1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_GC_SHARED_GENERATION_HPP |
26 | #define SHARE_GC_SHARED_GENERATION_HPP |
27 | |
28 | #include "gc/shared/collectorCounters.hpp" |
29 | #include "gc/shared/referenceProcessor.hpp" |
30 | #include "logging/log.hpp" |
31 | #include "memory/allocation.hpp" |
32 | #include "memory/memRegion.hpp" |
33 | #include "memory/virtualspace.hpp" |
34 | #include "runtime/mutex.hpp" |
35 | #include "runtime/perfData.hpp" |
36 | |
37 | // A Generation models a heap area for similarly-aged objects. |
38 | // It will contain one ore more spaces holding the actual objects. |
39 | // |
40 | // The Generation class hierarchy: |
41 | // |
42 | // Generation - abstract base class |
43 | // - DefNewGeneration - allocation area (copy collected) |
44 | // - ParNewGeneration - a DefNewGeneration that is collected by |
45 | // several threads |
46 | // - CardGeneration - abstract class adding offset array behavior |
47 | // - TenuredGeneration - tenured (old object) space (markSweepCompact) |
48 | // - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation |
49 | // (Detlefs-Printezis refinement of |
50 | // Boehm-Demers-Schenker) |
51 | // |
52 | // The system configurations currently allowed are: |
53 | // |
54 | // DefNewGeneration + TenuredGeneration |
55 | // |
56 | // ParNewGeneration + ConcurrentMarkSweepGeneration |
57 | // |
58 | |
59 | class DefNewGeneration; |
60 | class GCMemoryManager; |
61 | class GenerationSpec; |
62 | class CompactibleSpace; |
63 | class ContiguousSpace; |
64 | class CompactPoint; |
65 | class OopsInGenClosure; |
66 | class OopClosure; |
67 | class ScanClosure; |
68 | class FastScanClosure; |
69 | class GenCollectedHeap; |
70 | class GCStats; |
71 | |
72 | // A "ScratchBlock" represents a block of memory in one generation usable by |
73 | // another. It represents "num_words" free words, starting at and including |
74 | // the address of "this". |
75 | struct ScratchBlock { |
76 | ScratchBlock* next; |
77 | size_t num_words; |
78 | HeapWord scratch_space[1]; // Actually, of size "num_words-2" (assuming |
79 | // first two fields are word-sized.) |
80 | }; |
81 | |
82 | class Generation: public CHeapObj<mtGC> { |
83 | friend class VMStructs; |
84 | private: |
85 | jlong _time_of_last_gc; // time when last gc on this generation happened (ms) |
86 | MemRegion _prev_used_region; // for collectors that want to "remember" a value for |
87 | // used region at some specific point during collection. |
88 | |
89 | GCMemoryManager* _gc_manager; |
90 | |
91 | protected: |
92 | // Minimum and maximum addresses for memory reserved (not necessarily |
93 | // committed) for generation. |
94 | // Used by card marking code. Must not overlap with address ranges of |
95 | // other generations. |
96 | MemRegion _reserved; |
97 | |
98 | // Memory area reserved for generation |
99 | VirtualSpace _virtual_space; |
100 | |
101 | // ("Weak") Reference processing support |
102 | SpanSubjectToDiscoveryClosure _span_based_discoverer; |
103 | ReferenceProcessor* _ref_processor; |
104 | |
105 | // Performance Counters |
106 | CollectorCounters* _gc_counters; |
107 | |
108 | // Statistics for garbage collection |
109 | GCStats* _gc_stats; |
110 | |
111 | // Initialize the generation. |
112 | Generation(ReservedSpace rs, size_t initial_byte_size); |
113 | |
114 | // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in |
115 | // "sp" that point into younger generations. |
116 | // The iteration is only over objects allocated at the start of the |
117 | // iterations; objects allocated as a result of applying the closure are |
118 | // not included. |
119 | void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl, uint n_threads); |
120 | |
121 | public: |
122 | // The set of possible generation kinds. |
123 | enum Name { |
124 | DefNew, |
125 | ParNew, |
126 | MarkSweepCompact, |
127 | ConcurrentMarkSweep, |
128 | Other |
129 | }; |
130 | |
131 | enum SomePublicConstants { |
132 | // Generations are GenGrain-aligned and have size that are multiples of |
133 | // GenGrain. |
134 | // Note: on ARM we add 1 bit for card_table_base to be properly aligned |
135 | // (we expect its low byte to be zero - see implementation of post_barrier) |
136 | LogOfGenGrain = 16 ARM32_ONLY(+1), |
137 | GenGrain = 1 << LogOfGenGrain |
138 | }; |
139 | |
140 | // allocate and initialize ("weak") refs processing support |
141 | virtual void ref_processor_init(); |
142 | void set_ref_processor(ReferenceProcessor* rp) { |
143 | assert(_ref_processor == NULL, "clobbering existing _ref_processor" ); |
144 | _ref_processor = rp; |
145 | } |
146 | |
147 | virtual Generation::Name kind() { return Generation::Other; } |
148 | |
149 | // This properly belongs in the collector, but for now this |
150 | // will do. |
151 | virtual bool refs_discovery_is_atomic() const { return true; } |
152 | virtual bool refs_discovery_is_mt() const { return false; } |
153 | |
154 | // Space inquiries (results in bytes) |
155 | size_t initial_size(); |
156 | virtual size_t capacity() const = 0; // The maximum number of object bytes the |
157 | // generation can currently hold. |
158 | virtual size_t used() const = 0; // The number of used bytes in the gen. |
159 | virtual size_t free() const = 0; // The number of free bytes in the gen. |
160 | |
161 | // Support for java.lang.Runtime.maxMemory(); see CollectedHeap. |
162 | // Returns the total number of bytes available in a generation |
163 | // for the allocation of objects. |
164 | virtual size_t max_capacity() const; |
165 | |
166 | // If this is a young generation, the maximum number of bytes that can be |
167 | // allocated in this generation before a GC is triggered. |
168 | virtual size_t capacity_before_gc() const { return 0; } |
169 | |
170 | // The largest number of contiguous free bytes in the generation, |
171 | // including expansion (Assumes called at a safepoint.) |
172 | virtual size_t contiguous_available() const = 0; |
173 | // The largest number of contiguous free bytes in this or any higher generation. |
174 | virtual size_t max_contiguous_available() const; |
175 | |
176 | // Returns true if promotions of the specified amount are |
177 | // likely to succeed without a promotion failure. |
178 | // Promotion of the full amount is not guaranteed but |
179 | // might be attempted in the worst case. |
180 | virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const; |
181 | |
182 | // For a non-young generation, this interface can be used to inform a |
183 | // generation that a promotion attempt into that generation failed. |
184 | // Typically used to enable diagnostic output for post-mortem analysis, |
185 | // but other uses of the interface are not ruled out. |
186 | virtual void promotion_failure_occurred() { /* does nothing */ } |
187 | |
188 | // Return an estimate of the maximum allocation that could be performed |
189 | // in the generation without triggering any collection or expansion |
190 | // activity. It is "unsafe" because no locks are taken; the result |
191 | // should be treated as an approximation, not a guarantee, for use in |
192 | // heuristic resizing decisions. |
193 | virtual size_t unsafe_max_alloc_nogc() const = 0; |
194 | |
195 | // Returns true if this generation cannot be expanded further |
196 | // without a GC. Override as appropriate. |
197 | virtual bool is_maximal_no_gc() const { |
198 | return _virtual_space.uncommitted_size() == 0; |
199 | } |
200 | |
201 | MemRegion reserved() const { return _reserved; } |
202 | |
203 | // Returns a region guaranteed to contain all the objects in the |
204 | // generation. |
205 | virtual MemRegion used_region() const { return _reserved; } |
206 | |
207 | MemRegion prev_used_region() const { return _prev_used_region; } |
208 | virtual void save_used_region() { _prev_used_region = used_region(); } |
209 | |
210 | // Returns "TRUE" iff "p" points into the committed areas in the generation. |
211 | // For some kinds of generations, this may be an expensive operation. |
212 | // To avoid performance problems stemming from its inadvertent use in |
213 | // product jvm's, we restrict its use to assertion checking or |
214 | // verification only. |
215 | virtual bool is_in(const void* p) const; |
216 | |
217 | /* Returns "TRUE" iff "p" points into the reserved area of the generation. */ |
218 | bool is_in_reserved(const void* p) const { |
219 | return _reserved.contains(p); |
220 | } |
221 | |
222 | // If some space in the generation contains the given "addr", return a |
223 | // pointer to that space, else return "NULL". |
224 | virtual Space* space_containing(const void* addr) const; |
225 | |
226 | // Iteration - do not use for time critical operations |
227 | virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0; |
228 | |
229 | // Returns the first space, if any, in the generation that can participate |
230 | // in compaction, or else "NULL". |
231 | virtual CompactibleSpace* first_compaction_space() const = 0; |
232 | |
233 | // Returns "true" iff this generation should be used to allocate an |
234 | // object of the given size. Young generations might |
235 | // wish to exclude very large objects, for example, since, if allocated |
236 | // often, they would greatly increase the frequency of young-gen |
237 | // collection. |
238 | virtual bool should_allocate(size_t word_size, bool is_tlab) { |
239 | bool result = false; |
240 | size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize); |
241 | if (!is_tlab || supports_tlab_allocation()) { |
242 | result = (word_size > 0) && (word_size < overflow_limit); |
243 | } |
244 | return result; |
245 | } |
246 | |
247 | // Allocate and returns a block of the requested size, or returns "NULL". |
248 | // Assumes the caller has done any necessary locking. |
249 | virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0; |
250 | |
251 | // Like "allocate", but performs any necessary locking internally. |
252 | virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0; |
253 | |
254 | // Some generation may offer a region for shared, contiguous allocation, |
255 | // via inlined code (by exporting the address of the top and end fields |
256 | // defining the extent of the contiguous allocation region.) |
257 | |
258 | // This function returns "true" iff the heap supports this kind of |
259 | // allocation. (More precisely, this means the style of allocation that |
260 | // increments *top_addr()" with a CAS.) (Default is "no".) |
261 | // A generation that supports this allocation style must use lock-free |
262 | // allocation for *all* allocation, since there are times when lock free |
263 | // allocation will be concurrent with plain "allocate" calls. |
264 | virtual bool supports_inline_contig_alloc() const { return false; } |
265 | |
266 | // These functions return the addresses of the fields that define the |
267 | // boundaries of the contiguous allocation area. (These fields should be |
268 | // physically near to one another.) |
269 | virtual HeapWord* volatile* top_addr() const { return NULL; } |
270 | virtual HeapWord** end_addr() const { return NULL; } |
271 | |
272 | // Thread-local allocation buffers |
273 | virtual bool supports_tlab_allocation() const { return false; } |
274 | virtual size_t tlab_capacity() const { |
275 | guarantee(false, "Generation doesn't support thread local allocation buffers" ); |
276 | return 0; |
277 | } |
278 | virtual size_t tlab_used() const { |
279 | guarantee(false, "Generation doesn't support thread local allocation buffers" ); |
280 | return 0; |
281 | } |
282 | virtual size_t unsafe_max_tlab_alloc() const { |
283 | guarantee(false, "Generation doesn't support thread local allocation buffers" ); |
284 | return 0; |
285 | } |
286 | |
287 | // "obj" is the address of an object in a younger generation. Allocate space |
288 | // for "obj" in the current (or some higher) generation, and copy "obj" into |
289 | // the newly allocated space, if possible, returning the result (or NULL if |
290 | // the allocation failed). |
291 | // |
292 | // The "obj_size" argument is just obj->size(), passed along so the caller can |
293 | // avoid repeating the virtual call to retrieve it. |
294 | virtual oop promote(oop obj, size_t obj_size); |
295 | |
296 | // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote |
297 | // object "obj", whose original mark word was "m", and whose size is |
298 | // "word_sz". If possible, allocate space for "obj", copy obj into it |
299 | // (taking care to copy "m" into the mark word when done, since the mark |
300 | // word of "obj" may have been overwritten with a forwarding pointer, and |
301 | // also taking care to copy the klass pointer *last*. Returns the new |
302 | // object if successful, or else NULL. |
303 | virtual oop par_promote(int thread_num, oop obj, markOop m, size_t word_sz); |
304 | |
305 | // Informs the current generation that all par_promote_alloc's in the |
306 | // collection have been completed; any supporting data structures can be |
307 | // reset. Default is to do nothing. |
308 | virtual void par_promote_alloc_done(int thread_num) {} |
309 | |
310 | // Informs the current generation that all oop_since_save_marks_iterates |
311 | // performed by "thread_num" in the current collection, if any, have been |
312 | // completed; any supporting data structures can be reset. Default is to |
313 | // do nothing. |
314 | virtual void par_oop_since_save_marks_iterate_done(int thread_num) {} |
315 | |
316 | // Returns "true" iff collect() should subsequently be called on this |
317 | // this generation. See comment below. |
318 | // This is a generic implementation which can be overridden. |
319 | // |
320 | // Note: in the current (1.4) implementation, when genCollectedHeap's |
321 | // incremental_collection_will_fail flag is set, all allocations are |
322 | // slow path (the only fast-path place to allocate is DefNew, which |
323 | // will be full if the flag is set). |
324 | // Thus, older generations which collect younger generations should |
325 | // test this flag and collect if it is set. |
326 | virtual bool should_collect(bool full, |
327 | size_t word_size, |
328 | bool is_tlab) { |
329 | return (full || should_allocate(word_size, is_tlab)); |
330 | } |
331 | |
332 | // Returns true if the collection is likely to be safely |
333 | // completed. Even if this method returns true, a collection |
334 | // may not be guaranteed to succeed, and the system should be |
335 | // able to safely unwind and recover from that failure, albeit |
336 | // at some additional cost. |
337 | virtual bool collection_attempt_is_safe() { |
338 | guarantee(false, "Are you sure you want to call this method?" ); |
339 | return true; |
340 | } |
341 | |
342 | // Perform a garbage collection. |
343 | // If full is true attempt a full garbage collection of this generation. |
344 | // Otherwise, attempting to (at least) free enough space to support an |
345 | // allocation of the given "word_size". |
346 | virtual void collect(bool full, |
347 | bool clear_all_soft_refs, |
348 | size_t word_size, |
349 | bool is_tlab) = 0; |
350 | |
351 | // Perform a heap collection, attempting to create (at least) enough |
352 | // space to support an allocation of the given "word_size". If |
353 | // successful, perform the allocation and return the resulting |
354 | // "oop" (initializing the allocated block). If the allocation is |
355 | // still unsuccessful, return "NULL". |
356 | virtual HeapWord* expand_and_allocate(size_t word_size, |
357 | bool is_tlab, |
358 | bool parallel = false) = 0; |
359 | |
360 | // Some generations may require some cleanup or preparation actions before |
361 | // allowing a collection. The default is to do nothing. |
362 | virtual void gc_prologue(bool full) {} |
363 | |
364 | // Some generations may require some cleanup actions after a collection. |
365 | // The default is to do nothing. |
366 | virtual void gc_epilogue(bool full) {} |
367 | |
368 | // Save the high water marks for the used space in a generation. |
369 | virtual void record_spaces_top() {} |
370 | |
371 | // Some generations may need to be "fixed-up" after some allocation |
372 | // activity to make them parsable again. The default is to do nothing. |
373 | virtual void ensure_parsability() {} |
374 | |
375 | // Time (in ms) when we were last collected or now if a collection is |
376 | // in progress. |
377 | virtual jlong time_of_last_gc(jlong now) { |
378 | // Both _time_of_last_gc and now are set using a time source |
379 | // that guarantees monotonically non-decreasing values provided |
380 | // the underlying platform provides such a source. So we still |
381 | // have to guard against non-monotonicity. |
382 | NOT_PRODUCT( |
383 | if (now < _time_of_last_gc) { |
384 | log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT, _time_of_last_gc, now); |
385 | } |
386 | ) |
387 | return _time_of_last_gc; |
388 | } |
389 | |
390 | virtual void update_time_of_last_gc(jlong now) { |
391 | _time_of_last_gc = now; |
392 | } |
393 | |
394 | // Generations may keep statistics about collection. This method |
395 | // updates those statistics. current_generation is the generation |
396 | // that was most recently collected. This allows the generation to |
397 | // decide what statistics are valid to collect. For example, the |
398 | // generation can decide to gather the amount of promoted data if |
399 | // the collection of the young generation has completed. |
400 | GCStats* gc_stats() const { return _gc_stats; } |
401 | virtual void update_gc_stats(Generation* current_generation, bool full) {} |
402 | |
403 | #if INCLUDE_SERIALGC |
404 | // Mark sweep support phase2 |
405 | virtual void prepare_for_compaction(CompactPoint* cp); |
406 | // Mark sweep support phase3 |
407 | virtual void adjust_pointers(); |
408 | // Mark sweep support phase4 |
409 | virtual void compact(); |
410 | virtual void post_compact() { ShouldNotReachHere(); } |
411 | #endif |
412 | |
413 | // Support for CMS's rescan. In this general form we return a pointer |
414 | // to an abstract object that can be used, based on specific previously |
415 | // decided protocols, to exchange information between generations, |
416 | // information that may be useful for speeding up certain types of |
417 | // garbage collectors. A NULL value indicates to the client that |
418 | // no data recording is expected by the provider. The data-recorder is |
419 | // expected to be GC worker thread-local, with the worker index |
420 | // indicated by "thr_num". |
421 | virtual void* get_data_recorder(int thr_num) { return NULL; } |
422 | virtual void sample_eden_chunk() {} |
423 | |
424 | // Some generations may require some cleanup actions before allowing |
425 | // a verification. |
426 | virtual void prepare_for_verify() {} |
427 | |
428 | // Accessing "marks". |
429 | |
430 | // This function gives a generation a chance to note a point between |
431 | // collections. For example, a contiguous generation might note the |
432 | // beginning allocation point post-collection, which might allow some later |
433 | // operations to be optimized. |
434 | virtual void save_marks() {} |
435 | |
436 | // This function allows generations to initialize any "saved marks". That |
437 | // is, should only be called when the generation is empty. |
438 | virtual void reset_saved_marks() {} |
439 | |
440 | // This function is "true" iff any no allocations have occurred in the |
441 | // generation since the last call to "save_marks". |
442 | virtual bool no_allocs_since_save_marks() = 0; |
443 | |
444 | // The "requestor" generation is performing some garbage collection |
445 | // action for which it would be useful to have scratch space. If |
446 | // the target is not the requestor, no gc actions will be required |
447 | // of the target. The requestor promises to allocate no more than |
448 | // "max_alloc_words" in the target generation (via promotion say, |
449 | // if the requestor is a young generation and the target is older). |
450 | // If the target generation can provide any scratch space, it adds |
451 | // it to "list", leaving "list" pointing to the head of the |
452 | // augmented list. The default is to offer no space. |
453 | virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor, |
454 | size_t max_alloc_words) {} |
455 | |
456 | // Give each generation an opportunity to do clean up for any |
457 | // contributed scratch. |
458 | virtual void reset_scratch() {} |
459 | |
460 | // When an older generation has been collected, and perhaps resized, |
461 | // this method will be invoked on all younger generations (from older to |
462 | // younger), allowing them to resize themselves as appropriate. |
463 | virtual void compute_new_size() = 0; |
464 | |
465 | // Printing |
466 | virtual const char* name() const = 0; |
467 | virtual const char* short_name() const = 0; |
468 | |
469 | // Reference Processing accessor |
470 | ReferenceProcessor* const ref_processor() { return _ref_processor; } |
471 | |
472 | // Iteration. |
473 | |
474 | // Iterate over all the ref-containing fields of all objects in the |
475 | // generation, calling "cl.do_oop" on each. |
476 | virtual void oop_iterate(OopIterateClosure* cl); |
477 | |
478 | // Iterate over all objects in the generation, calling "cl.do_object" on |
479 | // each. |
480 | virtual void object_iterate(ObjectClosure* cl); |
481 | |
482 | // Iterate over all safe objects in the generation, calling "cl.do_object" on |
483 | // each. An object is safe if its references point to other objects in |
484 | // the heap. This defaults to object_iterate() unless overridden. |
485 | virtual void safe_object_iterate(ObjectClosure* cl); |
486 | |
487 | // Apply "cl->do_oop" to (the address of) all and only all the ref fields |
488 | // in the current generation that contain pointers to objects in younger |
489 | // generations. Objects allocated since the last "save_marks" call are |
490 | // excluded. |
491 | virtual void younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) = 0; |
492 | |
493 | // Inform a generation that it longer contains references to objects |
494 | // in any younger generation. [e.g. Because younger gens are empty, |
495 | // clear the card table.] |
496 | virtual void clear_remembered_set() { } |
497 | |
498 | // Inform a generation that some of its objects have moved. [e.g. The |
499 | // generation's spaces were compacted, invalidating the card table.] |
500 | virtual void invalidate_remembered_set() { } |
501 | |
502 | // Block abstraction. |
503 | |
504 | // Returns the address of the start of the "block" that contains the |
505 | // address "addr". We say "blocks" instead of "object" since some heaps |
506 | // may not pack objects densely; a chunk may either be an object or a |
507 | // non-object. |
508 | virtual HeapWord* block_start(const void* addr) const; |
509 | |
510 | // Requires "addr" to be the start of a chunk, and returns its size. |
511 | // "addr + size" is required to be the start of a new chunk, or the end |
512 | // of the active area of the heap. |
513 | virtual size_t block_size(const HeapWord* addr) const ; |
514 | |
515 | // Requires "addr" to be the start of a block, and returns "TRUE" iff |
516 | // the block is an object. |
517 | virtual bool block_is_obj(const HeapWord* addr) const; |
518 | |
519 | void print_heap_change(size_t prev_used) const; |
520 | |
521 | virtual void print() const; |
522 | virtual void print_on(outputStream* st) const; |
523 | |
524 | virtual void verify() = 0; |
525 | |
526 | struct StatRecord { |
527 | int invocations; |
528 | elapsedTimer accumulated_time; |
529 | StatRecord() : |
530 | invocations(0), |
531 | accumulated_time(elapsedTimer()) {} |
532 | }; |
533 | private: |
534 | StatRecord _stat_record; |
535 | public: |
536 | StatRecord* stat_record() { return &_stat_record; } |
537 | |
538 | virtual void print_summary_info_on(outputStream* st); |
539 | |
540 | // Performance Counter support |
541 | virtual void update_counters() = 0; |
542 | virtual CollectorCounters* counters() { return _gc_counters; } |
543 | |
544 | GCMemoryManager* gc_manager() const { |
545 | assert(_gc_manager != NULL, "not initialized yet" ); |
546 | return _gc_manager; |
547 | } |
548 | |
549 | void set_gc_manager(GCMemoryManager* gc_manager) { |
550 | _gc_manager = gc_manager; |
551 | } |
552 | |
553 | }; |
554 | |
555 | #endif // SHARE_GC_SHARED_GENERATION_HPP |
556 | |