1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_OPTO_MATCHER_HPP |
26 | #define SHARE_OPTO_MATCHER_HPP |
27 | |
28 | #include "libadt/vectset.hpp" |
29 | #include "memory/resourceArea.hpp" |
30 | #include "opto/node.hpp" |
31 | #include "opto/phaseX.hpp" |
32 | #include "opto/regmask.hpp" |
33 | |
34 | class Compile; |
35 | class Node; |
36 | class MachNode; |
37 | class MachTypeNode; |
38 | class MachOper; |
39 | |
40 | //---------------------------Matcher------------------------------------------- |
41 | class Matcher : public PhaseTransform { |
42 | friend class VMStructs; |
43 | |
44 | public: |
45 | |
46 | // State and MStack class used in xform() and find_shared() iterative methods. |
47 | enum Node_State { Pre_Visit, // node has to be pre-visited |
48 | Visit, // visit node |
49 | Post_Visit, // post-visit node |
50 | Alt_Post_Visit // alternative post-visit path |
51 | }; |
52 | |
53 | class MStack: public Node_Stack { |
54 | public: |
55 | MStack(int size) : Node_Stack(size) { } |
56 | |
57 | void push(Node *n, Node_State ns) { |
58 | Node_Stack::push(n, (uint)ns); |
59 | } |
60 | void push(Node *n, Node_State ns, Node *parent, int indx) { |
61 | ++_inode_top; |
62 | if ((_inode_top + 1) >= _inode_max) grow(); |
63 | _inode_top->node = parent; |
64 | _inode_top->indx = (uint)indx; |
65 | ++_inode_top; |
66 | _inode_top->node = n; |
67 | _inode_top->indx = (uint)ns; |
68 | } |
69 | Node *parent() { |
70 | pop(); |
71 | return node(); |
72 | } |
73 | Node_State state() const { |
74 | return (Node_State)index(); |
75 | } |
76 | void set_state(Node_State ns) { |
77 | set_index((uint)ns); |
78 | } |
79 | }; |
80 | |
81 | private: |
82 | // Private arena of State objects |
83 | ResourceArea _states_arena; |
84 | |
85 | VectorSet _visited; // Visit bits |
86 | |
87 | // Used to control the Label pass |
88 | VectorSet _shared; // Shared Ideal Node |
89 | VectorSet _dontcare; // Nothing the matcher cares about |
90 | |
91 | // Private methods which perform the actual matching and reduction |
92 | // Walks the label tree, generating machine nodes |
93 | MachNode *ReduceInst( State *s, int rule, Node *&mem); |
94 | void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach); |
95 | uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds); |
96 | void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach ); |
97 | |
98 | // If this node already matched using "rule", return the MachNode for it. |
99 | MachNode* find_shared_node(Node* n, uint rule); |
100 | |
101 | // Convert a dense opcode number to an expanded rule number |
102 | const int *_reduceOp; |
103 | const int *_leftOp; |
104 | const int *_rightOp; |
105 | |
106 | // Map dense opcode number to info on when rule is swallowed constant. |
107 | const bool *_swallowed; |
108 | |
109 | // Map dense rule number to determine if this is an instruction chain rule |
110 | const uint _begin_inst_chain_rule; |
111 | const uint _end_inst_chain_rule; |
112 | |
113 | // We want to clone constants and possible CmpI-variants. |
114 | // If we do not clone CmpI, then we can have many instances of |
115 | // condition codes alive at once. This is OK on some chips and |
116 | // bad on others. Hence the machine-dependent table lookup. |
117 | const char *_must_clone; |
118 | |
119 | // Find shared Nodes, or Nodes that otherwise are Matcher roots |
120 | void find_shared( Node *n ); |
121 | bool find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx); |
122 | void find_shared_post_visit(Node* n, uint opcode); |
123 | |
124 | #ifdef X86 |
125 | bool is_bmi_pattern(Node *n, Node *m); |
126 | #endif |
127 | |
128 | // Debug and profile information for nodes in old space: |
129 | GrowableArray<Node_Notes*>* _old_node_note_array; |
130 | |
131 | // Node labeling iterator for instruction selection |
132 | Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem ); |
133 | |
134 | Node *transform( Node *dummy ); |
135 | |
136 | Node_List _projection_list; // For Machine nodes killing many values |
137 | |
138 | Node_Array _shared_nodes; |
139 | |
140 | debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots |
141 | debug_only(Node_Array _new2old_map;) // Maps machine nodes back to ideal |
142 | |
143 | // Accessors for the inherited field PhaseTransform::_nodes: |
144 | void grow_new_node_array(uint idx_limit) { |
145 | _nodes.map(idx_limit-1, NULL); |
146 | } |
147 | bool has_new_node(const Node* n) const { |
148 | return _nodes.at(n->_idx) != NULL; |
149 | } |
150 | Node* new_node(const Node* n) const { |
151 | assert(has_new_node(n), "set before get" ); |
152 | return _nodes.at(n->_idx); |
153 | } |
154 | void set_new_node(const Node* n, Node *nn) { |
155 | assert(!has_new_node(n), "set only once" ); |
156 | _nodes.map(n->_idx, nn); |
157 | } |
158 | |
159 | #ifdef ASSERT |
160 | // Make sure only new nodes are reachable from this node |
161 | void verify_new_nodes_only(Node* root); |
162 | |
163 | Node* _mem_node; // Ideal memory node consumed by mach node |
164 | #endif |
165 | |
166 | // Mach node for ConP #NULL |
167 | MachNode* _mach_null; |
168 | |
169 | void handle_precedence_edges(Node* n, MachNode *mach); |
170 | |
171 | public: |
172 | int LabelRootDepth; |
173 | // Convert ideal machine register to a register mask for spill-loads |
174 | static const RegMask *idealreg2regmask[]; |
175 | RegMask *idealreg2spillmask [_last_machine_leaf]; |
176 | RegMask *idealreg2debugmask [_last_machine_leaf]; |
177 | RegMask *idealreg2mhdebugmask[_last_machine_leaf]; |
178 | void init_spill_mask( Node *ret ); |
179 | // Convert machine register number to register mask |
180 | static uint mreg2regmask_max; |
181 | static RegMask mreg2regmask[]; |
182 | static RegMask STACK_ONLY_mask; |
183 | |
184 | MachNode* mach_null() const { return _mach_null; } |
185 | |
186 | bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; } |
187 | void set_shared( Node *n ) { _shared.set(n->_idx); } |
188 | bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; } |
189 | void set_visited( Node *n ) { _visited.set(n->_idx); } |
190 | bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; } |
191 | void set_dontcare( Node *n ) { _dontcare.set(n->_idx); } |
192 | |
193 | // Mode bit to tell DFA and expand rules whether we are running after |
194 | // (or during) register selection. Usually, the matcher runs before, |
195 | // but it will also get called to generate post-allocation spill code. |
196 | // In this situation, it is a deadly error to attempt to allocate more |
197 | // temporary registers. |
198 | bool _allocation_started; |
199 | |
200 | // Machine register names |
201 | static const char *regName[]; |
202 | // Machine register encodings |
203 | static const unsigned char _regEncode[]; |
204 | // Machine Node names |
205 | const char **_ruleName; |
206 | // Rules that are cheaper to rematerialize than to spill |
207 | static const uint _begin_rematerialize; |
208 | static const uint _end_rematerialize; |
209 | |
210 | // An array of chars, from 0 to _last_Mach_Reg. |
211 | // No Save = 'N' (for register windows) |
212 | // Save on Entry = 'E' |
213 | // Save on Call = 'C' |
214 | // Always Save = 'A' (same as SOE + SOC) |
215 | const char *_register_save_policy; |
216 | const char *_c_reg_save_policy; |
217 | // Convert a machine register to a machine register type, so-as to |
218 | // properly match spill code. |
219 | const int *_register_save_type; |
220 | // Maps from machine register to boolean; true if machine register can |
221 | // be holding a call argument in some signature. |
222 | static bool can_be_java_arg( int reg ); |
223 | // Maps from machine register to boolean; true if machine register holds |
224 | // a spillable argument. |
225 | static bool is_spillable_arg( int reg ); |
226 | |
227 | // List of IfFalse or IfTrue Nodes that indicate a taken null test. |
228 | // List is valid in the post-matching space. |
229 | Node_List _null_check_tests; |
230 | void collect_null_checks( Node *proj, Node *orig_proj ); |
231 | void validate_null_checks( ); |
232 | |
233 | Matcher(); |
234 | |
235 | // Get a projection node at position pos |
236 | Node* get_projection(uint pos) { |
237 | return _projection_list[pos]; |
238 | } |
239 | |
240 | // Push a projection node onto the projection list |
241 | void push_projection(Node* node) { |
242 | _projection_list.push(node); |
243 | } |
244 | |
245 | Node* pop_projection() { |
246 | return _projection_list.pop(); |
247 | } |
248 | |
249 | // Number of nodes in the projection list |
250 | uint number_of_projections() const { |
251 | return _projection_list.size(); |
252 | } |
253 | |
254 | // Select instructions for entire method |
255 | void match(); |
256 | |
257 | // Helper for match |
258 | OptoReg::Name warp_incoming_stk_arg( VMReg reg ); |
259 | |
260 | // Transform, then walk. Does implicit DCE while walking. |
261 | // Name changed from "transform" to avoid it being virtual. |
262 | Node *xform( Node *old_space_node, int Nodes ); |
263 | |
264 | // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce. |
265 | MachNode *match_tree( const Node *n ); |
266 | MachNode *match_sfpt( SafePointNode *sfpt ); |
267 | // Helper for match_sfpt |
268 | OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ); |
269 | |
270 | // Initialize first stack mask and related masks. |
271 | void init_first_stack_mask(); |
272 | |
273 | // If we should save-on-entry this register |
274 | bool is_save_on_entry( int reg ); |
275 | |
276 | // Fixup the save-on-entry registers |
277 | void Fixup_Save_On_Entry( ); |
278 | |
279 | // --- Frame handling --- |
280 | |
281 | // Register number of the stack slot corresponding to the incoming SP. |
282 | // Per the Big Picture in the AD file, it is: |
283 | // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2. |
284 | OptoReg::Name _old_SP; |
285 | |
286 | // Register number of the stack slot corresponding to the highest incoming |
287 | // argument on the stack. Per the Big Picture in the AD file, it is: |
288 | // _old_SP + out_preserve_stack_slots + incoming argument size. |
289 | OptoReg::Name _in_arg_limit; |
290 | |
291 | // Register number of the stack slot corresponding to the new SP. |
292 | // Per the Big Picture in the AD file, it is: |
293 | // _in_arg_limit + pad0 |
294 | OptoReg::Name _new_SP; |
295 | |
296 | // Register number of the stack slot corresponding to the highest outgoing |
297 | // argument on the stack. Per the Big Picture in the AD file, it is: |
298 | // _new_SP + max outgoing arguments of all calls |
299 | OptoReg::Name _out_arg_limit; |
300 | |
301 | OptoRegPair *_parm_regs; // Array of machine registers per argument |
302 | RegMask *_calling_convention_mask; // Array of RegMasks per argument |
303 | |
304 | // Does matcher have a match rule for this ideal node? |
305 | static const bool has_match_rule(int opcode); |
306 | static const bool _hasMatchRule[_last_opcode]; |
307 | |
308 | // Does matcher have a match rule for this ideal node and is the |
309 | // predicate (if there is one) true? |
310 | // NOTE: If this function is used more commonly in the future, ADLC |
311 | // should generate this one. |
312 | static const bool match_rule_supported(int opcode); |
313 | |
314 | // identify extra cases that we might want to provide match rules for |
315 | // e.g. Op_ vector nodes and other intrinsics while guarding with vlen |
316 | static const bool match_rule_supported_vector(int opcode, int vlen); |
317 | |
318 | // Some microarchitectures have mask registers used on vectors |
319 | static const bool has_predicated_vectors(void); |
320 | |
321 | // Some uarchs have different sized float register resources |
322 | static const int float_pressure(int default_pressure_threshold); |
323 | |
324 | // Used to determine if we have fast l2f conversion |
325 | // USII has it, USIII doesn't |
326 | static const bool convL2FSupported(void); |
327 | |
328 | // Vector width in bytes |
329 | static const int vector_width_in_bytes(BasicType bt); |
330 | |
331 | // Limits on vector size (number of elements). |
332 | static const int max_vector_size(const BasicType bt); |
333 | static const int min_vector_size(const BasicType bt); |
334 | static const bool vector_size_supported(const BasicType bt, int size) { |
335 | return (Matcher::max_vector_size(bt) >= size && |
336 | Matcher::min_vector_size(bt) <= size); |
337 | } |
338 | |
339 | // Vector ideal reg |
340 | static const uint vector_ideal_reg(int len); |
341 | static const uint vector_shift_count_ideal_reg(int len); |
342 | |
343 | // CPU supports misaligned vectors store/load. |
344 | static const bool misaligned_vectors_ok(); |
345 | |
346 | // Should original key array reference be passed to AES stubs |
347 | static const bool pass_original_key_for_aes(); |
348 | |
349 | // Used to determine a "low complexity" 64-bit constant. (Zero is simple.) |
350 | // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI). |
351 | // Depends on the details of 64-bit constant generation on the CPU. |
352 | static const bool isSimpleConstant64(jlong con); |
353 | |
354 | // These calls are all generated by the ADLC |
355 | |
356 | // TRUE - grows up, FALSE - grows down (Intel) |
357 | virtual bool stack_direction() const; |
358 | |
359 | // Java-Java calling convention |
360 | // (what you use when Java calls Java) |
361 | |
362 | // Alignment of stack in bytes, standard Intel word alignment is 4. |
363 | // Sparc probably wants at least double-word (8). |
364 | static uint stack_alignment_in_bytes(); |
365 | // Alignment of stack, measured in stack slots. |
366 | // The size of stack slots is defined by VMRegImpl::stack_slot_size. |
367 | static uint stack_alignment_in_slots() { |
368 | return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size); |
369 | } |
370 | |
371 | // Array mapping arguments to registers. Argument 0 is usually the 'this' |
372 | // pointer. Registers can include stack-slots and regular registers. |
373 | static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing ); |
374 | |
375 | // Convert a sig into a calling convention register layout |
376 | // and find interesting things about it. |
377 | static OptoReg::Name find_receiver( bool is_outgoing ); |
378 | // Return address register. On Intel it is a stack-slot. On PowerPC |
379 | // it is the Link register. On Sparc it is r31? |
380 | virtual OptoReg::Name return_addr() const; |
381 | RegMask _return_addr_mask; |
382 | // Return value register. On Intel it is EAX. On Sparc i0/o0. |
383 | static OptoRegPair return_value(uint ideal_reg, bool is_outgoing); |
384 | static OptoRegPair c_return_value(uint ideal_reg, bool is_outgoing); |
385 | RegMask _return_value_mask; |
386 | // Inline Cache Register |
387 | static OptoReg::Name inline_cache_reg(); |
388 | static int inline_cache_reg_encode(); |
389 | |
390 | // Register for DIVI projection of divmodI |
391 | static RegMask divI_proj_mask(); |
392 | // Register for MODI projection of divmodI |
393 | static RegMask modI_proj_mask(); |
394 | |
395 | // Register for DIVL projection of divmodL |
396 | static RegMask divL_proj_mask(); |
397 | // Register for MODL projection of divmodL |
398 | static RegMask modL_proj_mask(); |
399 | |
400 | // Use hardware DIV instruction when it is faster than |
401 | // a code which use multiply for division by constant. |
402 | static bool use_asm_for_ldiv_by_con( jlong divisor ); |
403 | |
404 | static const RegMask method_handle_invoke_SP_save_mask(); |
405 | |
406 | // Java-Interpreter calling convention |
407 | // (what you use when calling between compiled-Java and Interpreted-Java |
408 | |
409 | // Number of callee-save + always-save registers |
410 | // Ignores frame pointer and "special" registers |
411 | static int number_of_saved_registers(); |
412 | |
413 | // The Method-klass-holder may be passed in the inline_cache_reg |
414 | // and then expanded into the inline_cache_reg and a method_oop register |
415 | |
416 | static OptoReg::Name interpreter_method_oop_reg(); |
417 | static int interpreter_method_oop_reg_encode(); |
418 | |
419 | static OptoReg::Name compiler_method_oop_reg(); |
420 | static const RegMask &compiler_method_oop_reg_mask(); |
421 | static int compiler_method_oop_reg_encode(); |
422 | |
423 | // Interpreter's Frame Pointer Register |
424 | static OptoReg::Name interpreter_frame_pointer_reg(); |
425 | |
426 | // Java-Native calling convention |
427 | // (what you use when intercalling between Java and C++ code) |
428 | |
429 | // Array mapping arguments to registers. Argument 0 is usually the 'this' |
430 | // pointer. Registers can include stack-slots and regular registers. |
431 | static void c_calling_convention( BasicType*, VMRegPair *, uint ); |
432 | // Frame pointer. The frame pointer is kept at the base of the stack |
433 | // and so is probably the stack pointer for most machines. On Intel |
434 | // it is ESP. On the PowerPC it is R1. On Sparc it is SP. |
435 | OptoReg::Name c_frame_pointer() const; |
436 | static RegMask c_frame_ptr_mask; |
437 | |
438 | // !!!!! Special stuff for building ScopeDescs |
439 | virtual int regnum_to_fpu_offset(int regnum); |
440 | |
441 | // Is this branch offset small enough to be addressed by a short branch? |
442 | bool is_short_branch_offset(int rule, int br_size, int offset); |
443 | |
444 | // Optional scaling for the parameter to the ClearArray/CopyArray node. |
445 | static const bool init_array_count_is_in_bytes; |
446 | |
447 | // Some hardware needs 2 CMOV's for longs. |
448 | static const int long_cmove_cost(); |
449 | |
450 | // Some hardware have expensive CMOV for float and double. |
451 | static const int float_cmove_cost(); |
452 | |
453 | // Should the Matcher clone shifts on addressing modes, expecting them to |
454 | // be subsumed into complex addressing expressions or compute them into |
455 | // registers? True for Intel but false for most RISCs |
456 | bool clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited); |
457 | // Clone base + offset address expression |
458 | bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited); |
459 | |
460 | static bool narrow_oop_use_complex_address(); |
461 | static bool narrow_klass_use_complex_address(); |
462 | |
463 | static bool const_oop_prefer_decode(); |
464 | static bool const_klass_prefer_decode(); |
465 | |
466 | // Generate implicit null check for narrow oops if it can fold |
467 | // into address expression (x64). |
468 | // |
469 | // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression |
470 | // NullCheck narrow_oop_reg |
471 | // |
472 | // When narrow oops can't fold into address expression (Sparc) and |
473 | // base is not null use decode_not_null and normal implicit null check. |
474 | // Note, decode_not_null node can be used here since it is referenced |
475 | // only on non null path but it requires special handling, see |
476 | // collect_null_checks(): |
477 | // |
478 | // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base' |
479 | // [oop_reg + offset] |
480 | // NullCheck oop_reg |
481 | // |
482 | // With Zero base and when narrow oops can not fold into address |
483 | // expression use normal implicit null check since only shift |
484 | // is needed to decode narrow oop. |
485 | // |
486 | // decode narrow_oop_reg, oop_reg // only 'shift' |
487 | // [oop_reg + offset] |
488 | // NullCheck oop_reg |
489 | // |
490 | static bool gen_narrow_oop_implicit_null_checks(); |
491 | |
492 | // Is it better to copy float constants, or load them directly from memory? |
493 | // Intel can load a float constant from a direct address, requiring no |
494 | // extra registers. Most RISCs will have to materialize an address into a |
495 | // register first, so they may as well materialize the constant immediately. |
496 | static const bool rematerialize_float_constants; |
497 | |
498 | // If CPU can load and store mis-aligned doubles directly then no fixup is |
499 | // needed. Else we split the double into 2 integer pieces and move it |
500 | // piece-by-piece. Only happens when passing doubles into C code or when |
501 | // calling i2c adapters as the Java calling convention forces doubles to be |
502 | // aligned. |
503 | static const bool misaligned_doubles_ok; |
504 | |
505 | // Does the CPU require postalloc expand (see block.cpp for description of |
506 | // postalloc expand)? |
507 | static const bool require_postalloc_expand; |
508 | |
509 | // Perform a platform dependent implicit null fixup. This is needed |
510 | // on windows95 to take care of some unusual register constraints. |
511 | void pd_implicit_null_fixup(MachNode *load, uint idx); |
512 | |
513 | // Advertise here if the CPU requires explicit rounding operations |
514 | // to implement the UseStrictFP mode. |
515 | static const bool strict_fp_requires_explicit_rounding; |
516 | |
517 | // Are floats conerted to double when stored to stack during deoptimization? |
518 | static bool float_in_double(); |
519 | // Do ints take an entire long register or just half? |
520 | static const bool int_in_long; |
521 | |
522 | // Do the processor's shift instructions only use the low 5/6 bits |
523 | // of the count for 32/64 bit ints? If not we need to do the masking |
524 | // ourselves. |
525 | static const bool need_masked_shift_count; |
526 | |
527 | // Whether code generation need accurate ConvI2L types. |
528 | static const bool convi2l_type_required; |
529 | |
530 | // This routine is run whenever a graph fails to match. |
531 | // If it returns, the compiler should bailout to interpreter without error. |
532 | // In non-product mode, SoftMatchFailure is false to detect non-canonical |
533 | // graphs. Print a message and exit. |
534 | static void soft_match_failure() { |
535 | if( SoftMatchFailure ) return; |
536 | else { fatal("SoftMatchFailure is not allowed except in product" ); } |
537 | } |
538 | |
539 | // Check for a following volatile memory barrier without an |
540 | // intervening load and thus we don't need a barrier here. We |
541 | // retain the Node to act as a compiler ordering barrier. |
542 | static bool post_store_load_barrier(const Node* mb); |
543 | |
544 | // Does n lead to an uncommon trap that can cause deoptimization? |
545 | static bool branches_to_uncommon_trap(const Node *n); |
546 | |
547 | #ifdef ASSERT |
548 | void dump_old2new_map(); // machine-independent to machine-dependent |
549 | |
550 | Node* find_old_node(Node* new_node) { |
551 | return _new2old_map[new_node->_idx]; |
552 | } |
553 | #endif |
554 | }; |
555 | |
556 | #endif // SHARE_OPTO_MATCHER_HPP |
557 | |