1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "libadt/vectset.hpp" |
27 | #include "memory/allocation.inline.hpp" |
28 | #include "memory/resourceArea.hpp" |
29 | #include "compiler/compilerDirectives.hpp" |
30 | #include "opto/block.hpp" |
31 | #include "opto/cfgnode.hpp" |
32 | #include "opto/chaitin.hpp" |
33 | #include "opto/loopnode.hpp" |
34 | #include "opto/machnode.hpp" |
35 | #include "opto/matcher.hpp" |
36 | #include "opto/opcodes.hpp" |
37 | #include "opto/rootnode.hpp" |
38 | #include "utilities/copy.hpp" |
39 | |
40 | void Block_Array::grow( uint i ) { |
41 | assert(i >= Max(), "must be an overflow" ); |
42 | debug_only(_limit = i+1); |
43 | if( i < _size ) return; |
44 | if( !_size ) { |
45 | _size = 1; |
46 | _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) ); |
47 | _blocks[0] = NULL; |
48 | } |
49 | uint old = _size; |
50 | while( i >= _size ) _size <<= 1; // Double to fit |
51 | _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*)); |
52 | Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) ); |
53 | } |
54 | |
55 | void Block_List::remove(uint i) { |
56 | assert(i < _cnt, "index out of bounds" ); |
57 | Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*))); |
58 | pop(); // shrink list by one block |
59 | } |
60 | |
61 | void Block_List::insert(uint i, Block *b) { |
62 | push(b); // grow list by one block |
63 | Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*))); |
64 | _blocks[i] = b; |
65 | } |
66 | |
67 | #ifndef PRODUCT |
68 | void Block_List::print() { |
69 | for (uint i=0; i < size(); i++) { |
70 | tty->print("B%d " , _blocks[i]->_pre_order); |
71 | } |
72 | tty->print("size = %d\n" , size()); |
73 | } |
74 | #endif |
75 | |
76 | uint Block::code_alignment() const { |
77 | // Check for Root block |
78 | if (_pre_order == 0) return CodeEntryAlignment; |
79 | // Check for Start block |
80 | if (_pre_order == 1) return InteriorEntryAlignment; |
81 | // Check for loop alignment |
82 | if (has_loop_alignment()) return loop_alignment(); |
83 | |
84 | return relocInfo::addr_unit(); // no particular alignment |
85 | } |
86 | |
87 | uint Block::compute_loop_alignment() { |
88 | Node *h = head(); |
89 | int unit_sz = relocInfo::addr_unit(); |
90 | if (h->is_Loop() && h->as_Loop()->is_inner_loop()) { |
91 | // Pre- and post-loops have low trip count so do not bother with |
92 | // NOPs for align loop head. The constants are hidden from tuning |
93 | // but only because my "divide by 4" heuristic surely gets nearly |
94 | // all possible gain (a "do not align at all" heuristic has a |
95 | // chance of getting a really tiny gain). |
96 | if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() || |
97 | h->as_CountedLoop()->is_post_loop())) { |
98 | return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz; |
99 | } |
100 | // Loops with low backedge frequency should not be aligned. |
101 | Node *n = h->in(LoopNode::LoopBackControl)->in(0); |
102 | if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) { |
103 | return unit_sz; // Loop does not loop, more often than not! |
104 | } |
105 | return OptoLoopAlignment; // Otherwise align loop head |
106 | } |
107 | |
108 | return unit_sz; // no particular alignment |
109 | } |
110 | |
111 | // Compute the size of first 'inst_cnt' instructions in this block. |
112 | // Return the number of instructions left to compute if the block has |
113 | // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size |
114 | // exceeds OptoLoopAlignment. |
115 | uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt, |
116 | PhaseRegAlloc* ra) { |
117 | uint last_inst = number_of_nodes(); |
118 | for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) { |
119 | uint inst_size = get_node(j)->size(ra); |
120 | if( inst_size > 0 ) { |
121 | inst_cnt--; |
122 | uint sz = sum_size + inst_size; |
123 | if( sz <= (uint)OptoLoopAlignment ) { |
124 | // Compute size of instructions which fit into fetch buffer only |
125 | // since all inst_cnt instructions will not fit even if we align them. |
126 | sum_size = sz; |
127 | } else { |
128 | return 0; |
129 | } |
130 | } |
131 | } |
132 | return inst_cnt; |
133 | } |
134 | |
135 | uint Block::find_node( const Node *n ) const { |
136 | for( uint i = 0; i < number_of_nodes(); i++ ) { |
137 | if( get_node(i) == n ) |
138 | return i; |
139 | } |
140 | ShouldNotReachHere(); |
141 | return 0; |
142 | } |
143 | |
144 | // Find and remove n from block list |
145 | void Block::find_remove( const Node *n ) { |
146 | remove_node(find_node(n)); |
147 | } |
148 | |
149 | bool Block::contains(const Node *n) const { |
150 | return _nodes.contains(n); |
151 | } |
152 | |
153 | // Return empty status of a block. Empty blocks contain only the head, other |
154 | // ideal nodes, and an optional trailing goto. |
155 | int Block::is_Empty() const { |
156 | |
157 | // Root or start block is not considered empty |
158 | if (head()->is_Root() || head()->is_Start()) { |
159 | return not_empty; |
160 | } |
161 | |
162 | int success_result = completely_empty; |
163 | int end_idx = number_of_nodes() - 1; |
164 | |
165 | // Check for ending goto |
166 | if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) { |
167 | success_result = empty_with_goto; |
168 | end_idx--; |
169 | } |
170 | |
171 | // Unreachable blocks are considered empty |
172 | if (num_preds() <= 1) { |
173 | return success_result; |
174 | } |
175 | |
176 | // Ideal nodes are allowable in empty blocks: skip them Only MachNodes |
177 | // turn directly into code, because only MachNodes have non-trivial |
178 | // emit() functions. |
179 | while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) { |
180 | end_idx--; |
181 | } |
182 | |
183 | // No room for any interesting instructions? |
184 | if (end_idx == 0) { |
185 | return success_result; |
186 | } |
187 | |
188 | return not_empty; |
189 | } |
190 | |
191 | // Return true if the block's code implies that it is likely to be |
192 | // executed infrequently. Check to see if the block ends in a Halt or |
193 | // a low probability call. |
194 | bool Block::has_uncommon_code() const { |
195 | Node* en = end(); |
196 | |
197 | if (en->is_MachGoto()) |
198 | en = en->in(0); |
199 | if (en->is_Catch()) |
200 | en = en->in(0); |
201 | if (en->is_MachProj() && en->in(0)->is_MachCall()) { |
202 | MachCallNode* call = en->in(0)->as_MachCall(); |
203 | if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) { |
204 | // This is true for slow-path stubs like new_{instance,array}, |
205 | // slow_arraycopy, complete_monitor_locking, uncommon_trap. |
206 | // The magic number corresponds to the probability of an uncommon_trap, |
207 | // even though it is a count not a probability. |
208 | return true; |
209 | } |
210 | } |
211 | |
212 | int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode(); |
213 | return op == Op_Halt; |
214 | } |
215 | |
216 | // True if block is low enough frequency or guarded by a test which |
217 | // mostly does not go here. |
218 | bool PhaseCFG::is_uncommon(const Block* block) { |
219 | // Initial blocks must never be moved, so are never uncommon. |
220 | if (block->head()->is_Root() || block->head()->is_Start()) return false; |
221 | |
222 | // Check for way-low freq |
223 | if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true; |
224 | |
225 | // Look for code shape indicating uncommon_trap or slow path |
226 | if (block->has_uncommon_code()) return true; |
227 | |
228 | const float epsilon = 0.05f; |
229 | const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon); |
230 | uint uncommon_preds = 0; |
231 | uint freq_preds = 0; |
232 | uint uncommon_for_freq_preds = 0; |
233 | |
234 | for( uint i=1; i< block->num_preds(); i++ ) { |
235 | Block* guard = get_block_for_node(block->pred(i)); |
236 | // Check to see if this block follows its guard 1 time out of 10000 |
237 | // or less. |
238 | // |
239 | // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which |
240 | // we intend to be "uncommon", such as slow-path TLE allocation, |
241 | // predicted call failure, and uncommon trap triggers. |
242 | // |
243 | // Use an epsilon value of 5% to allow for variability in frequency |
244 | // predictions and floating point calculations. The net effect is |
245 | // that guard_factor is set to 9500. |
246 | // |
247 | // Ignore low-frequency blocks. |
248 | // The next check is (guard->_freq < 1.e-5 * 9500.). |
249 | if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) { |
250 | uncommon_preds++; |
251 | } else { |
252 | freq_preds++; |
253 | if(block->_freq < guard->_freq * guard_factor ) { |
254 | uncommon_for_freq_preds++; |
255 | } |
256 | } |
257 | } |
258 | if( block->num_preds() > 1 && |
259 | // The block is uncommon if all preds are uncommon or |
260 | (uncommon_preds == (block->num_preds()-1) || |
261 | // it is uncommon for all frequent preds. |
262 | uncommon_for_freq_preds == freq_preds) ) { |
263 | return true; |
264 | } |
265 | return false; |
266 | } |
267 | |
268 | #ifndef PRODUCT |
269 | void Block::dump_bidx(const Block* orig, outputStream* st) const { |
270 | if (_pre_order) st->print("B%d" , _pre_order); |
271 | else st->print("N%d" , head()->_idx); |
272 | |
273 | if (Verbose && orig != this) { |
274 | // Dump the original block's idx |
275 | st->print(" (" ); |
276 | orig->dump_bidx(orig, st); |
277 | st->print(")" ); |
278 | } |
279 | } |
280 | |
281 | void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const { |
282 | if (is_connector()) { |
283 | for (uint i=1; i<num_preds(); i++) { |
284 | Block *p = cfg->get_block_for_node(pred(i)); |
285 | p->dump_pred(cfg, orig, st); |
286 | } |
287 | } else { |
288 | dump_bidx(orig, st); |
289 | st->print(" " ); |
290 | } |
291 | } |
292 | |
293 | void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const { |
294 | // Print the basic block. |
295 | dump_bidx(this, st); |
296 | st->print(": " ); |
297 | |
298 | // Print the outgoing CFG edges. |
299 | st->print("#\tout( " ); |
300 | for( uint i=0; i<_num_succs; i++ ) { |
301 | non_connector_successor(i)->dump_bidx(_succs[i], st); |
302 | st->print(" " ); |
303 | } |
304 | |
305 | // Print the incoming CFG edges. |
306 | st->print(") <- " ); |
307 | if( head()->is_block_start() ) { |
308 | st->print("in( " ); |
309 | for (uint i=1; i<num_preds(); i++) { |
310 | Node *s = pred(i); |
311 | if (cfg != NULL) { |
312 | Block *p = cfg->get_block_for_node(s); |
313 | p->dump_pred(cfg, p, st); |
314 | } else { |
315 | while (!s->is_block_start()) { |
316 | s = s->in(0); |
317 | } |
318 | st->print("N%d " , s->_idx ); |
319 | } |
320 | } |
321 | st->print(") " ); |
322 | } else { |
323 | st->print("BLOCK HEAD IS JUNK " ); |
324 | } |
325 | |
326 | // Print loop, if any |
327 | const Block *bhead = this; // Head of self-loop |
328 | Node *bh = bhead->head(); |
329 | |
330 | if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) { |
331 | LoopNode *loop = bh->as_Loop(); |
332 | const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl)); |
333 | while (bx->is_connector()) { |
334 | bx = cfg->get_block_for_node(bx->pred(1)); |
335 | } |
336 | st->print("Loop( B%d-B%d " , bhead->_pre_order, bx->_pre_order); |
337 | // Dump any loop-specific bits, especially for CountedLoops. |
338 | loop->dump_spec(st); |
339 | st->print(")" ); |
340 | } else if (has_loop_alignment()) { |
341 | st->print("top-of-loop" ); |
342 | } |
343 | |
344 | // Print frequency and other optimization-relevant information |
345 | st->print(" Freq: %g" ,_freq); |
346 | if( Verbose || WizardMode ) { |
347 | st->print(" IDom: %d/#%d" , _idom ? _idom->_pre_order : 0, _dom_depth); |
348 | st->print(" RegPressure: %d" ,_reg_pressure); |
349 | st->print(" IHRP Index: %d" ,_ihrp_index); |
350 | st->print(" FRegPressure: %d" ,_freg_pressure); |
351 | st->print(" FHRP Index: %d" ,_fhrp_index); |
352 | } |
353 | st->cr(); |
354 | } |
355 | |
356 | void Block::dump() const { |
357 | dump(NULL); |
358 | } |
359 | |
360 | void Block::dump(const PhaseCFG* cfg) const { |
361 | dump_head(cfg); |
362 | for (uint i=0; i< number_of_nodes(); i++) { |
363 | get_node(i)->dump(); |
364 | } |
365 | tty->print("\n" ); |
366 | } |
367 | #endif |
368 | |
369 | PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher) |
370 | : Phase(CFG) |
371 | , _root(root) |
372 | , _block_arena(arena) |
373 | , _regalloc(NULL) |
374 | , _scheduling_for_pressure(false) |
375 | , _matcher(matcher) |
376 | , _node_to_block_mapping(arena) |
377 | , _node_latency(NULL) |
378 | #ifndef PRODUCT |
379 | , _trace_opto_pipelining(C->directive()->TraceOptoPipeliningOption) |
380 | #endif |
381 | #ifdef ASSERT |
382 | , _raw_oops(arena) |
383 | #endif |
384 | { |
385 | ResourceMark rm; |
386 | // I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode, |
387 | // then Match it into a machine-specific Node. Then clone the machine |
388 | // Node on demand. |
389 | Node *x = new GotoNode(NULL); |
390 | x->init_req(0, x); |
391 | _goto = matcher.match_tree(x); |
392 | assert(_goto != NULL, "" ); |
393 | _goto->set_req(0,_goto); |
394 | |
395 | // Build the CFG in Reverse Post Order |
396 | _number_of_blocks = build_cfg(); |
397 | _root_block = get_block_for_node(_root); |
398 | } |
399 | |
400 | // Build a proper looking CFG. Make every block begin with either a StartNode |
401 | // or a RegionNode. Make every block end with either a Goto, If or Return. |
402 | // The RootNode both starts and ends it's own block. Do this with a recursive |
403 | // backwards walk over the control edges. |
404 | uint PhaseCFG::build_cfg() { |
405 | Arena *a = Thread::current()->resource_area(); |
406 | VectorSet visited(a); |
407 | |
408 | // Allocate stack with enough space to avoid frequent realloc |
409 | Node_Stack nstack(a, C->live_nodes() >> 1); |
410 | nstack.push(_root, 0); |
411 | uint sum = 0; // Counter for blocks |
412 | |
413 | while (nstack.is_nonempty()) { |
414 | // node and in's index from stack's top |
415 | // 'np' is _root (see above) or RegionNode, StartNode: we push on stack |
416 | // only nodes which point to the start of basic block (see below). |
417 | Node *np = nstack.node(); |
418 | // idx > 0, except for the first node (_root) pushed on stack |
419 | // at the beginning when idx == 0. |
420 | // We will use the condition (idx == 0) later to end the build. |
421 | uint idx = nstack.index(); |
422 | Node *proj = np->in(idx); |
423 | const Node *x = proj->is_block_proj(); |
424 | // Does the block end with a proper block-ending Node? One of Return, |
425 | // If or Goto? (This check should be done for visited nodes also). |
426 | if (x == NULL) { // Does not end right... |
427 | Node *g = _goto->clone(); // Force it to end in a Goto |
428 | g->set_req(0, proj); |
429 | np->set_req(idx, g); |
430 | x = proj = g; |
431 | } |
432 | if (!visited.test_set(x->_idx)) { // Visit this block once |
433 | // Skip any control-pinned middle'in stuff |
434 | Node *p = proj; |
435 | do { |
436 | proj = p; // Update pointer to last Control |
437 | p = p->in(0); // Move control forward |
438 | } while( !p->is_block_proj() && |
439 | !p->is_block_start() ); |
440 | // Make the block begin with one of Region or StartNode. |
441 | if( !p->is_block_start() ) { |
442 | RegionNode *r = new RegionNode( 2 ); |
443 | r->init_req(1, p); // Insert RegionNode in the way |
444 | proj->set_req(0, r); // Insert RegionNode in the way |
445 | p = r; |
446 | } |
447 | // 'p' now points to the start of this basic block |
448 | |
449 | // Put self in array of basic blocks |
450 | Block *bb = new (_block_arena) Block(_block_arena, p); |
451 | map_node_to_block(p, bb); |
452 | map_node_to_block(x, bb); |
453 | if( x != p ) { // Only for root is x == p |
454 | bb->push_node((Node*)x); |
455 | } |
456 | // Now handle predecessors |
457 | ++sum; // Count 1 for self block |
458 | uint cnt = bb->num_preds(); |
459 | for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors |
460 | Node *prevproj = p->in(i); // Get prior input |
461 | assert( !prevproj->is_Con(), "dead input not removed" ); |
462 | // Check to see if p->in(i) is a "control-dependent" CFG edge - |
463 | // i.e., it splits at the source (via an IF or SWITCH) and merges |
464 | // at the destination (via a many-input Region). |
465 | // This breaks critical edges. The RegionNode to start the block |
466 | // will be added when <p,i> is pulled off the node stack |
467 | if ( cnt > 2 ) { // Merging many things? |
468 | assert( prevproj== bb->pred(i),"" ); |
469 | if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge? |
470 | // Force a block on the control-dependent edge |
471 | Node *g = _goto->clone(); // Force it to end in a Goto |
472 | g->set_req(0,prevproj); |
473 | p->set_req(i,g); |
474 | } |
475 | } |
476 | nstack.push(p, i); // 'p' is RegionNode or StartNode |
477 | } |
478 | } else { // Post-processing visited nodes |
479 | nstack.pop(); // remove node from stack |
480 | // Check if it the fist node pushed on stack at the beginning. |
481 | if (idx == 0) break; // end of the build |
482 | // Find predecessor basic block |
483 | Block *pb = get_block_for_node(x); |
484 | // Insert into nodes array, if not already there |
485 | if (!has_block(proj)) { |
486 | assert( x != proj, "" ); |
487 | // Map basic block of projection |
488 | map_node_to_block(proj, pb); |
489 | pb->push_node(proj); |
490 | } |
491 | // Insert self as a child of my predecessor block |
492 | pb->_succs.map(pb->_num_succs++, get_block_for_node(np)); |
493 | assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(), |
494 | "too many control users, not a CFG?" ); |
495 | } |
496 | } |
497 | // Return number of basic blocks for all children and self |
498 | return sum; |
499 | } |
500 | |
501 | // Inserts a goto & corresponding basic block between |
502 | // block[block_no] and its succ_no'th successor block |
503 | void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) { |
504 | // get block with block_no |
505 | assert(block_no < number_of_blocks(), "illegal block number" ); |
506 | Block* in = get_block(block_no); |
507 | // get successor block succ_no |
508 | assert(succ_no < in->_num_succs, "illegal successor number" ); |
509 | Block* out = in->_succs[succ_no]; |
510 | // Compute frequency of the new block. Do this before inserting |
511 | // new block in case succ_prob() needs to infer the probability from |
512 | // surrounding blocks. |
513 | float freq = in->_freq * in->succ_prob(succ_no); |
514 | // get ProjNode corresponding to the succ_no'th successor of the in block |
515 | ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj(); |
516 | // create region for basic block |
517 | RegionNode* region = new RegionNode(2); |
518 | region->init_req(1, proj); |
519 | // setup corresponding basic block |
520 | Block* block = new (_block_arena) Block(_block_arena, region); |
521 | map_node_to_block(region, block); |
522 | C->regalloc()->set_bad(region->_idx); |
523 | // add a goto node |
524 | Node* gto = _goto->clone(); // get a new goto node |
525 | gto->set_req(0, region); |
526 | // add it to the basic block |
527 | block->push_node(gto); |
528 | map_node_to_block(gto, block); |
529 | C->regalloc()->set_bad(gto->_idx); |
530 | // hook up successor block |
531 | block->_succs.map(block->_num_succs++, out); |
532 | // remap successor's predecessors if necessary |
533 | for (uint i = 1; i < out->num_preds(); i++) { |
534 | if (out->pred(i) == proj) out->head()->set_req(i, gto); |
535 | } |
536 | // remap predecessor's successor to new block |
537 | in->_succs.map(succ_no, block); |
538 | // Set the frequency of the new block |
539 | block->_freq = freq; |
540 | // add new basic block to basic block list |
541 | add_block_at(block_no + 1, block); |
542 | } |
543 | |
544 | // Does this block end in a multiway branch that cannot have the default case |
545 | // flipped for another case? |
546 | static bool no_flip_branch(Block *b) { |
547 | int branch_idx = b->number_of_nodes() - b->_num_succs-1; |
548 | if (branch_idx < 1) { |
549 | return false; |
550 | } |
551 | Node *branch = b->get_node(branch_idx); |
552 | if (branch->is_Catch()) { |
553 | return true; |
554 | } |
555 | if (branch->is_Mach()) { |
556 | if (branch->is_MachNullCheck()) { |
557 | return true; |
558 | } |
559 | int iop = branch->as_Mach()->ideal_Opcode(); |
560 | if (iop == Op_FastLock || iop == Op_FastUnlock) { |
561 | return true; |
562 | } |
563 | // Don't flip if branch has an implicit check. |
564 | if (branch->as_Mach()->is_TrapBasedCheckNode()) { |
565 | return true; |
566 | } |
567 | } |
568 | return false; |
569 | } |
570 | |
571 | // Check for NeverBranch at block end. This needs to become a GOTO to the |
572 | // true target. NeverBranch are treated as a conditional branch that always |
573 | // goes the same direction for most of the optimizer and are used to give a |
574 | // fake exit path to infinite loops. At this late stage they need to turn |
575 | // into Goto's so that when you enter the infinite loop you indeed hang. |
576 | void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) { |
577 | // Find true target |
578 | int end_idx = b->end_idx(); |
579 | int idx = b->get_node(end_idx+1)->as_Proj()->_con; |
580 | Block *succ = b->_succs[idx]; |
581 | Node* gto = _goto->clone(); // get a new goto node |
582 | gto->set_req(0, b->head()); |
583 | Node *bp = b->get_node(end_idx); |
584 | b->map_node(gto, end_idx); // Slam over NeverBranch |
585 | map_node_to_block(gto, b); |
586 | C->regalloc()->set_bad(gto->_idx); |
587 | b->pop_node(); // Yank projections |
588 | b->pop_node(); // Yank projections |
589 | b->_succs.map(0,succ); // Map only successor |
590 | b->_num_succs = 1; |
591 | // remap successor's predecessors if necessary |
592 | uint j; |
593 | for( j = 1; j < succ->num_preds(); j++) |
594 | if( succ->pred(j)->in(0) == bp ) |
595 | succ->head()->set_req(j, gto); |
596 | // Kill alternate exit path |
597 | Block *dead = b->_succs[1-idx]; |
598 | for( j = 1; j < dead->num_preds(); j++) |
599 | if( dead->pred(j)->in(0) == bp ) |
600 | break; |
601 | // Scan through block, yanking dead path from |
602 | // all regions and phis. |
603 | dead->head()->del_req(j); |
604 | for( int k = 1; dead->get_node(k)->is_Phi(); k++ ) |
605 | dead->get_node(k)->del_req(j); |
606 | } |
607 | |
608 | // Helper function to move block bx to the slot following b_index. Return |
609 | // true if the move is successful, otherwise false |
610 | bool PhaseCFG::move_to_next(Block* bx, uint b_index) { |
611 | if (bx == NULL) return false; |
612 | |
613 | // Return false if bx is already scheduled. |
614 | uint bx_index = bx->_pre_order; |
615 | if ((bx_index <= b_index) && (get_block(bx_index) == bx)) { |
616 | return false; |
617 | } |
618 | |
619 | // Find the current index of block bx on the block list |
620 | bx_index = b_index + 1; |
621 | while (bx_index < number_of_blocks() && get_block(bx_index) != bx) { |
622 | bx_index++; |
623 | } |
624 | assert(get_block(bx_index) == bx, "block not found" ); |
625 | |
626 | // If the previous block conditionally falls into bx, return false, |
627 | // because moving bx will create an extra jump. |
628 | for(uint k = 1; k < bx->num_preds(); k++ ) { |
629 | Block* pred = get_block_for_node(bx->pred(k)); |
630 | if (pred == get_block(bx_index - 1)) { |
631 | if (pred->_num_succs != 1) { |
632 | return false; |
633 | } |
634 | } |
635 | } |
636 | |
637 | // Reinsert bx just past block 'b' |
638 | _blocks.remove(bx_index); |
639 | _blocks.insert(b_index + 1, bx); |
640 | return true; |
641 | } |
642 | |
643 | // Move empty and uncommon blocks to the end. |
644 | void PhaseCFG::move_to_end(Block *b, uint i) { |
645 | int e = b->is_Empty(); |
646 | if (e != Block::not_empty) { |
647 | if (e == Block::empty_with_goto) { |
648 | // Remove the goto, but leave the block. |
649 | b->pop_node(); |
650 | } |
651 | // Mark this block as a connector block, which will cause it to be |
652 | // ignored in certain functions such as non_connector_successor(). |
653 | b->set_connector(); |
654 | } |
655 | // Move the empty block to the end, and don't recheck. |
656 | _blocks.remove(i); |
657 | _blocks.push(b); |
658 | } |
659 | |
660 | // Set loop alignment for every block |
661 | void PhaseCFG::set_loop_alignment() { |
662 | uint last = number_of_blocks(); |
663 | assert(get_block(0) == get_root_block(), "" ); |
664 | |
665 | for (uint i = 1; i < last; i++) { |
666 | Block* block = get_block(i); |
667 | if (block->head()->is_Loop()) { |
668 | block->set_loop_alignment(block); |
669 | } |
670 | } |
671 | } |
672 | |
673 | // Make empty basic blocks to be "connector" blocks, Move uncommon blocks |
674 | // to the end. |
675 | void PhaseCFG::remove_empty_blocks() { |
676 | // Move uncommon blocks to the end |
677 | uint last = number_of_blocks(); |
678 | assert(get_block(0) == get_root_block(), "" ); |
679 | |
680 | for (uint i = 1; i < last; i++) { |
681 | Block* block = get_block(i); |
682 | if (block->is_connector()) { |
683 | break; |
684 | } |
685 | |
686 | // Check for NeverBranch at block end. This needs to become a GOTO to the |
687 | // true target. NeverBranch are treated as a conditional branch that |
688 | // always goes the same direction for most of the optimizer and are used |
689 | // to give a fake exit path to infinite loops. At this late stage they |
690 | // need to turn into Goto's so that when you enter the infinite loop you |
691 | // indeed hang. |
692 | if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) { |
693 | convert_NeverBranch_to_Goto(block); |
694 | } |
695 | |
696 | // Look for uncommon blocks and move to end. |
697 | if (!C->do_freq_based_layout()) { |
698 | if (is_uncommon(block)) { |
699 | move_to_end(block, i); |
700 | last--; // No longer check for being uncommon! |
701 | if (no_flip_branch(block)) { // Fall-thru case must follow? |
702 | // Find the fall-thru block |
703 | block = get_block(i); |
704 | move_to_end(block, i); |
705 | last--; |
706 | } |
707 | // backup block counter post-increment |
708 | i--; |
709 | } |
710 | } |
711 | } |
712 | |
713 | // Move empty blocks to the end |
714 | last = number_of_blocks(); |
715 | for (uint i = 1; i < last; i++) { |
716 | Block* block = get_block(i); |
717 | if (block->is_Empty() != Block::not_empty) { |
718 | move_to_end(block, i); |
719 | last--; |
720 | i--; |
721 | } |
722 | } // End of for all blocks |
723 | } |
724 | |
725 | Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) { |
726 | // Trap based checks must fall through to the successor with |
727 | // PROB_ALWAYS. |
728 | // They should be an If with 2 successors. |
729 | assert(branch->is_MachIf(), "must be If" ); |
730 | assert(block->_num_succs == 2, "must have 2 successors" ); |
731 | |
732 | // Get the If node and the projection for the first successor. |
733 | MachIfNode *iff = block->get_node(block->number_of_nodes()-3)->as_MachIf(); |
734 | ProjNode *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj(); |
735 | ProjNode *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj(); |
736 | ProjNode *projt = (proj0->Opcode() == Op_IfTrue) ? proj0 : proj1; |
737 | ProjNode *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1; |
738 | |
739 | // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1]. |
740 | assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0" ); |
741 | assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1" ); |
742 | |
743 | ProjNode *proj_always; |
744 | ProjNode *proj_never; |
745 | // We must negate the branch if the implicit check doesn't follow |
746 | // the branch's TRUE path. Then, the new TRUE branch target will |
747 | // be the old FALSE branch target. |
748 | if (iff->_prob <= 2*PROB_NEVER) { // There are small rounding errors. |
749 | proj_never = projt; |
750 | proj_always = projf; |
751 | } else { |
752 | // We must negate the branch if the trap doesn't follow the |
753 | // branch's TRUE path. Then, the new TRUE branch target will |
754 | // be the old FALSE branch target. |
755 | proj_never = projf; |
756 | proj_always = projt; |
757 | iff->negate(); |
758 | } |
759 | assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!" ); |
760 | // Map the successors properly |
761 | block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0))); // The target of the trap. |
762 | block->_succs.map(1, get_block_for_node(proj_always->raw_out(0))); // The fall through target. |
763 | |
764 | if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) { |
765 | block->map_node(proj_never, block->number_of_nodes() - block->_num_succs + 0); |
766 | block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1); |
767 | } |
768 | |
769 | // Place the fall through block after this block. |
770 | Block *bs1 = block->non_connector_successor(1); |
771 | if (bs1 != bnext && move_to_next(bs1, block_pos)) { |
772 | bnext = bs1; |
773 | } |
774 | // If the fall through block still is not the next block, insert a goto. |
775 | if (bs1 != bnext) { |
776 | insert_goto_at(block_pos, 1); |
777 | } |
778 | return bnext; |
779 | } |
780 | |
781 | // Fix up the final control flow for basic blocks. |
782 | void PhaseCFG::fixup_flow() { |
783 | // Fixup final control flow for the blocks. Remove jump-to-next |
784 | // block. If neither arm of an IF follows the conditional branch, we |
785 | // have to add a second jump after the conditional. We place the |
786 | // TRUE branch target in succs[0] for both GOTOs and IFs. |
787 | for (uint i = 0; i < number_of_blocks(); i++) { |
788 | Block* block = get_block(i); |
789 | block->_pre_order = i; // turn pre-order into block-index |
790 | |
791 | // Connector blocks need no further processing. |
792 | if (block->is_connector()) { |
793 | assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end" ); |
794 | continue; |
795 | } |
796 | assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors" ); |
797 | |
798 | Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL; |
799 | Block* bs0 = block->non_connector_successor(0); |
800 | |
801 | // Check for multi-way branches where I cannot negate the test to |
802 | // exchange the true and false targets. |
803 | if (no_flip_branch(block)) { |
804 | // Find fall through case - if must fall into its target. |
805 | // Get the index of the branch's first successor. |
806 | int branch_idx = block->number_of_nodes() - block->_num_succs; |
807 | |
808 | // The branch is 1 before the branch's first successor. |
809 | Node *branch = block->get_node(branch_idx-1); |
810 | |
811 | // Handle no-flip branches which have implicit checks and which require |
812 | // special block ordering and individual semantics of the 'fall through |
813 | // case'. |
814 | if ((TrapBasedNullChecks || TrapBasedRangeChecks) && |
815 | branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) { |
816 | bnext = fixup_trap_based_check(branch, block, i, bnext); |
817 | } else { |
818 | // Else, default handling for no-flip branches |
819 | for (uint j2 = 0; j2 < block->_num_succs; j2++) { |
820 | const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj(); |
821 | if (p->_con == 0) { |
822 | // successor j2 is fall through case |
823 | if (block->non_connector_successor(j2) != bnext) { |
824 | // but it is not the next block => insert a goto |
825 | insert_goto_at(i, j2); |
826 | } |
827 | // Put taken branch in slot 0 |
828 | if (j2 == 0 && block->_num_succs == 2) { |
829 | // Flip targets in succs map |
830 | Block *tbs0 = block->_succs[0]; |
831 | Block *tbs1 = block->_succs[1]; |
832 | block->_succs.map(0, tbs1); |
833 | block->_succs.map(1, tbs0); |
834 | } |
835 | break; |
836 | } |
837 | } |
838 | } |
839 | |
840 | // Remove all CatchProjs |
841 | for (uint j = 0; j < block->_num_succs; j++) { |
842 | block->pop_node(); |
843 | } |
844 | |
845 | } else if (block->_num_succs == 1) { |
846 | // Block ends in a Goto? |
847 | if (bnext == bs0) { |
848 | // We fall into next block; remove the Goto |
849 | block->pop_node(); |
850 | } |
851 | |
852 | } else if(block->_num_succs == 2) { // Block ends in a If? |
853 | // Get opcode of 1st projection (matches _succs[0]) |
854 | // Note: Since this basic block has 2 exits, the last 2 nodes must |
855 | // be projections (in any order), the 3rd last node must be |
856 | // the IfNode (we have excluded other 2-way exits such as |
857 | // CatchNodes already). |
858 | MachNode* iff = block->get_node(block->number_of_nodes() - 3)->as_Mach(); |
859 | ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj(); |
860 | ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj(); |
861 | |
862 | // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1]. |
863 | assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0" ); |
864 | assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1" ); |
865 | |
866 | Block* bs1 = block->non_connector_successor(1); |
867 | |
868 | // Check for neither successor block following the current |
869 | // block ending in a conditional. If so, move one of the |
870 | // successors after the current one, provided that the |
871 | // successor was previously unscheduled, but moveable |
872 | // (i.e., all paths to it involve a branch). |
873 | if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) { |
874 | // Choose the more common successor based on the probability |
875 | // of the conditional branch. |
876 | Block* bx = bs0; |
877 | Block* by = bs1; |
878 | |
879 | // _prob is the probability of taking the true path. Make |
880 | // p the probability of taking successor #1. |
881 | float p = iff->as_MachIf()->_prob; |
882 | if (proj0->Opcode() == Op_IfTrue) { |
883 | p = 1.0 - p; |
884 | } |
885 | |
886 | // Prefer successor #1 if p > 0.5 |
887 | if (p > PROB_FAIR) { |
888 | bx = bs1; |
889 | by = bs0; |
890 | } |
891 | |
892 | // Attempt the more common successor first |
893 | if (move_to_next(bx, i)) { |
894 | bnext = bx; |
895 | } else if (move_to_next(by, i)) { |
896 | bnext = by; |
897 | } |
898 | } |
899 | |
900 | // Check for conditional branching the wrong way. Negate |
901 | // conditional, if needed, so it falls into the following block |
902 | // and branches to the not-following block. |
903 | |
904 | // Check for the next block being in succs[0]. We are going to branch |
905 | // to succs[0], so we want the fall-thru case as the next block in |
906 | // succs[1]. |
907 | if (bnext == bs0) { |
908 | // Fall-thru case in succs[0], so flip targets in succs map |
909 | Block* tbs0 = block->_succs[0]; |
910 | Block* tbs1 = block->_succs[1]; |
911 | block->_succs.map(0, tbs1); |
912 | block->_succs.map(1, tbs0); |
913 | // Flip projection for each target |
914 | ProjNode* tmp = proj0; |
915 | proj0 = proj1; |
916 | proj1 = tmp; |
917 | |
918 | } else if(bnext != bs1) { |
919 | // Need a double-branch |
920 | // The existing conditional branch need not change. |
921 | // Add a unconditional branch to the false target. |
922 | // Alas, it must appear in its own block and adding a |
923 | // block this late in the game is complicated. Sigh. |
924 | insert_goto_at(i, 1); |
925 | } |
926 | |
927 | // Make sure we TRUE branch to the target |
928 | if (proj0->Opcode() == Op_IfFalse) { |
929 | iff->as_MachIf()->negate(); |
930 | } |
931 | |
932 | block->pop_node(); // Remove IfFalse & IfTrue projections |
933 | block->pop_node(); |
934 | |
935 | } else { |
936 | // Multi-exit block, e.g. a switch statement |
937 | // But we don't need to do anything here |
938 | } |
939 | } // End of for all blocks |
940 | } |
941 | |
942 | |
943 | // postalloc_expand: Expand nodes after register allocation. |
944 | // |
945 | // postalloc_expand has to be called after register allocation, just |
946 | // before output (i.e. scheduling). It only gets called if |
947 | // Matcher::require_postalloc_expand is true. |
948 | // |
949 | // Background: |
950 | // |
951 | // Nodes that are expandend (one compound node requiring several |
952 | // assembler instructions to be implemented split into two or more |
953 | // non-compound nodes) after register allocation are not as nice as |
954 | // the ones expanded before register allocation - they don't |
955 | // participate in optimizations as global code motion. But after |
956 | // register allocation we can expand nodes that use registers which |
957 | // are not spillable or registers that are not allocated, because the |
958 | // old compound node is simply replaced (in its location in the basic |
959 | // block) by a new subgraph which does not contain compound nodes any |
960 | // more. The scheduler called during output can later on process these |
961 | // non-compound nodes. |
962 | // |
963 | // Implementation: |
964 | // |
965 | // Nodes requiring postalloc expand are specified in the ad file by using |
966 | // a postalloc_expand statement instead of ins_encode. A postalloc_expand |
967 | // contains a single call to an encoding, as does an ins_encode |
968 | // statement. Instead of an emit() function a postalloc_expand() function |
969 | // is generated that doesn't emit assembler but creates a new |
970 | // subgraph. The code below calls this postalloc_expand function for each |
971 | // node with the appropriate attribute. This function returns the new |
972 | // nodes generated in an array passed in the call. The old node, |
973 | // potential MachTemps before and potential Projs after it then get |
974 | // disconnected and replaced by the new nodes. The instruction |
975 | // generating the result has to be the last one in the array. In |
976 | // general it is assumed that Projs after the node expanded are |
977 | // kills. These kills are not required any more after expanding as |
978 | // there are now explicitly visible def-use chains and the Projs are |
979 | // removed. This does not hold for calls: They do not only have |
980 | // kill-Projs but also Projs defining values. Therefore Projs after |
981 | // the node expanded are removed for all but for calls. If a node is |
982 | // to be reused, it must be added to the nodes list returned, and it |
983 | // will be added again. |
984 | // |
985 | // Implementing the postalloc_expand function for a node in an enc_class |
986 | // is rather tedious. It requires knowledge about many node details, as |
987 | // the nodes and the subgraph must be hand crafted. To simplify this, |
988 | // adlc generates some utility variables into the postalloc_expand function, |
989 | // e.g., holding the operands as specified by the postalloc_expand encoding |
990 | // specification, e.g.: |
991 | // * unsigned idx_<par_name> holding the index of the node in the ins |
992 | // * Node *n_<par_name> holding the node loaded from the ins |
993 | // * MachOpnd *op_<par_name> holding the corresponding operand |
994 | // |
995 | // The ordering of operands can not be determined by looking at a |
996 | // rule. Especially if a match rule matches several different trees, |
997 | // several nodes are generated from one instruct specification with |
998 | // different operand orderings. In this case the adlc generated |
999 | // variables are the only way to access the ins and operands |
1000 | // deterministically. |
1001 | // |
1002 | // If assigning a register to a node that contains an oop, don't |
1003 | // forget to call ra_->set_oop() for the node. |
1004 | void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) { |
1005 | GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node. |
1006 | GrowableArray <Node *> remove(32); |
1007 | GrowableArray <Node *> succs(32); |
1008 | unsigned int max_idx = C->unique(); // Remember to distinguish new from old nodes. |
1009 | DEBUG_ONLY(bool foundNode = false); |
1010 | |
1011 | // for all blocks |
1012 | for (uint i = 0; i < number_of_blocks(); i++) { |
1013 | Block *b = _blocks[i]; |
1014 | // For all instructions in the current block. |
1015 | for (uint j = 0; j < b->number_of_nodes(); j++) { |
1016 | Node *n = b->get_node(j); |
1017 | if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) { |
1018 | #ifdef ASSERT |
1019 | if (TracePostallocExpand) { |
1020 | if (!foundNode) { |
1021 | foundNode = true; |
1022 | tty->print("POSTALLOC EXPANDING %d %s\n" , C->compile_id(), |
1023 | C->method() ? C->method()->name()->as_utf8() : C->stub_name()); |
1024 | } |
1025 | tty->print(" postalloc expanding " ); n->dump(); |
1026 | if (Verbose) { |
1027 | tty->print(" with ins:\n" ); |
1028 | for (uint k = 0; k < n->len(); ++k) { |
1029 | if (n->in(k)) { tty->print(" " ); n->in(k)->dump(); } |
1030 | } |
1031 | } |
1032 | } |
1033 | #endif |
1034 | new_nodes.clear(); |
1035 | // Collect nodes that have to be removed from the block later on. |
1036 | uint req = n->req(); |
1037 | remove.clear(); |
1038 | for (uint k = 0; k < req; ++k) { |
1039 | if (n->in(k) && n->in(k)->is_MachTemp()) { |
1040 | remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed. |
1041 | n->in(k)->del_req(0); |
1042 | j--; |
1043 | } |
1044 | } |
1045 | |
1046 | // Check whether we can allocate enough nodes. We set a fix limit for |
1047 | // the size of postalloc expands with this. |
1048 | uint unique_limit = C->unique() + 40; |
1049 | if (unique_limit >= _ra->node_regs_max_index()) { |
1050 | Compile::current()->record_failure("out of nodes in postalloc expand" ); |
1051 | return; |
1052 | } |
1053 | |
1054 | // Emit (i.e. generate new nodes). |
1055 | n->as_Mach()->postalloc_expand(&new_nodes, _ra); |
1056 | |
1057 | assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand." ); |
1058 | |
1059 | // Disconnect the inputs of the old node. |
1060 | // |
1061 | // We reuse MachSpillCopy nodes. If we need to expand them, there |
1062 | // are many, so reusing pays off. If reused, the node already |
1063 | // has the new ins. n must be the last node on new_nodes list. |
1064 | if (!n->is_MachSpillCopy()) { |
1065 | for (int k = req - 1; k >= 0; --k) { |
1066 | n->del_req(k); |
1067 | } |
1068 | } |
1069 | |
1070 | #ifdef ASSERT |
1071 | // Check that all nodes have proper operands. |
1072 | for (int k = 0; k < new_nodes.length(); ++k) { |
1073 | if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ... |
1074 | MachNode *m = new_nodes.at(k)->as_Mach(); |
1075 | for (unsigned int l = 0; l < m->num_opnds(); ++l) { |
1076 | if (MachOper::notAnOper(m->_opnds[l])) { |
1077 | outputStream *os = tty; |
1078 | os->print("Node %s " , m->Name()); |
1079 | os->print("has invalid opnd %d: %p\n" , l, m->_opnds[l]); |
1080 | assert(0, "Invalid operands, see inline trace in hs_err_pid file." ); |
1081 | } |
1082 | } |
1083 | } |
1084 | #endif |
1085 | |
1086 | // Collect succs of old node in remove (for projections) and in succs (for |
1087 | // all other nodes) do _not_ collect projections in remove (but in succs) |
1088 | // in case the node is a call. We need the projections for calls as they are |
1089 | // associated with registes (i.e. they are defs). |
1090 | succs.clear(); |
1091 | for (DUIterator k = n->outs(); n->has_out(k); k++) { |
1092 | if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) { |
1093 | remove.push(n->out(k)); |
1094 | } else { |
1095 | succs.push(n->out(k)); |
1096 | } |
1097 | } |
1098 | // Replace old node n as input of its succs by last of the new nodes. |
1099 | for (int k = 0; k < succs.length(); ++k) { |
1100 | Node *succ = succs.at(k); |
1101 | for (uint l = 0; l < succ->req(); ++l) { |
1102 | if (succ->in(l) == n) { |
1103 | succ->set_req(l, new_nodes.at(new_nodes.length() - 1)); |
1104 | } |
1105 | } |
1106 | for (uint l = succ->req(); l < succ->len(); ++l) { |
1107 | if (succ->in(l) == n) { |
1108 | succ->set_prec(l, new_nodes.at(new_nodes.length() - 1)); |
1109 | } |
1110 | } |
1111 | } |
1112 | |
1113 | // Index of old node in block. |
1114 | uint index = b->find_node(n); |
1115 | // Insert new nodes into block and map them in nodes->blocks array |
1116 | // and remember last node in n2. |
1117 | Node *n2 = NULL; |
1118 | for (int k = 0; k < new_nodes.length(); ++k) { |
1119 | n2 = new_nodes.at(k); |
1120 | b->insert_node(n2, ++index); |
1121 | map_node_to_block(n2, b); |
1122 | } |
1123 | |
1124 | // Add old node n to remove and remove them all from block. |
1125 | remove.push(n); |
1126 | j--; |
1127 | #ifdef ASSERT |
1128 | if (TracePostallocExpand && Verbose) { |
1129 | tty->print(" removing:\n" ); |
1130 | for (int k = 0; k < remove.length(); ++k) { |
1131 | tty->print(" " ); remove.at(k)->dump(); |
1132 | } |
1133 | tty->print(" inserting:\n" ); |
1134 | for (int k = 0; k < new_nodes.length(); ++k) { |
1135 | tty->print(" " ); new_nodes.at(k)->dump(); |
1136 | } |
1137 | } |
1138 | #endif |
1139 | for (int k = 0; k < remove.length(); ++k) { |
1140 | if (b->contains(remove.at(k))) { |
1141 | b->find_remove(remove.at(k)); |
1142 | } else { |
1143 | assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "" ); |
1144 | } |
1145 | } |
1146 | // If anything has been inserted (n2 != NULL), continue after last node inserted. |
1147 | // This does not always work. Some postalloc expands don't insert any nodes, if they |
1148 | // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly. |
1149 | j = n2 ? b->find_node(n2) : j; |
1150 | } |
1151 | } |
1152 | } |
1153 | |
1154 | #ifdef ASSERT |
1155 | if (foundNode) { |
1156 | tty->print("FINISHED %d %s\n" , C->compile_id(), |
1157 | C->method() ? C->method()->name()->as_utf8() : C->stub_name()); |
1158 | tty->flush(); |
1159 | } |
1160 | #endif |
1161 | } |
1162 | |
1163 | |
1164 | //------------------------------dump------------------------------------------- |
1165 | #ifndef PRODUCT |
1166 | void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const { |
1167 | const Node *x = end->is_block_proj(); |
1168 | assert( x, "not a CFG" ); |
1169 | |
1170 | // Do not visit this block again |
1171 | if( visited.test_set(x->_idx) ) return; |
1172 | |
1173 | // Skip through this block |
1174 | const Node *p = x; |
1175 | do { |
1176 | p = p->in(0); // Move control forward |
1177 | assert( !p->is_block_proj() || p->is_Root(), "not a CFG" ); |
1178 | } while( !p->is_block_start() ); |
1179 | |
1180 | // Recursively visit |
1181 | for (uint i = 1; i < p->req(); i++) { |
1182 | _dump_cfg(p->in(i), visited); |
1183 | } |
1184 | |
1185 | // Dump the block |
1186 | get_block_for_node(p)->dump(this); |
1187 | } |
1188 | |
1189 | void PhaseCFG::dump( ) const { |
1190 | tty->print("\n--- CFG --- %d BBs\n" , number_of_blocks()); |
1191 | if (_blocks.size()) { // Did we do basic-block layout? |
1192 | for (uint i = 0; i < number_of_blocks(); i++) { |
1193 | const Block* block = get_block(i); |
1194 | block->dump(this); |
1195 | } |
1196 | } else { // Else do it with a DFS |
1197 | VectorSet visited(_block_arena); |
1198 | _dump_cfg(_root,visited); |
1199 | } |
1200 | } |
1201 | |
1202 | void PhaseCFG::dump_headers() { |
1203 | for (uint i = 0; i < number_of_blocks(); i++) { |
1204 | Block* block = get_block(i); |
1205 | if (block != NULL) { |
1206 | block->dump_head(this); |
1207 | } |
1208 | } |
1209 | } |
1210 | |
1211 | void PhaseCFG::verify() const { |
1212 | #ifdef ASSERT |
1213 | // Verify sane CFG |
1214 | for (uint i = 0; i < number_of_blocks(); i++) { |
1215 | Block* block = get_block(i); |
1216 | uint cnt = block->number_of_nodes(); |
1217 | uint j; |
1218 | for (j = 0; j < cnt; j++) { |
1219 | Node *n = block->get_node(j); |
1220 | assert(get_block_for_node(n) == block, "" ); |
1221 | if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) { |
1222 | assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block" ); |
1223 | } |
1224 | if (n->needs_anti_dependence_check()) { |
1225 | verify_anti_dependences(block, n); |
1226 | } |
1227 | for (uint k = 0; k < n->req(); k++) { |
1228 | Node *def = n->in(k); |
1229 | if (def && def != n) { |
1230 | assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok" ); |
1231 | // Verify that instructions in the block is in correct order. |
1232 | // Uses must follow their definition if they are at the same block. |
1233 | // Mostly done to check that MachSpillCopy nodes are placed correctly |
1234 | // when CreateEx node is moved in build_ifg_physical(). |
1235 | if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) && |
1236 | // See (+++) comment in reg_split.cpp |
1237 | !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) { |
1238 | bool is_loop = false; |
1239 | if (n->is_Phi()) { |
1240 | for (uint l = 1; l < def->req(); l++) { |
1241 | if (n == def->in(l)) { |
1242 | is_loop = true; |
1243 | break; // Some kind of loop |
1244 | } |
1245 | } |
1246 | } |
1247 | assert(is_loop || block->find_node(def) < j, "uses must follow definitions" ); |
1248 | } |
1249 | } |
1250 | } |
1251 | } |
1252 | |
1253 | j = block->end_idx(); |
1254 | Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj(); |
1255 | assert(bp, "last instruction must be a block proj" ); |
1256 | assert(bp == block->get_node(j), "wrong number of successors for this block" ); |
1257 | if (bp->is_Catch()) { |
1258 | while (block->get_node(--j)->is_MachProj()) { |
1259 | ; |
1260 | } |
1261 | assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call" ); |
1262 | } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) { |
1263 | assert(block->_num_succs == 2, "Conditional branch must have two targets" ); |
1264 | } |
1265 | } |
1266 | #endif |
1267 | } |
1268 | #endif |
1269 | |
1270 | UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) { |
1271 | Copy::zero_to_bytes( _indices, sizeof(uint)*max ); |
1272 | } |
1273 | |
1274 | void UnionFind::extend( uint from_idx, uint to_idx ) { |
1275 | _nesting.check(); |
1276 | if( from_idx >= _max ) { |
1277 | uint size = 16; |
1278 | while( size <= from_idx ) size <<=1; |
1279 | _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size ); |
1280 | _max = size; |
1281 | } |
1282 | while( _cnt <= from_idx ) _indices[_cnt++] = 0; |
1283 | _indices[from_idx] = to_idx; |
1284 | } |
1285 | |
1286 | void UnionFind::reset( uint max ) { |
1287 | // Force the Union-Find mapping to be at least this large |
1288 | extend(max,0); |
1289 | // Initialize to be the ID mapping. |
1290 | for( uint i=0; i<max; i++ ) map(i,i); |
1291 | } |
1292 | |
1293 | // Straight out of Tarjan's union-find algorithm |
1294 | uint UnionFind::Find_compress( uint idx ) { |
1295 | uint cur = idx; |
1296 | uint next = lookup(cur); |
1297 | while( next != cur ) { // Scan chain of equivalences |
1298 | assert( next < cur, "always union smaller" ); |
1299 | cur = next; // until find a fixed-point |
1300 | next = lookup(cur); |
1301 | } |
1302 | // Core of union-find algorithm: update chain of |
1303 | // equivalences to be equal to the root. |
1304 | while( idx != next ) { |
1305 | uint tmp = lookup(idx); |
1306 | map(idx, next); |
1307 | idx = tmp; |
1308 | } |
1309 | return idx; |
1310 | } |
1311 | |
1312 | // Like Find above, but no path compress, so bad asymptotic behavior |
1313 | uint UnionFind::Find_const( uint idx ) const { |
1314 | if( idx == 0 ) return idx; // Ignore the zero idx |
1315 | // Off the end? This can happen during debugging dumps |
1316 | // when data structures have not finished being updated. |
1317 | if( idx >= _max ) return idx; |
1318 | uint next = lookup(idx); |
1319 | while( next != idx ) { // Scan chain of equivalences |
1320 | idx = next; // until find a fixed-point |
1321 | next = lookup(idx); |
1322 | } |
1323 | return next; |
1324 | } |
1325 | |
1326 | // union 2 sets together. |
1327 | void UnionFind::Union( uint idx1, uint idx2 ) { |
1328 | uint src = Find(idx1); |
1329 | uint dst = Find(idx2); |
1330 | assert( src, "" ); |
1331 | assert( dst, "" ); |
1332 | assert( src < _max, "oob" ); |
1333 | assert( dst < _max, "oob" ); |
1334 | assert( src < dst, "always union smaller" ); |
1335 | map(dst,src); |
1336 | } |
1337 | |
1338 | #ifndef PRODUCT |
1339 | void Trace::dump( ) const { |
1340 | tty->print_cr("Trace (freq %f)" , first_block()->_freq); |
1341 | for (Block *b = first_block(); b != NULL; b = next(b)) { |
1342 | tty->print(" B%d" , b->_pre_order); |
1343 | if (b->head()->is_Loop()) { |
1344 | tty->print(" (L%d)" , b->compute_loop_alignment()); |
1345 | } |
1346 | if (b->has_loop_alignment()) { |
1347 | tty->print(" (T%d)" , b->code_alignment()); |
1348 | } |
1349 | } |
1350 | tty->cr(); |
1351 | } |
1352 | |
1353 | void CFGEdge::dump( ) const { |
1354 | tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: " , |
1355 | from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct); |
1356 | switch(state()) { |
1357 | case connected: |
1358 | tty->print("connected" ); |
1359 | break; |
1360 | case open: |
1361 | tty->print("open" ); |
1362 | break; |
1363 | case interior: |
1364 | tty->print("interior" ); |
1365 | break; |
1366 | } |
1367 | if (infrequent()) { |
1368 | tty->print(" infrequent" ); |
1369 | } |
1370 | tty->cr(); |
1371 | } |
1372 | #endif |
1373 | |
1374 | // Comparison function for edges |
1375 | static int edge_order(CFGEdge **e0, CFGEdge **e1) { |
1376 | float freq0 = (*e0)->freq(); |
1377 | float freq1 = (*e1)->freq(); |
1378 | if (freq0 != freq1) { |
1379 | return freq0 > freq1 ? -1 : 1; |
1380 | } |
1381 | |
1382 | int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo; |
1383 | int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo; |
1384 | |
1385 | return dist1 - dist0; |
1386 | } |
1387 | |
1388 | // Comparison function for edges |
1389 | extern "C" int trace_frequency_order(const void *p0, const void *p1) { |
1390 | Trace *tr0 = *(Trace **) p0; |
1391 | Trace *tr1 = *(Trace **) p1; |
1392 | Block *b0 = tr0->first_block(); |
1393 | Block *b1 = tr1->first_block(); |
1394 | |
1395 | // The trace of connector blocks goes at the end; |
1396 | // we only expect one such trace |
1397 | if (b0->is_connector() != b1->is_connector()) { |
1398 | return b1->is_connector() ? -1 : 1; |
1399 | } |
1400 | |
1401 | // Pull more frequently executed blocks to the beginning |
1402 | float freq0 = b0->_freq; |
1403 | float freq1 = b1->_freq; |
1404 | if (freq0 != freq1) { |
1405 | return freq0 > freq1 ? -1 : 1; |
1406 | } |
1407 | |
1408 | int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo; |
1409 | |
1410 | return diff; |
1411 | } |
1412 | |
1413 | // Find edges of interest, i.e, those which can fall through. Presumes that |
1414 | // edges which don't fall through are of low frequency and can be generally |
1415 | // ignored. Initialize the list of traces. |
1416 | void PhaseBlockLayout::find_edges() { |
1417 | // Walk the blocks, creating edges and Traces |
1418 | uint i; |
1419 | Trace *tr = NULL; |
1420 | for (i = 0; i < _cfg.number_of_blocks(); i++) { |
1421 | Block* b = _cfg.get_block(i); |
1422 | tr = new Trace(b, next, prev); |
1423 | traces[tr->id()] = tr; |
1424 | |
1425 | // All connector blocks should be at the end of the list |
1426 | if (b->is_connector()) break; |
1427 | |
1428 | // If this block and the next one have a one-to-one successor |
1429 | // predecessor relationship, simply append the next block |
1430 | int nfallthru = b->num_fall_throughs(); |
1431 | while (nfallthru == 1 && |
1432 | b->succ_fall_through(0)) { |
1433 | Block *n = b->_succs[0]; |
1434 | |
1435 | // Skip over single-entry connector blocks, we don't want to |
1436 | // add them to the trace. |
1437 | while (n->is_connector() && n->num_preds() == 1) { |
1438 | n = n->_succs[0]; |
1439 | } |
1440 | |
1441 | // We see a merge point, so stop search for the next block |
1442 | if (n->num_preds() != 1) break; |
1443 | |
1444 | i++; |
1445 | assert(n == _cfg.get_block(i), "expecting next block" ); |
1446 | tr->append(n); |
1447 | uf->map(n->_pre_order, tr->id()); |
1448 | traces[n->_pre_order] = NULL; |
1449 | nfallthru = b->num_fall_throughs(); |
1450 | b = n; |
1451 | } |
1452 | |
1453 | if (nfallthru > 0) { |
1454 | // Create a CFGEdge for each outgoing |
1455 | // edge that could be a fall-through. |
1456 | for (uint j = 0; j < b->_num_succs; j++ ) { |
1457 | if (b->succ_fall_through(j)) { |
1458 | Block *target = b->non_connector_successor(j); |
1459 | float freq = b->_freq * b->succ_prob(j); |
1460 | int from_pct = (int) ((100 * freq) / b->_freq); |
1461 | int to_pct = (int) ((100 * freq) / target->_freq); |
1462 | edges->append(new CFGEdge(b, target, freq, from_pct, to_pct)); |
1463 | } |
1464 | } |
1465 | } |
1466 | } |
1467 | |
1468 | // Group connector blocks into one trace |
1469 | for (i++; i < _cfg.number_of_blocks(); i++) { |
1470 | Block *b = _cfg.get_block(i); |
1471 | assert(b->is_connector(), "connector blocks at the end" ); |
1472 | tr->append(b); |
1473 | uf->map(b->_pre_order, tr->id()); |
1474 | traces[b->_pre_order] = NULL; |
1475 | } |
1476 | } |
1477 | |
1478 | // Union two traces together in uf, and null out the trace in the list |
1479 | void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) { |
1480 | uint old_id = old_trace->id(); |
1481 | uint updated_id = updated_trace->id(); |
1482 | |
1483 | uint lo_id = updated_id; |
1484 | uint hi_id = old_id; |
1485 | |
1486 | // If from is greater than to, swap values to meet |
1487 | // UnionFind guarantee. |
1488 | if (updated_id > old_id) { |
1489 | lo_id = old_id; |
1490 | hi_id = updated_id; |
1491 | |
1492 | // Fix up the trace ids |
1493 | traces[lo_id] = traces[updated_id]; |
1494 | updated_trace->set_id(lo_id); |
1495 | } |
1496 | |
1497 | // Union the lower with the higher and remove the pointer |
1498 | // to the higher. |
1499 | uf->Union(lo_id, hi_id); |
1500 | traces[hi_id] = NULL; |
1501 | } |
1502 | |
1503 | // Append traces together via the most frequently executed edges |
1504 | void PhaseBlockLayout::grow_traces() { |
1505 | // Order the edges, and drive the growth of Traces via the most |
1506 | // frequently executed edges. |
1507 | edges->sort(edge_order); |
1508 | for (int i = 0; i < edges->length(); i++) { |
1509 | CFGEdge *e = edges->at(i); |
1510 | |
1511 | if (e->state() != CFGEdge::open) continue; |
1512 | |
1513 | Block *src_block = e->from(); |
1514 | Block *targ_block = e->to(); |
1515 | |
1516 | // Don't grow traces along backedges? |
1517 | if (!BlockLayoutRotateLoops) { |
1518 | if (targ_block->_rpo <= src_block->_rpo) { |
1519 | targ_block->set_loop_alignment(targ_block); |
1520 | continue; |
1521 | } |
1522 | } |
1523 | |
1524 | Trace *src_trace = trace(src_block); |
1525 | Trace *targ_trace = trace(targ_block); |
1526 | |
1527 | // If the edge in question can join two traces at their ends, |
1528 | // append one trace to the other. |
1529 | if (src_trace->last_block() == src_block) { |
1530 | if (src_trace == targ_trace) { |
1531 | e->set_state(CFGEdge::interior); |
1532 | if (targ_trace->backedge(e)) { |
1533 | // Reset i to catch any newly eligible edge |
1534 | // (Or we could remember the first "open" edge, and reset there) |
1535 | i = 0; |
1536 | } |
1537 | } else if (targ_trace->first_block() == targ_block) { |
1538 | e->set_state(CFGEdge::connected); |
1539 | src_trace->append(targ_trace); |
1540 | union_traces(src_trace, targ_trace); |
1541 | } |
1542 | } |
1543 | } |
1544 | } |
1545 | |
1546 | // Embed one trace into another, if the fork or join points are sufficiently |
1547 | // balanced. |
1548 | void PhaseBlockLayout::merge_traces(bool fall_thru_only) { |
1549 | // Walk the edge list a another time, looking at unprocessed edges. |
1550 | // Fold in diamonds |
1551 | for (int i = 0; i < edges->length(); i++) { |
1552 | CFGEdge *e = edges->at(i); |
1553 | |
1554 | if (e->state() != CFGEdge::open) continue; |
1555 | if (fall_thru_only) { |
1556 | if (e->infrequent()) continue; |
1557 | } |
1558 | |
1559 | Block *src_block = e->from(); |
1560 | Trace *src_trace = trace(src_block); |
1561 | bool src_at_tail = src_trace->last_block() == src_block; |
1562 | |
1563 | Block *targ_block = e->to(); |
1564 | Trace *targ_trace = trace(targ_block); |
1565 | bool targ_at_start = targ_trace->first_block() == targ_block; |
1566 | |
1567 | if (src_trace == targ_trace) { |
1568 | // This may be a loop, but we can't do much about it. |
1569 | e->set_state(CFGEdge::interior); |
1570 | continue; |
1571 | } |
1572 | |
1573 | if (fall_thru_only) { |
1574 | // If the edge links the middle of two traces, we can't do anything. |
1575 | // Mark the edge and continue. |
1576 | if (!src_at_tail & !targ_at_start) { |
1577 | continue; |
1578 | } |
1579 | |
1580 | // Don't grow traces along backedges? |
1581 | if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) { |
1582 | continue; |
1583 | } |
1584 | |
1585 | // If both ends of the edge are available, why didn't we handle it earlier? |
1586 | assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier." ); |
1587 | |
1588 | if (targ_at_start) { |
1589 | // Insert the "targ" trace in the "src" trace if the insertion point |
1590 | // is a two way branch. |
1591 | // Better profitability check possible, but may not be worth it. |
1592 | // Someday, see if the this "fork" has an associated "join"; |
1593 | // then make a policy on merging this trace at the fork or join. |
1594 | // For example, other things being equal, it may be better to place this |
1595 | // trace at the join point if the "src" trace ends in a two-way, but |
1596 | // the insertion point is one-way. |
1597 | assert(src_block->num_fall_throughs() == 2, "unexpected diamond" ); |
1598 | e->set_state(CFGEdge::connected); |
1599 | src_trace->insert_after(src_block, targ_trace); |
1600 | union_traces(src_trace, targ_trace); |
1601 | } else if (src_at_tail) { |
1602 | if (src_trace != trace(_cfg.get_root_block())) { |
1603 | e->set_state(CFGEdge::connected); |
1604 | targ_trace->insert_before(targ_block, src_trace); |
1605 | union_traces(targ_trace, src_trace); |
1606 | } |
1607 | } |
1608 | } else if (e->state() == CFGEdge::open) { |
1609 | // Append traces, even without a fall-thru connection. |
1610 | // But leave root entry at the beginning of the block list. |
1611 | if (targ_trace != trace(_cfg.get_root_block())) { |
1612 | e->set_state(CFGEdge::connected); |
1613 | src_trace->append(targ_trace); |
1614 | union_traces(src_trace, targ_trace); |
1615 | } |
1616 | } |
1617 | } |
1618 | } |
1619 | |
1620 | // Order the sequence of the traces in some desirable way, and fixup the |
1621 | // jumps at the end of each block. |
1622 | void PhaseBlockLayout::reorder_traces(int count) { |
1623 | ResourceArea *area = Thread::current()->resource_area(); |
1624 | Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count); |
1625 | Block_List worklist; |
1626 | int new_count = 0; |
1627 | |
1628 | // Compact the traces. |
1629 | for (int i = 0; i < count; i++) { |
1630 | Trace *tr = traces[i]; |
1631 | if (tr != NULL) { |
1632 | new_traces[new_count++] = tr; |
1633 | } |
1634 | } |
1635 | |
1636 | // The entry block should be first on the new trace list. |
1637 | Trace *tr = trace(_cfg.get_root_block()); |
1638 | assert(tr == new_traces[0], "entry trace misplaced" ); |
1639 | |
1640 | // Sort the new trace list by frequency |
1641 | qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order); |
1642 | |
1643 | // Patch up the successor blocks |
1644 | _cfg.clear_blocks(); |
1645 | for (int i = 0; i < new_count; i++) { |
1646 | Trace *tr = new_traces[i]; |
1647 | if (tr != NULL) { |
1648 | tr->fixup_blocks(_cfg); |
1649 | } |
1650 | } |
1651 | } |
1652 | |
1653 | // Order basic blocks based on frequency |
1654 | PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) |
1655 | : Phase(BlockLayout) |
1656 | , _cfg(cfg) { |
1657 | ResourceMark rm; |
1658 | ResourceArea *area = Thread::current()->resource_area(); |
1659 | |
1660 | // List of traces |
1661 | int size = _cfg.number_of_blocks() + 1; |
1662 | traces = NEW_ARENA_ARRAY(area, Trace *, size); |
1663 | memset(traces, 0, size*sizeof(Trace*)); |
1664 | next = NEW_ARENA_ARRAY(area, Block *, size); |
1665 | memset(next, 0, size*sizeof(Block *)); |
1666 | prev = NEW_ARENA_ARRAY(area, Block *, size); |
1667 | memset(prev , 0, size*sizeof(Block *)); |
1668 | |
1669 | // List of edges |
1670 | edges = new GrowableArray<CFGEdge*>; |
1671 | |
1672 | // Mapping block index --> block_trace |
1673 | uf = new UnionFind(size); |
1674 | uf->reset(size); |
1675 | |
1676 | // Find edges and create traces. |
1677 | find_edges(); |
1678 | |
1679 | // Grow traces at their ends via most frequent edges. |
1680 | grow_traces(); |
1681 | |
1682 | // Merge one trace into another, but only at fall-through points. |
1683 | // This may make diamonds and other related shapes in a trace. |
1684 | merge_traces(true); |
1685 | |
1686 | // Run merge again, allowing two traces to be catenated, even if |
1687 | // one does not fall through into the other. This appends loosely |
1688 | // related traces to be near each other. |
1689 | merge_traces(false); |
1690 | |
1691 | // Re-order all the remaining traces by frequency |
1692 | reorder_traces(size); |
1693 | |
1694 | assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink" ); |
1695 | } |
1696 | |
1697 | |
1698 | // Edge e completes a loop in a trace. If the target block is head of the |
1699 | // loop, rotate the loop block so that the loop ends in a conditional branch. |
1700 | bool Trace::backedge(CFGEdge *e) { |
1701 | bool loop_rotated = false; |
1702 | Block *src_block = e->from(); |
1703 | Block *targ_block = e->to(); |
1704 | |
1705 | assert(last_block() == src_block, "loop discovery at back branch" ); |
1706 | if (first_block() == targ_block) { |
1707 | if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) { |
1708 | // Find the last block in the trace that has a conditional |
1709 | // branch. |
1710 | Block *b; |
1711 | for (b = last_block(); b != NULL; b = prev(b)) { |
1712 | if (b->num_fall_throughs() == 2) { |
1713 | break; |
1714 | } |
1715 | } |
1716 | |
1717 | if (b != last_block() && b != NULL) { |
1718 | loop_rotated = true; |
1719 | |
1720 | // Rotate the loop by doing two-part linked-list surgery. |
1721 | append(first_block()); |
1722 | break_loop_after(b); |
1723 | } |
1724 | } |
1725 | |
1726 | // Backbranch to the top of a trace |
1727 | // Scroll forward through the trace from the targ_block. If we find |
1728 | // a loop head before another loop top, use the the loop head alignment. |
1729 | for (Block *b = targ_block; b != NULL; b = next(b)) { |
1730 | if (b->has_loop_alignment()) { |
1731 | break; |
1732 | } |
1733 | if (b->head()->is_Loop()) { |
1734 | targ_block = b; |
1735 | break; |
1736 | } |
1737 | } |
1738 | |
1739 | first_block()->set_loop_alignment(targ_block); |
1740 | |
1741 | } else { |
1742 | // That loop may already have a loop top (we're reaching it again |
1743 | // through the backedge of an outer loop) |
1744 | Block* b = prev(targ_block); |
1745 | bool has_top = targ_block->head()->is_Loop() && b->has_loop_alignment() && !b->head()->is_Loop(); |
1746 | if (!has_top) { |
1747 | // Backbranch into the middle of a trace |
1748 | targ_block->set_loop_alignment(targ_block); |
1749 | } |
1750 | } |
1751 | |
1752 | return loop_rotated; |
1753 | } |
1754 | |
1755 | // push blocks onto the CFG list |
1756 | // ensure that blocks have the correct two-way branch sense |
1757 | void Trace::fixup_blocks(PhaseCFG &cfg) { |
1758 | Block *last = last_block(); |
1759 | for (Block *b = first_block(); b != NULL; b = next(b)) { |
1760 | cfg.add_block(b); |
1761 | if (!b->is_connector()) { |
1762 | int nfallthru = b->num_fall_throughs(); |
1763 | if (b != last) { |
1764 | if (nfallthru == 2) { |
1765 | // Ensure that the sense of the branch is correct |
1766 | Block *bnext = next(b); |
1767 | Block *bs0 = b->non_connector_successor(0); |
1768 | |
1769 | MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach(); |
1770 | ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj(); |
1771 | ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj(); |
1772 | |
1773 | if (bnext == bs0) { |
1774 | // Fall-thru case in succs[0], should be in succs[1] |
1775 | |
1776 | // Flip targets in _succs map |
1777 | Block *tbs0 = b->_succs[0]; |
1778 | Block *tbs1 = b->_succs[1]; |
1779 | b->_succs.map( 0, tbs1 ); |
1780 | b->_succs.map( 1, tbs0 ); |
1781 | |
1782 | // Flip projections to match targets |
1783 | b->map_node(proj1, b->number_of_nodes() - 2); |
1784 | b->map_node(proj0, b->number_of_nodes() - 1); |
1785 | } |
1786 | } |
1787 | } |
1788 | } |
1789 | } |
1790 | } |
1791 | |