1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_OPTO_NODE_HPP
26#define SHARE_OPTO_NODE_HPP
27
28#include "libadt/vectset.hpp"
29#include "opto/compile.hpp"
30#include "opto/type.hpp"
31
32// Portions of code courtesy of Clifford Click
33
34// Optimization - Graph Style
35
36
37class AbstractLockNode;
38class AddNode;
39class AddPNode;
40class AliasInfo;
41class AllocateArrayNode;
42class AllocateNode;
43class ArrayCopyNode;
44class Block;
45class BoolNode;
46class BoxLockNode;
47class CMoveNode;
48class CallDynamicJavaNode;
49class CallJavaNode;
50class CallLeafNode;
51class CallNode;
52class CallRuntimeNode;
53class CallStaticJavaNode;
54class CastIINode;
55class CatchNode;
56class CatchProjNode;
57class CheckCastPPNode;
58class ClearArrayNode;
59class CmpNode;
60class CodeBuffer;
61class ConstraintCastNode;
62class ConNode;
63class CompareAndSwapNode;
64class CompareAndExchangeNode;
65class CountedLoopNode;
66class CountedLoopEndNode;
67class DecodeNarrowPtrNode;
68class DecodeNNode;
69class DecodeNKlassNode;
70class EncodeNarrowPtrNode;
71class EncodePNode;
72class EncodePKlassNode;
73class FastLockNode;
74class FastUnlockNode;
75class IfNode;
76class IfProjNode;
77class IfFalseNode;
78class IfTrueNode;
79class InitializeNode;
80class JVMState;
81class JumpNode;
82class JumpProjNode;
83class LoadNode;
84class LoadBarrierNode;
85class LoadBarrierSlowRegNode;
86class LoadStoreNode;
87class LoadStoreConditionalNode;
88class LockNode;
89class LoopNode;
90class MachBranchNode;
91class MachCallDynamicJavaNode;
92class MachCallJavaNode;
93class MachCallLeafNode;
94class MachCallNode;
95class MachCallRuntimeNode;
96class MachCallStaticJavaNode;
97class MachConstantBaseNode;
98class MachConstantNode;
99class MachGotoNode;
100class MachIfNode;
101class MachJumpNode;
102class MachNode;
103class MachNullCheckNode;
104class MachProjNode;
105class MachReturnNode;
106class MachSafePointNode;
107class MachSpillCopyNode;
108class MachTempNode;
109class MachMergeNode;
110class MachMemBarNode;
111class Matcher;
112class MemBarNode;
113class MemBarStoreStoreNode;
114class MemNode;
115class MergeMemNode;
116class MulNode;
117class MultiNode;
118class MultiBranchNode;
119class NeverBranchNode;
120class OuterStripMinedLoopNode;
121class OuterStripMinedLoopEndNode;
122class Node;
123class Node_Array;
124class Node_List;
125class Node_Stack;
126class NullCheckNode;
127class OopMap;
128class ParmNode;
129class PCTableNode;
130class PhaseCCP;
131class PhaseGVN;
132class PhaseIterGVN;
133class PhaseRegAlloc;
134class PhaseTransform;
135class PhaseValues;
136class PhiNode;
137class Pipeline;
138class ProjNode;
139class RangeCheckNode;
140class RegMask;
141class RegionNode;
142class RootNode;
143class SafePointNode;
144class SafePointScalarObjectNode;
145class StartNode;
146class State;
147class StoreNode;
148class SubNode;
149class Type;
150class TypeNode;
151class UnlockNode;
152class VectorNode;
153class LoadVectorNode;
154class StoreVectorNode;
155class VectorSet;
156typedef void (*NFunc)(Node&,void*);
157extern "C" {
158 typedef int (*C_sort_func_t)(const void *, const void *);
159}
160
161// The type of all node counts and indexes.
162// It must hold at least 16 bits, but must also be fast to load and store.
163// This type, if less than 32 bits, could limit the number of possible nodes.
164// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
165typedef unsigned int node_idx_t;
166
167
168#ifndef OPTO_DU_ITERATOR_ASSERT
169#ifdef ASSERT
170#define OPTO_DU_ITERATOR_ASSERT 1
171#else
172#define OPTO_DU_ITERATOR_ASSERT 0
173#endif
174#endif //OPTO_DU_ITERATOR_ASSERT
175
176#if OPTO_DU_ITERATOR_ASSERT
177class DUIterator;
178class DUIterator_Fast;
179class DUIterator_Last;
180#else
181typedef uint DUIterator;
182typedef Node** DUIterator_Fast;
183typedef Node** DUIterator_Last;
184#endif
185
186// Node Sentinel
187#define NodeSentinel (Node*)-1
188
189// Unknown count frequency
190#define COUNT_UNKNOWN (-1.0f)
191
192//------------------------------Node-------------------------------------------
193// Nodes define actions in the program. They create values, which have types.
194// They are both vertices in a directed graph and program primitives. Nodes
195// are labeled; the label is the "opcode", the primitive function in the lambda
196// calculus sense that gives meaning to the Node. Node inputs are ordered (so
197// that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
198// the Node's function. These inputs also define a Type equation for the Node.
199// Solving these Type equations amounts to doing dataflow analysis.
200// Control and data are uniformly represented in the graph. Finally, Nodes
201// have a unique dense integer index which is used to index into side arrays
202// whenever I have phase-specific information.
203
204class Node {
205 friend class VMStructs;
206
207 // Lots of restrictions on cloning Nodes
208 Node(const Node&); // not defined; linker error to use these
209 Node &operator=(const Node &rhs);
210
211public:
212 friend class Compile;
213 #if OPTO_DU_ITERATOR_ASSERT
214 friend class DUIterator_Common;
215 friend class DUIterator;
216 friend class DUIterator_Fast;
217 friend class DUIterator_Last;
218 #endif
219
220 // Because Nodes come and go, I define an Arena of Node structures to pull
221 // from. This should allow fast access to node creation & deletion. This
222 // field is a local cache of a value defined in some "program fragment" for
223 // which these Nodes are just a part of.
224
225 inline void* operator new(size_t x) throw() {
226 Compile* C = Compile::current();
227 Node* n = (Node*)C->node_arena()->Amalloc_D(x);
228 return (void*)n;
229 }
230
231 // Delete is a NOP
232 void operator delete( void *ptr ) {}
233 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
234 void destruct();
235
236 // Create a new Node. Required is the number is of inputs required for
237 // semantic correctness.
238 Node( uint required );
239
240 // Create a new Node with given input edges.
241 // This version requires use of the "edge-count" new.
242 // E.g. new (C,3) FooNode( C, NULL, left, right );
243 Node( Node *n0 );
244 Node( Node *n0, Node *n1 );
245 Node( Node *n0, Node *n1, Node *n2 );
246 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
247 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
248 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
249 Node( Node *n0, Node *n1, Node *n2, Node *n3,
250 Node *n4, Node *n5, Node *n6 );
251
252 // Clone an inherited Node given only the base Node type.
253 Node* clone() const;
254
255 // Clone a Node, immediately supplying one or two new edges.
256 // The first and second arguments, if non-null, replace in(1) and in(2),
257 // respectively.
258 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
259 Node* nn = clone();
260 if (in1 != NULL) nn->set_req(1, in1);
261 if (in2 != NULL) nn->set_req(2, in2);
262 return nn;
263 }
264
265private:
266 // Shared setup for the above constructors.
267 // Handles all interactions with Compile::current.
268 // Puts initial values in all Node fields except _idx.
269 // Returns the initial value for _idx, which cannot
270 // be initialized by assignment.
271 inline int Init(int req);
272
273//----------------- input edge handling
274protected:
275 friend class PhaseCFG; // Access to address of _in array elements
276 Node **_in; // Array of use-def references to Nodes
277 Node **_out; // Array of def-use references to Nodes
278
279 // Input edges are split into two categories. Required edges are required
280 // for semantic correctness; order is important and NULLs are allowed.
281 // Precedence edges are used to help determine execution order and are
282 // added, e.g., for scheduling purposes. They are unordered and not
283 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
284 // are required, from _cnt to _max-1 are precedence edges.
285 node_idx_t _cnt; // Total number of required Node inputs.
286
287 node_idx_t _max; // Actual length of input array.
288
289 // Output edges are an unordered list of def-use edges which exactly
290 // correspond to required input edges which point from other nodes
291 // to this one. Thus the count of the output edges is the number of
292 // users of this node.
293 node_idx_t _outcnt; // Total number of Node outputs.
294
295 node_idx_t _outmax; // Actual length of output array.
296
297 // Grow the actual input array to the next larger power-of-2 bigger than len.
298 void grow( uint len );
299 // Grow the output array to the next larger power-of-2 bigger than len.
300 void out_grow( uint len );
301
302 public:
303 // Each Node is assigned a unique small/dense number. This number is used
304 // to index into auxiliary arrays of data and bit vectors.
305 // The field _idx is declared constant to defend against inadvertent assignments,
306 // since it is used by clients as a naked field. However, the field's value can be
307 // changed using the set_idx() method.
308 //
309 // The PhaseRenumberLive phase renumbers nodes based on liveness information.
310 // Therefore, it updates the value of the _idx field. The parse-time _idx is
311 // preserved in _parse_idx.
312 const node_idx_t _idx;
313 DEBUG_ONLY(const node_idx_t _parse_idx;)
314
315 // Get the (read-only) number of input edges
316 uint req() const { return _cnt; }
317 uint len() const { return _max; }
318 // Get the (read-only) number of output edges
319 uint outcnt() const { return _outcnt; }
320
321#if OPTO_DU_ITERATOR_ASSERT
322 // Iterate over the out-edges of this node. Deletions are illegal.
323 inline DUIterator outs() const;
324 // Use this when the out array might have changed to suppress asserts.
325 inline DUIterator& refresh_out_pos(DUIterator& i) const;
326 // Does the node have an out at this position? (Used for iteration.)
327 inline bool has_out(DUIterator& i) const;
328 inline Node* out(DUIterator& i) const;
329 // Iterate over the out-edges of this node. All changes are illegal.
330 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
331 inline Node* fast_out(DUIterator_Fast& i) const;
332 // Iterate over the out-edges of this node, deleting one at a time.
333 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
334 inline Node* last_out(DUIterator_Last& i) const;
335 // The inline bodies of all these methods are after the iterator definitions.
336#else
337 // Iterate over the out-edges of this node. Deletions are illegal.
338 // This iteration uses integral indexes, to decouple from array reallocations.
339 DUIterator outs() const { return 0; }
340 // Use this when the out array might have changed to suppress asserts.
341 DUIterator refresh_out_pos(DUIterator i) const { return i; }
342
343 // Reference to the i'th output Node. Error if out of bounds.
344 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
345 // Does the node have an out at this position? (Used for iteration.)
346 bool has_out(DUIterator i) const { return i < _outcnt; }
347
348 // Iterate over the out-edges of this node. All changes are illegal.
349 // This iteration uses a pointer internal to the out array.
350 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
351 Node** out = _out;
352 // Assign a limit pointer to the reference argument:
353 max = out + (ptrdiff_t)_outcnt;
354 // Return the base pointer:
355 return out;
356 }
357 Node* fast_out(DUIterator_Fast i) const { return *i; }
358 // Iterate over the out-edges of this node, deleting one at a time.
359 // This iteration uses a pointer internal to the out array.
360 DUIterator_Last last_outs(DUIterator_Last& min) const {
361 Node** out = _out;
362 // Assign a limit pointer to the reference argument:
363 min = out;
364 // Return the pointer to the start of the iteration:
365 return out + (ptrdiff_t)_outcnt - 1;
366 }
367 Node* last_out(DUIterator_Last i) const { return *i; }
368#endif
369
370 // Reference to the i'th input Node. Error if out of bounds.
371 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
372 // Reference to the i'th input Node. NULL if out of bounds.
373 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
374 // Reference to the i'th output Node. Error if out of bounds.
375 // Use this accessor sparingly. We are going trying to use iterators instead.
376 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
377 // Return the unique out edge.
378 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
379 // Delete out edge at position 'i' by moving last out edge to position 'i'
380 void raw_del_out(uint i) {
381 assert(i < _outcnt,"oob");
382 assert(_outcnt > 0,"oob");
383 #if OPTO_DU_ITERATOR_ASSERT
384 // Record that a change happened here.
385 debug_only(_last_del = _out[i]; ++_del_tick);
386 #endif
387 _out[i] = _out[--_outcnt];
388 // Smash the old edge so it can't be used accidentally.
389 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
390 }
391
392#ifdef ASSERT
393 bool is_dead() const;
394#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
395#endif
396 // Check whether node has become unreachable
397 bool is_unreachable(PhaseIterGVN &igvn) const;
398
399 // Set a required input edge, also updates corresponding output edge
400 void add_req( Node *n ); // Append a NEW required input
401 void add_req( Node *n0, Node *n1 ) {
402 add_req(n0); add_req(n1); }
403 void add_req( Node *n0, Node *n1, Node *n2 ) {
404 add_req(n0); add_req(n1); add_req(n2); }
405 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
406 void del_req( uint idx ); // Delete required edge & compact
407 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
408 void ins_req( uint i, Node *n ); // Insert a NEW required input
409 void set_req( uint i, Node *n ) {
410 assert( is_not_dead(n), "can not use dead node");
411 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
412 assert( !VerifyHashTableKeys || _hash_lock == 0,
413 "remove node from hash table before modifying it");
414 Node** p = &_in[i]; // cache this._in, across the del_out call
415 if (*p != NULL) (*p)->del_out((Node *)this);
416 (*p) = n;
417 if (n != NULL) n->add_out((Node *)this);
418 Compile::current()->record_modified_node(this);
419 }
420 // Light version of set_req() to init inputs after node creation.
421 void init_req( uint i, Node *n ) {
422 assert( i == 0 && this == n ||
423 is_not_dead(n), "can not use dead node");
424 assert( i < _cnt, "oob");
425 assert( !VerifyHashTableKeys || _hash_lock == 0,
426 "remove node from hash table before modifying it");
427 assert( _in[i] == NULL, "sanity");
428 _in[i] = n;
429 if (n != NULL) n->add_out((Node *)this);
430 Compile::current()->record_modified_node(this);
431 }
432 // Find first occurrence of n among my edges:
433 int find_edge(Node* n);
434 int find_prec_edge(Node* n) {
435 for (uint i = req(); i < len(); i++) {
436 if (_in[i] == n) return i;
437 if (_in[i] == NULL) {
438 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
439 break;
440 }
441 }
442 return -1;
443 }
444 int replace_edge(Node* old, Node* neww);
445 int replace_edges_in_range(Node* old, Node* neww, int start, int end);
446 // NULL out all inputs to eliminate incoming Def-Use edges.
447 // Return the number of edges between 'n' and 'this'
448 int disconnect_inputs(Node *n, Compile *c);
449
450 // Quickly, return true if and only if I am Compile::current()->top().
451 bool is_top() const {
452 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
453 return (_out == NULL);
454 }
455 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
456 void setup_is_top();
457
458 // Strip away casting. (It is depth-limited.)
459 Node* uncast(bool keep_deps = false) const;
460 // Return whether two Nodes are equivalent, after stripping casting.
461 bool eqv_uncast(const Node* n, bool keep_deps = false) const {
462 return (this->uncast(keep_deps) == n->uncast(keep_deps));
463 }
464
465 // Find out of current node that matches opcode.
466 Node* find_out_with(int opcode);
467 // Return true if the current node has an out that matches opcode.
468 bool has_out_with(int opcode);
469 // Return true if the current node has an out that matches any of the opcodes.
470 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
471
472private:
473 static Node* uncast_helper(const Node* n, bool keep_deps);
474
475 // Add an output edge to the end of the list
476 void add_out( Node *n ) {
477 if (is_top()) return;
478 if( _outcnt == _outmax ) out_grow(_outcnt);
479 _out[_outcnt++] = n;
480 }
481 // Delete an output edge
482 void del_out( Node *n ) {
483 if (is_top()) return;
484 Node** outp = &_out[_outcnt];
485 // Find and remove n
486 do {
487 assert(outp > _out, "Missing Def-Use edge");
488 } while (*--outp != n);
489 *outp = _out[--_outcnt];
490 // Smash the old edge so it can't be used accidentally.
491 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
492 // Record that a change happened here.
493 #if OPTO_DU_ITERATOR_ASSERT
494 debug_only(_last_del = n; ++_del_tick);
495 #endif
496 }
497 // Close gap after removing edge.
498 void close_prec_gap_at(uint gap) {
499 assert(_cnt <= gap && gap < _max, "no valid prec edge");
500 uint i = gap;
501 Node *last = NULL;
502 for (; i < _max-1; ++i) {
503 Node *next = _in[i+1];
504 if (next == NULL) break;
505 last = next;
506 }
507 _in[gap] = last; // Move last slot to empty one.
508 _in[i] = NULL; // NULL out last slot.
509 }
510
511public:
512 // Globally replace this node by a given new node, updating all uses.
513 void replace_by(Node* new_node);
514 // Globally replace this node by a given new node, updating all uses
515 // and cutting input edges of old node.
516 void subsume_by(Node* new_node, Compile* c) {
517 replace_by(new_node);
518 disconnect_inputs(NULL, c);
519 }
520 void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
521 // Find the one non-null required input. RegionNode only
522 Node *nonnull_req() const;
523 // Add or remove precedence edges
524 void add_prec( Node *n );
525 void rm_prec( uint i );
526
527 // Note: prec(i) will not necessarily point to n if edge already exists.
528 void set_prec( uint i, Node *n ) {
529 assert(i < _max, "oob: i=%d, _max=%d", i, _max);
530 assert(is_not_dead(n), "can not use dead node");
531 assert(i >= _cnt, "not a precedence edge");
532 // Avoid spec violation: duplicated prec edge.
533 if (_in[i] == n) return;
534 if (n == NULL || find_prec_edge(n) != -1) {
535 rm_prec(i);
536 return;
537 }
538 if (_in[i] != NULL) _in[i]->del_out((Node *)this);
539 _in[i] = n;
540 if (n != NULL) n->add_out((Node *)this);
541 }
542
543 // Set this node's index, used by cisc_version to replace current node
544 void set_idx(uint new_idx) {
545 const node_idx_t* ref = &_idx;
546 *(node_idx_t*)ref = new_idx;
547 }
548 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
549 void swap_edges(uint i1, uint i2) {
550 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
551 // Def-Use info is unchanged
552 Node* n1 = in(i1);
553 Node* n2 = in(i2);
554 _in[i1] = n2;
555 _in[i2] = n1;
556 // If this node is in the hash table, make sure it doesn't need a rehash.
557 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
558 }
559
560 // Iterators over input Nodes for a Node X are written as:
561 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
562 // NOTE: Required edges can contain embedded NULL pointers.
563
564//----------------- Other Node Properties
565
566 // Generate class IDs for (some) ideal nodes so that it is possible to determine
567 // the type of a node using a non-virtual method call (the method is_<Node>() below).
568 //
569 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
570 // the type of the node the ID represents; another subset of an ID's bits are reserved
571 // for the superclasses of the node represented by the ID.
572 //
573 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
574 // returns false. A.is_A() returns true.
575 //
576 // If two classes, A and B, have the same superclass, a different bit of A's class id
577 // is reserved for A's type than for B's type. That bit is specified by the third
578 // parameter in the macro DEFINE_CLASS_ID.
579 //
580 // By convention, classes with deeper hierarchy are declared first. Moreover,
581 // classes with the same hierarchy depth are sorted by usage frequency.
582 //
583 // The query method masks the bits to cut off bits of subclasses and then compares
584 // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
585 //
586 // Class_MachCall=30, ClassMask_MachCall=31
587 // 12 8 4 0
588 // 0 0 0 0 0 0 0 0 1 1 1 1 0
589 // | | | |
590 // | | | Bit_Mach=2
591 // | | Bit_MachReturn=4
592 // | Bit_MachSafePoint=8
593 // Bit_MachCall=16
594 //
595 // Class_CountedLoop=56, ClassMask_CountedLoop=63
596 // 12 8 4 0
597 // 0 0 0 0 0 0 0 1 1 1 0 0 0
598 // | | |
599 // | | Bit_Region=8
600 // | Bit_Loop=16
601 // Bit_CountedLoop=32
602
603 #define DEFINE_CLASS_ID(cl, supcl, subn) \
604 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
605 Class_##cl = Class_##supcl + Bit_##cl , \
606 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
607
608 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
609 // so that it's values fits into 16 bits.
610 enum NodeClasses {
611 Bit_Node = 0x0000,
612 Class_Node = 0x0000,
613 ClassMask_Node = 0xFFFF,
614
615 DEFINE_CLASS_ID(Multi, Node, 0)
616 DEFINE_CLASS_ID(SafePoint, Multi, 0)
617 DEFINE_CLASS_ID(Call, SafePoint, 0)
618 DEFINE_CLASS_ID(CallJava, Call, 0)
619 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
620 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
621 DEFINE_CLASS_ID(CallRuntime, Call, 1)
622 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
623 DEFINE_CLASS_ID(Allocate, Call, 2)
624 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
625 DEFINE_CLASS_ID(AbstractLock, Call, 3)
626 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
627 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
628 DEFINE_CLASS_ID(ArrayCopy, Call, 4)
629 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
630 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
631 DEFINE_CLASS_ID(Catch, PCTable, 0)
632 DEFINE_CLASS_ID(Jump, PCTable, 1)
633 DEFINE_CLASS_ID(If, MultiBranch, 1)
634 DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
635 DEFINE_CLASS_ID(RangeCheck, If, 1)
636 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
637 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
638 DEFINE_CLASS_ID(Start, Multi, 2)
639 DEFINE_CLASS_ID(MemBar, Multi, 3)
640 DEFINE_CLASS_ID(Initialize, MemBar, 0)
641 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
642 DEFINE_CLASS_ID(LoadBarrier, Multi, 4)
643
644 DEFINE_CLASS_ID(Mach, Node, 1)
645 DEFINE_CLASS_ID(MachReturn, Mach, 0)
646 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
647 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
648 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
649 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
650 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
651 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
652 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
653 DEFINE_CLASS_ID(MachBranch, Mach, 1)
654 DEFINE_CLASS_ID(MachIf, MachBranch, 0)
655 DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
656 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
657 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
658 DEFINE_CLASS_ID(MachTemp, Mach, 3)
659 DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
660 DEFINE_CLASS_ID(MachConstant, Mach, 5)
661 DEFINE_CLASS_ID(MachJump, MachConstant, 0)
662 DEFINE_CLASS_ID(MachMerge, Mach, 6)
663 DEFINE_CLASS_ID(MachMemBar, Mach, 7)
664
665 DEFINE_CLASS_ID(Type, Node, 2)
666 DEFINE_CLASS_ID(Phi, Type, 0)
667 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
668 DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
669 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
670 DEFINE_CLASS_ID(CMove, Type, 3)
671 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
672 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
673 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
674 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
675 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
676 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
677 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
678 DEFINE_CLASS_ID(LoadBarrierSlowReg, Type, 7)
679
680 DEFINE_CLASS_ID(Proj, Node, 3)
681 DEFINE_CLASS_ID(CatchProj, Proj, 0)
682 DEFINE_CLASS_ID(JumpProj, Proj, 1)
683 DEFINE_CLASS_ID(IfProj, Proj, 2)
684 DEFINE_CLASS_ID(IfTrue, IfProj, 0)
685 DEFINE_CLASS_ID(IfFalse, IfProj, 1)
686 DEFINE_CLASS_ID(Parm, Proj, 4)
687 DEFINE_CLASS_ID(MachProj, Proj, 5)
688
689 DEFINE_CLASS_ID(Mem, Node, 4)
690 DEFINE_CLASS_ID(Load, Mem, 0)
691 DEFINE_CLASS_ID(LoadVector, Load, 0)
692 DEFINE_CLASS_ID(Store, Mem, 1)
693 DEFINE_CLASS_ID(StoreVector, Store, 0)
694 DEFINE_CLASS_ID(LoadStore, Mem, 2)
695 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
696 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
697 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
698
699 DEFINE_CLASS_ID(Region, Node, 5)
700 DEFINE_CLASS_ID(Loop, Region, 0)
701 DEFINE_CLASS_ID(Root, Loop, 0)
702 DEFINE_CLASS_ID(CountedLoop, Loop, 1)
703 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
704
705 DEFINE_CLASS_ID(Sub, Node, 6)
706 DEFINE_CLASS_ID(Cmp, Sub, 0)
707 DEFINE_CLASS_ID(FastLock, Cmp, 0)
708 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
709
710 DEFINE_CLASS_ID(MergeMem, Node, 7)
711 DEFINE_CLASS_ID(Bool, Node, 8)
712 DEFINE_CLASS_ID(AddP, Node, 9)
713 DEFINE_CLASS_ID(BoxLock, Node, 10)
714 DEFINE_CLASS_ID(Add, Node, 11)
715 DEFINE_CLASS_ID(Mul, Node, 12)
716 DEFINE_CLASS_ID(Vector, Node, 13)
717 DEFINE_CLASS_ID(ClearArray, Node, 14)
718
719 _max_classes = ClassMask_ClearArray
720 };
721 #undef DEFINE_CLASS_ID
722
723 // Flags are sorted by usage frequency.
724 enum NodeFlags {
725 Flag_is_Copy = 0x01, // should be first bit to avoid shift
726 Flag_rematerialize = Flag_is_Copy << 1,
727 Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
728 Flag_is_macro = Flag_needs_anti_dependence_check << 1,
729 Flag_is_Con = Flag_is_macro << 1,
730 Flag_is_cisc_alternate = Flag_is_Con << 1,
731 Flag_is_dead_loop_safe = Flag_is_cisc_alternate << 1,
732 Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
733 Flag_avoid_back_to_back_before = Flag_may_be_short_branch << 1,
734 Flag_avoid_back_to_back_after = Flag_avoid_back_to_back_before << 1,
735 Flag_has_call = Flag_avoid_back_to_back_after << 1,
736 Flag_is_reduction = Flag_has_call << 1,
737 Flag_is_scheduled = Flag_is_reduction << 1,
738 Flag_has_vector_mask_set = Flag_is_scheduled << 1,
739 Flag_is_expensive = Flag_has_vector_mask_set << 1,
740 _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
741 };
742
743private:
744 jushort _class_id;
745 jushort _flags;
746
747protected:
748 // These methods should be called from constructors only.
749 void init_class_id(jushort c) {
750 assert(c <= _max_classes, "invalid node class");
751 _class_id = c; // cast out const
752 }
753 void init_flags(jushort fl) {
754 assert(fl <= _max_flags, "invalid node flag");
755 _flags |= fl;
756 }
757 void clear_flag(jushort fl) {
758 assert(fl <= _max_flags, "invalid node flag");
759 _flags &= ~fl;
760 }
761
762public:
763 const jushort class_id() const { return _class_id; }
764
765 const jushort flags() const { return _flags; }
766
767 void add_flag(jushort fl) { init_flags(fl); }
768
769 void remove_flag(jushort fl) { clear_flag(fl); }
770
771 // Return a dense integer opcode number
772 virtual int Opcode() const;
773
774 // Virtual inherited Node size
775 virtual uint size_of() const;
776
777 // Other interesting Node properties
778 #define DEFINE_CLASS_QUERY(type) \
779 bool is_##type() const { \
780 return ((_class_id & ClassMask_##type) == Class_##type); \
781 } \
782 type##Node *as_##type() const { \
783 assert(is_##type(), "invalid node class"); \
784 return (type##Node*)this; \
785 } \
786 type##Node* isa_##type() const { \
787 return (is_##type()) ? as_##type() : NULL; \
788 }
789
790 DEFINE_CLASS_QUERY(AbstractLock)
791 DEFINE_CLASS_QUERY(Add)
792 DEFINE_CLASS_QUERY(AddP)
793 DEFINE_CLASS_QUERY(Allocate)
794 DEFINE_CLASS_QUERY(AllocateArray)
795 DEFINE_CLASS_QUERY(ArrayCopy)
796 DEFINE_CLASS_QUERY(Bool)
797 DEFINE_CLASS_QUERY(BoxLock)
798 DEFINE_CLASS_QUERY(Call)
799 DEFINE_CLASS_QUERY(CallDynamicJava)
800 DEFINE_CLASS_QUERY(CallJava)
801 DEFINE_CLASS_QUERY(CallLeaf)
802 DEFINE_CLASS_QUERY(CallRuntime)
803 DEFINE_CLASS_QUERY(CallStaticJava)
804 DEFINE_CLASS_QUERY(Catch)
805 DEFINE_CLASS_QUERY(CatchProj)
806 DEFINE_CLASS_QUERY(CheckCastPP)
807 DEFINE_CLASS_QUERY(CastII)
808 DEFINE_CLASS_QUERY(ConstraintCast)
809 DEFINE_CLASS_QUERY(ClearArray)
810 DEFINE_CLASS_QUERY(CMove)
811 DEFINE_CLASS_QUERY(Cmp)
812 DEFINE_CLASS_QUERY(CountedLoop)
813 DEFINE_CLASS_QUERY(CountedLoopEnd)
814 DEFINE_CLASS_QUERY(DecodeNarrowPtr)
815 DEFINE_CLASS_QUERY(DecodeN)
816 DEFINE_CLASS_QUERY(DecodeNKlass)
817 DEFINE_CLASS_QUERY(EncodeNarrowPtr)
818 DEFINE_CLASS_QUERY(EncodeP)
819 DEFINE_CLASS_QUERY(EncodePKlass)
820 DEFINE_CLASS_QUERY(FastLock)
821 DEFINE_CLASS_QUERY(FastUnlock)
822 DEFINE_CLASS_QUERY(If)
823 DEFINE_CLASS_QUERY(RangeCheck)
824 DEFINE_CLASS_QUERY(IfProj)
825 DEFINE_CLASS_QUERY(IfFalse)
826 DEFINE_CLASS_QUERY(IfTrue)
827 DEFINE_CLASS_QUERY(Initialize)
828 DEFINE_CLASS_QUERY(Jump)
829 DEFINE_CLASS_QUERY(JumpProj)
830 DEFINE_CLASS_QUERY(Load)
831 DEFINE_CLASS_QUERY(LoadStore)
832 DEFINE_CLASS_QUERY(LoadStoreConditional)
833 DEFINE_CLASS_QUERY(LoadBarrier)
834 DEFINE_CLASS_QUERY(LoadBarrierSlowReg)
835 DEFINE_CLASS_QUERY(Lock)
836 DEFINE_CLASS_QUERY(Loop)
837 DEFINE_CLASS_QUERY(Mach)
838 DEFINE_CLASS_QUERY(MachBranch)
839 DEFINE_CLASS_QUERY(MachCall)
840 DEFINE_CLASS_QUERY(MachCallDynamicJava)
841 DEFINE_CLASS_QUERY(MachCallJava)
842 DEFINE_CLASS_QUERY(MachCallLeaf)
843 DEFINE_CLASS_QUERY(MachCallRuntime)
844 DEFINE_CLASS_QUERY(MachCallStaticJava)
845 DEFINE_CLASS_QUERY(MachConstantBase)
846 DEFINE_CLASS_QUERY(MachConstant)
847 DEFINE_CLASS_QUERY(MachGoto)
848 DEFINE_CLASS_QUERY(MachIf)
849 DEFINE_CLASS_QUERY(MachJump)
850 DEFINE_CLASS_QUERY(MachNullCheck)
851 DEFINE_CLASS_QUERY(MachProj)
852 DEFINE_CLASS_QUERY(MachReturn)
853 DEFINE_CLASS_QUERY(MachSafePoint)
854 DEFINE_CLASS_QUERY(MachSpillCopy)
855 DEFINE_CLASS_QUERY(MachTemp)
856 DEFINE_CLASS_QUERY(MachMemBar)
857 DEFINE_CLASS_QUERY(MachMerge)
858 DEFINE_CLASS_QUERY(Mem)
859 DEFINE_CLASS_QUERY(MemBar)
860 DEFINE_CLASS_QUERY(MemBarStoreStore)
861 DEFINE_CLASS_QUERY(MergeMem)
862 DEFINE_CLASS_QUERY(Mul)
863 DEFINE_CLASS_QUERY(Multi)
864 DEFINE_CLASS_QUERY(MultiBranch)
865 DEFINE_CLASS_QUERY(OuterStripMinedLoop)
866 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
867 DEFINE_CLASS_QUERY(Parm)
868 DEFINE_CLASS_QUERY(PCTable)
869 DEFINE_CLASS_QUERY(Phi)
870 DEFINE_CLASS_QUERY(Proj)
871 DEFINE_CLASS_QUERY(Region)
872 DEFINE_CLASS_QUERY(Root)
873 DEFINE_CLASS_QUERY(SafePoint)
874 DEFINE_CLASS_QUERY(SafePointScalarObject)
875 DEFINE_CLASS_QUERY(Start)
876 DEFINE_CLASS_QUERY(Store)
877 DEFINE_CLASS_QUERY(Sub)
878 DEFINE_CLASS_QUERY(Type)
879 DEFINE_CLASS_QUERY(Vector)
880 DEFINE_CLASS_QUERY(LoadVector)
881 DEFINE_CLASS_QUERY(StoreVector)
882 DEFINE_CLASS_QUERY(Unlock)
883
884 #undef DEFINE_CLASS_QUERY
885
886 // duplicate of is_MachSpillCopy()
887 bool is_SpillCopy () const {
888 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
889 }
890
891 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
892 // The data node which is safe to leave in dead loop during IGVN optimization.
893 bool is_dead_loop_safe() const {
894 return is_Phi() || (is_Proj() && in(0) == NULL) ||
895 ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
896 (!is_Proj() || !in(0)->is_Allocate()));
897 }
898
899 // is_Copy() returns copied edge index (0 or 1)
900 uint is_Copy() const { return (_flags & Flag_is_Copy); }
901
902 virtual bool is_CFG() const { return false; }
903
904 // If this node is control-dependent on a test, can it be
905 // rerouted to a dominating equivalent test? This is usually
906 // true of non-CFG nodes, but can be false for operations which
907 // depend for their correct sequencing on more than one test.
908 // (In that case, hoisting to a dominating test may silently
909 // skip some other important test.)
910 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
911
912 // When building basic blocks, I need to have a notion of block beginning
913 // Nodes, next block selector Nodes (block enders), and next block
914 // projections. These calls need to work on their machine equivalents. The
915 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
916 bool is_block_start() const {
917 if ( is_Region() )
918 return this == (const Node*)in(0);
919 else
920 return is_Start();
921 }
922
923 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
924 // Goto and Return. This call also returns the block ending Node.
925 virtual const Node *is_block_proj() const;
926
927 // The node is a "macro" node which needs to be expanded before matching
928 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
929 // The node is expensive: the best control is set during loop opts
930 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
931
932 // An arithmetic node which accumulates a data in a loop.
933 // It must have the loop's phi as input and provide a def to the phi.
934 bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
935
936 // The node is a CountedLoopEnd with a mask annotation so as to emit a restore context
937 bool has_vector_mask_set() const { return (_flags & Flag_has_vector_mask_set) != 0; }
938
939 // Used in lcm to mark nodes that have scheduled
940 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
941
942//----------------- Optimization
943
944 // Get the worst-case Type output for this Node.
945 virtual const class Type *bottom_type() const;
946
947 // If we find a better type for a node, try to record it permanently.
948 // Return true if this node actually changed.
949 // Be sure to do the hash_delete game in the "rehash" variant.
950 void raise_bottom_type(const Type* new_type);
951
952 // Get the address type with which this node uses and/or defs memory,
953 // or NULL if none. The address type is conservatively wide.
954 // Returns non-null for calls, membars, loads, stores, etc.
955 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
956 virtual const class TypePtr *adr_type() const { return NULL; }
957
958 // Return an existing node which computes the same function as this node.
959 // The optimistic combined algorithm requires this to return a Node which
960 // is a small number of steps away (e.g., one of my inputs).
961 virtual Node* Identity(PhaseGVN* phase);
962
963 // Return the set of values this Node can take on at runtime.
964 virtual const Type* Value(PhaseGVN* phase) const;
965
966 // Return a node which is more "ideal" than the current node.
967 // The invariants on this call are subtle. If in doubt, read the
968 // treatise in node.cpp above the default implemention AND TEST WITH
969 // +VerifyIterativeGVN!
970 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
971
972 // Some nodes have specific Ideal subgraph transformations only if they are
973 // unique users of specific nodes. Such nodes should be put on IGVN worklist
974 // for the transformations to happen.
975 bool has_special_unique_user() const;
976
977 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
978 Node* find_exact_control(Node* ctrl);
979
980 // Check if 'this' node dominates or equal to 'sub'.
981 bool dominates(Node* sub, Node_List &nlist);
982
983protected:
984 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
985public:
986
987 // See if there is valid pipeline info
988 static const Pipeline *pipeline_class();
989 virtual const Pipeline *pipeline() const;
990
991 // Compute the latency from the def to this instruction of the ith input node
992 uint latency(uint i);
993
994 // Hash & compare functions, for pessimistic value numbering
995
996 // If the hash function returns the special sentinel value NO_HASH,
997 // the node is guaranteed never to compare equal to any other node.
998 // If we accidentally generate a hash with value NO_HASH the node
999 // won't go into the table and we'll lose a little optimization.
1000 static const uint NO_HASH = 0;
1001 virtual uint hash() const;
1002 virtual bool cmp( const Node &n ) const;
1003
1004 // Operation appears to be iteratively computed (such as an induction variable)
1005 // It is possible for this operation to return false for a loop-varying
1006 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1007 bool is_iteratively_computed();
1008
1009 // Determine if a node is a counted loop induction variable.
1010 // NOTE: The method is defined in "loopnode.cpp".
1011 bool is_cloop_ind_var() const;
1012
1013 // Return a node with opcode "opc" and same inputs as "this" if one can
1014 // be found; Otherwise return NULL;
1015 Node* find_similar(int opc);
1016
1017 // Return the unique control out if only one. Null if none or more than one.
1018 Node* unique_ctrl_out() const;
1019
1020 // Set control or add control as precedence edge
1021 void ensure_control_or_add_prec(Node* c);
1022
1023//----------------- Code Generation
1024
1025 // Ideal register class for Matching. Zero means unmatched instruction
1026 // (these are cloned instead of converted to machine nodes).
1027 virtual uint ideal_reg() const;
1028
1029 static const uint NotAMachineReg; // must be > max. machine register
1030
1031 // Do we Match on this edge index or not? Generally false for Control
1032 // and true for everything else. Weird for calls & returns.
1033 virtual uint match_edge(uint idx) const;
1034
1035 // Register class output is returned in
1036 virtual const RegMask &out_RegMask() const;
1037 // Register class input is expected in
1038 virtual const RegMask &in_RegMask(uint) const;
1039 // Should we clone rather than spill this instruction?
1040 bool rematerialize() const;
1041
1042 // Return JVM State Object if this Node carries debug info, or NULL otherwise
1043 virtual JVMState* jvms() const;
1044
1045 // Print as assembly
1046 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1047 // Emit bytes starting at parameter 'ptr'
1048 // Bump 'ptr' by the number of output bytes
1049 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1050 // Size of instruction in bytes
1051 virtual uint size(PhaseRegAlloc *ra_) const;
1052
1053 // Convenience function to extract an integer constant from a node.
1054 // If it is not an integer constant (either Con, CastII, or Mach),
1055 // return value_if_unknown.
1056 jint find_int_con(jint value_if_unknown) const {
1057 const TypeInt* t = find_int_type();
1058 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1059 }
1060 // Return the constant, knowing it is an integer constant already
1061 jint get_int() const {
1062 const TypeInt* t = find_int_type();
1063 guarantee(t != NULL, "must be con");
1064 return t->get_con();
1065 }
1066 // Here's where the work is done. Can produce non-constant int types too.
1067 const TypeInt* find_int_type() const;
1068
1069 // Same thing for long (and intptr_t, via type.hpp):
1070 jlong get_long() const {
1071 const TypeLong* t = find_long_type();
1072 guarantee(t != NULL, "must be con");
1073 return t->get_con();
1074 }
1075 jlong find_long_con(jint value_if_unknown) const {
1076 const TypeLong* t = find_long_type();
1077 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1078 }
1079 const TypeLong* find_long_type() const;
1080
1081 const TypePtr* get_ptr_type() const;
1082
1083 // These guys are called by code generated by ADLC:
1084 intptr_t get_ptr() const;
1085 intptr_t get_narrowcon() const;
1086 jdouble getd() const;
1087 jfloat getf() const;
1088
1089 // Nodes which are pinned into basic blocks
1090 virtual bool pinned() const { return false; }
1091
1092 // Nodes which use memory without consuming it, hence need antidependences
1093 // More specifically, needs_anti_dependence_check returns true iff the node
1094 // (a) does a load, and (b) does not perform a store (except perhaps to a
1095 // stack slot or some other unaliased location).
1096 bool needs_anti_dependence_check() const;
1097
1098 // Return which operand this instruction may cisc-spill. In other words,
1099 // return operand position that can convert from reg to memory access
1100 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1101 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1102
1103//----------------- Graph walking
1104public:
1105 // Walk and apply member functions recursively.
1106 // Supplied (this) pointer is root.
1107 void walk(NFunc pre, NFunc post, void *env);
1108 static void nop(Node &, void*); // Dummy empty function
1109 static void packregion( Node &n, void* );
1110private:
1111 void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1112
1113//----------------- Printing, etc
1114public:
1115#ifndef PRODUCT
1116 Node* find(int idx) const; // Search the graph for the given idx.
1117 Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
1118 void dump() const { dump("\n"); } // Print this node.
1119 void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1120 void dump(int depth) const; // Print this node, recursively to depth d
1121 void dump_ctrl(int depth) const; // Print control nodes, to depth d
1122 void dump_comp() const; // Print this node in compact representation.
1123 // Print this node in compact representation.
1124 void dump_comp(const char* suffix, outputStream *st = tty) const;
1125 virtual void dump_req(outputStream *st = tty) const; // Print required-edge info
1126 virtual void dump_prec(outputStream *st = tty) const; // Print precedence-edge info
1127 virtual void dump_out(outputStream *st = tty) const; // Print the output edge info
1128 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1129 // Print compact per-node info
1130 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1131 void dump_related() const; // Print related nodes (depends on node at hand).
1132 // Print related nodes up to given depths for input and output nodes.
1133 void dump_related(uint d_in, uint d_out) const;
1134 void dump_related_compact() const; // Print related nodes in compact representation.
1135 // Collect related nodes.
1136 virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1137 // Collect nodes starting from this node, explicitly including/excluding control and data links.
1138 void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1139
1140 // Node collectors, to be used in implementations of Node::rel().
1141 // Collect the entire data input graph. Include control inputs if requested.
1142 void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1143 // Collect the entire control input graph. Include data inputs if requested.
1144 void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1145 // Collect the entire output graph until hitting and including control nodes.
1146 void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1147
1148 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1149 void verify() const; // Check Def-Use info for my subgraph
1150 static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1151
1152 // This call defines a class-unique string used to identify class instances
1153 virtual const char *Name() const;
1154
1155 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1156 // RegMask Print Functions
1157 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1158 void dump_out_regmask() { out_RegMask().dump(); }
1159 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1160 void fast_dump() const {
1161 tty->print("%4d: %-17s", _idx, Name());
1162 for (uint i = 0; i < len(); i++)
1163 if (in(i))
1164 tty->print(" %4d", in(i)->_idx);
1165 else
1166 tty->print(" NULL");
1167 tty->print("\n");
1168 }
1169#endif
1170#ifdef ASSERT
1171 void verify_construction();
1172 bool verify_jvms(const JVMState* jvms) const;
1173 int _debug_idx; // Unique value assigned to every node.
1174 int debug_idx() const { return _debug_idx; }
1175 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1176
1177 Node* _debug_orig; // Original version of this, if any.
1178 Node* debug_orig() const { return _debug_orig; }
1179 void set_debug_orig(Node* orig); // _debug_orig = orig
1180
1181 int _hash_lock; // Barrier to modifications of nodes in the hash table
1182 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1183 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1184
1185 static void init_NodeProperty();
1186
1187 #if OPTO_DU_ITERATOR_ASSERT
1188 const Node* _last_del; // The last deleted node.
1189 uint _del_tick; // Bumped when a deletion happens..
1190 #endif
1191#endif
1192};
1193
1194
1195#ifndef PRODUCT
1196
1197// Used in debugging code to avoid walking across dead or uninitialized edges.
1198inline bool NotANode(const Node* n) {
1199 if (n == NULL) return true;
1200 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
1201 if (*(address*)n == badAddress) return true; // kill by Node::destruct
1202 return false;
1203}
1204
1205#endif
1206
1207
1208//-----------------------------------------------------------------------------
1209// Iterators over DU info, and associated Node functions.
1210
1211#if OPTO_DU_ITERATOR_ASSERT
1212
1213// Common code for assertion checking on DU iterators.
1214class DUIterator_Common {
1215#ifdef ASSERT
1216 protected:
1217 bool _vdui; // cached value of VerifyDUIterators
1218 const Node* _node; // the node containing the _out array
1219 uint _outcnt; // cached node->_outcnt
1220 uint _del_tick; // cached node->_del_tick
1221 Node* _last; // last value produced by the iterator
1222
1223 void sample(const Node* node); // used by c'tor to set up for verifies
1224 void verify(const Node* node, bool at_end_ok = false);
1225 void verify_resync();
1226 void reset(const DUIterator_Common& that);
1227
1228// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1229 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1230#else
1231 #define I_VDUI_ONLY(i,x) { }
1232#endif //ASSERT
1233};
1234
1235#define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
1236
1237// Default DU iterator. Allows appends onto the out array.
1238// Allows deletion from the out array only at the current point.
1239// Usage:
1240// for (DUIterator i = x->outs(); x->has_out(i); i++) {
1241// Node* y = x->out(i);
1242// ...
1243// }
1244// Compiles in product mode to a unsigned integer index, which indexes
1245// onto a repeatedly reloaded base pointer of x->_out. The loop predicate
1246// also reloads x->_outcnt. If you delete, you must perform "--i" just
1247// before continuing the loop. You must delete only the last-produced
1248// edge. You must delete only a single copy of the last-produced edge,
1249// or else you must delete all copies at once (the first time the edge
1250// is produced by the iterator).
1251class DUIterator : public DUIterator_Common {
1252 friend class Node;
1253
1254 // This is the index which provides the product-mode behavior.
1255 // Whatever the product-mode version of the system does to the
1256 // DUI index is done to this index. All other fields in
1257 // this class are used only for assertion checking.
1258 uint _idx;
1259
1260 #ifdef ASSERT
1261 uint _refresh_tick; // Records the refresh activity.
1262
1263 void sample(const Node* node); // Initialize _refresh_tick etc.
1264 void verify(const Node* node, bool at_end_ok = false);
1265 void verify_increment(); // Verify an increment operation.
1266 void verify_resync(); // Verify that we can back up over a deletion.
1267 void verify_finish(); // Verify that the loop terminated properly.
1268 void refresh(); // Resample verification info.
1269 void reset(const DUIterator& that); // Resample after assignment.
1270 #endif
1271
1272 DUIterator(const Node* node, int dummy_to_avoid_conversion)
1273 { _idx = 0; debug_only(sample(node)); }
1274
1275 public:
1276 // initialize to garbage; clear _vdui to disable asserts
1277 DUIterator()
1278 { /*initialize to garbage*/ debug_only(_vdui = false); }
1279
1280 void operator++(int dummy_to_specify_postfix_op)
1281 { _idx++; VDUI_ONLY(verify_increment()); }
1282
1283 void operator--()
1284 { VDUI_ONLY(verify_resync()); --_idx; }
1285
1286 ~DUIterator()
1287 { VDUI_ONLY(verify_finish()); }
1288
1289 void operator=(const DUIterator& that)
1290 { _idx = that._idx; debug_only(reset(that)); }
1291};
1292
1293DUIterator Node::outs() const
1294 { return DUIterator(this, 0); }
1295DUIterator& Node::refresh_out_pos(DUIterator& i) const
1296 { I_VDUI_ONLY(i, i.refresh()); return i; }
1297bool Node::has_out(DUIterator& i) const
1298 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1299Node* Node::out(DUIterator& i) const
1300 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
1301
1302
1303// Faster DU iterator. Disallows insertions into the out array.
1304// Allows deletion from the out array only at the current point.
1305// Usage:
1306// for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1307// Node* y = x->fast_out(i);
1308// ...
1309// }
1310// Compiles in product mode to raw Node** pointer arithmetic, with
1311// no reloading of pointers from the original node x. If you delete,
1312// you must perform "--i; --imax" just before continuing the loop.
1313// If you delete multiple copies of the same edge, you must decrement
1314// imax, but not i, multiple times: "--i, imax -= num_edges".
1315class DUIterator_Fast : public DUIterator_Common {
1316 friend class Node;
1317 friend class DUIterator_Last;
1318
1319 // This is the pointer which provides the product-mode behavior.
1320 // Whatever the product-mode version of the system does to the
1321 // DUI pointer is done to this pointer. All other fields in
1322 // this class are used only for assertion checking.
1323 Node** _outp;
1324
1325 #ifdef ASSERT
1326 void verify(const Node* node, bool at_end_ok = false);
1327 void verify_limit();
1328 void verify_resync();
1329 void verify_relimit(uint n);
1330 void reset(const DUIterator_Fast& that);
1331 #endif
1332
1333 // Note: offset must be signed, since -1 is sometimes passed
1334 DUIterator_Fast(const Node* node, ptrdiff_t offset)
1335 { _outp = node->_out + offset; debug_only(sample(node)); }
1336
1337 public:
1338 // initialize to garbage; clear _vdui to disable asserts
1339 DUIterator_Fast()
1340 { /*initialize to garbage*/ debug_only(_vdui = false); }
1341
1342 void operator++(int dummy_to_specify_postfix_op)
1343 { _outp++; VDUI_ONLY(verify(_node, true)); }
1344
1345 void operator--()
1346 { VDUI_ONLY(verify_resync()); --_outp; }
1347
1348 void operator-=(uint n) // applied to the limit only
1349 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
1350
1351 bool operator<(DUIterator_Fast& limit) {
1352 I_VDUI_ONLY(*this, this->verify(_node, true));
1353 I_VDUI_ONLY(limit, limit.verify_limit());
1354 return _outp < limit._outp;
1355 }
1356
1357 void operator=(const DUIterator_Fast& that)
1358 { _outp = that._outp; debug_only(reset(that)); }
1359};
1360
1361DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1362 // Assign a limit pointer to the reference argument:
1363 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1364 // Return the base pointer:
1365 return DUIterator_Fast(this, 0);
1366}
1367Node* Node::fast_out(DUIterator_Fast& i) const {
1368 I_VDUI_ONLY(i, i.verify(this));
1369 return debug_only(i._last=) *i._outp;
1370}
1371
1372
1373// Faster DU iterator. Requires each successive edge to be removed.
1374// Does not allow insertion of any edges.
1375// Usage:
1376// for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1377// Node* y = x->last_out(i);
1378// ...
1379// }
1380// Compiles in product mode to raw Node** pointer arithmetic, with
1381// no reloading of pointers from the original node x.
1382class DUIterator_Last : private DUIterator_Fast {
1383 friend class Node;
1384
1385 #ifdef ASSERT
1386 void verify(const Node* node, bool at_end_ok = false);
1387 void verify_limit();
1388 void verify_step(uint num_edges);
1389 #endif
1390
1391 // Note: offset must be signed, since -1 is sometimes passed
1392 DUIterator_Last(const Node* node, ptrdiff_t offset)
1393 : DUIterator_Fast(node, offset) { }
1394
1395 void operator++(int dummy_to_specify_postfix_op) {} // do not use
1396 void operator<(int) {} // do not use
1397
1398 public:
1399 DUIterator_Last() { }
1400 // initialize to garbage
1401
1402 void operator--()
1403 { _outp--; VDUI_ONLY(verify_step(1)); }
1404
1405 void operator-=(uint n)
1406 { _outp -= n; VDUI_ONLY(verify_step(n)); }
1407
1408 bool operator>=(DUIterator_Last& limit) {
1409 I_VDUI_ONLY(*this, this->verify(_node, true));
1410 I_VDUI_ONLY(limit, limit.verify_limit());
1411 return _outp >= limit._outp;
1412 }
1413
1414 void operator=(const DUIterator_Last& that)
1415 { DUIterator_Fast::operator=(that); }
1416};
1417
1418DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1419 // Assign a limit pointer to the reference argument:
1420 imin = DUIterator_Last(this, 0);
1421 // Return the initial pointer:
1422 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1423}
1424Node* Node::last_out(DUIterator_Last& i) const {
1425 I_VDUI_ONLY(i, i.verify(this));
1426 return debug_only(i._last=) *i._outp;
1427}
1428
1429#endif //OPTO_DU_ITERATOR_ASSERT
1430
1431#undef I_VDUI_ONLY
1432#undef VDUI_ONLY
1433
1434// An Iterator that truly follows the iterator pattern. Doesn't
1435// support deletion but could be made to.
1436//
1437// for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1438// Node* m = i.get();
1439//
1440class SimpleDUIterator : public StackObj {
1441 private:
1442 Node* node;
1443 DUIterator_Fast i;
1444 DUIterator_Fast imax;
1445 public:
1446 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1447 bool has_next() { return i < imax; }
1448 void next() { i++; }
1449 Node* get() { return node->fast_out(i); }
1450};
1451
1452
1453//-----------------------------------------------------------------------------
1454// Map dense integer indices to Nodes. Uses classic doubling-array trick.
1455// Abstractly provides an infinite array of Node*'s, initialized to NULL.
1456// Note that the constructor just zeros things, and since I use Arena
1457// allocation I do not need a destructor to reclaim storage.
1458class Node_Array : public ResourceObj {
1459 friend class VMStructs;
1460protected:
1461 Arena *_a; // Arena to allocate in
1462 uint _max;
1463 Node **_nodes;
1464 void grow( uint i ); // Grow array node to fit
1465public:
1466 Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1467 _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1468 for( int i = 0; i < OptoNodeListSize; i++ ) {
1469 _nodes[i] = NULL;
1470 }
1471 }
1472
1473 Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1474 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1475 { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1476 Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1477 Node **adr() { return _nodes; }
1478 // Extend the mapping: index i maps to Node *n.
1479 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1480 void insert( uint i, Node *n );
1481 void remove( uint i ); // Remove, preserving order
1482 void sort( C_sort_func_t func);
1483 void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
1484 void clear(); // Set all entries to NULL, keep storage
1485 uint Size() const { return _max; }
1486 void dump() const;
1487};
1488
1489class Node_List : public Node_Array {
1490 friend class VMStructs;
1491 uint _cnt;
1492public:
1493 Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1494 Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1495 bool contains(const Node* n) const {
1496 for (uint e = 0; e < size(); e++) {
1497 if (at(e) == n) return true;
1498 }
1499 return false;
1500 }
1501 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1502 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1503 void push( Node *b ) { map(_cnt++,b); }
1504 void yank( Node *n ); // Find and remove
1505 Node *pop() { return _nodes[--_cnt]; }
1506 Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1507 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1508 uint size() const { return _cnt; }
1509 void dump() const;
1510 void dump_simple() const;
1511};
1512
1513//------------------------------Unique_Node_List-------------------------------
1514class Unique_Node_List : public Node_List {
1515 friend class VMStructs;
1516 VectorSet _in_worklist;
1517 uint _clock_index; // Index in list where to pop from next
1518public:
1519 Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1520 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1521
1522 void remove( Node *n );
1523 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1524 VectorSet &member_set(){ return _in_worklist; }
1525
1526 void push( Node *b ) {
1527 if( !_in_worklist.test_set(b->_idx) )
1528 Node_List::push(b);
1529 }
1530 Node *pop() {
1531 if( _clock_index >= size() ) _clock_index = 0;
1532 Node *b = at(_clock_index);
1533 map( _clock_index, Node_List::pop());
1534 if (size() != 0) _clock_index++; // Always start from 0
1535 _in_worklist >>= b->_idx;
1536 return b;
1537 }
1538 Node *remove( uint i ) {
1539 Node *b = Node_List::at(i);
1540 _in_worklist >>= b->_idx;
1541 map(i,Node_List::pop());
1542 return b;
1543 }
1544 void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1545 void clear() {
1546 _in_worklist.Clear(); // Discards storage but grows automatically
1547 Node_List::clear();
1548 _clock_index = 0;
1549 }
1550
1551 // Used after parsing to remove useless nodes before Iterative GVN
1552 void remove_useless_nodes(VectorSet &useful);
1553
1554#ifndef PRODUCT
1555 void print_set() const { _in_worklist.print(); }
1556#endif
1557};
1558
1559// Inline definition of Compile::record_for_igvn must be deferred to this point.
1560inline void Compile::record_for_igvn(Node* n) {
1561 _for_igvn->push(n);
1562}
1563
1564//------------------------------Node_Stack-------------------------------------
1565class Node_Stack {
1566 friend class VMStructs;
1567protected:
1568 struct INode {
1569 Node *node; // Processed node
1570 uint indx; // Index of next node's child
1571 };
1572 INode *_inode_top; // tos, stack grows up
1573 INode *_inode_max; // End of _inodes == _inodes + _max
1574 INode *_inodes; // Array storage for the stack
1575 Arena *_a; // Arena to allocate in
1576 void grow();
1577public:
1578 Node_Stack(int size) {
1579 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1580 _a = Thread::current()->resource_area();
1581 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1582 _inode_max = _inodes + max;
1583 _inode_top = _inodes - 1; // stack is empty
1584 }
1585
1586 Node_Stack(Arena *a, int size) : _a(a) {
1587 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1588 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1589 _inode_max = _inodes + max;
1590 _inode_top = _inodes - 1; // stack is empty
1591 }
1592
1593 void pop() {
1594 assert(_inode_top >= _inodes, "node stack underflow");
1595 --_inode_top;
1596 }
1597 void push(Node *n, uint i) {
1598 ++_inode_top;
1599 if (_inode_top >= _inode_max) grow();
1600 INode *top = _inode_top; // optimization
1601 top->node = n;
1602 top->indx = i;
1603 }
1604 Node *node() const {
1605 return _inode_top->node;
1606 }
1607 Node* node_at(uint i) const {
1608 assert(_inodes + i <= _inode_top, "in range");
1609 return _inodes[i].node;
1610 }
1611 uint index() const {
1612 return _inode_top->indx;
1613 }
1614 uint index_at(uint i) const {
1615 assert(_inodes + i <= _inode_top, "in range");
1616 return _inodes[i].indx;
1617 }
1618 void set_node(Node *n) {
1619 _inode_top->node = n;
1620 }
1621 void set_index(uint i) {
1622 _inode_top->indx = i;
1623 }
1624 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
1625 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
1626 bool is_nonempty() const { return (_inode_top >= _inodes); }
1627 bool is_empty() const { return (_inode_top < _inodes); }
1628 void clear() { _inode_top = _inodes - 1; } // retain storage
1629
1630 // Node_Stack is used to map nodes.
1631 Node* find(uint idx) const;
1632};
1633
1634
1635//-----------------------------Node_Notes--------------------------------------
1636// Debugging or profiling annotations loosely and sparsely associated
1637// with some nodes. See Compile::node_notes_at for the accessor.
1638class Node_Notes {
1639 friend class VMStructs;
1640 JVMState* _jvms;
1641
1642public:
1643 Node_Notes(JVMState* jvms = NULL) {
1644 _jvms = jvms;
1645 }
1646
1647 JVMState* jvms() { return _jvms; }
1648 void set_jvms(JVMState* x) { _jvms = x; }
1649
1650 // True if there is nothing here.
1651 bool is_clear() {
1652 return (_jvms == NULL);
1653 }
1654
1655 // Make there be nothing here.
1656 void clear() {
1657 _jvms = NULL;
1658 }
1659
1660 // Make a new, clean node notes.
1661 static Node_Notes* make(Compile* C) {
1662 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1663 nn->clear();
1664 return nn;
1665 }
1666
1667 Node_Notes* clone(Compile* C) {
1668 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1669 (*nn) = (*this);
1670 return nn;
1671 }
1672
1673 // Absorb any information from source.
1674 bool update_from(Node_Notes* source) {
1675 bool changed = false;
1676 if (source != NULL) {
1677 if (source->jvms() != NULL) {
1678 set_jvms(source->jvms());
1679 changed = true;
1680 }
1681 }
1682 return changed;
1683 }
1684};
1685
1686// Inlined accessors for Compile::node_nodes that require the preceding class:
1687inline Node_Notes*
1688Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1689 int idx, bool can_grow) {
1690 assert(idx >= 0, "oob");
1691 int block_idx = (idx >> _log2_node_notes_block_size);
1692 int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1693 if (grow_by >= 0) {
1694 if (!can_grow) return NULL;
1695 grow_node_notes(arr, grow_by + 1);
1696 }
1697 if (arr == NULL) return NULL;
1698 // (Every element of arr is a sub-array of length _node_notes_block_size.)
1699 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1700}
1701
1702inline bool
1703Compile::set_node_notes_at(int idx, Node_Notes* value) {
1704 if (value == NULL || value->is_clear())
1705 return false; // nothing to write => write nothing
1706 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1707 assert(loc != NULL, "");
1708 return loc->update_from(value);
1709}
1710
1711
1712//------------------------------TypeNode---------------------------------------
1713// Node with a Type constant.
1714class TypeNode : public Node {
1715protected:
1716 virtual uint hash() const; // Check the type
1717 virtual bool cmp( const Node &n ) const;
1718 virtual uint size_of() const; // Size is bigger
1719 const Type* const _type;
1720public:
1721 void set_type(const Type* t) {
1722 assert(t != NULL, "sanity");
1723 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1724 *(const Type**)&_type = t; // cast away const-ness
1725 // If this node is in the hash table, make sure it doesn't need a rehash.
1726 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1727 }
1728 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1729 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1730 init_class_id(Class_Type);
1731 }
1732 virtual const Type* Value(PhaseGVN* phase) const;
1733 virtual const Type *bottom_type() const;
1734 virtual uint ideal_reg() const;
1735#ifndef PRODUCT
1736 virtual void dump_spec(outputStream *st) const;
1737 virtual void dump_compact_spec(outputStream *st) const;
1738#endif
1739};
1740
1741#endif // SHARE_OPTO_NODE_HPP
1742