1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_RUNTIME_VFRAMEARRAY_HPP
26#define SHARE_RUNTIME_VFRAMEARRAY_HPP
27
28#include "memory/allocation.hpp"
29#include "oops/arrayOop.hpp"
30#include "runtime/deoptimization.hpp"
31#include "runtime/frame.hpp"
32#include "runtime/monitorChunk.hpp"
33#include "utilities/growableArray.hpp"
34
35// A vframeArray is an array used for momentarily storing off stack Java method activations
36// during deoptimization. Essentially it is an array of vframes where each vframe
37// data is stored off stack. This structure will never exist across a safepoint so
38// there is no need to gc any oops that are stored in the structure.
39
40
41class LocalsClosure;
42class ExpressionStackClosure;
43class MonitorStackClosure;
44class MonitorArrayElement;
45class StackValueCollection;
46
47// A vframeArrayElement is an element of a vframeArray. Each element
48// represent an interpreter frame which will eventually be created.
49
50class vframeArrayElement {
51 friend class VMStructs;
52
53 private:
54
55 frame _frame; // the interpreter frame we will unpack into
56 int _bci; // raw bci for this vframe
57 bool _reexecute; // whether we should reexecute this bytecode
58 Method* _method; // the method for this vframe
59 MonitorChunk* _monitors; // active monitors for this vframe
60 StackValueCollection* _locals;
61 StackValueCollection* _expressions;
62#ifdef ASSERT
63 bool _removed_monitors;
64#endif
65
66 public:
67
68 frame* iframe(void) { return &_frame; }
69
70 int bci(void) const;
71
72 int raw_bci(void) const { return _bci; }
73 bool should_reexecute(void) const { return _reexecute; }
74
75 Method* method(void) const { return _method; }
76
77 MonitorChunk* monitors(void) const { return _monitors; }
78
79 void free_monitors(JavaThread* jt);
80
81 StackValueCollection* locals(void) const { return _locals; }
82
83 StackValueCollection* expressions(void) const { return _expressions; }
84
85 void fill_in(compiledVFrame* vf, bool realloc_failures);
86
87 // Formerly part of deoptimizedVFrame
88
89
90 // Returns the on stack word size for this frame
91 // callee_parameters is the number of callee locals residing inside this frame
92 int on_stack_size(int callee_parameters,
93 int callee_locals,
94 bool is_top_frame,
95 int popframe_extra_stack_expression_els) const;
96
97 // Unpacks the element to skeletal interpreter frame
98 void unpack_on_stack(int caller_actual_parameters,
99 int callee_parameters,
100 int callee_locals,
101 frame* caller,
102 bool is_top_frame,
103 bool is_bottom_frame,
104 int exec_mode);
105
106#ifdef ASSERT
107 void set_removed_monitors() {
108 _removed_monitors = true;
109 }
110#endif
111
112#ifndef PRODUCT
113 void print(outputStream* st);
114#endif /* PRODUCT */
115};
116
117// this can be a ResourceObj if we don't save the last one...
118// but it does make debugging easier even if we can't look
119// at the data in each vframeElement
120
121class vframeArray: public CHeapObj<mtCompiler> {
122 friend class VMStructs;
123
124 private:
125
126
127 // Here is what a vframeArray looks like in memory
128
129 /*
130 fixed part
131 description of the original frame
132 _frames - number of vframes in this array
133 adapter info
134 callee register save area
135 variable part
136 vframeArrayElement [ 0 ]
137 ...
138 vframeArrayElement [_frames - 1]
139
140 */
141
142 JavaThread* _owner_thread;
143 vframeArray* _next;
144 frame _original; // the original frame of the deoptee
145 frame _caller; // caller of root frame in vframeArray
146 frame _sender;
147
148 Deoptimization::UnrollBlock* _unroll_block;
149 int _frame_size;
150
151 int _frames; // number of javavframes in the array (does not count any adapter)
152
153 intptr_t _callee_registers[RegisterMap::reg_count];
154 unsigned char _valid[RegisterMap::reg_count];
155
156 vframeArrayElement _elements[1]; // First variable section.
157
158 void fill_in_element(int index, compiledVFrame* vf);
159
160 bool is_location_valid(int i) const { return _valid[i] != 0; }
161 void set_location_valid(int i, bool valid) { _valid[i] = valid; }
162
163 public:
164
165
166 // Tells whether index is within bounds.
167 bool is_within_bounds(int index) const { return 0 <= index && index < frames(); }
168
169 // Accessories for instance variable
170 int frames() const { return _frames; }
171
172 static vframeArray* allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
173 RegisterMap* reg_map, frame sender, frame caller, frame self,
174 bool realloc_failures);
175
176
177 vframeArrayElement* element(int index) { assert(is_within_bounds(index), "Bad index"); return &_elements[index]; }
178
179 // Allocates a new vframe in the array and fills the array with vframe information in chunk
180 void fill_in(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk, const RegisterMap *reg_map, bool realloc_failures);
181
182 // Returns the owner of this vframeArray
183 JavaThread* owner_thread() const { return _owner_thread; }
184
185 // Accessors for next
186 vframeArray* next() const { return _next; }
187 void set_next(vframeArray* value) { _next = value; }
188
189 // Accessors for sp
190 intptr_t* sp() const { return _original.sp(); }
191
192 intptr_t* unextended_sp() const;
193
194 address original_pc() const { return _original.pc(); }
195
196 frame original() const { return _original; }
197
198 frame caller() const { return _caller; }
199
200 frame sender() const { return _sender; }
201
202 // Accessors for unroll block
203 Deoptimization::UnrollBlock* unroll_block() const { return _unroll_block; }
204 void set_unroll_block(Deoptimization::UnrollBlock* block) { _unroll_block = block; }
205
206 // Returns the size of the frame that got deoptimized
207 int frame_size() const { return _frame_size; }
208
209 // Unpack the array on the stack passed in stack interval
210 void unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters);
211
212 // Deallocates monitor chunks allocated during deoptimization.
213 // This should be called when the array is not used anymore.
214 void deallocate_monitor_chunks();
215
216
217
218 // Accessor for register map
219 address register_location(int i) const;
220
221 void print_on_2(outputStream* st) PRODUCT_RETURN;
222 void print_value_on(outputStream* st) const PRODUCT_RETURN;
223
224#ifndef PRODUCT
225 // Comparing
226 bool structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk);
227#endif
228
229};
230
231#endif // SHARE_RUNTIME_VFRAMEARRAY_HPP
232