| 1 | /* |
| 2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "classfile/systemDictionary.hpp" |
| 27 | #include "gc/shared/allocTracer.hpp" |
| 28 | #include "gc/shared/barrierSet.hpp" |
| 29 | #include "gc/shared/collectedHeap.hpp" |
| 30 | #include "gc/shared/collectedHeap.inline.hpp" |
| 31 | #include "gc/shared/gcLocker.inline.hpp" |
| 32 | #include "gc/shared/gcHeapSummary.hpp" |
| 33 | #include "gc/shared/gcTrace.hpp" |
| 34 | #include "gc/shared/gcTraceTime.inline.hpp" |
| 35 | #include "gc/shared/gcVMOperations.hpp" |
| 36 | #include "gc/shared/gcWhen.hpp" |
| 37 | #include "gc/shared/memAllocator.hpp" |
| 38 | #include "logging/log.hpp" |
| 39 | #include "memory/metaspace.hpp" |
| 40 | #include "memory/resourceArea.hpp" |
| 41 | #include "memory/universe.hpp" |
| 42 | #include "oops/instanceMirrorKlass.hpp" |
| 43 | #include "oops/oop.inline.hpp" |
| 44 | #include "runtime/handles.inline.hpp" |
| 45 | #include "runtime/init.hpp" |
| 46 | #include "runtime/thread.inline.hpp" |
| 47 | #include "runtime/threadSMR.hpp" |
| 48 | #include "runtime/vmThread.hpp" |
| 49 | #include "services/heapDumper.hpp" |
| 50 | #include "utilities/align.hpp" |
| 51 | #include "utilities/copy.hpp" |
| 52 | |
| 53 | class ClassLoaderData; |
| 54 | |
| 55 | size_t CollectedHeap::_filler_array_max_size = 0; |
| 56 | |
| 57 | template <> |
| 58 | void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) { |
| 59 | st->print_cr("GC heap %s" , m.is_before ? "before" : "after" ); |
| 60 | st->print_raw(m); |
| 61 | } |
| 62 | |
| 63 | void GCHeapLog::log_heap(CollectedHeap* heap, bool before) { |
| 64 | if (!should_log()) { |
| 65 | return; |
| 66 | } |
| 67 | |
| 68 | double timestamp = fetch_timestamp(); |
| 69 | MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag); |
| 70 | int index = compute_log_index(); |
| 71 | _records[index].thread = NULL; // Its the GC thread so it's not that interesting. |
| 72 | _records[index].timestamp = timestamp; |
| 73 | _records[index].data.is_before = before; |
| 74 | stringStream st(_records[index].data.buffer(), _records[index].data.size()); |
| 75 | |
| 76 | st.print_cr("{Heap %s GC invocations=%u (full %u):" , |
| 77 | before ? "before" : "after" , |
| 78 | heap->total_collections(), |
| 79 | heap->total_full_collections()); |
| 80 | |
| 81 | heap->print_on(&st); |
| 82 | st.print_cr("}" ); |
| 83 | } |
| 84 | |
| 85 | size_t CollectedHeap::unused() const { |
| 86 | MutexLocker ml(Heap_lock); |
| 87 | return capacity() - used(); |
| 88 | } |
| 89 | |
| 90 | VirtualSpaceSummary CollectedHeap::create_heap_space_summary() { |
| 91 | size_t capacity_in_words = capacity() / HeapWordSize; |
| 92 | |
| 93 | return VirtualSpaceSummary( |
| 94 | reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end()); |
| 95 | } |
| 96 | |
| 97 | GCHeapSummary CollectedHeap::create_heap_summary() { |
| 98 | VirtualSpaceSummary heap_space = create_heap_space_summary(); |
| 99 | return GCHeapSummary(heap_space, used()); |
| 100 | } |
| 101 | |
| 102 | MetaspaceSummary CollectedHeap::create_metaspace_summary() { |
| 103 | const MetaspaceSizes meta_space( |
| 104 | MetaspaceUtils::committed_bytes(), |
| 105 | MetaspaceUtils::used_bytes(), |
| 106 | MetaspaceUtils::reserved_bytes()); |
| 107 | const MetaspaceSizes data_space( |
| 108 | MetaspaceUtils::committed_bytes(Metaspace::NonClassType), |
| 109 | MetaspaceUtils::used_bytes(Metaspace::NonClassType), |
| 110 | MetaspaceUtils::reserved_bytes(Metaspace::NonClassType)); |
| 111 | const MetaspaceSizes class_space( |
| 112 | MetaspaceUtils::committed_bytes(Metaspace::ClassType), |
| 113 | MetaspaceUtils::used_bytes(Metaspace::ClassType), |
| 114 | MetaspaceUtils::reserved_bytes(Metaspace::ClassType)); |
| 115 | |
| 116 | const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary = |
| 117 | MetaspaceUtils::chunk_free_list_summary(Metaspace::NonClassType); |
| 118 | const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary = |
| 119 | MetaspaceUtils::chunk_free_list_summary(Metaspace::ClassType); |
| 120 | |
| 121 | return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space, |
| 122 | ms_chunk_free_list_summary, class_chunk_free_list_summary); |
| 123 | } |
| 124 | |
| 125 | void CollectedHeap::print_heap_before_gc() { |
| 126 | Universe::print_heap_before_gc(); |
| 127 | if (_gc_heap_log != NULL) { |
| 128 | _gc_heap_log->log_heap_before(this); |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | void CollectedHeap::print_heap_after_gc() { |
| 133 | Universe::print_heap_after_gc(); |
| 134 | if (_gc_heap_log != NULL) { |
| 135 | _gc_heap_log->log_heap_after(this); |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | void CollectedHeap::print() const { print_on(tty); } |
| 140 | |
| 141 | void CollectedHeap::print_on_error(outputStream* st) const { |
| 142 | st->print_cr("Heap:" ); |
| 143 | print_extended_on(st); |
| 144 | st->cr(); |
| 145 | |
| 146 | BarrierSet::barrier_set()->print_on(st); |
| 147 | } |
| 148 | |
| 149 | void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { |
| 150 | const GCHeapSummary& heap_summary = create_heap_summary(); |
| 151 | gc_tracer->report_gc_heap_summary(when, heap_summary); |
| 152 | |
| 153 | const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); |
| 154 | gc_tracer->report_metaspace_summary(when, metaspace_summary); |
| 155 | } |
| 156 | |
| 157 | void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) { |
| 158 | trace_heap(GCWhen::BeforeGC, gc_tracer); |
| 159 | } |
| 160 | |
| 161 | void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) { |
| 162 | trace_heap(GCWhen::AfterGC, gc_tracer); |
| 163 | } |
| 164 | |
| 165 | // WhiteBox API support for concurrent collectors. These are the |
| 166 | // default implementations, for collectors which don't support this |
| 167 | // feature. |
| 168 | bool CollectedHeap::supports_concurrent_phase_control() const { |
| 169 | return false; |
| 170 | } |
| 171 | |
| 172 | bool CollectedHeap::request_concurrent_phase(const char* phase) { |
| 173 | return false; |
| 174 | } |
| 175 | |
| 176 | bool CollectedHeap::is_oop(oop object) const { |
| 177 | if (!check_obj_alignment(object)) { |
| 178 | return false; |
| 179 | } |
| 180 | |
| 181 | if (!is_in_reserved(object)) { |
| 182 | return false; |
| 183 | } |
| 184 | |
| 185 | if (is_in_reserved(object->klass_or_null())) { |
| 186 | return false; |
| 187 | } |
| 188 | |
| 189 | return true; |
| 190 | } |
| 191 | |
| 192 | // Memory state functions. |
| 193 | |
| 194 | |
| 195 | CollectedHeap::CollectedHeap() : |
| 196 | _is_gc_active(false), |
| 197 | _total_collections(0), |
| 198 | _total_full_collections(0), |
| 199 | _gc_cause(GCCause::_no_gc), |
| 200 | _gc_lastcause(GCCause::_no_gc) |
| 201 | { |
| 202 | const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT)); |
| 203 | const size_t elements_per_word = HeapWordSize / sizeof(jint); |
| 204 | _filler_array_max_size = align_object_size(filler_array_hdr_size() + |
| 205 | max_len / elements_per_word); |
| 206 | |
| 207 | NOT_PRODUCT(_promotion_failure_alot_count = 0;) |
| 208 | NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;) |
| 209 | |
| 210 | if (UsePerfData) { |
| 211 | EXCEPTION_MARK; |
| 212 | |
| 213 | // create the gc cause jvmstat counters |
| 214 | _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause" , |
| 215 | 80, GCCause::to_string(_gc_cause), CHECK); |
| 216 | |
| 217 | _perf_gc_lastcause = |
| 218 | PerfDataManager::create_string_variable(SUN_GC, "lastCause" , |
| 219 | 80, GCCause::to_string(_gc_lastcause), CHECK); |
| 220 | } |
| 221 | |
| 222 | // Create the ring log |
| 223 | if (LogEvents) { |
| 224 | _gc_heap_log = new GCHeapLog(); |
| 225 | } else { |
| 226 | _gc_heap_log = NULL; |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | // This interface assumes that it's being called by the |
| 231 | // vm thread. It collects the heap assuming that the |
| 232 | // heap lock is already held and that we are executing in |
| 233 | // the context of the vm thread. |
| 234 | void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) { |
| 235 | assert(Thread::current()->is_VM_thread(), "Precondition#1" ); |
| 236 | assert(Heap_lock->is_locked(), "Precondition#2" ); |
| 237 | GCCauseSetter gcs(this, cause); |
| 238 | switch (cause) { |
| 239 | case GCCause::_heap_inspection: |
| 240 | case GCCause::_heap_dump: |
| 241 | case GCCause::_metadata_GC_threshold : { |
| 242 | HandleMark hm; |
| 243 | do_full_collection(false); // don't clear all soft refs |
| 244 | break; |
| 245 | } |
| 246 | case GCCause::_metadata_GC_clear_soft_refs: { |
| 247 | HandleMark hm; |
| 248 | do_full_collection(true); // do clear all soft refs |
| 249 | break; |
| 250 | } |
| 251 | default: |
| 252 | ShouldNotReachHere(); // Unexpected use of this function |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, |
| 257 | size_t word_size, |
| 258 | Metaspace::MetadataType mdtype) { |
| 259 | uint loop_count = 0; |
| 260 | uint gc_count = 0; |
| 261 | uint full_gc_count = 0; |
| 262 | |
| 263 | assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock" ); |
| 264 | |
| 265 | do { |
| 266 | MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype); |
| 267 | if (result != NULL) { |
| 268 | return result; |
| 269 | } |
| 270 | |
| 271 | if (GCLocker::is_active_and_needs_gc()) { |
| 272 | // If the GCLocker is active, just expand and allocate. |
| 273 | // If that does not succeed, wait if this thread is not |
| 274 | // in a critical section itself. |
| 275 | result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype); |
| 276 | if (result != NULL) { |
| 277 | return result; |
| 278 | } |
| 279 | JavaThread* jthr = JavaThread::current(); |
| 280 | if (!jthr->in_critical()) { |
| 281 | // Wait for JNI critical section to be exited |
| 282 | GCLocker::stall_until_clear(); |
| 283 | // The GC invoked by the last thread leaving the critical |
| 284 | // section will be a young collection and a full collection |
| 285 | // is (currently) needed for unloading classes so continue |
| 286 | // to the next iteration to get a full GC. |
| 287 | continue; |
| 288 | } else { |
| 289 | if (CheckJNICalls) { |
| 290 | fatal("Possible deadlock due to allocating while" |
| 291 | " in jni critical section" ); |
| 292 | } |
| 293 | return NULL; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | { // Need lock to get self consistent gc_count's |
| 298 | MutexLocker ml(Heap_lock); |
| 299 | gc_count = Universe::heap()->total_collections(); |
| 300 | full_gc_count = Universe::heap()->total_full_collections(); |
| 301 | } |
| 302 | |
| 303 | // Generate a VM operation |
| 304 | VM_CollectForMetadataAllocation op(loader_data, |
| 305 | word_size, |
| 306 | mdtype, |
| 307 | gc_count, |
| 308 | full_gc_count, |
| 309 | GCCause::_metadata_GC_threshold); |
| 310 | VMThread::execute(&op); |
| 311 | |
| 312 | // If GC was locked out, try again. Check before checking success because the |
| 313 | // prologue could have succeeded and the GC still have been locked out. |
| 314 | if (op.gc_locked()) { |
| 315 | continue; |
| 316 | } |
| 317 | |
| 318 | if (op.prologue_succeeded()) { |
| 319 | return op.result(); |
| 320 | } |
| 321 | loop_count++; |
| 322 | if ((QueuedAllocationWarningCount > 0) && |
| 323 | (loop_count % QueuedAllocationWarningCount == 0)) { |
| 324 | log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times," |
| 325 | " size=" SIZE_FORMAT, loop_count, word_size); |
| 326 | } |
| 327 | } while (true); // Until a GC is done |
| 328 | } |
| 329 | |
| 330 | MemoryUsage CollectedHeap::memory_usage() { |
| 331 | return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity()); |
| 332 | } |
| 333 | |
| 334 | |
| 335 | #ifndef PRODUCT |
| 336 | void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) { |
| 337 | if (CheckMemoryInitialization && ZapUnusedHeapArea) { |
| 338 | for (size_t slot = 0; slot < size; slot += 1) { |
| 339 | assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal), |
| 340 | "Found non badHeapWordValue in pre-allocation check" ); |
| 341 | } |
| 342 | } |
| 343 | } |
| 344 | #endif // PRODUCT |
| 345 | |
| 346 | size_t CollectedHeap::max_tlab_size() const { |
| 347 | // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE]. |
| 348 | // This restriction could be removed by enabling filling with multiple arrays. |
| 349 | // If we compute that the reasonable way as |
| 350 | // header_size + ((sizeof(jint) * max_jint) / HeapWordSize) |
| 351 | // we'll overflow on the multiply, so we do the divide first. |
| 352 | // We actually lose a little by dividing first, |
| 353 | // but that just makes the TLAB somewhat smaller than the biggest array, |
| 354 | // which is fine, since we'll be able to fill that. |
| 355 | size_t max_int_size = typeArrayOopDesc::header_size(T_INT) + |
| 356 | sizeof(jint) * |
| 357 | ((juint) max_jint / (size_t) HeapWordSize); |
| 358 | return align_down(max_int_size, MinObjAlignment); |
| 359 | } |
| 360 | |
| 361 | size_t CollectedHeap::filler_array_hdr_size() { |
| 362 | return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long |
| 363 | } |
| 364 | |
| 365 | size_t CollectedHeap::filler_array_min_size() { |
| 366 | return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment |
| 367 | } |
| 368 | |
| 369 | #ifdef ASSERT |
| 370 | void CollectedHeap::fill_args_check(HeapWord* start, size_t words) |
| 371 | { |
| 372 | assert(words >= min_fill_size(), "too small to fill" ); |
| 373 | assert(is_object_aligned(words), "unaligned size" ); |
| 374 | assert(Universe::heap()->is_in_reserved(start), "not in heap" ); |
| 375 | assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap" ); |
| 376 | } |
| 377 | |
| 378 | void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap) |
| 379 | { |
| 380 | if (ZapFillerObjects && zap) { |
| 381 | Copy::fill_to_words(start + filler_array_hdr_size(), |
| 382 | words - filler_array_hdr_size(), 0XDEAFBABE); |
| 383 | } |
| 384 | } |
| 385 | #endif // ASSERT |
| 386 | |
| 387 | void |
| 388 | CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap) |
| 389 | { |
| 390 | assert(words >= filler_array_min_size(), "too small for an array" ); |
| 391 | assert(words <= filler_array_max_size(), "too big for a single object" ); |
| 392 | |
| 393 | const size_t payload_size = words - filler_array_hdr_size(); |
| 394 | const size_t len = payload_size * HeapWordSize / sizeof(jint); |
| 395 | assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d" , words, (int)len); |
| 396 | |
| 397 | ObjArrayAllocator allocator(Universe::intArrayKlassObj(), words, (int)len, /* do_zero */ false); |
| 398 | allocator.initialize(start); |
| 399 | DEBUG_ONLY(zap_filler_array(start, words, zap);) |
| 400 | } |
| 401 | |
| 402 | void |
| 403 | CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap) |
| 404 | { |
| 405 | assert(words <= filler_array_max_size(), "too big for a single object" ); |
| 406 | |
| 407 | if (words >= filler_array_min_size()) { |
| 408 | fill_with_array(start, words, zap); |
| 409 | } else if (words > 0) { |
| 410 | assert(words == min_fill_size(), "unaligned size" ); |
| 411 | ObjAllocator allocator(SystemDictionary::Object_klass(), words); |
| 412 | allocator.initialize(start); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap) |
| 417 | { |
| 418 | DEBUG_ONLY(fill_args_check(start, words);) |
| 419 | HandleMark hm; // Free handles before leaving. |
| 420 | fill_with_object_impl(start, words, zap); |
| 421 | } |
| 422 | |
| 423 | void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap) |
| 424 | { |
| 425 | DEBUG_ONLY(fill_args_check(start, words);) |
| 426 | HandleMark hm; // Free handles before leaving. |
| 427 | |
| 428 | // Multiple objects may be required depending on the filler array maximum size. Fill |
| 429 | // the range up to that with objects that are filler_array_max_size sized. The |
| 430 | // remainder is filled with a single object. |
| 431 | const size_t min = min_fill_size(); |
| 432 | const size_t max = filler_array_max_size(); |
| 433 | while (words > max) { |
| 434 | const size_t cur = (words - max) >= min ? max : max - min; |
| 435 | fill_with_array(start, cur, zap); |
| 436 | start += cur; |
| 437 | words -= cur; |
| 438 | } |
| 439 | |
| 440 | fill_with_object_impl(start, words, zap); |
| 441 | } |
| 442 | |
| 443 | void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) { |
| 444 | CollectedHeap::fill_with_object(start, end, zap); |
| 445 | } |
| 446 | |
| 447 | size_t CollectedHeap::min_dummy_object_size() const { |
| 448 | return oopDesc::header_size(); |
| 449 | } |
| 450 | |
| 451 | size_t CollectedHeap::tlab_alloc_reserve() const { |
| 452 | size_t min_size = min_dummy_object_size(); |
| 453 | return min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0; |
| 454 | } |
| 455 | |
| 456 | HeapWord* CollectedHeap::allocate_new_tlab(size_t min_size, |
| 457 | size_t requested_size, |
| 458 | size_t* actual_size) { |
| 459 | guarantee(false, "thread-local allocation buffers not supported" ); |
| 460 | return NULL; |
| 461 | } |
| 462 | |
| 463 | void CollectedHeap::ensure_parsability(bool retire_tlabs) { |
| 464 | assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(), |
| 465 | "Should only be called at a safepoint or at start-up" ); |
| 466 | |
| 467 | ThreadLocalAllocStats stats; |
| 468 | |
| 469 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) { |
| 470 | BarrierSet::barrier_set()->make_parsable(thread); |
| 471 | if (UseTLAB) { |
| 472 | if (retire_tlabs) { |
| 473 | thread->tlab().retire(&stats); |
| 474 | } else { |
| 475 | thread->tlab().make_parsable(); |
| 476 | } |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | stats.publish(); |
| 481 | } |
| 482 | |
| 483 | void CollectedHeap::resize_all_tlabs() { |
| 484 | assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(), |
| 485 | "Should only resize tlabs at safepoint" ); |
| 486 | |
| 487 | if (UseTLAB && ResizeTLAB) { |
| 488 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { |
| 489 | thread->tlab().resize(); |
| 490 | } |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) { |
| 495 | assert(timer != NULL, "timer is null" ); |
| 496 | if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) { |
| 497 | GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)" , timer); |
| 498 | HeapDumper::dump_heap(); |
| 499 | } |
| 500 | |
| 501 | LogTarget(Trace, gc, classhisto) lt; |
| 502 | if (lt.is_enabled()) { |
| 503 | GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)" , timer); |
| 504 | ResourceMark rm; |
| 505 | LogStream ls(lt); |
| 506 | VM_GC_HeapInspection inspector(&ls, false /* ! full gc */); |
| 507 | inspector.doit(); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | void CollectedHeap::pre_full_gc_dump(GCTimer* timer) { |
| 512 | full_gc_dump(timer, true); |
| 513 | } |
| 514 | |
| 515 | void CollectedHeap::post_full_gc_dump(GCTimer* timer) { |
| 516 | full_gc_dump(timer, false); |
| 517 | } |
| 518 | |
| 519 | void CollectedHeap::initialize_reserved_region(HeapWord *start, HeapWord *end) { |
| 520 | // It is important to do this in a way such that concurrent readers can't |
| 521 | // temporarily think something is in the heap. (Seen this happen in asserts.) |
| 522 | _reserved.set_word_size(0); |
| 523 | _reserved.set_start(start); |
| 524 | _reserved.set_end(end); |
| 525 | } |
| 526 | |
| 527 | void CollectedHeap::post_initialize() { |
| 528 | initialize_serviceability(); |
| 529 | } |
| 530 | |
| 531 | #ifndef PRODUCT |
| 532 | |
| 533 | bool CollectedHeap::promotion_should_fail(volatile size_t* count) { |
| 534 | // Access to count is not atomic; the value does not have to be exact. |
| 535 | if (PromotionFailureALot) { |
| 536 | const size_t gc_num = total_collections(); |
| 537 | const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number; |
| 538 | if (elapsed_gcs >= PromotionFailureALotInterval) { |
| 539 | // Test for unsigned arithmetic wrap-around. |
| 540 | if (++*count >= PromotionFailureALotCount) { |
| 541 | *count = 0; |
| 542 | return true; |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | return false; |
| 547 | } |
| 548 | |
| 549 | bool CollectedHeap::promotion_should_fail() { |
| 550 | return promotion_should_fail(&_promotion_failure_alot_count); |
| 551 | } |
| 552 | |
| 553 | void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) { |
| 554 | if (PromotionFailureALot) { |
| 555 | _promotion_failure_alot_gc_number = total_collections(); |
| 556 | *count = 0; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | void CollectedHeap::reset_promotion_should_fail() { |
| 561 | reset_promotion_should_fail(&_promotion_failure_alot_count); |
| 562 | } |
| 563 | |
| 564 | #endif // #ifndef PRODUCT |
| 565 | |
| 566 | bool CollectedHeap::supports_object_pinning() const { |
| 567 | return false; |
| 568 | } |
| 569 | |
| 570 | oop CollectedHeap::pin_object(JavaThread* thread, oop obj) { |
| 571 | ShouldNotReachHere(); |
| 572 | return NULL; |
| 573 | } |
| 574 | |
| 575 | void CollectedHeap::unpin_object(JavaThread* thread, oop obj) { |
| 576 | ShouldNotReachHere(); |
| 577 | } |
| 578 | |
| 579 | void CollectedHeap::deduplicate_string(oop str) { |
| 580 | // Do nothing, unless overridden in subclass. |
| 581 | } |
| 582 | |
| 583 | size_t CollectedHeap::obj_size(oop obj) const { |
| 584 | return obj->size(); |
| 585 | } |
| 586 | |
| 587 | uint32_t CollectedHeap::hash_oop(oop obj) const { |
| 588 | const uintptr_t addr = cast_from_oop<uintptr_t>(obj); |
| 589 | return static_cast<uint32_t>(addr >> LogMinObjAlignment); |
| 590 | } |
| 591 | |