1 | /* |
2 | * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. |
7 | * |
8 | * This code is distributed in the hope that it will be useful, but WITHOUT |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
11 | * version 2 for more details (a copy is included in the LICENSE file that |
12 | * accompanied this code). |
13 | * |
14 | * You should have received a copy of the GNU General Public License version |
15 | * 2 along with this work; if not, write to the Free Software Foundation, |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
17 | * |
18 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
19 | * or visit www.oracle.com if you need additional information or have any |
20 | * questions. |
21 | * |
22 | */ |
23 | |
24 | #include "precompiled.hpp" |
25 | |
26 | #include "gc/shenandoah/heuristics/shenandoahTraversalHeuristics.hpp" |
27 | #include "gc/shenandoah/shenandoahCollectionSet.hpp" |
28 | #include "gc/shenandoah/shenandoahFreeSet.hpp" |
29 | #include "gc/shenandoah/shenandoahHeap.inline.hpp" |
30 | #include "gc/shenandoah/shenandoahHeuristics.hpp" |
31 | #include "gc/shenandoah/shenandoahTraversalGC.hpp" |
32 | #include "logging/log.hpp" |
33 | #include "logging/logTag.hpp" |
34 | #include "utilities/quickSort.hpp" |
35 | |
36 | ShenandoahTraversalHeuristics::ShenandoahTraversalHeuristics() : ShenandoahHeuristics(), |
37 | _last_cset_select(0) |
38 | { |
39 | FLAG_SET_DEFAULT(ShenandoahSATBBarrier, false); |
40 | FLAG_SET_DEFAULT(ShenandoahStoreValEnqueueBarrier, true); |
41 | FLAG_SET_DEFAULT(ShenandoahKeepAliveBarrier, false); |
42 | FLAG_SET_DEFAULT(ShenandoahAllowMixedAllocs, false); |
43 | |
44 | SHENANDOAH_ERGO_ENABLE_FLAG(ExplicitGCInvokesConcurrent); |
45 | SHENANDOAH_ERGO_ENABLE_FLAG(ShenandoahImplicitGCInvokesConcurrent); |
46 | |
47 | // Final configuration checks |
48 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahLoadRefBarrier); |
49 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahStoreValEnqueueBarrier); |
50 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahCASBarrier); |
51 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahCloneBarrier); |
52 | } |
53 | |
54 | bool ShenandoahTraversalHeuristics::should_start_normal_gc() const { |
55 | return false; |
56 | } |
57 | |
58 | bool ShenandoahTraversalHeuristics::is_experimental() { |
59 | return true; |
60 | } |
61 | |
62 | bool ShenandoahTraversalHeuristics::is_diagnostic() { |
63 | return false; |
64 | } |
65 | |
66 | bool ShenandoahTraversalHeuristics::can_do_traversal_gc() { |
67 | return true; |
68 | } |
69 | |
70 | const char* ShenandoahTraversalHeuristics::name() { |
71 | return "traversal" ; |
72 | } |
73 | |
74 | void ShenandoahTraversalHeuristics::choose_collection_set(ShenandoahCollectionSet* collection_set) { |
75 | ShenandoahHeap* heap = ShenandoahHeap::heap(); |
76 | |
77 | ShenandoahTraversalGC* traversal_gc = heap->traversal_gc(); |
78 | |
79 | ShenandoahHeapRegionSet* traversal_set = traversal_gc->traversal_set(); |
80 | traversal_set->clear(); |
81 | |
82 | RegionData *data = get_region_data_cache(heap->num_regions()); |
83 | size_t cnt = 0; |
84 | |
85 | // Step 0. Prepare all regions |
86 | |
87 | for (size_t i = 0; i < heap->num_regions(); i++) { |
88 | ShenandoahHeapRegion* r = heap->get_region(i); |
89 | if (r->used() > 0) { |
90 | if (r->is_regular()) { |
91 | data[cnt]._region = r; |
92 | data[cnt]._garbage = r->garbage(); |
93 | data[cnt]._seqnum_last_alloc = r->seqnum_last_alloc_mutator(); |
94 | cnt++; |
95 | } |
96 | traversal_set->add_region(r); |
97 | } |
98 | } |
99 | |
100 | // The logic for cset selection is similar to that of adaptive: |
101 | // |
102 | // 1. We cannot get cset larger than available free space. Otherwise we guarantee OOME |
103 | // during evacuation, and thus guarantee full GC. In practice, we also want to let |
104 | // application to allocate something. This is why we limit CSet to some fraction of |
105 | // available space. In non-overloaded heap, max_cset would contain all plausible candidates |
106 | // over garbage threshold. |
107 | // |
108 | // 2. We should not get cset too low so that free threshold would not be met right |
109 | // after the cycle. Otherwise we get back-to-back cycles for no reason if heap is |
110 | // too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero. |
111 | // |
112 | // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates |
113 | // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before |
114 | // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme, |
115 | // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit. |
116 | // |
117 | // The significant complication is that liveness data was collected at the previous cycle, and only |
118 | // for those regions that were allocated before previous cycle started. |
119 | |
120 | size_t capacity = heap->max_capacity(); |
121 | size_t actual_free = heap->free_set()->available(); |
122 | size_t free_target = capacity / 100 * ShenandoahMinFreeThreshold; |
123 | size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0; |
124 | size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste); |
125 | |
126 | log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "M, Actual Free: " |
127 | SIZE_FORMAT "M, Max CSet: " SIZE_FORMAT "M, Min Garbage: " SIZE_FORMAT "M" , |
128 | free_target / M, actual_free / M, max_cset / M, min_garbage / M); |
129 | |
130 | // Better select garbage-first regions, and then older ones |
131 | QuickSort::sort<RegionData>(data, (int) cnt, compare_by_garbage_then_alloc_seq_ascending, false); |
132 | |
133 | size_t cur_cset = 0; |
134 | size_t cur_garbage = 0; |
135 | |
136 | size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() / 100 * ShenandoahGarbageThreshold; |
137 | |
138 | // Step 1. Add trustworthy regions to collection set. |
139 | // |
140 | // We can trust live/garbage data from regions that were fully traversed during |
141 | // previous cycle. Even if actual liveness is different now, we can only have _less_ |
142 | // live objects, because dead objects are not resurrected. Which means we can undershoot |
143 | // the collection set, but not overshoot it. |
144 | |
145 | for (size_t i = 0; i < cnt; i++) { |
146 | if (data[i]._seqnum_last_alloc > _last_cset_select) continue; |
147 | |
148 | ShenandoahHeapRegion* r = data[i]._region; |
149 | assert (r->is_regular(), "should have been filtered before" ); |
150 | |
151 | size_t new_garbage = cur_garbage + r->garbage(); |
152 | size_t new_cset = cur_cset + r->get_live_data_bytes(); |
153 | |
154 | if (new_cset > max_cset) { |
155 | break; |
156 | } |
157 | |
158 | if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) { |
159 | assert(!collection_set->is_in(r), "must not yet be in cset" ); |
160 | collection_set->add_region(r); |
161 | cur_cset = new_cset; |
162 | cur_garbage = new_garbage; |
163 | } |
164 | } |
165 | |
166 | // Step 2. Try to catch some recently allocated regions for evacuation ride. |
167 | // |
168 | // Pessimistically assume we are going to evacuate the entire region. While this |
169 | // is very pessimistic and in most cases undershoots the collection set when regions |
170 | // are mostly dead, it also provides more safety against running into allocation |
171 | // failure when newly allocated regions are fully live. |
172 | |
173 | for (size_t i = 0; i < cnt; i++) { |
174 | if (data[i]._seqnum_last_alloc <= _last_cset_select) continue; |
175 | |
176 | ShenandoahHeapRegion* r = data[i]._region; |
177 | assert (r->is_regular(), "should have been filtered before" ); |
178 | |
179 | // size_t new_garbage = cur_garbage + 0; (implied) |
180 | size_t new_cset = cur_cset + r->used(); |
181 | |
182 | if (new_cset > max_cset) { |
183 | break; |
184 | } |
185 | |
186 | assert(!collection_set->is_in(r), "must not yet be in cset" ); |
187 | collection_set->add_region(r); |
188 | cur_cset = new_cset; |
189 | } |
190 | |
191 | // Step 3. Clear liveness data |
192 | // TODO: Merge it with step 0, but save live data in RegionData before. |
193 | for (size_t i = 0; i < heap->num_regions(); i++) { |
194 | ShenandoahHeapRegion* r = heap->get_region(i); |
195 | if (r->used() > 0) { |
196 | r->clear_live_data(); |
197 | } |
198 | } |
199 | |
200 | collection_set->update_region_status(); |
201 | |
202 | _last_cset_select = ShenandoahHeapRegion::seqnum_current_alloc(); |
203 | } |
204 | |
205 | bool ShenandoahTraversalHeuristics::should_start_traversal_gc() { |
206 | ShenandoahHeap* heap = ShenandoahHeap::heap(); |
207 | assert(!heap->has_forwarded_objects(), "no forwarded objects here" ); |
208 | |
209 | size_t capacity = heap->max_capacity(); |
210 | size_t available = heap->free_set()->available(); |
211 | |
212 | // Check if we are falling below the worst limit, time to trigger the GC, regardless of |
213 | // anything else. |
214 | size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold; |
215 | if (available < min_threshold) { |
216 | log_info(gc)("Trigger: Free (" SIZE_FORMAT "M) is below minimum threshold (" SIZE_FORMAT "M)" , |
217 | available / M, min_threshold / M); |
218 | return true; |
219 | } |
220 | |
221 | // Check if are need to learn a bit about the application |
222 | const size_t max_learn = ShenandoahLearningSteps; |
223 | if (_gc_times_learned < max_learn) { |
224 | size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold; |
225 | if (available < init_threshold) { |
226 | log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "M) is below initial threshold (" SIZE_FORMAT "M)" , |
227 | _gc_times_learned + 1, max_learn, available / M, init_threshold / M); |
228 | return true; |
229 | } |
230 | } |
231 | |
232 | // Check if allocation headroom is still okay. This also factors in: |
233 | // 1. Some space to absorb allocation spikes |
234 | // 2. Accumulated penalties from Degenerated and Full GC |
235 | |
236 | size_t allocation_headroom = available; |
237 | |
238 | size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor; |
239 | size_t penalties = capacity / 100 * _gc_time_penalties; |
240 | |
241 | allocation_headroom -= MIN2(allocation_headroom, spike_headroom); |
242 | allocation_headroom -= MIN2(allocation_headroom, penalties); |
243 | |
244 | double average_gc = _gc_time_history->avg(); |
245 | double time_since_last = time_since_last_gc(); |
246 | double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last; |
247 | |
248 | if (average_gc > allocation_headroom / allocation_rate) { |
249 | log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.2f MB/s) to deplete free headroom (" SIZE_FORMAT "M)" , |
250 | average_gc * 1000, allocation_rate / M, allocation_headroom / M); |
251 | log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "M (free) - " SIZE_FORMAT "M (spike) - " SIZE_FORMAT "M (penalties) = " SIZE_FORMAT "M" , |
252 | available / M, spike_headroom / M, penalties / M, allocation_headroom / M); |
253 | return true; |
254 | } else if (ShenandoahHeuristics::should_start_normal_gc()) { |
255 | return true; |
256 | } |
257 | |
258 | return false; |
259 | } |
260 | |
261 | void ShenandoahTraversalHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* set, |
262 | RegionData* data, size_t data_size, |
263 | size_t free) { |
264 | ShouldNotReachHere(); |
265 | } |
266 | |