| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * heapam.c |
| 4 | * heap access method code |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/access/heap/heapam.c |
| 12 | * |
| 13 | * |
| 14 | * INTERFACE ROUTINES |
| 15 | * heap_beginscan - begin relation scan |
| 16 | * heap_rescan - restart a relation scan |
| 17 | * heap_endscan - end relation scan |
| 18 | * heap_getnext - retrieve next tuple in scan |
| 19 | * heap_fetch - retrieve tuple with given tid |
| 20 | * heap_insert - insert tuple into a relation |
| 21 | * heap_multi_insert - insert multiple tuples into a relation |
| 22 | * heap_delete - delete a tuple from a relation |
| 23 | * heap_update - replace a tuple in a relation with another tuple |
| 24 | * heap_sync - sync heap, for when no WAL has been written |
| 25 | * |
| 26 | * NOTES |
| 27 | * This file contains the heap_ routines which implement |
| 28 | * the POSTGRES heap access method used for all POSTGRES |
| 29 | * relations. |
| 30 | * |
| 31 | *------------------------------------------------------------------------- |
| 32 | */ |
| 33 | #include "postgres.h" |
| 34 | |
| 35 | #include "access/bufmask.h" |
| 36 | #include "access/genam.h" |
| 37 | #include "access/heapam.h" |
| 38 | #include "access/heapam_xlog.h" |
| 39 | #include "access/hio.h" |
| 40 | #include "access/multixact.h" |
| 41 | #include "access/parallel.h" |
| 42 | #include "access/relscan.h" |
| 43 | #include "access/sysattr.h" |
| 44 | #include "access/tableam.h" |
| 45 | #include "access/transam.h" |
| 46 | #include "access/tuptoaster.h" |
| 47 | #include "access/valid.h" |
| 48 | #include "access/visibilitymap.h" |
| 49 | #include "access/xact.h" |
| 50 | #include "access/xlog.h" |
| 51 | #include "access/xloginsert.h" |
| 52 | #include "access/xlogutils.h" |
| 53 | #include "catalog/catalog.h" |
| 54 | #include "miscadmin.h" |
| 55 | #include "pgstat.h" |
| 56 | #include "port/atomics.h" |
| 57 | #include "storage/bufmgr.h" |
| 58 | #include "storage/freespace.h" |
| 59 | #include "storage/lmgr.h" |
| 60 | #include "storage/predicate.h" |
| 61 | #include "storage/procarray.h" |
| 62 | #include "storage/smgr.h" |
| 63 | #include "storage/spin.h" |
| 64 | #include "storage/standby.h" |
| 65 | #include "utils/datum.h" |
| 66 | #include "utils/inval.h" |
| 67 | #include "utils/lsyscache.h" |
| 68 | #include "utils/relcache.h" |
| 69 | #include "utils/snapmgr.h" |
| 70 | #include "utils/spccache.h" |
| 71 | |
| 72 | |
| 73 | static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup, |
| 74 | TransactionId xid, CommandId cid, int options); |
| 75 | static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf, |
| 76 | Buffer newbuf, HeapTuple oldtup, |
| 77 | HeapTuple newtup, HeapTuple old_key_tup, |
| 78 | bool all_visible_cleared, bool new_all_visible_cleared); |
| 79 | static Bitmapset *HeapDetermineModifiedColumns(Relation relation, |
| 80 | Bitmapset *interesting_cols, |
| 81 | HeapTuple oldtup, HeapTuple newtup); |
| 82 | static bool heap_acquire_tuplock(Relation relation, ItemPointer tid, |
| 83 | LockTupleMode mode, LockWaitPolicy wait_policy, |
| 84 | bool *have_tuple_lock); |
| 85 | static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask, |
| 86 | uint16 old_infomask2, TransactionId add_to_xmax, |
| 87 | LockTupleMode mode, bool is_update, |
| 88 | TransactionId *result_xmax, uint16 *result_infomask, |
| 89 | uint16 *result_infomask2); |
| 90 | static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple, |
| 91 | ItemPointer ctid, TransactionId xid, |
| 92 | LockTupleMode mode); |
| 93 | static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask, |
| 94 | uint16 *new_infomask2); |
| 95 | static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax, |
| 96 | uint16 t_infomask); |
| 97 | static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask, |
| 98 | LockTupleMode lockmode, bool *current_is_member); |
| 99 | static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask, |
| 100 | Relation rel, ItemPointer ctid, XLTW_Oper oper, |
| 101 | int *remaining); |
| 102 | static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status, |
| 103 | uint16 infomask, Relation rel, int *remaining); |
| 104 | static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup); |
| 105 | static HeapTuple ExtractReplicaIdentity(Relation rel, HeapTuple tup, bool key_modified, |
| 106 | bool *copy); |
| 107 | |
| 108 | |
| 109 | /* |
| 110 | * Each tuple lock mode has a corresponding heavyweight lock, and one or two |
| 111 | * corresponding MultiXactStatuses (one to merely lock tuples, another one to |
| 112 | * update them). This table (and the macros below) helps us determine the |
| 113 | * heavyweight lock mode and MultiXactStatus values to use for any particular |
| 114 | * tuple lock strength. |
| 115 | * |
| 116 | * Don't look at lockstatus/updstatus directly! Use get_mxact_status_for_lock |
| 117 | * instead. |
| 118 | */ |
| 119 | static const struct |
| 120 | { |
| 121 | LOCKMODE hwlock; |
| 122 | int lockstatus; |
| 123 | int updstatus; |
| 124 | } |
| 125 | |
| 126 | [MaxLockTupleMode + 1] = |
| 127 | { |
| 128 | { /* LockTupleKeyShare */ |
| 129 | AccessShareLock, |
| 130 | MultiXactStatusForKeyShare, |
| 131 | -1 /* KeyShare does not allow updating tuples */ |
| 132 | }, |
| 133 | { /* LockTupleShare */ |
| 134 | RowShareLock, |
| 135 | MultiXactStatusForShare, |
| 136 | -1 /* Share does not allow updating tuples */ |
| 137 | }, |
| 138 | { /* LockTupleNoKeyExclusive */ |
| 139 | ExclusiveLock, |
| 140 | MultiXactStatusForNoKeyUpdate, |
| 141 | MultiXactStatusNoKeyUpdate |
| 142 | }, |
| 143 | { /* LockTupleExclusive */ |
| 144 | AccessExclusiveLock, |
| 145 | MultiXactStatusForUpdate, |
| 146 | MultiXactStatusUpdate |
| 147 | } |
| 148 | }; |
| 149 | |
| 150 | /* Get the LOCKMODE for a given MultiXactStatus */ |
| 151 | #define LOCKMODE_from_mxstatus(status) \ |
| 152 | (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock) |
| 153 | |
| 154 | /* |
| 155 | * Acquire heavyweight locks on tuples, using a LockTupleMode strength value. |
| 156 | * This is more readable than having every caller translate it to lock.h's |
| 157 | * LOCKMODE. |
| 158 | */ |
| 159 | #define LockTupleTuplock(rel, tup, mode) \ |
| 160 | LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
| 161 | #define UnlockTupleTuplock(rel, tup, mode) \ |
| 162 | UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
| 163 | #define ConditionalLockTupleTuplock(rel, tup, mode) \ |
| 164 | ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
| 165 | |
| 166 | #ifdef USE_PREFETCH |
| 167 | /* |
| 168 | * heap_compute_xid_horizon_for_tuples and xid_horizon_prefetch_buffer use |
| 169 | * this structure to coordinate prefetching activity. |
| 170 | */ |
| 171 | typedef struct |
| 172 | { |
| 173 | BlockNumber cur_hblkno; |
| 174 | int next_item; |
| 175 | int nitems; |
| 176 | ItemPointerData *tids; |
| 177 | } XidHorizonPrefetchState; |
| 178 | #endif |
| 179 | |
| 180 | /* |
| 181 | * This table maps tuple lock strength values for each particular |
| 182 | * MultiXactStatus value. |
| 183 | */ |
| 184 | static const int MultiXactStatusLock[MaxMultiXactStatus + 1] = |
| 185 | { |
| 186 | LockTupleKeyShare, /* ForKeyShare */ |
| 187 | LockTupleShare, /* ForShare */ |
| 188 | LockTupleNoKeyExclusive, /* ForNoKeyUpdate */ |
| 189 | LockTupleExclusive, /* ForUpdate */ |
| 190 | LockTupleNoKeyExclusive, /* NoKeyUpdate */ |
| 191 | LockTupleExclusive /* Update */ |
| 192 | }; |
| 193 | |
| 194 | /* Get the LockTupleMode for a given MultiXactStatus */ |
| 195 | #define TUPLOCK_from_mxstatus(status) \ |
| 196 | (MultiXactStatusLock[(status)]) |
| 197 | |
| 198 | /* ---------------------------------------------------------------- |
| 199 | * heap support routines |
| 200 | * ---------------------------------------------------------------- |
| 201 | */ |
| 202 | |
| 203 | /* ---------------- |
| 204 | * initscan - scan code common to heap_beginscan and heap_rescan |
| 205 | * ---------------- |
| 206 | */ |
| 207 | static void |
| 208 | initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock) |
| 209 | { |
| 210 | ParallelBlockTableScanDesc bpscan = NULL; |
| 211 | bool allow_strat; |
| 212 | bool allow_sync; |
| 213 | |
| 214 | /* |
| 215 | * Determine the number of blocks we have to scan. |
| 216 | * |
| 217 | * It is sufficient to do this once at scan start, since any tuples added |
| 218 | * while the scan is in progress will be invisible to my snapshot anyway. |
| 219 | * (That is not true when using a non-MVCC snapshot. However, we couldn't |
| 220 | * guarantee to return tuples added after scan start anyway, since they |
| 221 | * might go into pages we already scanned. To guarantee consistent |
| 222 | * results for a non-MVCC snapshot, the caller must hold some higher-level |
| 223 | * lock that ensures the interesting tuple(s) won't change.) |
| 224 | */ |
| 225 | if (scan->rs_base.rs_parallel != NULL) |
| 226 | { |
| 227 | bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
| 228 | scan->rs_nblocks = bpscan->phs_nblocks; |
| 229 | } |
| 230 | else |
| 231 | scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd); |
| 232 | |
| 233 | /* |
| 234 | * If the table is large relative to NBuffers, use a bulk-read access |
| 235 | * strategy and enable synchronized scanning (see syncscan.c). Although |
| 236 | * the thresholds for these features could be different, we make them the |
| 237 | * same so that there are only two behaviors to tune rather than four. |
| 238 | * (However, some callers need to be able to disable one or both of these |
| 239 | * behaviors, independently of the size of the table; also there is a GUC |
| 240 | * variable that can disable synchronized scanning.) |
| 241 | * |
| 242 | * Note that table_block_parallelscan_initialize has a very similar test; |
| 243 | * if you change this, consider changing that one, too. |
| 244 | */ |
| 245 | if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) && |
| 246 | scan->rs_nblocks > NBuffers / 4) |
| 247 | { |
| 248 | allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0; |
| 249 | allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0; |
| 250 | } |
| 251 | else |
| 252 | allow_strat = allow_sync = false; |
| 253 | |
| 254 | if (allow_strat) |
| 255 | { |
| 256 | /* During a rescan, keep the previous strategy object. */ |
| 257 | if (scan->rs_strategy == NULL) |
| 258 | scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD); |
| 259 | } |
| 260 | else |
| 261 | { |
| 262 | if (scan->rs_strategy != NULL) |
| 263 | FreeAccessStrategy(scan->rs_strategy); |
| 264 | scan->rs_strategy = NULL; |
| 265 | } |
| 266 | |
| 267 | if (scan->rs_base.rs_parallel != NULL) |
| 268 | { |
| 269 | /* For parallel scan, believe whatever ParallelTableScanDesc says. */ |
| 270 | if (scan->rs_base.rs_parallel->phs_syncscan) |
| 271 | scan->rs_base.rs_flags |= SO_ALLOW_SYNC; |
| 272 | else |
| 273 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
| 274 | } |
| 275 | else if (keep_startblock) |
| 276 | { |
| 277 | /* |
| 278 | * When rescanning, we want to keep the previous startblock setting, |
| 279 | * so that rewinding a cursor doesn't generate surprising results. |
| 280 | * Reset the active syncscan setting, though. |
| 281 | */ |
| 282 | if (allow_sync && synchronize_seqscans) |
| 283 | scan->rs_base.rs_flags |= SO_ALLOW_SYNC; |
| 284 | else |
| 285 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
| 286 | } |
| 287 | else if (allow_sync && synchronize_seqscans) |
| 288 | { |
| 289 | scan->rs_base.rs_flags |= SO_ALLOW_SYNC; |
| 290 | scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks); |
| 291 | } |
| 292 | else |
| 293 | { |
| 294 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
| 295 | scan->rs_startblock = 0; |
| 296 | } |
| 297 | |
| 298 | scan->rs_numblocks = InvalidBlockNumber; |
| 299 | scan->rs_inited = false; |
| 300 | scan->rs_ctup.t_data = NULL; |
| 301 | ItemPointerSetInvalid(&scan->rs_ctup.t_self); |
| 302 | scan->rs_cbuf = InvalidBuffer; |
| 303 | scan->rs_cblock = InvalidBlockNumber; |
| 304 | |
| 305 | /* page-at-a-time fields are always invalid when not rs_inited */ |
| 306 | |
| 307 | /* |
| 308 | * copy the scan key, if appropriate |
| 309 | */ |
| 310 | if (key != NULL) |
| 311 | memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData)); |
| 312 | |
| 313 | /* |
| 314 | * Currently, we only have a stats counter for sequential heap scans (but |
| 315 | * e.g for bitmap scans the underlying bitmap index scans will be counted, |
| 316 | * and for sample scans we update stats for tuple fetches). |
| 317 | */ |
| 318 | if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN) |
| 319 | pgstat_count_heap_scan(scan->rs_base.rs_rd); |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * heap_setscanlimits - restrict range of a heapscan |
| 324 | * |
| 325 | * startBlk is the page to start at |
| 326 | * numBlks is number of pages to scan (InvalidBlockNumber means "all") |
| 327 | */ |
| 328 | void |
| 329 | heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks) |
| 330 | { |
| 331 | HeapScanDesc scan = (HeapScanDesc) sscan; |
| 332 | |
| 333 | Assert(!scan->rs_inited); /* else too late to change */ |
| 334 | /* else rs_startblock is significant */ |
| 335 | Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC)); |
| 336 | |
| 337 | /* Check startBlk is valid (but allow case of zero blocks...) */ |
| 338 | Assert(startBlk == 0 || startBlk < scan->rs_nblocks); |
| 339 | |
| 340 | scan->rs_startblock = startBlk; |
| 341 | scan->rs_numblocks = numBlks; |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * heapgetpage - subroutine for heapgettup() |
| 346 | * |
| 347 | * This routine reads and pins the specified page of the relation. |
| 348 | * In page-at-a-time mode it performs additional work, namely determining |
| 349 | * which tuples on the page are visible. |
| 350 | */ |
| 351 | void |
| 352 | heapgetpage(TableScanDesc sscan, BlockNumber page) |
| 353 | { |
| 354 | HeapScanDesc scan = (HeapScanDesc) sscan; |
| 355 | Buffer buffer; |
| 356 | Snapshot snapshot; |
| 357 | Page dp; |
| 358 | int lines; |
| 359 | int ntup; |
| 360 | OffsetNumber lineoff; |
| 361 | ItemId lpp; |
| 362 | bool all_visible; |
| 363 | |
| 364 | Assert(page < scan->rs_nblocks); |
| 365 | |
| 366 | /* release previous scan buffer, if any */ |
| 367 | if (BufferIsValid(scan->rs_cbuf)) |
| 368 | { |
| 369 | ReleaseBuffer(scan->rs_cbuf); |
| 370 | scan->rs_cbuf = InvalidBuffer; |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * Be sure to check for interrupts at least once per page. Checks at |
| 375 | * higher code levels won't be able to stop a seqscan that encounters many |
| 376 | * pages' worth of consecutive dead tuples. |
| 377 | */ |
| 378 | CHECK_FOR_INTERRUPTS(); |
| 379 | |
| 380 | /* read page using selected strategy */ |
| 381 | scan->rs_cbuf = ReadBufferExtended(scan->rs_base.rs_rd, MAIN_FORKNUM, page, |
| 382 | RBM_NORMAL, scan->rs_strategy); |
| 383 | scan->rs_cblock = page; |
| 384 | |
| 385 | if (!(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)) |
| 386 | return; |
| 387 | |
| 388 | buffer = scan->rs_cbuf; |
| 389 | snapshot = scan->rs_base.rs_snapshot; |
| 390 | |
| 391 | /* |
| 392 | * Prune and repair fragmentation for the whole page, if possible. |
| 393 | */ |
| 394 | heap_page_prune_opt(scan->rs_base.rs_rd, buffer); |
| 395 | |
| 396 | /* |
| 397 | * We must hold share lock on the buffer content while examining tuple |
| 398 | * visibility. Afterwards, however, the tuples we have found to be |
| 399 | * visible are guaranteed good as long as we hold the buffer pin. |
| 400 | */ |
| 401 | LockBuffer(buffer, BUFFER_LOCK_SHARE); |
| 402 | |
| 403 | dp = BufferGetPage(buffer); |
| 404 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
| 405 | lines = PageGetMaxOffsetNumber(dp); |
| 406 | ntup = 0; |
| 407 | |
| 408 | /* |
| 409 | * If the all-visible flag indicates that all tuples on the page are |
| 410 | * visible to everyone, we can skip the per-tuple visibility tests. |
| 411 | * |
| 412 | * Note: In hot standby, a tuple that's already visible to all |
| 413 | * transactions in the master might still be invisible to a read-only |
| 414 | * transaction in the standby. We partly handle this problem by tracking |
| 415 | * the minimum xmin of visible tuples as the cut-off XID while marking a |
| 416 | * page all-visible on master and WAL log that along with the visibility |
| 417 | * map SET operation. In hot standby, we wait for (or abort) all |
| 418 | * transactions that can potentially may not see one or more tuples on the |
| 419 | * page. That's how index-only scans work fine in hot standby. A crucial |
| 420 | * difference between index-only scans and heap scans is that the |
| 421 | * index-only scan completely relies on the visibility map where as heap |
| 422 | * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if |
| 423 | * the page-level flag can be trusted in the same way, because it might |
| 424 | * get propagated somehow without being explicitly WAL-logged, e.g. via a |
| 425 | * full page write. Until we can prove that beyond doubt, let's check each |
| 426 | * tuple for visibility the hard way. |
| 427 | */ |
| 428 | all_visible = PageIsAllVisible(dp) && !snapshot->takenDuringRecovery; |
| 429 | |
| 430 | for (lineoff = FirstOffsetNumber, lpp = PageGetItemId(dp, lineoff); |
| 431 | lineoff <= lines; |
| 432 | lineoff++, lpp++) |
| 433 | { |
| 434 | if (ItemIdIsNormal(lpp)) |
| 435 | { |
| 436 | HeapTupleData loctup; |
| 437 | bool valid; |
| 438 | |
| 439 | loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd); |
| 440 | loctup.t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
| 441 | loctup.t_len = ItemIdGetLength(lpp); |
| 442 | ItemPointerSet(&(loctup.t_self), page, lineoff); |
| 443 | |
| 444 | if (all_visible) |
| 445 | valid = true; |
| 446 | else |
| 447 | valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer); |
| 448 | |
| 449 | CheckForSerializableConflictOut(valid, scan->rs_base.rs_rd, |
| 450 | &loctup, buffer, snapshot); |
| 451 | |
| 452 | if (valid) |
| 453 | scan->rs_vistuples[ntup++] = lineoff; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 458 | |
| 459 | Assert(ntup <= MaxHeapTuplesPerPage); |
| 460 | scan->rs_ntuples = ntup; |
| 461 | } |
| 462 | |
| 463 | /* ---------------- |
| 464 | * heapgettup - fetch next heap tuple |
| 465 | * |
| 466 | * Initialize the scan if not already done; then advance to the next |
| 467 | * tuple as indicated by "dir"; return the next tuple in scan->rs_ctup, |
| 468 | * or set scan->rs_ctup.t_data = NULL if no more tuples. |
| 469 | * |
| 470 | * dir == NoMovementScanDirection means "re-fetch the tuple indicated |
| 471 | * by scan->rs_ctup". |
| 472 | * |
| 473 | * Note: the reason nkeys/key are passed separately, even though they are |
| 474 | * kept in the scan descriptor, is that the caller may not want us to check |
| 475 | * the scankeys. |
| 476 | * |
| 477 | * Note: when we fall off the end of the scan in either direction, we |
| 478 | * reset rs_inited. This means that a further request with the same |
| 479 | * scan direction will restart the scan, which is a bit odd, but a |
| 480 | * request with the opposite scan direction will start a fresh scan |
| 481 | * in the proper direction. The latter is required behavior for cursors, |
| 482 | * while the former case is generally undefined behavior in Postgres |
| 483 | * so we don't care too much. |
| 484 | * ---------------- |
| 485 | */ |
| 486 | static void |
| 487 | heapgettup(HeapScanDesc scan, |
| 488 | ScanDirection dir, |
| 489 | int nkeys, |
| 490 | ScanKey key) |
| 491 | { |
| 492 | HeapTuple tuple = &(scan->rs_ctup); |
| 493 | Snapshot snapshot = scan->rs_base.rs_snapshot; |
| 494 | bool backward = ScanDirectionIsBackward(dir); |
| 495 | BlockNumber page; |
| 496 | bool finished; |
| 497 | Page dp; |
| 498 | int lines; |
| 499 | OffsetNumber lineoff; |
| 500 | int linesleft; |
| 501 | ItemId lpp; |
| 502 | |
| 503 | /* |
| 504 | * calculate next starting lineoff, given scan direction |
| 505 | */ |
| 506 | if (ScanDirectionIsForward(dir)) |
| 507 | { |
| 508 | if (!scan->rs_inited) |
| 509 | { |
| 510 | /* |
| 511 | * return null immediately if relation is empty |
| 512 | */ |
| 513 | if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0) |
| 514 | { |
| 515 | Assert(!BufferIsValid(scan->rs_cbuf)); |
| 516 | tuple->t_data = NULL; |
| 517 | return; |
| 518 | } |
| 519 | if (scan->rs_base.rs_parallel != NULL) |
| 520 | { |
| 521 | ParallelBlockTableScanDesc pbscan = |
| 522 | (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
| 523 | |
| 524 | table_block_parallelscan_startblock_init(scan->rs_base.rs_rd, |
| 525 | pbscan); |
| 526 | |
| 527 | page = table_block_parallelscan_nextpage(scan->rs_base.rs_rd, |
| 528 | pbscan); |
| 529 | |
| 530 | /* Other processes might have already finished the scan. */ |
| 531 | if (page == InvalidBlockNumber) |
| 532 | { |
| 533 | Assert(!BufferIsValid(scan->rs_cbuf)); |
| 534 | tuple->t_data = NULL; |
| 535 | return; |
| 536 | } |
| 537 | } |
| 538 | else |
| 539 | page = scan->rs_startblock; /* first page */ |
| 540 | heapgetpage((TableScanDesc) scan, page); |
| 541 | lineoff = FirstOffsetNumber; /* first offnum */ |
| 542 | scan->rs_inited = true; |
| 543 | } |
| 544 | else |
| 545 | { |
| 546 | /* continue from previously returned page/tuple */ |
| 547 | page = scan->rs_cblock; /* current page */ |
| 548 | lineoff = /* next offnum */ |
| 549 | OffsetNumberNext(ItemPointerGetOffsetNumber(&(tuple->t_self))); |
| 550 | } |
| 551 | |
| 552 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); |
| 553 | |
| 554 | dp = BufferGetPage(scan->rs_cbuf); |
| 555 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
| 556 | lines = PageGetMaxOffsetNumber(dp); |
| 557 | /* page and lineoff now reference the physically next tid */ |
| 558 | |
| 559 | linesleft = lines - lineoff + 1; |
| 560 | } |
| 561 | else if (backward) |
| 562 | { |
| 563 | /* backward parallel scan not supported */ |
| 564 | Assert(scan->rs_base.rs_parallel == NULL); |
| 565 | |
| 566 | if (!scan->rs_inited) |
| 567 | { |
| 568 | /* |
| 569 | * return null immediately if relation is empty |
| 570 | */ |
| 571 | if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0) |
| 572 | { |
| 573 | Assert(!BufferIsValid(scan->rs_cbuf)); |
| 574 | tuple->t_data = NULL; |
| 575 | return; |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * Disable reporting to syncscan logic in a backwards scan; it's |
| 580 | * not very likely anyone else is doing the same thing at the same |
| 581 | * time, and much more likely that we'll just bollix things for |
| 582 | * forward scanners. |
| 583 | */ |
| 584 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
| 585 | /* start from last page of the scan */ |
| 586 | if (scan->rs_startblock > 0) |
| 587 | page = scan->rs_startblock - 1; |
| 588 | else |
| 589 | page = scan->rs_nblocks - 1; |
| 590 | heapgetpage((TableScanDesc) scan, page); |
| 591 | } |
| 592 | else |
| 593 | { |
| 594 | /* continue from previously returned page/tuple */ |
| 595 | page = scan->rs_cblock; /* current page */ |
| 596 | } |
| 597 | |
| 598 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); |
| 599 | |
| 600 | dp = BufferGetPage(scan->rs_cbuf); |
| 601 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
| 602 | lines = PageGetMaxOffsetNumber(dp); |
| 603 | |
| 604 | if (!scan->rs_inited) |
| 605 | { |
| 606 | lineoff = lines; /* final offnum */ |
| 607 | scan->rs_inited = true; |
| 608 | } |
| 609 | else |
| 610 | { |
| 611 | lineoff = /* previous offnum */ |
| 612 | OffsetNumberPrev(ItemPointerGetOffsetNumber(&(tuple->t_self))); |
| 613 | } |
| 614 | /* page and lineoff now reference the physically previous tid */ |
| 615 | |
| 616 | linesleft = lineoff; |
| 617 | } |
| 618 | else |
| 619 | { |
| 620 | /* |
| 621 | * ``no movement'' scan direction: refetch prior tuple |
| 622 | */ |
| 623 | if (!scan->rs_inited) |
| 624 | { |
| 625 | Assert(!BufferIsValid(scan->rs_cbuf)); |
| 626 | tuple->t_data = NULL; |
| 627 | return; |
| 628 | } |
| 629 | |
| 630 | page = ItemPointerGetBlockNumber(&(tuple->t_self)); |
| 631 | if (page != scan->rs_cblock) |
| 632 | heapgetpage((TableScanDesc) scan, page); |
| 633 | |
| 634 | /* Since the tuple was previously fetched, needn't lock page here */ |
| 635 | dp = BufferGetPage(scan->rs_cbuf); |
| 636 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
| 637 | lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self)); |
| 638 | lpp = PageGetItemId(dp, lineoff); |
| 639 | Assert(ItemIdIsNormal(lpp)); |
| 640 | |
| 641 | tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
| 642 | tuple->t_len = ItemIdGetLength(lpp); |
| 643 | |
| 644 | return; |
| 645 | } |
| 646 | |
| 647 | /* |
| 648 | * advance the scan until we find a qualifying tuple or run out of stuff |
| 649 | * to scan |
| 650 | */ |
| 651 | lpp = PageGetItemId(dp, lineoff); |
| 652 | for (;;) |
| 653 | { |
| 654 | while (linesleft > 0) |
| 655 | { |
| 656 | if (ItemIdIsNormal(lpp)) |
| 657 | { |
| 658 | bool valid; |
| 659 | |
| 660 | tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
| 661 | tuple->t_len = ItemIdGetLength(lpp); |
| 662 | ItemPointerSet(&(tuple->t_self), page, lineoff); |
| 663 | |
| 664 | /* |
| 665 | * if current tuple qualifies, return it. |
| 666 | */ |
| 667 | valid = HeapTupleSatisfiesVisibility(tuple, |
| 668 | snapshot, |
| 669 | scan->rs_cbuf); |
| 670 | |
| 671 | CheckForSerializableConflictOut(valid, scan->rs_base.rs_rd, |
| 672 | tuple, scan->rs_cbuf, |
| 673 | snapshot); |
| 674 | |
| 675 | if (valid && key != NULL) |
| 676 | HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd), |
| 677 | nkeys, key, valid); |
| 678 | |
| 679 | if (valid) |
| 680 | { |
| 681 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 682 | return; |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | * otherwise move to the next item on the page |
| 688 | */ |
| 689 | --linesleft; |
| 690 | if (backward) |
| 691 | { |
| 692 | --lpp; /* move back in this page's ItemId array */ |
| 693 | --lineoff; |
| 694 | } |
| 695 | else |
| 696 | { |
| 697 | ++lpp; /* move forward in this page's ItemId array */ |
| 698 | ++lineoff; |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * if we get here, it means we've exhausted the items on this page and |
| 704 | * it's time to move to the next. |
| 705 | */ |
| 706 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 707 | |
| 708 | /* |
| 709 | * advance to next/prior page and detect end of scan |
| 710 | */ |
| 711 | if (backward) |
| 712 | { |
| 713 | finished = (page == scan->rs_startblock) || |
| 714 | (scan->rs_numblocks != InvalidBlockNumber ? --scan->rs_numblocks == 0 : false); |
| 715 | if (page == 0) |
| 716 | page = scan->rs_nblocks; |
| 717 | page--; |
| 718 | } |
| 719 | else if (scan->rs_base.rs_parallel != NULL) |
| 720 | { |
| 721 | ParallelBlockTableScanDesc pbscan = |
| 722 | (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
| 723 | |
| 724 | page = table_block_parallelscan_nextpage(scan->rs_base.rs_rd, |
| 725 | pbscan); |
| 726 | finished = (page == InvalidBlockNumber); |
| 727 | } |
| 728 | else |
| 729 | { |
| 730 | page++; |
| 731 | if (page >= scan->rs_nblocks) |
| 732 | page = 0; |
| 733 | finished = (page == scan->rs_startblock) || |
| 734 | (scan->rs_numblocks != InvalidBlockNumber ? --scan->rs_numblocks == 0 : false); |
| 735 | |
| 736 | /* |
| 737 | * Report our new scan position for synchronization purposes. We |
| 738 | * don't do that when moving backwards, however. That would just |
| 739 | * mess up any other forward-moving scanners. |
| 740 | * |
| 741 | * Note: we do this before checking for end of scan so that the |
| 742 | * final state of the position hint is back at the start of the |
| 743 | * rel. That's not strictly necessary, but otherwise when you run |
| 744 | * the same query multiple times the starting position would shift |
| 745 | * a little bit backwards on every invocation, which is confusing. |
| 746 | * We don't guarantee any specific ordering in general, though. |
| 747 | */ |
| 748 | if (scan->rs_base.rs_flags & SO_ALLOW_SYNC) |
| 749 | ss_report_location(scan->rs_base.rs_rd, page); |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * return NULL if we've exhausted all the pages |
| 754 | */ |
| 755 | if (finished) |
| 756 | { |
| 757 | if (BufferIsValid(scan->rs_cbuf)) |
| 758 | ReleaseBuffer(scan->rs_cbuf); |
| 759 | scan->rs_cbuf = InvalidBuffer; |
| 760 | scan->rs_cblock = InvalidBlockNumber; |
| 761 | tuple->t_data = NULL; |
| 762 | scan->rs_inited = false; |
| 763 | return; |
| 764 | } |
| 765 | |
| 766 | heapgetpage((TableScanDesc) scan, page); |
| 767 | |
| 768 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); |
| 769 | |
| 770 | dp = BufferGetPage(scan->rs_cbuf); |
| 771 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
| 772 | lines = PageGetMaxOffsetNumber((Page) dp); |
| 773 | linesleft = lines; |
| 774 | if (backward) |
| 775 | { |
| 776 | lineoff = lines; |
| 777 | lpp = PageGetItemId(dp, lines); |
| 778 | } |
| 779 | else |
| 780 | { |
| 781 | lineoff = FirstOffsetNumber; |
| 782 | lpp = PageGetItemId(dp, FirstOffsetNumber); |
| 783 | } |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | /* ---------------- |
| 788 | * heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode |
| 789 | * |
| 790 | * Same API as heapgettup, but used in page-at-a-time mode |
| 791 | * |
| 792 | * The internal logic is much the same as heapgettup's too, but there are some |
| 793 | * differences: we do not take the buffer content lock (that only needs to |
| 794 | * happen inside heapgetpage), and we iterate through just the tuples listed |
| 795 | * in rs_vistuples[] rather than all tuples on the page. Notice that |
| 796 | * lineindex is 0-based, where the corresponding loop variable lineoff in |
| 797 | * heapgettup is 1-based. |
| 798 | * ---------------- |
| 799 | */ |
| 800 | static void |
| 801 | heapgettup_pagemode(HeapScanDesc scan, |
| 802 | ScanDirection dir, |
| 803 | int nkeys, |
| 804 | ScanKey key) |
| 805 | { |
| 806 | HeapTuple tuple = &(scan->rs_ctup); |
| 807 | bool backward = ScanDirectionIsBackward(dir); |
| 808 | BlockNumber page; |
| 809 | bool finished; |
| 810 | Page dp; |
| 811 | int lines; |
| 812 | int lineindex; |
| 813 | OffsetNumber lineoff; |
| 814 | int linesleft; |
| 815 | ItemId lpp; |
| 816 | |
| 817 | /* |
| 818 | * calculate next starting lineindex, given scan direction |
| 819 | */ |
| 820 | if (ScanDirectionIsForward(dir)) |
| 821 | { |
| 822 | if (!scan->rs_inited) |
| 823 | { |
| 824 | /* |
| 825 | * return null immediately if relation is empty |
| 826 | */ |
| 827 | if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0) |
| 828 | { |
| 829 | Assert(!BufferIsValid(scan->rs_cbuf)); |
| 830 | tuple->t_data = NULL; |
| 831 | return; |
| 832 | } |
| 833 | if (scan->rs_base.rs_parallel != NULL) |
| 834 | { |
| 835 | ParallelBlockTableScanDesc pbscan = |
| 836 | (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
| 837 | |
| 838 | table_block_parallelscan_startblock_init(scan->rs_base.rs_rd, |
| 839 | pbscan); |
| 840 | |
| 841 | page = table_block_parallelscan_nextpage(scan->rs_base.rs_rd, |
| 842 | pbscan); |
| 843 | |
| 844 | /* Other processes might have already finished the scan. */ |
| 845 | if (page == InvalidBlockNumber) |
| 846 | { |
| 847 | Assert(!BufferIsValid(scan->rs_cbuf)); |
| 848 | tuple->t_data = NULL; |
| 849 | return; |
| 850 | } |
| 851 | } |
| 852 | else |
| 853 | page = scan->rs_startblock; /* first page */ |
| 854 | heapgetpage((TableScanDesc) scan, page); |
| 855 | lineindex = 0; |
| 856 | scan->rs_inited = true; |
| 857 | } |
| 858 | else |
| 859 | { |
| 860 | /* continue from previously returned page/tuple */ |
| 861 | page = scan->rs_cblock; /* current page */ |
| 862 | lineindex = scan->rs_cindex + 1; |
| 863 | } |
| 864 | |
| 865 | dp = BufferGetPage(scan->rs_cbuf); |
| 866 | TestForOldSnapshot(scan->rs_base.rs_snapshot, scan->rs_base.rs_rd, dp); |
| 867 | lines = scan->rs_ntuples; |
| 868 | /* page and lineindex now reference the next visible tid */ |
| 869 | |
| 870 | linesleft = lines - lineindex; |
| 871 | } |
| 872 | else if (backward) |
| 873 | { |
| 874 | /* backward parallel scan not supported */ |
| 875 | Assert(scan->rs_base.rs_parallel == NULL); |
| 876 | |
| 877 | if (!scan->rs_inited) |
| 878 | { |
| 879 | /* |
| 880 | * return null immediately if relation is empty |
| 881 | */ |
| 882 | if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0) |
| 883 | { |
| 884 | Assert(!BufferIsValid(scan->rs_cbuf)); |
| 885 | tuple->t_data = NULL; |
| 886 | return; |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * Disable reporting to syncscan logic in a backwards scan; it's |
| 891 | * not very likely anyone else is doing the same thing at the same |
| 892 | * time, and much more likely that we'll just bollix things for |
| 893 | * forward scanners. |
| 894 | */ |
| 895 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
| 896 | /* start from last page of the scan */ |
| 897 | if (scan->rs_startblock > 0) |
| 898 | page = scan->rs_startblock - 1; |
| 899 | else |
| 900 | page = scan->rs_nblocks - 1; |
| 901 | heapgetpage((TableScanDesc) scan, page); |
| 902 | } |
| 903 | else |
| 904 | { |
| 905 | /* continue from previously returned page/tuple */ |
| 906 | page = scan->rs_cblock; /* current page */ |
| 907 | } |
| 908 | |
| 909 | dp = BufferGetPage(scan->rs_cbuf); |
| 910 | TestForOldSnapshot(scan->rs_base.rs_snapshot, scan->rs_base.rs_rd, dp); |
| 911 | lines = scan->rs_ntuples; |
| 912 | |
| 913 | if (!scan->rs_inited) |
| 914 | { |
| 915 | lineindex = lines - 1; |
| 916 | scan->rs_inited = true; |
| 917 | } |
| 918 | else |
| 919 | { |
| 920 | lineindex = scan->rs_cindex - 1; |
| 921 | } |
| 922 | /* page and lineindex now reference the previous visible tid */ |
| 923 | |
| 924 | linesleft = lineindex + 1; |
| 925 | } |
| 926 | else |
| 927 | { |
| 928 | /* |
| 929 | * ``no movement'' scan direction: refetch prior tuple |
| 930 | */ |
| 931 | if (!scan->rs_inited) |
| 932 | { |
| 933 | Assert(!BufferIsValid(scan->rs_cbuf)); |
| 934 | tuple->t_data = NULL; |
| 935 | return; |
| 936 | } |
| 937 | |
| 938 | page = ItemPointerGetBlockNumber(&(tuple->t_self)); |
| 939 | if (page != scan->rs_cblock) |
| 940 | heapgetpage((TableScanDesc) scan, page); |
| 941 | |
| 942 | /* Since the tuple was previously fetched, needn't lock page here */ |
| 943 | dp = BufferGetPage(scan->rs_cbuf); |
| 944 | TestForOldSnapshot(scan->rs_base.rs_snapshot, scan->rs_base.rs_rd, dp); |
| 945 | lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self)); |
| 946 | lpp = PageGetItemId(dp, lineoff); |
| 947 | Assert(ItemIdIsNormal(lpp)); |
| 948 | |
| 949 | tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
| 950 | tuple->t_len = ItemIdGetLength(lpp); |
| 951 | |
| 952 | /* check that rs_cindex is in sync */ |
| 953 | Assert(scan->rs_cindex < scan->rs_ntuples); |
| 954 | Assert(lineoff == scan->rs_vistuples[scan->rs_cindex]); |
| 955 | |
| 956 | return; |
| 957 | } |
| 958 | |
| 959 | /* |
| 960 | * advance the scan until we find a qualifying tuple or run out of stuff |
| 961 | * to scan |
| 962 | */ |
| 963 | for (;;) |
| 964 | { |
| 965 | while (linesleft > 0) |
| 966 | { |
| 967 | lineoff = scan->rs_vistuples[lineindex]; |
| 968 | lpp = PageGetItemId(dp, lineoff); |
| 969 | Assert(ItemIdIsNormal(lpp)); |
| 970 | |
| 971 | tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
| 972 | tuple->t_len = ItemIdGetLength(lpp); |
| 973 | ItemPointerSet(&(tuple->t_self), page, lineoff); |
| 974 | |
| 975 | /* |
| 976 | * if current tuple qualifies, return it. |
| 977 | */ |
| 978 | if (key != NULL) |
| 979 | { |
| 980 | bool valid; |
| 981 | |
| 982 | HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd), |
| 983 | nkeys, key, valid); |
| 984 | if (valid) |
| 985 | { |
| 986 | scan->rs_cindex = lineindex; |
| 987 | return; |
| 988 | } |
| 989 | } |
| 990 | else |
| 991 | { |
| 992 | scan->rs_cindex = lineindex; |
| 993 | return; |
| 994 | } |
| 995 | |
| 996 | /* |
| 997 | * otherwise move to the next item on the page |
| 998 | */ |
| 999 | --linesleft; |
| 1000 | if (backward) |
| 1001 | --lineindex; |
| 1002 | else |
| 1003 | ++lineindex; |
| 1004 | } |
| 1005 | |
| 1006 | /* |
| 1007 | * if we get here, it means we've exhausted the items on this page and |
| 1008 | * it's time to move to the next. |
| 1009 | */ |
| 1010 | if (backward) |
| 1011 | { |
| 1012 | finished = (page == scan->rs_startblock) || |
| 1013 | (scan->rs_numblocks != InvalidBlockNumber ? --scan->rs_numblocks == 0 : false); |
| 1014 | if (page == 0) |
| 1015 | page = scan->rs_nblocks; |
| 1016 | page--; |
| 1017 | } |
| 1018 | else if (scan->rs_base.rs_parallel != NULL) |
| 1019 | { |
| 1020 | ParallelBlockTableScanDesc pbscan = |
| 1021 | (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
| 1022 | |
| 1023 | page = table_block_parallelscan_nextpage(scan->rs_base.rs_rd, |
| 1024 | pbscan); |
| 1025 | finished = (page == InvalidBlockNumber); |
| 1026 | } |
| 1027 | else |
| 1028 | { |
| 1029 | page++; |
| 1030 | if (page >= scan->rs_nblocks) |
| 1031 | page = 0; |
| 1032 | finished = (page == scan->rs_startblock) || |
| 1033 | (scan->rs_numblocks != InvalidBlockNumber ? --scan->rs_numblocks == 0 : false); |
| 1034 | |
| 1035 | /* |
| 1036 | * Report our new scan position for synchronization purposes. We |
| 1037 | * don't do that when moving backwards, however. That would just |
| 1038 | * mess up any other forward-moving scanners. |
| 1039 | * |
| 1040 | * Note: we do this before checking for end of scan so that the |
| 1041 | * final state of the position hint is back at the start of the |
| 1042 | * rel. That's not strictly necessary, but otherwise when you run |
| 1043 | * the same query multiple times the starting position would shift |
| 1044 | * a little bit backwards on every invocation, which is confusing. |
| 1045 | * We don't guarantee any specific ordering in general, though. |
| 1046 | */ |
| 1047 | if (scan->rs_base.rs_flags & SO_ALLOW_SYNC) |
| 1048 | ss_report_location(scan->rs_base.rs_rd, page); |
| 1049 | } |
| 1050 | |
| 1051 | /* |
| 1052 | * return NULL if we've exhausted all the pages |
| 1053 | */ |
| 1054 | if (finished) |
| 1055 | { |
| 1056 | if (BufferIsValid(scan->rs_cbuf)) |
| 1057 | ReleaseBuffer(scan->rs_cbuf); |
| 1058 | scan->rs_cbuf = InvalidBuffer; |
| 1059 | scan->rs_cblock = InvalidBlockNumber; |
| 1060 | tuple->t_data = NULL; |
| 1061 | scan->rs_inited = false; |
| 1062 | return; |
| 1063 | } |
| 1064 | |
| 1065 | heapgetpage((TableScanDesc) scan, page); |
| 1066 | |
| 1067 | dp = BufferGetPage(scan->rs_cbuf); |
| 1068 | TestForOldSnapshot(scan->rs_base.rs_snapshot, scan->rs_base.rs_rd, dp); |
| 1069 | lines = scan->rs_ntuples; |
| 1070 | linesleft = lines; |
| 1071 | if (backward) |
| 1072 | lineindex = lines - 1; |
| 1073 | else |
| 1074 | lineindex = 0; |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | |
| 1079 | #if defined(DISABLE_COMPLEX_MACRO) |
| 1080 | /* |
| 1081 | * This is formatted so oddly so that the correspondence to the macro |
| 1082 | * definition in access/htup_details.h is maintained. |
| 1083 | */ |
| 1084 | Datum |
| 1085 | fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, |
| 1086 | bool *isnull) |
| 1087 | { |
| 1088 | return ( |
| 1089 | (attnum) > 0 ? |
| 1090 | ( |
| 1091 | (*(isnull) = false), |
| 1092 | HeapTupleNoNulls(tup) ? |
| 1093 | ( |
| 1094 | TupleDescAttr((tupleDesc), (attnum) - 1)->attcacheoff >= 0 ? |
| 1095 | ( |
| 1096 | fetchatt(TupleDescAttr((tupleDesc), (attnum) - 1), |
| 1097 | (char *) (tup)->t_data + (tup)->t_data->t_hoff + |
| 1098 | TupleDescAttr((tupleDesc), (attnum) - 1)->attcacheoff) |
| 1099 | ) |
| 1100 | : |
| 1101 | nocachegetattr((tup), (attnum), (tupleDesc)) |
| 1102 | ) |
| 1103 | : |
| 1104 | ( |
| 1105 | att_isnull((attnum) - 1, (tup)->t_data->t_bits) ? |
| 1106 | ( |
| 1107 | (*(isnull) = true), |
| 1108 | (Datum) NULL |
| 1109 | ) |
| 1110 | : |
| 1111 | ( |
| 1112 | nocachegetattr((tup), (attnum), (tupleDesc)) |
| 1113 | ) |
| 1114 | ) |
| 1115 | ) |
| 1116 | : |
| 1117 | ( |
| 1118 | (Datum) NULL |
| 1119 | ) |
| 1120 | ); |
| 1121 | } |
| 1122 | #endif /* defined(DISABLE_COMPLEX_MACRO) */ |
| 1123 | |
| 1124 | |
| 1125 | /* ---------------------------------------------------------------- |
| 1126 | * heap access method interface |
| 1127 | * ---------------------------------------------------------------- |
| 1128 | */ |
| 1129 | |
| 1130 | |
| 1131 | TableScanDesc |
| 1132 | heap_beginscan(Relation relation, Snapshot snapshot, |
| 1133 | int nkeys, ScanKey key, |
| 1134 | ParallelTableScanDesc parallel_scan, |
| 1135 | uint32 flags) |
| 1136 | { |
| 1137 | HeapScanDesc scan; |
| 1138 | |
| 1139 | /* |
| 1140 | * increment relation ref count while scanning relation |
| 1141 | * |
| 1142 | * This is just to make really sure the relcache entry won't go away while |
| 1143 | * the scan has a pointer to it. Caller should be holding the rel open |
| 1144 | * anyway, so this is redundant in all normal scenarios... |
| 1145 | */ |
| 1146 | RelationIncrementReferenceCount(relation); |
| 1147 | |
| 1148 | /* |
| 1149 | * allocate and initialize scan descriptor |
| 1150 | */ |
| 1151 | scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData)); |
| 1152 | |
| 1153 | scan->rs_base.rs_rd = relation; |
| 1154 | scan->rs_base.rs_snapshot = snapshot; |
| 1155 | scan->rs_base.rs_nkeys = nkeys; |
| 1156 | scan->rs_base.rs_flags = flags; |
| 1157 | scan->rs_base.rs_parallel = parallel_scan; |
| 1158 | scan->rs_strategy = NULL; /* set in initscan */ |
| 1159 | |
| 1160 | /* |
| 1161 | * Disable page-at-a-time mode if it's not a MVCC-safe snapshot. |
| 1162 | */ |
| 1163 | if (!(snapshot && IsMVCCSnapshot(snapshot))) |
| 1164 | scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE; |
| 1165 | |
| 1166 | /* |
| 1167 | * For seqscan and sample scans in a serializable transaction, acquire a |
| 1168 | * predicate lock on the entire relation. This is required not only to |
| 1169 | * lock all the matching tuples, but also to conflict with new insertions |
| 1170 | * into the table. In an indexscan, we take page locks on the index pages |
| 1171 | * covering the range specified in the scan qual, but in a heap scan there |
| 1172 | * is nothing more fine-grained to lock. A bitmap scan is a different |
| 1173 | * story, there we have already scanned the index and locked the index |
| 1174 | * pages covering the predicate. But in that case we still have to lock |
| 1175 | * any matching heap tuples. For sample scan we could optimize the locking |
| 1176 | * to be at least page-level granularity, but we'd need to add per-tuple |
| 1177 | * locking for that. |
| 1178 | */ |
| 1179 | if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN)) |
| 1180 | { |
| 1181 | /* |
| 1182 | * Ensure a missing snapshot is noticed reliably, even if the |
| 1183 | * isolation mode means predicate locking isn't performed (and |
| 1184 | * therefore the snapshot isn't used here). |
| 1185 | */ |
| 1186 | Assert(snapshot); |
| 1187 | PredicateLockRelation(relation, snapshot); |
| 1188 | } |
| 1189 | |
| 1190 | /* we only need to set this up once */ |
| 1191 | scan->rs_ctup.t_tableOid = RelationGetRelid(relation); |
| 1192 | |
| 1193 | /* |
| 1194 | * we do this here instead of in initscan() because heap_rescan also calls |
| 1195 | * initscan() and we don't want to allocate memory again |
| 1196 | */ |
| 1197 | if (nkeys > 0) |
| 1198 | scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys); |
| 1199 | else |
| 1200 | scan->rs_base.rs_key = NULL; |
| 1201 | |
| 1202 | initscan(scan, key, false); |
| 1203 | |
| 1204 | return (TableScanDesc) scan; |
| 1205 | } |
| 1206 | |
| 1207 | void |
| 1208 | heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params, |
| 1209 | bool allow_strat, bool allow_sync, bool allow_pagemode) |
| 1210 | { |
| 1211 | HeapScanDesc scan = (HeapScanDesc) sscan; |
| 1212 | |
| 1213 | if (set_params) |
| 1214 | { |
| 1215 | if (allow_strat) |
| 1216 | scan->rs_base.rs_flags |= SO_ALLOW_STRAT; |
| 1217 | else |
| 1218 | scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT; |
| 1219 | |
| 1220 | if (allow_sync) |
| 1221 | scan->rs_base.rs_flags |= SO_ALLOW_SYNC; |
| 1222 | else |
| 1223 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
| 1224 | |
| 1225 | if (allow_pagemode && scan->rs_base.rs_snapshot && |
| 1226 | IsMVCCSnapshot(scan->rs_base.rs_snapshot)) |
| 1227 | scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE; |
| 1228 | else |
| 1229 | scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE; |
| 1230 | } |
| 1231 | |
| 1232 | /* |
| 1233 | * unpin scan buffers |
| 1234 | */ |
| 1235 | if (BufferIsValid(scan->rs_cbuf)) |
| 1236 | ReleaseBuffer(scan->rs_cbuf); |
| 1237 | |
| 1238 | /* |
| 1239 | * reinitialize scan descriptor |
| 1240 | */ |
| 1241 | initscan(scan, key, true); |
| 1242 | } |
| 1243 | |
| 1244 | void |
| 1245 | heap_endscan(TableScanDesc sscan) |
| 1246 | { |
| 1247 | HeapScanDesc scan = (HeapScanDesc) sscan; |
| 1248 | |
| 1249 | /* Note: no locking manipulations needed */ |
| 1250 | |
| 1251 | /* |
| 1252 | * unpin scan buffers |
| 1253 | */ |
| 1254 | if (BufferIsValid(scan->rs_cbuf)) |
| 1255 | ReleaseBuffer(scan->rs_cbuf); |
| 1256 | |
| 1257 | /* |
| 1258 | * decrement relation reference count and free scan descriptor storage |
| 1259 | */ |
| 1260 | RelationDecrementReferenceCount(scan->rs_base.rs_rd); |
| 1261 | |
| 1262 | if (scan->rs_base.rs_key) |
| 1263 | pfree(scan->rs_base.rs_key); |
| 1264 | |
| 1265 | if (scan->rs_strategy != NULL) |
| 1266 | FreeAccessStrategy(scan->rs_strategy); |
| 1267 | |
| 1268 | if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT) |
| 1269 | UnregisterSnapshot(scan->rs_base.rs_snapshot); |
| 1270 | |
| 1271 | pfree(scan); |
| 1272 | } |
| 1273 | |
| 1274 | #ifdef HEAPDEBUGALL |
| 1275 | #define HEAPDEBUG_1 \ |
| 1276 | elog(DEBUG2, "heap_getnext([%s,nkeys=%d],dir=%d) called", \ |
| 1277 | RelationGetRelationName(scan->rs_rd), scan->rs_nkeys, (int) direction) |
| 1278 | #define HEAPDEBUG_2 \ |
| 1279 | elog(DEBUG2, "heap_getnext returning EOS") |
| 1280 | #define HEAPDEBUG_3 \ |
| 1281 | elog(DEBUG2, "heap_getnext returning tuple") |
| 1282 | #else |
| 1283 | #define HEAPDEBUG_1 |
| 1284 | #define HEAPDEBUG_2 |
| 1285 | #define HEAPDEBUG_3 |
| 1286 | #endif /* !defined(HEAPDEBUGALL) */ |
| 1287 | |
| 1288 | |
| 1289 | HeapTuple |
| 1290 | heap_getnext(TableScanDesc sscan, ScanDirection direction) |
| 1291 | { |
| 1292 | HeapScanDesc scan = (HeapScanDesc) sscan; |
| 1293 | |
| 1294 | /* |
| 1295 | * This is still widely used directly, without going through table AM, so |
| 1296 | * add a safety check. It's possible we should, at a later point, |
| 1297 | * downgrade this to an assert. The reason for checking the AM routine, |
| 1298 | * rather than the AM oid, is that this allows to write regression tests |
| 1299 | * that create another AM reusing the heap handler. |
| 1300 | */ |
| 1301 | if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine())) |
| 1302 | ereport(ERROR, |
| 1303 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1304 | errmsg_internal("only heap AM is supported" ))); |
| 1305 | |
| 1306 | /* Note: no locking manipulations needed */ |
| 1307 | |
| 1308 | HEAPDEBUG_1; /* heap_getnext( info ) */ |
| 1309 | |
| 1310 | if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE) |
| 1311 | heapgettup_pagemode(scan, direction, |
| 1312 | scan->rs_base.rs_nkeys, scan->rs_base.rs_key); |
| 1313 | else |
| 1314 | heapgettup(scan, direction, |
| 1315 | scan->rs_base.rs_nkeys, scan->rs_base.rs_key); |
| 1316 | |
| 1317 | if (scan->rs_ctup.t_data == NULL) |
| 1318 | { |
| 1319 | HEAPDEBUG_2; /* heap_getnext returning EOS */ |
| 1320 | return NULL; |
| 1321 | } |
| 1322 | |
| 1323 | /* |
| 1324 | * if we get here it means we have a new current scan tuple, so point to |
| 1325 | * the proper return buffer and return the tuple. |
| 1326 | */ |
| 1327 | HEAPDEBUG_3; /* heap_getnext returning tuple */ |
| 1328 | |
| 1329 | pgstat_count_heap_getnext(scan->rs_base.rs_rd); |
| 1330 | |
| 1331 | return &scan->rs_ctup; |
| 1332 | } |
| 1333 | |
| 1334 | #ifdef HEAPAMSLOTDEBUGALL |
| 1335 | #define HEAPAMSLOTDEBUG_1 \ |
| 1336 | elog(DEBUG2, "heapam_getnextslot([%s,nkeys=%d],dir=%d) called", \ |
| 1337 | RelationGetRelationName(scan->rs_base.rs_rd), scan->rs_base.rs_nkeys, (int) direction) |
| 1338 | #define HEAPAMSLOTDEBUG_2 \ |
| 1339 | elog(DEBUG2, "heapam_getnextslot returning EOS") |
| 1340 | #define HEAPAMSLOTDEBUG_3 \ |
| 1341 | elog(DEBUG2, "heapam_getnextslot returning tuple") |
| 1342 | #else |
| 1343 | #define HEAPAMSLOTDEBUG_1 |
| 1344 | #define HEAPAMSLOTDEBUG_2 |
| 1345 | #define HEAPAMSLOTDEBUG_3 |
| 1346 | #endif |
| 1347 | |
| 1348 | bool |
| 1349 | heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot) |
| 1350 | { |
| 1351 | HeapScanDesc scan = (HeapScanDesc) sscan; |
| 1352 | |
| 1353 | /* Note: no locking manipulations needed */ |
| 1354 | |
| 1355 | HEAPAMSLOTDEBUG_1; /* heap_getnextslot( info ) */ |
| 1356 | |
| 1357 | if (sscan->rs_flags & SO_ALLOW_PAGEMODE) |
| 1358 | heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key); |
| 1359 | else |
| 1360 | heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key); |
| 1361 | |
| 1362 | if (scan->rs_ctup.t_data == NULL) |
| 1363 | { |
| 1364 | HEAPAMSLOTDEBUG_2; /* heap_getnextslot returning EOS */ |
| 1365 | ExecClearTuple(slot); |
| 1366 | return false; |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * if we get here it means we have a new current scan tuple, so point to |
| 1371 | * the proper return buffer and return the tuple. |
| 1372 | */ |
| 1373 | HEAPAMSLOTDEBUG_3; /* heap_getnextslot returning tuple */ |
| 1374 | |
| 1375 | pgstat_count_heap_getnext(scan->rs_base.rs_rd); |
| 1376 | |
| 1377 | ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, |
| 1378 | scan->rs_cbuf); |
| 1379 | return true; |
| 1380 | } |
| 1381 | |
| 1382 | /* |
| 1383 | * heap_fetch - retrieve tuple with given tid |
| 1384 | * |
| 1385 | * On entry, tuple->t_self is the TID to fetch. We pin the buffer holding |
| 1386 | * the tuple, fill in the remaining fields of *tuple, and check the tuple |
| 1387 | * against the specified snapshot. |
| 1388 | * |
| 1389 | * If successful (tuple found and passes snapshot time qual), then *userbuf |
| 1390 | * is set to the buffer holding the tuple and true is returned. The caller |
| 1391 | * must unpin the buffer when done with the tuple. |
| 1392 | * |
| 1393 | * If the tuple is not found (ie, item number references a deleted slot), |
| 1394 | * then tuple->t_data is set to NULL and false is returned. |
| 1395 | * |
| 1396 | * If the tuple is found but fails the time qual check, then false is returned |
| 1397 | * but tuple->t_data is left pointing to the tuple. |
| 1398 | * |
| 1399 | * heap_fetch does not follow HOT chains: only the exact TID requested will |
| 1400 | * be fetched. |
| 1401 | * |
| 1402 | * It is somewhat inconsistent that we ereport() on invalid block number but |
| 1403 | * return false on invalid item number. There are a couple of reasons though. |
| 1404 | * One is that the caller can relatively easily check the block number for |
| 1405 | * validity, but cannot check the item number without reading the page |
| 1406 | * himself. Another is that when we are following a t_ctid link, we can be |
| 1407 | * reasonably confident that the page number is valid (since VACUUM shouldn't |
| 1408 | * truncate off the destination page without having killed the referencing |
| 1409 | * tuple first), but the item number might well not be good. |
| 1410 | */ |
| 1411 | bool |
| 1412 | heap_fetch(Relation relation, |
| 1413 | Snapshot snapshot, |
| 1414 | HeapTuple tuple, |
| 1415 | Buffer *userbuf) |
| 1416 | { |
| 1417 | ItemPointer tid = &(tuple->t_self); |
| 1418 | ItemId lp; |
| 1419 | Buffer buffer; |
| 1420 | Page page; |
| 1421 | OffsetNumber offnum; |
| 1422 | bool valid; |
| 1423 | |
| 1424 | /* |
| 1425 | * Fetch and pin the appropriate page of the relation. |
| 1426 | */ |
| 1427 | buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); |
| 1428 | |
| 1429 | /* |
| 1430 | * Need share lock on buffer to examine tuple commit status. |
| 1431 | */ |
| 1432 | LockBuffer(buffer, BUFFER_LOCK_SHARE); |
| 1433 | page = BufferGetPage(buffer); |
| 1434 | TestForOldSnapshot(snapshot, relation, page); |
| 1435 | |
| 1436 | /* |
| 1437 | * We'd better check for out-of-range offnum in case of VACUUM since the |
| 1438 | * TID was obtained. |
| 1439 | */ |
| 1440 | offnum = ItemPointerGetOffsetNumber(tid); |
| 1441 | if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) |
| 1442 | { |
| 1443 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 1444 | ReleaseBuffer(buffer); |
| 1445 | *userbuf = InvalidBuffer; |
| 1446 | tuple->t_data = NULL; |
| 1447 | return false; |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * get the item line pointer corresponding to the requested tid |
| 1452 | */ |
| 1453 | lp = PageGetItemId(page, offnum); |
| 1454 | |
| 1455 | /* |
| 1456 | * Must check for deleted tuple. |
| 1457 | */ |
| 1458 | if (!ItemIdIsNormal(lp)) |
| 1459 | { |
| 1460 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 1461 | ReleaseBuffer(buffer); |
| 1462 | *userbuf = InvalidBuffer; |
| 1463 | tuple->t_data = NULL; |
| 1464 | return false; |
| 1465 | } |
| 1466 | |
| 1467 | /* |
| 1468 | * fill in *tuple fields |
| 1469 | */ |
| 1470 | tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp); |
| 1471 | tuple->t_len = ItemIdGetLength(lp); |
| 1472 | tuple->t_tableOid = RelationGetRelid(relation); |
| 1473 | |
| 1474 | /* |
| 1475 | * check tuple visibility, then release lock |
| 1476 | */ |
| 1477 | valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer); |
| 1478 | |
| 1479 | if (valid) |
| 1480 | PredicateLockTuple(relation, tuple, snapshot); |
| 1481 | |
| 1482 | CheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot); |
| 1483 | |
| 1484 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 1485 | |
| 1486 | if (valid) |
| 1487 | { |
| 1488 | /* |
| 1489 | * All checks passed, so return the tuple as valid. Caller is now |
| 1490 | * responsible for releasing the buffer. |
| 1491 | */ |
| 1492 | *userbuf = buffer; |
| 1493 | |
| 1494 | return true; |
| 1495 | } |
| 1496 | |
| 1497 | /* Tuple failed time qual */ |
| 1498 | ReleaseBuffer(buffer); |
| 1499 | *userbuf = InvalidBuffer; |
| 1500 | |
| 1501 | return false; |
| 1502 | } |
| 1503 | |
| 1504 | /* |
| 1505 | * heap_hot_search_buffer - search HOT chain for tuple satisfying snapshot |
| 1506 | * |
| 1507 | * On entry, *tid is the TID of a tuple (either a simple tuple, or the root |
| 1508 | * of a HOT chain), and buffer is the buffer holding this tuple. We search |
| 1509 | * for the first chain member satisfying the given snapshot. If one is |
| 1510 | * found, we update *tid to reference that tuple's offset number, and |
| 1511 | * return true. If no match, return false without modifying *tid. |
| 1512 | * |
| 1513 | * heapTuple is a caller-supplied buffer. When a match is found, we return |
| 1514 | * the tuple here, in addition to updating *tid. If no match is found, the |
| 1515 | * contents of this buffer on return are undefined. |
| 1516 | * |
| 1517 | * If all_dead is not NULL, we check non-visible tuples to see if they are |
| 1518 | * globally dead; *all_dead is set true if all members of the HOT chain |
| 1519 | * are vacuumable, false if not. |
| 1520 | * |
| 1521 | * Unlike heap_fetch, the caller must already have pin and (at least) share |
| 1522 | * lock on the buffer; it is still pinned/locked at exit. Also unlike |
| 1523 | * heap_fetch, we do not report any pgstats count; caller may do so if wanted. |
| 1524 | */ |
| 1525 | bool |
| 1526 | heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer, |
| 1527 | Snapshot snapshot, HeapTuple heapTuple, |
| 1528 | bool *all_dead, bool first_call) |
| 1529 | { |
| 1530 | Page dp = (Page) BufferGetPage(buffer); |
| 1531 | TransactionId prev_xmax = InvalidTransactionId; |
| 1532 | BlockNumber blkno; |
| 1533 | OffsetNumber offnum; |
| 1534 | bool at_chain_start; |
| 1535 | bool valid; |
| 1536 | bool skip; |
| 1537 | |
| 1538 | /* If this is not the first call, previous call returned a (live!) tuple */ |
| 1539 | if (all_dead) |
| 1540 | *all_dead = first_call; |
| 1541 | |
| 1542 | blkno = ItemPointerGetBlockNumber(tid); |
| 1543 | offnum = ItemPointerGetOffsetNumber(tid); |
| 1544 | at_chain_start = first_call; |
| 1545 | skip = !first_call; |
| 1546 | |
| 1547 | Assert(TransactionIdIsValid(RecentGlobalXmin)); |
| 1548 | Assert(BufferGetBlockNumber(buffer) == blkno); |
| 1549 | |
| 1550 | /* Scan through possible multiple members of HOT-chain */ |
| 1551 | for (;;) |
| 1552 | { |
| 1553 | ItemId lp; |
| 1554 | |
| 1555 | /* check for bogus TID */ |
| 1556 | if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp)) |
| 1557 | break; |
| 1558 | |
| 1559 | lp = PageGetItemId(dp, offnum); |
| 1560 | |
| 1561 | /* check for unused, dead, or redirected items */ |
| 1562 | if (!ItemIdIsNormal(lp)) |
| 1563 | { |
| 1564 | /* We should only see a redirect at start of chain */ |
| 1565 | if (ItemIdIsRedirected(lp) && at_chain_start) |
| 1566 | { |
| 1567 | /* Follow the redirect */ |
| 1568 | offnum = ItemIdGetRedirect(lp); |
| 1569 | at_chain_start = false; |
| 1570 | continue; |
| 1571 | } |
| 1572 | /* else must be end of chain */ |
| 1573 | break; |
| 1574 | } |
| 1575 | |
| 1576 | /* |
| 1577 | * Update heapTuple to point to the element of the HOT chain we're |
| 1578 | * currently investigating. Having t_self set correctly is important |
| 1579 | * because the SSI checks and the *Satisfies routine for historical |
| 1580 | * MVCC snapshots need the correct tid to decide about the visibility. |
| 1581 | */ |
| 1582 | heapTuple->t_data = (HeapTupleHeader) PageGetItem(dp, lp); |
| 1583 | heapTuple->t_len = ItemIdGetLength(lp); |
| 1584 | heapTuple->t_tableOid = RelationGetRelid(relation); |
| 1585 | ItemPointerSet(&heapTuple->t_self, blkno, offnum); |
| 1586 | |
| 1587 | /* |
| 1588 | * Shouldn't see a HEAP_ONLY tuple at chain start. |
| 1589 | */ |
| 1590 | if (at_chain_start && HeapTupleIsHeapOnly(heapTuple)) |
| 1591 | break; |
| 1592 | |
| 1593 | /* |
| 1594 | * The xmin should match the previous xmax value, else chain is |
| 1595 | * broken. |
| 1596 | */ |
| 1597 | if (TransactionIdIsValid(prev_xmax) && |
| 1598 | !TransactionIdEquals(prev_xmax, |
| 1599 | HeapTupleHeaderGetXmin(heapTuple->t_data))) |
| 1600 | break; |
| 1601 | |
| 1602 | /* |
| 1603 | * When first_call is true (and thus, skip is initially false) we'll |
| 1604 | * return the first tuple we find. But on later passes, heapTuple |
| 1605 | * will initially be pointing to the tuple we returned last time. |
| 1606 | * Returning it again would be incorrect (and would loop forever), so |
| 1607 | * we skip it and return the next match we find. |
| 1608 | */ |
| 1609 | if (!skip) |
| 1610 | { |
| 1611 | /* If it's visible per the snapshot, we must return it */ |
| 1612 | valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer); |
| 1613 | CheckForSerializableConflictOut(valid, relation, heapTuple, |
| 1614 | buffer, snapshot); |
| 1615 | |
| 1616 | if (valid) |
| 1617 | { |
| 1618 | ItemPointerSetOffsetNumber(tid, offnum); |
| 1619 | PredicateLockTuple(relation, heapTuple, snapshot); |
| 1620 | if (all_dead) |
| 1621 | *all_dead = false; |
| 1622 | return true; |
| 1623 | } |
| 1624 | } |
| 1625 | skip = false; |
| 1626 | |
| 1627 | /* |
| 1628 | * If we can't see it, maybe no one else can either. At caller |
| 1629 | * request, check whether all chain members are dead to all |
| 1630 | * transactions. |
| 1631 | * |
| 1632 | * Note: if you change the criterion here for what is "dead", fix the |
| 1633 | * planner's get_actual_variable_range() function to match. |
| 1634 | */ |
| 1635 | if (all_dead && *all_dead && |
| 1636 | !HeapTupleIsSurelyDead(heapTuple, RecentGlobalXmin)) |
| 1637 | *all_dead = false; |
| 1638 | |
| 1639 | /* |
| 1640 | * Check to see if HOT chain continues past this tuple; if so fetch |
| 1641 | * the next offnum and loop around. |
| 1642 | */ |
| 1643 | if (HeapTupleIsHotUpdated(heapTuple)) |
| 1644 | { |
| 1645 | Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) == |
| 1646 | blkno); |
| 1647 | offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid); |
| 1648 | at_chain_start = false; |
| 1649 | prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data); |
| 1650 | } |
| 1651 | else |
| 1652 | break; /* end of chain */ |
| 1653 | } |
| 1654 | |
| 1655 | return false; |
| 1656 | } |
| 1657 | |
| 1658 | /* |
| 1659 | * heap_get_latest_tid - get the latest tid of a specified tuple |
| 1660 | * |
| 1661 | * Actually, this gets the latest version that is visible according to the |
| 1662 | * scan's snapshot. Create a scan using SnapshotDirty to get the very latest, |
| 1663 | * possibly uncommitted version. |
| 1664 | * |
| 1665 | * *tid is both an input and an output parameter: it is updated to |
| 1666 | * show the latest version of the row. Note that it will not be changed |
| 1667 | * if no version of the row passes the snapshot test. |
| 1668 | */ |
| 1669 | void |
| 1670 | heap_get_latest_tid(TableScanDesc sscan, |
| 1671 | ItemPointer tid) |
| 1672 | { |
| 1673 | Relation relation = sscan->rs_rd; |
| 1674 | Snapshot snapshot = sscan->rs_snapshot; |
| 1675 | ItemPointerData ctid; |
| 1676 | TransactionId priorXmax; |
| 1677 | |
| 1678 | /* |
| 1679 | * table_get_latest_tid verified that the passed in tid is valid. Assume |
| 1680 | * that t_ctid links are valid however - there shouldn't be invalid ones |
| 1681 | * in the table. |
| 1682 | */ |
| 1683 | Assert(ItemPointerIsValid(tid)); |
| 1684 | |
| 1685 | /* |
| 1686 | * Loop to chase down t_ctid links. At top of loop, ctid is the tuple we |
| 1687 | * need to examine, and *tid is the TID we will return if ctid turns out |
| 1688 | * to be bogus. |
| 1689 | * |
| 1690 | * Note that we will loop until we reach the end of the t_ctid chain. |
| 1691 | * Depending on the snapshot passed, there might be at most one visible |
| 1692 | * version of the row, but we don't try to optimize for that. |
| 1693 | */ |
| 1694 | ctid = *tid; |
| 1695 | priorXmax = InvalidTransactionId; /* cannot check first XMIN */ |
| 1696 | for (;;) |
| 1697 | { |
| 1698 | Buffer buffer; |
| 1699 | Page page; |
| 1700 | OffsetNumber offnum; |
| 1701 | ItemId lp; |
| 1702 | HeapTupleData tp; |
| 1703 | bool valid; |
| 1704 | |
| 1705 | /* |
| 1706 | * Read, pin, and lock the page. |
| 1707 | */ |
| 1708 | buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid)); |
| 1709 | LockBuffer(buffer, BUFFER_LOCK_SHARE); |
| 1710 | page = BufferGetPage(buffer); |
| 1711 | TestForOldSnapshot(snapshot, relation, page); |
| 1712 | |
| 1713 | /* |
| 1714 | * Check for bogus item number. This is not treated as an error |
| 1715 | * condition because it can happen while following a t_ctid link. We |
| 1716 | * just assume that the prior tid is OK and return it unchanged. |
| 1717 | */ |
| 1718 | offnum = ItemPointerGetOffsetNumber(&ctid); |
| 1719 | if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) |
| 1720 | { |
| 1721 | UnlockReleaseBuffer(buffer); |
| 1722 | break; |
| 1723 | } |
| 1724 | lp = PageGetItemId(page, offnum); |
| 1725 | if (!ItemIdIsNormal(lp)) |
| 1726 | { |
| 1727 | UnlockReleaseBuffer(buffer); |
| 1728 | break; |
| 1729 | } |
| 1730 | |
| 1731 | /* OK to access the tuple */ |
| 1732 | tp.t_self = ctid; |
| 1733 | tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); |
| 1734 | tp.t_len = ItemIdGetLength(lp); |
| 1735 | tp.t_tableOid = RelationGetRelid(relation); |
| 1736 | |
| 1737 | /* |
| 1738 | * After following a t_ctid link, we might arrive at an unrelated |
| 1739 | * tuple. Check for XMIN match. |
| 1740 | */ |
| 1741 | if (TransactionIdIsValid(priorXmax) && |
| 1742 | !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data))) |
| 1743 | { |
| 1744 | UnlockReleaseBuffer(buffer); |
| 1745 | break; |
| 1746 | } |
| 1747 | |
| 1748 | /* |
| 1749 | * Check tuple visibility; if visible, set it as the new result |
| 1750 | * candidate. |
| 1751 | */ |
| 1752 | valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer); |
| 1753 | CheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot); |
| 1754 | if (valid) |
| 1755 | *tid = ctid; |
| 1756 | |
| 1757 | /* |
| 1758 | * If there's a valid t_ctid link, follow it, else we're done. |
| 1759 | */ |
| 1760 | if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) || |
| 1761 | HeapTupleHeaderIsOnlyLocked(tp.t_data) || |
| 1762 | HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) || |
| 1763 | ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid)) |
| 1764 | { |
| 1765 | UnlockReleaseBuffer(buffer); |
| 1766 | break; |
| 1767 | } |
| 1768 | |
| 1769 | ctid = tp.t_data->t_ctid; |
| 1770 | priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data); |
| 1771 | UnlockReleaseBuffer(buffer); |
| 1772 | } /* end of loop */ |
| 1773 | } |
| 1774 | |
| 1775 | |
| 1776 | /* |
| 1777 | * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends |
| 1778 | * |
| 1779 | * This is called after we have waited for the XMAX transaction to terminate. |
| 1780 | * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will |
| 1781 | * be set on exit. If the transaction committed, we set the XMAX_COMMITTED |
| 1782 | * hint bit if possible --- but beware that that may not yet be possible, |
| 1783 | * if the transaction committed asynchronously. |
| 1784 | * |
| 1785 | * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID |
| 1786 | * even if it commits. |
| 1787 | * |
| 1788 | * Hence callers should look only at XMAX_INVALID. |
| 1789 | * |
| 1790 | * Note this is not allowed for tuples whose xmax is a multixact. |
| 1791 | */ |
| 1792 | static void |
| 1793 | UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid) |
| 1794 | { |
| 1795 | Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid)); |
| 1796 | Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI)); |
| 1797 | |
| 1798 | if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID))) |
| 1799 | { |
| 1800 | if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) && |
| 1801 | TransactionIdDidCommit(xid)) |
| 1802 | HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED, |
| 1803 | xid); |
| 1804 | else |
| 1805 | HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID, |
| 1806 | InvalidTransactionId); |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | |
| 1811 | /* |
| 1812 | * GetBulkInsertState - prepare status object for a bulk insert |
| 1813 | */ |
| 1814 | BulkInsertState |
| 1815 | GetBulkInsertState(void) |
| 1816 | { |
| 1817 | BulkInsertState bistate; |
| 1818 | |
| 1819 | bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData)); |
| 1820 | bistate->strategy = GetAccessStrategy(BAS_BULKWRITE); |
| 1821 | bistate->current_buf = InvalidBuffer; |
| 1822 | return bistate; |
| 1823 | } |
| 1824 | |
| 1825 | /* |
| 1826 | * FreeBulkInsertState - clean up after finishing a bulk insert |
| 1827 | */ |
| 1828 | void |
| 1829 | FreeBulkInsertState(BulkInsertState bistate) |
| 1830 | { |
| 1831 | if (bistate->current_buf != InvalidBuffer) |
| 1832 | ReleaseBuffer(bistate->current_buf); |
| 1833 | FreeAccessStrategy(bistate->strategy); |
| 1834 | pfree(bistate); |
| 1835 | } |
| 1836 | |
| 1837 | /* |
| 1838 | * ReleaseBulkInsertStatePin - release a buffer currently held in bistate |
| 1839 | */ |
| 1840 | void |
| 1841 | ReleaseBulkInsertStatePin(BulkInsertState bistate) |
| 1842 | { |
| 1843 | if (bistate->current_buf != InvalidBuffer) |
| 1844 | ReleaseBuffer(bistate->current_buf); |
| 1845 | bistate->current_buf = InvalidBuffer; |
| 1846 | } |
| 1847 | |
| 1848 | |
| 1849 | /* |
| 1850 | * heap_insert - insert tuple into a heap |
| 1851 | * |
| 1852 | * The new tuple is stamped with current transaction ID and the specified |
| 1853 | * command ID. |
| 1854 | * |
| 1855 | * See table_tuple_insert for comments about most of the input flags, except |
| 1856 | * that this routine directly takes a tuple rather than a slot. |
| 1857 | * |
| 1858 | * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_ |
| 1859 | * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to |
| 1860 | * implement table_tuple_insert_speculative(). |
| 1861 | * |
| 1862 | * On return the header fields of *tup are updated to match the stored tuple; |
| 1863 | * in particular tup->t_self receives the actual TID where the tuple was |
| 1864 | * stored. But note that any toasting of fields within the tuple data is NOT |
| 1865 | * reflected into *tup. |
| 1866 | */ |
| 1867 | void |
| 1868 | heap_insert(Relation relation, HeapTuple tup, CommandId cid, |
| 1869 | int options, BulkInsertState bistate) |
| 1870 | { |
| 1871 | TransactionId xid = GetCurrentTransactionId(); |
| 1872 | HeapTuple heaptup; |
| 1873 | Buffer buffer; |
| 1874 | Buffer vmbuffer = InvalidBuffer; |
| 1875 | bool all_visible_cleared = false; |
| 1876 | |
| 1877 | /* |
| 1878 | * Fill in tuple header fields and toast the tuple if necessary. |
| 1879 | * |
| 1880 | * Note: below this point, heaptup is the data we actually intend to store |
| 1881 | * into the relation; tup is the caller's original untoasted data. |
| 1882 | */ |
| 1883 | heaptup = heap_prepare_insert(relation, tup, xid, cid, options); |
| 1884 | |
| 1885 | /* |
| 1886 | * Find buffer to insert this tuple into. If the page is all visible, |
| 1887 | * this will also pin the requisite visibility map page. |
| 1888 | */ |
| 1889 | buffer = RelationGetBufferForTuple(relation, heaptup->t_len, |
| 1890 | InvalidBuffer, options, bistate, |
| 1891 | &vmbuffer, NULL); |
| 1892 | |
| 1893 | /* |
| 1894 | * We're about to do the actual insert -- but check for conflict first, to |
| 1895 | * avoid possibly having to roll back work we've just done. |
| 1896 | * |
| 1897 | * This is safe without a recheck as long as there is no possibility of |
| 1898 | * another process scanning the page between this check and the insert |
| 1899 | * being visible to the scan (i.e., an exclusive buffer content lock is |
| 1900 | * continuously held from this point until the tuple insert is visible). |
| 1901 | * |
| 1902 | * For a heap insert, we only need to check for table-level SSI locks. Our |
| 1903 | * new tuple can't possibly conflict with existing tuple locks, and heap |
| 1904 | * page locks are only consolidated versions of tuple locks; they do not |
| 1905 | * lock "gaps" as index page locks do. So we don't need to specify a |
| 1906 | * buffer when making the call, which makes for a faster check. |
| 1907 | */ |
| 1908 | CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); |
| 1909 | |
| 1910 | /* NO EREPORT(ERROR) from here till changes are logged */ |
| 1911 | START_CRIT_SECTION(); |
| 1912 | |
| 1913 | RelationPutHeapTuple(relation, buffer, heaptup, |
| 1914 | (options & HEAP_INSERT_SPECULATIVE) != 0); |
| 1915 | |
| 1916 | if (PageIsAllVisible(BufferGetPage(buffer))) |
| 1917 | { |
| 1918 | all_visible_cleared = true; |
| 1919 | PageClearAllVisible(BufferGetPage(buffer)); |
| 1920 | visibilitymap_clear(relation, |
| 1921 | ItemPointerGetBlockNumber(&(heaptup->t_self)), |
| 1922 | vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 1923 | } |
| 1924 | |
| 1925 | /* |
| 1926 | * XXX Should we set PageSetPrunable on this page ? |
| 1927 | * |
| 1928 | * The inserting transaction may eventually abort thus making this tuple |
| 1929 | * DEAD and hence available for pruning. Though we don't want to optimize |
| 1930 | * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the |
| 1931 | * aborted tuple will never be pruned until next vacuum is triggered. |
| 1932 | * |
| 1933 | * If you do add PageSetPrunable here, add it in heap_xlog_insert too. |
| 1934 | */ |
| 1935 | |
| 1936 | MarkBufferDirty(buffer); |
| 1937 | |
| 1938 | /* XLOG stuff */ |
| 1939 | if (!(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation)) |
| 1940 | { |
| 1941 | xl_heap_insert xlrec; |
| 1942 | xl_heap_header xlhdr; |
| 1943 | XLogRecPtr recptr; |
| 1944 | Page page = BufferGetPage(buffer); |
| 1945 | uint8 info = XLOG_HEAP_INSERT; |
| 1946 | int bufflags = 0; |
| 1947 | |
| 1948 | /* |
| 1949 | * If this is a catalog, we need to transmit combocids to properly |
| 1950 | * decode, so log that as well. |
| 1951 | */ |
| 1952 | if (RelationIsAccessibleInLogicalDecoding(relation)) |
| 1953 | log_heap_new_cid(relation, heaptup); |
| 1954 | |
| 1955 | /* |
| 1956 | * If this is the single and first tuple on page, we can reinit the |
| 1957 | * page instead of restoring the whole thing. Set flag, and hide |
| 1958 | * buffer references from XLogInsert. |
| 1959 | */ |
| 1960 | if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber && |
| 1961 | PageGetMaxOffsetNumber(page) == FirstOffsetNumber) |
| 1962 | { |
| 1963 | info |= XLOG_HEAP_INIT_PAGE; |
| 1964 | bufflags |= REGBUF_WILL_INIT; |
| 1965 | } |
| 1966 | |
| 1967 | xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self); |
| 1968 | xlrec.flags = 0; |
| 1969 | if (all_visible_cleared) |
| 1970 | xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED; |
| 1971 | if (options & HEAP_INSERT_SPECULATIVE) |
| 1972 | xlrec.flags |= XLH_INSERT_IS_SPECULATIVE; |
| 1973 | Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer)); |
| 1974 | |
| 1975 | /* |
| 1976 | * For logical decoding, we need the tuple even if we're doing a full |
| 1977 | * page write, so make sure it's included even if we take a full-page |
| 1978 | * image. (XXX We could alternatively store a pointer into the FPW). |
| 1979 | */ |
| 1980 | if (RelationIsLogicallyLogged(relation) && |
| 1981 | !(options & HEAP_INSERT_NO_LOGICAL)) |
| 1982 | { |
| 1983 | xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE; |
| 1984 | bufflags |= REGBUF_KEEP_DATA; |
| 1985 | } |
| 1986 | |
| 1987 | XLogBeginInsert(); |
| 1988 | XLogRegisterData((char *) &xlrec, SizeOfHeapInsert); |
| 1989 | |
| 1990 | xlhdr.t_infomask2 = heaptup->t_data->t_infomask2; |
| 1991 | xlhdr.t_infomask = heaptup->t_data->t_infomask; |
| 1992 | xlhdr.t_hoff = heaptup->t_data->t_hoff; |
| 1993 | |
| 1994 | /* |
| 1995 | * note we mark xlhdr as belonging to buffer; if XLogInsert decides to |
| 1996 | * write the whole page to the xlog, we don't need to store |
| 1997 | * xl_heap_header in the xlog. |
| 1998 | */ |
| 1999 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags); |
| 2000 | XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader); |
| 2001 | /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */ |
| 2002 | XLogRegisterBufData(0, |
| 2003 | (char *) heaptup->t_data + SizeofHeapTupleHeader, |
| 2004 | heaptup->t_len - SizeofHeapTupleHeader); |
| 2005 | |
| 2006 | /* filtering by origin on a row level is much more efficient */ |
| 2007 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
| 2008 | |
| 2009 | recptr = XLogInsert(RM_HEAP_ID, info); |
| 2010 | |
| 2011 | PageSetLSN(page, recptr); |
| 2012 | } |
| 2013 | |
| 2014 | END_CRIT_SECTION(); |
| 2015 | |
| 2016 | UnlockReleaseBuffer(buffer); |
| 2017 | if (vmbuffer != InvalidBuffer) |
| 2018 | ReleaseBuffer(vmbuffer); |
| 2019 | |
| 2020 | /* |
| 2021 | * If tuple is cachable, mark it for invalidation from the caches in case |
| 2022 | * we abort. Note it is OK to do this after releasing the buffer, because |
| 2023 | * the heaptup data structure is all in local memory, not in the shared |
| 2024 | * buffer. |
| 2025 | */ |
| 2026 | CacheInvalidateHeapTuple(relation, heaptup, NULL); |
| 2027 | |
| 2028 | /* Note: speculative insertions are counted too, even if aborted later */ |
| 2029 | pgstat_count_heap_insert(relation, 1); |
| 2030 | |
| 2031 | /* |
| 2032 | * If heaptup is a private copy, release it. Don't forget to copy t_self |
| 2033 | * back to the caller's image, too. |
| 2034 | */ |
| 2035 | if (heaptup != tup) |
| 2036 | { |
| 2037 | tup->t_self = heaptup->t_self; |
| 2038 | heap_freetuple(heaptup); |
| 2039 | } |
| 2040 | } |
| 2041 | |
| 2042 | /* |
| 2043 | * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the |
| 2044 | * tuple header fields and toasts the tuple if necessary. Returns a toasted |
| 2045 | * version of the tuple if it was toasted, or the original tuple if not. Note |
| 2046 | * that in any case, the header fields are also set in the original tuple. |
| 2047 | */ |
| 2048 | static HeapTuple |
| 2049 | heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid, |
| 2050 | CommandId cid, int options) |
| 2051 | { |
| 2052 | /* |
| 2053 | * Parallel operations are required to be strictly read-only in a parallel |
| 2054 | * worker. Parallel inserts are not safe even in the leader in the |
| 2055 | * general case, because group locking means that heavyweight locks for |
| 2056 | * relation extension or GIN page locks will not conflict between members |
| 2057 | * of a lock group, but we don't prohibit that case here because there are |
| 2058 | * useful special cases that we can safely allow, such as CREATE TABLE AS. |
| 2059 | */ |
| 2060 | if (IsParallelWorker()) |
| 2061 | ereport(ERROR, |
| 2062 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
| 2063 | errmsg("cannot insert tuples in a parallel worker" ))); |
| 2064 | |
| 2065 | tup->t_data->t_infomask &= ~(HEAP_XACT_MASK); |
| 2066 | tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK); |
| 2067 | tup->t_data->t_infomask |= HEAP_XMAX_INVALID; |
| 2068 | HeapTupleHeaderSetXmin(tup->t_data, xid); |
| 2069 | if (options & HEAP_INSERT_FROZEN) |
| 2070 | HeapTupleHeaderSetXminFrozen(tup->t_data); |
| 2071 | |
| 2072 | HeapTupleHeaderSetCmin(tup->t_data, cid); |
| 2073 | HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */ |
| 2074 | tup->t_tableOid = RelationGetRelid(relation); |
| 2075 | |
| 2076 | /* |
| 2077 | * If the new tuple is too big for storage or contains already toasted |
| 2078 | * out-of-line attributes from some other relation, invoke the toaster. |
| 2079 | */ |
| 2080 | if (relation->rd_rel->relkind != RELKIND_RELATION && |
| 2081 | relation->rd_rel->relkind != RELKIND_MATVIEW) |
| 2082 | { |
| 2083 | /* toast table entries should never be recursively toasted */ |
| 2084 | Assert(!HeapTupleHasExternal(tup)); |
| 2085 | return tup; |
| 2086 | } |
| 2087 | else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD) |
| 2088 | return toast_insert_or_update(relation, tup, NULL, options); |
| 2089 | else |
| 2090 | return tup; |
| 2091 | } |
| 2092 | |
| 2093 | /* |
| 2094 | * heap_multi_insert - insert multiple tuple into a heap |
| 2095 | * |
| 2096 | * This is like heap_insert(), but inserts multiple tuples in one operation. |
| 2097 | * That's faster than calling heap_insert() in a loop, because when multiple |
| 2098 | * tuples can be inserted on a single page, we can write just a single WAL |
| 2099 | * record covering all of them, and only need to lock/unlock the page once. |
| 2100 | * |
| 2101 | * Note: this leaks memory into the current memory context. You can create a |
| 2102 | * temporary context before calling this, if that's a problem. |
| 2103 | */ |
| 2104 | void |
| 2105 | heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples, |
| 2106 | CommandId cid, int options, BulkInsertState bistate) |
| 2107 | { |
| 2108 | TransactionId xid = GetCurrentTransactionId(); |
| 2109 | HeapTuple *heaptuples; |
| 2110 | int i; |
| 2111 | int ndone; |
| 2112 | PGAlignedBlock scratch; |
| 2113 | Page page; |
| 2114 | bool needwal; |
| 2115 | Size saveFreeSpace; |
| 2116 | bool need_tuple_data = RelationIsLogicallyLogged(relation); |
| 2117 | bool need_cids = RelationIsAccessibleInLogicalDecoding(relation); |
| 2118 | |
| 2119 | /* currently not needed (thus unsupported) for heap_multi_insert() */ |
| 2120 | AssertArg(!(options & HEAP_INSERT_NO_LOGICAL)); |
| 2121 | |
| 2122 | needwal = !(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation); |
| 2123 | saveFreeSpace = RelationGetTargetPageFreeSpace(relation, |
| 2124 | HEAP_DEFAULT_FILLFACTOR); |
| 2125 | |
| 2126 | /* Toast and set header data in all the slots */ |
| 2127 | heaptuples = palloc(ntuples * sizeof(HeapTuple)); |
| 2128 | for (i = 0; i < ntuples; i++) |
| 2129 | { |
| 2130 | HeapTuple tuple; |
| 2131 | |
| 2132 | tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL); |
| 2133 | slots[i]->tts_tableOid = RelationGetRelid(relation); |
| 2134 | tuple->t_tableOid = slots[i]->tts_tableOid; |
| 2135 | heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid, |
| 2136 | options); |
| 2137 | } |
| 2138 | |
| 2139 | /* |
| 2140 | * We're about to do the actual inserts -- but check for conflict first, |
| 2141 | * to minimize the possibility of having to roll back work we've just |
| 2142 | * done. |
| 2143 | * |
| 2144 | * A check here does not definitively prevent a serialization anomaly; |
| 2145 | * that check MUST be done at least past the point of acquiring an |
| 2146 | * exclusive buffer content lock on every buffer that will be affected, |
| 2147 | * and MAY be done after all inserts are reflected in the buffers and |
| 2148 | * those locks are released; otherwise there race condition. Since |
| 2149 | * multiple buffers can be locked and unlocked in the loop below, and it |
| 2150 | * would not be feasible to identify and lock all of those buffers before |
| 2151 | * the loop, we must do a final check at the end. |
| 2152 | * |
| 2153 | * The check here could be omitted with no loss of correctness; it is |
| 2154 | * present strictly as an optimization. |
| 2155 | * |
| 2156 | * For heap inserts, we only need to check for table-level SSI locks. Our |
| 2157 | * new tuples can't possibly conflict with existing tuple locks, and heap |
| 2158 | * page locks are only consolidated versions of tuple locks; they do not |
| 2159 | * lock "gaps" as index page locks do. So we don't need to specify a |
| 2160 | * buffer when making the call, which makes for a faster check. |
| 2161 | */ |
| 2162 | CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); |
| 2163 | |
| 2164 | ndone = 0; |
| 2165 | while (ndone < ntuples) |
| 2166 | { |
| 2167 | Buffer buffer; |
| 2168 | Buffer vmbuffer = InvalidBuffer; |
| 2169 | bool all_visible_cleared = false; |
| 2170 | int nthispage; |
| 2171 | |
| 2172 | CHECK_FOR_INTERRUPTS(); |
| 2173 | |
| 2174 | /* |
| 2175 | * Find buffer where at least the next tuple will fit. If the page is |
| 2176 | * all-visible, this will also pin the requisite visibility map page. |
| 2177 | */ |
| 2178 | buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len, |
| 2179 | InvalidBuffer, options, bistate, |
| 2180 | &vmbuffer, NULL); |
| 2181 | page = BufferGetPage(buffer); |
| 2182 | |
| 2183 | /* NO EREPORT(ERROR) from here till changes are logged */ |
| 2184 | START_CRIT_SECTION(); |
| 2185 | |
| 2186 | /* |
| 2187 | * RelationGetBufferForTuple has ensured that the first tuple fits. |
| 2188 | * Put that on the page, and then as many other tuples as fit. |
| 2189 | */ |
| 2190 | RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false); |
| 2191 | for (nthispage = 1; ndone + nthispage < ntuples; nthispage++) |
| 2192 | { |
| 2193 | HeapTuple heaptup = heaptuples[ndone + nthispage]; |
| 2194 | |
| 2195 | if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace) |
| 2196 | break; |
| 2197 | |
| 2198 | RelationPutHeapTuple(relation, buffer, heaptup, false); |
| 2199 | |
| 2200 | /* |
| 2201 | * We don't use heap_multi_insert for catalog tuples yet, but |
| 2202 | * better be prepared... |
| 2203 | */ |
| 2204 | if (needwal && need_cids) |
| 2205 | log_heap_new_cid(relation, heaptup); |
| 2206 | } |
| 2207 | |
| 2208 | if (PageIsAllVisible(page)) |
| 2209 | { |
| 2210 | all_visible_cleared = true; |
| 2211 | PageClearAllVisible(page); |
| 2212 | visibilitymap_clear(relation, |
| 2213 | BufferGetBlockNumber(buffer), |
| 2214 | vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 2215 | } |
| 2216 | |
| 2217 | /* |
| 2218 | * XXX Should we set PageSetPrunable on this page ? See heap_insert() |
| 2219 | */ |
| 2220 | |
| 2221 | MarkBufferDirty(buffer); |
| 2222 | |
| 2223 | /* XLOG stuff */ |
| 2224 | if (needwal) |
| 2225 | { |
| 2226 | XLogRecPtr recptr; |
| 2227 | xl_heap_multi_insert *xlrec; |
| 2228 | uint8 info = XLOG_HEAP2_MULTI_INSERT; |
| 2229 | char *tupledata; |
| 2230 | int totaldatalen; |
| 2231 | char *scratchptr = scratch.data; |
| 2232 | bool init; |
| 2233 | int bufflags = 0; |
| 2234 | |
| 2235 | /* |
| 2236 | * If the page was previously empty, we can reinit the page |
| 2237 | * instead of restoring the whole thing. |
| 2238 | */ |
| 2239 | init = (ItemPointerGetOffsetNumber(&(heaptuples[ndone]->t_self)) == FirstOffsetNumber && |
| 2240 | PageGetMaxOffsetNumber(page) == FirstOffsetNumber + nthispage - 1); |
| 2241 | |
| 2242 | /* allocate xl_heap_multi_insert struct from the scratch area */ |
| 2243 | xlrec = (xl_heap_multi_insert *) scratchptr; |
| 2244 | scratchptr += SizeOfHeapMultiInsert; |
| 2245 | |
| 2246 | /* |
| 2247 | * Allocate offsets array. Unless we're reinitializing the page, |
| 2248 | * in that case the tuples are stored in order starting at |
| 2249 | * FirstOffsetNumber and we don't need to store the offsets |
| 2250 | * explicitly. |
| 2251 | */ |
| 2252 | if (!init) |
| 2253 | scratchptr += nthispage * sizeof(OffsetNumber); |
| 2254 | |
| 2255 | /* the rest of the scratch space is used for tuple data */ |
| 2256 | tupledata = scratchptr; |
| 2257 | |
| 2258 | xlrec->flags = all_visible_cleared ? XLH_INSERT_ALL_VISIBLE_CLEARED : 0; |
| 2259 | xlrec->ntuples = nthispage; |
| 2260 | |
| 2261 | /* |
| 2262 | * Write out an xl_multi_insert_tuple and the tuple data itself |
| 2263 | * for each tuple. |
| 2264 | */ |
| 2265 | for (i = 0; i < nthispage; i++) |
| 2266 | { |
| 2267 | HeapTuple heaptup = heaptuples[ndone + i]; |
| 2268 | xl_multi_insert_tuple *tuphdr; |
| 2269 | int datalen; |
| 2270 | |
| 2271 | if (!init) |
| 2272 | xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self); |
| 2273 | /* xl_multi_insert_tuple needs two-byte alignment. */ |
| 2274 | tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr); |
| 2275 | scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple; |
| 2276 | |
| 2277 | tuphdr->t_infomask2 = heaptup->t_data->t_infomask2; |
| 2278 | tuphdr->t_infomask = heaptup->t_data->t_infomask; |
| 2279 | tuphdr->t_hoff = heaptup->t_data->t_hoff; |
| 2280 | |
| 2281 | /* write bitmap [+ padding] [+ oid] + data */ |
| 2282 | datalen = heaptup->t_len - SizeofHeapTupleHeader; |
| 2283 | memcpy(scratchptr, |
| 2284 | (char *) heaptup->t_data + SizeofHeapTupleHeader, |
| 2285 | datalen); |
| 2286 | tuphdr->datalen = datalen; |
| 2287 | scratchptr += datalen; |
| 2288 | } |
| 2289 | totaldatalen = scratchptr - tupledata; |
| 2290 | Assert((scratchptr - scratch.data) < BLCKSZ); |
| 2291 | |
| 2292 | if (need_tuple_data) |
| 2293 | xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE; |
| 2294 | |
| 2295 | /* |
| 2296 | * Signal that this is the last xl_heap_multi_insert record |
| 2297 | * emitted by this call to heap_multi_insert(). Needed for logical |
| 2298 | * decoding so it knows when to cleanup temporary data. |
| 2299 | */ |
| 2300 | if (ndone + nthispage == ntuples) |
| 2301 | xlrec->flags |= XLH_INSERT_LAST_IN_MULTI; |
| 2302 | |
| 2303 | if (init) |
| 2304 | { |
| 2305 | info |= XLOG_HEAP_INIT_PAGE; |
| 2306 | bufflags |= REGBUF_WILL_INIT; |
| 2307 | } |
| 2308 | |
| 2309 | /* |
| 2310 | * If we're doing logical decoding, include the new tuple data |
| 2311 | * even if we take a full-page image of the page. |
| 2312 | */ |
| 2313 | if (need_tuple_data) |
| 2314 | bufflags |= REGBUF_KEEP_DATA; |
| 2315 | |
| 2316 | XLogBeginInsert(); |
| 2317 | XLogRegisterData((char *) xlrec, tupledata - scratch.data); |
| 2318 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags); |
| 2319 | |
| 2320 | XLogRegisterBufData(0, tupledata, totaldatalen); |
| 2321 | |
| 2322 | /* filtering by origin on a row level is much more efficient */ |
| 2323 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
| 2324 | |
| 2325 | recptr = XLogInsert(RM_HEAP2_ID, info); |
| 2326 | |
| 2327 | PageSetLSN(page, recptr); |
| 2328 | } |
| 2329 | |
| 2330 | END_CRIT_SECTION(); |
| 2331 | |
| 2332 | UnlockReleaseBuffer(buffer); |
| 2333 | if (vmbuffer != InvalidBuffer) |
| 2334 | ReleaseBuffer(vmbuffer); |
| 2335 | |
| 2336 | ndone += nthispage; |
| 2337 | } |
| 2338 | |
| 2339 | /* |
| 2340 | * We're done with the actual inserts. Check for conflicts again, to |
| 2341 | * ensure that all rw-conflicts in to these inserts are detected. Without |
| 2342 | * this final check, a sequential scan of the heap may have locked the |
| 2343 | * table after the "before" check, missing one opportunity to detect the |
| 2344 | * conflict, and then scanned the table before the new tuples were there, |
| 2345 | * missing the other chance to detect the conflict. |
| 2346 | * |
| 2347 | * For heap inserts, we only need to check for table-level SSI locks. Our |
| 2348 | * new tuples can't possibly conflict with existing tuple locks, and heap |
| 2349 | * page locks are only consolidated versions of tuple locks; they do not |
| 2350 | * lock "gaps" as index page locks do. So we don't need to specify a |
| 2351 | * buffer when making the call. |
| 2352 | */ |
| 2353 | CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); |
| 2354 | |
| 2355 | /* |
| 2356 | * If tuples are cachable, mark them for invalidation from the caches in |
| 2357 | * case we abort. Note it is OK to do this after releasing the buffer, |
| 2358 | * because the heaptuples data structure is all in local memory, not in |
| 2359 | * the shared buffer. |
| 2360 | */ |
| 2361 | if (IsCatalogRelation(relation)) |
| 2362 | { |
| 2363 | for (i = 0; i < ntuples; i++) |
| 2364 | CacheInvalidateHeapTuple(relation, heaptuples[i], NULL); |
| 2365 | } |
| 2366 | |
| 2367 | /* copy t_self fields back to the caller's slots */ |
| 2368 | for (i = 0; i < ntuples; i++) |
| 2369 | slots[i]->tts_tid = heaptuples[i]->t_self; |
| 2370 | |
| 2371 | pgstat_count_heap_insert(relation, ntuples); |
| 2372 | } |
| 2373 | |
| 2374 | /* |
| 2375 | * simple_heap_insert - insert a tuple |
| 2376 | * |
| 2377 | * Currently, this routine differs from heap_insert only in supplying |
| 2378 | * a default command ID and not allowing access to the speedup options. |
| 2379 | * |
| 2380 | * This should be used rather than using heap_insert directly in most places |
| 2381 | * where we are modifying system catalogs. |
| 2382 | */ |
| 2383 | void |
| 2384 | simple_heap_insert(Relation relation, HeapTuple tup) |
| 2385 | { |
| 2386 | heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL); |
| 2387 | } |
| 2388 | |
| 2389 | /* |
| 2390 | * Given infomask/infomask2, compute the bits that must be saved in the |
| 2391 | * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock, |
| 2392 | * xl_heap_lock_updated WAL records. |
| 2393 | * |
| 2394 | * See fix_infomask_from_infobits. |
| 2395 | */ |
| 2396 | static uint8 |
| 2397 | compute_infobits(uint16 infomask, uint16 infomask2) |
| 2398 | { |
| 2399 | return |
| 2400 | ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) | |
| 2401 | ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) | |
| 2402 | ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) | |
| 2403 | /* note we ignore HEAP_XMAX_SHR_LOCK here */ |
| 2404 | ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) | |
| 2405 | ((infomask2 & HEAP_KEYS_UPDATED) != 0 ? |
| 2406 | XLHL_KEYS_UPDATED : 0); |
| 2407 | } |
| 2408 | |
| 2409 | /* |
| 2410 | * Given two versions of the same t_infomask for a tuple, compare them and |
| 2411 | * return whether the relevant status for a tuple Xmax has changed. This is |
| 2412 | * used after a buffer lock has been released and reacquired: we want to ensure |
| 2413 | * that the tuple state continues to be the same it was when we previously |
| 2414 | * examined it. |
| 2415 | * |
| 2416 | * Note the Xmax field itself must be compared separately. |
| 2417 | */ |
| 2418 | static inline bool |
| 2419 | xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask) |
| 2420 | { |
| 2421 | const uint16 interesting = |
| 2422 | HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK; |
| 2423 | |
| 2424 | if ((new_infomask & interesting) != (old_infomask & interesting)) |
| 2425 | return true; |
| 2426 | |
| 2427 | return false; |
| 2428 | } |
| 2429 | |
| 2430 | /* |
| 2431 | * heap_delete - delete a tuple |
| 2432 | * |
| 2433 | * See table_tuple_delete() for an explanation of the parameters, except that |
| 2434 | * this routine directly takes a tuple rather than a slot. |
| 2435 | * |
| 2436 | * In the failure cases, the routine fills *tmfd with the tuple's t_ctid, |
| 2437 | * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last |
| 2438 | * only for TM_SelfModified, since we cannot obtain cmax from a combocid |
| 2439 | * generated by another transaction). |
| 2440 | */ |
| 2441 | TM_Result |
| 2442 | heap_delete(Relation relation, ItemPointer tid, |
| 2443 | CommandId cid, Snapshot crosscheck, bool wait, |
| 2444 | TM_FailureData *tmfd, bool changingPart) |
| 2445 | { |
| 2446 | TM_Result result; |
| 2447 | TransactionId xid = GetCurrentTransactionId(); |
| 2448 | ItemId lp; |
| 2449 | HeapTupleData tp; |
| 2450 | Page page; |
| 2451 | BlockNumber block; |
| 2452 | Buffer buffer; |
| 2453 | Buffer vmbuffer = InvalidBuffer; |
| 2454 | TransactionId new_xmax; |
| 2455 | uint16 new_infomask, |
| 2456 | new_infomask2; |
| 2457 | bool have_tuple_lock = false; |
| 2458 | bool iscombo; |
| 2459 | bool all_visible_cleared = false; |
| 2460 | HeapTuple old_key_tuple = NULL; /* replica identity of the tuple */ |
| 2461 | bool old_key_copied = false; |
| 2462 | |
| 2463 | Assert(ItemPointerIsValid(tid)); |
| 2464 | |
| 2465 | /* |
| 2466 | * Forbid this during a parallel operation, lest it allocate a combocid. |
| 2467 | * Other workers might need that combocid for visibility checks, and we |
| 2468 | * have no provision for broadcasting it to them. |
| 2469 | */ |
| 2470 | if (IsInParallelMode()) |
| 2471 | ereport(ERROR, |
| 2472 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
| 2473 | errmsg("cannot delete tuples during a parallel operation" ))); |
| 2474 | |
| 2475 | block = ItemPointerGetBlockNumber(tid); |
| 2476 | buffer = ReadBuffer(relation, block); |
| 2477 | page = BufferGetPage(buffer); |
| 2478 | |
| 2479 | /* |
| 2480 | * Before locking the buffer, pin the visibility map page if it appears to |
| 2481 | * be necessary. Since we haven't got the lock yet, someone else might be |
| 2482 | * in the middle of changing this, so we'll need to recheck after we have |
| 2483 | * the lock. |
| 2484 | */ |
| 2485 | if (PageIsAllVisible(page)) |
| 2486 | visibilitymap_pin(relation, block, &vmbuffer); |
| 2487 | |
| 2488 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 2489 | |
| 2490 | /* |
| 2491 | * If we didn't pin the visibility map page and the page has become all |
| 2492 | * visible while we were busy locking the buffer, we'll have to unlock and |
| 2493 | * re-lock, to avoid holding the buffer lock across an I/O. That's a bit |
| 2494 | * unfortunate, but hopefully shouldn't happen often. |
| 2495 | */ |
| 2496 | if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) |
| 2497 | { |
| 2498 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 2499 | visibilitymap_pin(relation, block, &vmbuffer); |
| 2500 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 2501 | } |
| 2502 | |
| 2503 | lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); |
| 2504 | Assert(ItemIdIsNormal(lp)); |
| 2505 | |
| 2506 | tp.t_tableOid = RelationGetRelid(relation); |
| 2507 | tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); |
| 2508 | tp.t_len = ItemIdGetLength(lp); |
| 2509 | tp.t_self = *tid; |
| 2510 | |
| 2511 | l1: |
| 2512 | result = HeapTupleSatisfiesUpdate(&tp, cid, buffer); |
| 2513 | |
| 2514 | if (result == TM_Invisible) |
| 2515 | { |
| 2516 | UnlockReleaseBuffer(buffer); |
| 2517 | ereport(ERROR, |
| 2518 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 2519 | errmsg("attempted to delete invisible tuple" ))); |
| 2520 | } |
| 2521 | else if (result == TM_BeingModified && wait) |
| 2522 | { |
| 2523 | TransactionId xwait; |
| 2524 | uint16 infomask; |
| 2525 | |
| 2526 | /* must copy state data before unlocking buffer */ |
| 2527 | xwait = HeapTupleHeaderGetRawXmax(tp.t_data); |
| 2528 | infomask = tp.t_data->t_infomask; |
| 2529 | |
| 2530 | /* |
| 2531 | * Sleep until concurrent transaction ends -- except when there's a |
| 2532 | * single locker and it's our own transaction. Note we don't care |
| 2533 | * which lock mode the locker has, because we need the strongest one. |
| 2534 | * |
| 2535 | * Before sleeping, we need to acquire tuple lock to establish our |
| 2536 | * priority for the tuple (see heap_lock_tuple). LockTuple will |
| 2537 | * release us when we are next-in-line for the tuple. |
| 2538 | * |
| 2539 | * If we are forced to "start over" below, we keep the tuple lock; |
| 2540 | * this arranges that we stay at the head of the line while rechecking |
| 2541 | * tuple state. |
| 2542 | */ |
| 2543 | if (infomask & HEAP_XMAX_IS_MULTI) |
| 2544 | { |
| 2545 | bool current_is_member = false; |
| 2546 | |
| 2547 | if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask, |
| 2548 | LockTupleExclusive, ¤t_is_member)) |
| 2549 | { |
| 2550 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 2551 | |
| 2552 | /* |
| 2553 | * Acquire the lock, if necessary (but skip it when we're |
| 2554 | * requesting a lock and already have one; avoids deadlock). |
| 2555 | */ |
| 2556 | if (!current_is_member) |
| 2557 | heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive, |
| 2558 | LockWaitBlock, &have_tuple_lock); |
| 2559 | |
| 2560 | /* wait for multixact */ |
| 2561 | MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask, |
| 2562 | relation, &(tp.t_self), XLTW_Delete, |
| 2563 | NULL); |
| 2564 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 2565 | |
| 2566 | /* |
| 2567 | * If xwait had just locked the tuple then some other xact |
| 2568 | * could update this tuple before we get to this point. Check |
| 2569 | * for xmax change, and start over if so. |
| 2570 | */ |
| 2571 | if (xmax_infomask_changed(tp.t_data->t_infomask, infomask) || |
| 2572 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data), |
| 2573 | xwait)) |
| 2574 | goto l1; |
| 2575 | } |
| 2576 | |
| 2577 | /* |
| 2578 | * You might think the multixact is necessarily done here, but not |
| 2579 | * so: it could have surviving members, namely our own xact or |
| 2580 | * other subxacts of this backend. It is legal for us to delete |
| 2581 | * the tuple in either case, however (the latter case is |
| 2582 | * essentially a situation of upgrading our former shared lock to |
| 2583 | * exclusive). We don't bother changing the on-disk hint bits |
| 2584 | * since we are about to overwrite the xmax altogether. |
| 2585 | */ |
| 2586 | } |
| 2587 | else if (!TransactionIdIsCurrentTransactionId(xwait)) |
| 2588 | { |
| 2589 | /* |
| 2590 | * Wait for regular transaction to end; but first, acquire tuple |
| 2591 | * lock. |
| 2592 | */ |
| 2593 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 2594 | heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive, |
| 2595 | LockWaitBlock, &have_tuple_lock); |
| 2596 | XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete); |
| 2597 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 2598 | |
| 2599 | /* |
| 2600 | * xwait is done, but if xwait had just locked the tuple then some |
| 2601 | * other xact could update this tuple before we get to this point. |
| 2602 | * Check for xmax change, and start over if so. |
| 2603 | */ |
| 2604 | if (xmax_infomask_changed(tp.t_data->t_infomask, infomask) || |
| 2605 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data), |
| 2606 | xwait)) |
| 2607 | goto l1; |
| 2608 | |
| 2609 | /* Otherwise check if it committed or aborted */ |
| 2610 | UpdateXmaxHintBits(tp.t_data, buffer, xwait); |
| 2611 | } |
| 2612 | |
| 2613 | /* |
| 2614 | * We may overwrite if previous xmax aborted, or if it committed but |
| 2615 | * only locked the tuple without updating it. |
| 2616 | */ |
| 2617 | if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) || |
| 2618 | HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) || |
| 2619 | HeapTupleHeaderIsOnlyLocked(tp.t_data)) |
| 2620 | result = TM_Ok; |
| 2621 | else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid) || |
| 2622 | HeapTupleHeaderIndicatesMovedPartitions(tp.t_data)) |
| 2623 | result = TM_Updated; |
| 2624 | else |
| 2625 | result = TM_Deleted; |
| 2626 | } |
| 2627 | |
| 2628 | if (crosscheck != InvalidSnapshot && result == TM_Ok) |
| 2629 | { |
| 2630 | /* Perform additional check for transaction-snapshot mode RI updates */ |
| 2631 | if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer)) |
| 2632 | result = TM_Updated; |
| 2633 | } |
| 2634 | |
| 2635 | if (result != TM_Ok) |
| 2636 | { |
| 2637 | Assert(result == TM_SelfModified || |
| 2638 | result == TM_Updated || |
| 2639 | result == TM_Deleted || |
| 2640 | result == TM_BeingModified); |
| 2641 | Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID)); |
| 2642 | Assert(result != TM_Updated || |
| 2643 | !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid)); |
| 2644 | tmfd->ctid = tp.t_data->t_ctid; |
| 2645 | tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data); |
| 2646 | if (result == TM_SelfModified) |
| 2647 | tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data); |
| 2648 | else |
| 2649 | tmfd->cmax = InvalidCommandId; |
| 2650 | UnlockReleaseBuffer(buffer); |
| 2651 | if (have_tuple_lock) |
| 2652 | UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); |
| 2653 | if (vmbuffer != InvalidBuffer) |
| 2654 | ReleaseBuffer(vmbuffer); |
| 2655 | return result; |
| 2656 | } |
| 2657 | |
| 2658 | /* |
| 2659 | * We're about to do the actual delete -- check for conflict first, to |
| 2660 | * avoid possibly having to roll back work we've just done. |
| 2661 | * |
| 2662 | * This is safe without a recheck as long as there is no possibility of |
| 2663 | * another process scanning the page between this check and the delete |
| 2664 | * being visible to the scan (i.e., an exclusive buffer content lock is |
| 2665 | * continuously held from this point until the tuple delete is visible). |
| 2666 | */ |
| 2667 | CheckForSerializableConflictIn(relation, &tp, buffer); |
| 2668 | |
| 2669 | /* replace cid with a combo cid if necessary */ |
| 2670 | HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo); |
| 2671 | |
| 2672 | /* |
| 2673 | * Compute replica identity tuple before entering the critical section so |
| 2674 | * we don't PANIC upon a memory allocation failure. |
| 2675 | */ |
| 2676 | old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied); |
| 2677 | |
| 2678 | /* |
| 2679 | * If this is the first possibly-multixact-able operation in the current |
| 2680 | * transaction, set my per-backend OldestMemberMXactId setting. We can be |
| 2681 | * certain that the transaction will never become a member of any older |
| 2682 | * MultiXactIds than that. (We have to do this even if we end up just |
| 2683 | * using our own TransactionId below, since some other backend could |
| 2684 | * incorporate our XID into a MultiXact immediately afterwards.) |
| 2685 | */ |
| 2686 | MultiXactIdSetOldestMember(); |
| 2687 | |
| 2688 | compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data), |
| 2689 | tp.t_data->t_infomask, tp.t_data->t_infomask2, |
| 2690 | xid, LockTupleExclusive, true, |
| 2691 | &new_xmax, &new_infomask, &new_infomask2); |
| 2692 | |
| 2693 | START_CRIT_SECTION(); |
| 2694 | |
| 2695 | /* |
| 2696 | * If this transaction commits, the tuple will become DEAD sooner or |
| 2697 | * later. Set flag that this page is a candidate for pruning once our xid |
| 2698 | * falls below the OldestXmin horizon. If the transaction finally aborts, |
| 2699 | * the subsequent page pruning will be a no-op and the hint will be |
| 2700 | * cleared. |
| 2701 | */ |
| 2702 | PageSetPrunable(page, xid); |
| 2703 | |
| 2704 | if (PageIsAllVisible(page)) |
| 2705 | { |
| 2706 | all_visible_cleared = true; |
| 2707 | PageClearAllVisible(page); |
| 2708 | visibilitymap_clear(relation, BufferGetBlockNumber(buffer), |
| 2709 | vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 2710 | } |
| 2711 | |
| 2712 | /* store transaction information of xact deleting the tuple */ |
| 2713 | tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
| 2714 | tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 2715 | tp.t_data->t_infomask |= new_infomask; |
| 2716 | tp.t_data->t_infomask2 |= new_infomask2; |
| 2717 | HeapTupleHeaderClearHotUpdated(tp.t_data); |
| 2718 | HeapTupleHeaderSetXmax(tp.t_data, new_xmax); |
| 2719 | HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo); |
| 2720 | /* Make sure there is no forward chain link in t_ctid */ |
| 2721 | tp.t_data->t_ctid = tp.t_self; |
| 2722 | |
| 2723 | /* Signal that this is actually a move into another partition */ |
| 2724 | if (changingPart) |
| 2725 | HeapTupleHeaderSetMovedPartitions(tp.t_data); |
| 2726 | |
| 2727 | MarkBufferDirty(buffer); |
| 2728 | |
| 2729 | /* |
| 2730 | * XLOG stuff |
| 2731 | * |
| 2732 | * NB: heap_abort_speculative() uses the same xlog record and replay |
| 2733 | * routines. |
| 2734 | */ |
| 2735 | if (RelationNeedsWAL(relation)) |
| 2736 | { |
| 2737 | xl_heap_delete xlrec; |
| 2738 | xl_heap_header xlhdr; |
| 2739 | XLogRecPtr recptr; |
| 2740 | |
| 2741 | /* For logical decode we need combocids to properly decode the catalog */ |
| 2742 | if (RelationIsAccessibleInLogicalDecoding(relation)) |
| 2743 | log_heap_new_cid(relation, &tp); |
| 2744 | |
| 2745 | xlrec.flags = 0; |
| 2746 | if (all_visible_cleared) |
| 2747 | xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED; |
| 2748 | if (changingPart) |
| 2749 | xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE; |
| 2750 | xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask, |
| 2751 | tp.t_data->t_infomask2); |
| 2752 | xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self); |
| 2753 | xlrec.xmax = new_xmax; |
| 2754 | |
| 2755 | if (old_key_tuple != NULL) |
| 2756 | { |
| 2757 | if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL) |
| 2758 | xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE; |
| 2759 | else |
| 2760 | xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY; |
| 2761 | } |
| 2762 | |
| 2763 | XLogBeginInsert(); |
| 2764 | XLogRegisterData((char *) &xlrec, SizeOfHeapDelete); |
| 2765 | |
| 2766 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
| 2767 | |
| 2768 | /* |
| 2769 | * Log replica identity of the deleted tuple if there is one |
| 2770 | */ |
| 2771 | if (old_key_tuple != NULL) |
| 2772 | { |
| 2773 | xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2; |
| 2774 | xlhdr.t_infomask = old_key_tuple->t_data->t_infomask; |
| 2775 | xlhdr.t_hoff = old_key_tuple->t_data->t_hoff; |
| 2776 | |
| 2777 | XLogRegisterData((char *) &xlhdr, SizeOfHeapHeader); |
| 2778 | XLogRegisterData((char *) old_key_tuple->t_data |
| 2779 | + SizeofHeapTupleHeader, |
| 2780 | old_key_tuple->t_len |
| 2781 | - SizeofHeapTupleHeader); |
| 2782 | } |
| 2783 | |
| 2784 | /* filtering by origin on a row level is much more efficient */ |
| 2785 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
| 2786 | |
| 2787 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE); |
| 2788 | |
| 2789 | PageSetLSN(page, recptr); |
| 2790 | } |
| 2791 | |
| 2792 | END_CRIT_SECTION(); |
| 2793 | |
| 2794 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 2795 | |
| 2796 | if (vmbuffer != InvalidBuffer) |
| 2797 | ReleaseBuffer(vmbuffer); |
| 2798 | |
| 2799 | /* |
| 2800 | * If the tuple has toasted out-of-line attributes, we need to delete |
| 2801 | * those items too. We have to do this before releasing the buffer |
| 2802 | * because we need to look at the contents of the tuple, but it's OK to |
| 2803 | * release the content lock on the buffer first. |
| 2804 | */ |
| 2805 | if (relation->rd_rel->relkind != RELKIND_RELATION && |
| 2806 | relation->rd_rel->relkind != RELKIND_MATVIEW) |
| 2807 | { |
| 2808 | /* toast table entries should never be recursively toasted */ |
| 2809 | Assert(!HeapTupleHasExternal(&tp)); |
| 2810 | } |
| 2811 | else if (HeapTupleHasExternal(&tp)) |
| 2812 | toast_delete(relation, &tp, false); |
| 2813 | |
| 2814 | /* |
| 2815 | * Mark tuple for invalidation from system caches at next command |
| 2816 | * boundary. We have to do this before releasing the buffer because we |
| 2817 | * need to look at the contents of the tuple. |
| 2818 | */ |
| 2819 | CacheInvalidateHeapTuple(relation, &tp, NULL); |
| 2820 | |
| 2821 | /* Now we can release the buffer */ |
| 2822 | ReleaseBuffer(buffer); |
| 2823 | |
| 2824 | /* |
| 2825 | * Release the lmgr tuple lock, if we had it. |
| 2826 | */ |
| 2827 | if (have_tuple_lock) |
| 2828 | UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); |
| 2829 | |
| 2830 | pgstat_count_heap_delete(relation); |
| 2831 | |
| 2832 | if (old_key_tuple != NULL && old_key_copied) |
| 2833 | heap_freetuple(old_key_tuple); |
| 2834 | |
| 2835 | return TM_Ok; |
| 2836 | } |
| 2837 | |
| 2838 | /* |
| 2839 | * simple_heap_delete - delete a tuple |
| 2840 | * |
| 2841 | * This routine may be used to delete a tuple when concurrent updates of |
| 2842 | * the target tuple are not expected (for example, because we have a lock |
| 2843 | * on the relation associated with the tuple). Any failure is reported |
| 2844 | * via ereport(). |
| 2845 | */ |
| 2846 | void |
| 2847 | simple_heap_delete(Relation relation, ItemPointer tid) |
| 2848 | { |
| 2849 | TM_Result result; |
| 2850 | TM_FailureData tmfd; |
| 2851 | |
| 2852 | result = heap_delete(relation, tid, |
| 2853 | GetCurrentCommandId(true), InvalidSnapshot, |
| 2854 | true /* wait for commit */ , |
| 2855 | &tmfd, false /* changingPart */ ); |
| 2856 | switch (result) |
| 2857 | { |
| 2858 | case TM_SelfModified: |
| 2859 | /* Tuple was already updated in current command? */ |
| 2860 | elog(ERROR, "tuple already updated by self" ); |
| 2861 | break; |
| 2862 | |
| 2863 | case TM_Ok: |
| 2864 | /* done successfully */ |
| 2865 | break; |
| 2866 | |
| 2867 | case TM_Updated: |
| 2868 | elog(ERROR, "tuple concurrently updated" ); |
| 2869 | break; |
| 2870 | |
| 2871 | case TM_Deleted: |
| 2872 | elog(ERROR, "tuple concurrently deleted" ); |
| 2873 | break; |
| 2874 | |
| 2875 | default: |
| 2876 | elog(ERROR, "unrecognized heap_delete status: %u" , result); |
| 2877 | break; |
| 2878 | } |
| 2879 | } |
| 2880 | |
| 2881 | /* |
| 2882 | * heap_update - replace a tuple |
| 2883 | * |
| 2884 | * See table_tuple_update() for an explanation of the parameters, except that |
| 2885 | * this routine directly takes a tuple rather than a slot. |
| 2886 | * |
| 2887 | * In the failure cases, the routine fills *tmfd with the tuple's t_ctid, |
| 2888 | * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last |
| 2889 | * only for TM_SelfModified, since we cannot obtain cmax from a combocid |
| 2890 | * generated by another transaction). |
| 2891 | */ |
| 2892 | TM_Result |
| 2893 | heap_update(Relation relation, ItemPointer otid, HeapTuple newtup, |
| 2894 | CommandId cid, Snapshot crosscheck, bool wait, |
| 2895 | TM_FailureData *tmfd, LockTupleMode *lockmode) |
| 2896 | { |
| 2897 | TM_Result result; |
| 2898 | TransactionId xid = GetCurrentTransactionId(); |
| 2899 | Bitmapset *hot_attrs; |
| 2900 | Bitmapset *key_attrs; |
| 2901 | Bitmapset *id_attrs; |
| 2902 | Bitmapset *interesting_attrs; |
| 2903 | Bitmapset *modified_attrs; |
| 2904 | ItemId lp; |
| 2905 | HeapTupleData oldtup; |
| 2906 | HeapTuple heaptup; |
| 2907 | HeapTuple old_key_tuple = NULL; |
| 2908 | bool old_key_copied = false; |
| 2909 | Page page; |
| 2910 | BlockNumber block; |
| 2911 | MultiXactStatus mxact_status; |
| 2912 | Buffer buffer, |
| 2913 | newbuf, |
| 2914 | vmbuffer = InvalidBuffer, |
| 2915 | vmbuffer_new = InvalidBuffer; |
| 2916 | bool need_toast; |
| 2917 | Size newtupsize, |
| 2918 | pagefree; |
| 2919 | bool have_tuple_lock = false; |
| 2920 | bool iscombo; |
| 2921 | bool use_hot_update = false; |
| 2922 | bool hot_attrs_checked = false; |
| 2923 | bool key_intact; |
| 2924 | bool all_visible_cleared = false; |
| 2925 | bool all_visible_cleared_new = false; |
| 2926 | bool checked_lockers; |
| 2927 | bool locker_remains; |
| 2928 | TransactionId xmax_new_tuple, |
| 2929 | xmax_old_tuple; |
| 2930 | uint16 infomask_old_tuple, |
| 2931 | infomask2_old_tuple, |
| 2932 | infomask_new_tuple, |
| 2933 | infomask2_new_tuple; |
| 2934 | |
| 2935 | Assert(ItemPointerIsValid(otid)); |
| 2936 | |
| 2937 | /* |
| 2938 | * Forbid this during a parallel operation, lest it allocate a combocid. |
| 2939 | * Other workers might need that combocid for visibility checks, and we |
| 2940 | * have no provision for broadcasting it to them. |
| 2941 | */ |
| 2942 | if (IsInParallelMode()) |
| 2943 | ereport(ERROR, |
| 2944 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
| 2945 | errmsg("cannot update tuples during a parallel operation" ))); |
| 2946 | |
| 2947 | /* |
| 2948 | * Fetch the list of attributes to be checked for various operations. |
| 2949 | * |
| 2950 | * For HOT considerations, this is wasted effort if we fail to update or |
| 2951 | * have to put the new tuple on a different page. But we must compute the |
| 2952 | * list before obtaining buffer lock --- in the worst case, if we are |
| 2953 | * doing an update on one of the relevant system catalogs, we could |
| 2954 | * deadlock if we try to fetch the list later. In any case, the relcache |
| 2955 | * caches the data so this is usually pretty cheap. |
| 2956 | * |
| 2957 | * We also need columns used by the replica identity and columns that are |
| 2958 | * considered the "key" of rows in the table. |
| 2959 | * |
| 2960 | * Note that we get copies of each bitmap, so we need not worry about |
| 2961 | * relcache flush happening midway through. |
| 2962 | */ |
| 2963 | hot_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_ALL); |
| 2964 | key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY); |
| 2965 | id_attrs = RelationGetIndexAttrBitmap(relation, |
| 2966 | INDEX_ATTR_BITMAP_IDENTITY_KEY); |
| 2967 | |
| 2968 | |
| 2969 | block = ItemPointerGetBlockNumber(otid); |
| 2970 | buffer = ReadBuffer(relation, block); |
| 2971 | page = BufferGetPage(buffer); |
| 2972 | |
| 2973 | interesting_attrs = NULL; |
| 2974 | |
| 2975 | /* |
| 2976 | * If the page is already full, there is hardly any chance of doing a HOT |
| 2977 | * update on this page. It might be wasteful effort to look for index |
| 2978 | * column updates only to later reject HOT updates for lack of space in |
| 2979 | * the same page. So we be conservative and only fetch hot_attrs if the |
| 2980 | * page is not already full. Since we are already holding a pin on the |
| 2981 | * buffer, there is no chance that the buffer can get cleaned up |
| 2982 | * concurrently and even if that was possible, in the worst case we lose a |
| 2983 | * chance to do a HOT update. |
| 2984 | */ |
| 2985 | if (!PageIsFull(page)) |
| 2986 | { |
| 2987 | interesting_attrs = bms_add_members(interesting_attrs, hot_attrs); |
| 2988 | hot_attrs_checked = true; |
| 2989 | } |
| 2990 | interesting_attrs = bms_add_members(interesting_attrs, key_attrs); |
| 2991 | interesting_attrs = bms_add_members(interesting_attrs, id_attrs); |
| 2992 | |
| 2993 | /* |
| 2994 | * Before locking the buffer, pin the visibility map page if it appears to |
| 2995 | * be necessary. Since we haven't got the lock yet, someone else might be |
| 2996 | * in the middle of changing this, so we'll need to recheck after we have |
| 2997 | * the lock. |
| 2998 | */ |
| 2999 | if (PageIsAllVisible(page)) |
| 3000 | visibilitymap_pin(relation, block, &vmbuffer); |
| 3001 | |
| 3002 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 3003 | |
| 3004 | lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid)); |
| 3005 | Assert(ItemIdIsNormal(lp)); |
| 3006 | |
| 3007 | /* |
| 3008 | * Fill in enough data in oldtup for HeapDetermineModifiedColumns to work |
| 3009 | * properly. |
| 3010 | */ |
| 3011 | oldtup.t_tableOid = RelationGetRelid(relation); |
| 3012 | oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp); |
| 3013 | oldtup.t_len = ItemIdGetLength(lp); |
| 3014 | oldtup.t_self = *otid; |
| 3015 | |
| 3016 | /* the new tuple is ready, except for this: */ |
| 3017 | newtup->t_tableOid = RelationGetRelid(relation); |
| 3018 | |
| 3019 | /* Determine columns modified by the update. */ |
| 3020 | modified_attrs = HeapDetermineModifiedColumns(relation, interesting_attrs, |
| 3021 | &oldtup, newtup); |
| 3022 | |
| 3023 | /* |
| 3024 | * If we're not updating any "key" column, we can grab a weaker lock type. |
| 3025 | * This allows for more concurrency when we are running simultaneously |
| 3026 | * with foreign key checks. |
| 3027 | * |
| 3028 | * Note that if a column gets detoasted while executing the update, but |
| 3029 | * the value ends up being the same, this test will fail and we will use |
| 3030 | * the stronger lock. This is acceptable; the important case to optimize |
| 3031 | * is updates that don't manipulate key columns, not those that |
| 3032 | * serendipitiously arrive at the same key values. |
| 3033 | */ |
| 3034 | if (!bms_overlap(modified_attrs, key_attrs)) |
| 3035 | { |
| 3036 | *lockmode = LockTupleNoKeyExclusive; |
| 3037 | mxact_status = MultiXactStatusNoKeyUpdate; |
| 3038 | key_intact = true; |
| 3039 | |
| 3040 | /* |
| 3041 | * If this is the first possibly-multixact-able operation in the |
| 3042 | * current transaction, set my per-backend OldestMemberMXactId |
| 3043 | * setting. We can be certain that the transaction will never become a |
| 3044 | * member of any older MultiXactIds than that. (We have to do this |
| 3045 | * even if we end up just using our own TransactionId below, since |
| 3046 | * some other backend could incorporate our XID into a MultiXact |
| 3047 | * immediately afterwards.) |
| 3048 | */ |
| 3049 | MultiXactIdSetOldestMember(); |
| 3050 | } |
| 3051 | else |
| 3052 | { |
| 3053 | *lockmode = LockTupleExclusive; |
| 3054 | mxact_status = MultiXactStatusUpdate; |
| 3055 | key_intact = false; |
| 3056 | } |
| 3057 | |
| 3058 | /* |
| 3059 | * Note: beyond this point, use oldtup not otid to refer to old tuple. |
| 3060 | * otid may very well point at newtup->t_self, which we will overwrite |
| 3061 | * with the new tuple's location, so there's great risk of confusion if we |
| 3062 | * use otid anymore. |
| 3063 | */ |
| 3064 | |
| 3065 | l2: |
| 3066 | checked_lockers = false; |
| 3067 | locker_remains = false; |
| 3068 | result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer); |
| 3069 | |
| 3070 | /* see below about the "no wait" case */ |
| 3071 | Assert(result != TM_BeingModified || wait); |
| 3072 | |
| 3073 | if (result == TM_Invisible) |
| 3074 | { |
| 3075 | UnlockReleaseBuffer(buffer); |
| 3076 | ereport(ERROR, |
| 3077 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 3078 | errmsg("attempted to update invisible tuple" ))); |
| 3079 | } |
| 3080 | else if (result == TM_BeingModified && wait) |
| 3081 | { |
| 3082 | TransactionId xwait; |
| 3083 | uint16 infomask; |
| 3084 | bool can_continue = false; |
| 3085 | |
| 3086 | /* |
| 3087 | * XXX note that we don't consider the "no wait" case here. This |
| 3088 | * isn't a problem currently because no caller uses that case, but it |
| 3089 | * should be fixed if such a caller is introduced. It wasn't a |
| 3090 | * problem previously because this code would always wait, but now |
| 3091 | * that some tuple locks do not conflict with one of the lock modes we |
| 3092 | * use, it is possible that this case is interesting to handle |
| 3093 | * specially. |
| 3094 | * |
| 3095 | * This may cause failures with third-party code that calls |
| 3096 | * heap_update directly. |
| 3097 | */ |
| 3098 | |
| 3099 | /* must copy state data before unlocking buffer */ |
| 3100 | xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data); |
| 3101 | infomask = oldtup.t_data->t_infomask; |
| 3102 | |
| 3103 | /* |
| 3104 | * Now we have to do something about the existing locker. If it's a |
| 3105 | * multi, sleep on it; we might be awakened before it is completely |
| 3106 | * gone (or even not sleep at all in some cases); we need to preserve |
| 3107 | * it as locker, unless it is gone completely. |
| 3108 | * |
| 3109 | * If it's not a multi, we need to check for sleeping conditions |
| 3110 | * before actually going to sleep. If the update doesn't conflict |
| 3111 | * with the locks, we just continue without sleeping (but making sure |
| 3112 | * it is preserved). |
| 3113 | * |
| 3114 | * Before sleeping, we need to acquire tuple lock to establish our |
| 3115 | * priority for the tuple (see heap_lock_tuple). LockTuple will |
| 3116 | * release us when we are next-in-line for the tuple. Note we must |
| 3117 | * not acquire the tuple lock until we're sure we're going to sleep; |
| 3118 | * otherwise we're open for race conditions with other transactions |
| 3119 | * holding the tuple lock which sleep on us. |
| 3120 | * |
| 3121 | * If we are forced to "start over" below, we keep the tuple lock; |
| 3122 | * this arranges that we stay at the head of the line while rechecking |
| 3123 | * tuple state. |
| 3124 | */ |
| 3125 | if (infomask & HEAP_XMAX_IS_MULTI) |
| 3126 | { |
| 3127 | TransactionId update_xact; |
| 3128 | int remain; |
| 3129 | bool current_is_member = false; |
| 3130 | |
| 3131 | if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask, |
| 3132 | *lockmode, ¤t_is_member)) |
| 3133 | { |
| 3134 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 3135 | |
| 3136 | /* |
| 3137 | * Acquire the lock, if necessary (but skip it when we're |
| 3138 | * requesting a lock and already have one; avoids deadlock). |
| 3139 | */ |
| 3140 | if (!current_is_member) |
| 3141 | heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode, |
| 3142 | LockWaitBlock, &have_tuple_lock); |
| 3143 | |
| 3144 | /* wait for multixact */ |
| 3145 | MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask, |
| 3146 | relation, &oldtup.t_self, XLTW_Update, |
| 3147 | &remain); |
| 3148 | checked_lockers = true; |
| 3149 | locker_remains = remain != 0; |
| 3150 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 3151 | |
| 3152 | /* |
| 3153 | * If xwait had just locked the tuple then some other xact |
| 3154 | * could update this tuple before we get to this point. Check |
| 3155 | * for xmax change, and start over if so. |
| 3156 | */ |
| 3157 | if (xmax_infomask_changed(oldtup.t_data->t_infomask, |
| 3158 | infomask) || |
| 3159 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data), |
| 3160 | xwait)) |
| 3161 | goto l2; |
| 3162 | } |
| 3163 | |
| 3164 | /* |
| 3165 | * Note that the multixact may not be done by now. It could have |
| 3166 | * surviving members; our own xact or other subxacts of this |
| 3167 | * backend, and also any other concurrent transaction that locked |
| 3168 | * the tuple with LockTupleKeyShare if we only got |
| 3169 | * LockTupleNoKeyExclusive. If this is the case, we have to be |
| 3170 | * careful to mark the updated tuple with the surviving members in |
| 3171 | * Xmax. |
| 3172 | * |
| 3173 | * Note that there could have been another update in the |
| 3174 | * MultiXact. In that case, we need to check whether it committed |
| 3175 | * or aborted. If it aborted we are safe to update it again; |
| 3176 | * otherwise there is an update conflict, and we have to return |
| 3177 | * TableTuple{Deleted, Updated} below. |
| 3178 | * |
| 3179 | * In the LockTupleExclusive case, we still need to preserve the |
| 3180 | * surviving members: those would include the tuple locks we had |
| 3181 | * before this one, which are important to keep in case this |
| 3182 | * subxact aborts. |
| 3183 | */ |
| 3184 | if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask)) |
| 3185 | update_xact = HeapTupleGetUpdateXid(oldtup.t_data); |
| 3186 | else |
| 3187 | update_xact = InvalidTransactionId; |
| 3188 | |
| 3189 | /* |
| 3190 | * There was no UPDATE in the MultiXact; or it aborted. No |
| 3191 | * TransactionIdIsInProgress() call needed here, since we called |
| 3192 | * MultiXactIdWait() above. |
| 3193 | */ |
| 3194 | if (!TransactionIdIsValid(update_xact) || |
| 3195 | TransactionIdDidAbort(update_xact)) |
| 3196 | can_continue = true; |
| 3197 | } |
| 3198 | else if (TransactionIdIsCurrentTransactionId(xwait)) |
| 3199 | { |
| 3200 | /* |
| 3201 | * The only locker is ourselves; we can avoid grabbing the tuple |
| 3202 | * lock here, but must preserve our locking information. |
| 3203 | */ |
| 3204 | checked_lockers = true; |
| 3205 | locker_remains = true; |
| 3206 | can_continue = true; |
| 3207 | } |
| 3208 | else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact) |
| 3209 | { |
| 3210 | /* |
| 3211 | * If it's just a key-share locker, and we're not changing the key |
| 3212 | * columns, we don't need to wait for it to end; but we need to |
| 3213 | * preserve it as locker. |
| 3214 | */ |
| 3215 | checked_lockers = true; |
| 3216 | locker_remains = true; |
| 3217 | can_continue = true; |
| 3218 | } |
| 3219 | else |
| 3220 | { |
| 3221 | /* |
| 3222 | * Wait for regular transaction to end; but first, acquire tuple |
| 3223 | * lock. |
| 3224 | */ |
| 3225 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 3226 | heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode, |
| 3227 | LockWaitBlock, &have_tuple_lock); |
| 3228 | XactLockTableWait(xwait, relation, &oldtup.t_self, |
| 3229 | XLTW_Update); |
| 3230 | checked_lockers = true; |
| 3231 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 3232 | |
| 3233 | /* |
| 3234 | * xwait is done, but if xwait had just locked the tuple then some |
| 3235 | * other xact could update this tuple before we get to this point. |
| 3236 | * Check for xmax change, and start over if so. |
| 3237 | */ |
| 3238 | if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) || |
| 3239 | !TransactionIdEquals(xwait, |
| 3240 | HeapTupleHeaderGetRawXmax(oldtup.t_data))) |
| 3241 | goto l2; |
| 3242 | |
| 3243 | /* Otherwise check if it committed or aborted */ |
| 3244 | UpdateXmaxHintBits(oldtup.t_data, buffer, xwait); |
| 3245 | if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) |
| 3246 | can_continue = true; |
| 3247 | } |
| 3248 | |
| 3249 | if (can_continue) |
| 3250 | result = TM_Ok; |
| 3251 | else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid) || |
| 3252 | HeapTupleHeaderIndicatesMovedPartitions(oldtup.t_data)) |
| 3253 | result = TM_Updated; |
| 3254 | else |
| 3255 | result = TM_Deleted; |
| 3256 | } |
| 3257 | |
| 3258 | if (crosscheck != InvalidSnapshot && result == TM_Ok) |
| 3259 | { |
| 3260 | /* Perform additional check for transaction-snapshot mode RI updates */ |
| 3261 | if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer)) |
| 3262 | { |
| 3263 | result = TM_Updated; |
| 3264 | Assert(!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid)); |
| 3265 | } |
| 3266 | } |
| 3267 | |
| 3268 | if (result != TM_Ok) |
| 3269 | { |
| 3270 | Assert(result == TM_SelfModified || |
| 3271 | result == TM_Updated || |
| 3272 | result == TM_Deleted || |
| 3273 | result == TM_BeingModified); |
| 3274 | Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)); |
| 3275 | Assert(result != TM_Updated || |
| 3276 | !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid)); |
| 3277 | tmfd->ctid = oldtup.t_data->t_ctid; |
| 3278 | tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data); |
| 3279 | if (result == TM_SelfModified) |
| 3280 | tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data); |
| 3281 | else |
| 3282 | tmfd->cmax = InvalidCommandId; |
| 3283 | UnlockReleaseBuffer(buffer); |
| 3284 | if (have_tuple_lock) |
| 3285 | UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode); |
| 3286 | if (vmbuffer != InvalidBuffer) |
| 3287 | ReleaseBuffer(vmbuffer); |
| 3288 | bms_free(hot_attrs); |
| 3289 | bms_free(key_attrs); |
| 3290 | bms_free(id_attrs); |
| 3291 | bms_free(modified_attrs); |
| 3292 | bms_free(interesting_attrs); |
| 3293 | return result; |
| 3294 | } |
| 3295 | |
| 3296 | /* |
| 3297 | * If we didn't pin the visibility map page and the page has become all |
| 3298 | * visible while we were busy locking the buffer, or during some |
| 3299 | * subsequent window during which we had it unlocked, we'll have to unlock |
| 3300 | * and re-lock, to avoid holding the buffer lock across an I/O. That's a |
| 3301 | * bit unfortunate, especially since we'll now have to recheck whether the |
| 3302 | * tuple has been locked or updated under us, but hopefully it won't |
| 3303 | * happen very often. |
| 3304 | */ |
| 3305 | if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) |
| 3306 | { |
| 3307 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 3308 | visibilitymap_pin(relation, block, &vmbuffer); |
| 3309 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 3310 | goto l2; |
| 3311 | } |
| 3312 | |
| 3313 | /* Fill in transaction status data */ |
| 3314 | |
| 3315 | /* |
| 3316 | * If the tuple we're updating is locked, we need to preserve the locking |
| 3317 | * info in the old tuple's Xmax. Prepare a new Xmax value for this. |
| 3318 | */ |
| 3319 | compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data), |
| 3320 | oldtup.t_data->t_infomask, |
| 3321 | oldtup.t_data->t_infomask2, |
| 3322 | xid, *lockmode, true, |
| 3323 | &xmax_old_tuple, &infomask_old_tuple, |
| 3324 | &infomask2_old_tuple); |
| 3325 | |
| 3326 | /* |
| 3327 | * And also prepare an Xmax value for the new copy of the tuple. If there |
| 3328 | * was no xmax previously, or there was one but all lockers are now gone, |
| 3329 | * then use InvalidXid; otherwise, get the xmax from the old tuple. (In |
| 3330 | * rare cases that might also be InvalidXid and yet not have the |
| 3331 | * HEAP_XMAX_INVALID bit set; that's fine.) |
| 3332 | */ |
| 3333 | if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) || |
| 3334 | HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) || |
| 3335 | (checked_lockers && !locker_remains)) |
| 3336 | xmax_new_tuple = InvalidTransactionId; |
| 3337 | else |
| 3338 | xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data); |
| 3339 | |
| 3340 | if (!TransactionIdIsValid(xmax_new_tuple)) |
| 3341 | { |
| 3342 | infomask_new_tuple = HEAP_XMAX_INVALID; |
| 3343 | infomask2_new_tuple = 0; |
| 3344 | } |
| 3345 | else |
| 3346 | { |
| 3347 | /* |
| 3348 | * If we found a valid Xmax for the new tuple, then the infomask bits |
| 3349 | * to use on the new tuple depend on what was there on the old one. |
| 3350 | * Note that since we're doing an update, the only possibility is that |
| 3351 | * the lockers had FOR KEY SHARE lock. |
| 3352 | */ |
| 3353 | if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) |
| 3354 | { |
| 3355 | GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple, |
| 3356 | &infomask2_new_tuple); |
| 3357 | } |
| 3358 | else |
| 3359 | { |
| 3360 | infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY; |
| 3361 | infomask2_new_tuple = 0; |
| 3362 | } |
| 3363 | } |
| 3364 | |
| 3365 | /* |
| 3366 | * Prepare the new tuple with the appropriate initial values of Xmin and |
| 3367 | * Xmax, as well as initial infomask bits as computed above. |
| 3368 | */ |
| 3369 | newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK); |
| 3370 | newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK); |
| 3371 | HeapTupleHeaderSetXmin(newtup->t_data, xid); |
| 3372 | HeapTupleHeaderSetCmin(newtup->t_data, cid); |
| 3373 | newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple; |
| 3374 | newtup->t_data->t_infomask2 |= infomask2_new_tuple; |
| 3375 | HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple); |
| 3376 | |
| 3377 | /* |
| 3378 | * Replace cid with a combo cid if necessary. Note that we already put |
| 3379 | * the plain cid into the new tuple. |
| 3380 | */ |
| 3381 | HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo); |
| 3382 | |
| 3383 | /* |
| 3384 | * If the toaster needs to be activated, OR if the new tuple will not fit |
| 3385 | * on the same page as the old, then we need to release the content lock |
| 3386 | * (but not the pin!) on the old tuple's buffer while we are off doing |
| 3387 | * TOAST and/or table-file-extension work. We must mark the old tuple to |
| 3388 | * show that it's locked, else other processes may try to update it |
| 3389 | * themselves. |
| 3390 | * |
| 3391 | * We need to invoke the toaster if there are already any out-of-line |
| 3392 | * toasted values present, or if the new tuple is over-threshold. |
| 3393 | */ |
| 3394 | if (relation->rd_rel->relkind != RELKIND_RELATION && |
| 3395 | relation->rd_rel->relkind != RELKIND_MATVIEW) |
| 3396 | { |
| 3397 | /* toast table entries should never be recursively toasted */ |
| 3398 | Assert(!HeapTupleHasExternal(&oldtup)); |
| 3399 | Assert(!HeapTupleHasExternal(newtup)); |
| 3400 | need_toast = false; |
| 3401 | } |
| 3402 | else |
| 3403 | need_toast = (HeapTupleHasExternal(&oldtup) || |
| 3404 | HeapTupleHasExternal(newtup) || |
| 3405 | newtup->t_len > TOAST_TUPLE_THRESHOLD); |
| 3406 | |
| 3407 | pagefree = PageGetHeapFreeSpace(page); |
| 3408 | |
| 3409 | newtupsize = MAXALIGN(newtup->t_len); |
| 3410 | |
| 3411 | if (need_toast || newtupsize > pagefree) |
| 3412 | { |
| 3413 | TransactionId xmax_lock_old_tuple; |
| 3414 | uint16 infomask_lock_old_tuple, |
| 3415 | infomask2_lock_old_tuple; |
| 3416 | bool cleared_all_frozen = false; |
| 3417 | |
| 3418 | /* |
| 3419 | * To prevent concurrent sessions from updating the tuple, we have to |
| 3420 | * temporarily mark it locked, while we release the page-level lock. |
| 3421 | * |
| 3422 | * To satisfy the rule that any xid potentially appearing in a buffer |
| 3423 | * written out to disk, we unfortunately have to WAL log this |
| 3424 | * temporary modification. We can reuse xl_heap_lock for this |
| 3425 | * purpose. If we crash/error before following through with the |
| 3426 | * actual update, xmax will be of an aborted transaction, allowing |
| 3427 | * other sessions to proceed. |
| 3428 | */ |
| 3429 | |
| 3430 | /* |
| 3431 | * Compute xmax / infomask appropriate for locking the tuple. This has |
| 3432 | * to be done separately from the combo that's going to be used for |
| 3433 | * updating, because the potentially created multixact would otherwise |
| 3434 | * be wrong. |
| 3435 | */ |
| 3436 | compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data), |
| 3437 | oldtup.t_data->t_infomask, |
| 3438 | oldtup.t_data->t_infomask2, |
| 3439 | xid, *lockmode, false, |
| 3440 | &xmax_lock_old_tuple, &infomask_lock_old_tuple, |
| 3441 | &infomask2_lock_old_tuple); |
| 3442 | |
| 3443 | Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple)); |
| 3444 | |
| 3445 | START_CRIT_SECTION(); |
| 3446 | |
| 3447 | /* Clear obsolete visibility flags ... */ |
| 3448 | oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
| 3449 | oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 3450 | HeapTupleClearHotUpdated(&oldtup); |
| 3451 | /* ... and store info about transaction updating this tuple */ |
| 3452 | Assert(TransactionIdIsValid(xmax_lock_old_tuple)); |
| 3453 | HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple); |
| 3454 | oldtup.t_data->t_infomask |= infomask_lock_old_tuple; |
| 3455 | oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple; |
| 3456 | HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo); |
| 3457 | |
| 3458 | /* temporarily make it look not-updated, but locked */ |
| 3459 | oldtup.t_data->t_ctid = oldtup.t_self; |
| 3460 | |
| 3461 | /* |
| 3462 | * Clear all-frozen bit on visibility map if needed. We could |
| 3463 | * immediately reset ALL_VISIBLE, but given that the WAL logging |
| 3464 | * overhead would be unchanged, that doesn't seem necessarily |
| 3465 | * worthwhile. |
| 3466 | */ |
| 3467 | if (PageIsAllVisible(BufferGetPage(buffer)) && |
| 3468 | visibilitymap_clear(relation, block, vmbuffer, |
| 3469 | VISIBILITYMAP_ALL_FROZEN)) |
| 3470 | cleared_all_frozen = true; |
| 3471 | |
| 3472 | MarkBufferDirty(buffer); |
| 3473 | |
| 3474 | if (RelationNeedsWAL(relation)) |
| 3475 | { |
| 3476 | xl_heap_lock xlrec; |
| 3477 | XLogRecPtr recptr; |
| 3478 | |
| 3479 | XLogBeginInsert(); |
| 3480 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
| 3481 | |
| 3482 | xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self); |
| 3483 | xlrec.locking_xid = xmax_lock_old_tuple; |
| 3484 | xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask, |
| 3485 | oldtup.t_data->t_infomask2); |
| 3486 | xlrec.flags = |
| 3487 | cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0; |
| 3488 | XLogRegisterData((char *) &xlrec, SizeOfHeapLock); |
| 3489 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK); |
| 3490 | PageSetLSN(page, recptr); |
| 3491 | } |
| 3492 | |
| 3493 | END_CRIT_SECTION(); |
| 3494 | |
| 3495 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 3496 | |
| 3497 | /* |
| 3498 | * Let the toaster do its thing, if needed. |
| 3499 | * |
| 3500 | * Note: below this point, heaptup is the data we actually intend to |
| 3501 | * store into the relation; newtup is the caller's original untoasted |
| 3502 | * data. |
| 3503 | */ |
| 3504 | if (need_toast) |
| 3505 | { |
| 3506 | /* Note we always use WAL and FSM during updates */ |
| 3507 | heaptup = toast_insert_or_update(relation, newtup, &oldtup, 0); |
| 3508 | newtupsize = MAXALIGN(heaptup->t_len); |
| 3509 | } |
| 3510 | else |
| 3511 | heaptup = newtup; |
| 3512 | |
| 3513 | /* |
| 3514 | * Now, do we need a new page for the tuple, or not? This is a bit |
| 3515 | * tricky since someone else could have added tuples to the page while |
| 3516 | * we weren't looking. We have to recheck the available space after |
| 3517 | * reacquiring the buffer lock. But don't bother to do that if the |
| 3518 | * former amount of free space is still not enough; it's unlikely |
| 3519 | * there's more free now than before. |
| 3520 | * |
| 3521 | * What's more, if we need to get a new page, we will need to acquire |
| 3522 | * buffer locks on both old and new pages. To avoid deadlock against |
| 3523 | * some other backend trying to get the same two locks in the other |
| 3524 | * order, we must be consistent about the order we get the locks in. |
| 3525 | * We use the rule "lock the lower-numbered page of the relation |
| 3526 | * first". To implement this, we must do RelationGetBufferForTuple |
| 3527 | * while not holding the lock on the old page, and we must rely on it |
| 3528 | * to get the locks on both pages in the correct order. |
| 3529 | */ |
| 3530 | if (newtupsize > pagefree) |
| 3531 | { |
| 3532 | /* Assume there's no chance to put heaptup on same page. */ |
| 3533 | newbuf = RelationGetBufferForTuple(relation, heaptup->t_len, |
| 3534 | buffer, 0, NULL, |
| 3535 | &vmbuffer_new, &vmbuffer); |
| 3536 | } |
| 3537 | else |
| 3538 | { |
| 3539 | /* Re-acquire the lock on the old tuple's page. */ |
| 3540 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 3541 | /* Re-check using the up-to-date free space */ |
| 3542 | pagefree = PageGetHeapFreeSpace(page); |
| 3543 | if (newtupsize > pagefree) |
| 3544 | { |
| 3545 | /* |
| 3546 | * Rats, it doesn't fit anymore. We must now unlock and |
| 3547 | * relock to avoid deadlock. Fortunately, this path should |
| 3548 | * seldom be taken. |
| 3549 | */ |
| 3550 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 3551 | newbuf = RelationGetBufferForTuple(relation, heaptup->t_len, |
| 3552 | buffer, 0, NULL, |
| 3553 | &vmbuffer_new, &vmbuffer); |
| 3554 | } |
| 3555 | else |
| 3556 | { |
| 3557 | /* OK, it fits here, so we're done. */ |
| 3558 | newbuf = buffer; |
| 3559 | } |
| 3560 | } |
| 3561 | } |
| 3562 | else |
| 3563 | { |
| 3564 | /* No TOAST work needed, and it'll fit on same page */ |
| 3565 | newbuf = buffer; |
| 3566 | heaptup = newtup; |
| 3567 | } |
| 3568 | |
| 3569 | /* |
| 3570 | * We're about to do the actual update -- check for conflict first, to |
| 3571 | * avoid possibly having to roll back work we've just done. |
| 3572 | * |
| 3573 | * This is safe without a recheck as long as there is no possibility of |
| 3574 | * another process scanning the pages between this check and the update |
| 3575 | * being visible to the scan (i.e., exclusive buffer content lock(s) are |
| 3576 | * continuously held from this point until the tuple update is visible). |
| 3577 | * |
| 3578 | * For the new tuple the only check needed is at the relation level, but |
| 3579 | * since both tuples are in the same relation and the check for oldtup |
| 3580 | * will include checking the relation level, there is no benefit to a |
| 3581 | * separate check for the new tuple. |
| 3582 | */ |
| 3583 | CheckForSerializableConflictIn(relation, &oldtup, buffer); |
| 3584 | |
| 3585 | /* |
| 3586 | * At this point newbuf and buffer are both pinned and locked, and newbuf |
| 3587 | * has enough space for the new tuple. If they are the same buffer, only |
| 3588 | * one pin is held. |
| 3589 | */ |
| 3590 | |
| 3591 | if (newbuf == buffer) |
| 3592 | { |
| 3593 | /* |
| 3594 | * Since the new tuple is going into the same page, we might be able |
| 3595 | * to do a HOT update. Check if any of the index columns have been |
| 3596 | * changed. If the page was already full, we may have skipped checking |
| 3597 | * for index columns, and also can't do a HOT update. |
| 3598 | */ |
| 3599 | if (hot_attrs_checked && !bms_overlap(modified_attrs, hot_attrs)) |
| 3600 | use_hot_update = true; |
| 3601 | } |
| 3602 | else |
| 3603 | { |
| 3604 | /* Set a hint that the old page could use prune/defrag */ |
| 3605 | PageSetFull(page); |
| 3606 | } |
| 3607 | |
| 3608 | /* |
| 3609 | * Compute replica identity tuple before entering the critical section so |
| 3610 | * we don't PANIC upon a memory allocation failure. |
| 3611 | * ExtractReplicaIdentity() will return NULL if nothing needs to be |
| 3612 | * logged. |
| 3613 | */ |
| 3614 | old_key_tuple = ExtractReplicaIdentity(relation, &oldtup, |
| 3615 | bms_overlap(modified_attrs, id_attrs), |
| 3616 | &old_key_copied); |
| 3617 | |
| 3618 | /* NO EREPORT(ERROR) from here till changes are logged */ |
| 3619 | START_CRIT_SECTION(); |
| 3620 | |
| 3621 | /* |
| 3622 | * If this transaction commits, the old tuple will become DEAD sooner or |
| 3623 | * later. Set flag that this page is a candidate for pruning once our xid |
| 3624 | * falls below the OldestXmin horizon. If the transaction finally aborts, |
| 3625 | * the subsequent page pruning will be a no-op and the hint will be |
| 3626 | * cleared. |
| 3627 | * |
| 3628 | * XXX Should we set hint on newbuf as well? If the transaction aborts, |
| 3629 | * there would be a prunable tuple in the newbuf; but for now we choose |
| 3630 | * not to optimize for aborts. Note that heap_xlog_update must be kept in |
| 3631 | * sync if this decision changes. |
| 3632 | */ |
| 3633 | PageSetPrunable(page, xid); |
| 3634 | |
| 3635 | if (use_hot_update) |
| 3636 | { |
| 3637 | /* Mark the old tuple as HOT-updated */ |
| 3638 | HeapTupleSetHotUpdated(&oldtup); |
| 3639 | /* And mark the new tuple as heap-only */ |
| 3640 | HeapTupleSetHeapOnly(heaptup); |
| 3641 | /* Mark the caller's copy too, in case different from heaptup */ |
| 3642 | HeapTupleSetHeapOnly(newtup); |
| 3643 | } |
| 3644 | else |
| 3645 | { |
| 3646 | /* Make sure tuples are correctly marked as not-HOT */ |
| 3647 | HeapTupleClearHotUpdated(&oldtup); |
| 3648 | HeapTupleClearHeapOnly(heaptup); |
| 3649 | HeapTupleClearHeapOnly(newtup); |
| 3650 | } |
| 3651 | |
| 3652 | RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */ |
| 3653 | |
| 3654 | |
| 3655 | /* Clear obsolete visibility flags, possibly set by ourselves above... */ |
| 3656 | oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
| 3657 | oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 3658 | /* ... and store info about transaction updating this tuple */ |
| 3659 | Assert(TransactionIdIsValid(xmax_old_tuple)); |
| 3660 | HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple); |
| 3661 | oldtup.t_data->t_infomask |= infomask_old_tuple; |
| 3662 | oldtup.t_data->t_infomask2 |= infomask2_old_tuple; |
| 3663 | HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo); |
| 3664 | |
| 3665 | /* record address of new tuple in t_ctid of old one */ |
| 3666 | oldtup.t_data->t_ctid = heaptup->t_self; |
| 3667 | |
| 3668 | /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */ |
| 3669 | if (PageIsAllVisible(BufferGetPage(buffer))) |
| 3670 | { |
| 3671 | all_visible_cleared = true; |
| 3672 | PageClearAllVisible(BufferGetPage(buffer)); |
| 3673 | visibilitymap_clear(relation, BufferGetBlockNumber(buffer), |
| 3674 | vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 3675 | } |
| 3676 | if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf))) |
| 3677 | { |
| 3678 | all_visible_cleared_new = true; |
| 3679 | PageClearAllVisible(BufferGetPage(newbuf)); |
| 3680 | visibilitymap_clear(relation, BufferGetBlockNumber(newbuf), |
| 3681 | vmbuffer_new, VISIBILITYMAP_VALID_BITS); |
| 3682 | } |
| 3683 | |
| 3684 | if (newbuf != buffer) |
| 3685 | MarkBufferDirty(newbuf); |
| 3686 | MarkBufferDirty(buffer); |
| 3687 | |
| 3688 | /* XLOG stuff */ |
| 3689 | if (RelationNeedsWAL(relation)) |
| 3690 | { |
| 3691 | XLogRecPtr recptr; |
| 3692 | |
| 3693 | /* |
| 3694 | * For logical decoding we need combocids to properly decode the |
| 3695 | * catalog. |
| 3696 | */ |
| 3697 | if (RelationIsAccessibleInLogicalDecoding(relation)) |
| 3698 | { |
| 3699 | log_heap_new_cid(relation, &oldtup); |
| 3700 | log_heap_new_cid(relation, heaptup); |
| 3701 | } |
| 3702 | |
| 3703 | recptr = log_heap_update(relation, buffer, |
| 3704 | newbuf, &oldtup, heaptup, |
| 3705 | old_key_tuple, |
| 3706 | all_visible_cleared, |
| 3707 | all_visible_cleared_new); |
| 3708 | if (newbuf != buffer) |
| 3709 | { |
| 3710 | PageSetLSN(BufferGetPage(newbuf), recptr); |
| 3711 | } |
| 3712 | PageSetLSN(BufferGetPage(buffer), recptr); |
| 3713 | } |
| 3714 | |
| 3715 | END_CRIT_SECTION(); |
| 3716 | |
| 3717 | if (newbuf != buffer) |
| 3718 | LockBuffer(newbuf, BUFFER_LOCK_UNLOCK); |
| 3719 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 3720 | |
| 3721 | /* |
| 3722 | * Mark old tuple for invalidation from system caches at next command |
| 3723 | * boundary, and mark the new tuple for invalidation in case we abort. We |
| 3724 | * have to do this before releasing the buffer because oldtup is in the |
| 3725 | * buffer. (heaptup is all in local memory, but it's necessary to process |
| 3726 | * both tuple versions in one call to inval.c so we can avoid redundant |
| 3727 | * sinval messages.) |
| 3728 | */ |
| 3729 | CacheInvalidateHeapTuple(relation, &oldtup, heaptup); |
| 3730 | |
| 3731 | /* Now we can release the buffer(s) */ |
| 3732 | if (newbuf != buffer) |
| 3733 | ReleaseBuffer(newbuf); |
| 3734 | ReleaseBuffer(buffer); |
| 3735 | if (BufferIsValid(vmbuffer_new)) |
| 3736 | ReleaseBuffer(vmbuffer_new); |
| 3737 | if (BufferIsValid(vmbuffer)) |
| 3738 | ReleaseBuffer(vmbuffer); |
| 3739 | |
| 3740 | /* |
| 3741 | * Release the lmgr tuple lock, if we had it. |
| 3742 | */ |
| 3743 | if (have_tuple_lock) |
| 3744 | UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode); |
| 3745 | |
| 3746 | pgstat_count_heap_update(relation, use_hot_update); |
| 3747 | |
| 3748 | /* |
| 3749 | * If heaptup is a private copy, release it. Don't forget to copy t_self |
| 3750 | * back to the caller's image, too. |
| 3751 | */ |
| 3752 | if (heaptup != newtup) |
| 3753 | { |
| 3754 | newtup->t_self = heaptup->t_self; |
| 3755 | heap_freetuple(heaptup); |
| 3756 | } |
| 3757 | |
| 3758 | if (old_key_tuple != NULL && old_key_copied) |
| 3759 | heap_freetuple(old_key_tuple); |
| 3760 | |
| 3761 | bms_free(hot_attrs); |
| 3762 | bms_free(key_attrs); |
| 3763 | bms_free(id_attrs); |
| 3764 | bms_free(modified_attrs); |
| 3765 | bms_free(interesting_attrs); |
| 3766 | |
| 3767 | return TM_Ok; |
| 3768 | } |
| 3769 | |
| 3770 | /* |
| 3771 | * Check if the specified attribute's value is same in both given tuples. |
| 3772 | * Subroutine for HeapDetermineModifiedColumns. |
| 3773 | */ |
| 3774 | static bool |
| 3775 | heap_tuple_attr_equals(TupleDesc tupdesc, int attrnum, |
| 3776 | HeapTuple tup1, HeapTuple tup2) |
| 3777 | { |
| 3778 | Datum value1, |
| 3779 | value2; |
| 3780 | bool isnull1, |
| 3781 | isnull2; |
| 3782 | Form_pg_attribute att; |
| 3783 | |
| 3784 | /* |
| 3785 | * If it's a whole-tuple reference, say "not equal". It's not really |
| 3786 | * worth supporting this case, since it could only succeed after a no-op |
| 3787 | * update, which is hardly a case worth optimizing for. |
| 3788 | */ |
| 3789 | if (attrnum == 0) |
| 3790 | return false; |
| 3791 | |
| 3792 | /* |
| 3793 | * Likewise, automatically say "not equal" for any system attribute other |
| 3794 | * than tableOID; we cannot expect these to be consistent in a HOT chain, |
| 3795 | * or even to be set correctly yet in the new tuple. |
| 3796 | */ |
| 3797 | if (attrnum < 0) |
| 3798 | { |
| 3799 | if (attrnum != TableOidAttributeNumber) |
| 3800 | return false; |
| 3801 | } |
| 3802 | |
| 3803 | /* |
| 3804 | * Extract the corresponding values. XXX this is pretty inefficient if |
| 3805 | * there are many indexed columns. Should HeapDetermineModifiedColumns do |
| 3806 | * a single heap_deform_tuple call on each tuple, instead? But that |
| 3807 | * doesn't work for system columns ... |
| 3808 | */ |
| 3809 | value1 = heap_getattr(tup1, attrnum, tupdesc, &isnull1); |
| 3810 | value2 = heap_getattr(tup2, attrnum, tupdesc, &isnull2); |
| 3811 | |
| 3812 | /* |
| 3813 | * If one value is NULL and other is not, then they are certainly not |
| 3814 | * equal |
| 3815 | */ |
| 3816 | if (isnull1 != isnull2) |
| 3817 | return false; |
| 3818 | |
| 3819 | /* |
| 3820 | * If both are NULL, they can be considered equal. |
| 3821 | */ |
| 3822 | if (isnull1) |
| 3823 | return true; |
| 3824 | |
| 3825 | /* |
| 3826 | * We do simple binary comparison of the two datums. This may be overly |
| 3827 | * strict because there can be multiple binary representations for the |
| 3828 | * same logical value. But we should be OK as long as there are no false |
| 3829 | * positives. Using a type-specific equality operator is messy because |
| 3830 | * there could be multiple notions of equality in different operator |
| 3831 | * classes; furthermore, we cannot safely invoke user-defined functions |
| 3832 | * while holding exclusive buffer lock. |
| 3833 | */ |
| 3834 | if (attrnum <= 0) |
| 3835 | { |
| 3836 | /* The only allowed system columns are OIDs, so do this */ |
| 3837 | return (DatumGetObjectId(value1) == DatumGetObjectId(value2)); |
| 3838 | } |
| 3839 | else |
| 3840 | { |
| 3841 | Assert(attrnum <= tupdesc->natts); |
| 3842 | att = TupleDescAttr(tupdesc, attrnum - 1); |
| 3843 | return datumIsEqual(value1, value2, att->attbyval, att->attlen); |
| 3844 | } |
| 3845 | } |
| 3846 | |
| 3847 | /* |
| 3848 | * Check which columns are being updated. |
| 3849 | * |
| 3850 | * Given an updated tuple, determine (and return into the output bitmapset), |
| 3851 | * from those listed as interesting, the set of columns that changed. |
| 3852 | * |
| 3853 | * The input bitmapset is destructively modified; that is OK since this is |
| 3854 | * invoked at most once in heap_update. |
| 3855 | */ |
| 3856 | static Bitmapset * |
| 3857 | HeapDetermineModifiedColumns(Relation relation, Bitmapset *interesting_cols, |
| 3858 | HeapTuple oldtup, HeapTuple newtup) |
| 3859 | { |
| 3860 | int attnum; |
| 3861 | Bitmapset *modified = NULL; |
| 3862 | |
| 3863 | while ((attnum = bms_first_member(interesting_cols)) >= 0) |
| 3864 | { |
| 3865 | attnum += FirstLowInvalidHeapAttributeNumber; |
| 3866 | |
| 3867 | if (!heap_tuple_attr_equals(RelationGetDescr(relation), |
| 3868 | attnum, oldtup, newtup)) |
| 3869 | modified = bms_add_member(modified, |
| 3870 | attnum - FirstLowInvalidHeapAttributeNumber); |
| 3871 | } |
| 3872 | |
| 3873 | return modified; |
| 3874 | } |
| 3875 | |
| 3876 | /* |
| 3877 | * simple_heap_update - replace a tuple |
| 3878 | * |
| 3879 | * This routine may be used to update a tuple when concurrent updates of |
| 3880 | * the target tuple are not expected (for example, because we have a lock |
| 3881 | * on the relation associated with the tuple). Any failure is reported |
| 3882 | * via ereport(). |
| 3883 | */ |
| 3884 | void |
| 3885 | simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup) |
| 3886 | { |
| 3887 | TM_Result result; |
| 3888 | TM_FailureData tmfd; |
| 3889 | LockTupleMode lockmode; |
| 3890 | |
| 3891 | result = heap_update(relation, otid, tup, |
| 3892 | GetCurrentCommandId(true), InvalidSnapshot, |
| 3893 | true /* wait for commit */ , |
| 3894 | &tmfd, &lockmode); |
| 3895 | switch (result) |
| 3896 | { |
| 3897 | case TM_SelfModified: |
| 3898 | /* Tuple was already updated in current command? */ |
| 3899 | elog(ERROR, "tuple already updated by self" ); |
| 3900 | break; |
| 3901 | |
| 3902 | case TM_Ok: |
| 3903 | /* done successfully */ |
| 3904 | break; |
| 3905 | |
| 3906 | case TM_Updated: |
| 3907 | elog(ERROR, "tuple concurrently updated" ); |
| 3908 | break; |
| 3909 | |
| 3910 | case TM_Deleted: |
| 3911 | elog(ERROR, "tuple concurrently deleted" ); |
| 3912 | break; |
| 3913 | |
| 3914 | default: |
| 3915 | elog(ERROR, "unrecognized heap_update status: %u" , result); |
| 3916 | break; |
| 3917 | } |
| 3918 | } |
| 3919 | |
| 3920 | |
| 3921 | /* |
| 3922 | * Return the MultiXactStatus corresponding to the given tuple lock mode. |
| 3923 | */ |
| 3924 | static MultiXactStatus |
| 3925 | get_mxact_status_for_lock(LockTupleMode mode, bool is_update) |
| 3926 | { |
| 3927 | int retval; |
| 3928 | |
| 3929 | if (is_update) |
| 3930 | retval = tupleLockExtraInfo[mode].updstatus; |
| 3931 | else |
| 3932 | retval = tupleLockExtraInfo[mode].lockstatus; |
| 3933 | |
| 3934 | if (retval == -1) |
| 3935 | elog(ERROR, "invalid lock tuple mode %d/%s" , mode, |
| 3936 | is_update ? "true" : "false" ); |
| 3937 | |
| 3938 | return (MultiXactStatus) retval; |
| 3939 | } |
| 3940 | |
| 3941 | /* |
| 3942 | * heap_lock_tuple - lock a tuple in shared or exclusive mode |
| 3943 | * |
| 3944 | * Note that this acquires a buffer pin, which the caller must release. |
| 3945 | * |
| 3946 | * Input parameters: |
| 3947 | * relation: relation containing tuple (caller must hold suitable lock) |
| 3948 | * tid: TID of tuple to lock |
| 3949 | * cid: current command ID (used for visibility test, and stored into |
| 3950 | * tuple's cmax if lock is successful) |
| 3951 | * mode: indicates if shared or exclusive tuple lock is desired |
| 3952 | * wait_policy: what to do if tuple lock is not available |
| 3953 | * follow_updates: if true, follow the update chain to also lock descendant |
| 3954 | * tuples. |
| 3955 | * |
| 3956 | * Output parameters: |
| 3957 | * *tuple: all fields filled in |
| 3958 | * *buffer: set to buffer holding tuple (pinned but not locked at exit) |
| 3959 | * *tmfd: filled in failure cases (see below) |
| 3960 | * |
| 3961 | * Function results are the same as the ones for table_tuple_lock(). |
| 3962 | * |
| 3963 | * In the failure cases other than TM_Invisible, the routine fills |
| 3964 | * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact, |
| 3965 | * if necessary), and t_cmax (the last only for TM_SelfModified, |
| 3966 | * since we cannot obtain cmax from a combocid generated by another |
| 3967 | * transaction). |
| 3968 | * See comments for struct TM_FailureData for additional info. |
| 3969 | * |
| 3970 | * See README.tuplock for a thorough explanation of this mechanism. |
| 3971 | */ |
| 3972 | TM_Result |
| 3973 | heap_lock_tuple(Relation relation, HeapTuple tuple, |
| 3974 | CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy, |
| 3975 | bool follow_updates, |
| 3976 | Buffer *buffer, TM_FailureData *tmfd) |
| 3977 | { |
| 3978 | TM_Result result; |
| 3979 | ItemPointer tid = &(tuple->t_self); |
| 3980 | ItemId lp; |
| 3981 | Page page; |
| 3982 | Buffer vmbuffer = InvalidBuffer; |
| 3983 | BlockNumber block; |
| 3984 | TransactionId xid, |
| 3985 | xmax; |
| 3986 | uint16 old_infomask, |
| 3987 | new_infomask, |
| 3988 | new_infomask2; |
| 3989 | bool first_time = true; |
| 3990 | bool skip_tuple_lock = false; |
| 3991 | bool have_tuple_lock = false; |
| 3992 | bool cleared_all_frozen = false; |
| 3993 | |
| 3994 | *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); |
| 3995 | block = ItemPointerGetBlockNumber(tid); |
| 3996 | |
| 3997 | /* |
| 3998 | * Before locking the buffer, pin the visibility map page if it appears to |
| 3999 | * be necessary. Since we haven't got the lock yet, someone else might be |
| 4000 | * in the middle of changing this, so we'll need to recheck after we have |
| 4001 | * the lock. |
| 4002 | */ |
| 4003 | if (PageIsAllVisible(BufferGetPage(*buffer))) |
| 4004 | visibilitymap_pin(relation, block, &vmbuffer); |
| 4005 | |
| 4006 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4007 | |
| 4008 | page = BufferGetPage(*buffer); |
| 4009 | lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); |
| 4010 | Assert(ItemIdIsNormal(lp)); |
| 4011 | |
| 4012 | tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp); |
| 4013 | tuple->t_len = ItemIdGetLength(lp); |
| 4014 | tuple->t_tableOid = RelationGetRelid(relation); |
| 4015 | |
| 4016 | l3: |
| 4017 | result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer); |
| 4018 | |
| 4019 | if (result == TM_Invisible) |
| 4020 | { |
| 4021 | /* |
| 4022 | * This is possible, but only when locking a tuple for ON CONFLICT |
| 4023 | * UPDATE. We return this value here rather than throwing an error in |
| 4024 | * order to give that case the opportunity to throw a more specific |
| 4025 | * error. |
| 4026 | */ |
| 4027 | result = TM_Invisible; |
| 4028 | goto out_locked; |
| 4029 | } |
| 4030 | else if (result == TM_BeingModified || |
| 4031 | result == TM_Updated || |
| 4032 | result == TM_Deleted) |
| 4033 | { |
| 4034 | TransactionId xwait; |
| 4035 | uint16 infomask; |
| 4036 | uint16 infomask2; |
| 4037 | bool require_sleep; |
| 4038 | ItemPointerData t_ctid; |
| 4039 | |
| 4040 | /* must copy state data before unlocking buffer */ |
| 4041 | xwait = HeapTupleHeaderGetRawXmax(tuple->t_data); |
| 4042 | infomask = tuple->t_data->t_infomask; |
| 4043 | infomask2 = tuple->t_data->t_infomask2; |
| 4044 | ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid); |
| 4045 | |
| 4046 | LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); |
| 4047 | |
| 4048 | /* |
| 4049 | * If any subtransaction of the current top transaction already holds |
| 4050 | * a lock as strong as or stronger than what we're requesting, we |
| 4051 | * effectively hold the desired lock already. We *must* succeed |
| 4052 | * without trying to take the tuple lock, else we will deadlock |
| 4053 | * against anyone wanting to acquire a stronger lock. |
| 4054 | * |
| 4055 | * Note we only do this the first time we loop on the HTSU result; |
| 4056 | * there is no point in testing in subsequent passes, because |
| 4057 | * evidently our own transaction cannot have acquired a new lock after |
| 4058 | * the first time we checked. |
| 4059 | */ |
| 4060 | if (first_time) |
| 4061 | { |
| 4062 | first_time = false; |
| 4063 | |
| 4064 | if (infomask & HEAP_XMAX_IS_MULTI) |
| 4065 | { |
| 4066 | int i; |
| 4067 | int nmembers; |
| 4068 | MultiXactMember *members; |
| 4069 | |
| 4070 | /* |
| 4071 | * We don't need to allow old multixacts here; if that had |
| 4072 | * been the case, HeapTupleSatisfiesUpdate would have returned |
| 4073 | * MayBeUpdated and we wouldn't be here. |
| 4074 | */ |
| 4075 | nmembers = |
| 4076 | GetMultiXactIdMembers(xwait, &members, false, |
| 4077 | HEAP_XMAX_IS_LOCKED_ONLY(infomask)); |
| 4078 | |
| 4079 | for (i = 0; i < nmembers; i++) |
| 4080 | { |
| 4081 | /* only consider members of our own transaction */ |
| 4082 | if (!TransactionIdIsCurrentTransactionId(members[i].xid)) |
| 4083 | continue; |
| 4084 | |
| 4085 | if (TUPLOCK_from_mxstatus(members[i].status) >= mode) |
| 4086 | { |
| 4087 | pfree(members); |
| 4088 | result = TM_Ok; |
| 4089 | goto out_unlocked; |
| 4090 | } |
| 4091 | else |
| 4092 | { |
| 4093 | /* |
| 4094 | * Disable acquisition of the heavyweight tuple lock. |
| 4095 | * Otherwise, when promoting a weaker lock, we might |
| 4096 | * deadlock with another locker that has acquired the |
| 4097 | * heavyweight tuple lock and is waiting for our |
| 4098 | * transaction to finish. |
| 4099 | * |
| 4100 | * Note that in this case we still need to wait for |
| 4101 | * the multixact if required, to avoid acquiring |
| 4102 | * conflicting locks. |
| 4103 | */ |
| 4104 | skip_tuple_lock = true; |
| 4105 | } |
| 4106 | } |
| 4107 | |
| 4108 | if (members) |
| 4109 | pfree(members); |
| 4110 | } |
| 4111 | else if (TransactionIdIsCurrentTransactionId(xwait)) |
| 4112 | { |
| 4113 | switch (mode) |
| 4114 | { |
| 4115 | case LockTupleKeyShare: |
| 4116 | Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) || |
| 4117 | HEAP_XMAX_IS_SHR_LOCKED(infomask) || |
| 4118 | HEAP_XMAX_IS_EXCL_LOCKED(infomask)); |
| 4119 | result = TM_Ok; |
| 4120 | goto out_unlocked; |
| 4121 | case LockTupleShare: |
| 4122 | if (HEAP_XMAX_IS_SHR_LOCKED(infomask) || |
| 4123 | HEAP_XMAX_IS_EXCL_LOCKED(infomask)) |
| 4124 | { |
| 4125 | result = TM_Ok; |
| 4126 | goto out_unlocked; |
| 4127 | } |
| 4128 | break; |
| 4129 | case LockTupleNoKeyExclusive: |
| 4130 | if (HEAP_XMAX_IS_EXCL_LOCKED(infomask)) |
| 4131 | { |
| 4132 | result = TM_Ok; |
| 4133 | goto out_unlocked; |
| 4134 | } |
| 4135 | break; |
| 4136 | case LockTupleExclusive: |
| 4137 | if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) && |
| 4138 | infomask2 & HEAP_KEYS_UPDATED) |
| 4139 | { |
| 4140 | result = TM_Ok; |
| 4141 | goto out_unlocked; |
| 4142 | } |
| 4143 | break; |
| 4144 | } |
| 4145 | } |
| 4146 | } |
| 4147 | |
| 4148 | /* |
| 4149 | * Initially assume that we will have to wait for the locking |
| 4150 | * transaction(s) to finish. We check various cases below in which |
| 4151 | * this can be turned off. |
| 4152 | */ |
| 4153 | require_sleep = true; |
| 4154 | if (mode == LockTupleKeyShare) |
| 4155 | { |
| 4156 | /* |
| 4157 | * If we're requesting KeyShare, and there's no update present, we |
| 4158 | * don't need to wait. Even if there is an update, we can still |
| 4159 | * continue if the key hasn't been modified. |
| 4160 | * |
| 4161 | * However, if there are updates, we need to walk the update chain |
| 4162 | * to mark future versions of the row as locked, too. That way, |
| 4163 | * if somebody deletes that future version, we're protected |
| 4164 | * against the key going away. This locking of future versions |
| 4165 | * could block momentarily, if a concurrent transaction is |
| 4166 | * deleting a key; or it could return a value to the effect that |
| 4167 | * the transaction deleting the key has already committed. So we |
| 4168 | * do this before re-locking the buffer; otherwise this would be |
| 4169 | * prone to deadlocks. |
| 4170 | * |
| 4171 | * Note that the TID we're locking was grabbed before we unlocked |
| 4172 | * the buffer. For it to change while we're not looking, the |
| 4173 | * other properties we're testing for below after re-locking the |
| 4174 | * buffer would also change, in which case we would restart this |
| 4175 | * loop above. |
| 4176 | */ |
| 4177 | if (!(infomask2 & HEAP_KEYS_UPDATED)) |
| 4178 | { |
| 4179 | bool updated; |
| 4180 | |
| 4181 | updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask); |
| 4182 | |
| 4183 | /* |
| 4184 | * If there are updates, follow the update chain; bail out if |
| 4185 | * that cannot be done. |
| 4186 | */ |
| 4187 | if (follow_updates && updated) |
| 4188 | { |
| 4189 | TM_Result res; |
| 4190 | |
| 4191 | res = heap_lock_updated_tuple(relation, tuple, &t_ctid, |
| 4192 | GetCurrentTransactionId(), |
| 4193 | mode); |
| 4194 | if (res != TM_Ok) |
| 4195 | { |
| 4196 | result = res; |
| 4197 | /* recovery code expects to have buffer lock held */ |
| 4198 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4199 | goto failed; |
| 4200 | } |
| 4201 | } |
| 4202 | |
| 4203 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4204 | |
| 4205 | /* |
| 4206 | * Make sure it's still an appropriate lock, else start over. |
| 4207 | * Also, if it wasn't updated before we released the lock, but |
| 4208 | * is updated now, we start over too; the reason is that we |
| 4209 | * now need to follow the update chain to lock the new |
| 4210 | * versions. |
| 4211 | */ |
| 4212 | if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) && |
| 4213 | ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) || |
| 4214 | !updated)) |
| 4215 | goto l3; |
| 4216 | |
| 4217 | /* Things look okay, so we can skip sleeping */ |
| 4218 | require_sleep = false; |
| 4219 | |
| 4220 | /* |
| 4221 | * Note we allow Xmax to change here; other updaters/lockers |
| 4222 | * could have modified it before we grabbed the buffer lock. |
| 4223 | * However, this is not a problem, because with the recheck we |
| 4224 | * just did we ensure that they still don't conflict with the |
| 4225 | * lock we want. |
| 4226 | */ |
| 4227 | } |
| 4228 | } |
| 4229 | else if (mode == LockTupleShare) |
| 4230 | { |
| 4231 | /* |
| 4232 | * If we're requesting Share, we can similarly avoid sleeping if |
| 4233 | * there's no update and no exclusive lock present. |
| 4234 | */ |
| 4235 | if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) && |
| 4236 | !HEAP_XMAX_IS_EXCL_LOCKED(infomask)) |
| 4237 | { |
| 4238 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4239 | |
| 4240 | /* |
| 4241 | * Make sure it's still an appropriate lock, else start over. |
| 4242 | * See above about allowing xmax to change. |
| 4243 | */ |
| 4244 | if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) || |
| 4245 | HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask)) |
| 4246 | goto l3; |
| 4247 | require_sleep = false; |
| 4248 | } |
| 4249 | } |
| 4250 | else if (mode == LockTupleNoKeyExclusive) |
| 4251 | { |
| 4252 | /* |
| 4253 | * If we're requesting NoKeyExclusive, we might also be able to |
| 4254 | * avoid sleeping; just ensure that there no conflicting lock |
| 4255 | * already acquired. |
| 4256 | */ |
| 4257 | if (infomask & HEAP_XMAX_IS_MULTI) |
| 4258 | { |
| 4259 | if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask, |
| 4260 | mode, NULL)) |
| 4261 | { |
| 4262 | /* |
| 4263 | * No conflict, but if the xmax changed under us in the |
| 4264 | * meantime, start over. |
| 4265 | */ |
| 4266 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4267 | if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) || |
| 4268 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), |
| 4269 | xwait)) |
| 4270 | goto l3; |
| 4271 | |
| 4272 | /* otherwise, we're good */ |
| 4273 | require_sleep = false; |
| 4274 | } |
| 4275 | } |
| 4276 | else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask)) |
| 4277 | { |
| 4278 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4279 | |
| 4280 | /* if the xmax changed in the meantime, start over */ |
| 4281 | if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) || |
| 4282 | !TransactionIdEquals( |
| 4283 | HeapTupleHeaderGetRawXmax(tuple->t_data), |
| 4284 | xwait)) |
| 4285 | goto l3; |
| 4286 | /* otherwise, we're good */ |
| 4287 | require_sleep = false; |
| 4288 | } |
| 4289 | } |
| 4290 | |
| 4291 | /* |
| 4292 | * As a check independent from those above, we can also avoid sleeping |
| 4293 | * if the current transaction is the sole locker of the tuple. Note |
| 4294 | * that the strength of the lock already held is irrelevant; this is |
| 4295 | * not about recording the lock in Xmax (which will be done regardless |
| 4296 | * of this optimization, below). Also, note that the cases where we |
| 4297 | * hold a lock stronger than we are requesting are already handled |
| 4298 | * above by not doing anything. |
| 4299 | * |
| 4300 | * Note we only deal with the non-multixact case here; MultiXactIdWait |
| 4301 | * is well equipped to deal with this situation on its own. |
| 4302 | */ |
| 4303 | if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) && |
| 4304 | TransactionIdIsCurrentTransactionId(xwait)) |
| 4305 | { |
| 4306 | /* ... but if the xmax changed in the meantime, start over */ |
| 4307 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4308 | if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) || |
| 4309 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), |
| 4310 | xwait)) |
| 4311 | goto l3; |
| 4312 | Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask)); |
| 4313 | require_sleep = false; |
| 4314 | } |
| 4315 | |
| 4316 | /* |
| 4317 | * Time to sleep on the other transaction/multixact, if necessary. |
| 4318 | * |
| 4319 | * If the other transaction is an update/delete that's already |
| 4320 | * committed, then sleeping cannot possibly do any good: if we're |
| 4321 | * required to sleep, get out to raise an error instead. |
| 4322 | * |
| 4323 | * By here, we either have already acquired the buffer exclusive lock, |
| 4324 | * or we must wait for the locking transaction or multixact; so below |
| 4325 | * we ensure that we grab buffer lock after the sleep. |
| 4326 | */ |
| 4327 | if (require_sleep && (result == TM_Updated || result == TM_Deleted)) |
| 4328 | { |
| 4329 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4330 | goto failed; |
| 4331 | } |
| 4332 | else if (require_sleep) |
| 4333 | { |
| 4334 | /* |
| 4335 | * Acquire tuple lock to establish our priority for the tuple, or |
| 4336 | * die trying. LockTuple will release us when we are next-in-line |
| 4337 | * for the tuple. We must do this even if we are share-locking, |
| 4338 | * but not if we already have a weaker lock on the tuple. |
| 4339 | * |
| 4340 | * If we are forced to "start over" below, we keep the tuple lock; |
| 4341 | * this arranges that we stay at the head of the line while |
| 4342 | * rechecking tuple state. |
| 4343 | */ |
| 4344 | if (!skip_tuple_lock && |
| 4345 | !heap_acquire_tuplock(relation, tid, mode, wait_policy, |
| 4346 | &have_tuple_lock)) |
| 4347 | { |
| 4348 | /* |
| 4349 | * This can only happen if wait_policy is Skip and the lock |
| 4350 | * couldn't be obtained. |
| 4351 | */ |
| 4352 | result = TM_WouldBlock; |
| 4353 | /* recovery code expects to have buffer lock held */ |
| 4354 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4355 | goto failed; |
| 4356 | } |
| 4357 | |
| 4358 | if (infomask & HEAP_XMAX_IS_MULTI) |
| 4359 | { |
| 4360 | MultiXactStatus status = get_mxact_status_for_lock(mode, false); |
| 4361 | |
| 4362 | /* We only ever lock tuples, never update them */ |
| 4363 | if (status >= MultiXactStatusNoKeyUpdate) |
| 4364 | elog(ERROR, "invalid lock mode in heap_lock_tuple" ); |
| 4365 | |
| 4366 | /* wait for multixact to end, or die trying */ |
| 4367 | switch (wait_policy) |
| 4368 | { |
| 4369 | case LockWaitBlock: |
| 4370 | MultiXactIdWait((MultiXactId) xwait, status, infomask, |
| 4371 | relation, &tuple->t_self, XLTW_Lock, NULL); |
| 4372 | break; |
| 4373 | case LockWaitSkip: |
| 4374 | if (!ConditionalMultiXactIdWait((MultiXactId) xwait, |
| 4375 | status, infomask, relation, |
| 4376 | NULL)) |
| 4377 | { |
| 4378 | result = TM_WouldBlock; |
| 4379 | /* recovery code expects to have buffer lock held */ |
| 4380 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4381 | goto failed; |
| 4382 | } |
| 4383 | break; |
| 4384 | case LockWaitError: |
| 4385 | if (!ConditionalMultiXactIdWait((MultiXactId) xwait, |
| 4386 | status, infomask, relation, |
| 4387 | NULL)) |
| 4388 | ereport(ERROR, |
| 4389 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
| 4390 | errmsg("could not obtain lock on row in relation \"%s\"" , |
| 4391 | RelationGetRelationName(relation)))); |
| 4392 | |
| 4393 | break; |
| 4394 | } |
| 4395 | |
| 4396 | /* |
| 4397 | * Of course, the multixact might not be done here: if we're |
| 4398 | * requesting a light lock mode, other transactions with light |
| 4399 | * locks could still be alive, as well as locks owned by our |
| 4400 | * own xact or other subxacts of this backend. We need to |
| 4401 | * preserve the surviving MultiXact members. Note that it |
| 4402 | * isn't absolutely necessary in the latter case, but doing so |
| 4403 | * is simpler. |
| 4404 | */ |
| 4405 | } |
| 4406 | else |
| 4407 | { |
| 4408 | /* wait for regular transaction to end, or die trying */ |
| 4409 | switch (wait_policy) |
| 4410 | { |
| 4411 | case LockWaitBlock: |
| 4412 | XactLockTableWait(xwait, relation, &tuple->t_self, |
| 4413 | XLTW_Lock); |
| 4414 | break; |
| 4415 | case LockWaitSkip: |
| 4416 | if (!ConditionalXactLockTableWait(xwait)) |
| 4417 | { |
| 4418 | result = TM_WouldBlock; |
| 4419 | /* recovery code expects to have buffer lock held */ |
| 4420 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4421 | goto failed; |
| 4422 | } |
| 4423 | break; |
| 4424 | case LockWaitError: |
| 4425 | if (!ConditionalXactLockTableWait(xwait)) |
| 4426 | ereport(ERROR, |
| 4427 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
| 4428 | errmsg("could not obtain lock on row in relation \"%s\"" , |
| 4429 | RelationGetRelationName(relation)))); |
| 4430 | break; |
| 4431 | } |
| 4432 | } |
| 4433 | |
| 4434 | /* if there are updates, follow the update chain */ |
| 4435 | if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask)) |
| 4436 | { |
| 4437 | TM_Result res; |
| 4438 | |
| 4439 | res = heap_lock_updated_tuple(relation, tuple, &t_ctid, |
| 4440 | GetCurrentTransactionId(), |
| 4441 | mode); |
| 4442 | if (res != TM_Ok) |
| 4443 | { |
| 4444 | result = res; |
| 4445 | /* recovery code expects to have buffer lock held */ |
| 4446 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4447 | goto failed; |
| 4448 | } |
| 4449 | } |
| 4450 | |
| 4451 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4452 | |
| 4453 | /* |
| 4454 | * xwait is done, but if xwait had just locked the tuple then some |
| 4455 | * other xact could update this tuple before we get to this point. |
| 4456 | * Check for xmax change, and start over if so. |
| 4457 | */ |
| 4458 | if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) || |
| 4459 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), |
| 4460 | xwait)) |
| 4461 | goto l3; |
| 4462 | |
| 4463 | if (!(infomask & HEAP_XMAX_IS_MULTI)) |
| 4464 | { |
| 4465 | /* |
| 4466 | * Otherwise check if it committed or aborted. Note we cannot |
| 4467 | * be here if the tuple was only locked by somebody who didn't |
| 4468 | * conflict with us; that would have been handled above. So |
| 4469 | * that transaction must necessarily be gone by now. But |
| 4470 | * don't check for this in the multixact case, because some |
| 4471 | * locker transactions might still be running. |
| 4472 | */ |
| 4473 | UpdateXmaxHintBits(tuple->t_data, *buffer, xwait); |
| 4474 | } |
| 4475 | } |
| 4476 | |
| 4477 | /* By here, we're certain that we hold buffer exclusive lock again */ |
| 4478 | |
| 4479 | /* |
| 4480 | * We may lock if previous xmax aborted, or if it committed but only |
| 4481 | * locked the tuple without updating it; or if we didn't have to wait |
| 4482 | * at all for whatever reason. |
| 4483 | */ |
| 4484 | if (!require_sleep || |
| 4485 | (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) || |
| 4486 | HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) || |
| 4487 | HeapTupleHeaderIsOnlyLocked(tuple->t_data)) |
| 4488 | result = TM_Ok; |
| 4489 | else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid) || |
| 4490 | HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data)) |
| 4491 | result = TM_Updated; |
| 4492 | else |
| 4493 | result = TM_Deleted; |
| 4494 | } |
| 4495 | |
| 4496 | failed: |
| 4497 | if (result != TM_Ok) |
| 4498 | { |
| 4499 | Assert(result == TM_SelfModified || result == TM_Updated || |
| 4500 | result == TM_Deleted || result == TM_WouldBlock); |
| 4501 | Assert(!(tuple->t_data->t_infomask & HEAP_XMAX_INVALID)); |
| 4502 | Assert(result != TM_Updated || |
| 4503 | !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid)); |
| 4504 | tmfd->ctid = tuple->t_data->t_ctid; |
| 4505 | tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data); |
| 4506 | if (result == TM_SelfModified) |
| 4507 | tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data); |
| 4508 | else |
| 4509 | tmfd->cmax = InvalidCommandId; |
| 4510 | goto out_locked; |
| 4511 | } |
| 4512 | |
| 4513 | /* |
| 4514 | * If we didn't pin the visibility map page and the page has become all |
| 4515 | * visible while we were busy locking the buffer, or during some |
| 4516 | * subsequent window during which we had it unlocked, we'll have to unlock |
| 4517 | * and re-lock, to avoid holding the buffer lock across I/O. That's a bit |
| 4518 | * unfortunate, especially since we'll now have to recheck whether the |
| 4519 | * tuple has been locked or updated under us, but hopefully it won't |
| 4520 | * happen very often. |
| 4521 | */ |
| 4522 | if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) |
| 4523 | { |
| 4524 | LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); |
| 4525 | visibilitymap_pin(relation, block, &vmbuffer); |
| 4526 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
| 4527 | goto l3; |
| 4528 | } |
| 4529 | |
| 4530 | xmax = HeapTupleHeaderGetRawXmax(tuple->t_data); |
| 4531 | old_infomask = tuple->t_data->t_infomask; |
| 4532 | |
| 4533 | /* |
| 4534 | * If this is the first possibly-multixact-able operation in the current |
| 4535 | * transaction, set my per-backend OldestMemberMXactId setting. We can be |
| 4536 | * certain that the transaction will never become a member of any older |
| 4537 | * MultiXactIds than that. (We have to do this even if we end up just |
| 4538 | * using our own TransactionId below, since some other backend could |
| 4539 | * incorporate our XID into a MultiXact immediately afterwards.) |
| 4540 | */ |
| 4541 | MultiXactIdSetOldestMember(); |
| 4542 | |
| 4543 | /* |
| 4544 | * Compute the new xmax and infomask to store into the tuple. Note we do |
| 4545 | * not modify the tuple just yet, because that would leave it in the wrong |
| 4546 | * state if multixact.c elogs. |
| 4547 | */ |
| 4548 | compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2, |
| 4549 | GetCurrentTransactionId(), mode, false, |
| 4550 | &xid, &new_infomask, &new_infomask2); |
| 4551 | |
| 4552 | START_CRIT_SECTION(); |
| 4553 | |
| 4554 | /* |
| 4555 | * Store transaction information of xact locking the tuple. |
| 4556 | * |
| 4557 | * Note: Cmax is meaningless in this context, so don't set it; this avoids |
| 4558 | * possibly generating a useless combo CID. Moreover, if we're locking a |
| 4559 | * previously updated tuple, it's important to preserve the Cmax. |
| 4560 | * |
| 4561 | * Also reset the HOT UPDATE bit, but only if there's no update; otherwise |
| 4562 | * we would break the HOT chain. |
| 4563 | */ |
| 4564 | tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS; |
| 4565 | tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 4566 | tuple->t_data->t_infomask |= new_infomask; |
| 4567 | tuple->t_data->t_infomask2 |= new_infomask2; |
| 4568 | if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask)) |
| 4569 | HeapTupleHeaderClearHotUpdated(tuple->t_data); |
| 4570 | HeapTupleHeaderSetXmax(tuple->t_data, xid); |
| 4571 | |
| 4572 | /* |
| 4573 | * Make sure there is no forward chain link in t_ctid. Note that in the |
| 4574 | * cases where the tuple has been updated, we must not overwrite t_ctid, |
| 4575 | * because it was set by the updater. Moreover, if the tuple has been |
| 4576 | * updated, we need to follow the update chain to lock the new versions of |
| 4577 | * the tuple as well. |
| 4578 | */ |
| 4579 | if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask)) |
| 4580 | tuple->t_data->t_ctid = *tid; |
| 4581 | |
| 4582 | /* Clear only the all-frozen bit on visibility map if needed */ |
| 4583 | if (PageIsAllVisible(page) && |
| 4584 | visibilitymap_clear(relation, block, vmbuffer, |
| 4585 | VISIBILITYMAP_ALL_FROZEN)) |
| 4586 | cleared_all_frozen = true; |
| 4587 | |
| 4588 | |
| 4589 | MarkBufferDirty(*buffer); |
| 4590 | |
| 4591 | /* |
| 4592 | * XLOG stuff. You might think that we don't need an XLOG record because |
| 4593 | * there is no state change worth restoring after a crash. You would be |
| 4594 | * wrong however: we have just written either a TransactionId or a |
| 4595 | * MultiXactId that may never have been seen on disk before, and we need |
| 4596 | * to make sure that there are XLOG entries covering those ID numbers. |
| 4597 | * Else the same IDs might be re-used after a crash, which would be |
| 4598 | * disastrous if this page made it to disk before the crash. Essentially |
| 4599 | * we have to enforce the WAL log-before-data rule even in this case. |
| 4600 | * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG |
| 4601 | * entries for everything anyway.) |
| 4602 | */ |
| 4603 | if (RelationNeedsWAL(relation)) |
| 4604 | { |
| 4605 | xl_heap_lock xlrec; |
| 4606 | XLogRecPtr recptr; |
| 4607 | |
| 4608 | XLogBeginInsert(); |
| 4609 | XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD); |
| 4610 | |
| 4611 | xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self); |
| 4612 | xlrec.locking_xid = xid; |
| 4613 | xlrec.infobits_set = compute_infobits(new_infomask, |
| 4614 | tuple->t_data->t_infomask2); |
| 4615 | xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0; |
| 4616 | XLogRegisterData((char *) &xlrec, SizeOfHeapLock); |
| 4617 | |
| 4618 | /* we don't decode row locks atm, so no need to log the origin */ |
| 4619 | |
| 4620 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK); |
| 4621 | |
| 4622 | PageSetLSN(page, recptr); |
| 4623 | } |
| 4624 | |
| 4625 | END_CRIT_SECTION(); |
| 4626 | |
| 4627 | result = TM_Ok; |
| 4628 | |
| 4629 | out_locked: |
| 4630 | LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); |
| 4631 | |
| 4632 | out_unlocked: |
| 4633 | if (BufferIsValid(vmbuffer)) |
| 4634 | ReleaseBuffer(vmbuffer); |
| 4635 | |
| 4636 | /* |
| 4637 | * Don't update the visibility map here. Locking a tuple doesn't change |
| 4638 | * visibility info. |
| 4639 | */ |
| 4640 | |
| 4641 | /* |
| 4642 | * Now that we have successfully marked the tuple as locked, we can |
| 4643 | * release the lmgr tuple lock, if we had it. |
| 4644 | */ |
| 4645 | if (have_tuple_lock) |
| 4646 | UnlockTupleTuplock(relation, tid, mode); |
| 4647 | |
| 4648 | return result; |
| 4649 | } |
| 4650 | |
| 4651 | /* |
| 4652 | * Acquire heavyweight lock on the given tuple, in preparation for acquiring |
| 4653 | * its normal, Xmax-based tuple lock. |
| 4654 | * |
| 4655 | * have_tuple_lock is an input and output parameter: on input, it indicates |
| 4656 | * whether the lock has previously been acquired (and this function does |
| 4657 | * nothing in that case). If this function returns success, have_tuple_lock |
| 4658 | * has been flipped to true. |
| 4659 | * |
| 4660 | * Returns false if it was unable to obtain the lock; this can only happen if |
| 4661 | * wait_policy is Skip. |
| 4662 | */ |
| 4663 | static bool |
| 4664 | heap_acquire_tuplock(Relation relation, ItemPointer tid, LockTupleMode mode, |
| 4665 | LockWaitPolicy wait_policy, bool *have_tuple_lock) |
| 4666 | { |
| 4667 | if (*have_tuple_lock) |
| 4668 | return true; |
| 4669 | |
| 4670 | switch (wait_policy) |
| 4671 | { |
| 4672 | case LockWaitBlock: |
| 4673 | LockTupleTuplock(relation, tid, mode); |
| 4674 | break; |
| 4675 | |
| 4676 | case LockWaitSkip: |
| 4677 | if (!ConditionalLockTupleTuplock(relation, tid, mode)) |
| 4678 | return false; |
| 4679 | break; |
| 4680 | |
| 4681 | case LockWaitError: |
| 4682 | if (!ConditionalLockTupleTuplock(relation, tid, mode)) |
| 4683 | ereport(ERROR, |
| 4684 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
| 4685 | errmsg("could not obtain lock on row in relation \"%s\"" , |
| 4686 | RelationGetRelationName(relation)))); |
| 4687 | break; |
| 4688 | } |
| 4689 | *have_tuple_lock = true; |
| 4690 | |
| 4691 | return true; |
| 4692 | } |
| 4693 | |
| 4694 | /* |
| 4695 | * Given an original set of Xmax and infomask, and a transaction (identified by |
| 4696 | * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and |
| 4697 | * corresponding infomasks to use on the tuple. |
| 4698 | * |
| 4699 | * Note that this might have side effects such as creating a new MultiXactId. |
| 4700 | * |
| 4701 | * Most callers will have called HeapTupleSatisfiesUpdate before this function; |
| 4702 | * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId |
| 4703 | * but it was not running anymore. There is a race condition, which is that the |
| 4704 | * MultiXactId may have finished since then, but that uncommon case is handled |
| 4705 | * either here, or within MultiXactIdExpand. |
| 4706 | * |
| 4707 | * There is a similar race condition possible when the old xmax was a regular |
| 4708 | * TransactionId. We test TransactionIdIsInProgress again just to narrow the |
| 4709 | * window, but it's still possible to end up creating an unnecessary |
| 4710 | * MultiXactId. Fortunately this is harmless. |
| 4711 | */ |
| 4712 | static void |
| 4713 | compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask, |
| 4714 | uint16 old_infomask2, TransactionId add_to_xmax, |
| 4715 | LockTupleMode mode, bool is_update, |
| 4716 | TransactionId *result_xmax, uint16 *result_infomask, |
| 4717 | uint16 *result_infomask2) |
| 4718 | { |
| 4719 | TransactionId new_xmax; |
| 4720 | uint16 new_infomask, |
| 4721 | new_infomask2; |
| 4722 | |
| 4723 | Assert(TransactionIdIsCurrentTransactionId(add_to_xmax)); |
| 4724 | |
| 4725 | l5: |
| 4726 | new_infomask = 0; |
| 4727 | new_infomask2 = 0; |
| 4728 | if (old_infomask & HEAP_XMAX_INVALID) |
| 4729 | { |
| 4730 | /* |
| 4731 | * No previous locker; we just insert our own TransactionId. |
| 4732 | * |
| 4733 | * Note that it's critical that this case be the first one checked, |
| 4734 | * because there are several blocks below that come back to this one |
| 4735 | * to implement certain optimizations; old_infomask might contain |
| 4736 | * other dirty bits in those cases, but we don't really care. |
| 4737 | */ |
| 4738 | if (is_update) |
| 4739 | { |
| 4740 | new_xmax = add_to_xmax; |
| 4741 | if (mode == LockTupleExclusive) |
| 4742 | new_infomask2 |= HEAP_KEYS_UPDATED; |
| 4743 | } |
| 4744 | else |
| 4745 | { |
| 4746 | new_infomask |= HEAP_XMAX_LOCK_ONLY; |
| 4747 | switch (mode) |
| 4748 | { |
| 4749 | case LockTupleKeyShare: |
| 4750 | new_xmax = add_to_xmax; |
| 4751 | new_infomask |= HEAP_XMAX_KEYSHR_LOCK; |
| 4752 | break; |
| 4753 | case LockTupleShare: |
| 4754 | new_xmax = add_to_xmax; |
| 4755 | new_infomask |= HEAP_XMAX_SHR_LOCK; |
| 4756 | break; |
| 4757 | case LockTupleNoKeyExclusive: |
| 4758 | new_xmax = add_to_xmax; |
| 4759 | new_infomask |= HEAP_XMAX_EXCL_LOCK; |
| 4760 | break; |
| 4761 | case LockTupleExclusive: |
| 4762 | new_xmax = add_to_xmax; |
| 4763 | new_infomask |= HEAP_XMAX_EXCL_LOCK; |
| 4764 | new_infomask2 |= HEAP_KEYS_UPDATED; |
| 4765 | break; |
| 4766 | default: |
| 4767 | new_xmax = InvalidTransactionId; /* silence compiler */ |
| 4768 | elog(ERROR, "invalid lock mode" ); |
| 4769 | } |
| 4770 | } |
| 4771 | } |
| 4772 | else if (old_infomask & HEAP_XMAX_IS_MULTI) |
| 4773 | { |
| 4774 | MultiXactStatus new_status; |
| 4775 | |
| 4776 | /* |
| 4777 | * Currently we don't allow XMAX_COMMITTED to be set for multis, so |
| 4778 | * cross-check. |
| 4779 | */ |
| 4780 | Assert(!(old_infomask & HEAP_XMAX_COMMITTED)); |
| 4781 | |
| 4782 | /* |
| 4783 | * A multixact together with LOCK_ONLY set but neither lock bit set |
| 4784 | * (i.e. a pg_upgraded share locked tuple) cannot possibly be running |
| 4785 | * anymore. This check is critical for databases upgraded by |
| 4786 | * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume |
| 4787 | * that such multis are never passed. |
| 4788 | */ |
| 4789 | if (HEAP_LOCKED_UPGRADED(old_infomask)) |
| 4790 | { |
| 4791 | old_infomask &= ~HEAP_XMAX_IS_MULTI; |
| 4792 | old_infomask |= HEAP_XMAX_INVALID; |
| 4793 | goto l5; |
| 4794 | } |
| 4795 | |
| 4796 | /* |
| 4797 | * If the XMAX is already a MultiXactId, then we need to expand it to |
| 4798 | * include add_to_xmax; but if all the members were lockers and are |
| 4799 | * all gone, we can do away with the IS_MULTI bit and just set |
| 4800 | * add_to_xmax as the only locker/updater. If all lockers are gone |
| 4801 | * and we have an updater that aborted, we can also do without a |
| 4802 | * multi. |
| 4803 | * |
| 4804 | * The cost of doing GetMultiXactIdMembers would be paid by |
| 4805 | * MultiXactIdExpand if we weren't to do this, so this check is not |
| 4806 | * incurring extra work anyhow. |
| 4807 | */ |
| 4808 | if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))) |
| 4809 | { |
| 4810 | if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) || |
| 4811 | !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax, |
| 4812 | old_infomask))) |
| 4813 | { |
| 4814 | /* |
| 4815 | * Reset these bits and restart; otherwise fall through to |
| 4816 | * create a new multi below. |
| 4817 | */ |
| 4818 | old_infomask &= ~HEAP_XMAX_IS_MULTI; |
| 4819 | old_infomask |= HEAP_XMAX_INVALID; |
| 4820 | goto l5; |
| 4821 | } |
| 4822 | } |
| 4823 | |
| 4824 | new_status = get_mxact_status_for_lock(mode, is_update); |
| 4825 | |
| 4826 | new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax, |
| 4827 | new_status); |
| 4828 | GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); |
| 4829 | } |
| 4830 | else if (old_infomask & HEAP_XMAX_COMMITTED) |
| 4831 | { |
| 4832 | /* |
| 4833 | * It's a committed update, so we need to preserve him as updater of |
| 4834 | * the tuple. |
| 4835 | */ |
| 4836 | MultiXactStatus status; |
| 4837 | MultiXactStatus new_status; |
| 4838 | |
| 4839 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
| 4840 | status = MultiXactStatusUpdate; |
| 4841 | else |
| 4842 | status = MultiXactStatusNoKeyUpdate; |
| 4843 | |
| 4844 | new_status = get_mxact_status_for_lock(mode, is_update); |
| 4845 | |
| 4846 | /* |
| 4847 | * since it's not running, it's obviously impossible for the old |
| 4848 | * updater to be identical to the current one, so we need not check |
| 4849 | * for that case as we do in the block above. |
| 4850 | */ |
| 4851 | new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status); |
| 4852 | GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); |
| 4853 | } |
| 4854 | else if (TransactionIdIsInProgress(xmax)) |
| 4855 | { |
| 4856 | /* |
| 4857 | * If the XMAX is a valid, in-progress TransactionId, then we need to |
| 4858 | * create a new MultiXactId that includes both the old locker or |
| 4859 | * updater and our own TransactionId. |
| 4860 | */ |
| 4861 | MultiXactStatus new_status; |
| 4862 | MultiXactStatus old_status; |
| 4863 | LockTupleMode old_mode; |
| 4864 | |
| 4865 | if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)) |
| 4866 | { |
| 4867 | if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask)) |
| 4868 | old_status = MultiXactStatusForKeyShare; |
| 4869 | else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask)) |
| 4870 | old_status = MultiXactStatusForShare; |
| 4871 | else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) |
| 4872 | { |
| 4873 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
| 4874 | old_status = MultiXactStatusForUpdate; |
| 4875 | else |
| 4876 | old_status = MultiXactStatusForNoKeyUpdate; |
| 4877 | } |
| 4878 | else |
| 4879 | { |
| 4880 | /* |
| 4881 | * LOCK_ONLY can be present alone only when a page has been |
| 4882 | * upgraded by pg_upgrade. But in that case, |
| 4883 | * TransactionIdIsInProgress() should have returned false. We |
| 4884 | * assume it's no longer locked in this case. |
| 4885 | */ |
| 4886 | elog(WARNING, "LOCK_ONLY found for Xid in progress %u" , xmax); |
| 4887 | old_infomask |= HEAP_XMAX_INVALID; |
| 4888 | old_infomask &= ~HEAP_XMAX_LOCK_ONLY; |
| 4889 | goto l5; |
| 4890 | } |
| 4891 | } |
| 4892 | else |
| 4893 | { |
| 4894 | /* it's an update, but which kind? */ |
| 4895 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
| 4896 | old_status = MultiXactStatusUpdate; |
| 4897 | else |
| 4898 | old_status = MultiXactStatusNoKeyUpdate; |
| 4899 | } |
| 4900 | |
| 4901 | old_mode = TUPLOCK_from_mxstatus(old_status); |
| 4902 | |
| 4903 | /* |
| 4904 | * If the lock to be acquired is for the same TransactionId as the |
| 4905 | * existing lock, there's an optimization possible: consider only the |
| 4906 | * strongest of both locks as the only one present, and restart. |
| 4907 | */ |
| 4908 | if (xmax == add_to_xmax) |
| 4909 | { |
| 4910 | /* |
| 4911 | * Note that it's not possible for the original tuple to be |
| 4912 | * updated: we wouldn't be here because the tuple would have been |
| 4913 | * invisible and we wouldn't try to update it. As a subtlety, |
| 4914 | * this code can also run when traversing an update chain to lock |
| 4915 | * future versions of a tuple. But we wouldn't be here either, |
| 4916 | * because the add_to_xmax would be different from the original |
| 4917 | * updater. |
| 4918 | */ |
| 4919 | Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)); |
| 4920 | |
| 4921 | /* acquire the strongest of both */ |
| 4922 | if (mode < old_mode) |
| 4923 | mode = old_mode; |
| 4924 | /* mustn't touch is_update */ |
| 4925 | |
| 4926 | old_infomask |= HEAP_XMAX_INVALID; |
| 4927 | goto l5; |
| 4928 | } |
| 4929 | |
| 4930 | /* otherwise, just fall back to creating a new multixact */ |
| 4931 | new_status = get_mxact_status_for_lock(mode, is_update); |
| 4932 | new_xmax = MultiXactIdCreate(xmax, old_status, |
| 4933 | add_to_xmax, new_status); |
| 4934 | GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); |
| 4935 | } |
| 4936 | else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) && |
| 4937 | TransactionIdDidCommit(xmax)) |
| 4938 | { |
| 4939 | /* |
| 4940 | * It's a committed update, so we gotta preserve him as updater of the |
| 4941 | * tuple. |
| 4942 | */ |
| 4943 | MultiXactStatus status; |
| 4944 | MultiXactStatus new_status; |
| 4945 | |
| 4946 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
| 4947 | status = MultiXactStatusUpdate; |
| 4948 | else |
| 4949 | status = MultiXactStatusNoKeyUpdate; |
| 4950 | |
| 4951 | new_status = get_mxact_status_for_lock(mode, is_update); |
| 4952 | |
| 4953 | /* |
| 4954 | * since it's not running, it's obviously impossible for the old |
| 4955 | * updater to be identical to the current one, so we need not check |
| 4956 | * for that case as we do in the block above. |
| 4957 | */ |
| 4958 | new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status); |
| 4959 | GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); |
| 4960 | } |
| 4961 | else |
| 4962 | { |
| 4963 | /* |
| 4964 | * Can get here iff the locking/updating transaction was running when |
| 4965 | * the infomask was extracted from the tuple, but finished before |
| 4966 | * TransactionIdIsInProgress got to run. Deal with it as if there was |
| 4967 | * no locker at all in the first place. |
| 4968 | */ |
| 4969 | old_infomask |= HEAP_XMAX_INVALID; |
| 4970 | goto l5; |
| 4971 | } |
| 4972 | |
| 4973 | *result_infomask = new_infomask; |
| 4974 | *result_infomask2 = new_infomask2; |
| 4975 | *result_xmax = new_xmax; |
| 4976 | } |
| 4977 | |
| 4978 | /* |
| 4979 | * Subroutine for heap_lock_updated_tuple_rec. |
| 4980 | * |
| 4981 | * Given a hypothetical multixact status held by the transaction identified |
| 4982 | * with the given xid, does the current transaction need to wait, fail, or can |
| 4983 | * it continue if it wanted to acquire a lock of the given mode? "needwait" |
| 4984 | * is set to true if waiting is necessary; if it can continue, then TM_Ok is |
| 4985 | * returned. If the lock is already held by the current transaction, return |
| 4986 | * TM_SelfModified. In case of a conflict with another transaction, a |
| 4987 | * different HeapTupleSatisfiesUpdate return code is returned. |
| 4988 | * |
| 4989 | * The held status is said to be hypothetical because it might correspond to a |
| 4990 | * lock held by a single Xid, i.e. not a real MultiXactId; we express it this |
| 4991 | * way for simplicity of API. |
| 4992 | */ |
| 4993 | static TM_Result |
| 4994 | test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid, |
| 4995 | LockTupleMode mode, HeapTuple tup, |
| 4996 | bool *needwait) |
| 4997 | { |
| 4998 | MultiXactStatus wantedstatus; |
| 4999 | |
| 5000 | *needwait = false; |
| 5001 | wantedstatus = get_mxact_status_for_lock(mode, false); |
| 5002 | |
| 5003 | /* |
| 5004 | * Note: we *must* check TransactionIdIsInProgress before |
| 5005 | * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c |
| 5006 | * for an explanation. |
| 5007 | */ |
| 5008 | if (TransactionIdIsCurrentTransactionId(xid)) |
| 5009 | { |
| 5010 | /* |
| 5011 | * The tuple has already been locked by our own transaction. This is |
| 5012 | * very rare but can happen if multiple transactions are trying to |
| 5013 | * lock an ancient version of the same tuple. |
| 5014 | */ |
| 5015 | return TM_SelfModified; |
| 5016 | } |
| 5017 | else if (TransactionIdIsInProgress(xid)) |
| 5018 | { |
| 5019 | /* |
| 5020 | * If the locking transaction is running, what we do depends on |
| 5021 | * whether the lock modes conflict: if they do, then we must wait for |
| 5022 | * it to finish; otherwise we can fall through to lock this tuple |
| 5023 | * version without waiting. |
| 5024 | */ |
| 5025 | if (DoLockModesConflict(LOCKMODE_from_mxstatus(status), |
| 5026 | LOCKMODE_from_mxstatus(wantedstatus))) |
| 5027 | { |
| 5028 | *needwait = true; |
| 5029 | } |
| 5030 | |
| 5031 | /* |
| 5032 | * If we set needwait above, then this value doesn't matter; |
| 5033 | * otherwise, this value signals to caller that it's okay to proceed. |
| 5034 | */ |
| 5035 | return TM_Ok; |
| 5036 | } |
| 5037 | else if (TransactionIdDidAbort(xid)) |
| 5038 | return TM_Ok; |
| 5039 | else if (TransactionIdDidCommit(xid)) |
| 5040 | { |
| 5041 | /* |
| 5042 | * The other transaction committed. If it was only a locker, then the |
| 5043 | * lock is completely gone now and we can return success; but if it |
| 5044 | * was an update, then what we do depends on whether the two lock |
| 5045 | * modes conflict. If they conflict, then we must report error to |
| 5046 | * caller. But if they don't, we can fall through to allow the current |
| 5047 | * transaction to lock the tuple. |
| 5048 | * |
| 5049 | * Note: the reason we worry about ISUPDATE here is because as soon as |
| 5050 | * a transaction ends, all its locks are gone and meaningless, and |
| 5051 | * thus we can ignore them; whereas its updates persist. In the |
| 5052 | * TransactionIdIsInProgress case, above, we don't need to check |
| 5053 | * because we know the lock is still "alive" and thus a conflict needs |
| 5054 | * always be checked. |
| 5055 | */ |
| 5056 | if (!ISUPDATE_from_mxstatus(status)) |
| 5057 | return TM_Ok; |
| 5058 | |
| 5059 | if (DoLockModesConflict(LOCKMODE_from_mxstatus(status), |
| 5060 | LOCKMODE_from_mxstatus(wantedstatus))) |
| 5061 | { |
| 5062 | /* bummer */ |
| 5063 | if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid) || |
| 5064 | HeapTupleHeaderIndicatesMovedPartitions(tup->t_data)) |
| 5065 | return TM_Updated; |
| 5066 | else |
| 5067 | return TM_Deleted; |
| 5068 | } |
| 5069 | |
| 5070 | return TM_Ok; |
| 5071 | } |
| 5072 | |
| 5073 | /* Not in progress, not aborted, not committed -- must have crashed */ |
| 5074 | return TM_Ok; |
| 5075 | } |
| 5076 | |
| 5077 | |
| 5078 | /* |
| 5079 | * Recursive part of heap_lock_updated_tuple |
| 5080 | * |
| 5081 | * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given |
| 5082 | * xid with the given mode; if this tuple is updated, recurse to lock the new |
| 5083 | * version as well. |
| 5084 | */ |
| 5085 | static TM_Result |
| 5086 | heap_lock_updated_tuple_rec(Relation rel, ItemPointer tid, TransactionId xid, |
| 5087 | LockTupleMode mode) |
| 5088 | { |
| 5089 | TM_Result result; |
| 5090 | ItemPointerData tupid; |
| 5091 | HeapTupleData mytup; |
| 5092 | Buffer buf; |
| 5093 | uint16 new_infomask, |
| 5094 | new_infomask2, |
| 5095 | old_infomask, |
| 5096 | old_infomask2; |
| 5097 | TransactionId xmax, |
| 5098 | new_xmax; |
| 5099 | TransactionId priorXmax = InvalidTransactionId; |
| 5100 | bool cleared_all_frozen = false; |
| 5101 | bool pinned_desired_page; |
| 5102 | Buffer vmbuffer = InvalidBuffer; |
| 5103 | BlockNumber block; |
| 5104 | |
| 5105 | ItemPointerCopy(tid, &tupid); |
| 5106 | |
| 5107 | for (;;) |
| 5108 | { |
| 5109 | new_infomask = 0; |
| 5110 | new_xmax = InvalidTransactionId; |
| 5111 | block = ItemPointerGetBlockNumber(&tupid); |
| 5112 | ItemPointerCopy(&tupid, &(mytup.t_self)); |
| 5113 | |
| 5114 | if (!heap_fetch(rel, SnapshotAny, &mytup, &buf)) |
| 5115 | { |
| 5116 | /* |
| 5117 | * if we fail to find the updated version of the tuple, it's |
| 5118 | * because it was vacuumed/pruned away after its creator |
| 5119 | * transaction aborted. So behave as if we got to the end of the |
| 5120 | * chain, and there's no further tuple to lock: return success to |
| 5121 | * caller. |
| 5122 | */ |
| 5123 | result = TM_Ok; |
| 5124 | goto out_unlocked; |
| 5125 | } |
| 5126 | |
| 5127 | l4: |
| 5128 | CHECK_FOR_INTERRUPTS(); |
| 5129 | |
| 5130 | /* |
| 5131 | * Before locking the buffer, pin the visibility map page if it |
| 5132 | * appears to be necessary. Since we haven't got the lock yet, |
| 5133 | * someone else might be in the middle of changing this, so we'll need |
| 5134 | * to recheck after we have the lock. |
| 5135 | */ |
| 5136 | if (PageIsAllVisible(BufferGetPage(buf))) |
| 5137 | { |
| 5138 | visibilitymap_pin(rel, block, &vmbuffer); |
| 5139 | pinned_desired_page = true; |
| 5140 | } |
| 5141 | else |
| 5142 | pinned_desired_page = false; |
| 5143 | |
| 5144 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 5145 | |
| 5146 | /* |
| 5147 | * If we didn't pin the visibility map page and the page has become |
| 5148 | * all visible while we were busy locking the buffer, we'll have to |
| 5149 | * unlock and re-lock, to avoid holding the buffer lock across I/O. |
| 5150 | * That's a bit unfortunate, but hopefully shouldn't happen often. |
| 5151 | * |
| 5152 | * Note: in some paths through this function, we will reach here |
| 5153 | * holding a pin on a vm page that may or may not be the one matching |
| 5154 | * this page. If this page isn't all-visible, we won't use the vm |
| 5155 | * page, but we hold onto such a pin till the end of the function. |
| 5156 | */ |
| 5157 | if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf))) |
| 5158 | { |
| 5159 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 5160 | visibilitymap_pin(rel, block, &vmbuffer); |
| 5161 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 5162 | } |
| 5163 | |
| 5164 | /* |
| 5165 | * Check the tuple XMIN against prior XMAX, if any. If we reached the |
| 5166 | * end of the chain, we're done, so return success. |
| 5167 | */ |
| 5168 | if (TransactionIdIsValid(priorXmax) && |
| 5169 | !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data), |
| 5170 | priorXmax)) |
| 5171 | { |
| 5172 | result = TM_Ok; |
| 5173 | goto out_locked; |
| 5174 | } |
| 5175 | |
| 5176 | /* |
| 5177 | * Also check Xmin: if this tuple was created by an aborted |
| 5178 | * (sub)transaction, then we already locked the last live one in the |
| 5179 | * chain, thus we're done, so return success. |
| 5180 | */ |
| 5181 | if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data))) |
| 5182 | { |
| 5183 | result = TM_Ok; |
| 5184 | goto out_locked; |
| 5185 | } |
| 5186 | |
| 5187 | old_infomask = mytup.t_data->t_infomask; |
| 5188 | old_infomask2 = mytup.t_data->t_infomask2; |
| 5189 | xmax = HeapTupleHeaderGetRawXmax(mytup.t_data); |
| 5190 | |
| 5191 | /* |
| 5192 | * If this tuple version has been updated or locked by some concurrent |
| 5193 | * transaction(s), what we do depends on whether our lock mode |
| 5194 | * conflicts with what those other transactions hold, and also on the |
| 5195 | * status of them. |
| 5196 | */ |
| 5197 | if (!(old_infomask & HEAP_XMAX_INVALID)) |
| 5198 | { |
| 5199 | TransactionId rawxmax; |
| 5200 | bool needwait; |
| 5201 | |
| 5202 | rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data); |
| 5203 | if (old_infomask & HEAP_XMAX_IS_MULTI) |
| 5204 | { |
| 5205 | int nmembers; |
| 5206 | int i; |
| 5207 | MultiXactMember *members; |
| 5208 | |
| 5209 | /* |
| 5210 | * We don't need a test for pg_upgrade'd tuples: this is only |
| 5211 | * applied to tuples after the first in an update chain. Said |
| 5212 | * first tuple in the chain may well be locked-in-9.2-and- |
| 5213 | * pg_upgraded, but that one was already locked by our caller, |
| 5214 | * not us; and any subsequent ones cannot be because our |
| 5215 | * caller must necessarily have obtained a snapshot later than |
| 5216 | * the pg_upgrade itself. |
| 5217 | */ |
| 5218 | Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask)); |
| 5219 | |
| 5220 | nmembers = GetMultiXactIdMembers(rawxmax, &members, false, |
| 5221 | HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)); |
| 5222 | for (i = 0; i < nmembers; i++) |
| 5223 | { |
| 5224 | result = test_lockmode_for_conflict(members[i].status, |
| 5225 | members[i].xid, |
| 5226 | mode, |
| 5227 | &mytup, |
| 5228 | &needwait); |
| 5229 | |
| 5230 | /* |
| 5231 | * If the tuple was already locked by ourselves in a |
| 5232 | * previous iteration of this (say heap_lock_tuple was |
| 5233 | * forced to restart the locking loop because of a change |
| 5234 | * in xmax), then we hold the lock already on this tuple |
| 5235 | * version and we don't need to do anything; and this is |
| 5236 | * not an error condition either. We just need to skip |
| 5237 | * this tuple and continue locking the next version in the |
| 5238 | * update chain. |
| 5239 | */ |
| 5240 | if (result == TM_SelfModified) |
| 5241 | { |
| 5242 | pfree(members); |
| 5243 | goto next; |
| 5244 | } |
| 5245 | |
| 5246 | if (needwait) |
| 5247 | { |
| 5248 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 5249 | XactLockTableWait(members[i].xid, rel, |
| 5250 | &mytup.t_self, |
| 5251 | XLTW_LockUpdated); |
| 5252 | pfree(members); |
| 5253 | goto l4; |
| 5254 | } |
| 5255 | if (result != TM_Ok) |
| 5256 | { |
| 5257 | pfree(members); |
| 5258 | goto out_locked; |
| 5259 | } |
| 5260 | } |
| 5261 | if (members) |
| 5262 | pfree(members); |
| 5263 | } |
| 5264 | else |
| 5265 | { |
| 5266 | MultiXactStatus status; |
| 5267 | |
| 5268 | /* |
| 5269 | * For a non-multi Xmax, we first need to compute the |
| 5270 | * corresponding MultiXactStatus by using the infomask bits. |
| 5271 | */ |
| 5272 | if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)) |
| 5273 | { |
| 5274 | if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask)) |
| 5275 | status = MultiXactStatusForKeyShare; |
| 5276 | else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask)) |
| 5277 | status = MultiXactStatusForShare; |
| 5278 | else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) |
| 5279 | { |
| 5280 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
| 5281 | status = MultiXactStatusForUpdate; |
| 5282 | else |
| 5283 | status = MultiXactStatusForNoKeyUpdate; |
| 5284 | } |
| 5285 | else |
| 5286 | { |
| 5287 | /* |
| 5288 | * LOCK_ONLY present alone (a pg_upgraded tuple marked |
| 5289 | * as share-locked in the old cluster) shouldn't be |
| 5290 | * seen in the middle of an update chain. |
| 5291 | */ |
| 5292 | elog(ERROR, "invalid lock status in tuple" ); |
| 5293 | } |
| 5294 | } |
| 5295 | else |
| 5296 | { |
| 5297 | /* it's an update, but which kind? */ |
| 5298 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
| 5299 | status = MultiXactStatusUpdate; |
| 5300 | else |
| 5301 | status = MultiXactStatusNoKeyUpdate; |
| 5302 | } |
| 5303 | |
| 5304 | result = test_lockmode_for_conflict(status, rawxmax, mode, |
| 5305 | &mytup, &needwait); |
| 5306 | |
| 5307 | /* |
| 5308 | * If the tuple was already locked by ourselves in a previous |
| 5309 | * iteration of this (say heap_lock_tuple was forced to |
| 5310 | * restart the locking loop because of a change in xmax), then |
| 5311 | * we hold the lock already on this tuple version and we don't |
| 5312 | * need to do anything; and this is not an error condition |
| 5313 | * either. We just need to skip this tuple and continue |
| 5314 | * locking the next version in the update chain. |
| 5315 | */ |
| 5316 | if (result == TM_SelfModified) |
| 5317 | goto next; |
| 5318 | |
| 5319 | if (needwait) |
| 5320 | { |
| 5321 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 5322 | XactLockTableWait(rawxmax, rel, &mytup.t_self, |
| 5323 | XLTW_LockUpdated); |
| 5324 | goto l4; |
| 5325 | } |
| 5326 | if (result != TM_Ok) |
| 5327 | { |
| 5328 | goto out_locked; |
| 5329 | } |
| 5330 | } |
| 5331 | } |
| 5332 | |
| 5333 | /* compute the new Xmax and infomask values for the tuple ... */ |
| 5334 | compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2, |
| 5335 | xid, mode, false, |
| 5336 | &new_xmax, &new_infomask, &new_infomask2); |
| 5337 | |
| 5338 | if (PageIsAllVisible(BufferGetPage(buf)) && |
| 5339 | visibilitymap_clear(rel, block, vmbuffer, |
| 5340 | VISIBILITYMAP_ALL_FROZEN)) |
| 5341 | cleared_all_frozen = true; |
| 5342 | |
| 5343 | START_CRIT_SECTION(); |
| 5344 | |
| 5345 | /* ... and set them */ |
| 5346 | HeapTupleHeaderSetXmax(mytup.t_data, new_xmax); |
| 5347 | mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS; |
| 5348 | mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 5349 | mytup.t_data->t_infomask |= new_infomask; |
| 5350 | mytup.t_data->t_infomask2 |= new_infomask2; |
| 5351 | |
| 5352 | MarkBufferDirty(buf); |
| 5353 | |
| 5354 | /* XLOG stuff */ |
| 5355 | if (RelationNeedsWAL(rel)) |
| 5356 | { |
| 5357 | xl_heap_lock_updated xlrec; |
| 5358 | XLogRecPtr recptr; |
| 5359 | Page page = BufferGetPage(buf); |
| 5360 | |
| 5361 | XLogBeginInsert(); |
| 5362 | XLogRegisterBuffer(0, buf, REGBUF_STANDARD); |
| 5363 | |
| 5364 | xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self); |
| 5365 | xlrec.xmax = new_xmax; |
| 5366 | xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2); |
| 5367 | xlrec.flags = |
| 5368 | cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0; |
| 5369 | |
| 5370 | XLogRegisterData((char *) &xlrec, SizeOfHeapLockUpdated); |
| 5371 | |
| 5372 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED); |
| 5373 | |
| 5374 | PageSetLSN(page, recptr); |
| 5375 | } |
| 5376 | |
| 5377 | END_CRIT_SECTION(); |
| 5378 | |
| 5379 | next: |
| 5380 | /* if we find the end of update chain, we're done. */ |
| 5381 | if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID || |
| 5382 | HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) || |
| 5383 | ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) || |
| 5384 | HeapTupleHeaderIsOnlyLocked(mytup.t_data)) |
| 5385 | { |
| 5386 | result = TM_Ok; |
| 5387 | goto out_locked; |
| 5388 | } |
| 5389 | |
| 5390 | /* tail recursion */ |
| 5391 | priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data); |
| 5392 | ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid); |
| 5393 | UnlockReleaseBuffer(buf); |
| 5394 | } |
| 5395 | |
| 5396 | result = TM_Ok; |
| 5397 | |
| 5398 | out_locked: |
| 5399 | UnlockReleaseBuffer(buf); |
| 5400 | |
| 5401 | out_unlocked: |
| 5402 | if (vmbuffer != InvalidBuffer) |
| 5403 | ReleaseBuffer(vmbuffer); |
| 5404 | |
| 5405 | return result; |
| 5406 | } |
| 5407 | |
| 5408 | /* |
| 5409 | * heap_lock_updated_tuple |
| 5410 | * Follow update chain when locking an updated tuple, acquiring locks (row |
| 5411 | * marks) on the updated versions. |
| 5412 | * |
| 5413 | * The initial tuple is assumed to be already locked. |
| 5414 | * |
| 5415 | * This function doesn't check visibility, it just unconditionally marks the |
| 5416 | * tuple(s) as locked. If any tuple in the updated chain is being deleted |
| 5417 | * concurrently (or updated with the key being modified), sleep until the |
| 5418 | * transaction doing it is finished. |
| 5419 | * |
| 5420 | * Note that we don't acquire heavyweight tuple locks on the tuples we walk |
| 5421 | * when we have to wait for other transactions to release them, as opposed to |
| 5422 | * what heap_lock_tuple does. The reason is that having more than one |
| 5423 | * transaction walking the chain is probably uncommon enough that risk of |
| 5424 | * starvation is not likely: one of the preconditions for being here is that |
| 5425 | * the snapshot in use predates the update that created this tuple (because we |
| 5426 | * started at an earlier version of the tuple), but at the same time such a |
| 5427 | * transaction cannot be using repeatable read or serializable isolation |
| 5428 | * levels, because that would lead to a serializability failure. |
| 5429 | */ |
| 5430 | static TM_Result |
| 5431 | heap_lock_updated_tuple(Relation rel, HeapTuple tuple, ItemPointer ctid, |
| 5432 | TransactionId xid, LockTupleMode mode) |
| 5433 | { |
| 5434 | /* |
| 5435 | * If the tuple has not been updated, or has moved into another partition |
| 5436 | * (effectively a delete) stop here. |
| 5437 | */ |
| 5438 | if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) && |
| 5439 | !ItemPointerEquals(&tuple->t_self, ctid)) |
| 5440 | { |
| 5441 | /* |
| 5442 | * If this is the first possibly-multixact-able operation in the |
| 5443 | * current transaction, set my per-backend OldestMemberMXactId |
| 5444 | * setting. We can be certain that the transaction will never become a |
| 5445 | * member of any older MultiXactIds than that. (We have to do this |
| 5446 | * even if we end up just using our own TransactionId below, since |
| 5447 | * some other backend could incorporate our XID into a MultiXact |
| 5448 | * immediately afterwards.) |
| 5449 | */ |
| 5450 | MultiXactIdSetOldestMember(); |
| 5451 | |
| 5452 | return heap_lock_updated_tuple_rec(rel, ctid, xid, mode); |
| 5453 | } |
| 5454 | |
| 5455 | /* nothing to lock */ |
| 5456 | return TM_Ok; |
| 5457 | } |
| 5458 | |
| 5459 | /* |
| 5460 | * heap_finish_speculative - mark speculative insertion as successful |
| 5461 | * |
| 5462 | * To successfully finish a speculative insertion we have to clear speculative |
| 5463 | * token from tuple. To do so the t_ctid field, which will contain a |
| 5464 | * speculative token value, is modified in place to point to the tuple itself, |
| 5465 | * which is characteristic of a newly inserted ordinary tuple. |
| 5466 | * |
| 5467 | * NB: It is not ok to commit without either finishing or aborting a |
| 5468 | * speculative insertion. We could treat speculative tuples of committed |
| 5469 | * transactions implicitly as completed, but then we would have to be prepared |
| 5470 | * to deal with speculative tokens on committed tuples. That wouldn't be |
| 5471 | * difficult - no-one looks at the ctid field of a tuple with invalid xmax - |
| 5472 | * but clearing the token at completion isn't very expensive either. |
| 5473 | * An explicit confirmation WAL record also makes logical decoding simpler. |
| 5474 | */ |
| 5475 | void |
| 5476 | heap_finish_speculative(Relation relation, ItemPointer tid) |
| 5477 | { |
| 5478 | Buffer buffer; |
| 5479 | Page page; |
| 5480 | OffsetNumber offnum; |
| 5481 | ItemId lp = NULL; |
| 5482 | HeapTupleHeader htup; |
| 5483 | |
| 5484 | buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); |
| 5485 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 5486 | page = (Page) BufferGetPage(buffer); |
| 5487 | |
| 5488 | offnum = ItemPointerGetOffsetNumber(tid); |
| 5489 | if (PageGetMaxOffsetNumber(page) >= offnum) |
| 5490 | lp = PageGetItemId(page, offnum); |
| 5491 | |
| 5492 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
| 5493 | elog(ERROR, "invalid lp" ); |
| 5494 | |
| 5495 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
| 5496 | |
| 5497 | /* SpecTokenOffsetNumber should be distinguishable from any real offset */ |
| 5498 | StaticAssertStmt(MaxOffsetNumber < SpecTokenOffsetNumber, |
| 5499 | "invalid speculative token constant" ); |
| 5500 | |
| 5501 | /* NO EREPORT(ERROR) from here till changes are logged */ |
| 5502 | START_CRIT_SECTION(); |
| 5503 | |
| 5504 | Assert(HeapTupleHeaderIsSpeculative(htup)); |
| 5505 | |
| 5506 | MarkBufferDirty(buffer); |
| 5507 | |
| 5508 | /* |
| 5509 | * Replace the speculative insertion token with a real t_ctid, pointing to |
| 5510 | * itself like it does on regular tuples. |
| 5511 | */ |
| 5512 | htup->t_ctid = *tid; |
| 5513 | |
| 5514 | /* XLOG stuff */ |
| 5515 | if (RelationNeedsWAL(relation)) |
| 5516 | { |
| 5517 | xl_heap_confirm xlrec; |
| 5518 | XLogRecPtr recptr; |
| 5519 | |
| 5520 | xlrec.offnum = ItemPointerGetOffsetNumber(tid); |
| 5521 | |
| 5522 | XLogBeginInsert(); |
| 5523 | |
| 5524 | /* We want the same filtering on this as on a plain insert */ |
| 5525 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
| 5526 | |
| 5527 | XLogRegisterData((char *) &xlrec, SizeOfHeapConfirm); |
| 5528 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
| 5529 | |
| 5530 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM); |
| 5531 | |
| 5532 | PageSetLSN(page, recptr); |
| 5533 | } |
| 5534 | |
| 5535 | END_CRIT_SECTION(); |
| 5536 | |
| 5537 | UnlockReleaseBuffer(buffer); |
| 5538 | } |
| 5539 | |
| 5540 | /* |
| 5541 | * heap_abort_speculative - kill a speculatively inserted tuple |
| 5542 | * |
| 5543 | * Marks a tuple that was speculatively inserted in the same command as dead, |
| 5544 | * by setting its xmin as invalid. That makes it immediately appear as dead |
| 5545 | * to all transactions, including our own. In particular, it makes |
| 5546 | * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend |
| 5547 | * inserting a duplicate key value won't unnecessarily wait for our whole |
| 5548 | * transaction to finish (it'll just wait for our speculative insertion to |
| 5549 | * finish). |
| 5550 | * |
| 5551 | * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks |
| 5552 | * that arise due to a mutual dependency that is not user visible. By |
| 5553 | * definition, unprincipled deadlocks cannot be prevented by the user |
| 5554 | * reordering lock acquisition in client code, because the implementation level |
| 5555 | * lock acquisitions are not under the user's direct control. If speculative |
| 5556 | * inserters did not take this precaution, then under high concurrency they |
| 5557 | * could deadlock with each other, which would not be acceptable. |
| 5558 | * |
| 5559 | * This is somewhat redundant with heap_delete, but we prefer to have a |
| 5560 | * dedicated routine with stripped down requirements. Note that this is also |
| 5561 | * used to delete the TOAST tuples created during speculative insertion. |
| 5562 | * |
| 5563 | * This routine does not affect logical decoding as it only looks at |
| 5564 | * confirmation records. |
| 5565 | */ |
| 5566 | void |
| 5567 | heap_abort_speculative(Relation relation, ItemPointer tid) |
| 5568 | { |
| 5569 | TransactionId xid = GetCurrentTransactionId(); |
| 5570 | ItemId lp; |
| 5571 | HeapTupleData tp; |
| 5572 | Page page; |
| 5573 | BlockNumber block; |
| 5574 | Buffer buffer; |
| 5575 | |
| 5576 | Assert(ItemPointerIsValid(tid)); |
| 5577 | |
| 5578 | block = ItemPointerGetBlockNumber(tid); |
| 5579 | buffer = ReadBuffer(relation, block); |
| 5580 | page = BufferGetPage(buffer); |
| 5581 | |
| 5582 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 5583 | |
| 5584 | /* |
| 5585 | * Page can't be all visible, we just inserted into it, and are still |
| 5586 | * running. |
| 5587 | */ |
| 5588 | Assert(!PageIsAllVisible(page)); |
| 5589 | |
| 5590 | lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); |
| 5591 | Assert(ItemIdIsNormal(lp)); |
| 5592 | |
| 5593 | tp.t_tableOid = RelationGetRelid(relation); |
| 5594 | tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); |
| 5595 | tp.t_len = ItemIdGetLength(lp); |
| 5596 | tp.t_self = *tid; |
| 5597 | |
| 5598 | /* |
| 5599 | * Sanity check that the tuple really is a speculatively inserted tuple, |
| 5600 | * inserted by us. |
| 5601 | */ |
| 5602 | if (tp.t_data->t_choice.t_heap.t_xmin != xid) |
| 5603 | elog(ERROR, "attempted to kill a tuple inserted by another transaction" ); |
| 5604 | if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data))) |
| 5605 | elog(ERROR, "attempted to kill a non-speculative tuple" ); |
| 5606 | Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data)); |
| 5607 | |
| 5608 | /* |
| 5609 | * No need to check for serializable conflicts here. There is never a |
| 5610 | * need for a combocid, either. No need to extract replica identity, or |
| 5611 | * do anything special with infomask bits. |
| 5612 | */ |
| 5613 | |
| 5614 | START_CRIT_SECTION(); |
| 5615 | |
| 5616 | /* |
| 5617 | * The tuple will become DEAD immediately. Flag that this page |
| 5618 | * immediately is a candidate for pruning by setting xmin to |
| 5619 | * RecentGlobalXmin. That's not pretty, but it doesn't seem worth |
| 5620 | * inventing a nicer API for this. |
| 5621 | */ |
| 5622 | Assert(TransactionIdIsValid(RecentGlobalXmin)); |
| 5623 | PageSetPrunable(page, RecentGlobalXmin); |
| 5624 | |
| 5625 | /* store transaction information of xact deleting the tuple */ |
| 5626 | tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
| 5627 | tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 5628 | |
| 5629 | /* |
| 5630 | * Set the tuple header xmin to InvalidTransactionId. This makes the |
| 5631 | * tuple immediately invisible everyone. (In particular, to any |
| 5632 | * transactions waiting on the speculative token, woken up later.) |
| 5633 | */ |
| 5634 | HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId); |
| 5635 | |
| 5636 | /* Clear the speculative insertion token too */ |
| 5637 | tp.t_data->t_ctid = tp.t_self; |
| 5638 | |
| 5639 | MarkBufferDirty(buffer); |
| 5640 | |
| 5641 | /* |
| 5642 | * XLOG stuff |
| 5643 | * |
| 5644 | * The WAL records generated here match heap_delete(). The same recovery |
| 5645 | * routines are used. |
| 5646 | */ |
| 5647 | if (RelationNeedsWAL(relation)) |
| 5648 | { |
| 5649 | xl_heap_delete xlrec; |
| 5650 | XLogRecPtr recptr; |
| 5651 | |
| 5652 | xlrec.flags = XLH_DELETE_IS_SUPER; |
| 5653 | xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask, |
| 5654 | tp.t_data->t_infomask2); |
| 5655 | xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self); |
| 5656 | xlrec.xmax = xid; |
| 5657 | |
| 5658 | XLogBeginInsert(); |
| 5659 | XLogRegisterData((char *) &xlrec, SizeOfHeapDelete); |
| 5660 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
| 5661 | |
| 5662 | /* No replica identity & replication origin logged */ |
| 5663 | |
| 5664 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE); |
| 5665 | |
| 5666 | PageSetLSN(page, recptr); |
| 5667 | } |
| 5668 | |
| 5669 | END_CRIT_SECTION(); |
| 5670 | |
| 5671 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 5672 | |
| 5673 | if (HeapTupleHasExternal(&tp)) |
| 5674 | { |
| 5675 | Assert(!IsToastRelation(relation)); |
| 5676 | toast_delete(relation, &tp, true); |
| 5677 | } |
| 5678 | |
| 5679 | /* |
| 5680 | * Never need to mark tuple for invalidation, since catalogs don't support |
| 5681 | * speculative insertion |
| 5682 | */ |
| 5683 | |
| 5684 | /* Now we can release the buffer */ |
| 5685 | ReleaseBuffer(buffer); |
| 5686 | |
| 5687 | /* count deletion, as we counted the insertion too */ |
| 5688 | pgstat_count_heap_delete(relation); |
| 5689 | } |
| 5690 | |
| 5691 | /* |
| 5692 | * heap_inplace_update - update a tuple "in place" (ie, overwrite it) |
| 5693 | * |
| 5694 | * Overwriting violates both MVCC and transactional safety, so the uses |
| 5695 | * of this function in Postgres are extremely limited. Nonetheless we |
| 5696 | * find some places to use it. |
| 5697 | * |
| 5698 | * The tuple cannot change size, and therefore it's reasonable to assume |
| 5699 | * that its null bitmap (if any) doesn't change either. So we just |
| 5700 | * overwrite the data portion of the tuple without touching the null |
| 5701 | * bitmap or any of the header fields. |
| 5702 | * |
| 5703 | * tuple is an in-memory tuple structure containing the data to be written |
| 5704 | * over the target tuple. Also, tuple->t_self identifies the target tuple. |
| 5705 | */ |
| 5706 | void |
| 5707 | heap_inplace_update(Relation relation, HeapTuple tuple) |
| 5708 | { |
| 5709 | Buffer buffer; |
| 5710 | Page page; |
| 5711 | OffsetNumber offnum; |
| 5712 | ItemId lp = NULL; |
| 5713 | HeapTupleHeader htup; |
| 5714 | uint32 oldlen; |
| 5715 | uint32 newlen; |
| 5716 | |
| 5717 | /* |
| 5718 | * For now, parallel operations are required to be strictly read-only. |
| 5719 | * Unlike a regular update, this should never create a combo CID, so it |
| 5720 | * might be possible to relax this restriction, but not without more |
| 5721 | * thought and testing. It's not clear that it would be useful, anyway. |
| 5722 | */ |
| 5723 | if (IsInParallelMode()) |
| 5724 | ereport(ERROR, |
| 5725 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
| 5726 | errmsg("cannot update tuples during a parallel operation" ))); |
| 5727 | |
| 5728 | buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&(tuple->t_self))); |
| 5729 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
| 5730 | page = (Page) BufferGetPage(buffer); |
| 5731 | |
| 5732 | offnum = ItemPointerGetOffsetNumber(&(tuple->t_self)); |
| 5733 | if (PageGetMaxOffsetNumber(page) >= offnum) |
| 5734 | lp = PageGetItemId(page, offnum); |
| 5735 | |
| 5736 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
| 5737 | elog(ERROR, "invalid lp" ); |
| 5738 | |
| 5739 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
| 5740 | |
| 5741 | oldlen = ItemIdGetLength(lp) - htup->t_hoff; |
| 5742 | newlen = tuple->t_len - tuple->t_data->t_hoff; |
| 5743 | if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff) |
| 5744 | elog(ERROR, "wrong tuple length" ); |
| 5745 | |
| 5746 | /* NO EREPORT(ERROR) from here till changes are logged */ |
| 5747 | START_CRIT_SECTION(); |
| 5748 | |
| 5749 | memcpy((char *) htup + htup->t_hoff, |
| 5750 | (char *) tuple->t_data + tuple->t_data->t_hoff, |
| 5751 | newlen); |
| 5752 | |
| 5753 | MarkBufferDirty(buffer); |
| 5754 | |
| 5755 | /* XLOG stuff */ |
| 5756 | if (RelationNeedsWAL(relation)) |
| 5757 | { |
| 5758 | xl_heap_inplace xlrec; |
| 5759 | XLogRecPtr recptr; |
| 5760 | |
| 5761 | xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self); |
| 5762 | |
| 5763 | XLogBeginInsert(); |
| 5764 | XLogRegisterData((char *) &xlrec, SizeOfHeapInplace); |
| 5765 | |
| 5766 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
| 5767 | XLogRegisterBufData(0, (char *) htup + htup->t_hoff, newlen); |
| 5768 | |
| 5769 | /* inplace updates aren't decoded atm, don't log the origin */ |
| 5770 | |
| 5771 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE); |
| 5772 | |
| 5773 | PageSetLSN(page, recptr); |
| 5774 | } |
| 5775 | |
| 5776 | END_CRIT_SECTION(); |
| 5777 | |
| 5778 | UnlockReleaseBuffer(buffer); |
| 5779 | |
| 5780 | /* |
| 5781 | * Send out shared cache inval if necessary. Note that because we only |
| 5782 | * pass the new version of the tuple, this mustn't be used for any |
| 5783 | * operations that could change catcache lookup keys. But we aren't |
| 5784 | * bothering with index updates either, so that's true a fortiori. |
| 5785 | */ |
| 5786 | if (!IsBootstrapProcessingMode()) |
| 5787 | CacheInvalidateHeapTuple(relation, tuple, NULL); |
| 5788 | } |
| 5789 | |
| 5790 | #define FRM_NOOP 0x0001 |
| 5791 | #define FRM_INVALIDATE_XMAX 0x0002 |
| 5792 | #define FRM_RETURN_IS_XID 0x0004 |
| 5793 | #define FRM_RETURN_IS_MULTI 0x0008 |
| 5794 | #define FRM_MARK_COMMITTED 0x0010 |
| 5795 | |
| 5796 | /* |
| 5797 | * FreezeMultiXactId |
| 5798 | * Determine what to do during freezing when a tuple is marked by a |
| 5799 | * MultiXactId. |
| 5800 | * |
| 5801 | * NB -- this might have the side-effect of creating a new MultiXactId! |
| 5802 | * |
| 5803 | * "flags" is an output value; it's used to tell caller what to do on return. |
| 5804 | * Possible flags are: |
| 5805 | * FRM_NOOP |
| 5806 | * don't do anything -- keep existing Xmax |
| 5807 | * FRM_INVALIDATE_XMAX |
| 5808 | * mark Xmax as InvalidTransactionId and set XMAX_INVALID flag. |
| 5809 | * FRM_RETURN_IS_XID |
| 5810 | * The Xid return value is a single update Xid to set as xmax. |
| 5811 | * FRM_MARK_COMMITTED |
| 5812 | * Xmax can be marked as HEAP_XMAX_COMMITTED |
| 5813 | * FRM_RETURN_IS_MULTI |
| 5814 | * The return value is a new MultiXactId to set as new Xmax. |
| 5815 | * (caller must obtain proper infomask bits using GetMultiXactIdHintBits) |
| 5816 | */ |
| 5817 | static TransactionId |
| 5818 | FreezeMultiXactId(MultiXactId multi, uint16 t_infomask, |
| 5819 | TransactionId relfrozenxid, TransactionId relminmxid, |
| 5820 | TransactionId cutoff_xid, MultiXactId cutoff_multi, |
| 5821 | uint16 *flags) |
| 5822 | { |
| 5823 | TransactionId xid = InvalidTransactionId; |
| 5824 | int i; |
| 5825 | MultiXactMember *members; |
| 5826 | int nmembers; |
| 5827 | bool need_replace; |
| 5828 | int nnewmembers; |
| 5829 | MultiXactMember *newmembers; |
| 5830 | bool has_lockers; |
| 5831 | TransactionId update_xid; |
| 5832 | bool update_committed; |
| 5833 | |
| 5834 | *flags = 0; |
| 5835 | |
| 5836 | /* We should only be called in Multis */ |
| 5837 | Assert(t_infomask & HEAP_XMAX_IS_MULTI); |
| 5838 | |
| 5839 | if (!MultiXactIdIsValid(multi) || |
| 5840 | HEAP_LOCKED_UPGRADED(t_infomask)) |
| 5841 | { |
| 5842 | /* Ensure infomask bits are appropriately set/reset */ |
| 5843 | *flags |= FRM_INVALIDATE_XMAX; |
| 5844 | return InvalidTransactionId; |
| 5845 | } |
| 5846 | else if (MultiXactIdPrecedes(multi, relminmxid)) |
| 5847 | ereport(ERROR, |
| 5848 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 5849 | errmsg_internal("found multixact %u from before relminmxid %u" , |
| 5850 | multi, relminmxid))); |
| 5851 | else if (MultiXactIdPrecedes(multi, cutoff_multi)) |
| 5852 | { |
| 5853 | /* |
| 5854 | * This old multi cannot possibly have members still running, but |
| 5855 | * verify just in case. If it was a locker only, it can be removed |
| 5856 | * without any further consideration; but if it contained an update, |
| 5857 | * we might need to preserve it. |
| 5858 | */ |
| 5859 | if (MultiXactIdIsRunning(multi, |
| 5860 | HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))) |
| 5861 | ereport(ERROR, |
| 5862 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 5863 | errmsg_internal("multixact %u from before cutoff %u found to be still running" , |
| 5864 | multi, cutoff_multi))); |
| 5865 | |
| 5866 | if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)) |
| 5867 | { |
| 5868 | *flags |= FRM_INVALIDATE_XMAX; |
| 5869 | xid = InvalidTransactionId; /* not strictly necessary */ |
| 5870 | } |
| 5871 | else |
| 5872 | { |
| 5873 | /* replace multi by update xid */ |
| 5874 | xid = MultiXactIdGetUpdateXid(multi, t_infomask); |
| 5875 | |
| 5876 | /* wasn't only a lock, xid needs to be valid */ |
| 5877 | Assert(TransactionIdIsValid(xid)); |
| 5878 | |
| 5879 | if (TransactionIdPrecedes(xid, relfrozenxid)) |
| 5880 | ereport(ERROR, |
| 5881 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 5882 | errmsg_internal("found update xid %u from before relfrozenxid %u" , |
| 5883 | xid, relfrozenxid))); |
| 5884 | |
| 5885 | /* |
| 5886 | * If the xid is older than the cutoff, it has to have aborted, |
| 5887 | * otherwise the tuple would have gotten pruned away. |
| 5888 | */ |
| 5889 | if (TransactionIdPrecedes(xid, cutoff_xid)) |
| 5890 | { |
| 5891 | if (TransactionIdDidCommit(xid)) |
| 5892 | ereport(ERROR, |
| 5893 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 5894 | errmsg_internal("cannot freeze committed update xid %u" , xid))); |
| 5895 | *flags |= FRM_INVALIDATE_XMAX; |
| 5896 | xid = InvalidTransactionId; /* not strictly necessary */ |
| 5897 | } |
| 5898 | else |
| 5899 | { |
| 5900 | *flags |= FRM_RETURN_IS_XID; |
| 5901 | } |
| 5902 | } |
| 5903 | |
| 5904 | return xid; |
| 5905 | } |
| 5906 | |
| 5907 | /* |
| 5908 | * This multixact might have or might not have members still running, but |
| 5909 | * we know it's valid and is newer than the cutoff point for multis. |
| 5910 | * However, some member(s) of it may be below the cutoff for Xids, so we |
| 5911 | * need to walk the whole members array to figure out what to do, if |
| 5912 | * anything. |
| 5913 | */ |
| 5914 | |
| 5915 | nmembers = |
| 5916 | GetMultiXactIdMembers(multi, &members, false, |
| 5917 | HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)); |
| 5918 | if (nmembers <= 0) |
| 5919 | { |
| 5920 | /* Nothing worth keeping */ |
| 5921 | *flags |= FRM_INVALIDATE_XMAX; |
| 5922 | return InvalidTransactionId; |
| 5923 | } |
| 5924 | |
| 5925 | /* is there anything older than the cutoff? */ |
| 5926 | need_replace = false; |
| 5927 | for (i = 0; i < nmembers; i++) |
| 5928 | { |
| 5929 | if (TransactionIdPrecedes(members[i].xid, cutoff_xid)) |
| 5930 | { |
| 5931 | need_replace = true; |
| 5932 | break; |
| 5933 | } |
| 5934 | } |
| 5935 | |
| 5936 | /* |
| 5937 | * In the simplest case, there is no member older than the cutoff; we can |
| 5938 | * keep the existing MultiXactId as is. |
| 5939 | */ |
| 5940 | if (!need_replace) |
| 5941 | { |
| 5942 | *flags |= FRM_NOOP; |
| 5943 | pfree(members); |
| 5944 | return InvalidTransactionId; |
| 5945 | } |
| 5946 | |
| 5947 | /* |
| 5948 | * If the multi needs to be updated, figure out which members do we need |
| 5949 | * to keep. |
| 5950 | */ |
| 5951 | nnewmembers = 0; |
| 5952 | newmembers = palloc(sizeof(MultiXactMember) * nmembers); |
| 5953 | has_lockers = false; |
| 5954 | update_xid = InvalidTransactionId; |
| 5955 | update_committed = false; |
| 5956 | |
| 5957 | for (i = 0; i < nmembers; i++) |
| 5958 | { |
| 5959 | /* |
| 5960 | * Determine whether to keep this member or ignore it. |
| 5961 | */ |
| 5962 | if (ISUPDATE_from_mxstatus(members[i].status)) |
| 5963 | { |
| 5964 | TransactionId xid = members[i].xid; |
| 5965 | |
| 5966 | Assert(TransactionIdIsValid(xid)); |
| 5967 | if (TransactionIdPrecedes(xid, relfrozenxid)) |
| 5968 | ereport(ERROR, |
| 5969 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 5970 | errmsg_internal("found update xid %u from before relfrozenxid %u" , |
| 5971 | xid, relfrozenxid))); |
| 5972 | |
| 5973 | /* |
| 5974 | * It's an update; should we keep it? If the transaction is known |
| 5975 | * aborted or crashed then it's okay to ignore it, otherwise not. |
| 5976 | * Note that an updater older than cutoff_xid cannot possibly be |
| 5977 | * committed, because HeapTupleSatisfiesVacuum would have returned |
| 5978 | * HEAPTUPLE_DEAD and we would not be trying to freeze the tuple. |
| 5979 | * |
| 5980 | * As with all tuple visibility routines, it's critical to test |
| 5981 | * TransactionIdIsInProgress before TransactionIdDidCommit, |
| 5982 | * because of race conditions explained in detail in |
| 5983 | * heapam_visibility.c. |
| 5984 | */ |
| 5985 | if (TransactionIdIsCurrentTransactionId(xid) || |
| 5986 | TransactionIdIsInProgress(xid)) |
| 5987 | { |
| 5988 | Assert(!TransactionIdIsValid(update_xid)); |
| 5989 | update_xid = xid; |
| 5990 | } |
| 5991 | else if (TransactionIdDidCommit(xid)) |
| 5992 | { |
| 5993 | /* |
| 5994 | * The transaction committed, so we can tell caller to set |
| 5995 | * HEAP_XMAX_COMMITTED. (We can only do this because we know |
| 5996 | * the transaction is not running.) |
| 5997 | */ |
| 5998 | Assert(!TransactionIdIsValid(update_xid)); |
| 5999 | update_committed = true; |
| 6000 | update_xid = xid; |
| 6001 | } |
| 6002 | else |
| 6003 | { |
| 6004 | /* |
| 6005 | * Not in progress, not committed -- must be aborted or |
| 6006 | * crashed; we can ignore it. |
| 6007 | */ |
| 6008 | } |
| 6009 | |
| 6010 | /* |
| 6011 | * Since the tuple wasn't marked HEAPTUPLE_DEAD by vacuum, the |
| 6012 | * update Xid cannot possibly be older than the xid cutoff. The |
| 6013 | * presence of such a tuple would cause corruption, so be paranoid |
| 6014 | * and check. |
| 6015 | */ |
| 6016 | if (TransactionIdIsValid(update_xid) && |
| 6017 | TransactionIdPrecedes(update_xid, cutoff_xid)) |
| 6018 | ereport(ERROR, |
| 6019 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 6020 | errmsg_internal("found update xid %u from before xid cutoff %u" , |
| 6021 | update_xid, cutoff_xid))); |
| 6022 | |
| 6023 | /* |
| 6024 | * If we determined that it's an Xid corresponding to an update |
| 6025 | * that must be retained, additionally add it to the list of |
| 6026 | * members of the new Multi, in case we end up using that. (We |
| 6027 | * might still decide to use only an update Xid and not a multi, |
| 6028 | * but it's easier to maintain the list as we walk the old members |
| 6029 | * list.) |
| 6030 | */ |
| 6031 | if (TransactionIdIsValid(update_xid)) |
| 6032 | newmembers[nnewmembers++] = members[i]; |
| 6033 | } |
| 6034 | else |
| 6035 | { |
| 6036 | /* We only keep lockers if they are still running */ |
| 6037 | if (TransactionIdIsCurrentTransactionId(members[i].xid) || |
| 6038 | TransactionIdIsInProgress(members[i].xid)) |
| 6039 | { |
| 6040 | /* running locker cannot possibly be older than the cutoff */ |
| 6041 | Assert(!TransactionIdPrecedes(members[i].xid, cutoff_xid)); |
| 6042 | newmembers[nnewmembers++] = members[i]; |
| 6043 | has_lockers = true; |
| 6044 | } |
| 6045 | } |
| 6046 | } |
| 6047 | |
| 6048 | pfree(members); |
| 6049 | |
| 6050 | if (nnewmembers == 0) |
| 6051 | { |
| 6052 | /* nothing worth keeping!? Tell caller to remove the whole thing */ |
| 6053 | *flags |= FRM_INVALIDATE_XMAX; |
| 6054 | xid = InvalidTransactionId; |
| 6055 | } |
| 6056 | else if (TransactionIdIsValid(update_xid) && !has_lockers) |
| 6057 | { |
| 6058 | /* |
| 6059 | * If there's a single member and it's an update, pass it back alone |
| 6060 | * without creating a new Multi. (XXX we could do this when there's a |
| 6061 | * single remaining locker, too, but that would complicate the API too |
| 6062 | * much; moreover, the case with the single updater is more |
| 6063 | * interesting, because those are longer-lived.) |
| 6064 | */ |
| 6065 | Assert(nnewmembers == 1); |
| 6066 | *flags |= FRM_RETURN_IS_XID; |
| 6067 | if (update_committed) |
| 6068 | *flags |= FRM_MARK_COMMITTED; |
| 6069 | xid = update_xid; |
| 6070 | } |
| 6071 | else |
| 6072 | { |
| 6073 | /* |
| 6074 | * Create a new multixact with the surviving members of the previous |
| 6075 | * one, to set as new Xmax in the tuple. |
| 6076 | */ |
| 6077 | xid = MultiXactIdCreateFromMembers(nnewmembers, newmembers); |
| 6078 | *flags |= FRM_RETURN_IS_MULTI; |
| 6079 | } |
| 6080 | |
| 6081 | pfree(newmembers); |
| 6082 | |
| 6083 | return xid; |
| 6084 | } |
| 6085 | |
| 6086 | /* |
| 6087 | * heap_prepare_freeze_tuple |
| 6088 | * |
| 6089 | * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac) |
| 6090 | * are older than the specified cutoff XID and cutoff MultiXactId. If so, |
| 6091 | * setup enough state (in the *frz output argument) to later execute and |
| 6092 | * WAL-log what we would need to do, and return true. Return false if nothing |
| 6093 | * is to be changed. In addition, set *totally_frozen_p to true if the tuple |
| 6094 | * will be totally frozen after these operations are performed and false if |
| 6095 | * more freezing will eventually be required. |
| 6096 | * |
| 6097 | * Caller is responsible for setting the offset field, if appropriate. |
| 6098 | * |
| 6099 | * It is assumed that the caller has checked the tuple with |
| 6100 | * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD |
| 6101 | * (else we should be removing the tuple, not freezing it). |
| 6102 | * |
| 6103 | * NB: cutoff_xid *must* be <= the current global xmin, to ensure that any |
| 6104 | * XID older than it could neither be running nor seen as running by any |
| 6105 | * open transaction. This ensures that the replacement will not change |
| 6106 | * anyone's idea of the tuple state. |
| 6107 | * Similarly, cutoff_multi must be less than or equal to the smallest |
| 6108 | * MultiXactId used by any transaction currently open. |
| 6109 | * |
| 6110 | * If the tuple is in a shared buffer, caller must hold an exclusive lock on |
| 6111 | * that buffer. |
| 6112 | * |
| 6113 | * NB: It is not enough to set hint bits to indicate something is |
| 6114 | * committed/invalid -- they might not be set on a standby, or after crash |
| 6115 | * recovery. We really need to remove old xids. |
| 6116 | */ |
| 6117 | bool |
| 6118 | heap_prepare_freeze_tuple(HeapTupleHeader tuple, |
| 6119 | TransactionId relfrozenxid, TransactionId relminmxid, |
| 6120 | TransactionId cutoff_xid, TransactionId cutoff_multi, |
| 6121 | xl_heap_freeze_tuple *frz, bool *totally_frozen_p) |
| 6122 | { |
| 6123 | bool changed = false; |
| 6124 | bool xmax_already_frozen = false; |
| 6125 | bool xmin_frozen; |
| 6126 | bool freeze_xmax; |
| 6127 | TransactionId xid; |
| 6128 | |
| 6129 | frz->frzflags = 0; |
| 6130 | frz->t_infomask2 = tuple->t_infomask2; |
| 6131 | frz->t_infomask = tuple->t_infomask; |
| 6132 | frz->xmax = HeapTupleHeaderGetRawXmax(tuple); |
| 6133 | |
| 6134 | /* |
| 6135 | * Process xmin. xmin_frozen has two slightly different meanings: in the |
| 6136 | * !XidIsNormal case, it means "the xmin doesn't need any freezing" (it's |
| 6137 | * already a permanent value), while in the block below it is set true to |
| 6138 | * mean "xmin won't need freezing after what we do to it here" (false |
| 6139 | * otherwise). In both cases we're allowed to set totally_frozen, as far |
| 6140 | * as xmin is concerned. |
| 6141 | */ |
| 6142 | xid = HeapTupleHeaderGetXmin(tuple); |
| 6143 | if (!TransactionIdIsNormal(xid)) |
| 6144 | xmin_frozen = true; |
| 6145 | else |
| 6146 | { |
| 6147 | if (TransactionIdPrecedes(xid, relfrozenxid)) |
| 6148 | ereport(ERROR, |
| 6149 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 6150 | errmsg_internal("found xmin %u from before relfrozenxid %u" , |
| 6151 | xid, relfrozenxid))); |
| 6152 | |
| 6153 | xmin_frozen = TransactionIdPrecedes(xid, cutoff_xid); |
| 6154 | if (xmin_frozen) |
| 6155 | { |
| 6156 | if (!TransactionIdDidCommit(xid)) |
| 6157 | ereport(ERROR, |
| 6158 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 6159 | errmsg_internal("uncommitted xmin %u from before xid cutoff %u needs to be frozen" , |
| 6160 | xid, cutoff_xid))); |
| 6161 | |
| 6162 | frz->t_infomask |= HEAP_XMIN_FROZEN; |
| 6163 | changed = true; |
| 6164 | } |
| 6165 | } |
| 6166 | |
| 6167 | /* |
| 6168 | * Process xmax. To thoroughly examine the current Xmax value we need to |
| 6169 | * resolve a MultiXactId to its member Xids, in case some of them are |
| 6170 | * below the given cutoff for Xids. In that case, those values might need |
| 6171 | * freezing, too. Also, if a multi needs freezing, we cannot simply take |
| 6172 | * it out --- if there's a live updater Xid, it needs to be kept. |
| 6173 | * |
| 6174 | * Make sure to keep heap_tuple_needs_freeze in sync with this. |
| 6175 | */ |
| 6176 | xid = HeapTupleHeaderGetRawXmax(tuple); |
| 6177 | |
| 6178 | if (tuple->t_infomask & HEAP_XMAX_IS_MULTI) |
| 6179 | { |
| 6180 | TransactionId newxmax; |
| 6181 | uint16 flags; |
| 6182 | |
| 6183 | newxmax = FreezeMultiXactId(xid, tuple->t_infomask, |
| 6184 | relfrozenxid, relminmxid, |
| 6185 | cutoff_xid, cutoff_multi, &flags); |
| 6186 | |
| 6187 | freeze_xmax = (flags & FRM_INVALIDATE_XMAX); |
| 6188 | |
| 6189 | if (flags & FRM_RETURN_IS_XID) |
| 6190 | { |
| 6191 | /* |
| 6192 | * NB -- some of these transformations are only valid because we |
| 6193 | * know the return Xid is a tuple updater (i.e. not merely a |
| 6194 | * locker.) Also note that the only reason we don't explicitly |
| 6195 | * worry about HEAP_KEYS_UPDATED is because it lives in |
| 6196 | * t_infomask2 rather than t_infomask. |
| 6197 | */ |
| 6198 | frz->t_infomask &= ~HEAP_XMAX_BITS; |
| 6199 | frz->xmax = newxmax; |
| 6200 | if (flags & FRM_MARK_COMMITTED) |
| 6201 | frz->t_infomask |= HEAP_XMAX_COMMITTED; |
| 6202 | changed = true; |
| 6203 | } |
| 6204 | else if (flags & FRM_RETURN_IS_MULTI) |
| 6205 | { |
| 6206 | uint16 newbits; |
| 6207 | uint16 newbits2; |
| 6208 | |
| 6209 | /* |
| 6210 | * We can't use GetMultiXactIdHintBits directly on the new multi |
| 6211 | * here; that routine initializes the masks to all zeroes, which |
| 6212 | * would lose other bits we need. Doing it this way ensures all |
| 6213 | * unrelated bits remain untouched. |
| 6214 | */ |
| 6215 | frz->t_infomask &= ~HEAP_XMAX_BITS; |
| 6216 | frz->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 6217 | GetMultiXactIdHintBits(newxmax, &newbits, &newbits2); |
| 6218 | frz->t_infomask |= newbits; |
| 6219 | frz->t_infomask2 |= newbits2; |
| 6220 | |
| 6221 | frz->xmax = newxmax; |
| 6222 | |
| 6223 | changed = true; |
| 6224 | } |
| 6225 | } |
| 6226 | else if (TransactionIdIsNormal(xid)) |
| 6227 | { |
| 6228 | if (TransactionIdPrecedes(xid, relfrozenxid)) |
| 6229 | ereport(ERROR, |
| 6230 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 6231 | errmsg_internal("found xmax %u from before relfrozenxid %u" , |
| 6232 | xid, relfrozenxid))); |
| 6233 | |
| 6234 | if (TransactionIdPrecedes(xid, cutoff_xid)) |
| 6235 | { |
| 6236 | /* |
| 6237 | * If we freeze xmax, make absolutely sure that it's not an XID |
| 6238 | * that is important. (Note, a lock-only xmax can be removed |
| 6239 | * independent of committedness, since a committed lock holder has |
| 6240 | * released the lock). |
| 6241 | */ |
| 6242 | if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) && |
| 6243 | TransactionIdDidCommit(xid)) |
| 6244 | ereport(ERROR, |
| 6245 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 6246 | errmsg_internal("cannot freeze committed xmax %u" , |
| 6247 | xid))); |
| 6248 | freeze_xmax = true; |
| 6249 | } |
| 6250 | else |
| 6251 | freeze_xmax = false; |
| 6252 | } |
| 6253 | else if ((tuple->t_infomask & HEAP_XMAX_INVALID) || |
| 6254 | !TransactionIdIsValid(HeapTupleHeaderGetRawXmax(tuple))) |
| 6255 | { |
| 6256 | freeze_xmax = false; |
| 6257 | xmax_already_frozen = true; |
| 6258 | } |
| 6259 | else |
| 6260 | ereport(ERROR, |
| 6261 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 6262 | errmsg_internal("found xmax %u (infomask 0x%04x) not frozen, not multi, not normal" , |
| 6263 | xid, tuple->t_infomask))); |
| 6264 | |
| 6265 | if (freeze_xmax) |
| 6266 | { |
| 6267 | Assert(!xmax_already_frozen); |
| 6268 | |
| 6269 | frz->xmax = InvalidTransactionId; |
| 6270 | |
| 6271 | /* |
| 6272 | * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED + |
| 6273 | * LOCKED. Normalize to INVALID just to be sure no one gets confused. |
| 6274 | * Also get rid of the HEAP_KEYS_UPDATED bit. |
| 6275 | */ |
| 6276 | frz->t_infomask &= ~HEAP_XMAX_BITS; |
| 6277 | frz->t_infomask |= HEAP_XMAX_INVALID; |
| 6278 | frz->t_infomask2 &= ~HEAP_HOT_UPDATED; |
| 6279 | frz->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 6280 | changed = true; |
| 6281 | } |
| 6282 | |
| 6283 | /* |
| 6284 | * Old-style VACUUM FULL is gone, but we have to keep this code as long as |
| 6285 | * we support having MOVED_OFF/MOVED_IN tuples in the database. |
| 6286 | */ |
| 6287 | if (tuple->t_infomask & HEAP_MOVED) |
| 6288 | { |
| 6289 | xid = HeapTupleHeaderGetXvac(tuple); |
| 6290 | |
| 6291 | /* |
| 6292 | * For Xvac, we ignore the cutoff_xid and just always perform the |
| 6293 | * freeze operation. The oldest release in which such a value can |
| 6294 | * actually be set is PostgreSQL 8.4, because old-style VACUUM FULL |
| 6295 | * was removed in PostgreSQL 9.0. Note that if we were to respect |
| 6296 | * cutoff_xid here, we'd need to make surely to clear totally_frozen |
| 6297 | * when we skipped freezing on that basis. |
| 6298 | */ |
| 6299 | if (TransactionIdIsNormal(xid)) |
| 6300 | { |
| 6301 | /* |
| 6302 | * If a MOVED_OFF tuple is not dead, the xvac transaction must |
| 6303 | * have failed; whereas a non-dead MOVED_IN tuple must mean the |
| 6304 | * xvac transaction succeeded. |
| 6305 | */ |
| 6306 | if (tuple->t_infomask & HEAP_MOVED_OFF) |
| 6307 | frz->frzflags |= XLH_INVALID_XVAC; |
| 6308 | else |
| 6309 | frz->frzflags |= XLH_FREEZE_XVAC; |
| 6310 | |
| 6311 | /* |
| 6312 | * Might as well fix the hint bits too; usually XMIN_COMMITTED |
| 6313 | * will already be set here, but there's a small chance not. |
| 6314 | */ |
| 6315 | Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID)); |
| 6316 | frz->t_infomask |= HEAP_XMIN_COMMITTED; |
| 6317 | changed = true; |
| 6318 | } |
| 6319 | } |
| 6320 | |
| 6321 | *totally_frozen_p = (xmin_frozen && |
| 6322 | (freeze_xmax || xmax_already_frozen)); |
| 6323 | return changed; |
| 6324 | } |
| 6325 | |
| 6326 | /* |
| 6327 | * heap_execute_freeze_tuple |
| 6328 | * Execute the prepared freezing of a tuple. |
| 6329 | * |
| 6330 | * Caller is responsible for ensuring that no other backend can access the |
| 6331 | * storage underlying this tuple, either by holding an exclusive lock on the |
| 6332 | * buffer containing it (which is what lazy VACUUM does), or by having it be |
| 6333 | * in private storage (which is what CLUSTER and friends do). |
| 6334 | * |
| 6335 | * Note: it might seem we could make the changes without exclusive lock, since |
| 6336 | * TransactionId read/write is assumed atomic anyway. However there is a race |
| 6337 | * condition: someone who just fetched an old XID that we overwrite here could |
| 6338 | * conceivably not finish checking the XID against pg_xact before we finish |
| 6339 | * the VACUUM and perhaps truncate off the part of pg_xact he needs. Getting |
| 6340 | * exclusive lock ensures no other backend is in process of checking the |
| 6341 | * tuple status. Also, getting exclusive lock makes it safe to adjust the |
| 6342 | * infomask bits. |
| 6343 | * |
| 6344 | * NB: All code in here must be safe to execute during crash recovery! |
| 6345 | */ |
| 6346 | void |
| 6347 | heap_execute_freeze_tuple(HeapTupleHeader tuple, xl_heap_freeze_tuple *frz) |
| 6348 | { |
| 6349 | HeapTupleHeaderSetXmax(tuple, frz->xmax); |
| 6350 | |
| 6351 | if (frz->frzflags & XLH_FREEZE_XVAC) |
| 6352 | HeapTupleHeaderSetXvac(tuple, FrozenTransactionId); |
| 6353 | |
| 6354 | if (frz->frzflags & XLH_INVALID_XVAC) |
| 6355 | HeapTupleHeaderSetXvac(tuple, InvalidTransactionId); |
| 6356 | |
| 6357 | tuple->t_infomask = frz->t_infomask; |
| 6358 | tuple->t_infomask2 = frz->t_infomask2; |
| 6359 | } |
| 6360 | |
| 6361 | /* |
| 6362 | * heap_freeze_tuple |
| 6363 | * Freeze tuple in place, without WAL logging. |
| 6364 | * |
| 6365 | * Useful for callers like CLUSTER that perform their own WAL logging. |
| 6366 | */ |
| 6367 | bool |
| 6368 | heap_freeze_tuple(HeapTupleHeader tuple, |
| 6369 | TransactionId relfrozenxid, TransactionId relminmxid, |
| 6370 | TransactionId cutoff_xid, TransactionId cutoff_multi) |
| 6371 | { |
| 6372 | xl_heap_freeze_tuple frz; |
| 6373 | bool do_freeze; |
| 6374 | bool tuple_totally_frozen; |
| 6375 | |
| 6376 | do_freeze = heap_prepare_freeze_tuple(tuple, |
| 6377 | relfrozenxid, relminmxid, |
| 6378 | cutoff_xid, cutoff_multi, |
| 6379 | &frz, &tuple_totally_frozen); |
| 6380 | |
| 6381 | /* |
| 6382 | * Note that because this is not a WAL-logged operation, we don't need to |
| 6383 | * fill in the offset in the freeze record. |
| 6384 | */ |
| 6385 | |
| 6386 | if (do_freeze) |
| 6387 | heap_execute_freeze_tuple(tuple, &frz); |
| 6388 | return do_freeze; |
| 6389 | } |
| 6390 | |
| 6391 | /* |
| 6392 | * For a given MultiXactId, return the hint bits that should be set in the |
| 6393 | * tuple's infomask. |
| 6394 | * |
| 6395 | * Normally this should be called for a multixact that was just created, and |
| 6396 | * so is on our local cache, so the GetMembers call is fast. |
| 6397 | */ |
| 6398 | static void |
| 6399 | GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask, |
| 6400 | uint16 *new_infomask2) |
| 6401 | { |
| 6402 | int nmembers; |
| 6403 | MultiXactMember *members; |
| 6404 | int i; |
| 6405 | uint16 bits = HEAP_XMAX_IS_MULTI; |
| 6406 | uint16 bits2 = 0; |
| 6407 | bool has_update = false; |
| 6408 | LockTupleMode strongest = LockTupleKeyShare; |
| 6409 | |
| 6410 | /* |
| 6411 | * We only use this in multis we just created, so they cannot be values |
| 6412 | * pre-pg_upgrade. |
| 6413 | */ |
| 6414 | nmembers = GetMultiXactIdMembers(multi, &members, false, false); |
| 6415 | |
| 6416 | for (i = 0; i < nmembers; i++) |
| 6417 | { |
| 6418 | LockTupleMode mode; |
| 6419 | |
| 6420 | /* |
| 6421 | * Remember the strongest lock mode held by any member of the |
| 6422 | * multixact. |
| 6423 | */ |
| 6424 | mode = TUPLOCK_from_mxstatus(members[i].status); |
| 6425 | if (mode > strongest) |
| 6426 | strongest = mode; |
| 6427 | |
| 6428 | /* See what other bits we need */ |
| 6429 | switch (members[i].status) |
| 6430 | { |
| 6431 | case MultiXactStatusForKeyShare: |
| 6432 | case MultiXactStatusForShare: |
| 6433 | case MultiXactStatusForNoKeyUpdate: |
| 6434 | break; |
| 6435 | |
| 6436 | case MultiXactStatusForUpdate: |
| 6437 | bits2 |= HEAP_KEYS_UPDATED; |
| 6438 | break; |
| 6439 | |
| 6440 | case MultiXactStatusNoKeyUpdate: |
| 6441 | has_update = true; |
| 6442 | break; |
| 6443 | |
| 6444 | case MultiXactStatusUpdate: |
| 6445 | bits2 |= HEAP_KEYS_UPDATED; |
| 6446 | has_update = true; |
| 6447 | break; |
| 6448 | } |
| 6449 | } |
| 6450 | |
| 6451 | if (strongest == LockTupleExclusive || |
| 6452 | strongest == LockTupleNoKeyExclusive) |
| 6453 | bits |= HEAP_XMAX_EXCL_LOCK; |
| 6454 | else if (strongest == LockTupleShare) |
| 6455 | bits |= HEAP_XMAX_SHR_LOCK; |
| 6456 | else if (strongest == LockTupleKeyShare) |
| 6457 | bits |= HEAP_XMAX_KEYSHR_LOCK; |
| 6458 | |
| 6459 | if (!has_update) |
| 6460 | bits |= HEAP_XMAX_LOCK_ONLY; |
| 6461 | |
| 6462 | if (nmembers > 0) |
| 6463 | pfree(members); |
| 6464 | |
| 6465 | *new_infomask = bits; |
| 6466 | *new_infomask2 = bits2; |
| 6467 | } |
| 6468 | |
| 6469 | /* |
| 6470 | * MultiXactIdGetUpdateXid |
| 6471 | * |
| 6472 | * Given a multixact Xmax and corresponding infomask, which does not have the |
| 6473 | * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating |
| 6474 | * transaction. |
| 6475 | * |
| 6476 | * Caller is expected to check the status of the updating transaction, if |
| 6477 | * necessary. |
| 6478 | */ |
| 6479 | static TransactionId |
| 6480 | MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask) |
| 6481 | { |
| 6482 | TransactionId update_xact = InvalidTransactionId; |
| 6483 | MultiXactMember *members; |
| 6484 | int nmembers; |
| 6485 | |
| 6486 | Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY)); |
| 6487 | Assert(t_infomask & HEAP_XMAX_IS_MULTI); |
| 6488 | |
| 6489 | /* |
| 6490 | * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from |
| 6491 | * pre-pg_upgrade. |
| 6492 | */ |
| 6493 | nmembers = GetMultiXactIdMembers(xmax, &members, false, false); |
| 6494 | |
| 6495 | if (nmembers > 0) |
| 6496 | { |
| 6497 | int i; |
| 6498 | |
| 6499 | for (i = 0; i < nmembers; i++) |
| 6500 | { |
| 6501 | /* Ignore lockers */ |
| 6502 | if (!ISUPDATE_from_mxstatus(members[i].status)) |
| 6503 | continue; |
| 6504 | |
| 6505 | /* there can be at most one updater */ |
| 6506 | Assert(update_xact == InvalidTransactionId); |
| 6507 | update_xact = members[i].xid; |
| 6508 | #ifndef USE_ASSERT_CHECKING |
| 6509 | |
| 6510 | /* |
| 6511 | * in an assert-enabled build, walk the whole array to ensure |
| 6512 | * there's no other updater. |
| 6513 | */ |
| 6514 | break; |
| 6515 | #endif |
| 6516 | } |
| 6517 | |
| 6518 | pfree(members); |
| 6519 | } |
| 6520 | |
| 6521 | return update_xact; |
| 6522 | } |
| 6523 | |
| 6524 | /* |
| 6525 | * HeapTupleGetUpdateXid |
| 6526 | * As above, but use a HeapTupleHeader |
| 6527 | * |
| 6528 | * See also HeapTupleHeaderGetUpdateXid, which can be used without previously |
| 6529 | * checking the hint bits. |
| 6530 | */ |
| 6531 | TransactionId |
| 6532 | HeapTupleGetUpdateXid(HeapTupleHeader tuple) |
| 6533 | { |
| 6534 | return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tuple), |
| 6535 | tuple->t_infomask); |
| 6536 | } |
| 6537 | |
| 6538 | /* |
| 6539 | * Does the given multixact conflict with the current transaction grabbing a |
| 6540 | * tuple lock of the given strength? |
| 6541 | * |
| 6542 | * The passed infomask pairs up with the given multixact in the tuple header. |
| 6543 | * |
| 6544 | * If current_is_member is not NULL, it is set to 'true' if the current |
| 6545 | * transaction is a member of the given multixact. |
| 6546 | */ |
| 6547 | static bool |
| 6548 | DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask, |
| 6549 | LockTupleMode lockmode, bool *current_is_member) |
| 6550 | { |
| 6551 | int nmembers; |
| 6552 | MultiXactMember *members; |
| 6553 | bool result = false; |
| 6554 | LOCKMODE wanted = tupleLockExtraInfo[lockmode].hwlock; |
| 6555 | |
| 6556 | if (HEAP_LOCKED_UPGRADED(infomask)) |
| 6557 | return false; |
| 6558 | |
| 6559 | nmembers = GetMultiXactIdMembers(multi, &members, false, |
| 6560 | HEAP_XMAX_IS_LOCKED_ONLY(infomask)); |
| 6561 | if (nmembers >= 0) |
| 6562 | { |
| 6563 | int i; |
| 6564 | |
| 6565 | for (i = 0; i < nmembers; i++) |
| 6566 | { |
| 6567 | TransactionId memxid; |
| 6568 | LOCKMODE memlockmode; |
| 6569 | |
| 6570 | if (result && (current_is_member == NULL || *current_is_member)) |
| 6571 | break; |
| 6572 | |
| 6573 | memlockmode = LOCKMODE_from_mxstatus(members[i].status); |
| 6574 | |
| 6575 | /* ignore members from current xact (but track their presence) */ |
| 6576 | memxid = members[i].xid; |
| 6577 | if (TransactionIdIsCurrentTransactionId(memxid)) |
| 6578 | { |
| 6579 | if (current_is_member != NULL) |
| 6580 | *current_is_member = true; |
| 6581 | continue; |
| 6582 | } |
| 6583 | else if (result) |
| 6584 | continue; |
| 6585 | |
| 6586 | /* ignore members that don't conflict with the lock we want */ |
| 6587 | if (!DoLockModesConflict(memlockmode, wanted)) |
| 6588 | continue; |
| 6589 | |
| 6590 | if (ISUPDATE_from_mxstatus(members[i].status)) |
| 6591 | { |
| 6592 | /* ignore aborted updaters */ |
| 6593 | if (TransactionIdDidAbort(memxid)) |
| 6594 | continue; |
| 6595 | } |
| 6596 | else |
| 6597 | { |
| 6598 | /* ignore lockers-only that are no longer in progress */ |
| 6599 | if (!TransactionIdIsInProgress(memxid)) |
| 6600 | continue; |
| 6601 | } |
| 6602 | |
| 6603 | /* |
| 6604 | * Whatever remains are either live lockers that conflict with our |
| 6605 | * wanted lock, and updaters that are not aborted. Those conflict |
| 6606 | * with what we want. Set up to return true, but keep going to |
| 6607 | * look for the current transaction among the multixact members, |
| 6608 | * if needed. |
| 6609 | */ |
| 6610 | result = true; |
| 6611 | } |
| 6612 | pfree(members); |
| 6613 | } |
| 6614 | |
| 6615 | return result; |
| 6616 | } |
| 6617 | |
| 6618 | /* |
| 6619 | * Do_MultiXactIdWait |
| 6620 | * Actual implementation for the two functions below. |
| 6621 | * |
| 6622 | * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is |
| 6623 | * needed to ensure we only sleep on conflicting members, and the infomask is |
| 6624 | * used to optimize multixact access in case it's a lock-only multi); 'nowait' |
| 6625 | * indicates whether to use conditional lock acquisition, to allow callers to |
| 6626 | * fail if lock is unavailable. 'rel', 'ctid' and 'oper' are used to set up |
| 6627 | * context information for error messages. 'remaining', if not NULL, receives |
| 6628 | * the number of members that are still running, including any (non-aborted) |
| 6629 | * subtransactions of our own transaction. |
| 6630 | * |
| 6631 | * We do this by sleeping on each member using XactLockTableWait. Any |
| 6632 | * members that belong to the current backend are *not* waited for, however; |
| 6633 | * this would not merely be useless but would lead to Assert failure inside |
| 6634 | * XactLockTableWait. By the time this returns, it is certain that all |
| 6635 | * transactions *of other backends* that were members of the MultiXactId |
| 6636 | * that conflict with the requested status are dead (and no new ones can have |
| 6637 | * been added, since it is not legal to add members to an existing |
| 6638 | * MultiXactId). |
| 6639 | * |
| 6640 | * But by the time we finish sleeping, someone else may have changed the Xmax |
| 6641 | * of the containing tuple, so the caller needs to iterate on us somehow. |
| 6642 | * |
| 6643 | * Note that in case we return false, the number of remaining members is |
| 6644 | * not to be trusted. |
| 6645 | */ |
| 6646 | static bool |
| 6647 | Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status, |
| 6648 | uint16 infomask, bool nowait, |
| 6649 | Relation rel, ItemPointer ctid, XLTW_Oper oper, |
| 6650 | int *remaining) |
| 6651 | { |
| 6652 | bool result = true; |
| 6653 | MultiXactMember *members; |
| 6654 | int nmembers; |
| 6655 | int remain = 0; |
| 6656 | |
| 6657 | /* for pre-pg_upgrade tuples, no need to sleep at all */ |
| 6658 | nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 : |
| 6659 | GetMultiXactIdMembers(multi, &members, false, |
| 6660 | HEAP_XMAX_IS_LOCKED_ONLY(infomask)); |
| 6661 | |
| 6662 | if (nmembers >= 0) |
| 6663 | { |
| 6664 | int i; |
| 6665 | |
| 6666 | for (i = 0; i < nmembers; i++) |
| 6667 | { |
| 6668 | TransactionId memxid = members[i].xid; |
| 6669 | MultiXactStatus memstatus = members[i].status; |
| 6670 | |
| 6671 | if (TransactionIdIsCurrentTransactionId(memxid)) |
| 6672 | { |
| 6673 | remain++; |
| 6674 | continue; |
| 6675 | } |
| 6676 | |
| 6677 | if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus), |
| 6678 | LOCKMODE_from_mxstatus(status))) |
| 6679 | { |
| 6680 | if (remaining && TransactionIdIsInProgress(memxid)) |
| 6681 | remain++; |
| 6682 | continue; |
| 6683 | } |
| 6684 | |
| 6685 | /* |
| 6686 | * This member conflicts with our multi, so we have to sleep (or |
| 6687 | * return failure, if asked to avoid waiting.) |
| 6688 | * |
| 6689 | * Note that we don't set up an error context callback ourselves, |
| 6690 | * but instead we pass the info down to XactLockTableWait. This |
| 6691 | * might seem a bit wasteful because the context is set up and |
| 6692 | * tore down for each member of the multixact, but in reality it |
| 6693 | * should be barely noticeable, and it avoids duplicate code. |
| 6694 | */ |
| 6695 | if (nowait) |
| 6696 | { |
| 6697 | result = ConditionalXactLockTableWait(memxid); |
| 6698 | if (!result) |
| 6699 | break; |
| 6700 | } |
| 6701 | else |
| 6702 | XactLockTableWait(memxid, rel, ctid, oper); |
| 6703 | } |
| 6704 | |
| 6705 | pfree(members); |
| 6706 | } |
| 6707 | |
| 6708 | if (remaining) |
| 6709 | *remaining = remain; |
| 6710 | |
| 6711 | return result; |
| 6712 | } |
| 6713 | |
| 6714 | /* |
| 6715 | * MultiXactIdWait |
| 6716 | * Sleep on a MultiXactId. |
| 6717 | * |
| 6718 | * By the time we finish sleeping, someone else may have changed the Xmax |
| 6719 | * of the containing tuple, so the caller needs to iterate on us somehow. |
| 6720 | * |
| 6721 | * We return (in *remaining, if not NULL) the number of members that are still |
| 6722 | * running, including any (non-aborted) subtransactions of our own transaction. |
| 6723 | */ |
| 6724 | static void |
| 6725 | MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask, |
| 6726 | Relation rel, ItemPointer ctid, XLTW_Oper oper, |
| 6727 | int *remaining) |
| 6728 | { |
| 6729 | (void) Do_MultiXactIdWait(multi, status, infomask, false, |
| 6730 | rel, ctid, oper, remaining); |
| 6731 | } |
| 6732 | |
| 6733 | /* |
| 6734 | * ConditionalMultiXactIdWait |
| 6735 | * As above, but only lock if we can get the lock without blocking. |
| 6736 | * |
| 6737 | * By the time we finish sleeping, someone else may have changed the Xmax |
| 6738 | * of the containing tuple, so the caller needs to iterate on us somehow. |
| 6739 | * |
| 6740 | * If the multixact is now all gone, return true. Returns false if some |
| 6741 | * transactions might still be running. |
| 6742 | * |
| 6743 | * We return (in *remaining, if not NULL) the number of members that are still |
| 6744 | * running, including any (non-aborted) subtransactions of our own transaction. |
| 6745 | */ |
| 6746 | static bool |
| 6747 | ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status, |
| 6748 | uint16 infomask, Relation rel, int *remaining) |
| 6749 | { |
| 6750 | return Do_MultiXactIdWait(multi, status, infomask, true, |
| 6751 | rel, NULL, XLTW_None, remaining); |
| 6752 | } |
| 6753 | |
| 6754 | /* |
| 6755 | * heap_tuple_needs_eventual_freeze |
| 6756 | * |
| 6757 | * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac) |
| 6758 | * will eventually require freezing. Similar to heap_tuple_needs_freeze, |
| 6759 | * but there's no cutoff, since we're trying to figure out whether freezing |
| 6760 | * will ever be needed, not whether it's needed now. |
| 6761 | */ |
| 6762 | bool |
| 6763 | heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple) |
| 6764 | { |
| 6765 | TransactionId xid; |
| 6766 | |
| 6767 | /* |
| 6768 | * If xmin is a normal transaction ID, this tuple is definitely not |
| 6769 | * frozen. |
| 6770 | */ |
| 6771 | xid = HeapTupleHeaderGetXmin(tuple); |
| 6772 | if (TransactionIdIsNormal(xid)) |
| 6773 | return true; |
| 6774 | |
| 6775 | /* |
| 6776 | * If xmax is a valid xact or multixact, this tuple is also not frozen. |
| 6777 | */ |
| 6778 | if (tuple->t_infomask & HEAP_XMAX_IS_MULTI) |
| 6779 | { |
| 6780 | MultiXactId multi; |
| 6781 | |
| 6782 | multi = HeapTupleHeaderGetRawXmax(tuple); |
| 6783 | if (MultiXactIdIsValid(multi)) |
| 6784 | return true; |
| 6785 | } |
| 6786 | else |
| 6787 | { |
| 6788 | xid = HeapTupleHeaderGetRawXmax(tuple); |
| 6789 | if (TransactionIdIsNormal(xid)) |
| 6790 | return true; |
| 6791 | } |
| 6792 | |
| 6793 | if (tuple->t_infomask & HEAP_MOVED) |
| 6794 | { |
| 6795 | xid = HeapTupleHeaderGetXvac(tuple); |
| 6796 | if (TransactionIdIsNormal(xid)) |
| 6797 | return true; |
| 6798 | } |
| 6799 | |
| 6800 | return false; |
| 6801 | } |
| 6802 | |
| 6803 | /* |
| 6804 | * heap_tuple_needs_freeze |
| 6805 | * |
| 6806 | * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac) |
| 6807 | * are older than the specified cutoff XID or MultiXactId. If so, return true. |
| 6808 | * |
| 6809 | * It doesn't matter whether the tuple is alive or dead, we are checking |
| 6810 | * to see if a tuple needs to be removed or frozen to avoid wraparound. |
| 6811 | * |
| 6812 | * NB: Cannot rely on hint bits here, they might not be set after a crash or |
| 6813 | * on a standby. |
| 6814 | */ |
| 6815 | bool |
| 6816 | heap_tuple_needs_freeze(HeapTupleHeader tuple, TransactionId cutoff_xid, |
| 6817 | MultiXactId cutoff_multi, Buffer buf) |
| 6818 | { |
| 6819 | TransactionId xid; |
| 6820 | |
| 6821 | xid = HeapTupleHeaderGetXmin(tuple); |
| 6822 | if (TransactionIdIsNormal(xid) && |
| 6823 | TransactionIdPrecedes(xid, cutoff_xid)) |
| 6824 | return true; |
| 6825 | |
| 6826 | /* |
| 6827 | * The considerations for multixacts are complicated; look at |
| 6828 | * heap_prepare_freeze_tuple for justifications. This routine had better |
| 6829 | * be in sync with that one! |
| 6830 | */ |
| 6831 | if (tuple->t_infomask & HEAP_XMAX_IS_MULTI) |
| 6832 | { |
| 6833 | MultiXactId multi; |
| 6834 | |
| 6835 | multi = HeapTupleHeaderGetRawXmax(tuple); |
| 6836 | if (!MultiXactIdIsValid(multi)) |
| 6837 | { |
| 6838 | /* no xmax set, ignore */ |
| 6839 | ; |
| 6840 | } |
| 6841 | else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask)) |
| 6842 | return true; |
| 6843 | else if (MultiXactIdPrecedes(multi, cutoff_multi)) |
| 6844 | return true; |
| 6845 | else |
| 6846 | { |
| 6847 | MultiXactMember *members; |
| 6848 | int nmembers; |
| 6849 | int i; |
| 6850 | |
| 6851 | /* need to check whether any member of the mxact is too old */ |
| 6852 | |
| 6853 | nmembers = GetMultiXactIdMembers(multi, &members, false, |
| 6854 | HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask)); |
| 6855 | |
| 6856 | for (i = 0; i < nmembers; i++) |
| 6857 | { |
| 6858 | if (TransactionIdPrecedes(members[i].xid, cutoff_xid)) |
| 6859 | { |
| 6860 | pfree(members); |
| 6861 | return true; |
| 6862 | } |
| 6863 | } |
| 6864 | if (nmembers > 0) |
| 6865 | pfree(members); |
| 6866 | } |
| 6867 | } |
| 6868 | else |
| 6869 | { |
| 6870 | xid = HeapTupleHeaderGetRawXmax(tuple); |
| 6871 | if (TransactionIdIsNormal(xid) && |
| 6872 | TransactionIdPrecedes(xid, cutoff_xid)) |
| 6873 | return true; |
| 6874 | } |
| 6875 | |
| 6876 | if (tuple->t_infomask & HEAP_MOVED) |
| 6877 | { |
| 6878 | xid = HeapTupleHeaderGetXvac(tuple); |
| 6879 | if (TransactionIdIsNormal(xid) && |
| 6880 | TransactionIdPrecedes(xid, cutoff_xid)) |
| 6881 | return true; |
| 6882 | } |
| 6883 | |
| 6884 | return false; |
| 6885 | } |
| 6886 | |
| 6887 | /* |
| 6888 | * If 'tuple' contains any visible XID greater than latestRemovedXid, |
| 6889 | * ratchet forwards latestRemovedXid to the greatest one found. |
| 6890 | * This is used as the basis for generating Hot Standby conflicts, so |
| 6891 | * if a tuple was never visible then removing it should not conflict |
| 6892 | * with queries. |
| 6893 | */ |
| 6894 | void |
| 6895 | (HeapTupleHeader tuple, |
| 6896 | TransactionId *latestRemovedXid) |
| 6897 | { |
| 6898 | TransactionId xmin = HeapTupleHeaderGetXmin(tuple); |
| 6899 | TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple); |
| 6900 | TransactionId xvac = HeapTupleHeaderGetXvac(tuple); |
| 6901 | |
| 6902 | if (tuple->t_infomask & HEAP_MOVED) |
| 6903 | { |
| 6904 | if (TransactionIdPrecedes(*latestRemovedXid, xvac)) |
| 6905 | *latestRemovedXid = xvac; |
| 6906 | } |
| 6907 | |
| 6908 | /* |
| 6909 | * Ignore tuples inserted by an aborted transaction or if the tuple was |
| 6910 | * updated/deleted by the inserting transaction. |
| 6911 | * |
| 6912 | * Look for a committed hint bit, or if no xmin bit is set, check clog. |
| 6913 | * This needs to work on both master and standby, where it is used to |
| 6914 | * assess btree delete records. |
| 6915 | */ |
| 6916 | if (HeapTupleHeaderXminCommitted(tuple) || |
| 6917 | (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin))) |
| 6918 | { |
| 6919 | if (xmax != xmin && |
| 6920 | TransactionIdFollows(xmax, *latestRemovedXid)) |
| 6921 | *latestRemovedXid = xmax; |
| 6922 | } |
| 6923 | |
| 6924 | /* *latestRemovedXid may still be invalid at end */ |
| 6925 | } |
| 6926 | |
| 6927 | #ifdef USE_PREFETCH |
| 6928 | /* |
| 6929 | * Helper function for heap_compute_xid_horizon_for_tuples. Issue prefetch |
| 6930 | * requests for the number of buffers indicated by prefetch_count. The |
| 6931 | * prefetch_state keeps track of all the buffers that we can prefetch and |
| 6932 | * which ones have already been prefetched; each call to this function picks |
| 6933 | * up where the previous call left off. |
| 6934 | */ |
| 6935 | static void |
| 6936 | xid_horizon_prefetch_buffer(Relation rel, |
| 6937 | XidHorizonPrefetchState *prefetch_state, |
| 6938 | int prefetch_count) |
| 6939 | { |
| 6940 | BlockNumber cur_hblkno = prefetch_state->cur_hblkno; |
| 6941 | int count = 0; |
| 6942 | int i; |
| 6943 | int nitems = prefetch_state->nitems; |
| 6944 | ItemPointerData *tids = prefetch_state->tids; |
| 6945 | |
| 6946 | for (i = prefetch_state->next_item; |
| 6947 | i < nitems && count < prefetch_count; |
| 6948 | i++) |
| 6949 | { |
| 6950 | ItemPointer htid = &tids[i]; |
| 6951 | |
| 6952 | if (cur_hblkno == InvalidBlockNumber || |
| 6953 | ItemPointerGetBlockNumber(htid) != cur_hblkno) |
| 6954 | { |
| 6955 | cur_hblkno = ItemPointerGetBlockNumber(htid); |
| 6956 | PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno); |
| 6957 | count++; |
| 6958 | } |
| 6959 | } |
| 6960 | |
| 6961 | /* |
| 6962 | * Save the prefetch position so that next time we can continue from that |
| 6963 | * position. |
| 6964 | */ |
| 6965 | prefetch_state->next_item = i; |
| 6966 | prefetch_state->cur_hblkno = cur_hblkno; |
| 6967 | } |
| 6968 | #endif |
| 6969 | |
| 6970 | /* |
| 6971 | * Get the latestRemovedXid from the heap pages pointed at by the index |
| 6972 | * tuples being deleted. |
| 6973 | * |
| 6974 | * We used to do this during recovery rather than on the primary, but that |
| 6975 | * approach now appears inferior. It meant that the master could generate |
| 6976 | * a lot of work for the standby without any back-pressure to slow down the |
| 6977 | * master, and it required the standby to have reached consistency, whereas |
| 6978 | * we want to have correct information available even before that point. |
| 6979 | * |
| 6980 | * It's possible for this to generate a fair amount of I/O, since we may be |
| 6981 | * deleting hundreds of tuples from a single index block. To amortize that |
| 6982 | * cost to some degree, this uses prefetching and combines repeat accesses to |
| 6983 | * the same block. |
| 6984 | */ |
| 6985 | TransactionId |
| 6986 | heap_compute_xid_horizon_for_tuples(Relation rel, |
| 6987 | ItemPointerData *tids, |
| 6988 | int nitems) |
| 6989 | { |
| 6990 | TransactionId latestRemovedXid = InvalidTransactionId; |
| 6991 | BlockNumber hblkno; |
| 6992 | Buffer buf = InvalidBuffer; |
| 6993 | Page hpage; |
| 6994 | #ifdef USE_PREFETCH |
| 6995 | XidHorizonPrefetchState prefetch_state; |
| 6996 | int io_concurrency; |
| 6997 | int prefetch_distance; |
| 6998 | #endif |
| 6999 | |
| 7000 | /* |
| 7001 | * Sort to avoid repeated lookups for the same page, and to make it more |
| 7002 | * likely to access items in an efficient order. In particular, this |
| 7003 | * ensures that if there are multiple pointers to the same page, they all |
| 7004 | * get processed looking up and locking the page just once. |
| 7005 | */ |
| 7006 | qsort((void *) tids, nitems, sizeof(ItemPointerData), |
| 7007 | (int (*) (const void *, const void *)) ItemPointerCompare); |
| 7008 | |
| 7009 | #ifdef USE_PREFETCH |
| 7010 | /* Initialize prefetch state. */ |
| 7011 | prefetch_state.cur_hblkno = InvalidBlockNumber; |
| 7012 | prefetch_state.next_item = 0; |
| 7013 | prefetch_state.nitems = nitems; |
| 7014 | prefetch_state.tids = tids; |
| 7015 | |
| 7016 | /* |
| 7017 | * Compute the prefetch distance that we will attempt to maintain. |
| 7018 | * |
| 7019 | * We don't use the regular formula to determine how much to prefetch |
| 7020 | * here, but instead just add a constant to effective_io_concurrency. |
| 7021 | * That's because it seems best to do some prefetching here even when |
| 7022 | * effective_io_concurrency is set to 0, but if the DBA thinks it's OK to |
| 7023 | * do more prefetching for other operations, then it's probably OK to do |
| 7024 | * more prefetching in this case, too. It may be that this formula is too |
| 7025 | * simplistic, but at the moment there is no evidence of that or any idea |
| 7026 | * about what would work better. |
| 7027 | * |
| 7028 | * Since the caller holds a buffer lock somewhere in rel, we'd better make |
| 7029 | * sure that isn't a catalog relation before we call code that does |
| 7030 | * syscache lookups, to avoid risk of deadlock. |
| 7031 | */ |
| 7032 | if (IsCatalogRelation(rel)) |
| 7033 | io_concurrency = effective_io_concurrency; |
| 7034 | else |
| 7035 | io_concurrency = get_tablespace_io_concurrency(rel->rd_rel->reltablespace); |
| 7036 | prefetch_distance = Min((io_concurrency) + 10, MAX_IO_CONCURRENCY); |
| 7037 | |
| 7038 | /* Start prefetching. */ |
| 7039 | xid_horizon_prefetch_buffer(rel, &prefetch_state, prefetch_distance); |
| 7040 | #endif |
| 7041 | |
| 7042 | /* Iterate over all tids, and check their horizon */ |
| 7043 | hblkno = InvalidBlockNumber; |
| 7044 | hpage = NULL; |
| 7045 | for (int i = 0; i < nitems; i++) |
| 7046 | { |
| 7047 | ItemPointer htid = &tids[i]; |
| 7048 | ItemId hitemid; |
| 7049 | OffsetNumber hoffnum; |
| 7050 | |
| 7051 | /* |
| 7052 | * Read heap buffer, but avoid refetching if it's the same block as |
| 7053 | * required for the last tid. |
| 7054 | */ |
| 7055 | if (hblkno == InvalidBlockNumber || |
| 7056 | ItemPointerGetBlockNumber(htid) != hblkno) |
| 7057 | { |
| 7058 | /* release old buffer */ |
| 7059 | if (BufferIsValid(buf)) |
| 7060 | { |
| 7061 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 7062 | ReleaseBuffer(buf); |
| 7063 | } |
| 7064 | |
| 7065 | hblkno = ItemPointerGetBlockNumber(htid); |
| 7066 | |
| 7067 | buf = ReadBuffer(rel, hblkno); |
| 7068 | |
| 7069 | #ifdef USE_PREFETCH |
| 7070 | |
| 7071 | /* |
| 7072 | * To maintain the prefetch distance, prefetch one more page for |
| 7073 | * each page we read. |
| 7074 | */ |
| 7075 | xid_horizon_prefetch_buffer(rel, &prefetch_state, 1); |
| 7076 | #endif |
| 7077 | |
| 7078 | hpage = BufferGetPage(buf); |
| 7079 | |
| 7080 | LockBuffer(buf, BUFFER_LOCK_SHARE); |
| 7081 | } |
| 7082 | |
| 7083 | hoffnum = ItemPointerGetOffsetNumber(htid); |
| 7084 | hitemid = PageGetItemId(hpage, hoffnum); |
| 7085 | |
| 7086 | /* |
| 7087 | * Follow any redirections until we find something useful. |
| 7088 | */ |
| 7089 | while (ItemIdIsRedirected(hitemid)) |
| 7090 | { |
| 7091 | hoffnum = ItemIdGetRedirect(hitemid); |
| 7092 | hitemid = PageGetItemId(hpage, hoffnum); |
| 7093 | CHECK_FOR_INTERRUPTS(); |
| 7094 | } |
| 7095 | |
| 7096 | /* |
| 7097 | * If the heap item has storage, then read the header and use that to |
| 7098 | * set latestRemovedXid. |
| 7099 | * |
| 7100 | * Some LP_DEAD items may not be accessible, so we ignore them. |
| 7101 | */ |
| 7102 | if (ItemIdHasStorage(hitemid)) |
| 7103 | { |
| 7104 | HeapTupleHeader htuphdr; |
| 7105 | |
| 7106 | htuphdr = (HeapTupleHeader) PageGetItem(hpage, hitemid); |
| 7107 | |
| 7108 | HeapTupleHeaderAdvanceLatestRemovedXid(htuphdr, &latestRemovedXid); |
| 7109 | } |
| 7110 | else if (ItemIdIsDead(hitemid)) |
| 7111 | { |
| 7112 | /* |
| 7113 | * Conjecture: if hitemid is dead then it had xids before the xids |
| 7114 | * marked on LP_NORMAL items. So we just ignore this item and move |
| 7115 | * onto the next, for the purposes of calculating |
| 7116 | * latestRemovedXid. |
| 7117 | */ |
| 7118 | } |
| 7119 | else |
| 7120 | Assert(!ItemIdIsUsed(hitemid)); |
| 7121 | |
| 7122 | } |
| 7123 | |
| 7124 | if (BufferIsValid(buf)) |
| 7125 | { |
| 7126 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 7127 | ReleaseBuffer(buf); |
| 7128 | } |
| 7129 | |
| 7130 | /* |
| 7131 | * If all heap tuples were LP_DEAD then we will be returning |
| 7132 | * InvalidTransactionId here, which avoids conflicts. This matches |
| 7133 | * existing logic which assumes that LP_DEAD tuples must already be older |
| 7134 | * than the latestRemovedXid on the cleanup record that set them as |
| 7135 | * LP_DEAD, hence must already have generated a conflict. |
| 7136 | */ |
| 7137 | |
| 7138 | return latestRemovedXid; |
| 7139 | } |
| 7140 | |
| 7141 | /* |
| 7142 | * Perform XLogInsert to register a heap cleanup info message. These |
| 7143 | * messages are sent once per VACUUM and are required because |
| 7144 | * of the phasing of removal operations during a lazy VACUUM. |
| 7145 | * see comments for vacuum_log_cleanup_info(). |
| 7146 | */ |
| 7147 | XLogRecPtr |
| 7148 | log_heap_cleanup_info(RelFileNode rnode, TransactionId latestRemovedXid) |
| 7149 | { |
| 7150 | xl_heap_cleanup_info xlrec; |
| 7151 | XLogRecPtr recptr; |
| 7152 | |
| 7153 | xlrec.node = rnode; |
| 7154 | xlrec.latestRemovedXid = latestRemovedXid; |
| 7155 | |
| 7156 | XLogBeginInsert(); |
| 7157 | XLogRegisterData((char *) &xlrec, SizeOfHeapCleanupInfo); |
| 7158 | |
| 7159 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_CLEANUP_INFO); |
| 7160 | |
| 7161 | return recptr; |
| 7162 | } |
| 7163 | |
| 7164 | /* |
| 7165 | * Perform XLogInsert for a heap-clean operation. Caller must already |
| 7166 | * have modified the buffer and marked it dirty. |
| 7167 | * |
| 7168 | * Note: prior to Postgres 8.3, the entries in the nowunused[] array were |
| 7169 | * zero-based tuple indexes. Now they are one-based like other uses |
| 7170 | * of OffsetNumber. |
| 7171 | * |
| 7172 | * We also include latestRemovedXid, which is the greatest XID present in |
| 7173 | * the removed tuples. That allows recovery processing to cancel or wait |
| 7174 | * for long standby queries that can still see these tuples. |
| 7175 | */ |
| 7176 | XLogRecPtr |
| 7177 | log_heap_clean(Relation reln, Buffer buffer, |
| 7178 | OffsetNumber *redirected, int nredirected, |
| 7179 | OffsetNumber *nowdead, int ndead, |
| 7180 | OffsetNumber *nowunused, int nunused, |
| 7181 | TransactionId latestRemovedXid) |
| 7182 | { |
| 7183 | xl_heap_clean xlrec; |
| 7184 | XLogRecPtr recptr; |
| 7185 | |
| 7186 | /* Caller should not call me on a non-WAL-logged relation */ |
| 7187 | Assert(RelationNeedsWAL(reln)); |
| 7188 | |
| 7189 | xlrec.latestRemovedXid = latestRemovedXid; |
| 7190 | xlrec.nredirected = nredirected; |
| 7191 | xlrec.ndead = ndead; |
| 7192 | |
| 7193 | XLogBeginInsert(); |
| 7194 | XLogRegisterData((char *) &xlrec, SizeOfHeapClean); |
| 7195 | |
| 7196 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
| 7197 | |
| 7198 | /* |
| 7199 | * The OffsetNumber arrays are not actually in the buffer, but we pretend |
| 7200 | * that they are. When XLogInsert stores the whole buffer, the offset |
| 7201 | * arrays need not be stored too. Note that even if all three arrays are |
| 7202 | * empty, we want to expose the buffer as a candidate for whole-page |
| 7203 | * storage, since this record type implies a defragmentation operation |
| 7204 | * even if no line pointers changed state. |
| 7205 | */ |
| 7206 | if (nredirected > 0) |
| 7207 | XLogRegisterBufData(0, (char *) redirected, |
| 7208 | nredirected * sizeof(OffsetNumber) * 2); |
| 7209 | |
| 7210 | if (ndead > 0) |
| 7211 | XLogRegisterBufData(0, (char *) nowdead, |
| 7212 | ndead * sizeof(OffsetNumber)); |
| 7213 | |
| 7214 | if (nunused > 0) |
| 7215 | XLogRegisterBufData(0, (char *) nowunused, |
| 7216 | nunused * sizeof(OffsetNumber)); |
| 7217 | |
| 7218 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_CLEAN); |
| 7219 | |
| 7220 | return recptr; |
| 7221 | } |
| 7222 | |
| 7223 | /* |
| 7224 | * Perform XLogInsert for a heap-freeze operation. Caller must have already |
| 7225 | * modified the buffer and marked it dirty. |
| 7226 | */ |
| 7227 | XLogRecPtr |
| 7228 | log_heap_freeze(Relation reln, Buffer buffer, TransactionId cutoff_xid, |
| 7229 | xl_heap_freeze_tuple *tuples, int ntuples) |
| 7230 | { |
| 7231 | xl_heap_freeze_page xlrec; |
| 7232 | XLogRecPtr recptr; |
| 7233 | |
| 7234 | /* Caller should not call me on a non-WAL-logged relation */ |
| 7235 | Assert(RelationNeedsWAL(reln)); |
| 7236 | /* nor when there are no tuples to freeze */ |
| 7237 | Assert(ntuples > 0); |
| 7238 | |
| 7239 | xlrec.cutoff_xid = cutoff_xid; |
| 7240 | xlrec.ntuples = ntuples; |
| 7241 | |
| 7242 | XLogBeginInsert(); |
| 7243 | XLogRegisterData((char *) &xlrec, SizeOfHeapFreezePage); |
| 7244 | |
| 7245 | /* |
| 7246 | * The freeze plan array is not actually in the buffer, but pretend that |
| 7247 | * it is. When XLogInsert stores the whole buffer, the freeze plan need |
| 7248 | * not be stored too. |
| 7249 | */ |
| 7250 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
| 7251 | XLogRegisterBufData(0, (char *) tuples, |
| 7252 | ntuples * sizeof(xl_heap_freeze_tuple)); |
| 7253 | |
| 7254 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_FREEZE_PAGE); |
| 7255 | |
| 7256 | return recptr; |
| 7257 | } |
| 7258 | |
| 7259 | /* |
| 7260 | * Perform XLogInsert for a heap-visible operation. 'block' is the block |
| 7261 | * being marked all-visible, and vm_buffer is the buffer containing the |
| 7262 | * corresponding visibility map block. Both should have already been modified |
| 7263 | * and dirtied. |
| 7264 | * |
| 7265 | * If checksums are enabled, we also generate a full-page image of |
| 7266 | * heap_buffer, if necessary. |
| 7267 | */ |
| 7268 | XLogRecPtr |
| 7269 | log_heap_visible(RelFileNode rnode, Buffer heap_buffer, Buffer vm_buffer, |
| 7270 | TransactionId cutoff_xid, uint8 vmflags) |
| 7271 | { |
| 7272 | xl_heap_visible xlrec; |
| 7273 | XLogRecPtr recptr; |
| 7274 | uint8 flags; |
| 7275 | |
| 7276 | Assert(BufferIsValid(heap_buffer)); |
| 7277 | Assert(BufferIsValid(vm_buffer)); |
| 7278 | |
| 7279 | xlrec.cutoff_xid = cutoff_xid; |
| 7280 | xlrec.flags = vmflags; |
| 7281 | XLogBeginInsert(); |
| 7282 | XLogRegisterData((char *) &xlrec, SizeOfHeapVisible); |
| 7283 | |
| 7284 | XLogRegisterBuffer(0, vm_buffer, 0); |
| 7285 | |
| 7286 | flags = REGBUF_STANDARD; |
| 7287 | if (!XLogHintBitIsNeeded()) |
| 7288 | flags |= REGBUF_NO_IMAGE; |
| 7289 | XLogRegisterBuffer(1, heap_buffer, flags); |
| 7290 | |
| 7291 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE); |
| 7292 | |
| 7293 | return recptr; |
| 7294 | } |
| 7295 | |
| 7296 | /* |
| 7297 | * Perform XLogInsert for a heap-update operation. Caller must already |
| 7298 | * have modified the buffer(s) and marked them dirty. |
| 7299 | */ |
| 7300 | static XLogRecPtr |
| 7301 | log_heap_update(Relation reln, Buffer oldbuf, |
| 7302 | Buffer newbuf, HeapTuple oldtup, HeapTuple newtup, |
| 7303 | HeapTuple old_key_tuple, |
| 7304 | bool all_visible_cleared, bool new_all_visible_cleared) |
| 7305 | { |
| 7306 | xl_heap_update xlrec; |
| 7307 | xl_heap_header xlhdr; |
| 7308 | xl_heap_header xlhdr_idx; |
| 7309 | uint8 info; |
| 7310 | uint16 prefix_suffix[2]; |
| 7311 | uint16 prefixlen = 0, |
| 7312 | suffixlen = 0; |
| 7313 | XLogRecPtr recptr; |
| 7314 | Page page = BufferGetPage(newbuf); |
| 7315 | bool need_tuple_data = RelationIsLogicallyLogged(reln); |
| 7316 | bool init; |
| 7317 | int bufflags; |
| 7318 | |
| 7319 | /* Caller should not call me on a non-WAL-logged relation */ |
| 7320 | Assert(RelationNeedsWAL(reln)); |
| 7321 | |
| 7322 | XLogBeginInsert(); |
| 7323 | |
| 7324 | if (HeapTupleIsHeapOnly(newtup)) |
| 7325 | info = XLOG_HEAP_HOT_UPDATE; |
| 7326 | else |
| 7327 | info = XLOG_HEAP_UPDATE; |
| 7328 | |
| 7329 | /* |
| 7330 | * If the old and new tuple are on the same page, we only need to log the |
| 7331 | * parts of the new tuple that were changed. That saves on the amount of |
| 7332 | * WAL we need to write. Currently, we just count any unchanged bytes in |
| 7333 | * the beginning and end of the tuple. That's quick to check, and |
| 7334 | * perfectly covers the common case that only one field is updated. |
| 7335 | * |
| 7336 | * We could do this even if the old and new tuple are on different pages, |
| 7337 | * but only if we don't make a full-page image of the old page, which is |
| 7338 | * difficult to know in advance. Also, if the old tuple is corrupt for |
| 7339 | * some reason, it would allow the corruption to propagate the new page, |
| 7340 | * so it seems best to avoid. Under the general assumption that most |
| 7341 | * updates tend to create the new tuple version on the same page, there |
| 7342 | * isn't much to be gained by doing this across pages anyway. |
| 7343 | * |
| 7344 | * Skip this if we're taking a full-page image of the new page, as we |
| 7345 | * don't include the new tuple in the WAL record in that case. Also |
| 7346 | * disable if wal_level='logical', as logical decoding needs to be able to |
| 7347 | * read the new tuple in whole from the WAL record alone. |
| 7348 | */ |
| 7349 | if (oldbuf == newbuf && !need_tuple_data && |
| 7350 | !XLogCheckBufferNeedsBackup(newbuf)) |
| 7351 | { |
| 7352 | char *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff; |
| 7353 | char *newp = (char *) newtup->t_data + newtup->t_data->t_hoff; |
| 7354 | int oldlen = oldtup->t_len - oldtup->t_data->t_hoff; |
| 7355 | int newlen = newtup->t_len - newtup->t_data->t_hoff; |
| 7356 | |
| 7357 | /* Check for common prefix between old and new tuple */ |
| 7358 | for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++) |
| 7359 | { |
| 7360 | if (newp[prefixlen] != oldp[prefixlen]) |
| 7361 | break; |
| 7362 | } |
| 7363 | |
| 7364 | /* |
| 7365 | * Storing the length of the prefix takes 2 bytes, so we need to save |
| 7366 | * at least 3 bytes or there's no point. |
| 7367 | */ |
| 7368 | if (prefixlen < 3) |
| 7369 | prefixlen = 0; |
| 7370 | |
| 7371 | /* Same for suffix */ |
| 7372 | for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++) |
| 7373 | { |
| 7374 | if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1]) |
| 7375 | break; |
| 7376 | } |
| 7377 | if (suffixlen < 3) |
| 7378 | suffixlen = 0; |
| 7379 | } |
| 7380 | |
| 7381 | /* Prepare main WAL data chain */ |
| 7382 | xlrec.flags = 0; |
| 7383 | if (all_visible_cleared) |
| 7384 | xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED; |
| 7385 | if (new_all_visible_cleared) |
| 7386 | xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED; |
| 7387 | if (prefixlen > 0) |
| 7388 | xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD; |
| 7389 | if (suffixlen > 0) |
| 7390 | xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD; |
| 7391 | if (need_tuple_data) |
| 7392 | { |
| 7393 | xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE; |
| 7394 | if (old_key_tuple) |
| 7395 | { |
| 7396 | if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL) |
| 7397 | xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE; |
| 7398 | else |
| 7399 | xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY; |
| 7400 | } |
| 7401 | } |
| 7402 | |
| 7403 | /* If new tuple is the single and first tuple on page... */ |
| 7404 | if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber && |
| 7405 | PageGetMaxOffsetNumber(page) == FirstOffsetNumber) |
| 7406 | { |
| 7407 | info |= XLOG_HEAP_INIT_PAGE; |
| 7408 | init = true; |
| 7409 | } |
| 7410 | else |
| 7411 | init = false; |
| 7412 | |
| 7413 | /* Prepare WAL data for the old page */ |
| 7414 | xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self); |
| 7415 | xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data); |
| 7416 | xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask, |
| 7417 | oldtup->t_data->t_infomask2); |
| 7418 | |
| 7419 | /* Prepare WAL data for the new page */ |
| 7420 | xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self); |
| 7421 | xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data); |
| 7422 | |
| 7423 | bufflags = REGBUF_STANDARD; |
| 7424 | if (init) |
| 7425 | bufflags |= REGBUF_WILL_INIT; |
| 7426 | if (need_tuple_data) |
| 7427 | bufflags |= REGBUF_KEEP_DATA; |
| 7428 | |
| 7429 | XLogRegisterBuffer(0, newbuf, bufflags); |
| 7430 | if (oldbuf != newbuf) |
| 7431 | XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD); |
| 7432 | |
| 7433 | XLogRegisterData((char *) &xlrec, SizeOfHeapUpdate); |
| 7434 | |
| 7435 | /* |
| 7436 | * Prepare WAL data for the new tuple. |
| 7437 | */ |
| 7438 | if (prefixlen > 0 || suffixlen > 0) |
| 7439 | { |
| 7440 | if (prefixlen > 0 && suffixlen > 0) |
| 7441 | { |
| 7442 | prefix_suffix[0] = prefixlen; |
| 7443 | prefix_suffix[1] = suffixlen; |
| 7444 | XLogRegisterBufData(0, (char *) &prefix_suffix, sizeof(uint16) * 2); |
| 7445 | } |
| 7446 | else if (prefixlen > 0) |
| 7447 | { |
| 7448 | XLogRegisterBufData(0, (char *) &prefixlen, sizeof(uint16)); |
| 7449 | } |
| 7450 | else |
| 7451 | { |
| 7452 | XLogRegisterBufData(0, (char *) &suffixlen, sizeof(uint16)); |
| 7453 | } |
| 7454 | } |
| 7455 | |
| 7456 | xlhdr.t_infomask2 = newtup->t_data->t_infomask2; |
| 7457 | xlhdr.t_infomask = newtup->t_data->t_infomask; |
| 7458 | xlhdr.t_hoff = newtup->t_data->t_hoff; |
| 7459 | Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len); |
| 7460 | |
| 7461 | /* |
| 7462 | * PG73FORMAT: write bitmap [+ padding] [+ oid] + data |
| 7463 | * |
| 7464 | * The 'data' doesn't include the common prefix or suffix. |
| 7465 | */ |
| 7466 | XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader); |
| 7467 | if (prefixlen == 0) |
| 7468 | { |
| 7469 | XLogRegisterBufData(0, |
| 7470 | ((char *) newtup->t_data) + SizeofHeapTupleHeader, |
| 7471 | newtup->t_len - SizeofHeapTupleHeader - suffixlen); |
| 7472 | } |
| 7473 | else |
| 7474 | { |
| 7475 | /* |
| 7476 | * Have to write the null bitmap and data after the common prefix as |
| 7477 | * two separate rdata entries. |
| 7478 | */ |
| 7479 | /* bitmap [+ padding] [+ oid] */ |
| 7480 | if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0) |
| 7481 | { |
| 7482 | XLogRegisterBufData(0, |
| 7483 | ((char *) newtup->t_data) + SizeofHeapTupleHeader, |
| 7484 | newtup->t_data->t_hoff - SizeofHeapTupleHeader); |
| 7485 | } |
| 7486 | |
| 7487 | /* data after common prefix */ |
| 7488 | XLogRegisterBufData(0, |
| 7489 | ((char *) newtup->t_data) + newtup->t_data->t_hoff + prefixlen, |
| 7490 | newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen); |
| 7491 | } |
| 7492 | |
| 7493 | /* We need to log a tuple identity */ |
| 7494 | if (need_tuple_data && old_key_tuple) |
| 7495 | { |
| 7496 | /* don't really need this, but its more comfy to decode */ |
| 7497 | xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2; |
| 7498 | xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask; |
| 7499 | xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff; |
| 7500 | |
| 7501 | XLogRegisterData((char *) &xlhdr_idx, SizeOfHeapHeader); |
| 7502 | |
| 7503 | /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */ |
| 7504 | XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader, |
| 7505 | old_key_tuple->t_len - SizeofHeapTupleHeader); |
| 7506 | } |
| 7507 | |
| 7508 | /* filtering by origin on a row level is much more efficient */ |
| 7509 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
| 7510 | |
| 7511 | recptr = XLogInsert(RM_HEAP_ID, info); |
| 7512 | |
| 7513 | return recptr; |
| 7514 | } |
| 7515 | |
| 7516 | /* |
| 7517 | * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record |
| 7518 | * |
| 7519 | * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog |
| 7520 | * tuples. |
| 7521 | */ |
| 7522 | static XLogRecPtr |
| 7523 | log_heap_new_cid(Relation relation, HeapTuple tup) |
| 7524 | { |
| 7525 | xl_heap_new_cid xlrec; |
| 7526 | |
| 7527 | XLogRecPtr recptr; |
| 7528 | HeapTupleHeader hdr = tup->t_data; |
| 7529 | |
| 7530 | Assert(ItemPointerIsValid(&tup->t_self)); |
| 7531 | Assert(tup->t_tableOid != InvalidOid); |
| 7532 | |
| 7533 | xlrec.top_xid = GetTopTransactionId(); |
| 7534 | xlrec.target_node = relation->rd_node; |
| 7535 | xlrec.target_tid = tup->t_self; |
| 7536 | |
| 7537 | /* |
| 7538 | * If the tuple got inserted & deleted in the same TX we definitely have a |
| 7539 | * combocid, set cmin and cmax. |
| 7540 | */ |
| 7541 | if (hdr->t_infomask & HEAP_COMBOCID) |
| 7542 | { |
| 7543 | Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID)); |
| 7544 | Assert(!HeapTupleHeaderXminInvalid(hdr)); |
| 7545 | xlrec.cmin = HeapTupleHeaderGetCmin(hdr); |
| 7546 | xlrec.cmax = HeapTupleHeaderGetCmax(hdr); |
| 7547 | xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr); |
| 7548 | } |
| 7549 | /* No combocid, so only cmin or cmax can be set by this TX */ |
| 7550 | else |
| 7551 | { |
| 7552 | /* |
| 7553 | * Tuple inserted. |
| 7554 | * |
| 7555 | * We need to check for LOCK ONLY because multixacts might be |
| 7556 | * transferred to the new tuple in case of FOR KEY SHARE updates in |
| 7557 | * which case there will be an xmax, although the tuple just got |
| 7558 | * inserted. |
| 7559 | */ |
| 7560 | if (hdr->t_infomask & HEAP_XMAX_INVALID || |
| 7561 | HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask)) |
| 7562 | { |
| 7563 | xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr); |
| 7564 | xlrec.cmax = InvalidCommandId; |
| 7565 | } |
| 7566 | /* Tuple from a different tx updated or deleted. */ |
| 7567 | else |
| 7568 | { |
| 7569 | xlrec.cmin = InvalidCommandId; |
| 7570 | xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr); |
| 7571 | |
| 7572 | } |
| 7573 | xlrec.combocid = InvalidCommandId; |
| 7574 | } |
| 7575 | |
| 7576 | /* |
| 7577 | * Note that we don't need to register the buffer here, because this |
| 7578 | * operation does not modify the page. The insert/update/delete that |
| 7579 | * called us certainly did, but that's WAL-logged separately. |
| 7580 | */ |
| 7581 | XLogBeginInsert(); |
| 7582 | XLogRegisterData((char *) &xlrec, SizeOfHeapNewCid); |
| 7583 | |
| 7584 | /* will be looked at irrespective of origin */ |
| 7585 | |
| 7586 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID); |
| 7587 | |
| 7588 | return recptr; |
| 7589 | } |
| 7590 | |
| 7591 | /* |
| 7592 | * Build a heap tuple representing the configured REPLICA IDENTITY to represent |
| 7593 | * the old tuple in a UPDATE or DELETE. |
| 7594 | * |
| 7595 | * Returns NULL if there's no need to log an identity or if there's no suitable |
| 7596 | * key defined. |
| 7597 | * |
| 7598 | * key_changed should be false if caller knows that no replica identity |
| 7599 | * columns changed value. It's always true in the DELETE case. |
| 7600 | * |
| 7601 | * *copy is set to true if the returned tuple is a modified copy rather than |
| 7602 | * the same tuple that was passed in. |
| 7603 | */ |
| 7604 | static HeapTuple |
| 7605 | (Relation relation, HeapTuple tp, bool key_changed, |
| 7606 | bool *copy) |
| 7607 | { |
| 7608 | TupleDesc desc = RelationGetDescr(relation); |
| 7609 | char replident = relation->rd_rel->relreplident; |
| 7610 | Bitmapset *idattrs; |
| 7611 | HeapTuple key_tuple; |
| 7612 | bool nulls[MaxHeapAttributeNumber]; |
| 7613 | Datum values[MaxHeapAttributeNumber]; |
| 7614 | |
| 7615 | *copy = false; |
| 7616 | |
| 7617 | if (!RelationIsLogicallyLogged(relation)) |
| 7618 | return NULL; |
| 7619 | |
| 7620 | if (replident == REPLICA_IDENTITY_NOTHING) |
| 7621 | return NULL; |
| 7622 | |
| 7623 | if (replident == REPLICA_IDENTITY_FULL) |
| 7624 | { |
| 7625 | /* |
| 7626 | * When logging the entire old tuple, it very well could contain |
| 7627 | * toasted columns. If so, force them to be inlined. |
| 7628 | */ |
| 7629 | if (HeapTupleHasExternal(tp)) |
| 7630 | { |
| 7631 | *copy = true; |
| 7632 | tp = toast_flatten_tuple(tp, desc); |
| 7633 | } |
| 7634 | return tp; |
| 7635 | } |
| 7636 | |
| 7637 | /* if the key hasn't changed and we're only logging the key, we're done */ |
| 7638 | if (!key_changed) |
| 7639 | return NULL; |
| 7640 | |
| 7641 | /* find out the replica identity columns */ |
| 7642 | idattrs = RelationGetIndexAttrBitmap(relation, |
| 7643 | INDEX_ATTR_BITMAP_IDENTITY_KEY); |
| 7644 | |
| 7645 | /* |
| 7646 | * If there's no defined replica identity columns, treat as !key_changed. |
| 7647 | * (This case should not be reachable from heap_update, since that should |
| 7648 | * calculate key_changed accurately. But heap_delete just passes constant |
| 7649 | * true for key_changed, so we can hit this case in deletes.) |
| 7650 | */ |
| 7651 | if (bms_is_empty(idattrs)) |
| 7652 | return NULL; |
| 7653 | |
| 7654 | /* |
| 7655 | * Construct a new tuple containing only the replica identity columns, |
| 7656 | * with nulls elsewhere. While we're at it, assert that the replica |
| 7657 | * identity columns aren't null. |
| 7658 | */ |
| 7659 | heap_deform_tuple(tp, desc, values, nulls); |
| 7660 | |
| 7661 | for (int i = 0; i < desc->natts; i++) |
| 7662 | { |
| 7663 | if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber, |
| 7664 | idattrs)) |
| 7665 | Assert(!nulls[i]); |
| 7666 | else |
| 7667 | nulls[i] = true; |
| 7668 | } |
| 7669 | |
| 7670 | key_tuple = heap_form_tuple(desc, values, nulls); |
| 7671 | *copy = true; |
| 7672 | |
| 7673 | bms_free(idattrs); |
| 7674 | |
| 7675 | /* |
| 7676 | * If the tuple, which by here only contains indexed columns, still has |
| 7677 | * toasted columns, force them to be inlined. This is somewhat unlikely |
| 7678 | * since there's limits on the size of indexed columns, so we don't |
| 7679 | * duplicate toast_flatten_tuple()s functionality in the above loop over |
| 7680 | * the indexed columns, even if it would be more efficient. |
| 7681 | */ |
| 7682 | if (HeapTupleHasExternal(key_tuple)) |
| 7683 | { |
| 7684 | HeapTuple oldtup = key_tuple; |
| 7685 | |
| 7686 | key_tuple = toast_flatten_tuple(oldtup, desc); |
| 7687 | heap_freetuple(oldtup); |
| 7688 | } |
| 7689 | |
| 7690 | return key_tuple; |
| 7691 | } |
| 7692 | |
| 7693 | /* |
| 7694 | * Handles CLEANUP_INFO |
| 7695 | */ |
| 7696 | static void |
| 7697 | heap_xlog_cleanup_info(XLogReaderState *record) |
| 7698 | { |
| 7699 | xl_heap_cleanup_info *xlrec = (xl_heap_cleanup_info *) XLogRecGetData(record); |
| 7700 | |
| 7701 | if (InHotStandby) |
| 7702 | ResolveRecoveryConflictWithSnapshot(xlrec->latestRemovedXid, xlrec->node); |
| 7703 | |
| 7704 | /* |
| 7705 | * Actual operation is a no-op. Record type exists to provide a means for |
| 7706 | * conflict processing to occur before we begin index vacuum actions. see |
| 7707 | * vacuumlazy.c and also comments in btvacuumpage() |
| 7708 | */ |
| 7709 | |
| 7710 | /* Backup blocks are not used in cleanup_info records */ |
| 7711 | Assert(!XLogRecHasAnyBlockRefs(record)); |
| 7712 | } |
| 7713 | |
| 7714 | /* |
| 7715 | * Handles XLOG_HEAP2_CLEAN record type |
| 7716 | */ |
| 7717 | static void |
| 7718 | heap_xlog_clean(XLogReaderState *record) |
| 7719 | { |
| 7720 | XLogRecPtr lsn = record->EndRecPtr; |
| 7721 | xl_heap_clean *xlrec = (xl_heap_clean *) XLogRecGetData(record); |
| 7722 | Buffer buffer; |
| 7723 | RelFileNode rnode; |
| 7724 | BlockNumber blkno; |
| 7725 | XLogRedoAction action; |
| 7726 | |
| 7727 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &blkno); |
| 7728 | |
| 7729 | /* |
| 7730 | * We're about to remove tuples. In Hot Standby mode, ensure that there's |
| 7731 | * no queries running for which the removed tuples are still visible. |
| 7732 | * |
| 7733 | * Not all HEAP2_CLEAN records remove tuples with xids, so we only want to |
| 7734 | * conflict on the records that cause MVCC failures for user queries. If |
| 7735 | * latestRemovedXid is invalid, skip conflict processing. |
| 7736 | */ |
| 7737 | if (InHotStandby && TransactionIdIsValid(xlrec->latestRemovedXid)) |
| 7738 | ResolveRecoveryConflictWithSnapshot(xlrec->latestRemovedXid, rnode); |
| 7739 | |
| 7740 | /* |
| 7741 | * If we have a full-page image, restore it (using a cleanup lock) and |
| 7742 | * we're done. |
| 7743 | */ |
| 7744 | action = XLogReadBufferForRedoExtended(record, 0, RBM_NORMAL, true, |
| 7745 | &buffer); |
| 7746 | if (action == BLK_NEEDS_REDO) |
| 7747 | { |
| 7748 | Page page = (Page) BufferGetPage(buffer); |
| 7749 | OffsetNumber *end; |
| 7750 | OffsetNumber *redirected; |
| 7751 | OffsetNumber *nowdead; |
| 7752 | OffsetNumber *nowunused; |
| 7753 | int nredirected; |
| 7754 | int ndead; |
| 7755 | int nunused; |
| 7756 | Size datalen; |
| 7757 | |
| 7758 | redirected = (OffsetNumber *) XLogRecGetBlockData(record, 0, &datalen); |
| 7759 | |
| 7760 | nredirected = xlrec->nredirected; |
| 7761 | ndead = xlrec->ndead; |
| 7762 | end = (OffsetNumber *) ((char *) redirected + datalen); |
| 7763 | nowdead = redirected + (nredirected * 2); |
| 7764 | nowunused = nowdead + ndead; |
| 7765 | nunused = (end - nowunused); |
| 7766 | Assert(nunused >= 0); |
| 7767 | |
| 7768 | /* Update all line pointers per the record, and repair fragmentation */ |
| 7769 | heap_page_prune_execute(buffer, |
| 7770 | redirected, nredirected, |
| 7771 | nowdead, ndead, |
| 7772 | nowunused, nunused); |
| 7773 | |
| 7774 | /* |
| 7775 | * Note: we don't worry about updating the page's prunability hints. |
| 7776 | * At worst this will cause an extra prune cycle to occur soon. |
| 7777 | */ |
| 7778 | |
| 7779 | PageSetLSN(page, lsn); |
| 7780 | MarkBufferDirty(buffer); |
| 7781 | } |
| 7782 | |
| 7783 | if (BufferIsValid(buffer)) |
| 7784 | { |
| 7785 | Size freespace = PageGetHeapFreeSpace(BufferGetPage(buffer)); |
| 7786 | |
| 7787 | UnlockReleaseBuffer(buffer); |
| 7788 | |
| 7789 | /* |
| 7790 | * After cleaning records from a page, it's useful to update the FSM |
| 7791 | * about it, as it may cause the page become target for insertions |
| 7792 | * later even if vacuum decides not to visit it (which is possible if |
| 7793 | * gets marked all-visible.) |
| 7794 | * |
| 7795 | * Do this regardless of a full-page image being applied, since the |
| 7796 | * FSM data is not in the page anyway. |
| 7797 | */ |
| 7798 | XLogRecordPageWithFreeSpace(rnode, blkno, freespace); |
| 7799 | } |
| 7800 | } |
| 7801 | |
| 7802 | /* |
| 7803 | * Replay XLOG_HEAP2_VISIBLE record. |
| 7804 | * |
| 7805 | * The critical integrity requirement here is that we must never end up with |
| 7806 | * a situation where the visibility map bit is set, and the page-level |
| 7807 | * PD_ALL_VISIBLE bit is clear. If that were to occur, then a subsequent |
| 7808 | * page modification would fail to clear the visibility map bit. |
| 7809 | */ |
| 7810 | static void |
| 7811 | heap_xlog_visible(XLogReaderState *record) |
| 7812 | { |
| 7813 | XLogRecPtr lsn = record->EndRecPtr; |
| 7814 | xl_heap_visible *xlrec = (xl_heap_visible *) XLogRecGetData(record); |
| 7815 | Buffer vmbuffer = InvalidBuffer; |
| 7816 | Buffer buffer; |
| 7817 | Page page; |
| 7818 | RelFileNode rnode; |
| 7819 | BlockNumber blkno; |
| 7820 | XLogRedoAction action; |
| 7821 | |
| 7822 | XLogRecGetBlockTag(record, 1, &rnode, NULL, &blkno); |
| 7823 | |
| 7824 | /* |
| 7825 | * If there are any Hot Standby transactions running that have an xmin |
| 7826 | * horizon old enough that this page isn't all-visible for them, they |
| 7827 | * might incorrectly decide that an index-only scan can skip a heap fetch. |
| 7828 | * |
| 7829 | * NB: It might be better to throw some kind of "soft" conflict here that |
| 7830 | * forces any index-only scan that is in flight to perform heap fetches, |
| 7831 | * rather than killing the transaction outright. |
| 7832 | */ |
| 7833 | if (InHotStandby) |
| 7834 | ResolveRecoveryConflictWithSnapshot(xlrec->cutoff_xid, rnode); |
| 7835 | |
| 7836 | /* |
| 7837 | * Read the heap page, if it still exists. If the heap file has dropped or |
| 7838 | * truncated later in recovery, we don't need to update the page, but we'd |
| 7839 | * better still update the visibility map. |
| 7840 | */ |
| 7841 | action = XLogReadBufferForRedo(record, 1, &buffer); |
| 7842 | if (action == BLK_NEEDS_REDO) |
| 7843 | { |
| 7844 | /* |
| 7845 | * We don't bump the LSN of the heap page when setting the visibility |
| 7846 | * map bit (unless checksums or wal_hint_bits is enabled, in which |
| 7847 | * case we must), because that would generate an unworkable volume of |
| 7848 | * full-page writes. This exposes us to torn page hazards, but since |
| 7849 | * we're not inspecting the existing page contents in any way, we |
| 7850 | * don't care. |
| 7851 | * |
| 7852 | * However, all operations that clear the visibility map bit *do* bump |
| 7853 | * the LSN, and those operations will only be replayed if the XLOG LSN |
| 7854 | * follows the page LSN. Thus, if the page LSN has advanced past our |
| 7855 | * XLOG record's LSN, we mustn't mark the page all-visible, because |
| 7856 | * the subsequent update won't be replayed to clear the flag. |
| 7857 | */ |
| 7858 | page = BufferGetPage(buffer); |
| 7859 | |
| 7860 | PageSetAllVisible(page); |
| 7861 | |
| 7862 | MarkBufferDirty(buffer); |
| 7863 | } |
| 7864 | else if (action == BLK_RESTORED) |
| 7865 | { |
| 7866 | /* |
| 7867 | * If heap block was backed up, we already restored it and there's |
| 7868 | * nothing more to do. (This can only happen with checksums or |
| 7869 | * wal_log_hints enabled.) |
| 7870 | */ |
| 7871 | } |
| 7872 | |
| 7873 | if (BufferIsValid(buffer)) |
| 7874 | { |
| 7875 | Size space = PageGetFreeSpace(BufferGetPage(buffer)); |
| 7876 | |
| 7877 | UnlockReleaseBuffer(buffer); |
| 7878 | |
| 7879 | /* |
| 7880 | * Since FSM is not WAL-logged and only updated heuristically, it |
| 7881 | * easily becomes stale in standbys. If the standby is later promoted |
| 7882 | * and runs VACUUM, it will skip updating individual free space |
| 7883 | * figures for pages that became all-visible (or all-frozen, depending |
| 7884 | * on the vacuum mode,) which is troublesome when FreeSpaceMapVacuum |
| 7885 | * propagates too optimistic free space values to upper FSM layers; |
| 7886 | * later inserters try to use such pages only to find out that they |
| 7887 | * are unusable. This can cause long stalls when there are many such |
| 7888 | * pages. |
| 7889 | * |
| 7890 | * Forestall those problems by updating FSM's idea about a page that |
| 7891 | * is becoming all-visible or all-frozen. |
| 7892 | * |
| 7893 | * Do this regardless of a full-page image being applied, since the |
| 7894 | * FSM data is not in the page anyway. |
| 7895 | */ |
| 7896 | if (xlrec->flags & VISIBILITYMAP_VALID_BITS) |
| 7897 | XLogRecordPageWithFreeSpace(rnode, blkno, space); |
| 7898 | } |
| 7899 | |
| 7900 | /* |
| 7901 | * Even if we skipped the heap page update due to the LSN interlock, it's |
| 7902 | * still safe to update the visibility map. Any WAL record that clears |
| 7903 | * the visibility map bit does so before checking the page LSN, so any |
| 7904 | * bits that need to be cleared will still be cleared. |
| 7905 | */ |
| 7906 | if (XLogReadBufferForRedoExtended(record, 0, RBM_ZERO_ON_ERROR, false, |
| 7907 | &vmbuffer) == BLK_NEEDS_REDO) |
| 7908 | { |
| 7909 | Page vmpage = BufferGetPage(vmbuffer); |
| 7910 | Relation reln; |
| 7911 | |
| 7912 | /* initialize the page if it was read as zeros */ |
| 7913 | if (PageIsNew(vmpage)) |
| 7914 | PageInit(vmpage, BLCKSZ, 0); |
| 7915 | |
| 7916 | /* |
| 7917 | * XLogReadBufferForRedoExtended locked the buffer. But |
| 7918 | * visibilitymap_set will handle locking itself. |
| 7919 | */ |
| 7920 | LockBuffer(vmbuffer, BUFFER_LOCK_UNLOCK); |
| 7921 | |
| 7922 | reln = CreateFakeRelcacheEntry(rnode); |
| 7923 | visibilitymap_pin(reln, blkno, &vmbuffer); |
| 7924 | |
| 7925 | /* |
| 7926 | * Don't set the bit if replay has already passed this point. |
| 7927 | * |
| 7928 | * It might be safe to do this unconditionally; if replay has passed |
| 7929 | * this point, we'll replay at least as far this time as we did |
| 7930 | * before, and if this bit needs to be cleared, the record responsible |
| 7931 | * for doing so should be again replayed, and clear it. For right |
| 7932 | * now, out of an abundance of conservatism, we use the same test here |
| 7933 | * we did for the heap page. If this results in a dropped bit, no |
| 7934 | * real harm is done; and the next VACUUM will fix it. |
| 7935 | */ |
| 7936 | if (lsn > PageGetLSN(vmpage)) |
| 7937 | visibilitymap_set(reln, blkno, InvalidBuffer, lsn, vmbuffer, |
| 7938 | xlrec->cutoff_xid, xlrec->flags); |
| 7939 | |
| 7940 | ReleaseBuffer(vmbuffer); |
| 7941 | FreeFakeRelcacheEntry(reln); |
| 7942 | } |
| 7943 | else if (BufferIsValid(vmbuffer)) |
| 7944 | UnlockReleaseBuffer(vmbuffer); |
| 7945 | } |
| 7946 | |
| 7947 | /* |
| 7948 | * Replay XLOG_HEAP2_FREEZE_PAGE records |
| 7949 | */ |
| 7950 | static void |
| 7951 | heap_xlog_freeze_page(XLogReaderState *record) |
| 7952 | { |
| 7953 | XLogRecPtr lsn = record->EndRecPtr; |
| 7954 | xl_heap_freeze_page *xlrec = (xl_heap_freeze_page *) XLogRecGetData(record); |
| 7955 | TransactionId cutoff_xid = xlrec->cutoff_xid; |
| 7956 | Buffer buffer; |
| 7957 | int ntup; |
| 7958 | |
| 7959 | /* |
| 7960 | * In Hot Standby mode, ensure that there's no queries running which still |
| 7961 | * consider the frozen xids as running. |
| 7962 | */ |
| 7963 | if (InHotStandby) |
| 7964 | { |
| 7965 | RelFileNode rnode; |
| 7966 | TransactionId latestRemovedXid = cutoff_xid; |
| 7967 | |
| 7968 | TransactionIdRetreat(latestRemovedXid); |
| 7969 | |
| 7970 | XLogRecGetBlockTag(record, 0, &rnode, NULL, NULL); |
| 7971 | ResolveRecoveryConflictWithSnapshot(latestRemovedXid, rnode); |
| 7972 | } |
| 7973 | |
| 7974 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
| 7975 | { |
| 7976 | Page page = BufferGetPage(buffer); |
| 7977 | xl_heap_freeze_tuple *tuples; |
| 7978 | |
| 7979 | tuples = (xl_heap_freeze_tuple *) XLogRecGetBlockData(record, 0, NULL); |
| 7980 | |
| 7981 | /* now execute freeze plan for each frozen tuple */ |
| 7982 | for (ntup = 0; ntup < xlrec->ntuples; ntup++) |
| 7983 | { |
| 7984 | xl_heap_freeze_tuple *xlrec_tp; |
| 7985 | ItemId lp; |
| 7986 | HeapTupleHeader tuple; |
| 7987 | |
| 7988 | xlrec_tp = &tuples[ntup]; |
| 7989 | lp = PageGetItemId(page, xlrec_tp->offset); /* offsets are one-based */ |
| 7990 | tuple = (HeapTupleHeader) PageGetItem(page, lp); |
| 7991 | |
| 7992 | heap_execute_freeze_tuple(tuple, xlrec_tp); |
| 7993 | } |
| 7994 | |
| 7995 | PageSetLSN(page, lsn); |
| 7996 | MarkBufferDirty(buffer); |
| 7997 | } |
| 7998 | if (BufferIsValid(buffer)) |
| 7999 | UnlockReleaseBuffer(buffer); |
| 8000 | } |
| 8001 | |
| 8002 | /* |
| 8003 | * Given an "infobits" field from an XLog record, set the correct bits in the |
| 8004 | * given infomask and infomask2 for the tuple touched by the record. |
| 8005 | * |
| 8006 | * (This is the reverse of compute_infobits). |
| 8007 | */ |
| 8008 | static void |
| 8009 | fix_infomask_from_infobits(uint8 infobits, uint16 *infomask, uint16 *infomask2) |
| 8010 | { |
| 8011 | *infomask &= ~(HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | |
| 8012 | HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_EXCL_LOCK); |
| 8013 | *infomask2 &= ~HEAP_KEYS_UPDATED; |
| 8014 | |
| 8015 | if (infobits & XLHL_XMAX_IS_MULTI) |
| 8016 | *infomask |= HEAP_XMAX_IS_MULTI; |
| 8017 | if (infobits & XLHL_XMAX_LOCK_ONLY) |
| 8018 | *infomask |= HEAP_XMAX_LOCK_ONLY; |
| 8019 | if (infobits & XLHL_XMAX_EXCL_LOCK) |
| 8020 | *infomask |= HEAP_XMAX_EXCL_LOCK; |
| 8021 | /* note HEAP_XMAX_SHR_LOCK isn't considered here */ |
| 8022 | if (infobits & XLHL_XMAX_KEYSHR_LOCK) |
| 8023 | *infomask |= HEAP_XMAX_KEYSHR_LOCK; |
| 8024 | |
| 8025 | if (infobits & XLHL_KEYS_UPDATED) |
| 8026 | *infomask2 |= HEAP_KEYS_UPDATED; |
| 8027 | } |
| 8028 | |
| 8029 | static void |
| 8030 | heap_xlog_delete(XLogReaderState *record) |
| 8031 | { |
| 8032 | XLogRecPtr lsn = record->EndRecPtr; |
| 8033 | xl_heap_delete *xlrec = (xl_heap_delete *) XLogRecGetData(record); |
| 8034 | Buffer buffer; |
| 8035 | Page page; |
| 8036 | ItemId lp = NULL; |
| 8037 | HeapTupleHeader htup; |
| 8038 | BlockNumber blkno; |
| 8039 | RelFileNode target_node; |
| 8040 | ItemPointerData target_tid; |
| 8041 | |
| 8042 | XLogRecGetBlockTag(record, 0, &target_node, NULL, &blkno); |
| 8043 | ItemPointerSetBlockNumber(&target_tid, blkno); |
| 8044 | ItemPointerSetOffsetNumber(&target_tid, xlrec->offnum); |
| 8045 | |
| 8046 | /* |
| 8047 | * The visibility map may need to be fixed even if the heap page is |
| 8048 | * already up-to-date. |
| 8049 | */ |
| 8050 | if (xlrec->flags & XLH_DELETE_ALL_VISIBLE_CLEARED) |
| 8051 | { |
| 8052 | Relation reln = CreateFakeRelcacheEntry(target_node); |
| 8053 | Buffer vmbuffer = InvalidBuffer; |
| 8054 | |
| 8055 | visibilitymap_pin(reln, blkno, &vmbuffer); |
| 8056 | visibilitymap_clear(reln, blkno, vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 8057 | ReleaseBuffer(vmbuffer); |
| 8058 | FreeFakeRelcacheEntry(reln); |
| 8059 | } |
| 8060 | |
| 8061 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
| 8062 | { |
| 8063 | page = BufferGetPage(buffer); |
| 8064 | |
| 8065 | if (PageGetMaxOffsetNumber(page) >= xlrec->offnum) |
| 8066 | lp = PageGetItemId(page, xlrec->offnum); |
| 8067 | |
| 8068 | if (PageGetMaxOffsetNumber(page) < xlrec->offnum || !ItemIdIsNormal(lp)) |
| 8069 | elog(PANIC, "invalid lp" ); |
| 8070 | |
| 8071 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
| 8072 | |
| 8073 | htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
| 8074 | htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 8075 | HeapTupleHeaderClearHotUpdated(htup); |
| 8076 | fix_infomask_from_infobits(xlrec->infobits_set, |
| 8077 | &htup->t_infomask, &htup->t_infomask2); |
| 8078 | if (!(xlrec->flags & XLH_DELETE_IS_SUPER)) |
| 8079 | HeapTupleHeaderSetXmax(htup, xlrec->xmax); |
| 8080 | else |
| 8081 | HeapTupleHeaderSetXmin(htup, InvalidTransactionId); |
| 8082 | HeapTupleHeaderSetCmax(htup, FirstCommandId, false); |
| 8083 | |
| 8084 | /* Mark the page as a candidate for pruning */ |
| 8085 | PageSetPrunable(page, XLogRecGetXid(record)); |
| 8086 | |
| 8087 | if (xlrec->flags & XLH_DELETE_ALL_VISIBLE_CLEARED) |
| 8088 | PageClearAllVisible(page); |
| 8089 | |
| 8090 | /* Make sure t_ctid is set correctly */ |
| 8091 | if (xlrec->flags & XLH_DELETE_IS_PARTITION_MOVE) |
| 8092 | HeapTupleHeaderSetMovedPartitions(htup); |
| 8093 | else |
| 8094 | htup->t_ctid = target_tid; |
| 8095 | PageSetLSN(page, lsn); |
| 8096 | MarkBufferDirty(buffer); |
| 8097 | } |
| 8098 | if (BufferIsValid(buffer)) |
| 8099 | UnlockReleaseBuffer(buffer); |
| 8100 | } |
| 8101 | |
| 8102 | static void |
| 8103 | heap_xlog_insert(XLogReaderState *record) |
| 8104 | { |
| 8105 | XLogRecPtr lsn = record->EndRecPtr; |
| 8106 | xl_heap_insert *xlrec = (xl_heap_insert *) XLogRecGetData(record); |
| 8107 | Buffer buffer; |
| 8108 | Page page; |
| 8109 | union |
| 8110 | { |
| 8111 | HeapTupleHeaderData hdr; |
| 8112 | char data[MaxHeapTupleSize]; |
| 8113 | } tbuf; |
| 8114 | HeapTupleHeader htup; |
| 8115 | xl_heap_header xlhdr; |
| 8116 | uint32 newlen; |
| 8117 | Size freespace = 0; |
| 8118 | RelFileNode target_node; |
| 8119 | BlockNumber blkno; |
| 8120 | ItemPointerData target_tid; |
| 8121 | XLogRedoAction action; |
| 8122 | |
| 8123 | XLogRecGetBlockTag(record, 0, &target_node, NULL, &blkno); |
| 8124 | ItemPointerSetBlockNumber(&target_tid, blkno); |
| 8125 | ItemPointerSetOffsetNumber(&target_tid, xlrec->offnum); |
| 8126 | |
| 8127 | /* |
| 8128 | * The visibility map may need to be fixed even if the heap page is |
| 8129 | * already up-to-date. |
| 8130 | */ |
| 8131 | if (xlrec->flags & XLH_INSERT_ALL_VISIBLE_CLEARED) |
| 8132 | { |
| 8133 | Relation reln = CreateFakeRelcacheEntry(target_node); |
| 8134 | Buffer vmbuffer = InvalidBuffer; |
| 8135 | |
| 8136 | visibilitymap_pin(reln, blkno, &vmbuffer); |
| 8137 | visibilitymap_clear(reln, blkno, vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 8138 | ReleaseBuffer(vmbuffer); |
| 8139 | FreeFakeRelcacheEntry(reln); |
| 8140 | } |
| 8141 | |
| 8142 | /* |
| 8143 | * If we inserted the first and only tuple on the page, re-initialize the |
| 8144 | * page from scratch. |
| 8145 | */ |
| 8146 | if (XLogRecGetInfo(record) & XLOG_HEAP_INIT_PAGE) |
| 8147 | { |
| 8148 | buffer = XLogInitBufferForRedo(record, 0); |
| 8149 | page = BufferGetPage(buffer); |
| 8150 | PageInit(page, BufferGetPageSize(buffer), 0); |
| 8151 | action = BLK_NEEDS_REDO; |
| 8152 | } |
| 8153 | else |
| 8154 | action = XLogReadBufferForRedo(record, 0, &buffer); |
| 8155 | if (action == BLK_NEEDS_REDO) |
| 8156 | { |
| 8157 | Size datalen; |
| 8158 | char *data; |
| 8159 | |
| 8160 | page = BufferGetPage(buffer); |
| 8161 | |
| 8162 | if (PageGetMaxOffsetNumber(page) + 1 < xlrec->offnum) |
| 8163 | elog(PANIC, "invalid max offset number" ); |
| 8164 | |
| 8165 | data = XLogRecGetBlockData(record, 0, &datalen); |
| 8166 | |
| 8167 | newlen = datalen - SizeOfHeapHeader; |
| 8168 | Assert(datalen > SizeOfHeapHeader && newlen <= MaxHeapTupleSize); |
| 8169 | memcpy((char *) &xlhdr, data, SizeOfHeapHeader); |
| 8170 | data += SizeOfHeapHeader; |
| 8171 | |
| 8172 | htup = &tbuf.hdr; |
| 8173 | MemSet((char *) htup, 0, SizeofHeapTupleHeader); |
| 8174 | /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */ |
| 8175 | memcpy((char *) htup + SizeofHeapTupleHeader, |
| 8176 | data, |
| 8177 | newlen); |
| 8178 | newlen += SizeofHeapTupleHeader; |
| 8179 | htup->t_infomask2 = xlhdr.t_infomask2; |
| 8180 | htup->t_infomask = xlhdr.t_infomask; |
| 8181 | htup->t_hoff = xlhdr.t_hoff; |
| 8182 | HeapTupleHeaderSetXmin(htup, XLogRecGetXid(record)); |
| 8183 | HeapTupleHeaderSetCmin(htup, FirstCommandId); |
| 8184 | htup->t_ctid = target_tid; |
| 8185 | |
| 8186 | if (PageAddItem(page, (Item) htup, newlen, xlrec->offnum, |
| 8187 | true, true) == InvalidOffsetNumber) |
| 8188 | elog(PANIC, "failed to add tuple" ); |
| 8189 | |
| 8190 | freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ |
| 8191 | |
| 8192 | PageSetLSN(page, lsn); |
| 8193 | |
| 8194 | if (xlrec->flags & XLH_INSERT_ALL_VISIBLE_CLEARED) |
| 8195 | PageClearAllVisible(page); |
| 8196 | |
| 8197 | MarkBufferDirty(buffer); |
| 8198 | } |
| 8199 | if (BufferIsValid(buffer)) |
| 8200 | UnlockReleaseBuffer(buffer); |
| 8201 | |
| 8202 | /* |
| 8203 | * If the page is running low on free space, update the FSM as well. |
| 8204 | * Arbitrarily, our definition of "low" is less than 20%. We can't do much |
| 8205 | * better than that without knowing the fill-factor for the table. |
| 8206 | * |
| 8207 | * XXX: Don't do this if the page was restored from full page image. We |
| 8208 | * don't bother to update the FSM in that case, it doesn't need to be |
| 8209 | * totally accurate anyway. |
| 8210 | */ |
| 8211 | if (action == BLK_NEEDS_REDO && freespace < BLCKSZ / 5) |
| 8212 | XLogRecordPageWithFreeSpace(target_node, blkno, freespace); |
| 8213 | } |
| 8214 | |
| 8215 | /* |
| 8216 | * Handles MULTI_INSERT record type. |
| 8217 | */ |
| 8218 | static void |
| 8219 | heap_xlog_multi_insert(XLogReaderState *record) |
| 8220 | { |
| 8221 | XLogRecPtr lsn = record->EndRecPtr; |
| 8222 | xl_heap_multi_insert *xlrec; |
| 8223 | RelFileNode rnode; |
| 8224 | BlockNumber blkno; |
| 8225 | Buffer buffer; |
| 8226 | Page page; |
| 8227 | union |
| 8228 | { |
| 8229 | HeapTupleHeaderData hdr; |
| 8230 | char data[MaxHeapTupleSize]; |
| 8231 | } tbuf; |
| 8232 | HeapTupleHeader htup; |
| 8233 | uint32 newlen; |
| 8234 | Size freespace = 0; |
| 8235 | int i; |
| 8236 | bool isinit = (XLogRecGetInfo(record) & XLOG_HEAP_INIT_PAGE) != 0; |
| 8237 | XLogRedoAction action; |
| 8238 | |
| 8239 | /* |
| 8240 | * Insertion doesn't overwrite MVCC data, so no conflict processing is |
| 8241 | * required. |
| 8242 | */ |
| 8243 | xlrec = (xl_heap_multi_insert *) XLogRecGetData(record); |
| 8244 | |
| 8245 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &blkno); |
| 8246 | |
| 8247 | /* |
| 8248 | * The visibility map may need to be fixed even if the heap page is |
| 8249 | * already up-to-date. |
| 8250 | */ |
| 8251 | if (xlrec->flags & XLH_INSERT_ALL_VISIBLE_CLEARED) |
| 8252 | { |
| 8253 | Relation reln = CreateFakeRelcacheEntry(rnode); |
| 8254 | Buffer vmbuffer = InvalidBuffer; |
| 8255 | |
| 8256 | visibilitymap_pin(reln, blkno, &vmbuffer); |
| 8257 | visibilitymap_clear(reln, blkno, vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 8258 | ReleaseBuffer(vmbuffer); |
| 8259 | FreeFakeRelcacheEntry(reln); |
| 8260 | } |
| 8261 | |
| 8262 | if (isinit) |
| 8263 | { |
| 8264 | buffer = XLogInitBufferForRedo(record, 0); |
| 8265 | page = BufferGetPage(buffer); |
| 8266 | PageInit(page, BufferGetPageSize(buffer), 0); |
| 8267 | action = BLK_NEEDS_REDO; |
| 8268 | } |
| 8269 | else |
| 8270 | action = XLogReadBufferForRedo(record, 0, &buffer); |
| 8271 | if (action == BLK_NEEDS_REDO) |
| 8272 | { |
| 8273 | char *tupdata; |
| 8274 | char *endptr; |
| 8275 | Size len; |
| 8276 | |
| 8277 | /* Tuples are stored as block data */ |
| 8278 | tupdata = XLogRecGetBlockData(record, 0, &len); |
| 8279 | endptr = tupdata + len; |
| 8280 | |
| 8281 | page = (Page) BufferGetPage(buffer); |
| 8282 | |
| 8283 | for (i = 0; i < xlrec->ntuples; i++) |
| 8284 | { |
| 8285 | OffsetNumber offnum; |
| 8286 | xl_multi_insert_tuple *xlhdr; |
| 8287 | |
| 8288 | /* |
| 8289 | * If we're reinitializing the page, the tuples are stored in |
| 8290 | * order from FirstOffsetNumber. Otherwise there's an array of |
| 8291 | * offsets in the WAL record, and the tuples come after that. |
| 8292 | */ |
| 8293 | if (isinit) |
| 8294 | offnum = FirstOffsetNumber + i; |
| 8295 | else |
| 8296 | offnum = xlrec->offsets[i]; |
| 8297 | if (PageGetMaxOffsetNumber(page) + 1 < offnum) |
| 8298 | elog(PANIC, "invalid max offset number" ); |
| 8299 | |
| 8300 | xlhdr = (xl_multi_insert_tuple *) SHORTALIGN(tupdata); |
| 8301 | tupdata = ((char *) xlhdr) + SizeOfMultiInsertTuple; |
| 8302 | |
| 8303 | newlen = xlhdr->datalen; |
| 8304 | Assert(newlen <= MaxHeapTupleSize); |
| 8305 | htup = &tbuf.hdr; |
| 8306 | MemSet((char *) htup, 0, SizeofHeapTupleHeader); |
| 8307 | /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */ |
| 8308 | memcpy((char *) htup + SizeofHeapTupleHeader, |
| 8309 | (char *) tupdata, |
| 8310 | newlen); |
| 8311 | tupdata += newlen; |
| 8312 | |
| 8313 | newlen += SizeofHeapTupleHeader; |
| 8314 | htup->t_infomask2 = xlhdr->t_infomask2; |
| 8315 | htup->t_infomask = xlhdr->t_infomask; |
| 8316 | htup->t_hoff = xlhdr->t_hoff; |
| 8317 | HeapTupleHeaderSetXmin(htup, XLogRecGetXid(record)); |
| 8318 | HeapTupleHeaderSetCmin(htup, FirstCommandId); |
| 8319 | ItemPointerSetBlockNumber(&htup->t_ctid, blkno); |
| 8320 | ItemPointerSetOffsetNumber(&htup->t_ctid, offnum); |
| 8321 | |
| 8322 | offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true); |
| 8323 | if (offnum == InvalidOffsetNumber) |
| 8324 | elog(PANIC, "failed to add tuple" ); |
| 8325 | } |
| 8326 | if (tupdata != endptr) |
| 8327 | elog(PANIC, "total tuple length mismatch" ); |
| 8328 | |
| 8329 | freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ |
| 8330 | |
| 8331 | PageSetLSN(page, lsn); |
| 8332 | |
| 8333 | if (xlrec->flags & XLH_INSERT_ALL_VISIBLE_CLEARED) |
| 8334 | PageClearAllVisible(page); |
| 8335 | |
| 8336 | MarkBufferDirty(buffer); |
| 8337 | } |
| 8338 | if (BufferIsValid(buffer)) |
| 8339 | UnlockReleaseBuffer(buffer); |
| 8340 | |
| 8341 | /* |
| 8342 | * If the page is running low on free space, update the FSM as well. |
| 8343 | * Arbitrarily, our definition of "low" is less than 20%. We can't do much |
| 8344 | * better than that without knowing the fill-factor for the table. |
| 8345 | * |
| 8346 | * XXX: Don't do this if the page was restored from full page image. We |
| 8347 | * don't bother to update the FSM in that case, it doesn't need to be |
| 8348 | * totally accurate anyway. |
| 8349 | */ |
| 8350 | if (action == BLK_NEEDS_REDO && freespace < BLCKSZ / 5) |
| 8351 | XLogRecordPageWithFreeSpace(rnode, blkno, freespace); |
| 8352 | } |
| 8353 | |
| 8354 | /* |
| 8355 | * Handles UPDATE and HOT_UPDATE |
| 8356 | */ |
| 8357 | static void |
| 8358 | heap_xlog_update(XLogReaderState *record, bool hot_update) |
| 8359 | { |
| 8360 | XLogRecPtr lsn = record->EndRecPtr; |
| 8361 | xl_heap_update *xlrec = (xl_heap_update *) XLogRecGetData(record); |
| 8362 | RelFileNode rnode; |
| 8363 | BlockNumber oldblk; |
| 8364 | BlockNumber newblk; |
| 8365 | ItemPointerData newtid; |
| 8366 | Buffer obuffer, |
| 8367 | nbuffer; |
| 8368 | Page page; |
| 8369 | OffsetNumber offnum; |
| 8370 | ItemId lp = NULL; |
| 8371 | HeapTupleData oldtup; |
| 8372 | HeapTupleHeader htup; |
| 8373 | uint16 prefixlen = 0, |
| 8374 | suffixlen = 0; |
| 8375 | char *newp; |
| 8376 | union |
| 8377 | { |
| 8378 | HeapTupleHeaderData hdr; |
| 8379 | char data[MaxHeapTupleSize]; |
| 8380 | } tbuf; |
| 8381 | xl_heap_header xlhdr; |
| 8382 | uint32 newlen; |
| 8383 | Size freespace = 0; |
| 8384 | XLogRedoAction oldaction; |
| 8385 | XLogRedoAction newaction; |
| 8386 | |
| 8387 | /* initialize to keep the compiler quiet */ |
| 8388 | oldtup.t_data = NULL; |
| 8389 | oldtup.t_len = 0; |
| 8390 | |
| 8391 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &newblk); |
| 8392 | if (XLogRecGetBlockTag(record, 1, NULL, NULL, &oldblk)) |
| 8393 | { |
| 8394 | /* HOT updates are never done across pages */ |
| 8395 | Assert(!hot_update); |
| 8396 | } |
| 8397 | else |
| 8398 | oldblk = newblk; |
| 8399 | |
| 8400 | ItemPointerSet(&newtid, newblk, xlrec->new_offnum); |
| 8401 | |
| 8402 | /* |
| 8403 | * The visibility map may need to be fixed even if the heap page is |
| 8404 | * already up-to-date. |
| 8405 | */ |
| 8406 | if (xlrec->flags & XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) |
| 8407 | { |
| 8408 | Relation reln = CreateFakeRelcacheEntry(rnode); |
| 8409 | Buffer vmbuffer = InvalidBuffer; |
| 8410 | |
| 8411 | visibilitymap_pin(reln, oldblk, &vmbuffer); |
| 8412 | visibilitymap_clear(reln, oldblk, vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 8413 | ReleaseBuffer(vmbuffer); |
| 8414 | FreeFakeRelcacheEntry(reln); |
| 8415 | } |
| 8416 | |
| 8417 | /* |
| 8418 | * In normal operation, it is important to lock the two pages in |
| 8419 | * page-number order, to avoid possible deadlocks against other update |
| 8420 | * operations going the other way. However, during WAL replay there can |
| 8421 | * be no other update happening, so we don't need to worry about that. But |
| 8422 | * we *do* need to worry that we don't expose an inconsistent state to Hot |
| 8423 | * Standby queries --- so the original page can't be unlocked before we've |
| 8424 | * added the new tuple to the new page. |
| 8425 | */ |
| 8426 | |
| 8427 | /* Deal with old tuple version */ |
| 8428 | oldaction = XLogReadBufferForRedo(record, (oldblk == newblk) ? 0 : 1, |
| 8429 | &obuffer); |
| 8430 | if (oldaction == BLK_NEEDS_REDO) |
| 8431 | { |
| 8432 | page = BufferGetPage(obuffer); |
| 8433 | offnum = xlrec->old_offnum; |
| 8434 | if (PageGetMaxOffsetNumber(page) >= offnum) |
| 8435 | lp = PageGetItemId(page, offnum); |
| 8436 | |
| 8437 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
| 8438 | elog(PANIC, "invalid lp" ); |
| 8439 | |
| 8440 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
| 8441 | |
| 8442 | oldtup.t_data = htup; |
| 8443 | oldtup.t_len = ItemIdGetLength(lp); |
| 8444 | |
| 8445 | htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
| 8446 | htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 8447 | if (hot_update) |
| 8448 | HeapTupleHeaderSetHotUpdated(htup); |
| 8449 | else |
| 8450 | HeapTupleHeaderClearHotUpdated(htup); |
| 8451 | fix_infomask_from_infobits(xlrec->old_infobits_set, &htup->t_infomask, |
| 8452 | &htup->t_infomask2); |
| 8453 | HeapTupleHeaderSetXmax(htup, xlrec->old_xmax); |
| 8454 | HeapTupleHeaderSetCmax(htup, FirstCommandId, false); |
| 8455 | /* Set forward chain link in t_ctid */ |
| 8456 | htup->t_ctid = newtid; |
| 8457 | |
| 8458 | /* Mark the page as a candidate for pruning */ |
| 8459 | PageSetPrunable(page, XLogRecGetXid(record)); |
| 8460 | |
| 8461 | if (xlrec->flags & XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) |
| 8462 | PageClearAllVisible(page); |
| 8463 | |
| 8464 | PageSetLSN(page, lsn); |
| 8465 | MarkBufferDirty(obuffer); |
| 8466 | } |
| 8467 | |
| 8468 | /* |
| 8469 | * Read the page the new tuple goes into, if different from old. |
| 8470 | */ |
| 8471 | if (oldblk == newblk) |
| 8472 | { |
| 8473 | nbuffer = obuffer; |
| 8474 | newaction = oldaction; |
| 8475 | } |
| 8476 | else if (XLogRecGetInfo(record) & XLOG_HEAP_INIT_PAGE) |
| 8477 | { |
| 8478 | nbuffer = XLogInitBufferForRedo(record, 0); |
| 8479 | page = (Page) BufferGetPage(nbuffer); |
| 8480 | PageInit(page, BufferGetPageSize(nbuffer), 0); |
| 8481 | newaction = BLK_NEEDS_REDO; |
| 8482 | } |
| 8483 | else |
| 8484 | newaction = XLogReadBufferForRedo(record, 0, &nbuffer); |
| 8485 | |
| 8486 | /* |
| 8487 | * The visibility map may need to be fixed even if the heap page is |
| 8488 | * already up-to-date. |
| 8489 | */ |
| 8490 | if (xlrec->flags & XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) |
| 8491 | { |
| 8492 | Relation reln = CreateFakeRelcacheEntry(rnode); |
| 8493 | Buffer vmbuffer = InvalidBuffer; |
| 8494 | |
| 8495 | visibilitymap_pin(reln, newblk, &vmbuffer); |
| 8496 | visibilitymap_clear(reln, newblk, vmbuffer, VISIBILITYMAP_VALID_BITS); |
| 8497 | ReleaseBuffer(vmbuffer); |
| 8498 | FreeFakeRelcacheEntry(reln); |
| 8499 | } |
| 8500 | |
| 8501 | /* Deal with new tuple */ |
| 8502 | if (newaction == BLK_NEEDS_REDO) |
| 8503 | { |
| 8504 | char *recdata; |
| 8505 | char *recdata_end; |
| 8506 | Size datalen; |
| 8507 | Size tuplen; |
| 8508 | |
| 8509 | recdata = XLogRecGetBlockData(record, 0, &datalen); |
| 8510 | recdata_end = recdata + datalen; |
| 8511 | |
| 8512 | page = BufferGetPage(nbuffer); |
| 8513 | |
| 8514 | offnum = xlrec->new_offnum; |
| 8515 | if (PageGetMaxOffsetNumber(page) + 1 < offnum) |
| 8516 | elog(PANIC, "invalid max offset number" ); |
| 8517 | |
| 8518 | if (xlrec->flags & XLH_UPDATE_PREFIX_FROM_OLD) |
| 8519 | { |
| 8520 | Assert(newblk == oldblk); |
| 8521 | memcpy(&prefixlen, recdata, sizeof(uint16)); |
| 8522 | recdata += sizeof(uint16); |
| 8523 | } |
| 8524 | if (xlrec->flags & XLH_UPDATE_SUFFIX_FROM_OLD) |
| 8525 | { |
| 8526 | Assert(newblk == oldblk); |
| 8527 | memcpy(&suffixlen, recdata, sizeof(uint16)); |
| 8528 | recdata += sizeof(uint16); |
| 8529 | } |
| 8530 | |
| 8531 | memcpy((char *) &xlhdr, recdata, SizeOfHeapHeader); |
| 8532 | recdata += SizeOfHeapHeader; |
| 8533 | |
| 8534 | tuplen = recdata_end - recdata; |
| 8535 | Assert(tuplen <= MaxHeapTupleSize); |
| 8536 | |
| 8537 | htup = &tbuf.hdr; |
| 8538 | MemSet((char *) htup, 0, SizeofHeapTupleHeader); |
| 8539 | |
| 8540 | /* |
| 8541 | * Reconstruct the new tuple using the prefix and/or suffix from the |
| 8542 | * old tuple, and the data stored in the WAL record. |
| 8543 | */ |
| 8544 | newp = (char *) htup + SizeofHeapTupleHeader; |
| 8545 | if (prefixlen > 0) |
| 8546 | { |
| 8547 | int len; |
| 8548 | |
| 8549 | /* copy bitmap [+ padding] [+ oid] from WAL record */ |
| 8550 | len = xlhdr.t_hoff - SizeofHeapTupleHeader; |
| 8551 | memcpy(newp, recdata, len); |
| 8552 | recdata += len; |
| 8553 | newp += len; |
| 8554 | |
| 8555 | /* copy prefix from old tuple */ |
| 8556 | memcpy(newp, (char *) oldtup.t_data + oldtup.t_data->t_hoff, prefixlen); |
| 8557 | newp += prefixlen; |
| 8558 | |
| 8559 | /* copy new tuple data from WAL record */ |
| 8560 | len = tuplen - (xlhdr.t_hoff - SizeofHeapTupleHeader); |
| 8561 | memcpy(newp, recdata, len); |
| 8562 | recdata += len; |
| 8563 | newp += len; |
| 8564 | } |
| 8565 | else |
| 8566 | { |
| 8567 | /* |
| 8568 | * copy bitmap [+ padding] [+ oid] + data from record, all in one |
| 8569 | * go |
| 8570 | */ |
| 8571 | memcpy(newp, recdata, tuplen); |
| 8572 | recdata += tuplen; |
| 8573 | newp += tuplen; |
| 8574 | } |
| 8575 | Assert(recdata == recdata_end); |
| 8576 | |
| 8577 | /* copy suffix from old tuple */ |
| 8578 | if (suffixlen > 0) |
| 8579 | memcpy(newp, (char *) oldtup.t_data + oldtup.t_len - suffixlen, suffixlen); |
| 8580 | |
| 8581 | newlen = SizeofHeapTupleHeader + tuplen + prefixlen + suffixlen; |
| 8582 | htup->t_infomask2 = xlhdr.t_infomask2; |
| 8583 | htup->t_infomask = xlhdr.t_infomask; |
| 8584 | htup->t_hoff = xlhdr.t_hoff; |
| 8585 | |
| 8586 | HeapTupleHeaderSetXmin(htup, XLogRecGetXid(record)); |
| 8587 | HeapTupleHeaderSetCmin(htup, FirstCommandId); |
| 8588 | HeapTupleHeaderSetXmax(htup, xlrec->new_xmax); |
| 8589 | /* Make sure there is no forward chain link in t_ctid */ |
| 8590 | htup->t_ctid = newtid; |
| 8591 | |
| 8592 | offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true); |
| 8593 | if (offnum == InvalidOffsetNumber) |
| 8594 | elog(PANIC, "failed to add tuple" ); |
| 8595 | |
| 8596 | if (xlrec->flags & XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) |
| 8597 | PageClearAllVisible(page); |
| 8598 | |
| 8599 | freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ |
| 8600 | |
| 8601 | PageSetLSN(page, lsn); |
| 8602 | MarkBufferDirty(nbuffer); |
| 8603 | } |
| 8604 | |
| 8605 | if (BufferIsValid(nbuffer) && nbuffer != obuffer) |
| 8606 | UnlockReleaseBuffer(nbuffer); |
| 8607 | if (BufferIsValid(obuffer)) |
| 8608 | UnlockReleaseBuffer(obuffer); |
| 8609 | |
| 8610 | /* |
| 8611 | * If the new page is running low on free space, update the FSM as well. |
| 8612 | * Arbitrarily, our definition of "low" is less than 20%. We can't do much |
| 8613 | * better than that without knowing the fill-factor for the table. |
| 8614 | * |
| 8615 | * However, don't update the FSM on HOT updates, because after crash |
| 8616 | * recovery, either the old or the new tuple will certainly be dead and |
| 8617 | * prunable. After pruning, the page will have roughly as much free space |
| 8618 | * as it did before the update, assuming the new tuple is about the same |
| 8619 | * size as the old one. |
| 8620 | * |
| 8621 | * XXX: Don't do this if the page was restored from full page image. We |
| 8622 | * don't bother to update the FSM in that case, it doesn't need to be |
| 8623 | * totally accurate anyway. |
| 8624 | */ |
| 8625 | if (newaction == BLK_NEEDS_REDO && !hot_update && freespace < BLCKSZ / 5) |
| 8626 | XLogRecordPageWithFreeSpace(rnode, newblk, freespace); |
| 8627 | } |
| 8628 | |
| 8629 | static void |
| 8630 | heap_xlog_confirm(XLogReaderState *record) |
| 8631 | { |
| 8632 | XLogRecPtr lsn = record->EndRecPtr; |
| 8633 | xl_heap_confirm *xlrec = (xl_heap_confirm *) XLogRecGetData(record); |
| 8634 | Buffer buffer; |
| 8635 | Page page; |
| 8636 | OffsetNumber offnum; |
| 8637 | ItemId lp = NULL; |
| 8638 | HeapTupleHeader htup; |
| 8639 | |
| 8640 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
| 8641 | { |
| 8642 | page = BufferGetPage(buffer); |
| 8643 | |
| 8644 | offnum = xlrec->offnum; |
| 8645 | if (PageGetMaxOffsetNumber(page) >= offnum) |
| 8646 | lp = PageGetItemId(page, offnum); |
| 8647 | |
| 8648 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
| 8649 | elog(PANIC, "invalid lp" ); |
| 8650 | |
| 8651 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
| 8652 | |
| 8653 | /* |
| 8654 | * Confirm tuple as actually inserted |
| 8655 | */ |
| 8656 | ItemPointerSet(&htup->t_ctid, BufferGetBlockNumber(buffer), offnum); |
| 8657 | |
| 8658 | PageSetLSN(page, lsn); |
| 8659 | MarkBufferDirty(buffer); |
| 8660 | } |
| 8661 | if (BufferIsValid(buffer)) |
| 8662 | UnlockReleaseBuffer(buffer); |
| 8663 | } |
| 8664 | |
| 8665 | static void |
| 8666 | heap_xlog_lock(XLogReaderState *record) |
| 8667 | { |
| 8668 | XLogRecPtr lsn = record->EndRecPtr; |
| 8669 | xl_heap_lock *xlrec = (xl_heap_lock *) XLogRecGetData(record); |
| 8670 | Buffer buffer; |
| 8671 | Page page; |
| 8672 | OffsetNumber offnum; |
| 8673 | ItemId lp = NULL; |
| 8674 | HeapTupleHeader htup; |
| 8675 | |
| 8676 | /* |
| 8677 | * The visibility map may need to be fixed even if the heap page is |
| 8678 | * already up-to-date. |
| 8679 | */ |
| 8680 | if (xlrec->flags & XLH_LOCK_ALL_FROZEN_CLEARED) |
| 8681 | { |
| 8682 | RelFileNode rnode; |
| 8683 | Buffer vmbuffer = InvalidBuffer; |
| 8684 | BlockNumber block; |
| 8685 | Relation reln; |
| 8686 | |
| 8687 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &block); |
| 8688 | reln = CreateFakeRelcacheEntry(rnode); |
| 8689 | |
| 8690 | visibilitymap_pin(reln, block, &vmbuffer); |
| 8691 | visibilitymap_clear(reln, block, vmbuffer, VISIBILITYMAP_ALL_FROZEN); |
| 8692 | |
| 8693 | ReleaseBuffer(vmbuffer); |
| 8694 | FreeFakeRelcacheEntry(reln); |
| 8695 | } |
| 8696 | |
| 8697 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
| 8698 | { |
| 8699 | page = (Page) BufferGetPage(buffer); |
| 8700 | |
| 8701 | offnum = xlrec->offnum; |
| 8702 | if (PageGetMaxOffsetNumber(page) >= offnum) |
| 8703 | lp = PageGetItemId(page, offnum); |
| 8704 | |
| 8705 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
| 8706 | elog(PANIC, "invalid lp" ); |
| 8707 | |
| 8708 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
| 8709 | |
| 8710 | htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
| 8711 | htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 8712 | fix_infomask_from_infobits(xlrec->infobits_set, &htup->t_infomask, |
| 8713 | &htup->t_infomask2); |
| 8714 | |
| 8715 | /* |
| 8716 | * Clear relevant update flags, but only if the modified infomask says |
| 8717 | * there's no update. |
| 8718 | */ |
| 8719 | if (HEAP_XMAX_IS_LOCKED_ONLY(htup->t_infomask)) |
| 8720 | { |
| 8721 | HeapTupleHeaderClearHotUpdated(htup); |
| 8722 | /* Make sure there is no forward chain link in t_ctid */ |
| 8723 | ItemPointerSet(&htup->t_ctid, |
| 8724 | BufferGetBlockNumber(buffer), |
| 8725 | offnum); |
| 8726 | } |
| 8727 | HeapTupleHeaderSetXmax(htup, xlrec->locking_xid); |
| 8728 | HeapTupleHeaderSetCmax(htup, FirstCommandId, false); |
| 8729 | PageSetLSN(page, lsn); |
| 8730 | MarkBufferDirty(buffer); |
| 8731 | } |
| 8732 | if (BufferIsValid(buffer)) |
| 8733 | UnlockReleaseBuffer(buffer); |
| 8734 | } |
| 8735 | |
| 8736 | static void |
| 8737 | heap_xlog_lock_updated(XLogReaderState *record) |
| 8738 | { |
| 8739 | XLogRecPtr lsn = record->EndRecPtr; |
| 8740 | xl_heap_lock_updated *xlrec; |
| 8741 | Buffer buffer; |
| 8742 | Page page; |
| 8743 | OffsetNumber offnum; |
| 8744 | ItemId lp = NULL; |
| 8745 | HeapTupleHeader htup; |
| 8746 | |
| 8747 | xlrec = (xl_heap_lock_updated *) XLogRecGetData(record); |
| 8748 | |
| 8749 | /* |
| 8750 | * The visibility map may need to be fixed even if the heap page is |
| 8751 | * already up-to-date. |
| 8752 | */ |
| 8753 | if (xlrec->flags & XLH_LOCK_ALL_FROZEN_CLEARED) |
| 8754 | { |
| 8755 | RelFileNode rnode; |
| 8756 | Buffer vmbuffer = InvalidBuffer; |
| 8757 | BlockNumber block; |
| 8758 | Relation reln; |
| 8759 | |
| 8760 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &block); |
| 8761 | reln = CreateFakeRelcacheEntry(rnode); |
| 8762 | |
| 8763 | visibilitymap_pin(reln, block, &vmbuffer); |
| 8764 | visibilitymap_clear(reln, block, vmbuffer, VISIBILITYMAP_ALL_FROZEN); |
| 8765 | |
| 8766 | ReleaseBuffer(vmbuffer); |
| 8767 | FreeFakeRelcacheEntry(reln); |
| 8768 | } |
| 8769 | |
| 8770 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
| 8771 | { |
| 8772 | page = BufferGetPage(buffer); |
| 8773 | |
| 8774 | offnum = xlrec->offnum; |
| 8775 | if (PageGetMaxOffsetNumber(page) >= offnum) |
| 8776 | lp = PageGetItemId(page, offnum); |
| 8777 | |
| 8778 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
| 8779 | elog(PANIC, "invalid lp" ); |
| 8780 | |
| 8781 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
| 8782 | |
| 8783 | htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
| 8784 | htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
| 8785 | fix_infomask_from_infobits(xlrec->infobits_set, &htup->t_infomask, |
| 8786 | &htup->t_infomask2); |
| 8787 | HeapTupleHeaderSetXmax(htup, xlrec->xmax); |
| 8788 | |
| 8789 | PageSetLSN(page, lsn); |
| 8790 | MarkBufferDirty(buffer); |
| 8791 | } |
| 8792 | if (BufferIsValid(buffer)) |
| 8793 | UnlockReleaseBuffer(buffer); |
| 8794 | } |
| 8795 | |
| 8796 | static void |
| 8797 | heap_xlog_inplace(XLogReaderState *record) |
| 8798 | { |
| 8799 | XLogRecPtr lsn = record->EndRecPtr; |
| 8800 | xl_heap_inplace *xlrec = (xl_heap_inplace *) XLogRecGetData(record); |
| 8801 | Buffer buffer; |
| 8802 | Page page; |
| 8803 | OffsetNumber offnum; |
| 8804 | ItemId lp = NULL; |
| 8805 | HeapTupleHeader htup; |
| 8806 | uint32 oldlen; |
| 8807 | Size newlen; |
| 8808 | |
| 8809 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
| 8810 | { |
| 8811 | char *newtup = XLogRecGetBlockData(record, 0, &newlen); |
| 8812 | |
| 8813 | page = BufferGetPage(buffer); |
| 8814 | |
| 8815 | offnum = xlrec->offnum; |
| 8816 | if (PageGetMaxOffsetNumber(page) >= offnum) |
| 8817 | lp = PageGetItemId(page, offnum); |
| 8818 | |
| 8819 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
| 8820 | elog(PANIC, "invalid lp" ); |
| 8821 | |
| 8822 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
| 8823 | |
| 8824 | oldlen = ItemIdGetLength(lp) - htup->t_hoff; |
| 8825 | if (oldlen != newlen) |
| 8826 | elog(PANIC, "wrong tuple length" ); |
| 8827 | |
| 8828 | memcpy((char *) htup + htup->t_hoff, newtup, newlen); |
| 8829 | |
| 8830 | PageSetLSN(page, lsn); |
| 8831 | MarkBufferDirty(buffer); |
| 8832 | } |
| 8833 | if (BufferIsValid(buffer)) |
| 8834 | UnlockReleaseBuffer(buffer); |
| 8835 | } |
| 8836 | |
| 8837 | void |
| 8838 | heap_redo(XLogReaderState *record) |
| 8839 | { |
| 8840 | uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
| 8841 | |
| 8842 | /* |
| 8843 | * These operations don't overwrite MVCC data so no conflict processing is |
| 8844 | * required. The ones in heap2 rmgr do. |
| 8845 | */ |
| 8846 | |
| 8847 | switch (info & XLOG_HEAP_OPMASK) |
| 8848 | { |
| 8849 | case XLOG_HEAP_INSERT: |
| 8850 | heap_xlog_insert(record); |
| 8851 | break; |
| 8852 | case XLOG_HEAP_DELETE: |
| 8853 | heap_xlog_delete(record); |
| 8854 | break; |
| 8855 | case XLOG_HEAP_UPDATE: |
| 8856 | heap_xlog_update(record, false); |
| 8857 | break; |
| 8858 | case XLOG_HEAP_TRUNCATE: |
| 8859 | |
| 8860 | /* |
| 8861 | * TRUNCATE is a no-op because the actions are already logged as |
| 8862 | * SMGR WAL records. TRUNCATE WAL record only exists for logical |
| 8863 | * decoding. |
| 8864 | */ |
| 8865 | break; |
| 8866 | case XLOG_HEAP_HOT_UPDATE: |
| 8867 | heap_xlog_update(record, true); |
| 8868 | break; |
| 8869 | case XLOG_HEAP_CONFIRM: |
| 8870 | heap_xlog_confirm(record); |
| 8871 | break; |
| 8872 | case XLOG_HEAP_LOCK: |
| 8873 | heap_xlog_lock(record); |
| 8874 | break; |
| 8875 | case XLOG_HEAP_INPLACE: |
| 8876 | heap_xlog_inplace(record); |
| 8877 | break; |
| 8878 | default: |
| 8879 | elog(PANIC, "heap_redo: unknown op code %u" , info); |
| 8880 | } |
| 8881 | } |
| 8882 | |
| 8883 | void |
| 8884 | heap2_redo(XLogReaderState *record) |
| 8885 | { |
| 8886 | uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
| 8887 | |
| 8888 | switch (info & XLOG_HEAP_OPMASK) |
| 8889 | { |
| 8890 | case XLOG_HEAP2_CLEAN: |
| 8891 | heap_xlog_clean(record); |
| 8892 | break; |
| 8893 | case XLOG_HEAP2_FREEZE_PAGE: |
| 8894 | heap_xlog_freeze_page(record); |
| 8895 | break; |
| 8896 | case XLOG_HEAP2_CLEANUP_INFO: |
| 8897 | heap_xlog_cleanup_info(record); |
| 8898 | break; |
| 8899 | case XLOG_HEAP2_VISIBLE: |
| 8900 | heap_xlog_visible(record); |
| 8901 | break; |
| 8902 | case XLOG_HEAP2_MULTI_INSERT: |
| 8903 | heap_xlog_multi_insert(record); |
| 8904 | break; |
| 8905 | case XLOG_HEAP2_LOCK_UPDATED: |
| 8906 | heap_xlog_lock_updated(record); |
| 8907 | break; |
| 8908 | case XLOG_HEAP2_NEW_CID: |
| 8909 | |
| 8910 | /* |
| 8911 | * Nothing to do on a real replay, only used during logical |
| 8912 | * decoding. |
| 8913 | */ |
| 8914 | break; |
| 8915 | case XLOG_HEAP2_REWRITE: |
| 8916 | heap_xlog_logical_rewrite(record); |
| 8917 | break; |
| 8918 | default: |
| 8919 | elog(PANIC, "heap2_redo: unknown op code %u" , info); |
| 8920 | } |
| 8921 | } |
| 8922 | |
| 8923 | /* |
| 8924 | * heap_sync - sync a heap, for use when no WAL has been written |
| 8925 | * |
| 8926 | * This forces the heap contents (including TOAST heap if any) down to disk. |
| 8927 | * If we skipped using WAL, and WAL is otherwise needed, we must force the |
| 8928 | * relation down to disk before it's safe to commit the transaction. This |
| 8929 | * requires writing out any dirty buffers and then doing a forced fsync. |
| 8930 | * |
| 8931 | * Indexes are not touched. (Currently, index operations associated with |
| 8932 | * the commands that use this are WAL-logged and so do not need fsync. |
| 8933 | * That behavior might change someday, but in any case it's likely that |
| 8934 | * any fsync decisions required would be per-index and hence not appropriate |
| 8935 | * to be done here.) |
| 8936 | */ |
| 8937 | void |
| 8938 | heap_sync(Relation rel) |
| 8939 | { |
| 8940 | /* non-WAL-logged tables never need fsync */ |
| 8941 | if (!RelationNeedsWAL(rel)) |
| 8942 | return; |
| 8943 | |
| 8944 | /* main heap */ |
| 8945 | FlushRelationBuffers(rel); |
| 8946 | /* FlushRelationBuffers will have opened rd_smgr */ |
| 8947 | smgrimmedsync(rel->rd_smgr, MAIN_FORKNUM); |
| 8948 | |
| 8949 | /* FSM is not critical, don't bother syncing it */ |
| 8950 | |
| 8951 | /* toast heap, if any */ |
| 8952 | if (OidIsValid(rel->rd_rel->reltoastrelid)) |
| 8953 | { |
| 8954 | Relation toastrel; |
| 8955 | |
| 8956 | toastrel = table_open(rel->rd_rel->reltoastrelid, AccessShareLock); |
| 8957 | FlushRelationBuffers(toastrel); |
| 8958 | smgrimmedsync(toastrel->rd_smgr, MAIN_FORKNUM); |
| 8959 | table_close(toastrel, AccessShareLock); |
| 8960 | } |
| 8961 | } |
| 8962 | |
| 8963 | /* |
| 8964 | * Mask a heap page before performing consistency checks on it. |
| 8965 | */ |
| 8966 | void |
| 8967 | heap_mask(char *pagedata, BlockNumber blkno) |
| 8968 | { |
| 8969 | Page page = (Page) pagedata; |
| 8970 | OffsetNumber off; |
| 8971 | |
| 8972 | mask_page_lsn_and_checksum(page); |
| 8973 | |
| 8974 | mask_page_hint_bits(page); |
| 8975 | mask_unused_space(page); |
| 8976 | |
| 8977 | for (off = 1; off <= PageGetMaxOffsetNumber(page); off++) |
| 8978 | { |
| 8979 | ItemId iid = PageGetItemId(page, off); |
| 8980 | char *page_item; |
| 8981 | |
| 8982 | page_item = (char *) (page + ItemIdGetOffset(iid)); |
| 8983 | |
| 8984 | if (ItemIdIsNormal(iid)) |
| 8985 | { |
| 8986 | HeapTupleHeader page_htup = (HeapTupleHeader) page_item; |
| 8987 | |
| 8988 | /* |
| 8989 | * If xmin of a tuple is not yet frozen, we should ignore |
| 8990 | * differences in hint bits, since they can be set without |
| 8991 | * emitting WAL. |
| 8992 | */ |
| 8993 | if (!HeapTupleHeaderXminFrozen(page_htup)) |
| 8994 | page_htup->t_infomask &= ~HEAP_XACT_MASK; |
| 8995 | else |
| 8996 | { |
| 8997 | /* Still we need to mask xmax hint bits. */ |
| 8998 | page_htup->t_infomask &= ~HEAP_XMAX_INVALID; |
| 8999 | page_htup->t_infomask &= ~HEAP_XMAX_COMMITTED; |
| 9000 | } |
| 9001 | |
| 9002 | /* |
| 9003 | * During replay, we set Command Id to FirstCommandId. Hence, mask |
| 9004 | * it. See heap_xlog_insert() for details. |
| 9005 | */ |
| 9006 | page_htup->t_choice.t_heap.t_field3.t_cid = MASK_MARKER; |
| 9007 | |
| 9008 | /* |
| 9009 | * For a speculative tuple, heap_insert() does not set ctid in the |
| 9010 | * caller-passed heap tuple itself, leaving the ctid field to |
| 9011 | * contain a speculative token value - a per-backend monotonically |
| 9012 | * increasing identifier. Besides, it does not WAL-log ctid under |
| 9013 | * any circumstances. |
| 9014 | * |
| 9015 | * During redo, heap_xlog_insert() sets t_ctid to current block |
| 9016 | * number and self offset number. It doesn't care about any |
| 9017 | * speculative insertions in master. Hence, we set t_ctid to |
| 9018 | * current block number and self offset number to ignore any |
| 9019 | * inconsistency. |
| 9020 | */ |
| 9021 | if (HeapTupleHeaderIsSpeculative(page_htup)) |
| 9022 | ItemPointerSet(&page_htup->t_ctid, blkno, off); |
| 9023 | |
| 9024 | /* |
| 9025 | * NB: Not ignoring ctid changes due to the tuple having moved |
| 9026 | * (i.e. HeapTupleHeaderIndicatesMovedPartitions), because that's |
| 9027 | * important information that needs to be in-sync between primary |
| 9028 | * and standby, and thus is WAL logged. |
| 9029 | */ |
| 9030 | } |
| 9031 | |
| 9032 | /* |
| 9033 | * Ignore any padding bytes after the tuple, when the length of the |
| 9034 | * item is not MAXALIGNed. |
| 9035 | */ |
| 9036 | if (ItemIdHasStorage(iid)) |
| 9037 | { |
| 9038 | int len = ItemIdGetLength(iid); |
| 9039 | int padlen = MAXALIGN(len) - len; |
| 9040 | |
| 9041 | if (padlen > 0) |
| 9042 | memset(page_item + len, MASK_MARKER, padlen); |
| 9043 | } |
| 9044 | } |
| 9045 | } |
| 9046 | |