| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "memory/allocation.inline.hpp" |
| 27 | #include "memory/resourceArea.hpp" |
| 28 | #include "runtime/atomic.hpp" |
| 29 | #include "utilities/bitMap.inline.hpp" |
| 30 | #include "utilities/copy.hpp" |
| 31 | #include "utilities/debug.hpp" |
| 32 | |
| 33 | STATIC_ASSERT(sizeof(BitMap::bm_word_t) == BytesPerWord); // "Implementation assumption." |
| 34 | |
| 35 | typedef BitMap::bm_word_t bm_word_t; |
| 36 | typedef BitMap::idx_t idx_t; |
| 37 | |
| 38 | class ResourceBitMapAllocator : StackObj { |
| 39 | public: |
| 40 | bm_word_t* allocate(idx_t size_in_words) const { |
| 41 | return NEW_RESOURCE_ARRAY(bm_word_t, size_in_words); |
| 42 | } |
| 43 | void free(bm_word_t* map, idx_t size_in_words) const { |
| 44 | // Don't free resource allocated arrays. |
| 45 | } |
| 46 | }; |
| 47 | |
| 48 | class CHeapBitMapAllocator : StackObj { |
| 49 | MEMFLAGS _flags; |
| 50 | |
| 51 | public: |
| 52 | CHeapBitMapAllocator(MEMFLAGS flags) : _flags(flags) {} |
| 53 | bm_word_t* allocate(size_t size_in_words) const { |
| 54 | return ArrayAllocator<bm_word_t>::allocate(size_in_words, _flags); |
| 55 | } |
| 56 | void free(bm_word_t* map, idx_t size_in_words) const { |
| 57 | ArrayAllocator<bm_word_t>::free(map, size_in_words); |
| 58 | } |
| 59 | }; |
| 60 | |
| 61 | class ArenaBitMapAllocator : StackObj { |
| 62 | Arena* _arena; |
| 63 | |
| 64 | public: |
| 65 | ArenaBitMapAllocator(Arena* arena) : _arena(arena) {} |
| 66 | bm_word_t* allocate(idx_t size_in_words) const { |
| 67 | return (bm_word_t*)_arena->Amalloc(size_in_words * BytesPerWord); |
| 68 | } |
| 69 | void free(bm_word_t* map, idx_t size_in_words) const { |
| 70 | // ArenaBitMaps currently don't free memory. |
| 71 | } |
| 72 | }; |
| 73 | |
| 74 | template <class Allocator> |
| 75 | BitMap::bm_word_t* BitMap::reallocate(const Allocator& allocator, bm_word_t* old_map, idx_t old_size_in_bits, idx_t new_size_in_bits, bool clear) { |
| 76 | size_t old_size_in_words = calc_size_in_words(old_size_in_bits); |
| 77 | size_t new_size_in_words = calc_size_in_words(new_size_in_bits); |
| 78 | |
| 79 | bm_word_t* map = NULL; |
| 80 | |
| 81 | if (new_size_in_words > 0) { |
| 82 | map = allocator.allocate(new_size_in_words); |
| 83 | |
| 84 | if (old_map != NULL) { |
| 85 | Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) map, |
| 86 | MIN2(old_size_in_words, new_size_in_words)); |
| 87 | } |
| 88 | |
| 89 | if (clear && new_size_in_words > old_size_in_words) { |
| 90 | clear_range_of_words(map, old_size_in_words, new_size_in_words); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | if (old_map != NULL) { |
| 95 | allocator.free(old_map, old_size_in_words); |
| 96 | } |
| 97 | |
| 98 | return map; |
| 99 | } |
| 100 | |
| 101 | template <class Allocator> |
| 102 | bm_word_t* BitMap::allocate(const Allocator& allocator, idx_t size_in_bits, bool clear) { |
| 103 | // Reuse reallocate to ensure that the new memory is cleared. |
| 104 | return reallocate(allocator, NULL, 0, size_in_bits, clear); |
| 105 | } |
| 106 | |
| 107 | template <class Allocator> |
| 108 | void BitMap::free(const Allocator& allocator, bm_word_t* map, idx_t size_in_bits) { |
| 109 | bm_word_t* ret = reallocate(allocator, map, size_in_bits, 0); |
| 110 | assert(ret == NULL, "Reallocate shouldn't have allocated" ); |
| 111 | } |
| 112 | |
| 113 | template <class Allocator> |
| 114 | void BitMap::resize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) { |
| 115 | bm_word_t* new_map = reallocate(allocator, map(), size(), new_size_in_bits, clear); |
| 116 | |
| 117 | update(new_map, new_size_in_bits); |
| 118 | } |
| 119 | |
| 120 | template <class Allocator> |
| 121 | void BitMap::initialize(const Allocator& allocator, idx_t size_in_bits, bool clear) { |
| 122 | assert(map() == NULL, "precondition" ); |
| 123 | assert(size() == 0, "precondition" ); |
| 124 | |
| 125 | resize(allocator, size_in_bits, clear); |
| 126 | } |
| 127 | |
| 128 | template <class Allocator> |
| 129 | void BitMap::reinitialize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) { |
| 130 | // Remove previous bits - no need to clear |
| 131 | resize(allocator, 0, false /* clear */); |
| 132 | |
| 133 | initialize(allocator, new_size_in_bits, clear); |
| 134 | } |
| 135 | |
| 136 | ResourceBitMap::ResourceBitMap(idx_t size_in_bits) |
| 137 | : BitMap(allocate(ResourceBitMapAllocator(), size_in_bits), size_in_bits) { |
| 138 | } |
| 139 | |
| 140 | void ResourceBitMap::resize(idx_t new_size_in_bits) { |
| 141 | BitMap::resize(ResourceBitMapAllocator(), new_size_in_bits, true /* clear */); |
| 142 | } |
| 143 | |
| 144 | void ResourceBitMap::initialize(idx_t size_in_bits) { |
| 145 | BitMap::initialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */); |
| 146 | } |
| 147 | |
| 148 | void ResourceBitMap::reinitialize(idx_t size_in_bits) { |
| 149 | BitMap::reinitialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */); |
| 150 | } |
| 151 | |
| 152 | ArenaBitMap::ArenaBitMap(Arena* arena, idx_t size_in_bits) |
| 153 | : BitMap(allocate(ArenaBitMapAllocator(arena), size_in_bits), size_in_bits) { |
| 154 | } |
| 155 | |
| 156 | CHeapBitMap::CHeapBitMap(idx_t size_in_bits, MEMFLAGS flags, bool clear) |
| 157 | : BitMap(allocate(CHeapBitMapAllocator(flags), size_in_bits, clear), size_in_bits), _flags(flags) { |
| 158 | } |
| 159 | |
| 160 | CHeapBitMap::~CHeapBitMap() { |
| 161 | free(CHeapBitMapAllocator(_flags), map(), size()); |
| 162 | } |
| 163 | |
| 164 | void CHeapBitMap::resize(idx_t new_size_in_bits, bool clear) { |
| 165 | BitMap::resize(CHeapBitMapAllocator(_flags), new_size_in_bits, clear); |
| 166 | } |
| 167 | |
| 168 | void CHeapBitMap::initialize(idx_t size_in_bits, bool clear) { |
| 169 | BitMap::initialize(CHeapBitMapAllocator(_flags), size_in_bits, clear); |
| 170 | } |
| 171 | |
| 172 | void CHeapBitMap::reinitialize(idx_t size_in_bits, bool clear) { |
| 173 | BitMap::reinitialize(CHeapBitMapAllocator(_flags), size_in_bits, clear); |
| 174 | } |
| 175 | |
| 176 | #ifdef ASSERT |
| 177 | void BitMap::verify_index(idx_t index) const { |
| 178 | assert(index < _size, "BitMap index out of bounds" ); |
| 179 | } |
| 180 | |
| 181 | void BitMap::verify_range(idx_t beg_index, idx_t end_index) const { |
| 182 | assert(beg_index <= end_index, "BitMap range error" ); |
| 183 | // Note that [0,0) and [size,size) are both valid ranges. |
| 184 | if (end_index != _size) verify_index(end_index); |
| 185 | } |
| 186 | #endif // #ifdef ASSERT |
| 187 | |
| 188 | void BitMap::pretouch() { |
| 189 | os::pretouch_memory(word_addr(0), word_addr(size())); |
| 190 | } |
| 191 | |
| 192 | void BitMap::set_range_within_word(idx_t beg, idx_t end) { |
| 193 | // With a valid range (beg <= end), this test ensures that end != 0, as |
| 194 | // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
| 195 | if (beg != end) { |
| 196 | bm_word_t mask = inverted_bit_mask_for_range(beg, end); |
| 197 | *word_addr(beg) |= ~mask; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | void BitMap::clear_range_within_word(idx_t beg, idx_t end) { |
| 202 | // With a valid range (beg <= end), this test ensures that end != 0, as |
| 203 | // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
| 204 | if (beg != end) { |
| 205 | bm_word_t mask = inverted_bit_mask_for_range(beg, end); |
| 206 | *word_addr(beg) &= mask; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) { |
| 211 | assert(value == 0 || value == 1, "0 for clear, 1 for set" ); |
| 212 | // With a valid range (beg <= end), this test ensures that end != 0, as |
| 213 | // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
| 214 | if (beg != end) { |
| 215 | bm_word_t* pw = word_addr(beg); |
| 216 | bm_word_t w = *pw; |
| 217 | bm_word_t mr = inverted_bit_mask_for_range(beg, end); |
| 218 | bm_word_t nw = value ? (w | ~mr) : (w & mr); |
| 219 | while (true) { |
| 220 | bm_word_t res = Atomic::cmpxchg(nw, pw, w); |
| 221 | if (res == w) break; |
| 222 | w = res; |
| 223 | nw = value ? (w | ~mr) : (w & mr); |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | void BitMap::set_range(idx_t beg, idx_t end) { |
| 229 | verify_range(beg, end); |
| 230 | |
| 231 | idx_t beg_full_word = word_index_round_up(beg); |
| 232 | idx_t end_full_word = word_index(end); |
| 233 | |
| 234 | if (beg_full_word < end_full_word) { |
| 235 | // The range includes at least one full word. |
| 236 | set_range_within_word(beg, bit_index(beg_full_word)); |
| 237 | set_range_of_words(beg_full_word, end_full_word); |
| 238 | set_range_within_word(bit_index(end_full_word), end); |
| 239 | } else { |
| 240 | // The range spans at most 2 partial words. |
| 241 | idx_t boundary = MIN2(bit_index(beg_full_word), end); |
| 242 | set_range_within_word(beg, boundary); |
| 243 | set_range_within_word(boundary, end); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | void BitMap::clear_range(idx_t beg, idx_t end) { |
| 248 | verify_range(beg, end); |
| 249 | |
| 250 | idx_t beg_full_word = word_index_round_up(beg); |
| 251 | idx_t end_full_word = word_index(end); |
| 252 | |
| 253 | if (beg_full_word < end_full_word) { |
| 254 | // The range includes at least one full word. |
| 255 | clear_range_within_word(beg, bit_index(beg_full_word)); |
| 256 | clear_range_of_words(beg_full_word, end_full_word); |
| 257 | clear_range_within_word(bit_index(end_full_word), end); |
| 258 | } else { |
| 259 | // The range spans at most 2 partial words. |
| 260 | idx_t boundary = MIN2(bit_index(beg_full_word), end); |
| 261 | clear_range_within_word(beg, boundary); |
| 262 | clear_range_within_word(boundary, end); |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | bool BitMap::is_small_range_of_words(idx_t beg_full_word, idx_t end_full_word) { |
| 267 | // There is little point to call large version on small ranges. |
| 268 | // Need to check carefully, keeping potential idx_t underflow in mind. |
| 269 | // The threshold should be at least one word. |
| 270 | STATIC_ASSERT(small_range_words >= 1); |
| 271 | return (beg_full_word + small_range_words >= end_full_word); |
| 272 | } |
| 273 | |
| 274 | void BitMap::set_large_range(idx_t beg, idx_t end) { |
| 275 | verify_range(beg, end); |
| 276 | |
| 277 | idx_t beg_full_word = word_index_round_up(beg); |
| 278 | idx_t end_full_word = word_index(end); |
| 279 | |
| 280 | if (is_small_range_of_words(beg_full_word, end_full_word)) { |
| 281 | set_range(beg, end); |
| 282 | return; |
| 283 | } |
| 284 | |
| 285 | // The range includes at least one full word. |
| 286 | set_range_within_word(beg, bit_index(beg_full_word)); |
| 287 | set_large_range_of_words(beg_full_word, end_full_word); |
| 288 | set_range_within_word(bit_index(end_full_word), end); |
| 289 | } |
| 290 | |
| 291 | void BitMap::clear_large_range(idx_t beg, idx_t end) { |
| 292 | verify_range(beg, end); |
| 293 | |
| 294 | idx_t beg_full_word = word_index_round_up(beg); |
| 295 | idx_t end_full_word = word_index(end); |
| 296 | |
| 297 | if (is_small_range_of_words(beg_full_word, end_full_word)) { |
| 298 | clear_range(beg, end); |
| 299 | return; |
| 300 | } |
| 301 | |
| 302 | // The range includes at least one full word. |
| 303 | clear_range_within_word(beg, bit_index(beg_full_word)); |
| 304 | clear_large_range_of_words(beg_full_word, end_full_word); |
| 305 | clear_range_within_word(bit_index(end_full_word), end); |
| 306 | } |
| 307 | |
| 308 | void BitMap::at_put(idx_t offset, bool value) { |
| 309 | if (value) { |
| 310 | set_bit(offset); |
| 311 | } else { |
| 312 | clear_bit(offset); |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | // Return true to indicate that this thread changed |
| 317 | // the bit, false to indicate that someone else did. |
| 318 | // In either case, the requested bit is in the |
| 319 | // requested state some time during the period that |
| 320 | // this thread is executing this call. More importantly, |
| 321 | // if no other thread is executing an action to |
| 322 | // change the requested bit to a state other than |
| 323 | // the one that this thread is trying to set it to, |
| 324 | // then the the bit is in the expected state |
| 325 | // at exit from this method. However, rather than |
| 326 | // make such a strong assertion here, based on |
| 327 | // assuming such constrained use (which though true |
| 328 | // today, could change in the future to service some |
| 329 | // funky parallel algorithm), we encourage callers |
| 330 | // to do such verification, as and when appropriate. |
| 331 | bool BitMap::par_at_put(idx_t bit, bool value) { |
| 332 | return value ? par_set_bit(bit) : par_clear_bit(bit); |
| 333 | } |
| 334 | |
| 335 | void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) { |
| 336 | if (value) { |
| 337 | set_range(start_offset, end_offset); |
| 338 | } else { |
| 339 | clear_range(start_offset, end_offset); |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) { |
| 344 | verify_range(beg, end); |
| 345 | |
| 346 | idx_t beg_full_word = word_index_round_up(beg); |
| 347 | idx_t end_full_word = word_index(end); |
| 348 | |
| 349 | if (beg_full_word < end_full_word) { |
| 350 | // The range includes at least one full word. |
| 351 | par_put_range_within_word(beg, bit_index(beg_full_word), value); |
| 352 | if (value) { |
| 353 | set_range_of_words(beg_full_word, end_full_word); |
| 354 | } else { |
| 355 | clear_range_of_words(beg_full_word, end_full_word); |
| 356 | } |
| 357 | par_put_range_within_word(bit_index(end_full_word), end, value); |
| 358 | } else { |
| 359 | // The range spans at most 2 partial words. |
| 360 | idx_t boundary = MIN2(bit_index(beg_full_word), end); |
| 361 | par_put_range_within_word(beg, boundary, value); |
| 362 | par_put_range_within_word(boundary, end, value); |
| 363 | } |
| 364 | |
| 365 | } |
| 366 | |
| 367 | void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) { |
| 368 | if (value) { |
| 369 | set_large_range(beg, end); |
| 370 | } else { |
| 371 | clear_large_range(beg, end); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) { |
| 376 | verify_range(beg, end); |
| 377 | |
| 378 | idx_t beg_full_word = word_index_round_up(beg); |
| 379 | idx_t end_full_word = word_index(end); |
| 380 | |
| 381 | if (is_small_range_of_words(beg_full_word, end_full_word)) { |
| 382 | par_at_put_range(beg, end, value); |
| 383 | return; |
| 384 | } |
| 385 | |
| 386 | // The range includes at least one full word. |
| 387 | par_put_range_within_word(beg, bit_index(beg_full_word), value); |
| 388 | if (value) { |
| 389 | set_large_range_of_words(beg_full_word, end_full_word); |
| 390 | } else { |
| 391 | clear_large_range_of_words(beg_full_word, end_full_word); |
| 392 | } |
| 393 | par_put_range_within_word(bit_index(end_full_word), end, value); |
| 394 | } |
| 395 | |
| 396 | inline bm_word_t tail_mask(idx_t tail_bits) { |
| 397 | assert(tail_bits != 0, "precondition" ); // Works, but shouldn't be called. |
| 398 | assert(tail_bits < (idx_t)BitsPerWord, "precondition" ); |
| 399 | return (bm_word_t(1) << tail_bits) - 1; |
| 400 | } |
| 401 | |
| 402 | // Get the low tail_bits of value, which is the last partial word of a map. |
| 403 | inline bm_word_t tail_of_map(bm_word_t value, idx_t tail_bits) { |
| 404 | return value & tail_mask(tail_bits); |
| 405 | } |
| 406 | |
| 407 | // Compute the new last word of a map with a non-aligned length. |
| 408 | // new_value has the new trailing bits of the map in the low tail_bits. |
| 409 | // old_value is the last word of the map, including bits beyond the end. |
| 410 | // Returns old_value with the low tail_bits replaced by the corresponding |
| 411 | // bits in new_value. |
| 412 | inline bm_word_t merge_tail_of_map(bm_word_t new_value, |
| 413 | bm_word_t old_value, |
| 414 | idx_t tail_bits) { |
| 415 | bm_word_t mask = tail_mask(tail_bits); |
| 416 | return (new_value & mask) | (old_value & ~mask); |
| 417 | } |
| 418 | |
| 419 | bool BitMap::contains(const BitMap& other) const { |
| 420 | assert(size() == other.size(), "must have same size" ); |
| 421 | const bm_word_t* dest_map = map(); |
| 422 | const bm_word_t* other_map = other.map(); |
| 423 | idx_t limit = word_index(size()); |
| 424 | for (idx_t index = 0; index < limit; ++index) { |
| 425 | // false if other bitmap has bits set which are clear in this bitmap. |
| 426 | if ((~dest_map[index] & other_map[index]) != 0) return false; |
| 427 | } |
| 428 | idx_t rest = bit_in_word(size()); |
| 429 | // true unless there is a partial-word tail in which the other |
| 430 | // bitmap has bits set which are clear in this bitmap. |
| 431 | return (rest == 0) || tail_of_map(~dest_map[limit] & other_map[limit], rest) == 0; |
| 432 | } |
| 433 | |
| 434 | bool BitMap::intersects(const BitMap& other) const { |
| 435 | assert(size() == other.size(), "must have same size" ); |
| 436 | const bm_word_t* dest_map = map(); |
| 437 | const bm_word_t* other_map = other.map(); |
| 438 | idx_t limit = word_index(size()); |
| 439 | for (idx_t index = 0; index < limit; ++index) { |
| 440 | if ((dest_map[index] & other_map[index]) != 0) return true; |
| 441 | } |
| 442 | idx_t rest = bit_in_word(size()); |
| 443 | // false unless there is a partial-word tail with non-empty intersection. |
| 444 | return (rest > 0) && tail_of_map(dest_map[limit] & other_map[limit], rest) != 0; |
| 445 | } |
| 446 | |
| 447 | void BitMap::set_union(const BitMap& other) { |
| 448 | assert(size() == other.size(), "must have same size" ); |
| 449 | bm_word_t* dest_map = map(); |
| 450 | const bm_word_t* other_map = other.map(); |
| 451 | idx_t limit = word_index(size()); |
| 452 | for (idx_t index = 0; index < limit; ++index) { |
| 453 | dest_map[index] |= other_map[index]; |
| 454 | } |
| 455 | idx_t rest = bit_in_word(size()); |
| 456 | if (rest > 0) { |
| 457 | bm_word_t orig = dest_map[limit]; |
| 458 | dest_map[limit] = merge_tail_of_map(orig | other_map[limit], orig, rest); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | void BitMap::set_difference(const BitMap& other) { |
| 463 | assert(size() == other.size(), "must have same size" ); |
| 464 | bm_word_t* dest_map = map(); |
| 465 | const bm_word_t* other_map = other.map(); |
| 466 | idx_t limit = word_index(size()); |
| 467 | for (idx_t index = 0; index < limit; ++index) { |
| 468 | dest_map[index] &= ~other_map[index]; |
| 469 | } |
| 470 | idx_t rest = bit_in_word(size()); |
| 471 | if (rest > 0) { |
| 472 | bm_word_t orig = dest_map[limit]; |
| 473 | dest_map[limit] = merge_tail_of_map(orig & ~other_map[limit], orig, rest); |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | void BitMap::set_intersection(const BitMap& other) { |
| 478 | assert(size() == other.size(), "must have same size" ); |
| 479 | bm_word_t* dest_map = map(); |
| 480 | const bm_word_t* other_map = other.map(); |
| 481 | idx_t limit = word_index(size()); |
| 482 | for (idx_t index = 0; index < limit; ++index) { |
| 483 | dest_map[index] &= other_map[index]; |
| 484 | } |
| 485 | idx_t rest = bit_in_word(size()); |
| 486 | if (rest > 0) { |
| 487 | bm_word_t orig = dest_map[limit]; |
| 488 | dest_map[limit] = merge_tail_of_map(orig & other_map[limit], orig, rest); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | bool BitMap::set_union_with_result(const BitMap& other) { |
| 493 | assert(size() == other.size(), "must have same size" ); |
| 494 | bool changed = false; |
| 495 | bm_word_t* dest_map = map(); |
| 496 | const bm_word_t* other_map = other.map(); |
| 497 | idx_t limit = word_index(size()); |
| 498 | for (idx_t index = 0; index < limit; ++index) { |
| 499 | bm_word_t orig = dest_map[index]; |
| 500 | bm_word_t temp = orig | other_map[index]; |
| 501 | changed = changed || (temp != orig); |
| 502 | dest_map[index] = temp; |
| 503 | } |
| 504 | idx_t rest = bit_in_word(size()); |
| 505 | if (rest > 0) { |
| 506 | bm_word_t orig = dest_map[limit]; |
| 507 | bm_word_t temp = merge_tail_of_map(orig | other_map[limit], orig, rest); |
| 508 | changed = changed || (temp != orig); |
| 509 | dest_map[limit] = temp; |
| 510 | } |
| 511 | return changed; |
| 512 | } |
| 513 | |
| 514 | bool BitMap::set_difference_with_result(const BitMap& other) { |
| 515 | assert(size() == other.size(), "must have same size" ); |
| 516 | bool changed = false; |
| 517 | bm_word_t* dest_map = map(); |
| 518 | const bm_word_t* other_map = other.map(); |
| 519 | idx_t limit = word_index(size()); |
| 520 | for (idx_t index = 0; index < limit; ++index) { |
| 521 | bm_word_t orig = dest_map[index]; |
| 522 | bm_word_t temp = orig & ~other_map[index]; |
| 523 | changed = changed || (temp != orig); |
| 524 | dest_map[index] = temp; |
| 525 | } |
| 526 | idx_t rest = bit_in_word(size()); |
| 527 | if (rest > 0) { |
| 528 | bm_word_t orig = dest_map[limit]; |
| 529 | bm_word_t temp = merge_tail_of_map(orig & ~other_map[limit], orig, rest); |
| 530 | changed = changed || (temp != orig); |
| 531 | dest_map[limit] = temp; |
| 532 | } |
| 533 | return changed; |
| 534 | } |
| 535 | |
| 536 | bool BitMap::set_intersection_with_result(const BitMap& other) { |
| 537 | assert(size() == other.size(), "must have same size" ); |
| 538 | bool changed = false; |
| 539 | bm_word_t* dest_map = map(); |
| 540 | const bm_word_t* other_map = other.map(); |
| 541 | idx_t limit = word_index(size()); |
| 542 | for (idx_t index = 0; index < limit; ++index) { |
| 543 | bm_word_t orig = dest_map[index]; |
| 544 | bm_word_t temp = orig & other_map[index]; |
| 545 | changed = changed || (temp != orig); |
| 546 | dest_map[index] = temp; |
| 547 | } |
| 548 | idx_t rest = bit_in_word(size()); |
| 549 | if (rest > 0) { |
| 550 | bm_word_t orig = dest_map[limit]; |
| 551 | bm_word_t temp = merge_tail_of_map(orig & other_map[limit], orig, rest); |
| 552 | changed = changed || (temp != orig); |
| 553 | dest_map[limit] = temp; |
| 554 | } |
| 555 | return changed; |
| 556 | } |
| 557 | |
| 558 | void BitMap::set_from(const BitMap& other) { |
| 559 | assert(size() == other.size(), "must have same size" ); |
| 560 | bm_word_t* dest_map = map(); |
| 561 | const bm_word_t* other_map = other.map(); |
| 562 | idx_t copy_words = word_index(size()); |
| 563 | Copy::disjoint_words((HeapWord*)other_map, (HeapWord*)dest_map, copy_words); |
| 564 | idx_t rest = bit_in_word(size()); |
| 565 | if (rest > 0) { |
| 566 | dest_map[copy_words] = merge_tail_of_map(other_map[copy_words], |
| 567 | dest_map[copy_words], |
| 568 | rest); |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | bool BitMap::is_same(const BitMap& other) const { |
| 573 | assert(size() == other.size(), "must have same size" ); |
| 574 | const bm_word_t* dest_map = map(); |
| 575 | const bm_word_t* other_map = other.map(); |
| 576 | idx_t limit = word_index(size()); |
| 577 | for (idx_t index = 0; index < limit; ++index) { |
| 578 | if (dest_map[index] != other_map[index]) return false; |
| 579 | } |
| 580 | idx_t rest = bit_in_word(size()); |
| 581 | return (rest == 0) || (tail_of_map(dest_map[limit] ^ other_map[limit], rest) == 0); |
| 582 | } |
| 583 | |
| 584 | bool BitMap::is_full() const { |
| 585 | const bm_word_t* words = map(); |
| 586 | idx_t limit = word_index(size()); |
| 587 | for (idx_t index = 0; index < limit; ++index) { |
| 588 | if (~words[index] != 0) return false; |
| 589 | } |
| 590 | idx_t rest = bit_in_word(size()); |
| 591 | return (rest == 0) || (tail_of_map(~words[limit], rest) == 0); |
| 592 | } |
| 593 | |
| 594 | bool BitMap::is_empty() const { |
| 595 | const bm_word_t* words = map(); |
| 596 | idx_t limit = word_index(size()); |
| 597 | for (idx_t index = 0; index < limit; ++index) { |
| 598 | if (words[index] != 0) return false; |
| 599 | } |
| 600 | idx_t rest = bit_in_word(size()); |
| 601 | return (rest == 0) || (tail_of_map(words[limit], rest) == 0); |
| 602 | } |
| 603 | |
| 604 | void BitMap::clear_large() { |
| 605 | clear_large_range_of_words(0, size_in_words()); |
| 606 | } |
| 607 | |
| 608 | // Note that if the closure itself modifies the bitmap |
| 609 | // then modifications in and to the left of the _bit_ being |
| 610 | // currently sampled will not be seen. Note also that the |
| 611 | // interval [leftOffset, rightOffset) is right open. |
| 612 | bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) { |
| 613 | verify_range(leftOffset, rightOffset); |
| 614 | |
| 615 | idx_t startIndex = word_index(leftOffset); |
| 616 | idx_t endIndex = MIN2(word_index(rightOffset) + 1, size_in_words()); |
| 617 | for (idx_t index = startIndex, offset = leftOffset; |
| 618 | offset < rightOffset && index < endIndex; |
| 619 | offset = (++index) << LogBitsPerWord) { |
| 620 | idx_t rest = map(index) >> (offset & (BitsPerWord - 1)); |
| 621 | for (; offset < rightOffset && rest != 0; offset++) { |
| 622 | if (rest & 1) { |
| 623 | if (!blk->do_bit(offset)) return false; |
| 624 | // resample at each closure application |
| 625 | // (see, for instance, CMS bug 4525989) |
| 626 | rest = map(index) >> (offset & (BitsPerWord -1)); |
| 627 | } |
| 628 | rest = rest >> 1; |
| 629 | } |
| 630 | } |
| 631 | return true; |
| 632 | } |
| 633 | |
| 634 | const BitMap::idx_t* BitMap::_pop_count_table = NULL; |
| 635 | |
| 636 | void BitMap::init_pop_count_table() { |
| 637 | if (_pop_count_table == NULL) { |
| 638 | BitMap::idx_t *table = NEW_C_HEAP_ARRAY(idx_t, 256, mtInternal); |
| 639 | for (uint i = 0; i < 256; i++) { |
| 640 | table[i] = num_set_bits(i); |
| 641 | } |
| 642 | |
| 643 | if (!Atomic::replace_if_null(table, &_pop_count_table)) { |
| 644 | guarantee(_pop_count_table != NULL, "invariant" ); |
| 645 | FREE_C_HEAP_ARRAY(idx_t, table); |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | BitMap::idx_t BitMap::num_set_bits(bm_word_t w) { |
| 651 | idx_t bits = 0; |
| 652 | |
| 653 | while (w != 0) { |
| 654 | while ((w & 1) == 0) { |
| 655 | w >>= 1; |
| 656 | } |
| 657 | bits++; |
| 658 | w >>= 1; |
| 659 | } |
| 660 | return bits; |
| 661 | } |
| 662 | |
| 663 | BitMap::idx_t BitMap::num_set_bits_from_table(unsigned char c) { |
| 664 | assert(_pop_count_table != NULL, "precondition" ); |
| 665 | return _pop_count_table[c]; |
| 666 | } |
| 667 | |
| 668 | BitMap::idx_t BitMap::count_one_bits() const { |
| 669 | init_pop_count_table(); // If necessary. |
| 670 | idx_t sum = 0; |
| 671 | typedef unsigned char uchar; |
| 672 | for (idx_t i = 0; i < size_in_words(); i++) { |
| 673 | bm_word_t w = map()[i]; |
| 674 | for (size_t j = 0; j < sizeof(bm_word_t); j++) { |
| 675 | sum += num_set_bits_from_table(uchar(w & 255)); |
| 676 | w >>= 8; |
| 677 | } |
| 678 | } |
| 679 | return sum; |
| 680 | } |
| 681 | |
| 682 | void BitMap::print_on_error(outputStream* st, const char* prefix) const { |
| 683 | st->print_cr("%s[" PTR_FORMAT ", " PTR_FORMAT ")" , |
| 684 | prefix, p2i(map()), p2i((char*)map() + (size() >> LogBitsPerByte))); |
| 685 | } |
| 686 | |
| 687 | void BitMap::write_to(bm_word_t* buffer, size_t buffer_size_in_bytes) const { |
| 688 | assert(buffer_size_in_bytes == size_in_bytes(), "must be" ); |
| 689 | memcpy(buffer, _map, size_in_bytes()); |
| 690 | } |
| 691 | |
| 692 | #ifndef PRODUCT |
| 693 | |
| 694 | void BitMap::print_on(outputStream* st) const { |
| 695 | tty->print("Bitmap(" SIZE_FORMAT "):" , size()); |
| 696 | for (idx_t index = 0; index < size(); index++) { |
| 697 | tty->print("%c" , at(index) ? '1' : '0'); |
| 698 | } |
| 699 | tty->cr(); |
| 700 | } |
| 701 | |
| 702 | #endif |
| 703 | |