1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "memory/allocation.inline.hpp" |
27 | #include "memory/resourceArea.hpp" |
28 | #include "runtime/atomic.hpp" |
29 | #include "utilities/bitMap.inline.hpp" |
30 | #include "utilities/copy.hpp" |
31 | #include "utilities/debug.hpp" |
32 | |
33 | STATIC_ASSERT(sizeof(BitMap::bm_word_t) == BytesPerWord); // "Implementation assumption." |
34 | |
35 | typedef BitMap::bm_word_t bm_word_t; |
36 | typedef BitMap::idx_t idx_t; |
37 | |
38 | class ResourceBitMapAllocator : StackObj { |
39 | public: |
40 | bm_word_t* allocate(idx_t size_in_words) const { |
41 | return NEW_RESOURCE_ARRAY(bm_word_t, size_in_words); |
42 | } |
43 | void free(bm_word_t* map, idx_t size_in_words) const { |
44 | // Don't free resource allocated arrays. |
45 | } |
46 | }; |
47 | |
48 | class CHeapBitMapAllocator : StackObj { |
49 | MEMFLAGS _flags; |
50 | |
51 | public: |
52 | CHeapBitMapAllocator(MEMFLAGS flags) : _flags(flags) {} |
53 | bm_word_t* allocate(size_t size_in_words) const { |
54 | return ArrayAllocator<bm_word_t>::allocate(size_in_words, _flags); |
55 | } |
56 | void free(bm_word_t* map, idx_t size_in_words) const { |
57 | ArrayAllocator<bm_word_t>::free(map, size_in_words); |
58 | } |
59 | }; |
60 | |
61 | class ArenaBitMapAllocator : StackObj { |
62 | Arena* _arena; |
63 | |
64 | public: |
65 | ArenaBitMapAllocator(Arena* arena) : _arena(arena) {} |
66 | bm_word_t* allocate(idx_t size_in_words) const { |
67 | return (bm_word_t*)_arena->Amalloc(size_in_words * BytesPerWord); |
68 | } |
69 | void free(bm_word_t* map, idx_t size_in_words) const { |
70 | // ArenaBitMaps currently don't free memory. |
71 | } |
72 | }; |
73 | |
74 | template <class Allocator> |
75 | BitMap::bm_word_t* BitMap::reallocate(const Allocator& allocator, bm_word_t* old_map, idx_t old_size_in_bits, idx_t new_size_in_bits, bool clear) { |
76 | size_t old_size_in_words = calc_size_in_words(old_size_in_bits); |
77 | size_t new_size_in_words = calc_size_in_words(new_size_in_bits); |
78 | |
79 | bm_word_t* map = NULL; |
80 | |
81 | if (new_size_in_words > 0) { |
82 | map = allocator.allocate(new_size_in_words); |
83 | |
84 | if (old_map != NULL) { |
85 | Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) map, |
86 | MIN2(old_size_in_words, new_size_in_words)); |
87 | } |
88 | |
89 | if (clear && new_size_in_words > old_size_in_words) { |
90 | clear_range_of_words(map, old_size_in_words, new_size_in_words); |
91 | } |
92 | } |
93 | |
94 | if (old_map != NULL) { |
95 | allocator.free(old_map, old_size_in_words); |
96 | } |
97 | |
98 | return map; |
99 | } |
100 | |
101 | template <class Allocator> |
102 | bm_word_t* BitMap::allocate(const Allocator& allocator, idx_t size_in_bits, bool clear) { |
103 | // Reuse reallocate to ensure that the new memory is cleared. |
104 | return reallocate(allocator, NULL, 0, size_in_bits, clear); |
105 | } |
106 | |
107 | template <class Allocator> |
108 | void BitMap::free(const Allocator& allocator, bm_word_t* map, idx_t size_in_bits) { |
109 | bm_word_t* ret = reallocate(allocator, map, size_in_bits, 0); |
110 | assert(ret == NULL, "Reallocate shouldn't have allocated" ); |
111 | } |
112 | |
113 | template <class Allocator> |
114 | void BitMap::resize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) { |
115 | bm_word_t* new_map = reallocate(allocator, map(), size(), new_size_in_bits, clear); |
116 | |
117 | update(new_map, new_size_in_bits); |
118 | } |
119 | |
120 | template <class Allocator> |
121 | void BitMap::initialize(const Allocator& allocator, idx_t size_in_bits, bool clear) { |
122 | assert(map() == NULL, "precondition" ); |
123 | assert(size() == 0, "precondition" ); |
124 | |
125 | resize(allocator, size_in_bits, clear); |
126 | } |
127 | |
128 | template <class Allocator> |
129 | void BitMap::reinitialize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) { |
130 | // Remove previous bits - no need to clear |
131 | resize(allocator, 0, false /* clear */); |
132 | |
133 | initialize(allocator, new_size_in_bits, clear); |
134 | } |
135 | |
136 | ResourceBitMap::ResourceBitMap(idx_t size_in_bits) |
137 | : BitMap(allocate(ResourceBitMapAllocator(), size_in_bits), size_in_bits) { |
138 | } |
139 | |
140 | void ResourceBitMap::resize(idx_t new_size_in_bits) { |
141 | BitMap::resize(ResourceBitMapAllocator(), new_size_in_bits, true /* clear */); |
142 | } |
143 | |
144 | void ResourceBitMap::initialize(idx_t size_in_bits) { |
145 | BitMap::initialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */); |
146 | } |
147 | |
148 | void ResourceBitMap::reinitialize(idx_t size_in_bits) { |
149 | BitMap::reinitialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */); |
150 | } |
151 | |
152 | ArenaBitMap::ArenaBitMap(Arena* arena, idx_t size_in_bits) |
153 | : BitMap(allocate(ArenaBitMapAllocator(arena), size_in_bits), size_in_bits) { |
154 | } |
155 | |
156 | CHeapBitMap::CHeapBitMap(idx_t size_in_bits, MEMFLAGS flags, bool clear) |
157 | : BitMap(allocate(CHeapBitMapAllocator(flags), size_in_bits, clear), size_in_bits), _flags(flags) { |
158 | } |
159 | |
160 | CHeapBitMap::~CHeapBitMap() { |
161 | free(CHeapBitMapAllocator(_flags), map(), size()); |
162 | } |
163 | |
164 | void CHeapBitMap::resize(idx_t new_size_in_bits, bool clear) { |
165 | BitMap::resize(CHeapBitMapAllocator(_flags), new_size_in_bits, clear); |
166 | } |
167 | |
168 | void CHeapBitMap::initialize(idx_t size_in_bits, bool clear) { |
169 | BitMap::initialize(CHeapBitMapAllocator(_flags), size_in_bits, clear); |
170 | } |
171 | |
172 | void CHeapBitMap::reinitialize(idx_t size_in_bits, bool clear) { |
173 | BitMap::reinitialize(CHeapBitMapAllocator(_flags), size_in_bits, clear); |
174 | } |
175 | |
176 | #ifdef ASSERT |
177 | void BitMap::verify_index(idx_t index) const { |
178 | assert(index < _size, "BitMap index out of bounds" ); |
179 | } |
180 | |
181 | void BitMap::verify_range(idx_t beg_index, idx_t end_index) const { |
182 | assert(beg_index <= end_index, "BitMap range error" ); |
183 | // Note that [0,0) and [size,size) are both valid ranges. |
184 | if (end_index != _size) verify_index(end_index); |
185 | } |
186 | #endif // #ifdef ASSERT |
187 | |
188 | void BitMap::pretouch() { |
189 | os::pretouch_memory(word_addr(0), word_addr(size())); |
190 | } |
191 | |
192 | void BitMap::set_range_within_word(idx_t beg, idx_t end) { |
193 | // With a valid range (beg <= end), this test ensures that end != 0, as |
194 | // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
195 | if (beg != end) { |
196 | bm_word_t mask = inverted_bit_mask_for_range(beg, end); |
197 | *word_addr(beg) |= ~mask; |
198 | } |
199 | } |
200 | |
201 | void BitMap::clear_range_within_word(idx_t beg, idx_t end) { |
202 | // With a valid range (beg <= end), this test ensures that end != 0, as |
203 | // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
204 | if (beg != end) { |
205 | bm_word_t mask = inverted_bit_mask_for_range(beg, end); |
206 | *word_addr(beg) &= mask; |
207 | } |
208 | } |
209 | |
210 | void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) { |
211 | assert(value == 0 || value == 1, "0 for clear, 1 for set" ); |
212 | // With a valid range (beg <= end), this test ensures that end != 0, as |
213 | // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
214 | if (beg != end) { |
215 | bm_word_t* pw = word_addr(beg); |
216 | bm_word_t w = *pw; |
217 | bm_word_t mr = inverted_bit_mask_for_range(beg, end); |
218 | bm_word_t nw = value ? (w | ~mr) : (w & mr); |
219 | while (true) { |
220 | bm_word_t res = Atomic::cmpxchg(nw, pw, w); |
221 | if (res == w) break; |
222 | w = res; |
223 | nw = value ? (w | ~mr) : (w & mr); |
224 | } |
225 | } |
226 | } |
227 | |
228 | void BitMap::set_range(idx_t beg, idx_t end) { |
229 | verify_range(beg, end); |
230 | |
231 | idx_t beg_full_word = word_index_round_up(beg); |
232 | idx_t end_full_word = word_index(end); |
233 | |
234 | if (beg_full_word < end_full_word) { |
235 | // The range includes at least one full word. |
236 | set_range_within_word(beg, bit_index(beg_full_word)); |
237 | set_range_of_words(beg_full_word, end_full_word); |
238 | set_range_within_word(bit_index(end_full_word), end); |
239 | } else { |
240 | // The range spans at most 2 partial words. |
241 | idx_t boundary = MIN2(bit_index(beg_full_word), end); |
242 | set_range_within_word(beg, boundary); |
243 | set_range_within_word(boundary, end); |
244 | } |
245 | } |
246 | |
247 | void BitMap::clear_range(idx_t beg, idx_t end) { |
248 | verify_range(beg, end); |
249 | |
250 | idx_t beg_full_word = word_index_round_up(beg); |
251 | idx_t end_full_word = word_index(end); |
252 | |
253 | if (beg_full_word < end_full_word) { |
254 | // The range includes at least one full word. |
255 | clear_range_within_word(beg, bit_index(beg_full_word)); |
256 | clear_range_of_words(beg_full_word, end_full_word); |
257 | clear_range_within_word(bit_index(end_full_word), end); |
258 | } else { |
259 | // The range spans at most 2 partial words. |
260 | idx_t boundary = MIN2(bit_index(beg_full_word), end); |
261 | clear_range_within_word(beg, boundary); |
262 | clear_range_within_word(boundary, end); |
263 | } |
264 | } |
265 | |
266 | bool BitMap::is_small_range_of_words(idx_t beg_full_word, idx_t end_full_word) { |
267 | // There is little point to call large version on small ranges. |
268 | // Need to check carefully, keeping potential idx_t underflow in mind. |
269 | // The threshold should be at least one word. |
270 | STATIC_ASSERT(small_range_words >= 1); |
271 | return (beg_full_word + small_range_words >= end_full_word); |
272 | } |
273 | |
274 | void BitMap::set_large_range(idx_t beg, idx_t end) { |
275 | verify_range(beg, end); |
276 | |
277 | idx_t beg_full_word = word_index_round_up(beg); |
278 | idx_t end_full_word = word_index(end); |
279 | |
280 | if (is_small_range_of_words(beg_full_word, end_full_word)) { |
281 | set_range(beg, end); |
282 | return; |
283 | } |
284 | |
285 | // The range includes at least one full word. |
286 | set_range_within_word(beg, bit_index(beg_full_word)); |
287 | set_large_range_of_words(beg_full_word, end_full_word); |
288 | set_range_within_word(bit_index(end_full_word), end); |
289 | } |
290 | |
291 | void BitMap::clear_large_range(idx_t beg, idx_t end) { |
292 | verify_range(beg, end); |
293 | |
294 | idx_t beg_full_word = word_index_round_up(beg); |
295 | idx_t end_full_word = word_index(end); |
296 | |
297 | if (is_small_range_of_words(beg_full_word, end_full_word)) { |
298 | clear_range(beg, end); |
299 | return; |
300 | } |
301 | |
302 | // The range includes at least one full word. |
303 | clear_range_within_word(beg, bit_index(beg_full_word)); |
304 | clear_large_range_of_words(beg_full_word, end_full_word); |
305 | clear_range_within_word(bit_index(end_full_word), end); |
306 | } |
307 | |
308 | void BitMap::at_put(idx_t offset, bool value) { |
309 | if (value) { |
310 | set_bit(offset); |
311 | } else { |
312 | clear_bit(offset); |
313 | } |
314 | } |
315 | |
316 | // Return true to indicate that this thread changed |
317 | // the bit, false to indicate that someone else did. |
318 | // In either case, the requested bit is in the |
319 | // requested state some time during the period that |
320 | // this thread is executing this call. More importantly, |
321 | // if no other thread is executing an action to |
322 | // change the requested bit to a state other than |
323 | // the one that this thread is trying to set it to, |
324 | // then the the bit is in the expected state |
325 | // at exit from this method. However, rather than |
326 | // make such a strong assertion here, based on |
327 | // assuming such constrained use (which though true |
328 | // today, could change in the future to service some |
329 | // funky parallel algorithm), we encourage callers |
330 | // to do such verification, as and when appropriate. |
331 | bool BitMap::par_at_put(idx_t bit, bool value) { |
332 | return value ? par_set_bit(bit) : par_clear_bit(bit); |
333 | } |
334 | |
335 | void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) { |
336 | if (value) { |
337 | set_range(start_offset, end_offset); |
338 | } else { |
339 | clear_range(start_offset, end_offset); |
340 | } |
341 | } |
342 | |
343 | void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) { |
344 | verify_range(beg, end); |
345 | |
346 | idx_t beg_full_word = word_index_round_up(beg); |
347 | idx_t end_full_word = word_index(end); |
348 | |
349 | if (beg_full_word < end_full_word) { |
350 | // The range includes at least one full word. |
351 | par_put_range_within_word(beg, bit_index(beg_full_word), value); |
352 | if (value) { |
353 | set_range_of_words(beg_full_word, end_full_word); |
354 | } else { |
355 | clear_range_of_words(beg_full_word, end_full_word); |
356 | } |
357 | par_put_range_within_word(bit_index(end_full_word), end, value); |
358 | } else { |
359 | // The range spans at most 2 partial words. |
360 | idx_t boundary = MIN2(bit_index(beg_full_word), end); |
361 | par_put_range_within_word(beg, boundary, value); |
362 | par_put_range_within_word(boundary, end, value); |
363 | } |
364 | |
365 | } |
366 | |
367 | void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) { |
368 | if (value) { |
369 | set_large_range(beg, end); |
370 | } else { |
371 | clear_large_range(beg, end); |
372 | } |
373 | } |
374 | |
375 | void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) { |
376 | verify_range(beg, end); |
377 | |
378 | idx_t beg_full_word = word_index_round_up(beg); |
379 | idx_t end_full_word = word_index(end); |
380 | |
381 | if (is_small_range_of_words(beg_full_word, end_full_word)) { |
382 | par_at_put_range(beg, end, value); |
383 | return; |
384 | } |
385 | |
386 | // The range includes at least one full word. |
387 | par_put_range_within_word(beg, bit_index(beg_full_word), value); |
388 | if (value) { |
389 | set_large_range_of_words(beg_full_word, end_full_word); |
390 | } else { |
391 | clear_large_range_of_words(beg_full_word, end_full_word); |
392 | } |
393 | par_put_range_within_word(bit_index(end_full_word), end, value); |
394 | } |
395 | |
396 | inline bm_word_t tail_mask(idx_t tail_bits) { |
397 | assert(tail_bits != 0, "precondition" ); // Works, but shouldn't be called. |
398 | assert(tail_bits < (idx_t)BitsPerWord, "precondition" ); |
399 | return (bm_word_t(1) << tail_bits) - 1; |
400 | } |
401 | |
402 | // Get the low tail_bits of value, which is the last partial word of a map. |
403 | inline bm_word_t tail_of_map(bm_word_t value, idx_t tail_bits) { |
404 | return value & tail_mask(tail_bits); |
405 | } |
406 | |
407 | // Compute the new last word of a map with a non-aligned length. |
408 | // new_value has the new trailing bits of the map in the low tail_bits. |
409 | // old_value is the last word of the map, including bits beyond the end. |
410 | // Returns old_value with the low tail_bits replaced by the corresponding |
411 | // bits in new_value. |
412 | inline bm_word_t merge_tail_of_map(bm_word_t new_value, |
413 | bm_word_t old_value, |
414 | idx_t tail_bits) { |
415 | bm_word_t mask = tail_mask(tail_bits); |
416 | return (new_value & mask) | (old_value & ~mask); |
417 | } |
418 | |
419 | bool BitMap::contains(const BitMap& other) const { |
420 | assert(size() == other.size(), "must have same size" ); |
421 | const bm_word_t* dest_map = map(); |
422 | const bm_word_t* other_map = other.map(); |
423 | idx_t limit = word_index(size()); |
424 | for (idx_t index = 0; index < limit; ++index) { |
425 | // false if other bitmap has bits set which are clear in this bitmap. |
426 | if ((~dest_map[index] & other_map[index]) != 0) return false; |
427 | } |
428 | idx_t rest = bit_in_word(size()); |
429 | // true unless there is a partial-word tail in which the other |
430 | // bitmap has bits set which are clear in this bitmap. |
431 | return (rest == 0) || tail_of_map(~dest_map[limit] & other_map[limit], rest) == 0; |
432 | } |
433 | |
434 | bool BitMap::intersects(const BitMap& other) const { |
435 | assert(size() == other.size(), "must have same size" ); |
436 | const bm_word_t* dest_map = map(); |
437 | const bm_word_t* other_map = other.map(); |
438 | idx_t limit = word_index(size()); |
439 | for (idx_t index = 0; index < limit; ++index) { |
440 | if ((dest_map[index] & other_map[index]) != 0) return true; |
441 | } |
442 | idx_t rest = bit_in_word(size()); |
443 | // false unless there is a partial-word tail with non-empty intersection. |
444 | return (rest > 0) && tail_of_map(dest_map[limit] & other_map[limit], rest) != 0; |
445 | } |
446 | |
447 | void BitMap::set_union(const BitMap& other) { |
448 | assert(size() == other.size(), "must have same size" ); |
449 | bm_word_t* dest_map = map(); |
450 | const bm_word_t* other_map = other.map(); |
451 | idx_t limit = word_index(size()); |
452 | for (idx_t index = 0; index < limit; ++index) { |
453 | dest_map[index] |= other_map[index]; |
454 | } |
455 | idx_t rest = bit_in_word(size()); |
456 | if (rest > 0) { |
457 | bm_word_t orig = dest_map[limit]; |
458 | dest_map[limit] = merge_tail_of_map(orig | other_map[limit], orig, rest); |
459 | } |
460 | } |
461 | |
462 | void BitMap::set_difference(const BitMap& other) { |
463 | assert(size() == other.size(), "must have same size" ); |
464 | bm_word_t* dest_map = map(); |
465 | const bm_word_t* other_map = other.map(); |
466 | idx_t limit = word_index(size()); |
467 | for (idx_t index = 0; index < limit; ++index) { |
468 | dest_map[index] &= ~other_map[index]; |
469 | } |
470 | idx_t rest = bit_in_word(size()); |
471 | if (rest > 0) { |
472 | bm_word_t orig = dest_map[limit]; |
473 | dest_map[limit] = merge_tail_of_map(orig & ~other_map[limit], orig, rest); |
474 | } |
475 | } |
476 | |
477 | void BitMap::set_intersection(const BitMap& other) { |
478 | assert(size() == other.size(), "must have same size" ); |
479 | bm_word_t* dest_map = map(); |
480 | const bm_word_t* other_map = other.map(); |
481 | idx_t limit = word_index(size()); |
482 | for (idx_t index = 0; index < limit; ++index) { |
483 | dest_map[index] &= other_map[index]; |
484 | } |
485 | idx_t rest = bit_in_word(size()); |
486 | if (rest > 0) { |
487 | bm_word_t orig = dest_map[limit]; |
488 | dest_map[limit] = merge_tail_of_map(orig & other_map[limit], orig, rest); |
489 | } |
490 | } |
491 | |
492 | bool BitMap::set_union_with_result(const BitMap& other) { |
493 | assert(size() == other.size(), "must have same size" ); |
494 | bool changed = false; |
495 | bm_word_t* dest_map = map(); |
496 | const bm_word_t* other_map = other.map(); |
497 | idx_t limit = word_index(size()); |
498 | for (idx_t index = 0; index < limit; ++index) { |
499 | bm_word_t orig = dest_map[index]; |
500 | bm_word_t temp = orig | other_map[index]; |
501 | changed = changed || (temp != orig); |
502 | dest_map[index] = temp; |
503 | } |
504 | idx_t rest = bit_in_word(size()); |
505 | if (rest > 0) { |
506 | bm_word_t orig = dest_map[limit]; |
507 | bm_word_t temp = merge_tail_of_map(orig | other_map[limit], orig, rest); |
508 | changed = changed || (temp != orig); |
509 | dest_map[limit] = temp; |
510 | } |
511 | return changed; |
512 | } |
513 | |
514 | bool BitMap::set_difference_with_result(const BitMap& other) { |
515 | assert(size() == other.size(), "must have same size" ); |
516 | bool changed = false; |
517 | bm_word_t* dest_map = map(); |
518 | const bm_word_t* other_map = other.map(); |
519 | idx_t limit = word_index(size()); |
520 | for (idx_t index = 0; index < limit; ++index) { |
521 | bm_word_t orig = dest_map[index]; |
522 | bm_word_t temp = orig & ~other_map[index]; |
523 | changed = changed || (temp != orig); |
524 | dest_map[index] = temp; |
525 | } |
526 | idx_t rest = bit_in_word(size()); |
527 | if (rest > 0) { |
528 | bm_word_t orig = dest_map[limit]; |
529 | bm_word_t temp = merge_tail_of_map(orig & ~other_map[limit], orig, rest); |
530 | changed = changed || (temp != orig); |
531 | dest_map[limit] = temp; |
532 | } |
533 | return changed; |
534 | } |
535 | |
536 | bool BitMap::set_intersection_with_result(const BitMap& other) { |
537 | assert(size() == other.size(), "must have same size" ); |
538 | bool changed = false; |
539 | bm_word_t* dest_map = map(); |
540 | const bm_word_t* other_map = other.map(); |
541 | idx_t limit = word_index(size()); |
542 | for (idx_t index = 0; index < limit; ++index) { |
543 | bm_word_t orig = dest_map[index]; |
544 | bm_word_t temp = orig & other_map[index]; |
545 | changed = changed || (temp != orig); |
546 | dest_map[index] = temp; |
547 | } |
548 | idx_t rest = bit_in_word(size()); |
549 | if (rest > 0) { |
550 | bm_word_t orig = dest_map[limit]; |
551 | bm_word_t temp = merge_tail_of_map(orig & other_map[limit], orig, rest); |
552 | changed = changed || (temp != orig); |
553 | dest_map[limit] = temp; |
554 | } |
555 | return changed; |
556 | } |
557 | |
558 | void BitMap::set_from(const BitMap& other) { |
559 | assert(size() == other.size(), "must have same size" ); |
560 | bm_word_t* dest_map = map(); |
561 | const bm_word_t* other_map = other.map(); |
562 | idx_t copy_words = word_index(size()); |
563 | Copy::disjoint_words((HeapWord*)other_map, (HeapWord*)dest_map, copy_words); |
564 | idx_t rest = bit_in_word(size()); |
565 | if (rest > 0) { |
566 | dest_map[copy_words] = merge_tail_of_map(other_map[copy_words], |
567 | dest_map[copy_words], |
568 | rest); |
569 | } |
570 | } |
571 | |
572 | bool BitMap::is_same(const BitMap& other) const { |
573 | assert(size() == other.size(), "must have same size" ); |
574 | const bm_word_t* dest_map = map(); |
575 | const bm_word_t* other_map = other.map(); |
576 | idx_t limit = word_index(size()); |
577 | for (idx_t index = 0; index < limit; ++index) { |
578 | if (dest_map[index] != other_map[index]) return false; |
579 | } |
580 | idx_t rest = bit_in_word(size()); |
581 | return (rest == 0) || (tail_of_map(dest_map[limit] ^ other_map[limit], rest) == 0); |
582 | } |
583 | |
584 | bool BitMap::is_full() const { |
585 | const bm_word_t* words = map(); |
586 | idx_t limit = word_index(size()); |
587 | for (idx_t index = 0; index < limit; ++index) { |
588 | if (~words[index] != 0) return false; |
589 | } |
590 | idx_t rest = bit_in_word(size()); |
591 | return (rest == 0) || (tail_of_map(~words[limit], rest) == 0); |
592 | } |
593 | |
594 | bool BitMap::is_empty() const { |
595 | const bm_word_t* words = map(); |
596 | idx_t limit = word_index(size()); |
597 | for (idx_t index = 0; index < limit; ++index) { |
598 | if (words[index] != 0) return false; |
599 | } |
600 | idx_t rest = bit_in_word(size()); |
601 | return (rest == 0) || (tail_of_map(words[limit], rest) == 0); |
602 | } |
603 | |
604 | void BitMap::clear_large() { |
605 | clear_large_range_of_words(0, size_in_words()); |
606 | } |
607 | |
608 | // Note that if the closure itself modifies the bitmap |
609 | // then modifications in and to the left of the _bit_ being |
610 | // currently sampled will not be seen. Note also that the |
611 | // interval [leftOffset, rightOffset) is right open. |
612 | bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) { |
613 | verify_range(leftOffset, rightOffset); |
614 | |
615 | idx_t startIndex = word_index(leftOffset); |
616 | idx_t endIndex = MIN2(word_index(rightOffset) + 1, size_in_words()); |
617 | for (idx_t index = startIndex, offset = leftOffset; |
618 | offset < rightOffset && index < endIndex; |
619 | offset = (++index) << LogBitsPerWord) { |
620 | idx_t rest = map(index) >> (offset & (BitsPerWord - 1)); |
621 | for (; offset < rightOffset && rest != 0; offset++) { |
622 | if (rest & 1) { |
623 | if (!blk->do_bit(offset)) return false; |
624 | // resample at each closure application |
625 | // (see, for instance, CMS bug 4525989) |
626 | rest = map(index) >> (offset & (BitsPerWord -1)); |
627 | } |
628 | rest = rest >> 1; |
629 | } |
630 | } |
631 | return true; |
632 | } |
633 | |
634 | const BitMap::idx_t* BitMap::_pop_count_table = NULL; |
635 | |
636 | void BitMap::init_pop_count_table() { |
637 | if (_pop_count_table == NULL) { |
638 | BitMap::idx_t *table = NEW_C_HEAP_ARRAY(idx_t, 256, mtInternal); |
639 | for (uint i = 0; i < 256; i++) { |
640 | table[i] = num_set_bits(i); |
641 | } |
642 | |
643 | if (!Atomic::replace_if_null(table, &_pop_count_table)) { |
644 | guarantee(_pop_count_table != NULL, "invariant" ); |
645 | FREE_C_HEAP_ARRAY(idx_t, table); |
646 | } |
647 | } |
648 | } |
649 | |
650 | BitMap::idx_t BitMap::num_set_bits(bm_word_t w) { |
651 | idx_t bits = 0; |
652 | |
653 | while (w != 0) { |
654 | while ((w & 1) == 0) { |
655 | w >>= 1; |
656 | } |
657 | bits++; |
658 | w >>= 1; |
659 | } |
660 | return bits; |
661 | } |
662 | |
663 | BitMap::idx_t BitMap::num_set_bits_from_table(unsigned char c) { |
664 | assert(_pop_count_table != NULL, "precondition" ); |
665 | return _pop_count_table[c]; |
666 | } |
667 | |
668 | BitMap::idx_t BitMap::count_one_bits() const { |
669 | init_pop_count_table(); // If necessary. |
670 | idx_t sum = 0; |
671 | typedef unsigned char uchar; |
672 | for (idx_t i = 0; i < size_in_words(); i++) { |
673 | bm_word_t w = map()[i]; |
674 | for (size_t j = 0; j < sizeof(bm_word_t); j++) { |
675 | sum += num_set_bits_from_table(uchar(w & 255)); |
676 | w >>= 8; |
677 | } |
678 | } |
679 | return sum; |
680 | } |
681 | |
682 | void BitMap::print_on_error(outputStream* st, const char* prefix) const { |
683 | st->print_cr("%s[" PTR_FORMAT ", " PTR_FORMAT ")" , |
684 | prefix, p2i(map()), p2i((char*)map() + (size() >> LogBitsPerByte))); |
685 | } |
686 | |
687 | void BitMap::write_to(bm_word_t* buffer, size_t buffer_size_in_bytes) const { |
688 | assert(buffer_size_in_bytes == size_in_bytes(), "must be" ); |
689 | memcpy(buffer, _map, size_in_bytes()); |
690 | } |
691 | |
692 | #ifndef PRODUCT |
693 | |
694 | void BitMap::print_on(outputStream* st) const { |
695 | tty->print("Bitmap(" SIZE_FORMAT "):" , size()); |
696 | for (idx_t index = 0; index < size(); index++) { |
697 | tty->print("%c" , at(index) ? '1' : '0'); |
698 | } |
699 | tty->cr(); |
700 | } |
701 | |
702 | #endif |
703 | |