| 1 | /* | 
|---|
| 2 | * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. | 
|---|
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|---|
| 4 | * | 
|---|
| 5 | * This code is free software; you can redistribute it and/or modify it | 
|---|
| 6 | * under the terms of the GNU General Public License version 2 only, as | 
|---|
| 7 | * published by the Free Software Foundation. | 
|---|
| 8 | * | 
|---|
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT | 
|---|
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|---|
| 11 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|---|
| 12 | * version 2 for more details (a copy is included in the LICENSE file that | 
|---|
| 13 | * accompanied this code). | 
|---|
| 14 | * | 
|---|
| 15 | * You should have received a copy of the GNU General Public License version | 
|---|
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, | 
|---|
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|---|
| 18 | * | 
|---|
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|---|
| 20 | * or visit www.oracle.com if you need additional information or have any | 
|---|
| 21 | * questions. | 
|---|
| 22 | * | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | #include "precompiled.hpp" | 
|---|
| 26 | #include "classfile/vmSymbols.hpp" | 
|---|
| 27 | #include "jfr/jfrEvents.hpp" | 
|---|
| 28 | #include "jfr/support/jfrThreadId.hpp" | 
|---|
| 29 | #include "memory/allocation.inline.hpp" | 
|---|
| 30 | #include "memory/resourceArea.hpp" | 
|---|
| 31 | #include "oops/markOop.hpp" | 
|---|
| 32 | #include "oops/oop.inline.hpp" | 
|---|
| 33 | #include "runtime/atomic.hpp" | 
|---|
| 34 | #include "runtime/handles.inline.hpp" | 
|---|
| 35 | #include "runtime/interfaceSupport.inline.hpp" | 
|---|
| 36 | #include "runtime/mutexLocker.hpp" | 
|---|
| 37 | #include "runtime/objectMonitor.hpp" | 
|---|
| 38 | #include "runtime/objectMonitor.inline.hpp" | 
|---|
| 39 | #include "runtime/orderAccess.hpp" | 
|---|
| 40 | #include "runtime/osThread.hpp" | 
|---|
| 41 | #include "runtime/safepointMechanism.inline.hpp" | 
|---|
| 42 | #include "runtime/sharedRuntime.hpp" | 
|---|
| 43 | #include "runtime/stubRoutines.hpp" | 
|---|
| 44 | #include "runtime/thread.inline.hpp" | 
|---|
| 45 | #include "services/threadService.hpp" | 
|---|
| 46 | #include "utilities/dtrace.hpp" | 
|---|
| 47 | #include "utilities/macros.hpp" | 
|---|
| 48 | #include "utilities/preserveException.hpp" | 
|---|
| 49 | #if INCLUDE_JFR | 
|---|
| 50 | #include "jfr/support/jfrFlush.hpp" | 
|---|
| 51 | #endif | 
|---|
| 52 |  | 
|---|
| 53 | #ifdef DTRACE_ENABLED | 
|---|
| 54 |  | 
|---|
| 55 | // Only bother with this argument setup if dtrace is available | 
|---|
| 56 | // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly. | 
|---|
| 57 |  | 
|---|
| 58 |  | 
|---|
| 59 | #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \ | 
|---|
| 60 | char* bytes = NULL;                                                      \ | 
|---|
| 61 | int len = 0;                                                             \ | 
|---|
| 62 | jlong jtid = SharedRuntime::get_java_tid(thread);                        \ | 
|---|
| 63 | Symbol* klassname = ((oop)obj)->klass()->name();                         \ | 
|---|
| 64 | if (klassname != NULL) {                                                 \ | 
|---|
| 65 | bytes = (char*)klassname->bytes();                                     \ | 
|---|
| 66 | len = klassname->utf8_length();                                        \ | 
|---|
| 67 | } | 
|---|
| 68 |  | 
|---|
| 69 | #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \ | 
|---|
| 70 | {                                                                        \ | 
|---|
| 71 | if (DTraceMonitorProbes) {                                             \ | 
|---|
| 72 | DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \ | 
|---|
| 73 | HOTSPOT_MONITOR_WAIT(jtid,                                           \ | 
|---|
| 74 | (monitor), bytes, len, (millis));               \ | 
|---|
| 75 | }                                                                      \ | 
|---|
| 76 | } | 
|---|
| 77 |  | 
|---|
| 78 | #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER | 
|---|
| 79 | #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED | 
|---|
| 80 | #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT | 
|---|
| 81 | #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY | 
|---|
| 82 | #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL | 
|---|
| 83 |  | 
|---|
| 84 | #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \ | 
|---|
| 85 | {                                                                        \ | 
|---|
| 86 | if (DTraceMonitorProbes) {                                             \ | 
|---|
| 87 | DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \ | 
|---|
| 88 | HOTSPOT_MONITOR_##probe(jtid,                                        \ | 
|---|
| 89 | (uintptr_t)(monitor), bytes, len);           \ | 
|---|
| 90 | }                                                                      \ | 
|---|
| 91 | } | 
|---|
| 92 |  | 
|---|
| 93 | #else //  ndef DTRACE_ENABLED | 
|---|
| 94 |  | 
|---|
| 95 | #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;} | 
|---|
| 96 | #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;} | 
|---|
| 97 |  | 
|---|
| 98 | #endif // ndef DTRACE_ENABLED | 
|---|
| 99 |  | 
|---|
| 100 | // Tunables ... | 
|---|
| 101 | // The knob* variables are effectively final.  Once set they should | 
|---|
| 102 | // never be modified hence.  Consider using __read_mostly with GCC. | 
|---|
| 103 |  | 
|---|
| 104 | int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool - | 
|---|
| 105 |  | 
|---|
| 106 | static int Knob_Bonus               = 100;     // spin success bonus | 
|---|
| 107 | static int Knob_BonusB              = 100;     // spin success bonus | 
|---|
| 108 | static int Knob_Penalty             = 200;     // spin failure penalty | 
|---|
| 109 | static int Knob_Poverty             = 1000; | 
|---|
| 110 | static int Knob_FixedSpin           = 0; | 
|---|
| 111 | static int Knob_PreSpin             = 10;      // 20-100 likely better | 
|---|
| 112 |  | 
|---|
| 113 | DEBUG_ONLY(static volatile bool InitDone = false;) | 
|---|
| 114 |  | 
|---|
| 115 | // ----------------------------------------------------------------------------- | 
|---|
| 116 | // Theory of operations -- Monitors lists, thread residency, etc: | 
|---|
| 117 | // | 
|---|
| 118 | // * A thread acquires ownership of a monitor by successfully | 
|---|
| 119 | //   CAS()ing the _owner field from null to non-null. | 
|---|
| 120 | // | 
|---|
| 121 | // * Invariant: A thread appears on at most one monitor list -- | 
|---|
| 122 | //   cxq, EntryList or WaitSet -- at any one time. | 
|---|
| 123 | // | 
|---|
| 124 | // * Contending threads "push" themselves onto the cxq with CAS | 
|---|
| 125 | //   and then spin/park. | 
|---|
| 126 | // | 
|---|
| 127 | // * After a contending thread eventually acquires the lock it must | 
|---|
| 128 | //   dequeue itself from either the EntryList or the cxq. | 
|---|
| 129 | // | 
|---|
| 130 | // * The exiting thread identifies and unparks an "heir presumptive" | 
|---|
| 131 | //   tentative successor thread on the EntryList.  Critically, the | 
|---|
| 132 | //   exiting thread doesn't unlink the successor thread from the EntryList. | 
|---|
| 133 | //   After having been unparked, the wakee will recontend for ownership of | 
|---|
| 134 | //   the monitor.   The successor (wakee) will either acquire the lock or | 
|---|
| 135 | //   re-park itself. | 
|---|
| 136 | // | 
|---|
| 137 | //   Succession is provided for by a policy of competitive handoff. | 
|---|
| 138 | //   The exiting thread does _not_ grant or pass ownership to the | 
|---|
| 139 | //   successor thread.  (This is also referred to as "handoff" succession"). | 
|---|
| 140 | //   Instead the exiting thread releases ownership and possibly wakes | 
|---|
| 141 | //   a successor, so the successor can (re)compete for ownership of the lock. | 
|---|
| 142 | //   If the EntryList is empty but the cxq is populated the exiting | 
|---|
| 143 | //   thread will drain the cxq into the EntryList.  It does so by | 
|---|
| 144 | //   by detaching the cxq (installing null with CAS) and folding | 
|---|
| 145 | //   the threads from the cxq into the EntryList.  The EntryList is | 
|---|
| 146 | //   doubly linked, while the cxq is singly linked because of the | 
|---|
| 147 | //   CAS-based "push" used to enqueue recently arrived threads (RATs). | 
|---|
| 148 | // | 
|---|
| 149 | // * Concurrency invariants: | 
|---|
| 150 | // | 
|---|
| 151 | //   -- only the monitor owner may access or mutate the EntryList. | 
|---|
| 152 | //      The mutex property of the monitor itself protects the EntryList | 
|---|
| 153 | //      from concurrent interference. | 
|---|
| 154 | //   -- Only the monitor owner may detach the cxq. | 
|---|
| 155 | // | 
|---|
| 156 | // * The monitor entry list operations avoid locks, but strictly speaking | 
|---|
| 157 | //   they're not lock-free.  Enter is lock-free, exit is not. | 
|---|
| 158 | //   For a description of 'Methods and apparatus providing non-blocking access | 
|---|
| 159 | //   to a resource,' see U.S. Pat. No. 7844973. | 
|---|
| 160 | // | 
|---|
| 161 | // * The cxq can have multiple concurrent "pushers" but only one concurrent | 
|---|
| 162 | //   detaching thread.  This mechanism is immune from the ABA corruption. | 
|---|
| 163 | //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious. | 
|---|
| 164 | // | 
|---|
| 165 | // * Taken together, the cxq and the EntryList constitute or form a | 
|---|
| 166 | //   single logical queue of threads stalled trying to acquire the lock. | 
|---|
| 167 | //   We use two distinct lists to improve the odds of a constant-time | 
|---|
| 168 | //   dequeue operation after acquisition (in the ::enter() epilogue) and | 
|---|
| 169 | //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm). | 
|---|
| 170 | //   A key desideratum is to minimize queue & monitor metadata manipulation | 
|---|
| 171 | //   that occurs while holding the monitor lock -- that is, we want to | 
|---|
| 172 | //   minimize monitor lock holds times.  Note that even a small amount of | 
|---|
| 173 | //   fixed spinning will greatly reduce the # of enqueue-dequeue operations | 
|---|
| 174 | //   on EntryList|cxq.  That is, spinning relieves contention on the "inner" | 
|---|
| 175 | //   locks and monitor metadata. | 
|---|
| 176 | // | 
|---|
| 177 | //   Cxq points to the set of Recently Arrived Threads attempting entry. | 
|---|
| 178 | //   Because we push threads onto _cxq with CAS, the RATs must take the form of | 
|---|
| 179 | //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when | 
|---|
| 180 | //   the unlocking thread notices that EntryList is null but _cxq is != null. | 
|---|
| 181 | // | 
|---|
| 182 | //   The EntryList is ordered by the prevailing queue discipline and | 
|---|
| 183 | //   can be organized in any convenient fashion, such as a doubly-linked list or | 
|---|
| 184 | //   a circular doubly-linked list.  Critically, we want insert and delete operations | 
|---|
| 185 | //   to operate in constant-time.  If we need a priority queue then something akin | 
|---|
| 186 | //   to Solaris' sleepq would work nicely.  Viz., | 
|---|
| 187 | //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. | 
|---|
| 188 | //   Queue discipline is enforced at ::exit() time, when the unlocking thread | 
|---|
| 189 | //   drains the cxq into the EntryList, and orders or reorders the threads on the | 
|---|
| 190 | //   EntryList accordingly. | 
|---|
| 191 | // | 
|---|
| 192 | //   Barring "lock barging", this mechanism provides fair cyclic ordering, | 
|---|
| 193 | //   somewhat similar to an elevator-scan. | 
|---|
| 194 | // | 
|---|
| 195 | // * The monitor synchronization subsystem avoids the use of native | 
|---|
| 196 | //   synchronization primitives except for the narrow platform-specific | 
|---|
| 197 | //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding | 
|---|
| 198 | //   the semantics of park-unpark.  Put another way, this monitor implementation | 
|---|
| 199 | //   depends only on atomic operations and park-unpark.  The monitor subsystem | 
|---|
| 200 | //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the | 
|---|
| 201 | //   underlying OS manages the READY<->RUN transitions. | 
|---|
| 202 | // | 
|---|
| 203 | // * Waiting threads reside on the WaitSet list -- wait() puts | 
|---|
| 204 | //   the caller onto the WaitSet. | 
|---|
| 205 | // | 
|---|
| 206 | // * notify() or notifyAll() simply transfers threads from the WaitSet to | 
|---|
| 207 | //   either the EntryList or cxq.  Subsequent exit() operations will | 
|---|
| 208 | //   unpark the notifyee.  Unparking a notifee in notify() is inefficient - | 
|---|
| 209 | //   it's likely the notifyee would simply impale itself on the lock held | 
|---|
| 210 | //   by the notifier. | 
|---|
| 211 | // | 
|---|
| 212 | // * An interesting alternative is to encode cxq as (List,LockByte) where | 
|---|
| 213 | //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary | 
|---|
| 214 | //   variable, like _recursions, in the scheme.  The threads or Events that form | 
|---|
| 215 | //   the list would have to be aligned in 256-byte addresses.  A thread would | 
|---|
| 216 | //   try to acquire the lock or enqueue itself with CAS, but exiting threads | 
|---|
| 217 | //   could use a 1-0 protocol and simply STB to set the LockByte to 0. | 
|---|
| 218 | //   Note that is is *not* word-tearing, but it does presume that full-word | 
|---|
| 219 | //   CAS operations are coherent with intermix with STB operations.  That's true | 
|---|
| 220 | //   on most common processors. | 
|---|
| 221 | // | 
|---|
| 222 | // * See also http://blogs.sun.com/dave | 
|---|
| 223 |  | 
|---|
| 224 |  | 
|---|
| 225 | void* ObjectMonitor::operator new (size_t size) throw() { | 
|---|
| 226 | return AllocateHeap(size, mtInternal); | 
|---|
| 227 | } | 
|---|
| 228 | void* ObjectMonitor::operator new[] (size_t size) throw() { | 
|---|
| 229 | return operator new (size); | 
|---|
| 230 | } | 
|---|
| 231 | void ObjectMonitor::operator delete(void* p) { | 
|---|
| 232 | FreeHeap(p); | 
|---|
| 233 | } | 
|---|
| 234 | void ObjectMonitor::operator delete[] (void *p) { | 
|---|
| 235 | operator delete(p); | 
|---|
| 236 | } | 
|---|
| 237 |  | 
|---|
| 238 | // ----------------------------------------------------------------------------- | 
|---|
| 239 | // Enter support | 
|---|
| 240 |  | 
|---|
| 241 | void ObjectMonitor::enter(TRAPS) { | 
|---|
| 242 | // The following code is ordered to check the most common cases first | 
|---|
| 243 | // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors. | 
|---|
| 244 | Thread * const Self = THREAD; | 
|---|
| 245 |  | 
|---|
| 246 | void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL); | 
|---|
| 247 | if (cur == NULL) { | 
|---|
| 248 | assert(_recursions == 0, "invariant"); | 
|---|
| 249 | return; | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | if (cur == Self) { | 
|---|
| 253 | // TODO-FIXME: check for integer overflow!  BUGID 6557169. | 
|---|
| 254 | _recursions++; | 
|---|
| 255 | return; | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | if (Self->is_lock_owned ((address)cur)) { | 
|---|
| 259 | assert(_recursions == 0, "internal state error"); | 
|---|
| 260 | _recursions = 1; | 
|---|
| 261 | // Commute owner from a thread-specific on-stack BasicLockObject address to | 
|---|
| 262 | // a full-fledged "Thread *". | 
|---|
| 263 | _owner = Self; | 
|---|
| 264 | return; | 
|---|
| 265 | } | 
|---|
| 266 |  | 
|---|
| 267 | // We've encountered genuine contention. | 
|---|
| 268 | assert(Self->_Stalled == 0, "invariant"); | 
|---|
| 269 | Self->_Stalled = intptr_t(this); | 
|---|
| 270 |  | 
|---|
| 271 | // Try one round of spinning *before* enqueueing Self | 
|---|
| 272 | // and before going through the awkward and expensive state | 
|---|
| 273 | // transitions.  The following spin is strictly optional ... | 
|---|
| 274 | // Note that if we acquire the monitor from an initial spin | 
|---|
| 275 | // we forgo posting JVMTI events and firing DTRACE probes. | 
|---|
| 276 | if (TrySpin(Self) > 0) { | 
|---|
| 277 | assert(_owner == Self, "must be Self: owner="INTPTR_FORMAT, p2i(_owner)); | 
|---|
| 278 | assert(_recursions == 0, "must be 0: recursions="INTPTR_FORMAT, | 
|---|
| 279 | _recursions); | 
|---|
| 280 | assert(((oop)object())->mark() == markOopDesc::encode(this), | 
|---|
| 281 | "object mark must match encoded this: mark="INTPTR_FORMAT | 
|---|
| 282 | ", encoded this="INTPTR_FORMAT, p2i(((oop)object())->mark()), | 
|---|
| 283 | p2i(markOopDesc::encode(this))); | 
|---|
| 284 | Self->_Stalled = 0; | 
|---|
| 285 | return; | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | assert(_owner != Self, "invariant"); | 
|---|
| 289 | assert(_succ != Self, "invariant"); | 
|---|
| 290 | assert(Self->is_Java_thread(), "invariant"); | 
|---|
| 291 | JavaThread * jt = (JavaThread *) Self; | 
|---|
| 292 | assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); | 
|---|
| 293 | assert(jt->thread_state() != _thread_blocked, "invariant"); | 
|---|
| 294 | assert(this->object() != NULL, "invariant"); | 
|---|
| 295 | assert(_contentions >= 0, "invariant"); | 
|---|
| 296 |  | 
|---|
| 297 | // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy(). | 
|---|
| 298 | // Ensure the object-monitor relationship remains stable while there's contention. | 
|---|
| 299 | Atomic::inc(&_contentions); | 
|---|
| 300 |  | 
|---|
| 301 | JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);) | 
|---|
| 302 | EventJavaMonitorEnter event; | 
|---|
| 303 | if (event.should_commit()) { | 
|---|
| 304 | event.set_monitorClass(((oop)this->object())->klass()); | 
|---|
| 305 | event.set_address((uintptr_t)(this->object_addr())); | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 | { // Change java thread status to indicate blocked on monitor enter. | 
|---|
| 309 | JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this); | 
|---|
| 310 |  | 
|---|
| 311 | Self->set_current_pending_monitor(this); | 
|---|
| 312 |  | 
|---|
| 313 | DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt); | 
|---|
| 314 | if (JvmtiExport::should_post_monitor_contended_enter()) { | 
|---|
| 315 | JvmtiExport::post_monitor_contended_enter(jt, this); | 
|---|
| 316 |  | 
|---|
| 317 | // The current thread does not yet own the monitor and does not | 
|---|
| 318 | // yet appear on any queues that would get it made the successor. | 
|---|
| 319 | // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event | 
|---|
| 320 | // handler cannot accidentally consume an unpark() meant for the | 
|---|
| 321 | // ParkEvent associated with this ObjectMonitor. | 
|---|
| 322 | } | 
|---|
| 323 |  | 
|---|
| 324 | OSThreadContendState osts(Self->osthread()); | 
|---|
| 325 | ThreadBlockInVM tbivm(jt); | 
|---|
| 326 |  | 
|---|
| 327 | // TODO-FIXME: change the following for(;;) loop to straight-line code. | 
|---|
| 328 | for (;;) { | 
|---|
| 329 | jt->set_suspend_equivalent(); | 
|---|
| 330 | // cleared by handle_special_suspend_equivalent_condition() | 
|---|
| 331 | // or java_suspend_self() | 
|---|
| 332 |  | 
|---|
| 333 | EnterI(THREAD); | 
|---|
| 334 |  | 
|---|
| 335 | if (!ExitSuspendEquivalent(jt)) break; | 
|---|
| 336 |  | 
|---|
| 337 | // We have acquired the contended monitor, but while we were | 
|---|
| 338 | // waiting another thread suspended us. We don't want to enter | 
|---|
| 339 | // the monitor while suspended because that would surprise the | 
|---|
| 340 | // thread that suspended us. | 
|---|
| 341 | // | 
|---|
| 342 | _recursions = 0; | 
|---|
| 343 | _succ = NULL; | 
|---|
| 344 | exit(false, Self); | 
|---|
| 345 |  | 
|---|
| 346 | jt->java_suspend_self(); | 
|---|
| 347 | } | 
|---|
| 348 | Self->set_current_pending_monitor(NULL); | 
|---|
| 349 |  | 
|---|
| 350 | // We cleared the pending monitor info since we've just gotten past | 
|---|
| 351 | // the enter-check-for-suspend dance and we now own the monitor free | 
|---|
| 352 | // and clear, i.e., it is no longer pending. The ThreadBlockInVM | 
|---|
| 353 | // destructor can go to a safepoint at the end of this block. If we | 
|---|
| 354 | // do a thread dump during that safepoint, then this thread will show | 
|---|
| 355 | // as having "-locked" the monitor, but the OS and java.lang.Thread | 
|---|
| 356 | // states will still report that the thread is blocked trying to | 
|---|
| 357 | // acquire it. | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 | Atomic::dec(&_contentions); | 
|---|
| 361 | assert(_contentions >= 0, "invariant"); | 
|---|
| 362 | Self->_Stalled = 0; | 
|---|
| 363 |  | 
|---|
| 364 | // Must either set _recursions = 0 or ASSERT _recursions == 0. | 
|---|
| 365 | assert(_recursions == 0, "invariant"); | 
|---|
| 366 | assert(_owner == Self, "invariant"); | 
|---|
| 367 | assert(_succ != Self, "invariant"); | 
|---|
| 368 | assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant"); | 
|---|
| 369 |  | 
|---|
| 370 | // The thread -- now the owner -- is back in vm mode. | 
|---|
| 371 | // Report the glorious news via TI,DTrace and jvmstat. | 
|---|
| 372 | // The probe effect is non-trivial.  All the reportage occurs | 
|---|
| 373 | // while we hold the monitor, increasing the length of the critical | 
|---|
| 374 | // section.  Amdahl's parallel speedup law comes vividly into play. | 
|---|
| 375 | // | 
|---|
| 376 | // Another option might be to aggregate the events (thread local or | 
|---|
| 377 | // per-monitor aggregation) and defer reporting until a more opportune | 
|---|
| 378 | // time -- such as next time some thread encounters contention but has | 
|---|
| 379 | // yet to acquire the lock.  While spinning that thread could | 
|---|
| 380 | // spinning we could increment JVMStat counters, etc. | 
|---|
| 381 |  | 
|---|
| 382 | DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt); | 
|---|
| 383 | if (JvmtiExport::should_post_monitor_contended_entered()) { | 
|---|
| 384 | JvmtiExport::post_monitor_contended_entered(jt, this); | 
|---|
| 385 |  | 
|---|
| 386 | // The current thread already owns the monitor and is not going to | 
|---|
| 387 | // call park() for the remainder of the monitor enter protocol. So | 
|---|
| 388 | // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED | 
|---|
| 389 | // event handler consumed an unpark() issued by the thread that | 
|---|
| 390 | // just exited the monitor. | 
|---|
| 391 | } | 
|---|
| 392 | if (event.should_commit()) { | 
|---|
| 393 | event.set_previousOwner((uintptr_t)_previous_owner_tid); | 
|---|
| 394 | event.commit(); | 
|---|
| 395 | } | 
|---|
| 396 | OM_PERFDATA_OP(ContendedLockAttempts, inc()); | 
|---|
| 397 | } | 
|---|
| 398 |  | 
|---|
| 399 | // Caveat: TryLock() is not necessarily serializing if it returns failure. | 
|---|
| 400 | // Callers must compensate as needed. | 
|---|
| 401 |  | 
|---|
| 402 | int ObjectMonitor::TryLock(Thread * Self) { | 
|---|
| 403 | void * own = _owner; | 
|---|
| 404 | if (own != NULL) return 0; | 
|---|
| 405 | if (Atomic::replace_if_null(Self, &_owner)) { | 
|---|
| 406 | assert(_recursions == 0, "invariant"); | 
|---|
| 407 | return 1; | 
|---|
| 408 | } | 
|---|
| 409 | // The lock had been free momentarily, but we lost the race to the lock. | 
|---|
| 410 | // Interference -- the CAS failed. | 
|---|
| 411 | // We can either return -1 or retry. | 
|---|
| 412 | // Retry doesn't make as much sense because the lock was just acquired. | 
|---|
| 413 | return -1; | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 | // Convert the fields used by is_busy() to a string that can be | 
|---|
| 417 | // used for diagnostic output. | 
|---|
| 418 | const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { | 
|---|
| 419 | ss->print( "is_busy: contentions=%d, waiters=%d, owner="INTPTR_FORMAT | 
|---|
| 420 | ", cxq="INTPTR_FORMAT ", EntryList="INTPTR_FORMAT, _contentions, | 
|---|
| 421 | _waiters, p2i(_owner), p2i(_cxq), p2i(_EntryList)); | 
|---|
| 422 | return ss->base(); | 
|---|
| 423 | } | 
|---|
| 424 |  | 
|---|
| 425 | #define MAX_RECHECK_INTERVAL 1000 | 
|---|
| 426 |  | 
|---|
| 427 | void ObjectMonitor::EnterI(TRAPS) { | 
|---|
| 428 | Thread * const Self = THREAD; | 
|---|
| 429 | assert(Self->is_Java_thread(), "invariant"); | 
|---|
| 430 | assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant"); | 
|---|
| 431 |  | 
|---|
| 432 | // Try the lock - TATAS | 
|---|
| 433 | if (TryLock (Self) > 0) { | 
|---|
| 434 | assert(_succ != Self, "invariant"); | 
|---|
| 435 | assert(_owner == Self, "invariant"); | 
|---|
| 436 | assert(_Responsible != Self, "invariant"); | 
|---|
| 437 | return; | 
|---|
| 438 | } | 
|---|
| 439 |  | 
|---|
| 440 | assert(InitDone, "Unexpectedly not initialized"); | 
|---|
| 441 |  | 
|---|
| 442 | // We try one round of spinning *before* enqueueing Self. | 
|---|
| 443 | // | 
|---|
| 444 | // If the _owner is ready but OFFPROC we could use a YieldTo() | 
|---|
| 445 | // operation to donate the remainder of this thread's quantum | 
|---|
| 446 | // to the owner.  This has subtle but beneficial affinity | 
|---|
| 447 | // effects. | 
|---|
| 448 |  | 
|---|
| 449 | if (TrySpin(Self) > 0) { | 
|---|
| 450 | assert(_owner == Self, "invariant"); | 
|---|
| 451 | assert(_succ != Self, "invariant"); | 
|---|
| 452 | assert(_Responsible != Self, "invariant"); | 
|---|
| 453 | return; | 
|---|
| 454 | } | 
|---|
| 455 |  | 
|---|
| 456 | // The Spin failed -- Enqueue and park the thread ... | 
|---|
| 457 | assert(_succ != Self, "invariant"); | 
|---|
| 458 | assert(_owner != Self, "invariant"); | 
|---|
| 459 | assert(_Responsible != Self, "invariant"); | 
|---|
| 460 |  | 
|---|
| 461 | // Enqueue "Self" on ObjectMonitor's _cxq. | 
|---|
| 462 | // | 
|---|
| 463 | // Node acts as a proxy for Self. | 
|---|
| 464 | // As an aside, if were to ever rewrite the synchronization code mostly | 
|---|
| 465 | // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class | 
|---|
| 466 | // Java objects.  This would avoid awkward lifecycle and liveness issues, | 
|---|
| 467 | // as well as eliminate a subset of ABA issues. | 
|---|
| 468 | // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. | 
|---|
| 469 |  | 
|---|
| 470 | ObjectWaiter node(Self); | 
|---|
| 471 | Self->_ParkEvent->reset(); | 
|---|
| 472 | node._prev   = (ObjectWaiter *) 0xBAD; | 
|---|
| 473 | node.TState  = ObjectWaiter::TS_CXQ; | 
|---|
| 474 |  | 
|---|
| 475 | // Push "Self" onto the front of the _cxq. | 
|---|
| 476 | // Once on cxq/EntryList, Self stays on-queue until it acquires the lock. | 
|---|
| 477 | // Note that spinning tends to reduce the rate at which threads | 
|---|
| 478 | // enqueue and dequeue on EntryList|cxq. | 
|---|
| 479 | ObjectWaiter * nxt; | 
|---|
| 480 | for (;;) { | 
|---|
| 481 | node._next = nxt = _cxq; | 
|---|
| 482 | if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break; | 
|---|
| 483 |  | 
|---|
| 484 | // Interference - the CAS failed because _cxq changed.  Just retry. | 
|---|
| 485 | // As an optional optimization we retry the lock. | 
|---|
| 486 | if (TryLock (Self) > 0) { | 
|---|
| 487 | assert(_succ != Self, "invariant"); | 
|---|
| 488 | assert(_owner == Self, "invariant"); | 
|---|
| 489 | assert(_Responsible != Self, "invariant"); | 
|---|
| 490 | return; | 
|---|
| 491 | } | 
|---|
| 492 | } | 
|---|
| 493 |  | 
|---|
| 494 | // Check for cxq|EntryList edge transition to non-null.  This indicates | 
|---|
| 495 | // the onset of contention.  While contention persists exiting threads | 
|---|
| 496 | // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit | 
|---|
| 497 | // operations revert to the faster 1-0 mode.  This enter operation may interleave | 
|---|
| 498 | // (race) a concurrent 1-0 exit operation, resulting in stranding, so we | 
|---|
| 499 | // arrange for one of the contending thread to use a timed park() operations | 
|---|
| 500 | // to detect and recover from the race.  (Stranding is form of progress failure | 
|---|
| 501 | // where the monitor is unlocked but all the contending threads remain parked). | 
|---|
| 502 | // That is, at least one of the contended threads will periodically poll _owner. | 
|---|
| 503 | // One of the contending threads will become the designated "Responsible" thread. | 
|---|
| 504 | // The Responsible thread uses a timed park instead of a normal indefinite park | 
|---|
| 505 | // operation -- it periodically wakes and checks for and recovers from potential | 
|---|
| 506 | // strandings admitted by 1-0 exit operations.   We need at most one Responsible | 
|---|
| 507 | // thread per-monitor at any given moment.  Only threads on cxq|EntryList may | 
|---|
| 508 | // be responsible for a monitor. | 
|---|
| 509 | // | 
|---|
| 510 | // Currently, one of the contended threads takes on the added role of "Responsible". | 
|---|
| 511 | // A viable alternative would be to use a dedicated "stranding checker" thread | 
|---|
| 512 | // that periodically iterated over all the threads (or active monitors) and unparked | 
|---|
| 513 | // successors where there was risk of stranding.  This would help eliminate the | 
|---|
| 514 | // timer scalability issues we see on some platforms as we'd only have one thread | 
|---|
| 515 | // -- the checker -- parked on a timer. | 
|---|
| 516 |  | 
|---|
| 517 | if (nxt == NULL && _EntryList == NULL) { | 
|---|
| 518 | // Try to assume the role of responsible thread for the monitor. | 
|---|
| 519 | // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self } | 
|---|
| 520 | Atomic::replace_if_null(Self, &_Responsible); | 
|---|
| 521 | } | 
|---|
| 522 |  | 
|---|
| 523 | // The lock might have been released while this thread was occupied queueing | 
|---|
| 524 | // itself onto _cxq.  To close the race and avoid "stranding" and | 
|---|
| 525 | // progress-liveness failure we must resample-retry _owner before parking. | 
|---|
| 526 | // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. | 
|---|
| 527 | // In this case the ST-MEMBAR is accomplished with CAS(). | 
|---|
| 528 | // | 
|---|
| 529 | // TODO: Defer all thread state transitions until park-time. | 
|---|
| 530 | // Since state transitions are heavy and inefficient we'd like | 
|---|
| 531 | // to defer the state transitions until absolutely necessary, | 
|---|
| 532 | // and in doing so avoid some transitions ... | 
|---|
| 533 |  | 
|---|
| 534 | int nWakeups = 0; | 
|---|
| 535 | int recheckInterval = 1; | 
|---|
| 536 |  | 
|---|
| 537 | for (;;) { | 
|---|
| 538 |  | 
|---|
| 539 | if (TryLock(Self) > 0) break; | 
|---|
| 540 | assert(_owner != Self, "invariant"); | 
|---|
| 541 |  | 
|---|
| 542 | // park self | 
|---|
| 543 | if (_Responsible == Self) { | 
|---|
| 544 | Self->_ParkEvent->park((jlong) recheckInterval); | 
|---|
| 545 | // Increase the recheckInterval, but clamp the value. | 
|---|
| 546 | recheckInterval *= 8; | 
|---|
| 547 | if (recheckInterval > MAX_RECHECK_INTERVAL) { | 
|---|
| 548 | recheckInterval = MAX_RECHECK_INTERVAL; | 
|---|
| 549 | } | 
|---|
| 550 | } else { | 
|---|
| 551 | Self->_ParkEvent->park(); | 
|---|
| 552 | } | 
|---|
| 553 |  | 
|---|
| 554 | if (TryLock(Self) > 0) break; | 
|---|
| 555 |  | 
|---|
| 556 | // The lock is still contested. | 
|---|
| 557 | // Keep a tally of the # of futile wakeups. | 
|---|
| 558 | // Note that the counter is not protected by a lock or updated by atomics. | 
|---|
| 559 | // That is by design - we trade "lossy" counters which are exposed to | 
|---|
| 560 | // races during updates for a lower probe effect. | 
|---|
| 561 |  | 
|---|
| 562 | // This PerfData object can be used in parallel with a safepoint. | 
|---|
| 563 | // See the work around in PerfDataManager::destroy(). | 
|---|
| 564 | OM_PERFDATA_OP(FutileWakeups, inc()); | 
|---|
| 565 | ++nWakeups; | 
|---|
| 566 |  | 
|---|
| 567 | // Assuming this is not a spurious wakeup we'll normally find _succ == Self. | 
|---|
| 568 | // We can defer clearing _succ until after the spin completes | 
|---|
| 569 | // TrySpin() must tolerate being called with _succ == Self. | 
|---|
| 570 | // Try yet another round of adaptive spinning. | 
|---|
| 571 | if (TrySpin(Self) > 0) break; | 
|---|
| 572 |  | 
|---|
| 573 | // We can find that we were unpark()ed and redesignated _succ while | 
|---|
| 574 | // we were spinning.  That's harmless.  If we iterate and call park(), | 
|---|
| 575 | // park() will consume the event and return immediately and we'll | 
|---|
| 576 | // just spin again.  This pattern can repeat, leaving _succ to simply | 
|---|
| 577 | // spin on a CPU. | 
|---|
| 578 |  | 
|---|
| 579 | if (_succ == Self) _succ = NULL; | 
|---|
| 580 |  | 
|---|
| 581 | // Invariant: after clearing _succ a thread *must* retry _owner before parking. | 
|---|
| 582 | OrderAccess::fence(); | 
|---|
| 583 | } | 
|---|
| 584 |  | 
|---|
| 585 | // Egress : | 
|---|
| 586 | // Self has acquired the lock -- Unlink Self from the cxq or EntryList. | 
|---|
| 587 | // Normally we'll find Self on the EntryList . | 
|---|
| 588 | // From the perspective of the lock owner (this thread), the | 
|---|
| 589 | // EntryList is stable and cxq is prepend-only. | 
|---|
| 590 | // The head of cxq is volatile but the interior is stable. | 
|---|
| 591 | // In addition, Self.TState is stable. | 
|---|
| 592 |  | 
|---|
| 593 | assert(_owner == Self, "invariant"); | 
|---|
| 594 | assert(object() != NULL, "invariant"); | 
|---|
| 595 | // I'd like to write: | 
|---|
| 596 | //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ; | 
|---|
| 597 | // but as we're at a safepoint that's not safe. | 
|---|
| 598 |  | 
|---|
| 599 | UnlinkAfterAcquire(Self, &node); | 
|---|
| 600 | if (_succ == Self) _succ = NULL; | 
|---|
| 601 |  | 
|---|
| 602 | assert(_succ != Self, "invariant"); | 
|---|
| 603 | if (_Responsible == Self) { | 
|---|
| 604 | _Responsible = NULL; | 
|---|
| 605 | OrderAccess::fence(); // Dekker pivot-point | 
|---|
| 606 |  | 
|---|
| 607 | // We may leave threads on cxq|EntryList without a designated | 
|---|
| 608 | // "Responsible" thread.  This is benign.  When this thread subsequently | 
|---|
| 609 | // exits the monitor it can "see" such preexisting "old" threads -- | 
|---|
| 610 | // threads that arrived on the cxq|EntryList before the fence, above -- | 
|---|
| 611 | // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads | 
|---|
| 612 | // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible | 
|---|
| 613 | // non-null and elect a new "Responsible" timer thread. | 
|---|
| 614 | // | 
|---|
| 615 | // This thread executes: | 
|---|
| 616 | //    ST Responsible=null; MEMBAR    (in enter epilogue - here) | 
|---|
| 617 | //    LD cxq|EntryList               (in subsequent exit) | 
|---|
| 618 | // | 
|---|
| 619 | // Entering threads in the slow/contended path execute: | 
|---|
| 620 | //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog) | 
|---|
| 621 | //    The (ST cxq; MEMBAR) is accomplished with CAS(). | 
|---|
| 622 | // | 
|---|
| 623 | // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent | 
|---|
| 624 | // exit operation from floating above the ST Responsible=null. | 
|---|
| 625 | } | 
|---|
| 626 |  | 
|---|
| 627 | // We've acquired ownership with CAS(). | 
|---|
| 628 | // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. | 
|---|
| 629 | // But since the CAS() this thread may have also stored into _succ, | 
|---|
| 630 | // EntryList, cxq or Responsible.  These meta-data updates must be | 
|---|
| 631 | // visible __before this thread subsequently drops the lock. | 
|---|
| 632 | // Consider what could occur if we didn't enforce this constraint -- | 
|---|
| 633 | // STs to monitor meta-data and user-data could reorder with (become | 
|---|
| 634 | // visible after) the ST in exit that drops ownership of the lock. | 
|---|
| 635 | // Some other thread could then acquire the lock, but observe inconsistent | 
|---|
| 636 | // or old monitor meta-data and heap data.  That violates the JMM. | 
|---|
| 637 | // To that end, the 1-0 exit() operation must have at least STST|LDST | 
|---|
| 638 | // "release" barrier semantics.  Specifically, there must be at least a | 
|---|
| 639 | // STST|LDST barrier in exit() before the ST of null into _owner that drops | 
|---|
| 640 | // the lock.   The barrier ensures that changes to monitor meta-data and data | 
|---|
| 641 | // protected by the lock will be visible before we release the lock, and | 
|---|
| 642 | // therefore before some other thread (CPU) has a chance to acquire the lock. | 
|---|
| 643 | // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. | 
|---|
| 644 | // | 
|---|
| 645 | // Critically, any prior STs to _succ or EntryList must be visible before | 
|---|
| 646 | // the ST of null into _owner in the *subsequent* (following) corresponding | 
|---|
| 647 | // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily | 
|---|
| 648 | // execute a serializing instruction. | 
|---|
| 649 |  | 
|---|
| 650 | return; | 
|---|
| 651 | } | 
|---|
| 652 |  | 
|---|
| 653 | // ReenterI() is a specialized inline form of the latter half of the | 
|---|
| 654 | // contended slow-path from EnterI().  We use ReenterI() only for | 
|---|
| 655 | // monitor reentry in wait(). | 
|---|
| 656 | // | 
|---|
| 657 | // In the future we should reconcile EnterI() and ReenterI(). | 
|---|
| 658 |  | 
|---|
| 659 | void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) { | 
|---|
| 660 | assert(Self != NULL, "invariant"); | 
|---|
| 661 | assert(SelfNode != NULL, "invariant"); | 
|---|
| 662 | assert(SelfNode->_thread == Self, "invariant"); | 
|---|
| 663 | assert(_waiters > 0, "invariant"); | 
|---|
| 664 | assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant"); | 
|---|
| 665 | assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant"); | 
|---|
| 666 | JavaThread * jt = (JavaThread *) Self; | 
|---|
| 667 |  | 
|---|
| 668 | int nWakeups = 0; | 
|---|
| 669 | for (;;) { | 
|---|
| 670 | ObjectWaiter::TStates v = SelfNode->TState; | 
|---|
| 671 | guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); | 
|---|
| 672 | assert(_owner != Self, "invariant"); | 
|---|
| 673 |  | 
|---|
| 674 | if (TryLock(Self) > 0) break; | 
|---|
| 675 | if (TrySpin(Self) > 0) break; | 
|---|
| 676 |  | 
|---|
| 677 | // State transition wrappers around park() ... | 
|---|
| 678 | // ReenterI() wisely defers state transitions until | 
|---|
| 679 | // it's clear we must park the thread. | 
|---|
| 680 | { | 
|---|
| 681 | OSThreadContendState osts(Self->osthread()); | 
|---|
| 682 | ThreadBlockInVM tbivm(jt); | 
|---|
| 683 |  | 
|---|
| 684 | // cleared by handle_special_suspend_equivalent_condition() | 
|---|
| 685 | // or java_suspend_self() | 
|---|
| 686 | jt->set_suspend_equivalent(); | 
|---|
| 687 | Self->_ParkEvent->park(); | 
|---|
| 688 |  | 
|---|
| 689 | // were we externally suspended while we were waiting? | 
|---|
| 690 | for (;;) { | 
|---|
| 691 | if (!ExitSuspendEquivalent(jt)) break; | 
|---|
| 692 | if (_succ == Self) { _succ = NULL; OrderAccess::fence(); } | 
|---|
| 693 | jt->java_suspend_self(); | 
|---|
| 694 | jt->set_suspend_equivalent(); | 
|---|
| 695 | } | 
|---|
| 696 | } | 
|---|
| 697 |  | 
|---|
| 698 | // Try again, but just so we distinguish between futile wakeups and | 
|---|
| 699 | // successful wakeups.  The following test isn't algorithmically | 
|---|
| 700 | // necessary, but it helps us maintain sensible statistics. | 
|---|
| 701 | if (TryLock(Self) > 0) break; | 
|---|
| 702 |  | 
|---|
| 703 | // The lock is still contested. | 
|---|
| 704 | // Keep a tally of the # of futile wakeups. | 
|---|
| 705 | // Note that the counter is not protected by a lock or updated by atomics. | 
|---|
| 706 | // That is by design - we trade "lossy" counters which are exposed to | 
|---|
| 707 | // races during updates for a lower probe effect. | 
|---|
| 708 | ++nWakeups; | 
|---|
| 709 |  | 
|---|
| 710 | // Assuming this is not a spurious wakeup we'll normally | 
|---|
| 711 | // find that _succ == Self. | 
|---|
| 712 | if (_succ == Self) _succ = NULL; | 
|---|
| 713 |  | 
|---|
| 714 | // Invariant: after clearing _succ a contending thread | 
|---|
| 715 | // *must* retry  _owner before parking. | 
|---|
| 716 | OrderAccess::fence(); | 
|---|
| 717 |  | 
|---|
| 718 | // This PerfData object can be used in parallel with a safepoint. | 
|---|
| 719 | // See the work around in PerfDataManager::destroy(). | 
|---|
| 720 | OM_PERFDATA_OP(FutileWakeups, inc()); | 
|---|
| 721 | } | 
|---|
| 722 |  | 
|---|
| 723 | // Self has acquired the lock -- Unlink Self from the cxq or EntryList . | 
|---|
| 724 | // Normally we'll find Self on the EntryList. | 
|---|
| 725 | // Unlinking from the EntryList is constant-time and atomic-free. | 
|---|
| 726 | // From the perspective of the lock owner (this thread), the | 
|---|
| 727 | // EntryList is stable and cxq is prepend-only. | 
|---|
| 728 | // The head of cxq is volatile but the interior is stable. | 
|---|
| 729 | // In addition, Self.TState is stable. | 
|---|
| 730 |  | 
|---|
| 731 | assert(_owner == Self, "invariant"); | 
|---|
| 732 | assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant"); | 
|---|
| 733 | UnlinkAfterAcquire(Self, SelfNode); | 
|---|
| 734 | if (_succ == Self) _succ = NULL; | 
|---|
| 735 | assert(_succ != Self, "invariant"); | 
|---|
| 736 | SelfNode->TState = ObjectWaiter::TS_RUN; | 
|---|
| 737 | OrderAccess::fence();      // see comments at the end of EnterI() | 
|---|
| 738 | } | 
|---|
| 739 |  | 
|---|
| 740 | // By convention we unlink a contending thread from EntryList|cxq immediately | 
|---|
| 741 | // after the thread acquires the lock in ::enter().  Equally, we could defer | 
|---|
| 742 | // unlinking the thread until ::exit()-time. | 
|---|
| 743 |  | 
|---|
| 744 | void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) { | 
|---|
| 745 | assert(_owner == Self, "invariant"); | 
|---|
| 746 | assert(SelfNode->_thread == Self, "invariant"); | 
|---|
| 747 |  | 
|---|
| 748 | if (SelfNode->TState == ObjectWaiter::TS_ENTER) { | 
|---|
| 749 | // Normal case: remove Self from the DLL EntryList . | 
|---|
| 750 | // This is a constant-time operation. | 
|---|
| 751 | ObjectWaiter * nxt = SelfNode->_next; | 
|---|
| 752 | ObjectWaiter * prv = SelfNode->_prev; | 
|---|
| 753 | if (nxt != NULL) nxt->_prev = prv; | 
|---|
| 754 | if (prv != NULL) prv->_next = nxt; | 
|---|
| 755 | if (SelfNode == _EntryList) _EntryList = nxt; | 
|---|
| 756 | assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); | 
|---|
| 757 | assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant"); | 
|---|
| 758 | } else { | 
|---|
| 759 | assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant"); | 
|---|
| 760 | // Inopportune interleaving -- Self is still on the cxq. | 
|---|
| 761 | // This usually means the enqueue of self raced an exiting thread. | 
|---|
| 762 | // Normally we'll find Self near the front of the cxq, so | 
|---|
| 763 | // dequeueing is typically fast.  If needbe we can accelerate | 
|---|
| 764 | // this with some MCS/CHL-like bidirectional list hints and advisory | 
|---|
| 765 | // back-links so dequeueing from the interior will normally operate | 
|---|
| 766 | // in constant-time. | 
|---|
| 767 | // Dequeue Self from either the head (with CAS) or from the interior | 
|---|
| 768 | // with a linear-time scan and normal non-atomic memory operations. | 
|---|
| 769 | // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList | 
|---|
| 770 | // and then unlink Self from EntryList.  We have to drain eventually, | 
|---|
| 771 | // so it might as well be now. | 
|---|
| 772 |  | 
|---|
| 773 | ObjectWaiter * v = _cxq; | 
|---|
| 774 | assert(v != NULL, "invariant"); | 
|---|
| 775 | if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) { | 
|---|
| 776 | // The CAS above can fail from interference IFF a "RAT" arrived. | 
|---|
| 777 | // In that case Self must be in the interior and can no longer be | 
|---|
| 778 | // at the head of cxq. | 
|---|
| 779 | if (v == SelfNode) { | 
|---|
| 780 | assert(_cxq != v, "invariant"); | 
|---|
| 781 | v = _cxq;          // CAS above failed - start scan at head of list | 
|---|
| 782 | } | 
|---|
| 783 | ObjectWaiter * p; | 
|---|
| 784 | ObjectWaiter * q = NULL; | 
|---|
| 785 | for (p = v; p != NULL && p != SelfNode; p = p->_next) { | 
|---|
| 786 | q = p; | 
|---|
| 787 | assert(p->TState == ObjectWaiter::TS_CXQ, "invariant"); | 
|---|
| 788 | } | 
|---|
| 789 | assert(v != SelfNode, "invariant"); | 
|---|
| 790 | assert(p == SelfNode, "Node not found on cxq"); | 
|---|
| 791 | assert(p != _cxq, "invariant"); | 
|---|
| 792 | assert(q != NULL, "invariant"); | 
|---|
| 793 | assert(q->_next == p, "invariant"); | 
|---|
| 794 | q->_next = p->_next; | 
|---|
| 795 | } | 
|---|
| 796 | } | 
|---|
| 797 |  | 
|---|
| 798 | #ifdef ASSERT | 
|---|
| 799 | // Diagnostic hygiene ... | 
|---|
| 800 | SelfNode->_prev  = (ObjectWaiter *) 0xBAD; | 
|---|
| 801 | SelfNode->_next  = (ObjectWaiter *) 0xBAD; | 
|---|
| 802 | SelfNode->TState = ObjectWaiter::TS_RUN; | 
|---|
| 803 | #endif | 
|---|
| 804 | } | 
|---|
| 805 |  | 
|---|
| 806 | // ----------------------------------------------------------------------------- | 
|---|
| 807 | // Exit support | 
|---|
| 808 | // | 
|---|
| 809 | // exit() | 
|---|
| 810 | // ~~~~~~ | 
|---|
| 811 | // Note that the collector can't reclaim the objectMonitor or deflate | 
|---|
| 812 | // the object out from underneath the thread calling ::exit() as the | 
|---|
| 813 | // thread calling ::exit() never transitions to a stable state. | 
|---|
| 814 | // This inhibits GC, which in turn inhibits asynchronous (and | 
|---|
| 815 | // inopportune) reclamation of "this". | 
|---|
| 816 | // | 
|---|
| 817 | // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; | 
|---|
| 818 | // There's one exception to the claim above, however.  EnterI() can call | 
|---|
| 819 | // exit() to drop a lock if the acquirer has been externally suspended. | 
|---|
| 820 | // In that case exit() is called with _thread_state as _thread_blocked, | 
|---|
| 821 | // but the monitor's _contentions field is > 0, which inhibits reclamation. | 
|---|
| 822 | // | 
|---|
| 823 | // 1-0 exit | 
|---|
| 824 | // ~~~~~~~~ | 
|---|
| 825 | // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of | 
|---|
| 826 | // the fast-path operators have been optimized so the common ::exit() | 
|---|
| 827 | // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock(). | 
|---|
| 828 | // The code emitted by fast_unlock() elides the usual MEMBAR.  This | 
|---|
| 829 | // greatly improves latency -- MEMBAR and CAS having considerable local | 
|---|
| 830 | // latency on modern processors -- but at the cost of "stranding".  Absent the | 
|---|
| 831 | // MEMBAR, a thread in fast_unlock() can race a thread in the slow | 
|---|
| 832 | // ::enter() path, resulting in the entering thread being stranding | 
|---|
| 833 | // and a progress-liveness failure.   Stranding is extremely rare. | 
|---|
| 834 | // We use timers (timed park operations) & periodic polling to detect | 
|---|
| 835 | // and recover from stranding.  Potentially stranded threads periodically | 
|---|
| 836 | // wake up and poll the lock.  See the usage of the _Responsible variable. | 
|---|
| 837 | // | 
|---|
| 838 | // The CAS() in enter provides for safety and exclusion, while the CAS or | 
|---|
| 839 | // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking | 
|---|
| 840 | // eliminates the CAS/MEMBAR from the exit path, but it admits stranding. | 
|---|
| 841 | // We detect and recover from stranding with timers. | 
|---|
| 842 | // | 
|---|
| 843 | // If a thread transiently strands it'll park until (a) another | 
|---|
| 844 | // thread acquires the lock and then drops the lock, at which time the | 
|---|
| 845 | // exiting thread will notice and unpark the stranded thread, or, (b) | 
|---|
| 846 | // the timer expires.  If the lock is high traffic then the stranding latency | 
|---|
| 847 | // will be low due to (a).  If the lock is low traffic then the odds of | 
|---|
| 848 | // stranding are lower, although the worst-case stranding latency | 
|---|
| 849 | // is longer.  Critically, we don't want to put excessive load in the | 
|---|
| 850 | // platform's timer subsystem.  We want to minimize both the timer injection | 
|---|
| 851 | // rate (timers created/sec) as well as the number of timers active at | 
|---|
| 852 | // any one time.  (more precisely, we want to minimize timer-seconds, which is | 
|---|
| 853 | // the integral of the # of active timers at any instant over time). | 
|---|
| 854 | // Both impinge on OS scalability.  Given that, at most one thread parked on | 
|---|
| 855 | // a monitor will use a timer. | 
|---|
| 856 | // | 
|---|
| 857 | // There is also the risk of a futile wake-up. If we drop the lock | 
|---|
| 858 | // another thread can reacquire the lock immediately, and we can | 
|---|
| 859 | // then wake a thread unnecessarily. This is benign, and we've | 
|---|
| 860 | // structured the code so the windows are short and the frequency | 
|---|
| 861 | // of such futile wakups is low. | 
|---|
| 862 |  | 
|---|
| 863 | void ObjectMonitor::exit(bool not_suspended, TRAPS) { | 
|---|
| 864 | Thread * const Self = THREAD; | 
|---|
| 865 | if (THREAD != _owner) { | 
|---|
| 866 | if (THREAD->is_lock_owned((address) _owner)) { | 
|---|
| 867 | // Transmute _owner from a BasicLock pointer to a Thread address. | 
|---|
| 868 | // We don't need to hold _mutex for this transition. | 
|---|
| 869 | // Non-null to Non-null is safe as long as all readers can | 
|---|
| 870 | // tolerate either flavor. | 
|---|
| 871 | assert(_recursions == 0, "invariant"); | 
|---|
| 872 | _owner = THREAD; | 
|---|
| 873 | _recursions = 0; | 
|---|
| 874 | } else { | 
|---|
| 875 | // Apparent unbalanced locking ... | 
|---|
| 876 | // Naively we'd like to throw IllegalMonitorStateException. | 
|---|
| 877 | // As a practical matter we can neither allocate nor throw an | 
|---|
| 878 | // exception as ::exit() can be called from leaf routines. | 
|---|
| 879 | // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. | 
|---|
| 880 | // Upon deeper reflection, however, in a properly run JVM the only | 
|---|
| 881 | // way we should encounter this situation is in the presence of | 
|---|
| 882 | // unbalanced JNI locking. TODO: CheckJNICalls. | 
|---|
| 883 | // See also: CR4414101 | 
|---|
| 884 | assert(false, "Non-balanced monitor enter/exit! Likely JNI locking"); | 
|---|
| 885 | return; | 
|---|
| 886 | } | 
|---|
| 887 | } | 
|---|
| 888 |  | 
|---|
| 889 | if (_recursions != 0) { | 
|---|
| 890 | _recursions--;        // this is simple recursive enter | 
|---|
| 891 | return; | 
|---|
| 892 | } | 
|---|
| 893 |  | 
|---|
| 894 | // Invariant: after setting Responsible=null an thread must execute | 
|---|
| 895 | // a MEMBAR or other serializing instruction before fetching EntryList|cxq. | 
|---|
| 896 | _Responsible = NULL; | 
|---|
| 897 |  | 
|---|
| 898 | #if INCLUDE_JFR | 
|---|
| 899 | // get the owner's thread id for the MonitorEnter event | 
|---|
| 900 | // if it is enabled and the thread isn't suspended | 
|---|
| 901 | if (not_suspended && EventJavaMonitorEnter::is_enabled()) { | 
|---|
| 902 | _previous_owner_tid = JFR_THREAD_ID(Self); | 
|---|
| 903 | } | 
|---|
| 904 | #endif | 
|---|
| 905 |  | 
|---|
| 906 | for (;;) { | 
|---|
| 907 | assert(THREAD == _owner, "invariant"); | 
|---|
| 908 |  | 
|---|
| 909 | // release semantics: prior loads and stores from within the critical section | 
|---|
| 910 | // must not float (reorder) past the following store that drops the lock. | 
|---|
| 911 | // On SPARC that requires MEMBAR #loadstore|#storestore. | 
|---|
| 912 | // But of course in TSO #loadstore|#storestore is not required. | 
|---|
| 913 | OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock | 
|---|
| 914 | OrderAccess::storeload();                        // See if we need to wake a successor | 
|---|
| 915 | if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) { | 
|---|
| 916 | return; | 
|---|
| 917 | } | 
|---|
| 918 | // Other threads are blocked trying to acquire the lock. | 
|---|
| 919 |  | 
|---|
| 920 | // Normally the exiting thread is responsible for ensuring succession, | 
|---|
| 921 | // but if other successors are ready or other entering threads are spinning | 
|---|
| 922 | // then this thread can simply store NULL into _owner and exit without | 
|---|
| 923 | // waking a successor.  The existence of spinners or ready successors | 
|---|
| 924 | // guarantees proper succession (liveness).  Responsibility passes to the | 
|---|
| 925 | // ready or running successors.  The exiting thread delegates the duty. | 
|---|
| 926 | // More precisely, if a successor already exists this thread is absolved | 
|---|
| 927 | // of the responsibility of waking (unparking) one. | 
|---|
| 928 | // | 
|---|
| 929 | // The _succ variable is critical to reducing futile wakeup frequency. | 
|---|
| 930 | // _succ identifies the "heir presumptive" thread that has been made | 
|---|
| 931 | // ready (unparked) but that has not yet run.  We need only one such | 
|---|
| 932 | // successor thread to guarantee progress. | 
|---|
| 933 | // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf | 
|---|
| 934 | // section 3.3 "Futile Wakeup Throttling" for details. | 
|---|
| 935 | // | 
|---|
| 936 | // Note that spinners in Enter() also set _succ non-null. | 
|---|
| 937 | // In the current implementation spinners opportunistically set | 
|---|
| 938 | // _succ so that exiting threads might avoid waking a successor. | 
|---|
| 939 | // Another less appealing alternative would be for the exiting thread | 
|---|
| 940 | // to drop the lock and then spin briefly to see if a spinner managed | 
|---|
| 941 | // to acquire the lock.  If so, the exiting thread could exit | 
|---|
| 942 | // immediately without waking a successor, otherwise the exiting | 
|---|
| 943 | // thread would need to dequeue and wake a successor. | 
|---|
| 944 | // (Note that we'd need to make the post-drop spin short, but no | 
|---|
| 945 | // shorter than the worst-case round-trip cache-line migration time. | 
|---|
| 946 | // The dropped lock needs to become visible to the spinner, and then | 
|---|
| 947 | // the acquisition of the lock by the spinner must become visible to | 
|---|
| 948 | // the exiting thread). | 
|---|
| 949 |  | 
|---|
| 950 | // It appears that an heir-presumptive (successor) must be made ready. | 
|---|
| 951 | // Only the current lock owner can manipulate the EntryList or | 
|---|
| 952 | // drain _cxq, so we need to reacquire the lock.  If we fail | 
|---|
| 953 | // to reacquire the lock the responsibility for ensuring succession | 
|---|
| 954 | // falls to the new owner. | 
|---|
| 955 | // | 
|---|
| 956 | if (!Atomic::replace_if_null(THREAD, &_owner)) { | 
|---|
| 957 | return; | 
|---|
| 958 | } | 
|---|
| 959 |  | 
|---|
| 960 | guarantee(_owner == THREAD, "invariant"); | 
|---|
| 961 |  | 
|---|
| 962 | ObjectWaiter * w = NULL; | 
|---|
| 963 |  | 
|---|
| 964 | w = _EntryList; | 
|---|
| 965 | if (w != NULL) { | 
|---|
| 966 | // I'd like to write: guarantee (w->_thread != Self). | 
|---|
| 967 | // But in practice an exiting thread may find itself on the EntryList. | 
|---|
| 968 | // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and | 
|---|
| 969 | // then calls exit().  Exit release the lock by setting O._owner to NULL. | 
|---|
| 970 | // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The | 
|---|
| 971 | // notify() operation moves T1 from O's waitset to O's EntryList. T2 then | 
|---|
| 972 | // release the lock "O".  T2 resumes immediately after the ST of null into | 
|---|
| 973 | // _owner, above.  T2 notices that the EntryList is populated, so it | 
|---|
| 974 | // reacquires the lock and then finds itself on the EntryList. | 
|---|
| 975 | // Given all that, we have to tolerate the circumstance where "w" is | 
|---|
| 976 | // associated with Self. | 
|---|
| 977 | assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); | 
|---|
| 978 | ExitEpilog(Self, w); | 
|---|
| 979 | return; | 
|---|
| 980 | } | 
|---|
| 981 |  | 
|---|
| 982 | // If we find that both _cxq and EntryList are null then just | 
|---|
| 983 | // re-run the exit protocol from the top. | 
|---|
| 984 | w = _cxq; | 
|---|
| 985 | if (w == NULL) continue; | 
|---|
| 986 |  | 
|---|
| 987 | // Drain _cxq into EntryList - bulk transfer. | 
|---|
| 988 | // First, detach _cxq. | 
|---|
| 989 | // The following loop is tantamount to: w = swap(&cxq, NULL) | 
|---|
| 990 | for (;;) { | 
|---|
| 991 | assert(w != NULL, "Invariant"); | 
|---|
| 992 | ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w); | 
|---|
| 993 | if (u == w) break; | 
|---|
| 994 | w = u; | 
|---|
| 995 | } | 
|---|
| 996 |  | 
|---|
| 997 | assert(w != NULL, "invariant"); | 
|---|
| 998 | assert(_EntryList == NULL, "invariant"); | 
|---|
| 999 |  | 
|---|
| 1000 | // Convert the LIFO SLL anchored by _cxq into a DLL. | 
|---|
| 1001 | // The list reorganization step operates in O(LENGTH(w)) time. | 
|---|
| 1002 | // It's critical that this step operate quickly as | 
|---|
| 1003 | // "Self" still holds the outer-lock, restricting parallelism | 
|---|
| 1004 | // and effectively lengthening the critical section. | 
|---|
| 1005 | // Invariant: s chases t chases u. | 
|---|
| 1006 | // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so | 
|---|
| 1007 | // we have faster access to the tail. | 
|---|
| 1008 |  | 
|---|
| 1009 | _EntryList = w; | 
|---|
| 1010 | ObjectWaiter * q = NULL; | 
|---|
| 1011 | ObjectWaiter * p; | 
|---|
| 1012 | for (p = w; p != NULL; p = p->_next) { | 
|---|
| 1013 | guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant"); | 
|---|
| 1014 | p->TState = ObjectWaiter::TS_ENTER; | 
|---|
| 1015 | p->_prev = q; | 
|---|
| 1016 | q = p; | 
|---|
| 1017 | } | 
|---|
| 1018 |  | 
|---|
| 1019 | // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL | 
|---|
| 1020 | // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). | 
|---|
| 1021 |  | 
|---|
| 1022 | // See if we can abdicate to a spinner instead of waking a thread. | 
|---|
| 1023 | // A primary goal of the implementation is to reduce the | 
|---|
| 1024 | // context-switch rate. | 
|---|
| 1025 | if (_succ != NULL) continue; | 
|---|
| 1026 |  | 
|---|
| 1027 | w = _EntryList; | 
|---|
| 1028 | if (w != NULL) { | 
|---|
| 1029 | guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant"); | 
|---|
| 1030 | ExitEpilog(Self, w); | 
|---|
| 1031 | return; | 
|---|
| 1032 | } | 
|---|
| 1033 | } | 
|---|
| 1034 | } | 
|---|
| 1035 |  | 
|---|
| 1036 | // ExitSuspendEquivalent: | 
|---|
| 1037 | // A faster alternate to handle_special_suspend_equivalent_condition() | 
|---|
| 1038 | // | 
|---|
| 1039 | // handle_special_suspend_equivalent_condition() unconditionally | 
|---|
| 1040 | // acquires the SR_lock.  On some platforms uncontended MutexLocker() | 
|---|
| 1041 | // operations have high latency.  Note that in ::enter() we call HSSEC | 
|---|
| 1042 | // while holding the monitor, so we effectively lengthen the critical sections. | 
|---|
| 1043 | // | 
|---|
| 1044 | // There are a number of possible solutions: | 
|---|
| 1045 | // | 
|---|
| 1046 | // A.  To ameliorate the problem we might also defer state transitions | 
|---|
| 1047 | //     to as late as possible -- just prior to parking. | 
|---|
| 1048 | //     Given that, we'd call HSSEC after having returned from park(), | 
|---|
| 1049 | //     but before attempting to acquire the monitor.  This is only a | 
|---|
| 1050 | //     partial solution.  It avoids calling HSSEC while holding the | 
|---|
| 1051 | //     monitor (good), but it still increases successor reacquisition latency -- | 
|---|
| 1052 | //     the interval between unparking a successor and the time the successor | 
|---|
| 1053 | //     resumes and retries the lock.  See ReenterI(), which defers state transitions. | 
|---|
| 1054 | //     If we use this technique we can also avoid EnterI()-exit() loop | 
|---|
| 1055 | //     in ::enter() where we iteratively drop the lock and then attempt | 
|---|
| 1056 | //     to reacquire it after suspending. | 
|---|
| 1057 | // | 
|---|
| 1058 | // B.  In the future we might fold all the suspend bits into a | 
|---|
| 1059 | //     composite per-thread suspend flag and then update it with CAS(). | 
|---|
| 1060 | //     Alternately, a Dekker-like mechanism with multiple variables | 
|---|
| 1061 | //     would suffice: | 
|---|
| 1062 | //       ST Self->_suspend_equivalent = false | 
|---|
| 1063 | //       MEMBAR | 
|---|
| 1064 | //       LD Self_>_suspend_flags | 
|---|
| 1065 |  | 
|---|
| 1066 | bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) { | 
|---|
| 1067 | return jSelf->handle_special_suspend_equivalent_condition(); | 
|---|
| 1068 | } | 
|---|
| 1069 |  | 
|---|
| 1070 |  | 
|---|
| 1071 | void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) { | 
|---|
| 1072 | assert(_owner == Self, "invariant"); | 
|---|
| 1073 |  | 
|---|
| 1074 | // Exit protocol: | 
|---|
| 1075 | // 1. ST _succ = wakee | 
|---|
| 1076 | // 2. membar #loadstore|#storestore; | 
|---|
| 1077 | // 2. ST _owner = NULL | 
|---|
| 1078 | // 3. unpark(wakee) | 
|---|
| 1079 |  | 
|---|
| 1080 | _succ = Wakee->_thread; | 
|---|
| 1081 | ParkEvent * Trigger = Wakee->_event; | 
|---|
| 1082 |  | 
|---|
| 1083 | // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again. | 
|---|
| 1084 | // The thread associated with Wakee may have grabbed the lock and "Wakee" may be | 
|---|
| 1085 | // out-of-scope (non-extant). | 
|---|
| 1086 | Wakee  = NULL; | 
|---|
| 1087 |  | 
|---|
| 1088 | // Drop the lock | 
|---|
| 1089 | OrderAccess::release_store(&_owner, (void*)NULL); | 
|---|
| 1090 | OrderAccess::fence();                               // ST _owner vs LD in unpark() | 
|---|
| 1091 |  | 
|---|
| 1092 | DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self); | 
|---|
| 1093 | Trigger->unpark(); | 
|---|
| 1094 |  | 
|---|
| 1095 | // Maintain stats and report events to JVMTI | 
|---|
| 1096 | OM_PERFDATA_OP(Parks, inc()); | 
|---|
| 1097 | } | 
|---|
| 1098 |  | 
|---|
| 1099 |  | 
|---|
| 1100 | // ----------------------------------------------------------------------------- | 
|---|
| 1101 | // Class Loader deadlock handling. | 
|---|
| 1102 | // | 
|---|
| 1103 | // complete_exit exits a lock returning recursion count | 
|---|
| 1104 | // complete_exit/reenter operate as a wait without waiting | 
|---|
| 1105 | // complete_exit requires an inflated monitor | 
|---|
| 1106 | // The _owner field is not always the Thread addr even with an | 
|---|
| 1107 | // inflated monitor, e.g. the monitor can be inflated by a non-owning | 
|---|
| 1108 | // thread due to contention. | 
|---|
| 1109 | intptr_t ObjectMonitor::complete_exit(TRAPS) { | 
|---|
| 1110 | Thread * const Self = THREAD; | 
|---|
| 1111 | assert(Self->is_Java_thread(), "Must be Java thread!"); | 
|---|
| 1112 | JavaThread *jt = (JavaThread *)THREAD; | 
|---|
| 1113 |  | 
|---|
| 1114 | assert(InitDone, "Unexpectedly not initialized"); | 
|---|
| 1115 |  | 
|---|
| 1116 | if (THREAD != _owner) { | 
|---|
| 1117 | if (THREAD->is_lock_owned ((address)_owner)) { | 
|---|
| 1118 | assert(_recursions == 0, "internal state error"); | 
|---|
| 1119 | _owner = THREAD;   // Convert from basiclock addr to Thread addr | 
|---|
| 1120 | _recursions = 0; | 
|---|
| 1121 | } | 
|---|
| 1122 | } | 
|---|
| 1123 |  | 
|---|
| 1124 | guarantee(Self == _owner, "complete_exit not owner"); | 
|---|
| 1125 | intptr_t save = _recursions; // record the old recursion count | 
|---|
| 1126 | _recursions = 0;        // set the recursion level to be 0 | 
|---|
| 1127 | exit(true, Self);           // exit the monitor | 
|---|
| 1128 | guarantee(_owner != Self, "invariant"); | 
|---|
| 1129 | return save; | 
|---|
| 1130 | } | 
|---|
| 1131 |  | 
|---|
| 1132 | // reenter() enters a lock and sets recursion count | 
|---|
| 1133 | // complete_exit/reenter operate as a wait without waiting | 
|---|
| 1134 | void ObjectMonitor::reenter(intptr_t recursions, TRAPS) { | 
|---|
| 1135 | Thread * const Self = THREAD; | 
|---|
| 1136 | assert(Self->is_Java_thread(), "Must be Java thread!"); | 
|---|
| 1137 | JavaThread *jt = (JavaThread *)THREAD; | 
|---|
| 1138 |  | 
|---|
| 1139 | guarantee(_owner != Self, "reenter already owner"); | 
|---|
| 1140 | enter(THREAD);       // enter the monitor | 
|---|
| 1141 | guarantee(_recursions == 0, "reenter recursion"); | 
|---|
| 1142 | _recursions = recursions; | 
|---|
| 1143 | return; | 
|---|
| 1144 | } | 
|---|
| 1145 |  | 
|---|
| 1146 |  | 
|---|
| 1147 | // ----------------------------------------------------------------------------- | 
|---|
| 1148 | // A macro is used below because there may already be a pending | 
|---|
| 1149 | // exception which should not abort the execution of the routines | 
|---|
| 1150 | // which use this (which is why we don't put this into check_slow and | 
|---|
| 1151 | // call it with a CHECK argument). | 
|---|
| 1152 |  | 
|---|
| 1153 | #define CHECK_OWNER()                                                       \ | 
|---|
| 1154 | do {                                                                      \ | 
|---|
| 1155 | if (THREAD != _owner) {                                                 \ | 
|---|
| 1156 | if (THREAD->is_lock_owned((address) _owner)) {                        \ | 
|---|
| 1157 | _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \ | 
|---|
| 1158 | _recursions = 0;                                                    \ | 
|---|
| 1159 | } else {                                                              \ | 
|---|
| 1160 | THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \ | 
|---|
| 1161 | }                                                                     \ | 
|---|
| 1162 | }                                                                       \ | 
|---|
| 1163 | } while (false) | 
|---|
| 1164 |  | 
|---|
| 1165 | // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception. | 
|---|
| 1166 | // TODO-FIXME: remove check_slow() -- it's likely dead. | 
|---|
| 1167 |  | 
|---|
| 1168 | void ObjectMonitor::check_slow(TRAPS) { | 
|---|
| 1169 | assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner"); | 
|---|
| 1170 | THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner"); | 
|---|
| 1171 | } | 
|---|
| 1172 |  | 
|---|
| 1173 | static void post_monitor_wait_event(EventJavaMonitorWait* event, | 
|---|
| 1174 | ObjectMonitor* monitor, | 
|---|
| 1175 | jlong notifier_tid, | 
|---|
| 1176 | jlong timeout, | 
|---|
| 1177 | bool timedout) { | 
|---|
| 1178 | assert(event != NULL, "invariant"); | 
|---|
| 1179 | assert(monitor != NULL, "invariant"); | 
|---|
| 1180 | event->set_monitorClass(((oop)monitor->object())->klass()); | 
|---|
| 1181 | event->set_timeout(timeout); | 
|---|
| 1182 | event->set_address((uintptr_t)monitor->object_addr()); | 
|---|
| 1183 | event->set_notifier(notifier_tid); | 
|---|
| 1184 | event->set_timedOut(timedout); | 
|---|
| 1185 | event->commit(); | 
|---|
| 1186 | } | 
|---|
| 1187 |  | 
|---|
| 1188 | // ----------------------------------------------------------------------------- | 
|---|
| 1189 | // Wait/Notify/NotifyAll | 
|---|
| 1190 | // | 
|---|
| 1191 | // Note: a subset of changes to ObjectMonitor::wait() | 
|---|
| 1192 | // will need to be replicated in complete_exit | 
|---|
| 1193 | void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { | 
|---|
| 1194 | Thread * const Self = THREAD; | 
|---|
| 1195 | assert(Self->is_Java_thread(), "Must be Java thread!"); | 
|---|
| 1196 | JavaThread *jt = (JavaThread *)THREAD; | 
|---|
| 1197 |  | 
|---|
| 1198 | assert(InitDone, "Unexpectedly not initialized"); | 
|---|
| 1199 |  | 
|---|
| 1200 | // Throw IMSX or IEX. | 
|---|
| 1201 | CHECK_OWNER(); | 
|---|
| 1202 |  | 
|---|
| 1203 | EventJavaMonitorWait event; | 
|---|
| 1204 |  | 
|---|
| 1205 | // check for a pending interrupt | 
|---|
| 1206 | if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) { | 
|---|
| 1207 | // post monitor waited event.  Note that this is past-tense, we are done waiting. | 
|---|
| 1208 | if (JvmtiExport::should_post_monitor_waited()) { | 
|---|
| 1209 | // Note: 'false' parameter is passed here because the | 
|---|
| 1210 | // wait was not timed out due to thread interrupt. | 
|---|
| 1211 | JvmtiExport::post_monitor_waited(jt, this, false); | 
|---|
| 1212 |  | 
|---|
| 1213 | // In this short circuit of the monitor wait protocol, the | 
|---|
| 1214 | // current thread never drops ownership of the monitor and | 
|---|
| 1215 | // never gets added to the wait queue so the current thread | 
|---|
| 1216 | // cannot be made the successor. This means that the | 
|---|
| 1217 | // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally | 
|---|
| 1218 | // consume an unpark() meant for the ParkEvent associated with | 
|---|
| 1219 | // this ObjectMonitor. | 
|---|
| 1220 | } | 
|---|
| 1221 | if (event.should_commit()) { | 
|---|
| 1222 | post_monitor_wait_event(&event, this, 0, millis, false); | 
|---|
| 1223 | } | 
|---|
| 1224 | THROW(vmSymbols::java_lang_InterruptedException()); | 
|---|
| 1225 | return; | 
|---|
| 1226 | } | 
|---|
| 1227 |  | 
|---|
| 1228 | assert(Self->_Stalled == 0, "invariant"); | 
|---|
| 1229 | Self->_Stalled = intptr_t(this); | 
|---|
| 1230 | jt->set_current_waiting_monitor(this); | 
|---|
| 1231 |  | 
|---|
| 1232 | // create a node to be put into the queue | 
|---|
| 1233 | // Critically, after we reset() the event but prior to park(), we must check | 
|---|
| 1234 | // for a pending interrupt. | 
|---|
| 1235 | ObjectWaiter node(Self); | 
|---|
| 1236 | node.TState = ObjectWaiter::TS_WAIT; | 
|---|
| 1237 | Self->_ParkEvent->reset(); | 
|---|
| 1238 | OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag | 
|---|
| 1239 |  | 
|---|
| 1240 | // Enter the waiting queue, which is a circular doubly linked list in this case | 
|---|
| 1241 | // but it could be a priority queue or any data structure. | 
|---|
| 1242 | // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only | 
|---|
| 1243 | // by the the owner of the monitor *except* in the case where park() | 
|---|
| 1244 | // returns because of a timeout of interrupt.  Contention is exceptionally rare | 
|---|
| 1245 | // so we use a simple spin-lock instead of a heavier-weight blocking lock. | 
|---|
| 1246 |  | 
|---|
| 1247 | Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); | 
|---|
| 1248 | AddWaiter(&node); | 
|---|
| 1249 | Thread::SpinRelease(&_WaitSetLock); | 
|---|
| 1250 |  | 
|---|
| 1251 | _Responsible = NULL; | 
|---|
| 1252 |  | 
|---|
| 1253 | intptr_t save = _recursions; // record the old recursion count | 
|---|
| 1254 | _waiters++;                  // increment the number of waiters | 
|---|
| 1255 | _recursions = 0;             // set the recursion level to be 1 | 
|---|
| 1256 | exit(true, Self);                    // exit the monitor | 
|---|
| 1257 | guarantee(_owner != Self, "invariant"); | 
|---|
| 1258 |  | 
|---|
| 1259 | // The thread is on the WaitSet list - now park() it. | 
|---|
| 1260 | // On MP systems it's conceivable that a brief spin before we park | 
|---|
| 1261 | // could be profitable. | 
|---|
| 1262 | // | 
|---|
| 1263 | // TODO-FIXME: change the following logic to a loop of the form | 
|---|
| 1264 | //   while (!timeout && !interrupted && _notified == 0) park() | 
|---|
| 1265 |  | 
|---|
| 1266 | int ret = OS_OK; | 
|---|
| 1267 | int WasNotified = 0; | 
|---|
| 1268 | { // State transition wrappers | 
|---|
| 1269 | OSThread* osthread = Self->osthread(); | 
|---|
| 1270 | OSThreadWaitState osts(osthread, true); | 
|---|
| 1271 | { | 
|---|
| 1272 | ThreadBlockInVM tbivm(jt); | 
|---|
| 1273 | // Thread is in thread_blocked state and oop access is unsafe. | 
|---|
| 1274 | jt->set_suspend_equivalent(); | 
|---|
| 1275 |  | 
|---|
| 1276 | if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) { | 
|---|
| 1277 | // Intentionally empty | 
|---|
| 1278 | } else if (node._notified == 0) { | 
|---|
| 1279 | if (millis <= 0) { | 
|---|
| 1280 | Self->_ParkEvent->park(); | 
|---|
| 1281 | } else { | 
|---|
| 1282 | ret = Self->_ParkEvent->park(millis); | 
|---|
| 1283 | } | 
|---|
| 1284 | } | 
|---|
| 1285 |  | 
|---|
| 1286 | // were we externally suspended while we were waiting? | 
|---|
| 1287 | if (ExitSuspendEquivalent (jt)) { | 
|---|
| 1288 | // TODO-FIXME: add -- if succ == Self then succ = null. | 
|---|
| 1289 | jt->java_suspend_self(); | 
|---|
| 1290 | } | 
|---|
| 1291 |  | 
|---|
| 1292 | } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm | 
|---|
| 1293 |  | 
|---|
| 1294 | // Node may be on the WaitSet, the EntryList (or cxq), or in transition | 
|---|
| 1295 | // from the WaitSet to the EntryList. | 
|---|
| 1296 | // See if we need to remove Node from the WaitSet. | 
|---|
| 1297 | // We use double-checked locking to avoid grabbing _WaitSetLock | 
|---|
| 1298 | // if the thread is not on the wait queue. | 
|---|
| 1299 | // | 
|---|
| 1300 | // Note that we don't need a fence before the fetch of TState. | 
|---|
| 1301 | // In the worst case we'll fetch a old-stale value of TS_WAIT previously | 
|---|
| 1302 | // written by the is thread. (perhaps the fetch might even be satisfied | 
|---|
| 1303 | // by a look-aside into the processor's own store buffer, although given | 
|---|
| 1304 | // the length of the code path between the prior ST and this load that's | 
|---|
| 1305 | // highly unlikely).  If the following LD fetches a stale TS_WAIT value | 
|---|
| 1306 | // then we'll acquire the lock and then re-fetch a fresh TState value. | 
|---|
| 1307 | // That is, we fail toward safety. | 
|---|
| 1308 |  | 
|---|
| 1309 | if (node.TState == ObjectWaiter::TS_WAIT) { | 
|---|
| 1310 | Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); | 
|---|
| 1311 | if (node.TState == ObjectWaiter::TS_WAIT) { | 
|---|
| 1312 | DequeueSpecificWaiter(&node);       // unlink from WaitSet | 
|---|
| 1313 | assert(node._notified == 0, "invariant"); | 
|---|
| 1314 | node.TState = ObjectWaiter::TS_RUN; | 
|---|
| 1315 | } | 
|---|
| 1316 | Thread::SpinRelease(&_WaitSetLock); | 
|---|
| 1317 | } | 
|---|
| 1318 |  | 
|---|
| 1319 | // The thread is now either on off-list (TS_RUN), | 
|---|
| 1320 | // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). | 
|---|
| 1321 | // The Node's TState variable is stable from the perspective of this thread. | 
|---|
| 1322 | // No other threads will asynchronously modify TState. | 
|---|
| 1323 | guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); | 
|---|
| 1324 | OrderAccess::loadload(); | 
|---|
| 1325 | if (_succ == Self) _succ = NULL; | 
|---|
| 1326 | WasNotified = node._notified; | 
|---|
| 1327 |  | 
|---|
| 1328 | // Reentry phase -- reacquire the monitor. | 
|---|
| 1329 | // re-enter contended monitor after object.wait(). | 
|---|
| 1330 | // retain OBJECT_WAIT state until re-enter successfully completes | 
|---|
| 1331 | // Thread state is thread_in_vm and oop access is again safe, | 
|---|
| 1332 | // although the raw address of the object may have changed. | 
|---|
| 1333 | // (Don't cache naked oops over safepoints, of course). | 
|---|
| 1334 |  | 
|---|
| 1335 | // post monitor waited event. Note that this is past-tense, we are done waiting. | 
|---|
| 1336 | if (JvmtiExport::should_post_monitor_waited()) { | 
|---|
| 1337 | JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT); | 
|---|
| 1338 |  | 
|---|
| 1339 | if (node._notified != 0 && _succ == Self) { | 
|---|
| 1340 | // In this part of the monitor wait-notify-reenter protocol it | 
|---|
| 1341 | // is possible (and normal) for another thread to do a fastpath | 
|---|
| 1342 | // monitor enter-exit while this thread is still trying to get | 
|---|
| 1343 | // to the reenter portion of the protocol. | 
|---|
| 1344 | // | 
|---|
| 1345 | // The ObjectMonitor was notified and the current thread is | 
|---|
| 1346 | // the successor which also means that an unpark() has already | 
|---|
| 1347 | // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can | 
|---|
| 1348 | // consume the unpark() that was done when the successor was | 
|---|
| 1349 | // set because the same ParkEvent is shared between Java | 
|---|
| 1350 | // monitors and JVM/TI RawMonitors (for now). | 
|---|
| 1351 | // | 
|---|
| 1352 | // We redo the unpark() to ensure forward progress, i.e., we | 
|---|
| 1353 | // don't want all pending threads hanging (parked) with none | 
|---|
| 1354 | // entering the unlocked monitor. | 
|---|
| 1355 | node._event->unpark(); | 
|---|
| 1356 | } | 
|---|
| 1357 | } | 
|---|
| 1358 |  | 
|---|
| 1359 | if (event.should_commit()) { | 
|---|
| 1360 | post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); | 
|---|
| 1361 | } | 
|---|
| 1362 |  | 
|---|
| 1363 | OrderAccess::fence(); | 
|---|
| 1364 |  | 
|---|
| 1365 | assert(Self->_Stalled != 0, "invariant"); | 
|---|
| 1366 | Self->_Stalled = 0; | 
|---|
| 1367 |  | 
|---|
| 1368 | assert(_owner != Self, "invariant"); | 
|---|
| 1369 | ObjectWaiter::TStates v = node.TState; | 
|---|
| 1370 | if (v == ObjectWaiter::TS_RUN) { | 
|---|
| 1371 | enter(Self); | 
|---|
| 1372 | } else { | 
|---|
| 1373 | guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); | 
|---|
| 1374 | ReenterI(Self, &node); | 
|---|
| 1375 | node.wait_reenter_end(this); | 
|---|
| 1376 | } | 
|---|
| 1377 |  | 
|---|
| 1378 | // Self has reacquired the lock. | 
|---|
| 1379 | // Lifecycle - the node representing Self must not appear on any queues. | 
|---|
| 1380 | // Node is about to go out-of-scope, but even if it were immortal we wouldn't | 
|---|
| 1381 | // want residual elements associated with this thread left on any lists. | 
|---|
| 1382 | guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); | 
|---|
| 1383 | assert(_owner == Self, "invariant"); | 
|---|
| 1384 | assert(_succ != Self, "invariant"); | 
|---|
| 1385 | } // OSThreadWaitState() | 
|---|
| 1386 |  | 
|---|
| 1387 | jt->set_current_waiting_monitor(NULL); | 
|---|
| 1388 |  | 
|---|
| 1389 | guarantee(_recursions == 0, "invariant"); | 
|---|
| 1390 | _recursions = save;     // restore the old recursion count | 
|---|
| 1391 | _waiters--;             // decrement the number of waiters | 
|---|
| 1392 |  | 
|---|
| 1393 | // Verify a few postconditions | 
|---|
| 1394 | assert(_owner == Self, "invariant"); | 
|---|
| 1395 | assert(_succ != Self, "invariant"); | 
|---|
| 1396 | assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant"); | 
|---|
| 1397 |  | 
|---|
| 1398 | // check if the notification happened | 
|---|
| 1399 | if (!WasNotified) { | 
|---|
| 1400 | // no, it could be timeout or Thread.interrupt() or both | 
|---|
| 1401 | // check for interrupt event, otherwise it is timeout | 
|---|
| 1402 | if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) { | 
|---|
| 1403 | THROW(vmSymbols::java_lang_InterruptedException()); | 
|---|
| 1404 | } | 
|---|
| 1405 | } | 
|---|
| 1406 |  | 
|---|
| 1407 | // NOTE: Spurious wake up will be consider as timeout. | 
|---|
| 1408 | // Monitor notify has precedence over thread interrupt. | 
|---|
| 1409 | } | 
|---|
| 1410 |  | 
|---|
| 1411 |  | 
|---|
| 1412 | // Consider: | 
|---|
| 1413 | // If the lock is cool (cxq == null && succ == null) and we're on an MP system | 
|---|
| 1414 | // then instead of transferring a thread from the WaitSet to the EntryList | 
|---|
| 1415 | // we might just dequeue a thread from the WaitSet and directly unpark() it. | 
|---|
| 1416 |  | 
|---|
| 1417 | void ObjectMonitor::INotify(Thread * Self) { | 
|---|
| 1418 | Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); | 
|---|
| 1419 | ObjectWaiter * iterator = DequeueWaiter(); | 
|---|
| 1420 | if (iterator != NULL) { | 
|---|
| 1421 | guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); | 
|---|
| 1422 | guarantee(iterator->_notified == 0, "invariant"); | 
|---|
| 1423 | // Disposition - what might we do with iterator ? | 
|---|
| 1424 | // a.  add it directly to the EntryList - either tail (policy == 1) | 
|---|
| 1425 | //     or head (policy == 0). | 
|---|
| 1426 | // b.  push it onto the front of the _cxq (policy == 2). | 
|---|
| 1427 | // For now we use (b). | 
|---|
| 1428 |  | 
|---|
| 1429 | iterator->TState = ObjectWaiter::TS_ENTER; | 
|---|
| 1430 |  | 
|---|
| 1431 | iterator->_notified = 1; | 
|---|
| 1432 | iterator->_notifier_tid = JFR_THREAD_ID(Self); | 
|---|
| 1433 |  | 
|---|
| 1434 | ObjectWaiter * list = _EntryList; | 
|---|
| 1435 | if (list != NULL) { | 
|---|
| 1436 | assert(list->_prev == NULL, "invariant"); | 
|---|
| 1437 | assert(list->TState == ObjectWaiter::TS_ENTER, "invariant"); | 
|---|
| 1438 | assert(list != iterator, "invariant"); | 
|---|
| 1439 | } | 
|---|
| 1440 |  | 
|---|
| 1441 | // prepend to cxq | 
|---|
| 1442 | if (list == NULL) { | 
|---|
| 1443 | iterator->_next = iterator->_prev = NULL; | 
|---|
| 1444 | _EntryList = iterator; | 
|---|
| 1445 | } else { | 
|---|
| 1446 | iterator->TState = ObjectWaiter::TS_CXQ; | 
|---|
| 1447 | for (;;) { | 
|---|
| 1448 | ObjectWaiter * front = _cxq; | 
|---|
| 1449 | iterator->_next = front; | 
|---|
| 1450 | if (Atomic::cmpxchg(iterator, &_cxq, front) == front) { | 
|---|
| 1451 | break; | 
|---|
| 1452 | } | 
|---|
| 1453 | } | 
|---|
| 1454 | } | 
|---|
| 1455 |  | 
|---|
| 1456 | // _WaitSetLock protects the wait queue, not the EntryList.  We could | 
|---|
| 1457 | // move the add-to-EntryList operation, above, outside the critical section | 
|---|
| 1458 | // protected by _WaitSetLock.  In practice that's not useful.  With the | 
|---|
| 1459 | // exception of  wait() timeouts and interrupts the monitor owner | 
|---|
| 1460 | // is the only thread that grabs _WaitSetLock.  There's almost no contention | 
|---|
| 1461 | // on _WaitSetLock so it's not profitable to reduce the length of the | 
|---|
| 1462 | // critical section. | 
|---|
| 1463 |  | 
|---|
| 1464 | iterator->wait_reenter_begin(this); | 
|---|
| 1465 | } | 
|---|
| 1466 | Thread::SpinRelease(&_WaitSetLock); | 
|---|
| 1467 | } | 
|---|
| 1468 |  | 
|---|
| 1469 | // Consider: a not-uncommon synchronization bug is to use notify() when | 
|---|
| 1470 | // notifyAll() is more appropriate, potentially resulting in stranded | 
|---|
| 1471 | // threads; this is one example of a lost wakeup. A useful diagnostic | 
|---|
| 1472 | // option is to force all notify() operations to behave as notifyAll(). | 
|---|
| 1473 | // | 
|---|
| 1474 | // Note: We can also detect many such problems with a "minimum wait". | 
|---|
| 1475 | // When the "minimum wait" is set to a small non-zero timeout value | 
|---|
| 1476 | // and the program does not hang whereas it did absent "minimum wait", | 
|---|
| 1477 | // that suggests a lost wakeup bug. | 
|---|
| 1478 |  | 
|---|
| 1479 | void ObjectMonitor::notify(TRAPS) { | 
|---|
| 1480 | CHECK_OWNER(); | 
|---|
| 1481 | if (_WaitSet == NULL) { | 
|---|
| 1482 | return; | 
|---|
| 1483 | } | 
|---|
| 1484 | DTRACE_MONITOR_PROBE(notify, this, object(), THREAD); | 
|---|
| 1485 | INotify(THREAD); | 
|---|
| 1486 | OM_PERFDATA_OP(Notifications, inc(1)); | 
|---|
| 1487 | } | 
|---|
| 1488 |  | 
|---|
| 1489 |  | 
|---|
| 1490 | // The current implementation of notifyAll() transfers the waiters one-at-a-time | 
|---|
| 1491 | // from the waitset to the EntryList. This could be done more efficiently with a | 
|---|
| 1492 | // single bulk transfer but in practice it's not time-critical. Beware too, | 
|---|
| 1493 | // that in prepend-mode we invert the order of the waiters. Let's say that the | 
|---|
| 1494 | // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend | 
|---|
| 1495 | // mode the waitset will be empty and the EntryList will be "DCBAXYZ". | 
|---|
| 1496 |  | 
|---|
| 1497 | void ObjectMonitor::notifyAll(TRAPS) { | 
|---|
| 1498 | CHECK_OWNER(); | 
|---|
| 1499 | if (_WaitSet == NULL) { | 
|---|
| 1500 | return; | 
|---|
| 1501 | } | 
|---|
| 1502 |  | 
|---|
| 1503 | DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD); | 
|---|
| 1504 | int tally = 0; | 
|---|
| 1505 | while (_WaitSet != NULL) { | 
|---|
| 1506 | tally++; | 
|---|
| 1507 | INotify(THREAD); | 
|---|
| 1508 | } | 
|---|
| 1509 |  | 
|---|
| 1510 | OM_PERFDATA_OP(Notifications, inc(tally)); | 
|---|
| 1511 | } | 
|---|
| 1512 |  | 
|---|
| 1513 | // ----------------------------------------------------------------------------- | 
|---|
| 1514 | // Adaptive Spinning Support | 
|---|
| 1515 | // | 
|---|
| 1516 | // Adaptive spin-then-block - rational spinning | 
|---|
| 1517 | // | 
|---|
| 1518 | // Note that we spin "globally" on _owner with a classic SMP-polite TATAS | 
|---|
| 1519 | // algorithm.  On high order SMP systems it would be better to start with | 
|---|
| 1520 | // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH, | 
|---|
| 1521 | // a contending thread could enqueue itself on the cxq and then spin locally | 
|---|
| 1522 | // on a thread-specific variable such as its ParkEvent._Event flag. | 
|---|
| 1523 | // That's left as an exercise for the reader.  Note that global spinning is | 
|---|
| 1524 | // not problematic on Niagara, as the L2 cache serves the interconnect and | 
|---|
| 1525 | // has both low latency and massive bandwidth. | 
|---|
| 1526 | // | 
|---|
| 1527 | // Broadly, we can fix the spin frequency -- that is, the % of contended lock | 
|---|
| 1528 | // acquisition attempts where we opt to spin --  at 100% and vary the spin count | 
|---|
| 1529 | // (duration) or we can fix the count at approximately the duration of | 
|---|
| 1530 | // a context switch and vary the frequency.   Of course we could also | 
|---|
| 1531 | // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. | 
|---|
| 1532 | // For a description of 'Adaptive spin-then-block mutual exclusion in | 
|---|
| 1533 | // multi-threaded processing,' see U.S. Pat. No. 8046758. | 
|---|
| 1534 | // | 
|---|
| 1535 | // This implementation varies the duration "D", where D varies with | 
|---|
| 1536 | // the success rate of recent spin attempts. (D is capped at approximately | 
|---|
| 1537 | // length of a round-trip context switch).  The success rate for recent | 
|---|
| 1538 | // spin attempts is a good predictor of the success rate of future spin | 
|---|
| 1539 | // attempts.  The mechanism adapts automatically to varying critical | 
|---|
| 1540 | // section length (lock modality), system load and degree of parallelism. | 
|---|
| 1541 | // D is maintained per-monitor in _SpinDuration and is initialized | 
|---|
| 1542 | // optimistically.  Spin frequency is fixed at 100%. | 
|---|
| 1543 | // | 
|---|
| 1544 | // Note that _SpinDuration is volatile, but we update it without locks | 
|---|
| 1545 | // or atomics.  The code is designed so that _SpinDuration stays within | 
|---|
| 1546 | // a reasonable range even in the presence of races.  The arithmetic | 
|---|
| 1547 | // operations on _SpinDuration are closed over the domain of legal values, | 
|---|
| 1548 | // so at worst a race will install and older but still legal value. | 
|---|
| 1549 | // At the very worst this introduces some apparent non-determinism. | 
|---|
| 1550 | // We might spin when we shouldn't or vice-versa, but since the spin | 
|---|
| 1551 | // count are relatively short, even in the worst case, the effect is harmless. | 
|---|
| 1552 | // | 
|---|
| 1553 | // Care must be taken that a low "D" value does not become an | 
|---|
| 1554 | // an absorbing state.  Transient spinning failures -- when spinning | 
|---|
| 1555 | // is overall profitable -- should not cause the system to converge | 
|---|
| 1556 | // on low "D" values.  We want spinning to be stable and predictable | 
|---|
| 1557 | // and fairly responsive to change and at the same time we don't want | 
|---|
| 1558 | // it to oscillate, become metastable, be "too" non-deterministic, | 
|---|
| 1559 | // or converge on or enter undesirable stable absorbing states. | 
|---|
| 1560 | // | 
|---|
| 1561 | // We implement a feedback-based control system -- using past behavior | 
|---|
| 1562 | // to predict future behavior.  We face two issues: (a) if the | 
|---|
| 1563 | // input signal is random then the spin predictor won't provide optimal | 
|---|
| 1564 | // results, and (b) if the signal frequency is too high then the control | 
|---|
| 1565 | // system, which has some natural response lag, will "chase" the signal. | 
|---|
| 1566 | // (b) can arise from multimodal lock hold times.  Transient preemption | 
|---|
| 1567 | // can also result in apparent bimodal lock hold times. | 
|---|
| 1568 | // Although sub-optimal, neither condition is particularly harmful, as | 
|---|
| 1569 | // in the worst-case we'll spin when we shouldn't or vice-versa. | 
|---|
| 1570 | // The maximum spin duration is rather short so the failure modes aren't bad. | 
|---|
| 1571 | // To be conservative, I've tuned the gain in system to bias toward | 
|---|
| 1572 | // _not spinning.  Relatedly, the system can sometimes enter a mode where it | 
|---|
| 1573 | // "rings" or oscillates between spinning and not spinning.  This happens | 
|---|
| 1574 | // when spinning is just on the cusp of profitability, however, so the | 
|---|
| 1575 | // situation is not dire.  The state is benign -- there's no need to add | 
|---|
| 1576 | // hysteresis control to damp the transition rate between spinning and | 
|---|
| 1577 | // not spinning. | 
|---|
| 1578 |  | 
|---|
| 1579 | // Spinning: Fixed frequency (100%), vary duration | 
|---|
| 1580 | int ObjectMonitor::TrySpin(Thread * Self) { | 
|---|
| 1581 | // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning. | 
|---|
| 1582 | int ctr = Knob_FixedSpin; | 
|---|
| 1583 | if (ctr != 0) { | 
|---|
| 1584 | while (--ctr >= 0) { | 
|---|
| 1585 | if (TryLock(Self) > 0) return 1; | 
|---|
| 1586 | SpinPause(); | 
|---|
| 1587 | } | 
|---|
| 1588 | return 0; | 
|---|
| 1589 | } | 
|---|
| 1590 |  | 
|---|
| 1591 | for (ctr = Knob_PreSpin + 1; --ctr >= 0;) { | 
|---|
| 1592 | if (TryLock(Self) > 0) { | 
|---|
| 1593 | // Increase _SpinDuration ... | 
|---|
| 1594 | // Note that we don't clamp SpinDuration precisely at SpinLimit. | 
|---|
| 1595 | // Raising _SpurDuration to the poverty line is key. | 
|---|
| 1596 | int x = _SpinDuration; | 
|---|
| 1597 | if (x < Knob_SpinLimit) { | 
|---|
| 1598 | if (x < Knob_Poverty) x = Knob_Poverty; | 
|---|
| 1599 | _SpinDuration = x + Knob_BonusB; | 
|---|
| 1600 | } | 
|---|
| 1601 | return 1; | 
|---|
| 1602 | } | 
|---|
| 1603 | SpinPause(); | 
|---|
| 1604 | } | 
|---|
| 1605 |  | 
|---|
| 1606 | // Admission control - verify preconditions for spinning | 
|---|
| 1607 | // | 
|---|
| 1608 | // We always spin a little bit, just to prevent _SpinDuration == 0 from | 
|---|
| 1609 | // becoming an absorbing state.  Put another way, we spin briefly to | 
|---|
| 1610 | // sample, just in case the system load, parallelism, contention, or lock | 
|---|
| 1611 | // modality changed. | 
|---|
| 1612 | // | 
|---|
| 1613 | // Consider the following alternative: | 
|---|
| 1614 | // Periodically set _SpinDuration = _SpinLimit and try a long/full | 
|---|
| 1615 | // spin attempt.  "Periodically" might mean after a tally of | 
|---|
| 1616 | // the # of failed spin attempts (or iterations) reaches some threshold. | 
|---|
| 1617 | // This takes us into the realm of 1-out-of-N spinning, where we | 
|---|
| 1618 | // hold the duration constant but vary the frequency. | 
|---|
| 1619 |  | 
|---|
| 1620 | ctr = _SpinDuration; | 
|---|
| 1621 | if (ctr <= 0) return 0; | 
|---|
| 1622 |  | 
|---|
| 1623 | if (NotRunnable(Self, (Thread *) _owner)) { | 
|---|
| 1624 | return 0; | 
|---|
| 1625 | } | 
|---|
| 1626 |  | 
|---|
| 1627 | // We're good to spin ... spin ingress. | 
|---|
| 1628 | // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades | 
|---|
| 1629 | // when preparing to LD...CAS _owner, etc and the CAS is likely | 
|---|
| 1630 | // to succeed. | 
|---|
| 1631 | if (_succ == NULL) { | 
|---|
| 1632 | _succ = Self; | 
|---|
| 1633 | } | 
|---|
| 1634 | Thread * prv = NULL; | 
|---|
| 1635 |  | 
|---|
| 1636 | // There are three ways to exit the following loop: | 
|---|
| 1637 | // 1.  A successful spin where this thread has acquired the lock. | 
|---|
| 1638 | // 2.  Spin failure with prejudice | 
|---|
| 1639 | // 3.  Spin failure without prejudice | 
|---|
| 1640 |  | 
|---|
| 1641 | while (--ctr >= 0) { | 
|---|
| 1642 |  | 
|---|
| 1643 | // Periodic polling -- Check for pending GC | 
|---|
| 1644 | // Threads may spin while they're unsafe. | 
|---|
| 1645 | // We don't want spinning threads to delay the JVM from reaching | 
|---|
| 1646 | // a stop-the-world safepoint or to steal cycles from GC. | 
|---|
| 1647 | // If we detect a pending safepoint we abort in order that | 
|---|
| 1648 | // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) | 
|---|
| 1649 | // this thread, if safe, doesn't steal cycles from GC. | 
|---|
| 1650 | // This is in keeping with the "no loitering in runtime" rule. | 
|---|
| 1651 | // We periodically check to see if there's a safepoint pending. | 
|---|
| 1652 | if ((ctr & 0xFF) == 0) { | 
|---|
| 1653 | if (SafepointMechanism::should_block(Self)) { | 
|---|
| 1654 | goto Abort;           // abrupt spin egress | 
|---|
| 1655 | } | 
|---|
| 1656 | SpinPause(); | 
|---|
| 1657 | } | 
|---|
| 1658 |  | 
|---|
| 1659 | // Probe _owner with TATAS | 
|---|
| 1660 | // If this thread observes the monitor transition or flicker | 
|---|
| 1661 | // from locked to unlocked to locked, then the odds that this | 
|---|
| 1662 | // thread will acquire the lock in this spin attempt go down | 
|---|
| 1663 | // considerably.  The same argument applies if the CAS fails | 
|---|
| 1664 | // or if we observe _owner change from one non-null value to | 
|---|
| 1665 | // another non-null value.   In such cases we might abort | 
|---|
| 1666 | // the spin without prejudice or apply a "penalty" to the | 
|---|
| 1667 | // spin count-down variable "ctr", reducing it by 100, say. | 
|---|
| 1668 |  | 
|---|
| 1669 | Thread * ox = (Thread *) _owner; | 
|---|
| 1670 | if (ox == NULL) { | 
|---|
| 1671 | ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL); | 
|---|
| 1672 | if (ox == NULL) { | 
|---|
| 1673 | // The CAS succeeded -- this thread acquired ownership | 
|---|
| 1674 | // Take care of some bookkeeping to exit spin state. | 
|---|
| 1675 | if (_succ == Self) { | 
|---|
| 1676 | _succ = NULL; | 
|---|
| 1677 | } | 
|---|
| 1678 |  | 
|---|
| 1679 | // Increase _SpinDuration : | 
|---|
| 1680 | // The spin was successful (profitable) so we tend toward | 
|---|
| 1681 | // longer spin attempts in the future. | 
|---|
| 1682 | // CONSIDER: factor "ctr" into the _SpinDuration adjustment. | 
|---|
| 1683 | // If we acquired the lock early in the spin cycle it | 
|---|
| 1684 | // makes sense to increase _SpinDuration proportionally. | 
|---|
| 1685 | // Note that we don't clamp SpinDuration precisely at SpinLimit. | 
|---|
| 1686 | int x = _SpinDuration; | 
|---|
| 1687 | if (x < Knob_SpinLimit) { | 
|---|
| 1688 | if (x < Knob_Poverty) x = Knob_Poverty; | 
|---|
| 1689 | _SpinDuration = x + Knob_Bonus; | 
|---|
| 1690 | } | 
|---|
| 1691 | return 1; | 
|---|
| 1692 | } | 
|---|
| 1693 |  | 
|---|
| 1694 | // The CAS failed ... we can take any of the following actions: | 
|---|
| 1695 | // * penalize: ctr -= CASPenalty | 
|---|
| 1696 | // * exit spin with prejudice -- goto Abort; | 
|---|
| 1697 | // * exit spin without prejudice. | 
|---|
| 1698 | // * Since CAS is high-latency, retry again immediately. | 
|---|
| 1699 | prv = ox; | 
|---|
| 1700 | goto Abort; | 
|---|
| 1701 | } | 
|---|
| 1702 |  | 
|---|
| 1703 | // Did lock ownership change hands ? | 
|---|
| 1704 | if (ox != prv && prv != NULL) { | 
|---|
| 1705 | goto Abort; | 
|---|
| 1706 | } | 
|---|
| 1707 | prv = ox; | 
|---|
| 1708 |  | 
|---|
| 1709 | // Abort the spin if the owner is not executing. | 
|---|
| 1710 | // The owner must be executing in order to drop the lock. | 
|---|
| 1711 | // Spinning while the owner is OFFPROC is idiocy. | 
|---|
| 1712 | // Consider: ctr -= RunnablePenalty ; | 
|---|
| 1713 | if (NotRunnable(Self, ox)) { | 
|---|
| 1714 | goto Abort; | 
|---|
| 1715 | } | 
|---|
| 1716 | if (_succ == NULL) { | 
|---|
| 1717 | _succ = Self; | 
|---|
| 1718 | } | 
|---|
| 1719 | } | 
|---|
| 1720 |  | 
|---|
| 1721 | // Spin failed with prejudice -- reduce _SpinDuration. | 
|---|
| 1722 | // TODO: Use an AIMD-like policy to adjust _SpinDuration. | 
|---|
| 1723 | // AIMD is globally stable. | 
|---|
| 1724 | { | 
|---|
| 1725 | int x = _SpinDuration; | 
|---|
| 1726 | if (x > 0) { | 
|---|
| 1727 | // Consider an AIMD scheme like: x -= (x >> 3) + 100 | 
|---|
| 1728 | // This is globally sample and tends to damp the response. | 
|---|
| 1729 | x -= Knob_Penalty; | 
|---|
| 1730 | if (x < 0) x = 0; | 
|---|
| 1731 | _SpinDuration = x; | 
|---|
| 1732 | } | 
|---|
| 1733 | } | 
|---|
| 1734 |  | 
|---|
| 1735 | Abort: | 
|---|
| 1736 | if (_succ == Self) { | 
|---|
| 1737 | _succ = NULL; | 
|---|
| 1738 | // Invariant: after setting succ=null a contending thread | 
|---|
| 1739 | // must recheck-retry _owner before parking.  This usually happens | 
|---|
| 1740 | // in the normal usage of TrySpin(), but it's safest | 
|---|
| 1741 | // to make TrySpin() as foolproof as possible. | 
|---|
| 1742 | OrderAccess::fence(); | 
|---|
| 1743 | if (TryLock(Self) > 0) return 1; | 
|---|
| 1744 | } | 
|---|
| 1745 | return 0; | 
|---|
| 1746 | } | 
|---|
| 1747 |  | 
|---|
| 1748 | // NotRunnable() -- informed spinning | 
|---|
| 1749 | // | 
|---|
| 1750 | // Don't bother spinning if the owner is not eligible to drop the lock. | 
|---|
| 1751 | // Spin only if the owner thread is _thread_in_Java or _thread_in_vm. | 
|---|
| 1752 | // The thread must be runnable in order to drop the lock in timely fashion. | 
|---|
| 1753 | // If the _owner is not runnable then spinning will not likely be | 
|---|
| 1754 | // successful (profitable). | 
|---|
| 1755 | // | 
|---|
| 1756 | // Beware -- the thread referenced by _owner could have died | 
|---|
| 1757 | // so a simply fetch from _owner->_thread_state might trap. | 
|---|
| 1758 | // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state. | 
|---|
| 1759 | // Because of the lifecycle issues, the _thread_state values | 
|---|
| 1760 | // observed by NotRunnable() might be garbage.  NotRunnable must | 
|---|
| 1761 | // tolerate this and consider the observed _thread_state value | 
|---|
| 1762 | // as advisory. | 
|---|
| 1763 | // | 
|---|
| 1764 | // Beware too, that _owner is sometimes a BasicLock address and sometimes | 
|---|
| 1765 | // a thread pointer. | 
|---|
| 1766 | // Alternately, we might tag the type (thread pointer vs basiclock pointer) | 
|---|
| 1767 | // with the LSB of _owner.  Another option would be to probabilistically probe | 
|---|
| 1768 | // the putative _owner->TypeTag value. | 
|---|
| 1769 | // | 
|---|
| 1770 | // Checking _thread_state isn't perfect.  Even if the thread is | 
|---|
| 1771 | // in_java it might be blocked on a page-fault or have been preempted | 
|---|
| 1772 | // and sitting on a ready/dispatch queue. | 
|---|
| 1773 | // | 
|---|
| 1774 | // The return value from NotRunnable() is *advisory* -- the | 
|---|
| 1775 | // result is based on sampling and is not necessarily coherent. | 
|---|
| 1776 | // The caller must tolerate false-negative and false-positive errors. | 
|---|
| 1777 | // Spinning, in general, is probabilistic anyway. | 
|---|
| 1778 |  | 
|---|
| 1779 |  | 
|---|
| 1780 | int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) { | 
|---|
| 1781 | // Check ox->TypeTag == 2BAD. | 
|---|
| 1782 | if (ox == NULL) return 0; | 
|---|
| 1783 |  | 
|---|
| 1784 | // Avoid transitive spinning ... | 
|---|
| 1785 | // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L. | 
|---|
| 1786 | // Immediately after T1 acquires L it's possible that T2, also | 
|---|
| 1787 | // spinning on L, will see L.Owner=T1 and T1._Stalled=L. | 
|---|
| 1788 | // This occurs transiently after T1 acquired L but before | 
|---|
| 1789 | // T1 managed to clear T1.Stalled.  T2 does not need to abort | 
|---|
| 1790 | // its spin in this circumstance. | 
|---|
| 1791 | intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1)); | 
|---|
| 1792 |  | 
|---|
| 1793 | if (BlockedOn == 1) return 1; | 
|---|
| 1794 | if (BlockedOn != 0) { | 
|---|
| 1795 | return BlockedOn != intptr_t(this) && _owner == ox; | 
|---|
| 1796 | } | 
|---|
| 1797 |  | 
|---|
| 1798 | assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant"); | 
|---|
| 1799 | int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);; | 
|---|
| 1800 | // consider also: jst != _thread_in_Java -- but that's overspecific. | 
|---|
| 1801 | return jst == _thread_blocked || jst == _thread_in_native; | 
|---|
| 1802 | } | 
|---|
| 1803 |  | 
|---|
| 1804 |  | 
|---|
| 1805 | // ----------------------------------------------------------------------------- | 
|---|
| 1806 | // WaitSet management ... | 
|---|
| 1807 |  | 
|---|
| 1808 | ObjectWaiter::ObjectWaiter(Thread* thread) { | 
|---|
| 1809 | _next     = NULL; | 
|---|
| 1810 | _prev     = NULL; | 
|---|
| 1811 | _notified = 0; | 
|---|
| 1812 | _notifier_tid = 0; | 
|---|
| 1813 | TState    = TS_RUN; | 
|---|
| 1814 | _thread   = thread; | 
|---|
| 1815 | _event    = thread->_ParkEvent; | 
|---|
| 1816 | _active   = false; | 
|---|
| 1817 | assert(_event != NULL, "invariant"); | 
|---|
| 1818 | } | 
|---|
| 1819 |  | 
|---|
| 1820 | void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { | 
|---|
| 1821 | JavaThread *jt = (JavaThread *)this->_thread; | 
|---|
| 1822 | _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon); | 
|---|
| 1823 | } | 
|---|
| 1824 |  | 
|---|
| 1825 | void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { | 
|---|
| 1826 | JavaThread *jt = (JavaThread *)this->_thread; | 
|---|
| 1827 | JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active); | 
|---|
| 1828 | } | 
|---|
| 1829 |  | 
|---|
| 1830 | inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { | 
|---|
| 1831 | assert(node != NULL, "should not add NULL node"); | 
|---|
| 1832 | assert(node->_prev == NULL, "node already in list"); | 
|---|
| 1833 | assert(node->_next == NULL, "node already in list"); | 
|---|
| 1834 | // put node at end of queue (circular doubly linked list) | 
|---|
| 1835 | if (_WaitSet == NULL) { | 
|---|
| 1836 | _WaitSet = node; | 
|---|
| 1837 | node->_prev = node; | 
|---|
| 1838 | node->_next = node; | 
|---|
| 1839 | } else { | 
|---|
| 1840 | ObjectWaiter* head = _WaitSet; | 
|---|
| 1841 | ObjectWaiter* tail = head->_prev; | 
|---|
| 1842 | assert(tail->_next == head, "invariant check"); | 
|---|
| 1843 | tail->_next = node; | 
|---|
| 1844 | head->_prev = node; | 
|---|
| 1845 | node->_next = head; | 
|---|
| 1846 | node->_prev = tail; | 
|---|
| 1847 | } | 
|---|
| 1848 | } | 
|---|
| 1849 |  | 
|---|
| 1850 | inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { | 
|---|
| 1851 | // dequeue the very first waiter | 
|---|
| 1852 | ObjectWaiter* waiter = _WaitSet; | 
|---|
| 1853 | if (waiter) { | 
|---|
| 1854 | DequeueSpecificWaiter(waiter); | 
|---|
| 1855 | } | 
|---|
| 1856 | return waiter; | 
|---|
| 1857 | } | 
|---|
| 1858 |  | 
|---|
| 1859 | inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { | 
|---|
| 1860 | assert(node != NULL, "should not dequeue NULL node"); | 
|---|
| 1861 | assert(node->_prev != NULL, "node already removed from list"); | 
|---|
| 1862 | assert(node->_next != NULL, "node already removed from list"); | 
|---|
| 1863 | // when the waiter has woken up because of interrupt, | 
|---|
| 1864 | // timeout or other spurious wake-up, dequeue the | 
|---|
| 1865 | // waiter from waiting list | 
|---|
| 1866 | ObjectWaiter* next = node->_next; | 
|---|
| 1867 | if (next == node) { | 
|---|
| 1868 | assert(node->_prev == node, "invariant check"); | 
|---|
| 1869 | _WaitSet = NULL; | 
|---|
| 1870 | } else { | 
|---|
| 1871 | ObjectWaiter* prev = node->_prev; | 
|---|
| 1872 | assert(prev->_next == node, "invariant check"); | 
|---|
| 1873 | assert(next->_prev == node, "invariant check"); | 
|---|
| 1874 | next->_prev = prev; | 
|---|
| 1875 | prev->_next = next; | 
|---|
| 1876 | if (_WaitSet == node) { | 
|---|
| 1877 | _WaitSet = next; | 
|---|
| 1878 | } | 
|---|
| 1879 | } | 
|---|
| 1880 | node->_next = NULL; | 
|---|
| 1881 | node->_prev = NULL; | 
|---|
| 1882 | } | 
|---|
| 1883 |  | 
|---|
| 1884 | // ----------------------------------------------------------------------------- | 
|---|
| 1885 | // PerfData support | 
|---|
| 1886 | PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL; | 
|---|
| 1887 | PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL; | 
|---|
| 1888 | PerfCounter * ObjectMonitor::_sync_Parks                       = NULL; | 
|---|
| 1889 | PerfCounter * ObjectMonitor::_sync_Notifications               = NULL; | 
|---|
| 1890 | PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL; | 
|---|
| 1891 | PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL; | 
|---|
| 1892 | PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL; | 
|---|
| 1893 |  | 
|---|
| 1894 | // One-shot global initialization for the sync subsystem. | 
|---|
| 1895 | // We could also defer initialization and initialize on-demand | 
|---|
| 1896 | // the first time we call ObjectSynchronizer::inflate(). | 
|---|
| 1897 | // Initialization would be protected - like so many things - by | 
|---|
| 1898 | // the MonitorCache_lock. | 
|---|
| 1899 |  | 
|---|
| 1900 | void ObjectMonitor::Initialize() { | 
|---|
| 1901 | assert(!InitDone, "invariant"); | 
|---|
| 1902 |  | 
|---|
| 1903 | if (!os::is_MP()) { | 
|---|
| 1904 | Knob_SpinLimit = 0; | 
|---|
| 1905 | Knob_PreSpin   = 0; | 
|---|
| 1906 | Knob_FixedSpin = -1; | 
|---|
| 1907 | } | 
|---|
| 1908 |  | 
|---|
| 1909 | if (UsePerfData) { | 
|---|
| 1910 | EXCEPTION_MARK; | 
|---|
| 1911 | #define NEWPERFCOUNTER(n)                                                \ | 
|---|
| 1912 | {                                                                      \ | 
|---|
| 1913 | n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \ | 
|---|
| 1914 | CHECK);                          \ | 
|---|
| 1915 | } | 
|---|
| 1916 | #define NEWPERFVARIABLE(n)                                                \ | 
|---|
| 1917 | {                                                                       \ | 
|---|
| 1918 | n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \ | 
|---|
| 1919 | CHECK);                          \ | 
|---|
| 1920 | } | 
|---|
| 1921 | NEWPERFCOUNTER(_sync_Inflations); | 
|---|
| 1922 | NEWPERFCOUNTER(_sync_Deflations); | 
|---|
| 1923 | NEWPERFCOUNTER(_sync_ContendedLockAttempts); | 
|---|
| 1924 | NEWPERFCOUNTER(_sync_FutileWakeups); | 
|---|
| 1925 | NEWPERFCOUNTER(_sync_Parks); | 
|---|
| 1926 | NEWPERFCOUNTER(_sync_Notifications); | 
|---|
| 1927 | NEWPERFVARIABLE(_sync_MonExtant); | 
|---|
| 1928 | #undef NEWPERFCOUNTER | 
|---|
| 1929 | #undef NEWPERFVARIABLE | 
|---|
| 1930 | } | 
|---|
| 1931 |  | 
|---|
| 1932 | DEBUG_ONLY(InitDone = true;) | 
|---|
| 1933 | } | 
|---|
| 1934 |  | 
|---|
| 1935 | void ObjectMonitor::print_on(outputStream* st) const { | 
|---|
| 1936 | // The minimal things to print for markOop printing, more can be added for debugging and logging. | 
|---|
| 1937 | st->print( "{contentions=0x%08x,waiters=0x%08x" | 
|---|
| 1938 | ",recursions="INTPTR_FORMAT ",owner="INTPTR_FORMAT "}", | 
|---|
| 1939 | contentions(), waiters(), recursions(), | 
|---|
| 1940 | p2i(owner())); | 
|---|
| 1941 | } | 
|---|
| 1942 | void ObjectMonitor::print() const { print_on(tty); } | 
|---|
| 1943 |  | 
|---|