| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "opto/ad.hpp" |
| 27 | #include "opto/compile.hpp" |
| 28 | #include "opto/matcher.hpp" |
| 29 | #include "opto/node.hpp" |
| 30 | #include "opto/regmask.hpp" |
| 31 | #include "utilities/population_count.hpp" |
| 32 | |
| 33 | #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */ |
| 34 | |
| 35 | //------------------------------dump------------------------------------------- |
| 36 | |
| 37 | #ifndef PRODUCT |
| 38 | void OptoReg::dump(int r, outputStream *st) { |
| 39 | switch (r) { |
| 40 | case Special: st->print("r---" ); break; |
| 41 | case Bad: st->print("rBAD" ); break; |
| 42 | default: |
| 43 | if (r < _last_Mach_Reg) st->print("%s" , Matcher::regName[r]); |
| 44 | else st->print("rS%d" ,r); |
| 45 | break; |
| 46 | } |
| 47 | } |
| 48 | #endif |
| 49 | |
| 50 | |
| 51 | //============================================================================= |
| 52 | const RegMask RegMask::Empty( |
| 53 | # define BODY(I) 0, |
| 54 | FORALL_BODY |
| 55 | # undef BODY |
| 56 | 0 |
| 57 | ); |
| 58 | |
| 59 | //============================================================================= |
| 60 | bool RegMask::is_vector(uint ireg) { |
| 61 | return (ireg == Op_VecS || ireg == Op_VecD || |
| 62 | ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ ); |
| 63 | } |
| 64 | |
| 65 | int RegMask::num_registers(uint ireg) { |
| 66 | switch(ireg) { |
| 67 | case Op_VecZ: |
| 68 | return 16; |
| 69 | case Op_VecY: |
| 70 | return 8; |
| 71 | case Op_VecX: |
| 72 | return 4; |
| 73 | case Op_VecD: |
| 74 | case Op_RegD: |
| 75 | case Op_RegL: |
| 76 | #ifdef _LP64 |
| 77 | case Op_RegP: |
| 78 | #endif |
| 79 | return 2; |
| 80 | } |
| 81 | // Op_VecS and the rest ideal registers. |
| 82 | return 1; |
| 83 | } |
| 84 | |
| 85 | // Clear out partial bits; leave only bit pairs |
| 86 | void RegMask::clear_to_pairs() { |
| 87 | assert(valid_watermarks(), "sanity" ); |
| 88 | for (int i = _lwm; i <= _hwm; i++) { |
| 89 | int bits = _A[i]; |
| 90 | bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair |
| 91 | bits |= (bits>>1); // Smear 1 hi-bit into a pair |
| 92 | _A[i] = bits; |
| 93 | } |
| 94 | assert(is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); |
| 95 | } |
| 96 | |
| 97 | bool RegMask::is_misaligned_pair() const { |
| 98 | return Size() == 2 && !is_aligned_pairs(); |
| 99 | } |
| 100 | |
| 101 | bool RegMask::is_aligned_pairs() const { |
| 102 | // Assert that the register mask contains only bit pairs. |
| 103 | assert(valid_watermarks(), "sanity" ); |
| 104 | for (int i = _lwm; i <= _hwm; i++) { |
| 105 | int bits = _A[i]; |
| 106 | while (bits) { // Check bits for pairing |
| 107 | int bit = bits & -bits; // Extract low bit |
| 108 | // Low bit is not odd means its mis-aligned. |
| 109 | if ((bit & 0x55555555) == 0) return false; |
| 110 | bits -= bit; // Remove bit from mask |
| 111 | // Check for aligned adjacent bit |
| 112 | if ((bits & (bit<<1)) == 0) return false; |
| 113 | bits -= (bit<<1); // Remove other halve of pair |
| 114 | } |
| 115 | } |
| 116 | return true; |
| 117 | } |
| 118 | |
| 119 | // Return TRUE if the mask contains a single bit |
| 120 | bool RegMask::is_bound1() const { |
| 121 | if (is_AllStack()) return false; |
| 122 | return Size() == 1; |
| 123 | } |
| 124 | |
| 125 | // Return TRUE if the mask contains an adjacent pair of bits and no other bits. |
| 126 | bool RegMask::is_bound_pair() const { |
| 127 | if (is_AllStack()) return false; |
| 128 | int bit = -1; // Set to hold the one bit allowed |
| 129 | assert(valid_watermarks(), "sanity" ); |
| 130 | for (int i = _lwm; i <= _hwm; i++) { |
| 131 | if (_A[i]) { // Found some bits |
| 132 | if (bit != -1) return false; // Already had bits, so fail |
| 133 | bit = _A[i] & -(_A[i]); // Extract 1 bit from mask |
| 134 | if ((bit << 1) != 0) { // Bit pair stays in same word? |
| 135 | if ((bit | (bit<<1)) != _A[i]) |
| 136 | return false; // Require adjacent bit pair and no more bits |
| 137 | } else { // Else its a split-pair case |
| 138 | if(bit != _A[i]) return false; // Found many bits, so fail |
| 139 | i++; // Skip iteration forward |
| 140 | if (i > _hwm || _A[i] != 1) |
| 141 | return false; // Require 1 lo bit in next word |
| 142 | } |
| 143 | } |
| 144 | } |
| 145 | // True for both the empty mask and for a bit pair |
| 146 | return true; |
| 147 | } |
| 148 | |
| 149 | // Test for a single adjacent set of ideal register's size. |
| 150 | bool RegMask::is_bound(uint ireg) const { |
| 151 | if (is_vector(ireg)) { |
| 152 | if (is_bound_set(num_registers(ireg))) |
| 153 | return true; |
| 154 | } else if (is_bound1() || is_bound_pair()) { |
| 155 | return true; |
| 156 | } |
| 157 | return false; |
| 158 | } |
| 159 | |
| 160 | // only indicies of power 2 are accessed, so index 3 is only filled in for storage. |
| 161 | static int low_bits[5] = { 0x55555555, 0x11111111, 0x01010101, 0x00000000, 0x00010001 }; |
| 162 | |
| 163 | // Find the lowest-numbered register set in the mask. Return the |
| 164 | // HIGHEST register number in the set, or BAD if no sets. |
| 165 | // Works also for size 1. |
| 166 | OptoReg::Name RegMask::find_first_set(const int size) const { |
| 167 | assert(is_aligned_sets(size), "mask is not aligned, adjacent sets" ); |
| 168 | assert(valid_watermarks(), "sanity" ); |
| 169 | for (int i = _lwm; i <= _hwm; i++) { |
| 170 | if (_A[i]) { // Found some bits |
| 171 | // Convert to bit number, return hi bit in pair |
| 172 | return OptoReg::Name((i<<_LogWordBits) + find_lowest_bit(_A[i]) + (size - 1)); |
| 173 | } |
| 174 | } |
| 175 | return OptoReg::Bad; |
| 176 | } |
| 177 | |
| 178 | // Clear out partial bits; leave only aligned adjacent bit pairs |
| 179 | void RegMask::clear_to_sets(const int size) { |
| 180 | if (size == 1) return; |
| 181 | assert(2 <= size && size <= 16, "update low bits table" ); |
| 182 | assert(is_power_of_2(size), "sanity" ); |
| 183 | assert(valid_watermarks(), "sanity" ); |
| 184 | int low_bits_mask = low_bits[size>>2]; |
| 185 | for (int i = _lwm; i <= _hwm; i++) { |
| 186 | int bits = _A[i]; |
| 187 | int sets = (bits & low_bits_mask); |
| 188 | for (int j = 1; j < size; j++) { |
| 189 | sets = (bits & (sets<<1)); // filter bits which produce whole sets |
| 190 | } |
| 191 | sets |= (sets>>1); // Smear 1 hi-bit into a set |
| 192 | if (size > 2) { |
| 193 | sets |= (sets>>2); // Smear 2 hi-bits into a set |
| 194 | if (size > 4) { |
| 195 | sets |= (sets>>4); // Smear 4 hi-bits into a set |
| 196 | if (size > 8) { |
| 197 | sets |= (sets>>8); // Smear 8 hi-bits into a set |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | _A[i] = sets; |
| 202 | } |
| 203 | assert(is_aligned_sets(size), "mask is not aligned, adjacent sets" ); |
| 204 | } |
| 205 | |
| 206 | // Smear out partial bits to aligned adjacent bit sets |
| 207 | void RegMask::smear_to_sets(const int size) { |
| 208 | if (size == 1) return; |
| 209 | assert(2 <= size && size <= 16, "update low bits table" ); |
| 210 | assert(is_power_of_2(size), "sanity" ); |
| 211 | assert(valid_watermarks(), "sanity" ); |
| 212 | int low_bits_mask = low_bits[size>>2]; |
| 213 | for (int i = _lwm; i <= _hwm; i++) { |
| 214 | int bits = _A[i]; |
| 215 | int sets = 0; |
| 216 | for (int j = 0; j < size; j++) { |
| 217 | sets |= (bits & low_bits_mask); // collect partial bits |
| 218 | bits = bits>>1; |
| 219 | } |
| 220 | sets |= (sets<<1); // Smear 1 lo-bit into a set |
| 221 | if (size > 2) { |
| 222 | sets |= (sets<<2); // Smear 2 lo-bits into a set |
| 223 | if (size > 4) { |
| 224 | sets |= (sets<<4); // Smear 4 lo-bits into a set |
| 225 | if (size > 8) { |
| 226 | sets |= (sets<<8); // Smear 8 lo-bits into a set |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | _A[i] = sets; |
| 231 | } |
| 232 | assert(is_aligned_sets(size), "mask is not aligned, adjacent sets" ); |
| 233 | } |
| 234 | |
| 235 | // Assert that the register mask contains only bit sets. |
| 236 | bool RegMask::is_aligned_sets(const int size) const { |
| 237 | if (size == 1) return true; |
| 238 | assert(2 <= size && size <= 16, "update low bits table" ); |
| 239 | assert(is_power_of_2(size), "sanity" ); |
| 240 | int low_bits_mask = low_bits[size>>2]; |
| 241 | assert(valid_watermarks(), "sanity" ); |
| 242 | for (int i = _lwm; i <= _hwm; i++) { |
| 243 | int bits = _A[i]; |
| 244 | while (bits) { // Check bits for pairing |
| 245 | int bit = bits & -bits; // Extract low bit |
| 246 | // Low bit is not odd means its mis-aligned. |
| 247 | if ((bit & low_bits_mask) == 0) return false; |
| 248 | // Do extra work since (bit << size) may overflow. |
| 249 | int hi_bit = bit << (size-1); // high bit |
| 250 | int set = hi_bit + ((hi_bit-1) & ~(bit-1)); |
| 251 | // Check for aligned adjacent bits in this set |
| 252 | if ((bits & set) != set) return false; |
| 253 | bits -= set; // Remove this set |
| 254 | } |
| 255 | } |
| 256 | return true; |
| 257 | } |
| 258 | |
| 259 | // Return TRUE if the mask contains one adjacent set of bits and no other bits. |
| 260 | // Works also for size 1. |
| 261 | int RegMask::is_bound_set(const int size) const { |
| 262 | if (is_AllStack()) return false; |
| 263 | assert(1 <= size && size <= 16, "update low bits table" ); |
| 264 | assert(valid_watermarks(), "sanity" ); |
| 265 | int bit = -1; // Set to hold the one bit allowed |
| 266 | for (int i = _lwm; i <= _hwm; i++) { |
| 267 | if (_A[i] ) { // Found some bits |
| 268 | if (bit != -1) |
| 269 | return false; // Already had bits, so fail |
| 270 | bit = _A[i] & -_A[i]; // Extract low bit from mask |
| 271 | int hi_bit = bit << (size-1); // high bit |
| 272 | if (hi_bit != 0) { // Bit set stays in same word? |
| 273 | int set = hi_bit + ((hi_bit-1) & ~(bit-1)); |
| 274 | if (set != _A[i]) |
| 275 | return false; // Require adjacent bit set and no more bits |
| 276 | } else { // Else its a split-set case |
| 277 | if (((-1) & ~(bit-1)) != _A[i]) |
| 278 | return false; // Found many bits, so fail |
| 279 | i++; // Skip iteration forward and check high part |
| 280 | // The lower (32-size) bits should be 0 since it is split case. |
| 281 | int clear_bit_size = 32-size; |
| 282 | int shift_back_size = 32-clear_bit_size; |
| 283 | int set = bit>>clear_bit_size; |
| 284 | set = set & -set; // Remove sign extension. |
| 285 | set = (((set << size) - 1) >> shift_back_size); |
| 286 | if (i > _hwm || _A[i] != set) |
| 287 | return false; // Require expected low bits in next word |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | // True for both the empty mask and for a bit set |
| 292 | return true; |
| 293 | } |
| 294 | |
| 295 | // UP means register only, Register plus stack, or stack only is DOWN |
| 296 | bool RegMask::is_UP() const { |
| 297 | // Quick common case check for DOWN (any stack slot is legal) |
| 298 | if (is_AllStack()) |
| 299 | return false; |
| 300 | // Slower check for any stack bits set (also DOWN) |
| 301 | if (overlap(Matcher::STACK_ONLY_mask)) |
| 302 | return false; |
| 303 | // Not DOWN, so must be UP |
| 304 | return true; |
| 305 | } |
| 306 | |
| 307 | // Compute size of register mask in bits |
| 308 | uint RegMask::Size() const { |
| 309 | uint sum = 0; |
| 310 | assert(valid_watermarks(), "sanity" ); |
| 311 | for (int i = _lwm; i <= _hwm; i++) { |
| 312 | sum += population_count(_A[i]); |
| 313 | } |
| 314 | return sum; |
| 315 | } |
| 316 | |
| 317 | #ifndef PRODUCT |
| 318 | void RegMask::dump(outputStream *st) const { |
| 319 | st->print("[" ); |
| 320 | RegMask rm = *this; // Structure copy into local temp |
| 321 | |
| 322 | OptoReg::Name start = rm.find_first_elem(); // Get a register |
| 323 | if (OptoReg::is_valid(start)) { // Check for empty mask |
| 324 | rm.Remove(start); // Yank from mask |
| 325 | OptoReg::dump(start, st); // Print register |
| 326 | OptoReg::Name last = start; |
| 327 | |
| 328 | // Now I have printed an initial register. |
| 329 | // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ". |
| 330 | // Begin looping over the remaining registers. |
| 331 | while (1) { // |
| 332 | OptoReg::Name reg = rm.find_first_elem(); // Get a register |
| 333 | if (!OptoReg::is_valid(reg)) |
| 334 | break; // Empty mask, end loop |
| 335 | rm.Remove(reg); // Yank from mask |
| 336 | |
| 337 | if (last+1 == reg) { // See if they are adjacent |
| 338 | // Adjacent registers just collect into long runs, no printing. |
| 339 | last = reg; |
| 340 | } else { // Ending some kind of run |
| 341 | if (start == last) { // 1-register run; no special printing |
| 342 | } else if (start+1 == last) { |
| 343 | st->print("," ); // 2-register run; print as "rX,rY" |
| 344 | OptoReg::dump(last, st); |
| 345 | } else { // Multi-register run; print as "rX-rZ" |
| 346 | st->print("-" ); |
| 347 | OptoReg::dump(last, st); |
| 348 | } |
| 349 | st->print("," ); // Seperate start of new run |
| 350 | start = last = reg; // Start a new register run |
| 351 | OptoReg::dump(start, st); // Print register |
| 352 | } // End of if ending a register run or not |
| 353 | } // End of while regmask not empty |
| 354 | |
| 355 | if (start == last) { // 1-register run; no special printing |
| 356 | } else if (start+1 == last) { |
| 357 | st->print("," ); // 2-register run; print as "rX,rY" |
| 358 | OptoReg::dump(last, st); |
| 359 | } else { // Multi-register run; print as "rX-rZ" |
| 360 | st->print("-" ); |
| 361 | OptoReg::dump(last, st); |
| 362 | } |
| 363 | if (rm.is_AllStack()) st->print("..." ); |
| 364 | } |
| 365 | st->print("]" ); |
| 366 | } |
| 367 | #endif |
| 368 | |