| 1 | /* |
| 2 | * Copyright (c) 2015, 2019, Red Hat, Inc. All rights reserved. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 11 | * version 2 for more details (a copy is included in the LICENSE file that |
| 12 | * accompanied this code). |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License version |
| 15 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 17 | * |
| 18 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 19 | * or visit www.oracle.com if you need additional information or have any |
| 20 | * questions. |
| 21 | * |
| 22 | */ |
| 23 | |
| 24 | #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP |
| 25 | #define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP |
| 26 | |
| 27 | #include "classfile/javaClasses.inline.hpp" |
| 28 | #include "gc/shared/markBitMap.inline.hpp" |
| 29 | #include "gc/shared/threadLocalAllocBuffer.inline.hpp" |
| 30 | #include "gc/shared/suspendibleThreadSet.hpp" |
| 31 | #include "gc/shenandoah/shenandoahAsserts.hpp" |
| 32 | #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp" |
| 33 | #include "gc/shenandoah/shenandoahCollectionSet.inline.hpp" |
| 34 | #include "gc/shenandoah/shenandoahForwarding.inline.hpp" |
| 35 | #include "gc/shenandoah/shenandoahWorkGroup.hpp" |
| 36 | #include "gc/shenandoah/shenandoahHeap.hpp" |
| 37 | #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp" |
| 38 | #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" |
| 39 | #include "gc/shenandoah/shenandoahControlThread.hpp" |
| 40 | #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" |
| 41 | #include "gc/shenandoah/shenandoahThreadLocalData.hpp" |
| 42 | #include "oops/compressedOops.inline.hpp" |
| 43 | #include "oops/oop.inline.hpp" |
| 44 | #include "runtime/atomic.hpp" |
| 45 | #include "runtime/prefetch.inline.hpp" |
| 46 | #include "runtime/thread.hpp" |
| 47 | #include "utilities/copy.hpp" |
| 48 | #include "utilities/globalDefinitions.hpp" |
| 49 | |
| 50 | |
| 51 | inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() { |
| 52 | size_t new_index = Atomic::add((size_t) 1, &_index); |
| 53 | // get_region() provides the bounds-check and returns NULL on OOB. |
| 54 | return _heap->get_region(new_index - 1); |
| 55 | } |
| 56 | |
| 57 | inline bool ShenandoahHeap::has_forwarded_objects() const { |
| 58 | return _gc_state.is_set(HAS_FORWARDED); |
| 59 | } |
| 60 | |
| 61 | inline WorkGang* ShenandoahHeap::workers() const { |
| 62 | return _workers; |
| 63 | } |
| 64 | |
| 65 | inline WorkGang* ShenandoahHeap::get_safepoint_workers() { |
| 66 | return _safepoint_workers; |
| 67 | } |
| 68 | |
| 69 | inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const { |
| 70 | uintptr_t region_start = ((uintptr_t) addr); |
| 71 | uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift(); |
| 72 | assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr)); |
| 73 | return index; |
| 74 | } |
| 75 | |
| 76 | inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const { |
| 77 | size_t index = heap_region_index_containing(addr); |
| 78 | ShenandoahHeapRegion* const result = get_region(index); |
| 79 | assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr)); |
| 80 | return result; |
| 81 | } |
| 82 | |
| 83 | template <class T> |
| 84 | inline oop ShenandoahHeap::update_with_forwarded_not_null(T* p, oop obj) { |
| 85 | if (in_collection_set(obj)) { |
| 86 | shenandoah_assert_forwarded_except(p, obj, is_full_gc_in_progress() || cancelled_gc() || is_degenerated_gc_in_progress()); |
| 87 | obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); |
| 88 | RawAccess<IS_NOT_NULL>::oop_store(p, obj); |
| 89 | } |
| 90 | #ifdef ASSERT |
| 91 | else { |
| 92 | shenandoah_assert_not_forwarded(p, obj); |
| 93 | } |
| 94 | #endif |
| 95 | return obj; |
| 96 | } |
| 97 | |
| 98 | template <class T> |
| 99 | inline oop ShenandoahHeap::maybe_update_with_forwarded(T* p) { |
| 100 | T o = RawAccess<>::oop_load(p); |
| 101 | if (!CompressedOops::is_null(o)) { |
| 102 | oop obj = CompressedOops::decode_not_null(o); |
| 103 | return maybe_update_with_forwarded_not_null(p, obj); |
| 104 | } else { |
| 105 | return NULL; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | template <class T> |
| 110 | inline oop ShenandoahHeap::evac_update_with_forwarded(T* p) { |
| 111 | T o = RawAccess<>::oop_load(p); |
| 112 | if (!CompressedOops::is_null(o)) { |
| 113 | oop heap_oop = CompressedOops::decode_not_null(o); |
| 114 | if (in_collection_set(heap_oop)) { |
| 115 | oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop); |
| 116 | if (oopDesc::equals_raw(forwarded_oop, heap_oop)) { |
| 117 | forwarded_oop = evacuate_object(heap_oop, Thread::current()); |
| 118 | } |
| 119 | oop prev = cas_oop(forwarded_oop, p, heap_oop); |
| 120 | if (oopDesc::equals_raw(prev, heap_oop)) { |
| 121 | return forwarded_oop; |
| 122 | } else { |
| 123 | return NULL; |
| 124 | } |
| 125 | } |
| 126 | return heap_oop; |
| 127 | } else { |
| 128 | return NULL; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | inline oop ShenandoahHeap::cas_oop(oop n, oop* addr, oop c) { |
| 133 | return (oop) Atomic::cmpxchg(n, addr, c); |
| 134 | } |
| 135 | |
| 136 | inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, oop c) { |
| 137 | narrowOop cmp = CompressedOops::encode(c); |
| 138 | narrowOop val = CompressedOops::encode(n); |
| 139 | return CompressedOops::decode((narrowOop) Atomic::cmpxchg(val, addr, cmp)); |
| 140 | } |
| 141 | |
| 142 | template <class T> |
| 143 | inline oop ShenandoahHeap::maybe_update_with_forwarded_not_null(T* p, oop heap_oop) { |
| 144 | shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || is_full_gc_in_progress() || is_degenerated_gc_in_progress()); |
| 145 | shenandoah_assert_correct(p, heap_oop); |
| 146 | |
| 147 | if (in_collection_set(heap_oop)) { |
| 148 | oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop); |
| 149 | if (oopDesc::equals_raw(forwarded_oop, heap_oop)) { |
| 150 | // E.g. during evacuation. |
| 151 | return forwarded_oop; |
| 152 | } |
| 153 | |
| 154 | shenandoah_assert_forwarded_except(p, heap_oop, is_full_gc_in_progress() || is_degenerated_gc_in_progress()); |
| 155 | shenandoah_assert_not_forwarded(p, forwarded_oop); |
| 156 | shenandoah_assert_not_in_cset_except(p, forwarded_oop, cancelled_gc()); |
| 157 | |
| 158 | // If this fails, another thread wrote to p before us, it will be logged in SATB and the |
| 159 | // reference be updated later. |
| 160 | oop witness = cas_oop(forwarded_oop, p, heap_oop); |
| 161 | |
| 162 | if (!oopDesc::equals_raw(witness, heap_oop)) { |
| 163 | // CAS failed, someone had beat us to it. Normally, we would return the failure witness, |
| 164 | // because that would be the proper write of to-space object, enforced by strong barriers. |
| 165 | // However, there is a corner case with arraycopy. It can happen that a Java thread |
| 166 | // beats us with an arraycopy, which first copies the array, which potentially contains |
| 167 | // from-space refs, and only afterwards updates all from-space refs to to-space refs, |
| 168 | // which leaves a short window where the new array elements can be from-space. |
| 169 | // In this case, we can just resolve the result again. As we resolve, we need to consider |
| 170 | // the contended write might have been NULL. |
| 171 | oop result = ShenandoahBarrierSet::resolve_forwarded(witness); |
| 172 | shenandoah_assert_not_forwarded_except(p, result, (result == NULL)); |
| 173 | shenandoah_assert_not_in_cset_except(p, result, (result == NULL) || cancelled_gc()); |
| 174 | return result; |
| 175 | } else { |
| 176 | // Success! We have updated with known to-space copy. We have already asserted it is sane. |
| 177 | return forwarded_oop; |
| 178 | } |
| 179 | } else { |
| 180 | shenandoah_assert_not_forwarded(p, heap_oop); |
| 181 | return heap_oop; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | inline bool ShenandoahHeap::cancelled_gc() const { |
| 186 | return _cancelled_gc.get() == CANCELLED; |
| 187 | } |
| 188 | |
| 189 | inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) { |
| 190 | if (! (sts_active && ShenandoahSuspendibleWorkers)) { |
| 191 | return cancelled_gc(); |
| 192 | } |
| 193 | |
| 194 | jbyte prev = _cancelled_gc.cmpxchg(NOT_CANCELLED, CANCELLABLE); |
| 195 | if (prev == CANCELLABLE || prev == NOT_CANCELLED) { |
| 196 | if (SuspendibleThreadSet::should_yield()) { |
| 197 | SuspendibleThreadSet::yield(); |
| 198 | } |
| 199 | |
| 200 | // Back to CANCELLABLE. The thread that poked NOT_CANCELLED first gets |
| 201 | // to restore to CANCELLABLE. |
| 202 | if (prev == CANCELLABLE) { |
| 203 | _cancelled_gc.set(CANCELLABLE); |
| 204 | } |
| 205 | return false; |
| 206 | } else { |
| 207 | return true; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | inline void ShenandoahHeap::clear_cancelled_gc() { |
| 212 | _cancelled_gc.set(CANCELLABLE); |
| 213 | _oom_evac_handler.clear(); |
| 214 | } |
| 215 | |
| 216 | inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) { |
| 217 | assert(UseTLAB, "TLABs should be enabled" ); |
| 218 | |
| 219 | PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); |
| 220 | if (gclab == NULL) { |
| 221 | assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), |
| 222 | "Performance: thread should have GCLAB: %s" , thread->name()); |
| 223 | // No GCLABs in this thread, fallback to shared allocation |
| 224 | return NULL; |
| 225 | } |
| 226 | HeapWord* obj = gclab->allocate(size); |
| 227 | if (obj != NULL) { |
| 228 | return obj; |
| 229 | } |
| 230 | // Otherwise... |
| 231 | return allocate_from_gclab_slow(thread, size); |
| 232 | } |
| 233 | |
| 234 | inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { |
| 235 | if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) { |
| 236 | // This thread went through the OOM during evac protocol and it is safe to return |
| 237 | // the forward pointer. It must not attempt to evacuate any more. |
| 238 | return ShenandoahBarrierSet::resolve_forwarded(p); |
| 239 | } |
| 240 | |
| 241 | assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope" ); |
| 242 | |
| 243 | size_t size = p->size(); |
| 244 | |
| 245 | assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects" ); |
| 246 | |
| 247 | bool alloc_from_gclab = true; |
| 248 | HeapWord* copy = NULL; |
| 249 | |
| 250 | #ifdef ASSERT |
| 251 | if (ShenandoahOOMDuringEvacALot && |
| 252 | (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call |
| 253 | copy = NULL; |
| 254 | } else { |
| 255 | #endif |
| 256 | if (UseTLAB) { |
| 257 | copy = allocate_from_gclab(thread, size); |
| 258 | } |
| 259 | if (copy == NULL) { |
| 260 | ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size); |
| 261 | copy = allocate_memory(req); |
| 262 | alloc_from_gclab = false; |
| 263 | } |
| 264 | #ifdef ASSERT |
| 265 | } |
| 266 | #endif |
| 267 | |
| 268 | if (copy == NULL) { |
| 269 | control_thread()->handle_alloc_failure_evac(size); |
| 270 | |
| 271 | _oom_evac_handler.handle_out_of_memory_during_evacuation(); |
| 272 | |
| 273 | return ShenandoahBarrierSet::resolve_forwarded(p); |
| 274 | } |
| 275 | |
| 276 | // Copy the object: |
| 277 | Copy::aligned_disjoint_words((HeapWord*) p, copy, size); |
| 278 | |
| 279 | // Try to install the new forwarding pointer. |
| 280 | oop copy_val = oop(copy); |
| 281 | oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); |
| 282 | if (oopDesc::equals_raw(result, copy_val)) { |
| 283 | // Successfully evacuated. Our copy is now the public one! |
| 284 | shenandoah_assert_correct(NULL, copy_val); |
| 285 | return copy_val; |
| 286 | } else { |
| 287 | // Failed to evacuate. We need to deal with the object that is left behind. Since this |
| 288 | // new allocation is certainly after TAMS, it will be considered live in the next cycle. |
| 289 | // But if it happens to contain references to evacuated regions, those references would |
| 290 | // not get updated for this stale copy during this cycle, and we will crash while scanning |
| 291 | // it the next cycle. |
| 292 | // |
| 293 | // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next |
| 294 | // object will overwrite this stale copy, or the filler object on LAB retirement will |
| 295 | // do this. For non-GCLAB allocations, we have no way to retract the allocation, and |
| 296 | // have to explicitly overwrite the copy with the filler object. With that overwrite, |
| 297 | // we have to keep the fwdptr initialized and pointing to our (stale) copy. |
| 298 | if (alloc_from_gclab) { |
| 299 | ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); |
| 300 | } else { |
| 301 | fill_with_object(copy, size); |
| 302 | shenandoah_assert_correct(NULL, copy_val); |
| 303 | } |
| 304 | shenandoah_assert_correct(NULL, result); |
| 305 | return result; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | template<bool RESOLVE> |
| 310 | inline bool ShenandoahHeap::requires_marking(const void* entry) const { |
| 311 | oop obj = oop(entry); |
| 312 | if (RESOLVE) { |
| 313 | obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); |
| 314 | } |
| 315 | return !_marking_context->is_marked(obj); |
| 316 | } |
| 317 | |
| 318 | template <class T> |
| 319 | inline bool ShenandoahHeap::in_collection_set(T p) const { |
| 320 | HeapWord* obj = (HeapWord*) p; |
| 321 | assert(collection_set() != NULL, "Sanity" ); |
| 322 | assert(is_in(obj), "should be in heap" ); |
| 323 | |
| 324 | return collection_set()->is_in(obj); |
| 325 | } |
| 326 | |
| 327 | inline bool ShenandoahHeap::is_stable() const { |
| 328 | return _gc_state.is_clear(); |
| 329 | } |
| 330 | |
| 331 | inline bool ShenandoahHeap::is_idle() const { |
| 332 | return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS | TRAVERSAL); |
| 333 | } |
| 334 | |
| 335 | inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const { |
| 336 | return _gc_state.is_set(MARKING); |
| 337 | } |
| 338 | |
| 339 | inline bool ShenandoahHeap::is_concurrent_traversal_in_progress() const { |
| 340 | return _gc_state.is_set(TRAVERSAL); |
| 341 | } |
| 342 | |
| 343 | inline bool ShenandoahHeap::is_evacuation_in_progress() const { |
| 344 | return _gc_state.is_set(EVACUATION); |
| 345 | } |
| 346 | |
| 347 | inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const { |
| 348 | return _gc_state.is_set(mask); |
| 349 | } |
| 350 | |
| 351 | inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const { |
| 352 | return _degenerated_gc_in_progress.is_set(); |
| 353 | } |
| 354 | |
| 355 | inline bool ShenandoahHeap::is_full_gc_in_progress() const { |
| 356 | return _full_gc_in_progress.is_set(); |
| 357 | } |
| 358 | |
| 359 | inline bool ShenandoahHeap::is_full_gc_move_in_progress() const { |
| 360 | return _full_gc_move_in_progress.is_set(); |
| 361 | } |
| 362 | |
| 363 | inline bool ShenandoahHeap::is_update_refs_in_progress() const { |
| 364 | return _gc_state.is_set(UPDATEREFS); |
| 365 | } |
| 366 | |
| 367 | template<class T> |
| 368 | inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) { |
| 369 | marked_object_iterate(region, cl, region->top()); |
| 370 | } |
| 371 | |
| 372 | template<class T> |
| 373 | inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) { |
| 374 | assert(! region->is_humongous_continuation(), "no humongous continuation regions here" ); |
| 375 | |
| 376 | ShenandoahMarkingContext* const ctx = complete_marking_context(); |
| 377 | assert(ctx->is_complete(), "sanity" ); |
| 378 | |
| 379 | MarkBitMap* mark_bit_map = ctx->mark_bit_map(); |
| 380 | HeapWord* tams = ctx->top_at_mark_start(region); |
| 381 | |
| 382 | size_t skip_bitmap_delta = 1; |
| 383 | HeapWord* start = region->bottom(); |
| 384 | HeapWord* end = MIN2(tams, region->end()); |
| 385 | |
| 386 | // Step 1. Scan below the TAMS based on bitmap data. |
| 387 | HeapWord* limit_bitmap = MIN2(limit, tams); |
| 388 | |
| 389 | // Try to scan the initial candidate. If the candidate is above the TAMS, it would |
| 390 | // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2. |
| 391 | HeapWord* cb = mark_bit_map->get_next_marked_addr(start, end); |
| 392 | |
| 393 | intx dist = ShenandoahMarkScanPrefetch; |
| 394 | if (dist > 0) { |
| 395 | // Batched scan that prefetches the oop data, anticipating the access to |
| 396 | // either header, oop field, or forwarding pointer. Not that we cannot |
| 397 | // touch anything in oop, while it still being prefetched to get enough |
| 398 | // time for prefetch to work. This is why we try to scan the bitmap linearly, |
| 399 | // disregarding the object size. However, since we know forwarding pointer |
| 400 | // preceeds the object, we can skip over it. Once we cannot trust the bitmap, |
| 401 | // there is no point for prefetching the oop contents, as oop->size() will |
| 402 | // touch it prematurely. |
| 403 | |
| 404 | // No variable-length arrays in standard C++, have enough slots to fit |
| 405 | // the prefetch distance. |
| 406 | static const int SLOT_COUNT = 256; |
| 407 | guarantee(dist <= SLOT_COUNT, "adjust slot count" ); |
| 408 | HeapWord* slots[SLOT_COUNT]; |
| 409 | |
| 410 | int avail; |
| 411 | do { |
| 412 | avail = 0; |
| 413 | for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) { |
| 414 | Prefetch::read(cb, oopDesc::mark_offset_in_bytes()); |
| 415 | slots[avail++] = cb; |
| 416 | cb += skip_bitmap_delta; |
| 417 | if (cb < limit_bitmap) { |
| 418 | cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | for (int c = 0; c < avail; c++) { |
| 423 | assert (slots[c] < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")" , p2i(slots[c]), p2i(tams)); |
| 424 | assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")" , p2i(slots[c]), p2i(limit)); |
| 425 | oop obj = oop(slots[c]); |
| 426 | assert(oopDesc::is_oop(obj), "sanity" ); |
| 427 | assert(ctx->is_marked(obj), "object expected to be marked" ); |
| 428 | cl->do_object(obj); |
| 429 | } |
| 430 | } while (avail > 0); |
| 431 | } else { |
| 432 | while (cb < limit_bitmap) { |
| 433 | assert (cb < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")" , p2i(cb), p2i(tams)); |
| 434 | assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")" , p2i(cb), p2i(limit)); |
| 435 | oop obj = oop(cb); |
| 436 | assert(oopDesc::is_oop(obj), "sanity" ); |
| 437 | assert(ctx->is_marked(obj), "object expected to be marked" ); |
| 438 | cl->do_object(obj); |
| 439 | cb += skip_bitmap_delta; |
| 440 | if (cb < limit_bitmap) { |
| 441 | cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap); |
| 442 | } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | // Step 2. Accurate size-based traversal, happens past the TAMS. |
| 447 | // This restarts the scan at TAMS, which makes sure we traverse all objects, |
| 448 | // regardless of what happened at Step 1. |
| 449 | HeapWord* cs = tams; |
| 450 | while (cs < limit) { |
| 451 | assert (cs >= tams, "only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")" , p2i(cs), p2i(tams)); |
| 452 | assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")" , p2i(cs), p2i(limit)); |
| 453 | oop obj = oop(cs); |
| 454 | assert(oopDesc::is_oop(obj), "sanity" ); |
| 455 | assert(ctx->is_marked(obj), "object expected to be marked" ); |
| 456 | int size = obj->size(); |
| 457 | cl->do_object(obj); |
| 458 | cs += size; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | template <class T> |
| 463 | class ShenandoahObjectToOopClosure : public ObjectClosure { |
| 464 | T* _cl; |
| 465 | public: |
| 466 | ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {} |
| 467 | |
| 468 | void do_object(oop obj) { |
| 469 | obj->oop_iterate(_cl); |
| 470 | } |
| 471 | }; |
| 472 | |
| 473 | template <class T> |
| 474 | class ShenandoahObjectToOopBoundedClosure : public ObjectClosure { |
| 475 | T* _cl; |
| 476 | MemRegion _bounds; |
| 477 | public: |
| 478 | ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) : |
| 479 | _cl(cl), _bounds(bottom, top) {} |
| 480 | |
| 481 | void do_object(oop obj) { |
| 482 | obj->oop_iterate(_cl, _bounds); |
| 483 | } |
| 484 | }; |
| 485 | |
| 486 | template<class T> |
| 487 | inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) { |
| 488 | if (region->is_humongous()) { |
| 489 | HeapWord* bottom = region->bottom(); |
| 490 | if (top > bottom) { |
| 491 | region = region->humongous_start_region(); |
| 492 | ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top); |
| 493 | marked_object_iterate(region, &objs); |
| 494 | } |
| 495 | } else { |
| 496 | ShenandoahObjectToOopClosure<T> objs(cl); |
| 497 | marked_object_iterate(region, &objs, top); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const { |
| 502 | if (region_idx < _num_regions) { |
| 503 | return _regions[region_idx]; |
| 504 | } else { |
| 505 | return NULL; |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | inline void ShenandoahHeap::mark_complete_marking_context() { |
| 510 | _marking_context->mark_complete(); |
| 511 | } |
| 512 | |
| 513 | inline void ShenandoahHeap::mark_incomplete_marking_context() { |
| 514 | _marking_context->mark_incomplete(); |
| 515 | } |
| 516 | |
| 517 | inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const { |
| 518 | assert (_marking_context->is_complete()," sanity" ); |
| 519 | return _marking_context; |
| 520 | } |
| 521 | |
| 522 | inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const { |
| 523 | return _marking_context; |
| 524 | } |
| 525 | |
| 526 | #endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP |
| 527 | |