | |
7031 | void SweepClosure::print_on(outputStream* st) const { |
7032 | st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")" , |
7033 | p2i(_sp->bottom()), p2i(_sp->end())); |
7034 | st->print_cr("_limit = " PTR_FORMAT, p2i(_limit)); |
7035 | st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger)); |
7036 | NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));) |
7037 | st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d" , |
7038 | _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced); |
7039 | } |
7040 | |
7041 | #ifndef PRODUCT |
7042 | // Assertion checking only: no useful work in product mode -- |
7043 | // however, if any of the flags below become product flags, |
7044 | // you may need to review this code to see if it needs to be |
7045 | // enabled in product mode. |
7046 | SweepClosure::~SweepClosure() { |
7047 | assert_lock_strong(_freelistLock); |
7048 | assert(_limit >= _sp->bottom() && _limit <= _sp->end(), |
7049 | "sweep _limit out of bounds" ); |
7050 | if (inFreeRange()) { |
7051 | Log(gc, sweep) log; |
7052 | log.error("inFreeRange() should have been reset; dumping state of SweepClosure" ); |
7053 | ResourceMark rm; |
7054 | LogStream ls(log.error()); |
7055 | print_on(&ls); |
7056 | ShouldNotReachHere(); |
7057 | } |
7058 | |
7059 | if (log_is_enabled(Debug, gc, sweep)) { |
7060 | log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes" , |
7061 | _numObjectsFreed, _numWordsFreed*sizeof(HeapWord)); |
7062 | log_debug(gc, sweep)("Live " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes" , |
7063 | _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord)); |
7064 | size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord); |
7065 | log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes" , totalBytes); |
7066 | } |
7067 | |
7068 | if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) { |
7069 | size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes(); |
7070 | size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes(); |
7071 | size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes; |
7072 | log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes Indexed List Returned " SIZE_FORMAT " bytes Dictionary Returned " SIZE_FORMAT " bytes" , |
7073 | returned_bytes, indexListReturnedBytes, dict_returned_bytes); |
7074 | } |
7075 | log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit)); |
7076 | log_develop_trace(gc, sweep)("================" ); |
7077 | } |
7078 | #endif // PRODUCT |
7079 | |
7080 | void SweepClosure::initialize_free_range(HeapWord* freeFinger, |
7081 | bool freeRangeInFreeLists) { |
7082 | log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)" , |
7083 | p2i(freeFinger), freeRangeInFreeLists); |
7084 | assert(!inFreeRange(), "Trampling existing free range" ); |
7085 | set_inFreeRange(true); |
7086 | set_lastFreeRangeCoalesced(false); |
7087 | |
7088 | set_freeFinger(freeFinger); |
7089 | set_freeRangeInFreeLists(freeRangeInFreeLists); |
7090 | if (CMSTestInFreeList) { |
7091 | if (freeRangeInFreeLists) { |
7092 | FreeChunk* fc = (FreeChunk*) freeFinger; |
7093 | assert(fc->is_free(), "A chunk on the free list should be free." ); |
7094 | assert(fc->size() > 0, "Free range should have a size" ); |
7095 | assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists" ); |
7096 | } |
7097 | } |
7098 | } |
7099 | |
7100 | // Note that the sweeper runs concurrently with mutators. Thus, |
7101 | // it is possible for direct allocation in this generation to happen |
7102 | // in the middle of the sweep. Note that the sweeper also coalesces |
7103 | // contiguous free blocks. Thus, unless the sweeper and the allocator |
7104 | // synchronize appropriately freshly allocated blocks may get swept up. |
7105 | // This is accomplished by the sweeper locking the free lists while |
7106 | // it is sweeping. Thus blocks that are determined to be free are |
7107 | // indeed free. There is however one additional complication: |
7108 | // blocks that have been allocated since the final checkpoint and |
7109 | // mark, will not have been marked and so would be treated as |
7110 | // unreachable and swept up. To prevent this, the allocator marks |
7111 | // the bit map when allocating during the sweep phase. This leads, |
7112 | // however, to a further complication -- objects may have been allocated |
7113 | // but not yet initialized -- in the sense that the header isn't yet |
7114 | // installed. The sweeper can not then determine the size of the block |
7115 | // in order to skip over it. To deal with this case, we use a technique |
7116 | // (due to Printezis) to encode such uninitialized block sizes in the |
7117 | // bit map. Since the bit map uses a bit per every HeapWord, but the |
7118 | // CMS generation has a minimum object size of 3 HeapWords, it follows |
7119 | // that "normal marks" won't be adjacent in the bit map (there will |
7120 | // always be at least two 0 bits between successive 1 bits). We make use |
7121 | // of these "unused" bits to represent uninitialized blocks -- the bit |
7122 | // corresponding to the start of the uninitialized object and the next |
7123 | // bit are both set. Finally, a 1 bit marks the end of the object that |
7124 | // started with the two consecutive 1 bits to indicate its potentially |
7125 | // uninitialized state. |
7126 | |
7127 | size_t SweepClosure::do_blk_careful(HeapWord* addr) { |
7128 | FreeChunk* fc = (FreeChunk*)addr; |
7129 | size_t res; |
7130 | |
7131 | // Check if we are done sweeping. Below we check "addr >= _limit" rather |
7132 | // than "addr == _limit" because although _limit was a block boundary when |
7133 | // we started the sweep, it may no longer be one because heap expansion |
7134 | // may have caused us to coalesce the block ending at the address _limit |
7135 | // with a newly expanded chunk (this happens when _limit was set to the |
7136 | // previous _end of the space), so we may have stepped past _limit: |
7137 | // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740. |
7138 | if (addr >= _limit) { // we have swept up to or past the limit: finish up |
7139 | assert(_limit >= _sp->bottom() && _limit <= _sp->end(), |
7140 | "sweep _limit out of bounds" ); |
7141 | assert(addr < _sp->end(), "addr out of bounds" ); |
7142 | // Flush any free range we might be holding as a single |
7143 | // coalesced chunk to the appropriate free list. |
7144 | if (inFreeRange()) { |
7145 | assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit, |
7146 | "freeFinger() " PTR_FORMAT " is out of bounds" , p2i(freeFinger())); |
7147 | flush_cur_free_chunk(freeFinger(), |
7148 | pointer_delta(addr, freeFinger())); |
7149 | log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]" , |
7150 | p2i(freeFinger()), pointer_delta(addr, freeFinger()), |
7151 | lastFreeRangeCoalesced() ? 1 : 0); |
7152 | } |
7153 | |
7154 | // help the iterator loop finish |
7155 | return pointer_delta(_sp->end(), addr); |
7156 | } |
7157 | |
7158 | assert(addr < _limit, "sweep invariant" ); |
7159 | // check if we should yield |
7160 | do_yield_check(addr); |
7161 | if (fc->is_free()) { |
7162 | // Chunk that is already free |
7163 | res = fc->size(); |
7164 | do_already_free_chunk(fc); |
7165 | debug_only(_sp->verifyFreeLists()); |
7166 | // If we flush the chunk at hand in lookahead_and_flush() |
7167 | // and it's coalesced with a preceding chunk, then the |
7168 | // process of "mangling" the payload of the coalesced block |
7169 | // will cause erasure of the size information from the |
7170 | // (erstwhile) header of all the coalesced blocks but the |
7171 | // first, so the first disjunct in the assert will not hold |
7172 | // in that specific case (in which case the second disjunct |
7173 | // will hold). |
7174 | assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit, |
7175 | "Otherwise the size info doesn't change at this step" ); |
7176 | NOT_PRODUCT( |
7177 | _numObjectsAlreadyFree++; |
7178 | _numWordsAlreadyFree += res; |
7179 | ) |
7180 | NOT_PRODUCT(_last_fc = fc;) |
7181 | } else if (!_bitMap->isMarked(addr)) { |
7182 | // Chunk is fresh garbage |
7183 | res = do_garbage_chunk(fc); |
7184 | debug_only(_sp->verifyFreeLists()); |
7185 | NOT_PRODUCT( |
7186 | _numObjectsFreed++; |
7187 | _numWordsFreed += res; |
7188 | ) |
7189 | } else { |
7190 | // Chunk that is alive. |
7191 | res = do_live_chunk(fc); |
7192 | debug_only(_sp->verifyFreeLists()); |
7193 | NOT_PRODUCT( |
7194 | _numObjectsLive++; |
7195 | _numWordsLive += res; |
7196 | ) |
7197 | } |
7198 | return res; |
7199 | } |
7200 | |
7201 | // For the smart allocation, record following |
7202 | // split deaths - a free chunk is removed from its free list because |
7203 | // it is being split into two or more chunks. |
7204 | // split birth - a free chunk is being added to its free list because |
7205 | // a larger free chunk has been split and resulted in this free chunk. |
7206 | // coal death - a free chunk is being removed from its free list because |
7207 | // it is being coalesced into a large free chunk. |
7208 | // coal birth - a free chunk is being added to its free list because |
7209 | // it was created when two or more free chunks where coalesced into |
7210 | // this free chunk. |
7211 | // |
7212 | // These statistics are used to determine the desired number of free |
7213 | // chunks of a given size. The desired number is chosen to be relative |
7214 | // to the end of a CMS sweep. The desired number at the end of a sweep |
7215 | // is the |
7216 | // count-at-end-of-previous-sweep (an amount that was enough) |
7217 | // - count-at-beginning-of-current-sweep (the excess) |
7218 | // + split-births (gains in this size during interval) |
7219 | // - split-deaths (demands on this size during interval) |
7220 | // where the interval is from the end of one sweep to the end of the |
7221 | // next. |
7222 | // |
7223 | // When sweeping the sweeper maintains an accumulated chunk which is |
7224 | // the chunk that is made up of chunks that have been coalesced. That |
7225 | // will be termed the left-hand chunk. A new chunk of garbage that |
7226 | // is being considered for coalescing will be referred to as the |
7227 | // right-hand chunk. |
7228 | // |
7229 | // When making a decision on whether to coalesce a right-hand chunk with |
7230 | // the current left-hand chunk, the current count vs. the desired count |
7231 | // of the left-hand chunk is considered. Also if the right-hand chunk |
7232 | // is near the large chunk at the end of the heap (see |
7233 | // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the |
7234 | // left-hand chunk is coalesced. |
7235 | // |
7236 | // When making a decision about whether to split a chunk, the desired count |
7237 | // vs. the current count of the candidate to be split is also considered. |
7238 | // If the candidate is underpopulated (currently fewer chunks than desired) |
7239 | // a chunk of an overpopulated (currently more chunks than desired) size may |
7240 | // be chosen. The "hint" associated with a free list, if non-null, points |
7241 | // to a free list which may be overpopulated. |
7242 | // |
7243 | |
7244 | void SweepClosure::do_already_free_chunk(FreeChunk* fc) { |
7245 | const size_t size = fc->size(); |
7246 | // Chunks that cannot be coalesced are not in the |
7247 | // free lists. |
7248 | if (CMSTestInFreeList && !fc->cantCoalesce()) { |
7249 | assert(_sp->verify_chunk_in_free_list(fc), |
7250 | "free chunk should be in free lists" ); |
7251 | } |
7252 | // a chunk that is already free, should not have been |
7253 | // marked in the bit map |
7254 | HeapWord* const addr = (HeapWord*) fc; |
7255 | assert(!_bitMap->isMarked(addr), "free chunk should be unmarked" ); |
7256 | // Verify that the bit map has no bits marked between |
7257 | // addr and purported end of this block. |
7258 | _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); |
7259 | |
7260 | // Some chunks cannot be coalesced under any circumstances. |
7261 | // See the definition of cantCoalesce(). |
7262 | if (!fc->cantCoalesce()) { |
7263 | // This chunk can potentially be coalesced. |
7264 | // All the work is done in |
7265 | do_post_free_or_garbage_chunk(fc, size); |
7266 | // Note that if the chunk is not coalescable (the else arm |
7267 | // below), we unconditionally flush, without needing to do |
7268 | // a "lookahead," as we do below. |
7269 | if (inFreeRange()) lookahead_and_flush(fc, size); |
7270 | } else { |
7271 | // Code path common to both original and adaptive free lists. |
7272 | |
7273 | // cant coalesce with previous block; this should be treated |
7274 | // as the end of a free run if any |
7275 | if (inFreeRange()) { |
7276 | // we kicked some butt; time to pick up the garbage |
7277 | assert(freeFinger() < addr, "freeFinger points too high" ); |
7278 | flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); |
7279 | } |
7280 | // else, nothing to do, just continue |
7281 | } |
7282 | } |
7283 | |
7284 | size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) { |
7285 | // This is a chunk of garbage. It is not in any free list. |
7286 | // Add it to a free list or let it possibly be coalesced into |
7287 | // a larger chunk. |
7288 | HeapWord* const addr = (HeapWord*) fc; |
7289 | const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); |
7290 | |
7291 | // Verify that the bit map has no bits marked between |
7292 | // addr and purported end of just dead object. |
7293 | _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); |
7294 | do_post_free_or_garbage_chunk(fc, size); |
7295 | |
7296 | assert(_limit >= addr + size, |
7297 | "A freshly garbage chunk can't possibly straddle over _limit" ); |
7298 | if (inFreeRange()) lookahead_and_flush(fc, size); |
7299 | return size; |
7300 | } |
7301 | |
7302 | size_t SweepClosure::do_live_chunk(FreeChunk* fc) { |
7303 | HeapWord* addr = (HeapWord*) fc; |
7304 | // The sweeper has just found a live object. Return any accumulated |
7305 | // left hand chunk to the free lists. |
7306 | if (inFreeRange()) { |
7307 | assert(freeFinger() < addr, "freeFinger points too high" ); |
7308 | flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); |
7309 | } |
7310 | |
7311 | // This object is live: we'd normally expect this to be |
7312 | // an oop, and like to assert the following: |
7313 | // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop"); |
7314 | // However, as we commented above, this may be an object whose |
7315 | // header hasn't yet been initialized. |
7316 | size_t size; |
7317 | assert(_bitMap->isMarked(addr), "Tautology for this control point" ); |
7318 | if (_bitMap->isMarked(addr + 1)) { |
7319 | // Determine the size from the bit map, rather than trying to |
7320 | // compute it from the object header. |
7321 | HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); |
7322 | size = pointer_delta(nextOneAddr + 1, addr); |
7323 | assert(size == CompactibleFreeListSpace::adjustObjectSize(size), |
7324 | "alignment problem" ); |
7325 | |
7326 | #ifdef ASSERT |
7327 | if (oop(addr)->klass_or_null_acquire() != NULL) { |
7328 | // Ignore mark word because we are running concurrent with mutators |
7329 | assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop" ); |
7330 | assert(size == |
7331 | CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()), |
7332 | "P-mark and computed size do not agree" ); |
7333 | } |
7334 | #endif |
7335 | |
7336 | } else { |
7337 | // This should be an initialized object that's alive. |
7338 | assert(oop(addr)->klass_or_null_acquire() != NULL, |
7339 | "Should be an initialized object" ); |
7340 | // Ignore mark word because we are running concurrent with mutators |
7341 | assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop" ); |
7342 | // Verify that the bit map has no bits marked between |
7343 | // addr and purported end of this block. |
7344 | size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); |
7345 | assert(size >= 3, "Necessary for Printezis marks to work" ); |
7346 | assert(!_bitMap->isMarked(addr+1), "Tautology for this control point" ); |
7347 | DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);) |
7348 | } |
7349 | return size; |
7350 | } |
7351 | |
7352 | void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc, |
7353 | size_t chunkSize) { |
7354 | // do_post_free_or_garbage_chunk() should only be called in the case |
7355 | // of the adaptive free list allocator. |
7356 | const bool fcInFreeLists = fc->is_free(); |
7357 | assert((HeapWord*)fc <= _limit, "sweep invariant" ); |
7358 | if (CMSTestInFreeList && fcInFreeLists) { |
7359 | assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists" ); |
7360 | } |
7361 | |
7362 | log_develop_trace(gc, sweep)(" -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")" , p2i(fc), chunkSize); |
7363 | |
7364 | HeapWord* const fc_addr = (HeapWord*) fc; |
7365 | |
7366 | bool coalesce = false; |
7367 | const size_t left = pointer_delta(fc_addr, freeFinger()); |
7368 | const size_t right = chunkSize; |
7369 | switch (FLSCoalescePolicy) { |
7370 | // numeric value forms a coalition aggressiveness metric |
7371 | case 0: { // never coalesce |
7372 | coalesce = false; |
7373 | break; |
7374 | } |
7375 | case 1: { // coalesce if left & right chunks on overpopulated lists |
7376 | coalesce = _sp->coalOverPopulated(left) && |
7377 | _sp->coalOverPopulated(right); |
7378 | break; |
7379 | } |
7380 | case 2: { // coalesce if left chunk on overpopulated list (default) |
7381 | coalesce = _sp->coalOverPopulated(left); |
7382 | break; |
7383 | } |
7384 | case 3: { // coalesce if left OR right chunk on overpopulated list |
7385 | coalesce = _sp->coalOverPopulated(left) || |
7386 | _sp->coalOverPopulated(right); |
7387 | break; |
7388 | } |
7389 | case 4: { // always coalesce |
7390 | coalesce = true; |
7391 | break; |
7392 | } |
7393 | default: |
7394 | ShouldNotReachHere(); |
7395 | } |
7396 | |
7397 | // Should the current free range be coalesced? |
7398 | // If the chunk is in a free range and either we decided to coalesce above |
7399 | // or the chunk is near the large block at the end of the heap |
7400 | // (isNearLargestChunk() returns true), then coalesce this chunk. |
7401 | const bool doCoalesce = inFreeRange() |
7402 | && (coalesce || _g->isNearLargestChunk(fc_addr)); |
7403 | if (doCoalesce) { |
7404 | // Coalesce the current free range on the left with the new |
7405 | // chunk on the right. If either is on a free list, |
7406 | // it must be removed from the list and stashed in the closure. |
7407 | if (freeRangeInFreeLists()) { |
7408 | FreeChunk* const ffc = (FreeChunk*)freeFinger(); |
7409 | assert(ffc->size() == pointer_delta(fc_addr, freeFinger()), |
7410 | "Size of free range is inconsistent with chunk size." ); |
7411 | if (CMSTestInFreeList) { |
7412 | assert(_sp->verify_chunk_in_free_list(ffc), |
7413 | "Chunk is not in free lists" ); |
7414 | } |
7415 | _sp->coalDeath(ffc->size()); |
7416 | _sp->removeFreeChunkFromFreeLists(ffc); |
7417 | set_freeRangeInFreeLists(false); |
7418 | } |
7419 | if (fcInFreeLists) { |
7420 | _sp->coalDeath(chunkSize); |
7421 | assert(fc->size() == chunkSize, |
7422 | "The chunk has the wrong size or is not in the free lists" ); |
7423 | _sp->removeFreeChunkFromFreeLists(fc); |
7424 | } |
7425 | set_lastFreeRangeCoalesced(true); |
7426 | print_free_block_coalesced(fc); |
7427 | } else { // not in a free range and/or should not coalesce |
7428 | // Return the current free range and start a new one. |
7429 | if (inFreeRange()) { |
7430 | // In a free range but cannot coalesce with the right hand chunk. |
7431 | // Put the current free range into the free lists. |
7432 | flush_cur_free_chunk(freeFinger(), |
7433 | pointer_delta(fc_addr, freeFinger())); |
7434 | } |
7435 | // Set up for new free range. Pass along whether the right hand |
7436 | // chunk is in the free lists. |
7437 | initialize_free_range((HeapWord*)fc, fcInFreeLists); |
7438 | } |
7439 | } |
7440 | |
7441 | // Lookahead flush: |
7442 | // If we are tracking a free range, and this is the last chunk that |
7443 | // we'll look at because its end crosses past _limit, we'll preemptively |
7444 | // flush it along with any free range we may be holding on to. Note that |
7445 | // this can be the case only for an already free or freshly garbage |
7446 | // chunk. If this block is an object, it can never straddle |
7447 | // over _limit. The "straddling" occurs when _limit is set at |
7448 | // the previous end of the space when this cycle started, and |
7449 | // a subsequent heap expansion caused the previously co-terminal |
7450 | // free block to be coalesced with the newly expanded portion, |
7451 | // thus rendering _limit a non-block-boundary making it dangerous |
7452 | // for the sweeper to step over and examine. |
7453 | void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) { |
7454 | assert(inFreeRange(), "Should only be called if currently in a free range." ); |
7455 | HeapWord* const eob = ((HeapWord*)fc) + chunk_size; |
7456 | assert(_sp->used_region().contains(eob - 1), |
7457 | "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT |
7458 | " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")" |
7459 | " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")" , |
7460 | p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size); |
7461 | if (eob >= _limit) { |
7462 | assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit" ); |
7463 | log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block " |
7464 | "[" PTR_FORMAT "," PTR_FORMAT ") in space " |
7465 | "[" PTR_FORMAT "," PTR_FORMAT ")" , |
7466 | p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end())); |
7467 | // Return the storage we are tracking back into the free lists. |
7468 | log_develop_trace(gc, sweep)("Flushing ... " ); |
7469 | assert(freeFinger() < eob, "Error" ); |
7470 | flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger())); |
7471 | } |
7472 | } |
7473 | |
7474 | void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) { |
7475 | assert(inFreeRange(), "Should only be called if currently in a free range." ); |
7476 | assert(size > 0, |
7477 | "A zero sized chunk cannot be added to the free lists." ); |
7478 | if (!freeRangeInFreeLists()) { |
7479 | if (CMSTestInFreeList) { |
7480 | FreeChunk* fc = (FreeChunk*) chunk; |
7481 | fc->set_size(size); |
7482 | assert(!_sp->verify_chunk_in_free_list(fc), |
7483 | "chunk should not be in free lists yet" ); |
7484 | } |
7485 | log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists" , p2i(chunk), size); |
7486 | // A new free range is going to be starting. The current |
7487 | // free range has not been added to the free lists yet or |
7488 | // was removed so add it back. |
7489 | // If the current free range was coalesced, then the death |
7490 | // of the free range was recorded. Record a birth now. |
7491 | if (lastFreeRangeCoalesced()) { |
7492 | _sp->coalBirth(size); |
7493 | } |
7494 | _sp->addChunkAndRepairOffsetTable(chunk, size, |
7495 | lastFreeRangeCoalesced()); |
7496 | } else { |
7497 | log_develop_trace(gc, sweep)("Already in free list: nothing to flush" ); |
7498 | } |
7499 | set_inFreeRange(false); |
7500 | set_freeRangeInFreeLists(false); |
7501 | } |
7502 | |
7503 | // We take a break if we've been at this for a while, |
7504 | // so as to avoid monopolizing the locks involved. |
7505 | void SweepClosure::do_yield_work(HeapWord* addr) { |
7506 | // Return current free chunk being used for coalescing (if any) |
7507 | // to the appropriate freelist. After yielding, the next |
7508 | // free block encountered will start a coalescing range of |
7509 | // free blocks. If the next free block is adjacent to the |
7510 | // chunk just flushed, they will need to wait for the next |
7511 | // sweep to be coalesced. |
7512 | if (inFreeRange()) { |
7513 | flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); |
7514 | } |
7515 | |
7516 | // First give up the locks, then yield, then re-lock. |
7517 | // We should probably use a constructor/destructor idiom to |
7518 | // do this unlock/lock or modify the MutexUnlocker class to |
7519 | // serve our purpose. XXX |
7520 | assert_lock_strong(_bitMap->lock()); |
7521 | assert_lock_strong(_freelistLock); |
7522 | assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), |
7523 | "CMS thread should hold CMS token" ); |
7524 | _bitMap->lock()->unlock(); |
7525 | _freelistLock->unlock(); |
7526 | ConcurrentMarkSweepThread::desynchronize(true); |
7527 | _collector->stopTimer(); |
7528 | _collector->incrementYields(); |
7529 | |
7530 | // See the comment in coordinator_yield() |
7531 | for (unsigned i = 0; i < CMSYieldSleepCount && |
7532 | ConcurrentMarkSweepThread::should_yield() && |
7533 | !CMSCollector::foregroundGCIsActive(); ++i) { |
7534 | os::sleep(Thread::current(), 1, false); |
7535 | } |
7536 | |
7537 | ConcurrentMarkSweepThread::synchronize(true); |
7538 | _freelistLock->lock_without_safepoint_check(); |
7539 | _bitMap->lock()->lock_without_safepoint_check(); |
7540 | _collector->startTimer(); |
7541 | } |
7542 | |
7543 | #ifndef PRODUCT |
7544 | // This is actually very useful in a product build if it can |
7545 | // be called from the debugger. Compile it into the product |
7546 | // as needed. |
7547 | bool debug_verify_chunk_in_free_list(FreeChunk* fc) { |
7548 | return debug_cms_space->verify_chunk_in_free_list(fc); |
7549 | } |
7550 | #endif |
7551 | |
7552 | void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const { |
7553 | log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")" , |
7554 | p2i(fc), fc->size()); |
7555 | } |
7556 | |
7557 | // CMSIsAliveClosure |
7558 | bool CMSIsAliveClosure::do_object_b(oop obj) { |
7559 | HeapWord* addr = (HeapWord*)obj; |
7560 | return addr != NULL && |
7561 | (!_span.contains(addr) || _bit_map->isMarked(addr)); |
7562 | } |
7563 | |
7564 | CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector, |
7565 | MemRegion span, |
7566 | CMSBitMap* bit_map, CMSMarkStack* mark_stack, |
7567 | bool cpc): |
7568 | _collector(collector), |
7569 | _span(span), |
7570 | _mark_stack(mark_stack), |
7571 | _bit_map(bit_map), |
7572 | _concurrent_precleaning(cpc) { |
7573 | assert(!_span.is_empty(), "Empty span could spell trouble" ); |
7574 | } |
7575 | |
7576 | |
7577 | // CMSKeepAliveClosure: the serial version |
7578 | void CMSKeepAliveClosure::do_oop(oop obj) { |
7579 | HeapWord* addr = (HeapWord*)obj; |
7580 | if (_span.contains(addr) && |
7581 | !_bit_map->isMarked(addr)) { |
7582 | _bit_map->mark(addr); |
7583 | bool simulate_overflow = false; |
7584 | NOT_PRODUCT( |
7585 | if (CMSMarkStackOverflowALot && |
7586 | _collector->simulate_overflow()) { |
7587 | // simulate a stack overflow |
7588 | simulate_overflow = true; |
7589 | } |
7590 | ) |
7591 | if (simulate_overflow || !_mark_stack->push(obj)) { |
7592 | if (_concurrent_precleaning) { |
7593 | // We dirty the overflown object and let the remark |
7594 | // phase deal with it. |
7595 | assert(_collector->overflow_list_is_empty(), "Error" ); |
7596 | // In the case of object arrays, we need to dirty all of |
7597 | // the cards that the object spans. No locking or atomics |
7598 | // are needed since no one else can be mutating the mod union |
7599 | // table. |
7600 | if (obj->is_objArray()) { |
7601 | size_t sz = obj->size(); |
7602 | HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size); |
7603 | MemRegion redirty_range = MemRegion(addr, end_card_addr); |
7604 | assert(!redirty_range.is_empty(), "Arithmetical tautology" ); |
7605 | _collector->_modUnionTable.mark_range(redirty_range); |
7606 | } else { |
7607 | _collector->_modUnionTable.mark(addr); |
7608 | } |
7609 | _collector->_ser_kac_preclean_ovflw++; |
7610 | } else { |
7611 | _collector->push_on_overflow_list(obj); |
7612 | _collector->_ser_kac_ovflw++; |
7613 | } |
7614 | } |
7615 | } |
7616 | } |
7617 | |
7618 | // CMSParKeepAliveClosure: a parallel version of the above. |
7619 | // The work queues are private to each closure (thread), |
7620 | // but (may be) available for stealing by other threads. |
7621 | void CMSParKeepAliveClosure::do_oop(oop obj) { |
7622 | HeapWord* addr = (HeapWord*)obj; |
7623 | if (_span.contains(addr) && |
7624 | !_bit_map->isMarked(addr)) { |
7625 | // In general, during recursive tracing, several threads |
7626 | // may be concurrently getting here; the first one to |
7627 | // "tag" it, claims it. |
7628 | if (_bit_map->par_mark(addr)) { |
7629 | bool res = _work_queue->push(obj); |
7630 | assert(res, "Low water mark should be much less than capacity" ); |
7631 | // Do a recursive trim in the hope that this will keep |
7632 | // stack usage lower, but leave some oops for potential stealers |
7633 | trim_queue(_low_water_mark); |
7634 | } // Else, another thread got there first |
7635 | } |
7636 | } |
7637 | |
7638 | void CMSParKeepAliveClosure::trim_queue(uint max) { |
7639 | while (_work_queue->size() > max) { |
7640 | oop new_oop; |
7641 | if (_work_queue->pop_local(new_oop)) { |
7642 | assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop" ); |
7643 | assert(_bit_map->isMarked((HeapWord*)new_oop), |
7644 | "no white objects on this stack!" ); |
7645 | assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop" ); |
7646 | // iterate over the oops in this oop, marking and pushing |
7647 | // the ones in CMS heap (i.e. in _span). |
7648 | new_oop->oop_iterate(&_mark_and_push); |
7649 | } |
7650 | } |
7651 | } |
7652 | |
7653 | CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure( |
7654 | CMSCollector* collector, |
7655 | MemRegion span, CMSBitMap* bit_map, |
7656 | OopTaskQueue* work_queue): |
7657 | _collector(collector), |
7658 | _span(span), |
7659 | _work_queue(work_queue), |
7660 | _bit_map(bit_map) { } |
7661 | |
7662 | void CMSInnerParMarkAndPushClosure::do_oop(oop obj) { |
7663 | HeapWord* addr = (HeapWord*)obj; |
7664 | if (_span.contains(addr) && |
7665 | !_bit_map->isMarked(addr)) { |
7666 | if (_bit_map->par_mark(addr)) { |
7667 | bool simulate_overflow = false; |
7668 | NOT_PRODUCT( |
7669 | if (CMSMarkStackOverflowALot && |
7670 | _collector->par_simulate_overflow()) { |
7671 | // simulate a stack overflow |
7672 | simulate_overflow = true; |
7673 | } |
7674 | ) |
7675 | if (simulate_overflow || !_work_queue->push(obj)) { |
7676 | _collector->par_push_on_overflow_list(obj); |
7677 | _collector->_par_kac_ovflw++; |
7678 | } |
7679 | } // Else another thread got there already |
7680 | } |
7681 | } |
7682 | |
7683 | ////////////////////////////////////////////////////////////////// |
7684 | // CMSExpansionCause ///////////////////////////// |
7685 | ////////////////////////////////////////////////////////////////// |
7686 | const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) { |
7687 | switch (cause) { |
7688 | case _no_expansion: |
7689 | return "No expansion" ; |
7690 | case _satisfy_free_ratio: |
7691 | return "Free ratio" ; |
7692 | case _satisfy_promotion: |
7693 | return "Satisfy promotion" ; |
7694 | case _satisfy_allocation: |
7695 | return "allocation" ; |
7696 | case _allocate_par_lab: |
7697 | return "Par LAB" ; |
7698 | case _allocate_par_spooling_space: |
7699 | return "Par Spooling Space" ; |
7700 | case _adaptive_size_policy: |
7701 | return "Ergonomics" ; |
7702 | default: |
7703 | return "unknown" ; |
7704 | } |
7705 | } |
7706 | |
7707 | void CMSDrainMarkingStackClosure::do_void() { |
7708 | // the max number to take from overflow list at a time |
7709 | const size_t num = _mark_stack->capacity()/4; |
7710 | assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(), |
7711 | "Overflow list should be NULL during concurrent phases" ); |
7712 | while (!_mark_stack->isEmpty() || |
7713 | // if stack is empty, check the overflow list |
7714 | _collector->take_from_overflow_list(num, _mark_stack)) { |
7715 | oop obj = _mark_stack->pop(); |
7716 | HeapWord* addr = (HeapWord*)obj; |
7717 | assert(_span.contains(addr), "Should be within span" ); |
7718 | assert(_bit_map->isMarked(addr), "Should be marked" ); |
7719 | assert(oopDesc::is_oop(obj), "Should be an oop" ); |
7720 | obj->oop_iterate(_keep_alive); |
7721 | } |
7722 | } |
7723 | |
7724 | void CMSParDrainMarkingStackClosure::do_void() { |
7725 | // drain queue |
7726 | trim_queue(0); |
7727 | } |
7728 | |
7729 | // Trim our work_queue so its length is below max at return |
7730 | void CMSParDrainMarkingStackClosure::trim_queue(uint max) { |
7731 | while (_work_queue->size() > max) { |
7732 | oop new_oop; |
7733 | if (_work_queue->pop_local(new_oop)) { |
7734 | assert(oopDesc::is_oop(new_oop), "Expected an oop" ); |
7735 | assert(_bit_map->isMarked((HeapWord*)new_oop), |
7736 | "no white objects on this stack!" ); |
7737 | assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop" ); |
7738 | // iterate over the oops in this oop, marking and pushing |
7739 | // the ones in CMS heap (i.e. in _span). |
7740 | new_oop->oop_iterate(&_mark_and_push); |
7741 | } |
7742 | } |
7743 | } |
7744 | |
7745 | //////////////////////////////////////////////////////////////////// |
7746 | // Support for Marking Stack Overflow list handling and related code |
7747 | //////////////////////////////////////////////////////////////////// |
7748 | // Much of the following code is similar in shape and spirit to the |
7749 | // code used in ParNewGC. We should try and share that code |
7750 | // as much as possible in the future. |
7751 | |
7752 | #ifndef PRODUCT |
7753 | // Debugging support for CMSStackOverflowALot |
7754 | |
7755 | // It's OK to call this multi-threaded; the worst thing |
7756 | // that can happen is that we'll get a bunch of closely |
7757 | // spaced simulated overflows, but that's OK, in fact |
7758 | // probably good as it would exercise the overflow code |
7759 | // under contention. |
7760 | bool CMSCollector::simulate_overflow() { |
7761 | if (_overflow_counter-- <= 0) { // just being defensive |
7762 | _overflow_counter = CMSMarkStackOverflowInterval; |
7763 | return true; |
7764 | } else { |
7765 | return false; |
7766 | } |
7767 | } |
7768 | |
7769 | bool CMSCollector::par_simulate_overflow() { |
7770 | return simulate_overflow(); |
7771 | } |
7772 | #endif |
7773 | |
7774 | // Single-threaded |
7775 | bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) { |
7776 | assert(stack->isEmpty(), "Expected precondition" ); |
7777 | assert(stack->capacity() > num, "Shouldn't bite more than can chew" ); |
7778 | size_t i = num; |
7779 | oop cur = _overflow_list; |
7780 | const markOop proto = markOopDesc::prototype(); |
7781 | NOT_PRODUCT(ssize_t n = 0;) |
7782 | for (oop next; i > 0 && cur != NULL; cur = next, i--) { |
7783 | next = oop(cur->mark_raw()); |
7784 | cur->set_mark_raw(proto); // until proven otherwise |
7785 | assert(oopDesc::is_oop(cur), "Should be an oop" ); |
7786 | bool res = stack->push(cur); |
7787 | assert(res, "Bit off more than can chew?" ); |
7788 | NOT_PRODUCT(n++;) |
7789 | } |
7790 | _overflow_list = cur; |
7791 | #ifndef PRODUCT |
7792 | assert(_num_par_pushes >= n, "Too many pops?" ); |
7793 | _num_par_pushes -=n; |
7794 | #endif |
7795 | return !stack->isEmpty(); |
7796 | } |
7797 | |
7798 | #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff)) |
7799 | // (MT-safe) Get a prefix of at most "num" from the list. |
7800 | // The overflow list is chained through the mark word of |
7801 | // each object in the list. We fetch the entire list, |
7802 | // break off a prefix of the right size and return the |
7803 | // remainder. If other threads try to take objects from |
7804 | // the overflow list at that time, they will wait for |
7805 | // some time to see if data becomes available. If (and |
7806 | // only if) another thread places one or more object(s) |
7807 | // on the global list before we have returned the suffix |
7808 | // to the global list, we will walk down our local list |
7809 | // to find its end and append the global list to |
7810 | // our suffix before returning it. This suffix walk can |
7811 | // prove to be expensive (quadratic in the amount of traffic) |
7812 | // when there are many objects in the overflow list and |
7813 | // there is much producer-consumer contention on the list. |
7814 | // *NOTE*: The overflow list manipulation code here and |
7815 | // in ParNewGeneration:: are very similar in shape, |
7816 | // except that in the ParNew case we use the old (from/eden) |
7817 | // copy of the object to thread the list via its klass word. |
7818 | // Because of the common code, if you make any changes in |
7819 | // the code below, please check the ParNew version to see if |
7820 | // similar changes might be needed. |
7821 | // CR 6797058 has been filed to consolidate the common code. |
7822 | bool CMSCollector::par_take_from_overflow_list(size_t num, |
7823 | OopTaskQueue* work_q, |
7824 | int no_of_gc_threads) { |
7825 | assert(work_q->size() == 0, "First empty local work queue" ); |
7826 | assert(num < work_q->max_elems(), "Can't bite more than we can chew" ); |
7827 | if (_overflow_list == NULL) { |
7828 | return false; |
7829 | } |
7830 | // Grab the entire list; we'll put back a suffix |
7831 | oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list)); |
7832 | Thread* tid = Thread::current(); |
7833 | // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was |
7834 | // set to ParallelGCThreads. |
7835 | size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads; |
7836 | size_t sleep_time_millis = MAX2((size_t)1, num/100); |
7837 | // If the list is busy, we spin for a short while, |
7838 | // sleeping between attempts to get the list. |
7839 | for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) { |
7840 | os::sleep(tid, sleep_time_millis, false); |
7841 | if (_overflow_list == NULL) { |
7842 | // Nothing left to take |
7843 | return false; |
7844 | } else if (_overflow_list != BUSY) { |
7845 | // Try and grab the prefix |
7846 | prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list)); |
7847 | } |
7848 | } |
7849 | // If the list was found to be empty, or we spun long |
7850 | // enough, we give up and return empty-handed. If we leave |
7851 | // the list in the BUSY state below, it must be the case that |
7852 | // some other thread holds the overflow list and will set it |
7853 | // to a non-BUSY state in the future. |
7854 | if (prefix == NULL || prefix == BUSY) { |
7855 | // Nothing to take or waited long enough |
7856 | if (prefix == NULL) { |
7857 | // Write back the NULL in case we overwrote it with BUSY above |
7858 | // and it is still the same value. |
7859 | Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY); |
7860 | } |
7861 | return false; |
7862 | } |
7863 | assert(prefix != NULL && prefix != BUSY, "Error" ); |
7864 | size_t i = num; |
7865 | oop cur = prefix; |
7866 | // Walk down the first "num" objects, unless we reach the end. |
7867 | for (; i > 1 && cur->mark_raw() != NULL; cur = oop(cur->mark_raw()), i--); |
7868 | if (cur->mark_raw() == NULL) { |
7869 | // We have "num" or fewer elements in the list, so there |
7870 | // is nothing to return to the global list. |
7871 | // Write back the NULL in lieu of the BUSY we wrote |
7872 | // above, if it is still the same value. |
7873 | if (_overflow_list == BUSY) { |
7874 | Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY); |
7875 | } |
7876 | } else { |
7877 | // Chop off the suffix and return it to the global list. |
7878 | assert(cur->mark_raw() != BUSY, "Error" ); |
7879 | oop suffix_head = cur->mark_raw(); // suffix will be put back on global list |
7880 | cur->set_mark_raw(NULL); // break off suffix |
7881 | // It's possible that the list is still in the empty(busy) state |
7882 | // we left it in a short while ago; in that case we may be |
7883 | // able to place back the suffix without incurring the cost |
7884 | // of a walk down the list. |
7885 | oop observed_overflow_list = _overflow_list; |
7886 | oop cur_overflow_list = observed_overflow_list; |
7887 | bool attached = false; |
7888 | while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { |
7889 | observed_overflow_list = |
7890 | Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list); |
7891 | if (cur_overflow_list == observed_overflow_list) { |
7892 | attached = true; |
7893 | break; |
7894 | } else cur_overflow_list = observed_overflow_list; |
7895 | } |
7896 | if (!attached) { |
7897 | // Too bad, someone else sneaked in (at least) an element; we'll need |
7898 | // to do a splice. Find tail of suffix so we can prepend suffix to global |
7899 | // list. |
7900 | for (cur = suffix_head; cur->mark_raw() != NULL; cur = (oop)(cur->mark_raw())); |
7901 | oop suffix_tail = cur; |
7902 | assert(suffix_tail != NULL && suffix_tail->mark_raw() == NULL, |
7903 | "Tautology" ); |
7904 | observed_overflow_list = _overflow_list; |
7905 | do { |
7906 | cur_overflow_list = observed_overflow_list; |
7907 | if (cur_overflow_list != BUSY) { |
7908 | // Do the splice ... |
7909 | suffix_tail->set_mark_raw(markOop(cur_overflow_list)); |
7910 | } else { // cur_overflow_list == BUSY |
7911 | suffix_tail->set_mark_raw(NULL); |
7912 | } |
7913 | // ... and try to place spliced list back on overflow_list ... |
7914 | observed_overflow_list = |
7915 | Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list); |
7916 | } while (cur_overflow_list != observed_overflow_list); |
7917 | // ... until we have succeeded in doing so. |
7918 | } |
7919 | } |
7920 | |
7921 | // Push the prefix elements on work_q |
7922 | assert(prefix != NULL, "control point invariant" ); |
7923 | const markOop proto = markOopDesc::prototype(); |
7924 | oop next; |
7925 | NOT_PRODUCT(ssize_t n = 0;) |
7926 | for (cur = prefix; cur != NULL; cur = next) { |
7927 | next = oop(cur->mark_raw()); |
7928 | cur->set_mark_raw(proto); // until proven otherwise |
7929 | assert(oopDesc::is_oop(cur), "Should be an oop" ); |
7930 | bool res = work_q->push(cur); |
7931 | assert(res, "Bit off more than we can chew?" ); |
7932 | NOT_PRODUCT(n++;) |
7933 | } |
7934 | #ifndef PRODUCT |
7935 | assert(_num_par_pushes >= n, "Too many pops?" ); |
7936 | Atomic::sub(n, &_num_par_pushes); |
7937 | #endif |
7938 | return true; |
7939 | } |
7940 | |
7941 | // Single-threaded |
7942 | void CMSCollector::push_on_overflow_list(oop p) { |
7943 | NOT_PRODUCT(_num_par_pushes++;) |
7944 | assert(oopDesc::is_oop(p), "Not an oop" ); |
7945 | preserve_mark_if_necessary(p); |
7946 | p->set_mark_raw((markOop)_overflow_list); |
7947 | _overflow_list = p; |
7948 | } |
7949 | |
7950 | // Multi-threaded; use CAS to prepend to overflow list |
7951 | void CMSCollector::par_push_on_overflow_list(oop p) { |
7952 | NOT_PRODUCT(Atomic::inc(&_num_par_pushes);) |
7953 | assert(oopDesc::is_oop(p), "Not an oop" ); |
7954 | par_preserve_mark_if_necessary(p); |
7955 | oop observed_overflow_list = _overflow_list; |
7956 | oop cur_overflow_list; |
7957 | do { |
7958 | cur_overflow_list = observed_overflow_list; |
7959 | if (cur_overflow_list != BUSY) { |
7960 | p->set_mark_raw(markOop(cur_overflow_list)); |
7961 | } else { |
7962 | p->set_mark_raw(NULL); |
7963 | } |
7964 | observed_overflow_list = |
7965 | Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list); |
7966 | } while (cur_overflow_list != observed_overflow_list); |
7967 | } |
7968 | #undef BUSY |
7969 | |
7970 | // Single threaded |
7971 | // General Note on GrowableArray: pushes may silently fail |
7972 | // because we are (temporarily) out of C-heap for expanding |
7973 | // the stack. The problem is quite ubiquitous and affects |
7974 | // a lot of code in the JVM. The prudent thing for GrowableArray |
7975 | // to do (for now) is to exit with an error. However, that may |
7976 | // be too draconian in some cases because the caller may be |
7977 | // able to recover without much harm. For such cases, we |
7978 | // should probably introduce a "soft_push" method which returns |
7979 | // an indication of success or failure with the assumption that |
7980 | // the caller may be able to recover from a failure; code in |
7981 | // the VM can then be changed, incrementally, to deal with such |
7982 | // failures where possible, thus, incrementally hardening the VM |
7983 | // in such low resource situations. |
7984 | void CMSCollector::preserve_mark_work(oop p, markOop m) { |
7985 | _preserved_oop_stack.push(p); |
7986 | _preserved_mark_stack.push(m); |
7987 | assert(m == p->mark_raw(), "Mark word changed" ); |
7988 | assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), |
7989 | "bijection" ); |
7990 | } |
7991 | |
7992 | // Single threaded |
7993 | void CMSCollector::preserve_mark_if_necessary(oop p) { |
7994 | markOop m = p->mark_raw(); |
7995 | if (m->must_be_preserved(p)) { |
7996 | preserve_mark_work(p, m); |
7997 | } |
7998 | } |
7999 | |
8000 | void CMSCollector::par_preserve_mark_if_necessary(oop p) { |
8001 | markOop m = p->mark_raw(); |
8002 | if (m->must_be_preserved(p)) { |
8003 | MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); |
8004 | // Even though we read the mark word without holding |
8005 | // the lock, we are assured that it will not change |
8006 | // because we "own" this oop, so no other thread can |
8007 | // be trying to push it on the overflow list; see |
8008 | // the assertion in preserve_mark_work() that checks |
8009 | // that m == p->mark_raw(). |
8010 | preserve_mark_work(p, m); |
8011 | } |
8012 | } |
8013 | |
8014 | // We should be able to do this multi-threaded, |
8015 | // a chunk of stack being a task (this is |
8016 | // correct because each oop only ever appears |
8017 | // once in the overflow list. However, it's |
8018 | // not very easy to completely overlap this with |
8019 | // other operations, so will generally not be done |
8020 | // until all work's been completed. Because we |
8021 | // expect the preserved oop stack (set) to be small, |
8022 | // it's probably fine to do this single-threaded. |
8023 | // We can explore cleverer concurrent/overlapped/parallel |
8024 | // processing of preserved marks if we feel the |
8025 | // need for this in the future. Stack overflow should |
8026 | // be so rare in practice and, when it happens, its |
8027 | // effect on performance so great that this will |
8028 | // likely just be in the noise anyway. |
8029 | void CMSCollector::restore_preserved_marks_if_any() { |
8030 | assert(SafepointSynchronize::is_at_safepoint(), |
8031 | "world should be stopped" ); |
8032 | assert(Thread::current()->is_ConcurrentGC_thread() || |
8033 | Thread::current()->is_VM_thread(), |
8034 | "should be single-threaded" ); |
8035 | assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), |
8036 | "bijection" ); |
8037 | |
8038 | while (!_preserved_oop_stack.is_empty()) { |
8039 | oop p = _preserved_oop_stack.pop(); |
8040 | assert(oopDesc::is_oop(p), "Should be an oop" ); |
8041 | assert(_span.contains(p), "oop should be in _span" ); |
8042 | assert(p->mark_raw() == markOopDesc::prototype(), |
8043 | "Set when taken from overflow list" ); |
8044 | markOop m = _preserved_mark_stack.pop(); |
8045 | p->set_mark_raw(m); |
8046 | } |
8047 | assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(), |
8048 | "stacks were cleared above" ); |
8049 | } |
8050 | |
8051 | #ifndef PRODUCT |
8052 | bool CMSCollector::no_preserved_marks() const { |
8053 | return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(); |
8054 | } |
8055 | #endif |
8056 | |
8057 | // Transfer some number of overflown objects to usual marking |
8058 | // stack. Return true if some objects were transferred. |
8059 | bool MarkRefsIntoAndScanClosure::take_from_overflow_list() { |
8060 | size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4, |
8061 | (size_t)ParGCDesiredObjsFromOverflowList); |
8062 | |
8063 | bool res = _collector->take_from_overflow_list(num, _mark_stack); |
8064 | assert(_collector->overflow_list_is_empty() || res, |
8065 | "If list is not empty, we should have taken something" ); |
8066 | assert(!res || !_mark_stack->isEmpty(), |
8067 | "If we took something, it should now be on our stack" ); |
8068 | return res; |
8069 | } |
8070 | |
8071 | size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) { |
8072 | size_t res = _sp->block_size_no_stall(addr, _collector); |
8073 | if (_sp->block_is_obj(addr)) { |
8074 | if (_live_bit_map->isMarked(addr)) { |
8075 | // It can't have been dead in a previous cycle |
8076 | guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!" ); |
8077 | } else { |
8078 | _dead_bit_map->mark(addr); // mark the dead object |
8079 | } |
8080 | } |
8081 | // Could be 0, if the block size could not be computed without stalling. |
8082 | return res; |
8083 | } |
8084 | |
8085 | TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() { |
8086 | GCMemoryManager* manager = CMSHeap::heap()->old_manager(); |
8087 | switch (phase) { |
8088 | case CMSCollector::InitialMarking: |
8089 | initialize(manager /* GC manager */ , |
8090 | cause /* cause of the GC */, |
8091 | true /* allMemoryPoolsAffected */, |
8092 | true /* recordGCBeginTime */, |
8093 | true /* recordPreGCUsage */, |
8094 | false /* recordPeakUsage */, |
8095 | false /* recordPostGCusage */, |
8096 | true /* recordAccumulatedGCTime */, |
8097 | false /* recordGCEndTime */, |
8098 | false /* countCollection */ ); |
8099 | break; |
8100 | |
8101 | case CMSCollector::FinalMarking: |
8102 | initialize(manager /* GC manager */ , |
8103 | cause /* cause of the GC */, |
8104 | true /* allMemoryPoolsAffected */, |
8105 | false /* recordGCBeginTime */, |
8106 | false /* recordPreGCUsage */, |
8107 | false /* recordPeakUsage */, |
8108 | false /* recordPostGCusage */, |
8109 | true /* recordAccumulatedGCTime */, |
8110 | false /* recordGCEndTime */, |
8111 | false /* countCollection */ ); |
8112 | break; |
8113 | |
8114 | case CMSCollector::Sweeping: |
8115 | initialize(manager /* GC manager */ , |
8116 | cause /* cause of the GC */, |
8117 | true /* allMemoryPoolsAffected */, |
8118 | false /* recordGCBeginTime */, |
8119 | false /* recordPreGCUsage */, |
8120 | true /* recordPeakUsage */, |
8121 | true /* recordPostGCusage */, |
8122 | false /* recordAccumulatedGCTime */, |
8123 | true /* recordGCEndTime */, |
8124 | true /* countCollection */ ); |
8125 | break; |
8126 | |
8127 | default: |
8128 | ShouldNotReachHere(); |
8129 | } |
8130 | } |
8131 | |