1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * heapam.c |
4 | * heap access method code |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/access/heap/heapam.c |
12 | * |
13 | * |
14 | * INTERFACE ROUTINES |
15 | * heap_beginscan - begin relation scan |
16 | * heap_rescan - restart a relation scan |
17 | * heap_endscan - end relation scan |
18 | * heap_getnext - retrieve next tuple in scan |
19 | * heap_fetch - retrieve tuple with given tid |
20 | * heap_insert - insert tuple into a relation |
21 | * heap_multi_insert - insert multiple tuples into a relation |
22 | * heap_delete - delete a tuple from a relation |
23 | * heap_update - replace a tuple in a relation with another tuple |
24 | * heap_sync - sync heap, for when no WAL has been written |
25 | * |
26 | * NOTES |
27 | * This file contains the heap_ routines which implement |
28 | * the POSTGRES heap access method used for all POSTGRES |
29 | * relations. |
30 | * |
31 | *------------------------------------------------------------------------- |
32 | */ |
33 | #include "postgres.h" |
34 | |
35 | #include "access/bufmask.h" |
36 | #include "access/genam.h" |
37 | #include "access/heapam.h" |
38 | #include "access/heapam_xlog.h" |
39 | #include "access/hio.h" |
40 | #include "access/multixact.h" |
41 | #include "access/parallel.h" |
42 | #include "access/relscan.h" |
43 | #include "access/sysattr.h" |
44 | #include "access/tableam.h" |
45 | #include "access/transam.h" |
46 | #include "access/tuptoaster.h" |
47 | #include "access/valid.h" |
48 | #include "access/visibilitymap.h" |
49 | #include "access/xact.h" |
50 | #include "access/xlog.h" |
51 | #include "access/xloginsert.h" |
52 | #include "access/xlogutils.h" |
53 | #include "catalog/catalog.h" |
54 | #include "miscadmin.h" |
55 | #include "pgstat.h" |
56 | #include "port/atomics.h" |
57 | #include "storage/bufmgr.h" |
58 | #include "storage/freespace.h" |
59 | #include "storage/lmgr.h" |
60 | #include "storage/predicate.h" |
61 | #include "storage/procarray.h" |
62 | #include "storage/smgr.h" |
63 | #include "storage/spin.h" |
64 | #include "storage/standby.h" |
65 | #include "utils/datum.h" |
66 | #include "utils/inval.h" |
67 | #include "utils/lsyscache.h" |
68 | #include "utils/relcache.h" |
69 | #include "utils/snapmgr.h" |
70 | #include "utils/spccache.h" |
71 | |
72 | |
73 | static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup, |
74 | TransactionId xid, CommandId cid, int options); |
75 | static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf, |
76 | Buffer newbuf, HeapTuple oldtup, |
77 | HeapTuple newtup, HeapTuple old_key_tup, |
78 | bool all_visible_cleared, bool new_all_visible_cleared); |
79 | static Bitmapset *HeapDetermineModifiedColumns(Relation relation, |
80 | Bitmapset *interesting_cols, |
81 | HeapTuple oldtup, HeapTuple newtup); |
82 | static bool heap_acquire_tuplock(Relation relation, ItemPointer tid, |
83 | LockTupleMode mode, LockWaitPolicy wait_policy, |
84 | bool *have_tuple_lock); |
85 | static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask, |
86 | uint16 old_infomask2, TransactionId add_to_xmax, |
87 | LockTupleMode mode, bool is_update, |
88 | TransactionId *result_xmax, uint16 *result_infomask, |
89 | uint16 *result_infomask2); |
90 | static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple, |
91 | ItemPointer ctid, TransactionId xid, |
92 | LockTupleMode mode); |
93 | static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask, |
94 | uint16 *new_infomask2); |
95 | static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax, |
96 | uint16 t_infomask); |
97 | static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask, |
98 | LockTupleMode lockmode, bool *current_is_member); |
99 | static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask, |
100 | Relation rel, ItemPointer ctid, XLTW_Oper oper, |
101 | int *remaining); |
102 | static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status, |
103 | uint16 infomask, Relation rel, int *remaining); |
104 | static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup); |
105 | static HeapTuple ExtractReplicaIdentity(Relation rel, HeapTuple tup, bool key_modified, |
106 | bool *copy); |
107 | |
108 | |
109 | /* |
110 | * Each tuple lock mode has a corresponding heavyweight lock, and one or two |
111 | * corresponding MultiXactStatuses (one to merely lock tuples, another one to |
112 | * update them). This table (and the macros below) helps us determine the |
113 | * heavyweight lock mode and MultiXactStatus values to use for any particular |
114 | * tuple lock strength. |
115 | * |
116 | * Don't look at lockstatus/updstatus directly! Use get_mxact_status_for_lock |
117 | * instead. |
118 | */ |
119 | static const struct |
120 | { |
121 | LOCKMODE hwlock; |
122 | int lockstatus; |
123 | int updstatus; |
124 | } |
125 | |
126 | [MaxLockTupleMode + 1] = |
127 | { |
128 | { /* LockTupleKeyShare */ |
129 | AccessShareLock, |
130 | MultiXactStatusForKeyShare, |
131 | -1 /* KeyShare does not allow updating tuples */ |
132 | }, |
133 | { /* LockTupleShare */ |
134 | RowShareLock, |
135 | MultiXactStatusForShare, |
136 | -1 /* Share does not allow updating tuples */ |
137 | }, |
138 | { /* LockTupleNoKeyExclusive */ |
139 | ExclusiveLock, |
140 | MultiXactStatusForNoKeyUpdate, |
141 | MultiXactStatusNoKeyUpdate |
142 | }, |
143 | { /* LockTupleExclusive */ |
144 | AccessExclusiveLock, |
145 | MultiXactStatusForUpdate, |
146 | MultiXactStatusUpdate |
147 | } |
148 | }; |
149 | |
150 | /* Get the LOCKMODE for a given MultiXactStatus */ |
151 | #define LOCKMODE_from_mxstatus(status) \ |
152 | (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock) |
153 | |
154 | /* |
155 | * Acquire heavyweight locks on tuples, using a LockTupleMode strength value. |
156 | * This is more readable than having every caller translate it to lock.h's |
157 | * LOCKMODE. |
158 | */ |
159 | #define LockTupleTuplock(rel, tup, mode) \ |
160 | LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
161 | #define UnlockTupleTuplock(rel, tup, mode) \ |
162 | UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
163 | #define ConditionalLockTupleTuplock(rel, tup, mode) \ |
164 | ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
165 | |
166 | #ifdef USE_PREFETCH |
167 | /* |
168 | * heap_compute_xid_horizon_for_tuples and xid_horizon_prefetch_buffer use |
169 | * this structure to coordinate prefetching activity. |
170 | */ |
171 | typedef struct |
172 | { |
173 | BlockNumber cur_hblkno; |
174 | int next_item; |
175 | int nitems; |
176 | ItemPointerData *tids; |
177 | } XidHorizonPrefetchState; |
178 | #endif |
179 | |
180 | /* |
181 | * This table maps tuple lock strength values for each particular |
182 | * MultiXactStatus value. |
183 | */ |
184 | static const int MultiXactStatusLock[MaxMultiXactStatus + 1] = |
185 | { |
186 | LockTupleKeyShare, /* ForKeyShare */ |
187 | LockTupleShare, /* ForShare */ |
188 | LockTupleNoKeyExclusive, /* ForNoKeyUpdate */ |
189 | LockTupleExclusive, /* ForUpdate */ |
190 | LockTupleNoKeyExclusive, /* NoKeyUpdate */ |
191 | LockTupleExclusive /* Update */ |
192 | }; |
193 | |
194 | /* Get the LockTupleMode for a given MultiXactStatus */ |
195 | #define TUPLOCK_from_mxstatus(status) \ |
196 | (MultiXactStatusLock[(status)]) |
197 | |
198 | /* ---------------------------------------------------------------- |
199 | * heap support routines |
200 | * ---------------------------------------------------------------- |
201 | */ |
202 | |
203 | /* ---------------- |
204 | * initscan - scan code common to heap_beginscan and heap_rescan |
205 | * ---------------- |
206 | */ |
207 | static void |
208 | initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock) |
209 | { |
210 | ParallelBlockTableScanDesc bpscan = NULL; |
211 | bool allow_strat; |
212 | bool allow_sync; |
213 | |
214 | /* |
215 | * Determine the number of blocks we have to scan. |
216 | * |
217 | * It is sufficient to do this once at scan start, since any tuples added |
218 | * while the scan is in progress will be invisible to my snapshot anyway. |
219 | * (That is not true when using a non-MVCC snapshot. However, we couldn't |
220 | * guarantee to return tuples added after scan start anyway, since they |
221 | * might go into pages we already scanned. To guarantee consistent |
222 | * results for a non-MVCC snapshot, the caller must hold some higher-level |
223 | * lock that ensures the interesting tuple(s) won't change.) |
224 | */ |
225 | if (scan->rs_base.rs_parallel != NULL) |
226 | { |
227 | bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
228 | scan->rs_nblocks = bpscan->phs_nblocks; |
229 | } |
230 | else |
231 | scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd); |
232 | |
233 | /* |
234 | * If the table is large relative to NBuffers, use a bulk-read access |
235 | * strategy and enable synchronized scanning (see syncscan.c). Although |
236 | * the thresholds for these features could be different, we make them the |
237 | * same so that there are only two behaviors to tune rather than four. |
238 | * (However, some callers need to be able to disable one or both of these |
239 | * behaviors, independently of the size of the table; also there is a GUC |
240 | * variable that can disable synchronized scanning.) |
241 | * |
242 | * Note that table_block_parallelscan_initialize has a very similar test; |
243 | * if you change this, consider changing that one, too. |
244 | */ |
245 | if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) && |
246 | scan->rs_nblocks > NBuffers / 4) |
247 | { |
248 | allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0; |
249 | allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0; |
250 | } |
251 | else |
252 | allow_strat = allow_sync = false; |
253 | |
254 | if (allow_strat) |
255 | { |
256 | /* During a rescan, keep the previous strategy object. */ |
257 | if (scan->rs_strategy == NULL) |
258 | scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD); |
259 | } |
260 | else |
261 | { |
262 | if (scan->rs_strategy != NULL) |
263 | FreeAccessStrategy(scan->rs_strategy); |
264 | scan->rs_strategy = NULL; |
265 | } |
266 | |
267 | if (scan->rs_base.rs_parallel != NULL) |
268 | { |
269 | /* For parallel scan, believe whatever ParallelTableScanDesc says. */ |
270 | if (scan->rs_base.rs_parallel->phs_syncscan) |
271 | scan->rs_base.rs_flags |= SO_ALLOW_SYNC; |
272 | else |
273 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
274 | } |
275 | else if (keep_startblock) |
276 | { |
277 | /* |
278 | * When rescanning, we want to keep the previous startblock setting, |
279 | * so that rewinding a cursor doesn't generate surprising results. |
280 | * Reset the active syncscan setting, though. |
281 | */ |
282 | if (allow_sync && synchronize_seqscans) |
283 | scan->rs_base.rs_flags |= SO_ALLOW_SYNC; |
284 | else |
285 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
286 | } |
287 | else if (allow_sync && synchronize_seqscans) |
288 | { |
289 | scan->rs_base.rs_flags |= SO_ALLOW_SYNC; |
290 | scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks); |
291 | } |
292 | else |
293 | { |
294 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
295 | scan->rs_startblock = 0; |
296 | } |
297 | |
298 | scan->rs_numblocks = InvalidBlockNumber; |
299 | scan->rs_inited = false; |
300 | scan->rs_ctup.t_data = NULL; |
301 | ItemPointerSetInvalid(&scan->rs_ctup.t_self); |
302 | scan->rs_cbuf = InvalidBuffer; |
303 | scan->rs_cblock = InvalidBlockNumber; |
304 | |
305 | /* page-at-a-time fields are always invalid when not rs_inited */ |
306 | |
307 | /* |
308 | * copy the scan key, if appropriate |
309 | */ |
310 | if (key != NULL) |
311 | memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData)); |
312 | |
313 | /* |
314 | * Currently, we only have a stats counter for sequential heap scans (but |
315 | * e.g for bitmap scans the underlying bitmap index scans will be counted, |
316 | * and for sample scans we update stats for tuple fetches). |
317 | */ |
318 | if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN) |
319 | pgstat_count_heap_scan(scan->rs_base.rs_rd); |
320 | } |
321 | |
322 | /* |
323 | * heap_setscanlimits - restrict range of a heapscan |
324 | * |
325 | * startBlk is the page to start at |
326 | * numBlks is number of pages to scan (InvalidBlockNumber means "all") |
327 | */ |
328 | void |
329 | heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks) |
330 | { |
331 | HeapScanDesc scan = (HeapScanDesc) sscan; |
332 | |
333 | Assert(!scan->rs_inited); /* else too late to change */ |
334 | /* else rs_startblock is significant */ |
335 | Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC)); |
336 | |
337 | /* Check startBlk is valid (but allow case of zero blocks...) */ |
338 | Assert(startBlk == 0 || startBlk < scan->rs_nblocks); |
339 | |
340 | scan->rs_startblock = startBlk; |
341 | scan->rs_numblocks = numBlks; |
342 | } |
343 | |
344 | /* |
345 | * heapgetpage - subroutine for heapgettup() |
346 | * |
347 | * This routine reads and pins the specified page of the relation. |
348 | * In page-at-a-time mode it performs additional work, namely determining |
349 | * which tuples on the page are visible. |
350 | */ |
351 | void |
352 | heapgetpage(TableScanDesc sscan, BlockNumber page) |
353 | { |
354 | HeapScanDesc scan = (HeapScanDesc) sscan; |
355 | Buffer buffer; |
356 | Snapshot snapshot; |
357 | Page dp; |
358 | int lines; |
359 | int ntup; |
360 | OffsetNumber lineoff; |
361 | ItemId lpp; |
362 | bool all_visible; |
363 | |
364 | Assert(page < scan->rs_nblocks); |
365 | |
366 | /* release previous scan buffer, if any */ |
367 | if (BufferIsValid(scan->rs_cbuf)) |
368 | { |
369 | ReleaseBuffer(scan->rs_cbuf); |
370 | scan->rs_cbuf = InvalidBuffer; |
371 | } |
372 | |
373 | /* |
374 | * Be sure to check for interrupts at least once per page. Checks at |
375 | * higher code levels won't be able to stop a seqscan that encounters many |
376 | * pages' worth of consecutive dead tuples. |
377 | */ |
378 | CHECK_FOR_INTERRUPTS(); |
379 | |
380 | /* read page using selected strategy */ |
381 | scan->rs_cbuf = ReadBufferExtended(scan->rs_base.rs_rd, MAIN_FORKNUM, page, |
382 | RBM_NORMAL, scan->rs_strategy); |
383 | scan->rs_cblock = page; |
384 | |
385 | if (!(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)) |
386 | return; |
387 | |
388 | buffer = scan->rs_cbuf; |
389 | snapshot = scan->rs_base.rs_snapshot; |
390 | |
391 | /* |
392 | * Prune and repair fragmentation for the whole page, if possible. |
393 | */ |
394 | heap_page_prune_opt(scan->rs_base.rs_rd, buffer); |
395 | |
396 | /* |
397 | * We must hold share lock on the buffer content while examining tuple |
398 | * visibility. Afterwards, however, the tuples we have found to be |
399 | * visible are guaranteed good as long as we hold the buffer pin. |
400 | */ |
401 | LockBuffer(buffer, BUFFER_LOCK_SHARE); |
402 | |
403 | dp = BufferGetPage(buffer); |
404 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
405 | lines = PageGetMaxOffsetNumber(dp); |
406 | ntup = 0; |
407 | |
408 | /* |
409 | * If the all-visible flag indicates that all tuples on the page are |
410 | * visible to everyone, we can skip the per-tuple visibility tests. |
411 | * |
412 | * Note: In hot standby, a tuple that's already visible to all |
413 | * transactions in the master might still be invisible to a read-only |
414 | * transaction in the standby. We partly handle this problem by tracking |
415 | * the minimum xmin of visible tuples as the cut-off XID while marking a |
416 | * page all-visible on master and WAL log that along with the visibility |
417 | * map SET operation. In hot standby, we wait for (or abort) all |
418 | * transactions that can potentially may not see one or more tuples on the |
419 | * page. That's how index-only scans work fine in hot standby. A crucial |
420 | * difference between index-only scans and heap scans is that the |
421 | * index-only scan completely relies on the visibility map where as heap |
422 | * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if |
423 | * the page-level flag can be trusted in the same way, because it might |
424 | * get propagated somehow without being explicitly WAL-logged, e.g. via a |
425 | * full page write. Until we can prove that beyond doubt, let's check each |
426 | * tuple for visibility the hard way. |
427 | */ |
428 | all_visible = PageIsAllVisible(dp) && !snapshot->takenDuringRecovery; |
429 | |
430 | for (lineoff = FirstOffsetNumber, lpp = PageGetItemId(dp, lineoff); |
431 | lineoff <= lines; |
432 | lineoff++, lpp++) |
433 | { |
434 | if (ItemIdIsNormal(lpp)) |
435 | { |
436 | HeapTupleData loctup; |
437 | bool valid; |
438 | |
439 | loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd); |
440 | loctup.t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
441 | loctup.t_len = ItemIdGetLength(lpp); |
442 | ItemPointerSet(&(loctup.t_self), page, lineoff); |
443 | |
444 | if (all_visible) |
445 | valid = true; |
446 | else |
447 | valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer); |
448 | |
449 | CheckForSerializableConflictOut(valid, scan->rs_base.rs_rd, |
450 | &loctup, buffer, snapshot); |
451 | |
452 | if (valid) |
453 | scan->rs_vistuples[ntup++] = lineoff; |
454 | } |
455 | } |
456 | |
457 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
458 | |
459 | Assert(ntup <= MaxHeapTuplesPerPage); |
460 | scan->rs_ntuples = ntup; |
461 | } |
462 | |
463 | /* ---------------- |
464 | * heapgettup - fetch next heap tuple |
465 | * |
466 | * Initialize the scan if not already done; then advance to the next |
467 | * tuple as indicated by "dir"; return the next tuple in scan->rs_ctup, |
468 | * or set scan->rs_ctup.t_data = NULL if no more tuples. |
469 | * |
470 | * dir == NoMovementScanDirection means "re-fetch the tuple indicated |
471 | * by scan->rs_ctup". |
472 | * |
473 | * Note: the reason nkeys/key are passed separately, even though they are |
474 | * kept in the scan descriptor, is that the caller may not want us to check |
475 | * the scankeys. |
476 | * |
477 | * Note: when we fall off the end of the scan in either direction, we |
478 | * reset rs_inited. This means that a further request with the same |
479 | * scan direction will restart the scan, which is a bit odd, but a |
480 | * request with the opposite scan direction will start a fresh scan |
481 | * in the proper direction. The latter is required behavior for cursors, |
482 | * while the former case is generally undefined behavior in Postgres |
483 | * so we don't care too much. |
484 | * ---------------- |
485 | */ |
486 | static void |
487 | heapgettup(HeapScanDesc scan, |
488 | ScanDirection dir, |
489 | int nkeys, |
490 | ScanKey key) |
491 | { |
492 | HeapTuple tuple = &(scan->rs_ctup); |
493 | Snapshot snapshot = scan->rs_base.rs_snapshot; |
494 | bool backward = ScanDirectionIsBackward(dir); |
495 | BlockNumber page; |
496 | bool finished; |
497 | Page dp; |
498 | int lines; |
499 | OffsetNumber lineoff; |
500 | int linesleft; |
501 | ItemId lpp; |
502 | |
503 | /* |
504 | * calculate next starting lineoff, given scan direction |
505 | */ |
506 | if (ScanDirectionIsForward(dir)) |
507 | { |
508 | if (!scan->rs_inited) |
509 | { |
510 | /* |
511 | * return null immediately if relation is empty |
512 | */ |
513 | if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0) |
514 | { |
515 | Assert(!BufferIsValid(scan->rs_cbuf)); |
516 | tuple->t_data = NULL; |
517 | return; |
518 | } |
519 | if (scan->rs_base.rs_parallel != NULL) |
520 | { |
521 | ParallelBlockTableScanDesc pbscan = |
522 | (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
523 | |
524 | table_block_parallelscan_startblock_init(scan->rs_base.rs_rd, |
525 | pbscan); |
526 | |
527 | page = table_block_parallelscan_nextpage(scan->rs_base.rs_rd, |
528 | pbscan); |
529 | |
530 | /* Other processes might have already finished the scan. */ |
531 | if (page == InvalidBlockNumber) |
532 | { |
533 | Assert(!BufferIsValid(scan->rs_cbuf)); |
534 | tuple->t_data = NULL; |
535 | return; |
536 | } |
537 | } |
538 | else |
539 | page = scan->rs_startblock; /* first page */ |
540 | heapgetpage((TableScanDesc) scan, page); |
541 | lineoff = FirstOffsetNumber; /* first offnum */ |
542 | scan->rs_inited = true; |
543 | } |
544 | else |
545 | { |
546 | /* continue from previously returned page/tuple */ |
547 | page = scan->rs_cblock; /* current page */ |
548 | lineoff = /* next offnum */ |
549 | OffsetNumberNext(ItemPointerGetOffsetNumber(&(tuple->t_self))); |
550 | } |
551 | |
552 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); |
553 | |
554 | dp = BufferGetPage(scan->rs_cbuf); |
555 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
556 | lines = PageGetMaxOffsetNumber(dp); |
557 | /* page and lineoff now reference the physically next tid */ |
558 | |
559 | linesleft = lines - lineoff + 1; |
560 | } |
561 | else if (backward) |
562 | { |
563 | /* backward parallel scan not supported */ |
564 | Assert(scan->rs_base.rs_parallel == NULL); |
565 | |
566 | if (!scan->rs_inited) |
567 | { |
568 | /* |
569 | * return null immediately if relation is empty |
570 | */ |
571 | if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0) |
572 | { |
573 | Assert(!BufferIsValid(scan->rs_cbuf)); |
574 | tuple->t_data = NULL; |
575 | return; |
576 | } |
577 | |
578 | /* |
579 | * Disable reporting to syncscan logic in a backwards scan; it's |
580 | * not very likely anyone else is doing the same thing at the same |
581 | * time, and much more likely that we'll just bollix things for |
582 | * forward scanners. |
583 | */ |
584 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
585 | /* start from last page of the scan */ |
586 | if (scan->rs_startblock > 0) |
587 | page = scan->rs_startblock - 1; |
588 | else |
589 | page = scan->rs_nblocks - 1; |
590 | heapgetpage((TableScanDesc) scan, page); |
591 | } |
592 | else |
593 | { |
594 | /* continue from previously returned page/tuple */ |
595 | page = scan->rs_cblock; /* current page */ |
596 | } |
597 | |
598 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); |
599 | |
600 | dp = BufferGetPage(scan->rs_cbuf); |
601 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
602 | lines = PageGetMaxOffsetNumber(dp); |
603 | |
604 | if (!scan->rs_inited) |
605 | { |
606 | lineoff = lines; /* final offnum */ |
607 | scan->rs_inited = true; |
608 | } |
609 | else |
610 | { |
611 | lineoff = /* previous offnum */ |
612 | OffsetNumberPrev(ItemPointerGetOffsetNumber(&(tuple->t_self))); |
613 | } |
614 | /* page and lineoff now reference the physically previous tid */ |
615 | |
616 | linesleft = lineoff; |
617 | } |
618 | else |
619 | { |
620 | /* |
621 | * ``no movement'' scan direction: refetch prior tuple |
622 | */ |
623 | if (!scan->rs_inited) |
624 | { |
625 | Assert(!BufferIsValid(scan->rs_cbuf)); |
626 | tuple->t_data = NULL; |
627 | return; |
628 | } |
629 | |
630 | page = ItemPointerGetBlockNumber(&(tuple->t_self)); |
631 | if (page != scan->rs_cblock) |
632 | heapgetpage((TableScanDesc) scan, page); |
633 | |
634 | /* Since the tuple was previously fetched, needn't lock page here */ |
635 | dp = BufferGetPage(scan->rs_cbuf); |
636 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
637 | lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self)); |
638 | lpp = PageGetItemId(dp, lineoff); |
639 | Assert(ItemIdIsNormal(lpp)); |
640 | |
641 | tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
642 | tuple->t_len = ItemIdGetLength(lpp); |
643 | |
644 | return; |
645 | } |
646 | |
647 | /* |
648 | * advance the scan until we find a qualifying tuple or run out of stuff |
649 | * to scan |
650 | */ |
651 | lpp = PageGetItemId(dp, lineoff); |
652 | for (;;) |
653 | { |
654 | while (linesleft > 0) |
655 | { |
656 | if (ItemIdIsNormal(lpp)) |
657 | { |
658 | bool valid; |
659 | |
660 | tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
661 | tuple->t_len = ItemIdGetLength(lpp); |
662 | ItemPointerSet(&(tuple->t_self), page, lineoff); |
663 | |
664 | /* |
665 | * if current tuple qualifies, return it. |
666 | */ |
667 | valid = HeapTupleSatisfiesVisibility(tuple, |
668 | snapshot, |
669 | scan->rs_cbuf); |
670 | |
671 | CheckForSerializableConflictOut(valid, scan->rs_base.rs_rd, |
672 | tuple, scan->rs_cbuf, |
673 | snapshot); |
674 | |
675 | if (valid && key != NULL) |
676 | HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd), |
677 | nkeys, key, valid); |
678 | |
679 | if (valid) |
680 | { |
681 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
682 | return; |
683 | } |
684 | } |
685 | |
686 | /* |
687 | * otherwise move to the next item on the page |
688 | */ |
689 | --linesleft; |
690 | if (backward) |
691 | { |
692 | --lpp; /* move back in this page's ItemId array */ |
693 | --lineoff; |
694 | } |
695 | else |
696 | { |
697 | ++lpp; /* move forward in this page's ItemId array */ |
698 | ++lineoff; |
699 | } |
700 | } |
701 | |
702 | /* |
703 | * if we get here, it means we've exhausted the items on this page and |
704 | * it's time to move to the next. |
705 | */ |
706 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
707 | |
708 | /* |
709 | * advance to next/prior page and detect end of scan |
710 | */ |
711 | if (backward) |
712 | { |
713 | finished = (page == scan->rs_startblock) || |
714 | (scan->rs_numblocks != InvalidBlockNumber ? --scan->rs_numblocks == 0 : false); |
715 | if (page == 0) |
716 | page = scan->rs_nblocks; |
717 | page--; |
718 | } |
719 | else if (scan->rs_base.rs_parallel != NULL) |
720 | { |
721 | ParallelBlockTableScanDesc pbscan = |
722 | (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
723 | |
724 | page = table_block_parallelscan_nextpage(scan->rs_base.rs_rd, |
725 | pbscan); |
726 | finished = (page == InvalidBlockNumber); |
727 | } |
728 | else |
729 | { |
730 | page++; |
731 | if (page >= scan->rs_nblocks) |
732 | page = 0; |
733 | finished = (page == scan->rs_startblock) || |
734 | (scan->rs_numblocks != InvalidBlockNumber ? --scan->rs_numblocks == 0 : false); |
735 | |
736 | /* |
737 | * Report our new scan position for synchronization purposes. We |
738 | * don't do that when moving backwards, however. That would just |
739 | * mess up any other forward-moving scanners. |
740 | * |
741 | * Note: we do this before checking for end of scan so that the |
742 | * final state of the position hint is back at the start of the |
743 | * rel. That's not strictly necessary, but otherwise when you run |
744 | * the same query multiple times the starting position would shift |
745 | * a little bit backwards on every invocation, which is confusing. |
746 | * We don't guarantee any specific ordering in general, though. |
747 | */ |
748 | if (scan->rs_base.rs_flags & SO_ALLOW_SYNC) |
749 | ss_report_location(scan->rs_base.rs_rd, page); |
750 | } |
751 | |
752 | /* |
753 | * return NULL if we've exhausted all the pages |
754 | */ |
755 | if (finished) |
756 | { |
757 | if (BufferIsValid(scan->rs_cbuf)) |
758 | ReleaseBuffer(scan->rs_cbuf); |
759 | scan->rs_cbuf = InvalidBuffer; |
760 | scan->rs_cblock = InvalidBlockNumber; |
761 | tuple->t_data = NULL; |
762 | scan->rs_inited = false; |
763 | return; |
764 | } |
765 | |
766 | heapgetpage((TableScanDesc) scan, page); |
767 | |
768 | LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); |
769 | |
770 | dp = BufferGetPage(scan->rs_cbuf); |
771 | TestForOldSnapshot(snapshot, scan->rs_base.rs_rd, dp); |
772 | lines = PageGetMaxOffsetNumber((Page) dp); |
773 | linesleft = lines; |
774 | if (backward) |
775 | { |
776 | lineoff = lines; |
777 | lpp = PageGetItemId(dp, lines); |
778 | } |
779 | else |
780 | { |
781 | lineoff = FirstOffsetNumber; |
782 | lpp = PageGetItemId(dp, FirstOffsetNumber); |
783 | } |
784 | } |
785 | } |
786 | |
787 | /* ---------------- |
788 | * heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode |
789 | * |
790 | * Same API as heapgettup, but used in page-at-a-time mode |
791 | * |
792 | * The internal logic is much the same as heapgettup's too, but there are some |
793 | * differences: we do not take the buffer content lock (that only needs to |
794 | * happen inside heapgetpage), and we iterate through just the tuples listed |
795 | * in rs_vistuples[] rather than all tuples on the page. Notice that |
796 | * lineindex is 0-based, where the corresponding loop variable lineoff in |
797 | * heapgettup is 1-based. |
798 | * ---------------- |
799 | */ |
800 | static void |
801 | heapgettup_pagemode(HeapScanDesc scan, |
802 | ScanDirection dir, |
803 | int nkeys, |
804 | ScanKey key) |
805 | { |
806 | HeapTuple tuple = &(scan->rs_ctup); |
807 | bool backward = ScanDirectionIsBackward(dir); |
808 | BlockNumber page; |
809 | bool finished; |
810 | Page dp; |
811 | int lines; |
812 | int lineindex; |
813 | OffsetNumber lineoff; |
814 | int linesleft; |
815 | ItemId lpp; |
816 | |
817 | /* |
818 | * calculate next starting lineindex, given scan direction |
819 | */ |
820 | if (ScanDirectionIsForward(dir)) |
821 | { |
822 | if (!scan->rs_inited) |
823 | { |
824 | /* |
825 | * return null immediately if relation is empty |
826 | */ |
827 | if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0) |
828 | { |
829 | Assert(!BufferIsValid(scan->rs_cbuf)); |
830 | tuple->t_data = NULL; |
831 | return; |
832 | } |
833 | if (scan->rs_base.rs_parallel != NULL) |
834 | { |
835 | ParallelBlockTableScanDesc pbscan = |
836 | (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
837 | |
838 | table_block_parallelscan_startblock_init(scan->rs_base.rs_rd, |
839 | pbscan); |
840 | |
841 | page = table_block_parallelscan_nextpage(scan->rs_base.rs_rd, |
842 | pbscan); |
843 | |
844 | /* Other processes might have already finished the scan. */ |
845 | if (page == InvalidBlockNumber) |
846 | { |
847 | Assert(!BufferIsValid(scan->rs_cbuf)); |
848 | tuple->t_data = NULL; |
849 | return; |
850 | } |
851 | } |
852 | else |
853 | page = scan->rs_startblock; /* first page */ |
854 | heapgetpage((TableScanDesc) scan, page); |
855 | lineindex = 0; |
856 | scan->rs_inited = true; |
857 | } |
858 | else |
859 | { |
860 | /* continue from previously returned page/tuple */ |
861 | page = scan->rs_cblock; /* current page */ |
862 | lineindex = scan->rs_cindex + 1; |
863 | } |
864 | |
865 | dp = BufferGetPage(scan->rs_cbuf); |
866 | TestForOldSnapshot(scan->rs_base.rs_snapshot, scan->rs_base.rs_rd, dp); |
867 | lines = scan->rs_ntuples; |
868 | /* page and lineindex now reference the next visible tid */ |
869 | |
870 | linesleft = lines - lineindex; |
871 | } |
872 | else if (backward) |
873 | { |
874 | /* backward parallel scan not supported */ |
875 | Assert(scan->rs_base.rs_parallel == NULL); |
876 | |
877 | if (!scan->rs_inited) |
878 | { |
879 | /* |
880 | * return null immediately if relation is empty |
881 | */ |
882 | if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0) |
883 | { |
884 | Assert(!BufferIsValid(scan->rs_cbuf)); |
885 | tuple->t_data = NULL; |
886 | return; |
887 | } |
888 | |
889 | /* |
890 | * Disable reporting to syncscan logic in a backwards scan; it's |
891 | * not very likely anyone else is doing the same thing at the same |
892 | * time, and much more likely that we'll just bollix things for |
893 | * forward scanners. |
894 | */ |
895 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
896 | /* start from last page of the scan */ |
897 | if (scan->rs_startblock > 0) |
898 | page = scan->rs_startblock - 1; |
899 | else |
900 | page = scan->rs_nblocks - 1; |
901 | heapgetpage((TableScanDesc) scan, page); |
902 | } |
903 | else |
904 | { |
905 | /* continue from previously returned page/tuple */ |
906 | page = scan->rs_cblock; /* current page */ |
907 | } |
908 | |
909 | dp = BufferGetPage(scan->rs_cbuf); |
910 | TestForOldSnapshot(scan->rs_base.rs_snapshot, scan->rs_base.rs_rd, dp); |
911 | lines = scan->rs_ntuples; |
912 | |
913 | if (!scan->rs_inited) |
914 | { |
915 | lineindex = lines - 1; |
916 | scan->rs_inited = true; |
917 | } |
918 | else |
919 | { |
920 | lineindex = scan->rs_cindex - 1; |
921 | } |
922 | /* page and lineindex now reference the previous visible tid */ |
923 | |
924 | linesleft = lineindex + 1; |
925 | } |
926 | else |
927 | { |
928 | /* |
929 | * ``no movement'' scan direction: refetch prior tuple |
930 | */ |
931 | if (!scan->rs_inited) |
932 | { |
933 | Assert(!BufferIsValid(scan->rs_cbuf)); |
934 | tuple->t_data = NULL; |
935 | return; |
936 | } |
937 | |
938 | page = ItemPointerGetBlockNumber(&(tuple->t_self)); |
939 | if (page != scan->rs_cblock) |
940 | heapgetpage((TableScanDesc) scan, page); |
941 | |
942 | /* Since the tuple was previously fetched, needn't lock page here */ |
943 | dp = BufferGetPage(scan->rs_cbuf); |
944 | TestForOldSnapshot(scan->rs_base.rs_snapshot, scan->rs_base.rs_rd, dp); |
945 | lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self)); |
946 | lpp = PageGetItemId(dp, lineoff); |
947 | Assert(ItemIdIsNormal(lpp)); |
948 | |
949 | tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
950 | tuple->t_len = ItemIdGetLength(lpp); |
951 | |
952 | /* check that rs_cindex is in sync */ |
953 | Assert(scan->rs_cindex < scan->rs_ntuples); |
954 | Assert(lineoff == scan->rs_vistuples[scan->rs_cindex]); |
955 | |
956 | return; |
957 | } |
958 | |
959 | /* |
960 | * advance the scan until we find a qualifying tuple or run out of stuff |
961 | * to scan |
962 | */ |
963 | for (;;) |
964 | { |
965 | while (linesleft > 0) |
966 | { |
967 | lineoff = scan->rs_vistuples[lineindex]; |
968 | lpp = PageGetItemId(dp, lineoff); |
969 | Assert(ItemIdIsNormal(lpp)); |
970 | |
971 | tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); |
972 | tuple->t_len = ItemIdGetLength(lpp); |
973 | ItemPointerSet(&(tuple->t_self), page, lineoff); |
974 | |
975 | /* |
976 | * if current tuple qualifies, return it. |
977 | */ |
978 | if (key != NULL) |
979 | { |
980 | bool valid; |
981 | |
982 | HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd), |
983 | nkeys, key, valid); |
984 | if (valid) |
985 | { |
986 | scan->rs_cindex = lineindex; |
987 | return; |
988 | } |
989 | } |
990 | else |
991 | { |
992 | scan->rs_cindex = lineindex; |
993 | return; |
994 | } |
995 | |
996 | /* |
997 | * otherwise move to the next item on the page |
998 | */ |
999 | --linesleft; |
1000 | if (backward) |
1001 | --lineindex; |
1002 | else |
1003 | ++lineindex; |
1004 | } |
1005 | |
1006 | /* |
1007 | * if we get here, it means we've exhausted the items on this page and |
1008 | * it's time to move to the next. |
1009 | */ |
1010 | if (backward) |
1011 | { |
1012 | finished = (page == scan->rs_startblock) || |
1013 | (scan->rs_numblocks != InvalidBlockNumber ? --scan->rs_numblocks == 0 : false); |
1014 | if (page == 0) |
1015 | page = scan->rs_nblocks; |
1016 | page--; |
1017 | } |
1018 | else if (scan->rs_base.rs_parallel != NULL) |
1019 | { |
1020 | ParallelBlockTableScanDesc pbscan = |
1021 | (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel; |
1022 | |
1023 | page = table_block_parallelscan_nextpage(scan->rs_base.rs_rd, |
1024 | pbscan); |
1025 | finished = (page == InvalidBlockNumber); |
1026 | } |
1027 | else |
1028 | { |
1029 | page++; |
1030 | if (page >= scan->rs_nblocks) |
1031 | page = 0; |
1032 | finished = (page == scan->rs_startblock) || |
1033 | (scan->rs_numblocks != InvalidBlockNumber ? --scan->rs_numblocks == 0 : false); |
1034 | |
1035 | /* |
1036 | * Report our new scan position for synchronization purposes. We |
1037 | * don't do that when moving backwards, however. That would just |
1038 | * mess up any other forward-moving scanners. |
1039 | * |
1040 | * Note: we do this before checking for end of scan so that the |
1041 | * final state of the position hint is back at the start of the |
1042 | * rel. That's not strictly necessary, but otherwise when you run |
1043 | * the same query multiple times the starting position would shift |
1044 | * a little bit backwards on every invocation, which is confusing. |
1045 | * We don't guarantee any specific ordering in general, though. |
1046 | */ |
1047 | if (scan->rs_base.rs_flags & SO_ALLOW_SYNC) |
1048 | ss_report_location(scan->rs_base.rs_rd, page); |
1049 | } |
1050 | |
1051 | /* |
1052 | * return NULL if we've exhausted all the pages |
1053 | */ |
1054 | if (finished) |
1055 | { |
1056 | if (BufferIsValid(scan->rs_cbuf)) |
1057 | ReleaseBuffer(scan->rs_cbuf); |
1058 | scan->rs_cbuf = InvalidBuffer; |
1059 | scan->rs_cblock = InvalidBlockNumber; |
1060 | tuple->t_data = NULL; |
1061 | scan->rs_inited = false; |
1062 | return; |
1063 | } |
1064 | |
1065 | heapgetpage((TableScanDesc) scan, page); |
1066 | |
1067 | dp = BufferGetPage(scan->rs_cbuf); |
1068 | TestForOldSnapshot(scan->rs_base.rs_snapshot, scan->rs_base.rs_rd, dp); |
1069 | lines = scan->rs_ntuples; |
1070 | linesleft = lines; |
1071 | if (backward) |
1072 | lineindex = lines - 1; |
1073 | else |
1074 | lineindex = 0; |
1075 | } |
1076 | } |
1077 | |
1078 | |
1079 | #if defined(DISABLE_COMPLEX_MACRO) |
1080 | /* |
1081 | * This is formatted so oddly so that the correspondence to the macro |
1082 | * definition in access/htup_details.h is maintained. |
1083 | */ |
1084 | Datum |
1085 | fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, |
1086 | bool *isnull) |
1087 | { |
1088 | return ( |
1089 | (attnum) > 0 ? |
1090 | ( |
1091 | (*(isnull) = false), |
1092 | HeapTupleNoNulls(tup) ? |
1093 | ( |
1094 | TupleDescAttr((tupleDesc), (attnum) - 1)->attcacheoff >= 0 ? |
1095 | ( |
1096 | fetchatt(TupleDescAttr((tupleDesc), (attnum) - 1), |
1097 | (char *) (tup)->t_data + (tup)->t_data->t_hoff + |
1098 | TupleDescAttr((tupleDesc), (attnum) - 1)->attcacheoff) |
1099 | ) |
1100 | : |
1101 | nocachegetattr((tup), (attnum), (tupleDesc)) |
1102 | ) |
1103 | : |
1104 | ( |
1105 | att_isnull((attnum) - 1, (tup)->t_data->t_bits) ? |
1106 | ( |
1107 | (*(isnull) = true), |
1108 | (Datum) NULL |
1109 | ) |
1110 | : |
1111 | ( |
1112 | nocachegetattr((tup), (attnum), (tupleDesc)) |
1113 | ) |
1114 | ) |
1115 | ) |
1116 | : |
1117 | ( |
1118 | (Datum) NULL |
1119 | ) |
1120 | ); |
1121 | } |
1122 | #endif /* defined(DISABLE_COMPLEX_MACRO) */ |
1123 | |
1124 | |
1125 | /* ---------------------------------------------------------------- |
1126 | * heap access method interface |
1127 | * ---------------------------------------------------------------- |
1128 | */ |
1129 | |
1130 | |
1131 | TableScanDesc |
1132 | heap_beginscan(Relation relation, Snapshot snapshot, |
1133 | int nkeys, ScanKey key, |
1134 | ParallelTableScanDesc parallel_scan, |
1135 | uint32 flags) |
1136 | { |
1137 | HeapScanDesc scan; |
1138 | |
1139 | /* |
1140 | * increment relation ref count while scanning relation |
1141 | * |
1142 | * This is just to make really sure the relcache entry won't go away while |
1143 | * the scan has a pointer to it. Caller should be holding the rel open |
1144 | * anyway, so this is redundant in all normal scenarios... |
1145 | */ |
1146 | RelationIncrementReferenceCount(relation); |
1147 | |
1148 | /* |
1149 | * allocate and initialize scan descriptor |
1150 | */ |
1151 | scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData)); |
1152 | |
1153 | scan->rs_base.rs_rd = relation; |
1154 | scan->rs_base.rs_snapshot = snapshot; |
1155 | scan->rs_base.rs_nkeys = nkeys; |
1156 | scan->rs_base.rs_flags = flags; |
1157 | scan->rs_base.rs_parallel = parallel_scan; |
1158 | scan->rs_strategy = NULL; /* set in initscan */ |
1159 | |
1160 | /* |
1161 | * Disable page-at-a-time mode if it's not a MVCC-safe snapshot. |
1162 | */ |
1163 | if (!(snapshot && IsMVCCSnapshot(snapshot))) |
1164 | scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE; |
1165 | |
1166 | /* |
1167 | * For seqscan and sample scans in a serializable transaction, acquire a |
1168 | * predicate lock on the entire relation. This is required not only to |
1169 | * lock all the matching tuples, but also to conflict with new insertions |
1170 | * into the table. In an indexscan, we take page locks on the index pages |
1171 | * covering the range specified in the scan qual, but in a heap scan there |
1172 | * is nothing more fine-grained to lock. A bitmap scan is a different |
1173 | * story, there we have already scanned the index and locked the index |
1174 | * pages covering the predicate. But in that case we still have to lock |
1175 | * any matching heap tuples. For sample scan we could optimize the locking |
1176 | * to be at least page-level granularity, but we'd need to add per-tuple |
1177 | * locking for that. |
1178 | */ |
1179 | if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN)) |
1180 | { |
1181 | /* |
1182 | * Ensure a missing snapshot is noticed reliably, even if the |
1183 | * isolation mode means predicate locking isn't performed (and |
1184 | * therefore the snapshot isn't used here). |
1185 | */ |
1186 | Assert(snapshot); |
1187 | PredicateLockRelation(relation, snapshot); |
1188 | } |
1189 | |
1190 | /* we only need to set this up once */ |
1191 | scan->rs_ctup.t_tableOid = RelationGetRelid(relation); |
1192 | |
1193 | /* |
1194 | * we do this here instead of in initscan() because heap_rescan also calls |
1195 | * initscan() and we don't want to allocate memory again |
1196 | */ |
1197 | if (nkeys > 0) |
1198 | scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys); |
1199 | else |
1200 | scan->rs_base.rs_key = NULL; |
1201 | |
1202 | initscan(scan, key, false); |
1203 | |
1204 | return (TableScanDesc) scan; |
1205 | } |
1206 | |
1207 | void |
1208 | heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params, |
1209 | bool allow_strat, bool allow_sync, bool allow_pagemode) |
1210 | { |
1211 | HeapScanDesc scan = (HeapScanDesc) sscan; |
1212 | |
1213 | if (set_params) |
1214 | { |
1215 | if (allow_strat) |
1216 | scan->rs_base.rs_flags |= SO_ALLOW_STRAT; |
1217 | else |
1218 | scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT; |
1219 | |
1220 | if (allow_sync) |
1221 | scan->rs_base.rs_flags |= SO_ALLOW_SYNC; |
1222 | else |
1223 | scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC; |
1224 | |
1225 | if (allow_pagemode && scan->rs_base.rs_snapshot && |
1226 | IsMVCCSnapshot(scan->rs_base.rs_snapshot)) |
1227 | scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE; |
1228 | else |
1229 | scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE; |
1230 | } |
1231 | |
1232 | /* |
1233 | * unpin scan buffers |
1234 | */ |
1235 | if (BufferIsValid(scan->rs_cbuf)) |
1236 | ReleaseBuffer(scan->rs_cbuf); |
1237 | |
1238 | /* |
1239 | * reinitialize scan descriptor |
1240 | */ |
1241 | initscan(scan, key, true); |
1242 | } |
1243 | |
1244 | void |
1245 | heap_endscan(TableScanDesc sscan) |
1246 | { |
1247 | HeapScanDesc scan = (HeapScanDesc) sscan; |
1248 | |
1249 | /* Note: no locking manipulations needed */ |
1250 | |
1251 | /* |
1252 | * unpin scan buffers |
1253 | */ |
1254 | if (BufferIsValid(scan->rs_cbuf)) |
1255 | ReleaseBuffer(scan->rs_cbuf); |
1256 | |
1257 | /* |
1258 | * decrement relation reference count and free scan descriptor storage |
1259 | */ |
1260 | RelationDecrementReferenceCount(scan->rs_base.rs_rd); |
1261 | |
1262 | if (scan->rs_base.rs_key) |
1263 | pfree(scan->rs_base.rs_key); |
1264 | |
1265 | if (scan->rs_strategy != NULL) |
1266 | FreeAccessStrategy(scan->rs_strategy); |
1267 | |
1268 | if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT) |
1269 | UnregisterSnapshot(scan->rs_base.rs_snapshot); |
1270 | |
1271 | pfree(scan); |
1272 | } |
1273 | |
1274 | #ifdef HEAPDEBUGALL |
1275 | #define HEAPDEBUG_1 \ |
1276 | elog(DEBUG2, "heap_getnext([%s,nkeys=%d],dir=%d) called", \ |
1277 | RelationGetRelationName(scan->rs_rd), scan->rs_nkeys, (int) direction) |
1278 | #define HEAPDEBUG_2 \ |
1279 | elog(DEBUG2, "heap_getnext returning EOS") |
1280 | #define HEAPDEBUG_3 \ |
1281 | elog(DEBUG2, "heap_getnext returning tuple") |
1282 | #else |
1283 | #define HEAPDEBUG_1 |
1284 | #define HEAPDEBUG_2 |
1285 | #define HEAPDEBUG_3 |
1286 | #endif /* !defined(HEAPDEBUGALL) */ |
1287 | |
1288 | |
1289 | HeapTuple |
1290 | heap_getnext(TableScanDesc sscan, ScanDirection direction) |
1291 | { |
1292 | HeapScanDesc scan = (HeapScanDesc) sscan; |
1293 | |
1294 | /* |
1295 | * This is still widely used directly, without going through table AM, so |
1296 | * add a safety check. It's possible we should, at a later point, |
1297 | * downgrade this to an assert. The reason for checking the AM routine, |
1298 | * rather than the AM oid, is that this allows to write regression tests |
1299 | * that create another AM reusing the heap handler. |
1300 | */ |
1301 | if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine())) |
1302 | ereport(ERROR, |
1303 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1304 | errmsg_internal("only heap AM is supported" ))); |
1305 | |
1306 | /* Note: no locking manipulations needed */ |
1307 | |
1308 | HEAPDEBUG_1; /* heap_getnext( info ) */ |
1309 | |
1310 | if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE) |
1311 | heapgettup_pagemode(scan, direction, |
1312 | scan->rs_base.rs_nkeys, scan->rs_base.rs_key); |
1313 | else |
1314 | heapgettup(scan, direction, |
1315 | scan->rs_base.rs_nkeys, scan->rs_base.rs_key); |
1316 | |
1317 | if (scan->rs_ctup.t_data == NULL) |
1318 | { |
1319 | HEAPDEBUG_2; /* heap_getnext returning EOS */ |
1320 | return NULL; |
1321 | } |
1322 | |
1323 | /* |
1324 | * if we get here it means we have a new current scan tuple, so point to |
1325 | * the proper return buffer and return the tuple. |
1326 | */ |
1327 | HEAPDEBUG_3; /* heap_getnext returning tuple */ |
1328 | |
1329 | pgstat_count_heap_getnext(scan->rs_base.rs_rd); |
1330 | |
1331 | return &scan->rs_ctup; |
1332 | } |
1333 | |
1334 | #ifdef HEAPAMSLOTDEBUGALL |
1335 | #define HEAPAMSLOTDEBUG_1 \ |
1336 | elog(DEBUG2, "heapam_getnextslot([%s,nkeys=%d],dir=%d) called", \ |
1337 | RelationGetRelationName(scan->rs_base.rs_rd), scan->rs_base.rs_nkeys, (int) direction) |
1338 | #define HEAPAMSLOTDEBUG_2 \ |
1339 | elog(DEBUG2, "heapam_getnextslot returning EOS") |
1340 | #define HEAPAMSLOTDEBUG_3 \ |
1341 | elog(DEBUG2, "heapam_getnextslot returning tuple") |
1342 | #else |
1343 | #define HEAPAMSLOTDEBUG_1 |
1344 | #define HEAPAMSLOTDEBUG_2 |
1345 | #define HEAPAMSLOTDEBUG_3 |
1346 | #endif |
1347 | |
1348 | bool |
1349 | heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot) |
1350 | { |
1351 | HeapScanDesc scan = (HeapScanDesc) sscan; |
1352 | |
1353 | /* Note: no locking manipulations needed */ |
1354 | |
1355 | HEAPAMSLOTDEBUG_1; /* heap_getnextslot( info ) */ |
1356 | |
1357 | if (sscan->rs_flags & SO_ALLOW_PAGEMODE) |
1358 | heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key); |
1359 | else |
1360 | heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key); |
1361 | |
1362 | if (scan->rs_ctup.t_data == NULL) |
1363 | { |
1364 | HEAPAMSLOTDEBUG_2; /* heap_getnextslot returning EOS */ |
1365 | ExecClearTuple(slot); |
1366 | return false; |
1367 | } |
1368 | |
1369 | /* |
1370 | * if we get here it means we have a new current scan tuple, so point to |
1371 | * the proper return buffer and return the tuple. |
1372 | */ |
1373 | HEAPAMSLOTDEBUG_3; /* heap_getnextslot returning tuple */ |
1374 | |
1375 | pgstat_count_heap_getnext(scan->rs_base.rs_rd); |
1376 | |
1377 | ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, |
1378 | scan->rs_cbuf); |
1379 | return true; |
1380 | } |
1381 | |
1382 | /* |
1383 | * heap_fetch - retrieve tuple with given tid |
1384 | * |
1385 | * On entry, tuple->t_self is the TID to fetch. We pin the buffer holding |
1386 | * the tuple, fill in the remaining fields of *tuple, and check the tuple |
1387 | * against the specified snapshot. |
1388 | * |
1389 | * If successful (tuple found and passes snapshot time qual), then *userbuf |
1390 | * is set to the buffer holding the tuple and true is returned. The caller |
1391 | * must unpin the buffer when done with the tuple. |
1392 | * |
1393 | * If the tuple is not found (ie, item number references a deleted slot), |
1394 | * then tuple->t_data is set to NULL and false is returned. |
1395 | * |
1396 | * If the tuple is found but fails the time qual check, then false is returned |
1397 | * but tuple->t_data is left pointing to the tuple. |
1398 | * |
1399 | * heap_fetch does not follow HOT chains: only the exact TID requested will |
1400 | * be fetched. |
1401 | * |
1402 | * It is somewhat inconsistent that we ereport() on invalid block number but |
1403 | * return false on invalid item number. There are a couple of reasons though. |
1404 | * One is that the caller can relatively easily check the block number for |
1405 | * validity, but cannot check the item number without reading the page |
1406 | * himself. Another is that when we are following a t_ctid link, we can be |
1407 | * reasonably confident that the page number is valid (since VACUUM shouldn't |
1408 | * truncate off the destination page without having killed the referencing |
1409 | * tuple first), but the item number might well not be good. |
1410 | */ |
1411 | bool |
1412 | heap_fetch(Relation relation, |
1413 | Snapshot snapshot, |
1414 | HeapTuple tuple, |
1415 | Buffer *userbuf) |
1416 | { |
1417 | ItemPointer tid = &(tuple->t_self); |
1418 | ItemId lp; |
1419 | Buffer buffer; |
1420 | Page page; |
1421 | OffsetNumber offnum; |
1422 | bool valid; |
1423 | |
1424 | /* |
1425 | * Fetch and pin the appropriate page of the relation. |
1426 | */ |
1427 | buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); |
1428 | |
1429 | /* |
1430 | * Need share lock on buffer to examine tuple commit status. |
1431 | */ |
1432 | LockBuffer(buffer, BUFFER_LOCK_SHARE); |
1433 | page = BufferGetPage(buffer); |
1434 | TestForOldSnapshot(snapshot, relation, page); |
1435 | |
1436 | /* |
1437 | * We'd better check for out-of-range offnum in case of VACUUM since the |
1438 | * TID was obtained. |
1439 | */ |
1440 | offnum = ItemPointerGetOffsetNumber(tid); |
1441 | if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) |
1442 | { |
1443 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
1444 | ReleaseBuffer(buffer); |
1445 | *userbuf = InvalidBuffer; |
1446 | tuple->t_data = NULL; |
1447 | return false; |
1448 | } |
1449 | |
1450 | /* |
1451 | * get the item line pointer corresponding to the requested tid |
1452 | */ |
1453 | lp = PageGetItemId(page, offnum); |
1454 | |
1455 | /* |
1456 | * Must check for deleted tuple. |
1457 | */ |
1458 | if (!ItemIdIsNormal(lp)) |
1459 | { |
1460 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
1461 | ReleaseBuffer(buffer); |
1462 | *userbuf = InvalidBuffer; |
1463 | tuple->t_data = NULL; |
1464 | return false; |
1465 | } |
1466 | |
1467 | /* |
1468 | * fill in *tuple fields |
1469 | */ |
1470 | tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp); |
1471 | tuple->t_len = ItemIdGetLength(lp); |
1472 | tuple->t_tableOid = RelationGetRelid(relation); |
1473 | |
1474 | /* |
1475 | * check tuple visibility, then release lock |
1476 | */ |
1477 | valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer); |
1478 | |
1479 | if (valid) |
1480 | PredicateLockTuple(relation, tuple, snapshot); |
1481 | |
1482 | CheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot); |
1483 | |
1484 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
1485 | |
1486 | if (valid) |
1487 | { |
1488 | /* |
1489 | * All checks passed, so return the tuple as valid. Caller is now |
1490 | * responsible for releasing the buffer. |
1491 | */ |
1492 | *userbuf = buffer; |
1493 | |
1494 | return true; |
1495 | } |
1496 | |
1497 | /* Tuple failed time qual */ |
1498 | ReleaseBuffer(buffer); |
1499 | *userbuf = InvalidBuffer; |
1500 | |
1501 | return false; |
1502 | } |
1503 | |
1504 | /* |
1505 | * heap_hot_search_buffer - search HOT chain for tuple satisfying snapshot |
1506 | * |
1507 | * On entry, *tid is the TID of a tuple (either a simple tuple, or the root |
1508 | * of a HOT chain), and buffer is the buffer holding this tuple. We search |
1509 | * for the first chain member satisfying the given snapshot. If one is |
1510 | * found, we update *tid to reference that tuple's offset number, and |
1511 | * return true. If no match, return false without modifying *tid. |
1512 | * |
1513 | * heapTuple is a caller-supplied buffer. When a match is found, we return |
1514 | * the tuple here, in addition to updating *tid. If no match is found, the |
1515 | * contents of this buffer on return are undefined. |
1516 | * |
1517 | * If all_dead is not NULL, we check non-visible tuples to see if they are |
1518 | * globally dead; *all_dead is set true if all members of the HOT chain |
1519 | * are vacuumable, false if not. |
1520 | * |
1521 | * Unlike heap_fetch, the caller must already have pin and (at least) share |
1522 | * lock on the buffer; it is still pinned/locked at exit. Also unlike |
1523 | * heap_fetch, we do not report any pgstats count; caller may do so if wanted. |
1524 | */ |
1525 | bool |
1526 | heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer, |
1527 | Snapshot snapshot, HeapTuple heapTuple, |
1528 | bool *all_dead, bool first_call) |
1529 | { |
1530 | Page dp = (Page) BufferGetPage(buffer); |
1531 | TransactionId prev_xmax = InvalidTransactionId; |
1532 | BlockNumber blkno; |
1533 | OffsetNumber offnum; |
1534 | bool at_chain_start; |
1535 | bool valid; |
1536 | bool skip; |
1537 | |
1538 | /* If this is not the first call, previous call returned a (live!) tuple */ |
1539 | if (all_dead) |
1540 | *all_dead = first_call; |
1541 | |
1542 | blkno = ItemPointerGetBlockNumber(tid); |
1543 | offnum = ItemPointerGetOffsetNumber(tid); |
1544 | at_chain_start = first_call; |
1545 | skip = !first_call; |
1546 | |
1547 | Assert(TransactionIdIsValid(RecentGlobalXmin)); |
1548 | Assert(BufferGetBlockNumber(buffer) == blkno); |
1549 | |
1550 | /* Scan through possible multiple members of HOT-chain */ |
1551 | for (;;) |
1552 | { |
1553 | ItemId lp; |
1554 | |
1555 | /* check for bogus TID */ |
1556 | if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp)) |
1557 | break; |
1558 | |
1559 | lp = PageGetItemId(dp, offnum); |
1560 | |
1561 | /* check for unused, dead, or redirected items */ |
1562 | if (!ItemIdIsNormal(lp)) |
1563 | { |
1564 | /* We should only see a redirect at start of chain */ |
1565 | if (ItemIdIsRedirected(lp) && at_chain_start) |
1566 | { |
1567 | /* Follow the redirect */ |
1568 | offnum = ItemIdGetRedirect(lp); |
1569 | at_chain_start = false; |
1570 | continue; |
1571 | } |
1572 | /* else must be end of chain */ |
1573 | break; |
1574 | } |
1575 | |
1576 | /* |
1577 | * Update heapTuple to point to the element of the HOT chain we're |
1578 | * currently investigating. Having t_self set correctly is important |
1579 | * because the SSI checks and the *Satisfies routine for historical |
1580 | * MVCC snapshots need the correct tid to decide about the visibility. |
1581 | */ |
1582 | heapTuple->t_data = (HeapTupleHeader) PageGetItem(dp, lp); |
1583 | heapTuple->t_len = ItemIdGetLength(lp); |
1584 | heapTuple->t_tableOid = RelationGetRelid(relation); |
1585 | ItemPointerSet(&heapTuple->t_self, blkno, offnum); |
1586 | |
1587 | /* |
1588 | * Shouldn't see a HEAP_ONLY tuple at chain start. |
1589 | */ |
1590 | if (at_chain_start && HeapTupleIsHeapOnly(heapTuple)) |
1591 | break; |
1592 | |
1593 | /* |
1594 | * The xmin should match the previous xmax value, else chain is |
1595 | * broken. |
1596 | */ |
1597 | if (TransactionIdIsValid(prev_xmax) && |
1598 | !TransactionIdEquals(prev_xmax, |
1599 | HeapTupleHeaderGetXmin(heapTuple->t_data))) |
1600 | break; |
1601 | |
1602 | /* |
1603 | * When first_call is true (and thus, skip is initially false) we'll |
1604 | * return the first tuple we find. But on later passes, heapTuple |
1605 | * will initially be pointing to the tuple we returned last time. |
1606 | * Returning it again would be incorrect (and would loop forever), so |
1607 | * we skip it and return the next match we find. |
1608 | */ |
1609 | if (!skip) |
1610 | { |
1611 | /* If it's visible per the snapshot, we must return it */ |
1612 | valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer); |
1613 | CheckForSerializableConflictOut(valid, relation, heapTuple, |
1614 | buffer, snapshot); |
1615 | |
1616 | if (valid) |
1617 | { |
1618 | ItemPointerSetOffsetNumber(tid, offnum); |
1619 | PredicateLockTuple(relation, heapTuple, snapshot); |
1620 | if (all_dead) |
1621 | *all_dead = false; |
1622 | return true; |
1623 | } |
1624 | } |
1625 | skip = false; |
1626 | |
1627 | /* |
1628 | * If we can't see it, maybe no one else can either. At caller |
1629 | * request, check whether all chain members are dead to all |
1630 | * transactions. |
1631 | * |
1632 | * Note: if you change the criterion here for what is "dead", fix the |
1633 | * planner's get_actual_variable_range() function to match. |
1634 | */ |
1635 | if (all_dead && *all_dead && |
1636 | !HeapTupleIsSurelyDead(heapTuple, RecentGlobalXmin)) |
1637 | *all_dead = false; |
1638 | |
1639 | /* |
1640 | * Check to see if HOT chain continues past this tuple; if so fetch |
1641 | * the next offnum and loop around. |
1642 | */ |
1643 | if (HeapTupleIsHotUpdated(heapTuple)) |
1644 | { |
1645 | Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) == |
1646 | blkno); |
1647 | offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid); |
1648 | at_chain_start = false; |
1649 | prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data); |
1650 | } |
1651 | else |
1652 | break; /* end of chain */ |
1653 | } |
1654 | |
1655 | return false; |
1656 | } |
1657 | |
1658 | /* |
1659 | * heap_get_latest_tid - get the latest tid of a specified tuple |
1660 | * |
1661 | * Actually, this gets the latest version that is visible according to the |
1662 | * scan's snapshot. Create a scan using SnapshotDirty to get the very latest, |
1663 | * possibly uncommitted version. |
1664 | * |
1665 | * *tid is both an input and an output parameter: it is updated to |
1666 | * show the latest version of the row. Note that it will not be changed |
1667 | * if no version of the row passes the snapshot test. |
1668 | */ |
1669 | void |
1670 | heap_get_latest_tid(TableScanDesc sscan, |
1671 | ItemPointer tid) |
1672 | { |
1673 | Relation relation = sscan->rs_rd; |
1674 | Snapshot snapshot = sscan->rs_snapshot; |
1675 | ItemPointerData ctid; |
1676 | TransactionId priorXmax; |
1677 | |
1678 | /* |
1679 | * table_get_latest_tid verified that the passed in tid is valid. Assume |
1680 | * that t_ctid links are valid however - there shouldn't be invalid ones |
1681 | * in the table. |
1682 | */ |
1683 | Assert(ItemPointerIsValid(tid)); |
1684 | |
1685 | /* |
1686 | * Loop to chase down t_ctid links. At top of loop, ctid is the tuple we |
1687 | * need to examine, and *tid is the TID we will return if ctid turns out |
1688 | * to be bogus. |
1689 | * |
1690 | * Note that we will loop until we reach the end of the t_ctid chain. |
1691 | * Depending on the snapshot passed, there might be at most one visible |
1692 | * version of the row, but we don't try to optimize for that. |
1693 | */ |
1694 | ctid = *tid; |
1695 | priorXmax = InvalidTransactionId; /* cannot check first XMIN */ |
1696 | for (;;) |
1697 | { |
1698 | Buffer buffer; |
1699 | Page page; |
1700 | OffsetNumber offnum; |
1701 | ItemId lp; |
1702 | HeapTupleData tp; |
1703 | bool valid; |
1704 | |
1705 | /* |
1706 | * Read, pin, and lock the page. |
1707 | */ |
1708 | buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid)); |
1709 | LockBuffer(buffer, BUFFER_LOCK_SHARE); |
1710 | page = BufferGetPage(buffer); |
1711 | TestForOldSnapshot(snapshot, relation, page); |
1712 | |
1713 | /* |
1714 | * Check for bogus item number. This is not treated as an error |
1715 | * condition because it can happen while following a t_ctid link. We |
1716 | * just assume that the prior tid is OK and return it unchanged. |
1717 | */ |
1718 | offnum = ItemPointerGetOffsetNumber(&ctid); |
1719 | if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) |
1720 | { |
1721 | UnlockReleaseBuffer(buffer); |
1722 | break; |
1723 | } |
1724 | lp = PageGetItemId(page, offnum); |
1725 | if (!ItemIdIsNormal(lp)) |
1726 | { |
1727 | UnlockReleaseBuffer(buffer); |
1728 | break; |
1729 | } |
1730 | |
1731 | /* OK to access the tuple */ |
1732 | tp.t_self = ctid; |
1733 | tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); |
1734 | tp.t_len = ItemIdGetLength(lp); |
1735 | tp.t_tableOid = RelationGetRelid(relation); |
1736 | |
1737 | /* |
1738 | * After following a t_ctid link, we might arrive at an unrelated |
1739 | * tuple. Check for XMIN match. |
1740 | */ |
1741 | if (TransactionIdIsValid(priorXmax) && |
1742 | !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data))) |
1743 | { |
1744 | UnlockReleaseBuffer(buffer); |
1745 | break; |
1746 | } |
1747 | |
1748 | /* |
1749 | * Check tuple visibility; if visible, set it as the new result |
1750 | * candidate. |
1751 | */ |
1752 | valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer); |
1753 | CheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot); |
1754 | if (valid) |
1755 | *tid = ctid; |
1756 | |
1757 | /* |
1758 | * If there's a valid t_ctid link, follow it, else we're done. |
1759 | */ |
1760 | if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) || |
1761 | HeapTupleHeaderIsOnlyLocked(tp.t_data) || |
1762 | HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) || |
1763 | ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid)) |
1764 | { |
1765 | UnlockReleaseBuffer(buffer); |
1766 | break; |
1767 | } |
1768 | |
1769 | ctid = tp.t_data->t_ctid; |
1770 | priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data); |
1771 | UnlockReleaseBuffer(buffer); |
1772 | } /* end of loop */ |
1773 | } |
1774 | |
1775 | |
1776 | /* |
1777 | * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends |
1778 | * |
1779 | * This is called after we have waited for the XMAX transaction to terminate. |
1780 | * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will |
1781 | * be set on exit. If the transaction committed, we set the XMAX_COMMITTED |
1782 | * hint bit if possible --- but beware that that may not yet be possible, |
1783 | * if the transaction committed asynchronously. |
1784 | * |
1785 | * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID |
1786 | * even if it commits. |
1787 | * |
1788 | * Hence callers should look only at XMAX_INVALID. |
1789 | * |
1790 | * Note this is not allowed for tuples whose xmax is a multixact. |
1791 | */ |
1792 | static void |
1793 | UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid) |
1794 | { |
1795 | Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid)); |
1796 | Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI)); |
1797 | |
1798 | if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID))) |
1799 | { |
1800 | if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) && |
1801 | TransactionIdDidCommit(xid)) |
1802 | HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED, |
1803 | xid); |
1804 | else |
1805 | HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID, |
1806 | InvalidTransactionId); |
1807 | } |
1808 | } |
1809 | |
1810 | |
1811 | /* |
1812 | * GetBulkInsertState - prepare status object for a bulk insert |
1813 | */ |
1814 | BulkInsertState |
1815 | GetBulkInsertState(void) |
1816 | { |
1817 | BulkInsertState bistate; |
1818 | |
1819 | bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData)); |
1820 | bistate->strategy = GetAccessStrategy(BAS_BULKWRITE); |
1821 | bistate->current_buf = InvalidBuffer; |
1822 | return bistate; |
1823 | } |
1824 | |
1825 | /* |
1826 | * FreeBulkInsertState - clean up after finishing a bulk insert |
1827 | */ |
1828 | void |
1829 | FreeBulkInsertState(BulkInsertState bistate) |
1830 | { |
1831 | if (bistate->current_buf != InvalidBuffer) |
1832 | ReleaseBuffer(bistate->current_buf); |
1833 | FreeAccessStrategy(bistate->strategy); |
1834 | pfree(bistate); |
1835 | } |
1836 | |
1837 | /* |
1838 | * ReleaseBulkInsertStatePin - release a buffer currently held in bistate |
1839 | */ |
1840 | void |
1841 | ReleaseBulkInsertStatePin(BulkInsertState bistate) |
1842 | { |
1843 | if (bistate->current_buf != InvalidBuffer) |
1844 | ReleaseBuffer(bistate->current_buf); |
1845 | bistate->current_buf = InvalidBuffer; |
1846 | } |
1847 | |
1848 | |
1849 | /* |
1850 | * heap_insert - insert tuple into a heap |
1851 | * |
1852 | * The new tuple is stamped with current transaction ID and the specified |
1853 | * command ID. |
1854 | * |
1855 | * See table_tuple_insert for comments about most of the input flags, except |
1856 | * that this routine directly takes a tuple rather than a slot. |
1857 | * |
1858 | * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_ |
1859 | * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to |
1860 | * implement table_tuple_insert_speculative(). |
1861 | * |
1862 | * On return the header fields of *tup are updated to match the stored tuple; |
1863 | * in particular tup->t_self receives the actual TID where the tuple was |
1864 | * stored. But note that any toasting of fields within the tuple data is NOT |
1865 | * reflected into *tup. |
1866 | */ |
1867 | void |
1868 | heap_insert(Relation relation, HeapTuple tup, CommandId cid, |
1869 | int options, BulkInsertState bistate) |
1870 | { |
1871 | TransactionId xid = GetCurrentTransactionId(); |
1872 | HeapTuple heaptup; |
1873 | Buffer buffer; |
1874 | Buffer vmbuffer = InvalidBuffer; |
1875 | bool all_visible_cleared = false; |
1876 | |
1877 | /* |
1878 | * Fill in tuple header fields and toast the tuple if necessary. |
1879 | * |
1880 | * Note: below this point, heaptup is the data we actually intend to store |
1881 | * into the relation; tup is the caller's original untoasted data. |
1882 | */ |
1883 | heaptup = heap_prepare_insert(relation, tup, xid, cid, options); |
1884 | |
1885 | /* |
1886 | * Find buffer to insert this tuple into. If the page is all visible, |
1887 | * this will also pin the requisite visibility map page. |
1888 | */ |
1889 | buffer = RelationGetBufferForTuple(relation, heaptup->t_len, |
1890 | InvalidBuffer, options, bistate, |
1891 | &vmbuffer, NULL); |
1892 | |
1893 | /* |
1894 | * We're about to do the actual insert -- but check for conflict first, to |
1895 | * avoid possibly having to roll back work we've just done. |
1896 | * |
1897 | * This is safe without a recheck as long as there is no possibility of |
1898 | * another process scanning the page between this check and the insert |
1899 | * being visible to the scan (i.e., an exclusive buffer content lock is |
1900 | * continuously held from this point until the tuple insert is visible). |
1901 | * |
1902 | * For a heap insert, we only need to check for table-level SSI locks. Our |
1903 | * new tuple can't possibly conflict with existing tuple locks, and heap |
1904 | * page locks are only consolidated versions of tuple locks; they do not |
1905 | * lock "gaps" as index page locks do. So we don't need to specify a |
1906 | * buffer when making the call, which makes for a faster check. |
1907 | */ |
1908 | CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); |
1909 | |
1910 | /* NO EREPORT(ERROR) from here till changes are logged */ |
1911 | START_CRIT_SECTION(); |
1912 | |
1913 | RelationPutHeapTuple(relation, buffer, heaptup, |
1914 | (options & HEAP_INSERT_SPECULATIVE) != 0); |
1915 | |
1916 | if (PageIsAllVisible(BufferGetPage(buffer))) |
1917 | { |
1918 | all_visible_cleared = true; |
1919 | PageClearAllVisible(BufferGetPage(buffer)); |
1920 | visibilitymap_clear(relation, |
1921 | ItemPointerGetBlockNumber(&(heaptup->t_self)), |
1922 | vmbuffer, VISIBILITYMAP_VALID_BITS); |
1923 | } |
1924 | |
1925 | /* |
1926 | * XXX Should we set PageSetPrunable on this page ? |
1927 | * |
1928 | * The inserting transaction may eventually abort thus making this tuple |
1929 | * DEAD and hence available for pruning. Though we don't want to optimize |
1930 | * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the |
1931 | * aborted tuple will never be pruned until next vacuum is triggered. |
1932 | * |
1933 | * If you do add PageSetPrunable here, add it in heap_xlog_insert too. |
1934 | */ |
1935 | |
1936 | MarkBufferDirty(buffer); |
1937 | |
1938 | /* XLOG stuff */ |
1939 | if (!(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation)) |
1940 | { |
1941 | xl_heap_insert xlrec; |
1942 | xl_heap_header xlhdr; |
1943 | XLogRecPtr recptr; |
1944 | Page page = BufferGetPage(buffer); |
1945 | uint8 info = XLOG_HEAP_INSERT; |
1946 | int bufflags = 0; |
1947 | |
1948 | /* |
1949 | * If this is a catalog, we need to transmit combocids to properly |
1950 | * decode, so log that as well. |
1951 | */ |
1952 | if (RelationIsAccessibleInLogicalDecoding(relation)) |
1953 | log_heap_new_cid(relation, heaptup); |
1954 | |
1955 | /* |
1956 | * If this is the single and first tuple on page, we can reinit the |
1957 | * page instead of restoring the whole thing. Set flag, and hide |
1958 | * buffer references from XLogInsert. |
1959 | */ |
1960 | if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber && |
1961 | PageGetMaxOffsetNumber(page) == FirstOffsetNumber) |
1962 | { |
1963 | info |= XLOG_HEAP_INIT_PAGE; |
1964 | bufflags |= REGBUF_WILL_INIT; |
1965 | } |
1966 | |
1967 | xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self); |
1968 | xlrec.flags = 0; |
1969 | if (all_visible_cleared) |
1970 | xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED; |
1971 | if (options & HEAP_INSERT_SPECULATIVE) |
1972 | xlrec.flags |= XLH_INSERT_IS_SPECULATIVE; |
1973 | Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer)); |
1974 | |
1975 | /* |
1976 | * For logical decoding, we need the tuple even if we're doing a full |
1977 | * page write, so make sure it's included even if we take a full-page |
1978 | * image. (XXX We could alternatively store a pointer into the FPW). |
1979 | */ |
1980 | if (RelationIsLogicallyLogged(relation) && |
1981 | !(options & HEAP_INSERT_NO_LOGICAL)) |
1982 | { |
1983 | xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE; |
1984 | bufflags |= REGBUF_KEEP_DATA; |
1985 | } |
1986 | |
1987 | XLogBeginInsert(); |
1988 | XLogRegisterData((char *) &xlrec, SizeOfHeapInsert); |
1989 | |
1990 | xlhdr.t_infomask2 = heaptup->t_data->t_infomask2; |
1991 | xlhdr.t_infomask = heaptup->t_data->t_infomask; |
1992 | xlhdr.t_hoff = heaptup->t_data->t_hoff; |
1993 | |
1994 | /* |
1995 | * note we mark xlhdr as belonging to buffer; if XLogInsert decides to |
1996 | * write the whole page to the xlog, we don't need to store |
1997 | * xl_heap_header in the xlog. |
1998 | */ |
1999 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags); |
2000 | XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader); |
2001 | /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */ |
2002 | XLogRegisterBufData(0, |
2003 | (char *) heaptup->t_data + SizeofHeapTupleHeader, |
2004 | heaptup->t_len - SizeofHeapTupleHeader); |
2005 | |
2006 | /* filtering by origin on a row level is much more efficient */ |
2007 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
2008 | |
2009 | recptr = XLogInsert(RM_HEAP_ID, info); |
2010 | |
2011 | PageSetLSN(page, recptr); |
2012 | } |
2013 | |
2014 | END_CRIT_SECTION(); |
2015 | |
2016 | UnlockReleaseBuffer(buffer); |
2017 | if (vmbuffer != InvalidBuffer) |
2018 | ReleaseBuffer(vmbuffer); |
2019 | |
2020 | /* |
2021 | * If tuple is cachable, mark it for invalidation from the caches in case |
2022 | * we abort. Note it is OK to do this after releasing the buffer, because |
2023 | * the heaptup data structure is all in local memory, not in the shared |
2024 | * buffer. |
2025 | */ |
2026 | CacheInvalidateHeapTuple(relation, heaptup, NULL); |
2027 | |
2028 | /* Note: speculative insertions are counted too, even if aborted later */ |
2029 | pgstat_count_heap_insert(relation, 1); |
2030 | |
2031 | /* |
2032 | * If heaptup is a private copy, release it. Don't forget to copy t_self |
2033 | * back to the caller's image, too. |
2034 | */ |
2035 | if (heaptup != tup) |
2036 | { |
2037 | tup->t_self = heaptup->t_self; |
2038 | heap_freetuple(heaptup); |
2039 | } |
2040 | } |
2041 | |
2042 | /* |
2043 | * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the |
2044 | * tuple header fields and toasts the tuple if necessary. Returns a toasted |
2045 | * version of the tuple if it was toasted, or the original tuple if not. Note |
2046 | * that in any case, the header fields are also set in the original tuple. |
2047 | */ |
2048 | static HeapTuple |
2049 | heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid, |
2050 | CommandId cid, int options) |
2051 | { |
2052 | /* |
2053 | * Parallel operations are required to be strictly read-only in a parallel |
2054 | * worker. Parallel inserts are not safe even in the leader in the |
2055 | * general case, because group locking means that heavyweight locks for |
2056 | * relation extension or GIN page locks will not conflict between members |
2057 | * of a lock group, but we don't prohibit that case here because there are |
2058 | * useful special cases that we can safely allow, such as CREATE TABLE AS. |
2059 | */ |
2060 | if (IsParallelWorker()) |
2061 | ereport(ERROR, |
2062 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
2063 | errmsg("cannot insert tuples in a parallel worker" ))); |
2064 | |
2065 | tup->t_data->t_infomask &= ~(HEAP_XACT_MASK); |
2066 | tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK); |
2067 | tup->t_data->t_infomask |= HEAP_XMAX_INVALID; |
2068 | HeapTupleHeaderSetXmin(tup->t_data, xid); |
2069 | if (options & HEAP_INSERT_FROZEN) |
2070 | HeapTupleHeaderSetXminFrozen(tup->t_data); |
2071 | |
2072 | HeapTupleHeaderSetCmin(tup->t_data, cid); |
2073 | HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */ |
2074 | tup->t_tableOid = RelationGetRelid(relation); |
2075 | |
2076 | /* |
2077 | * If the new tuple is too big for storage or contains already toasted |
2078 | * out-of-line attributes from some other relation, invoke the toaster. |
2079 | */ |
2080 | if (relation->rd_rel->relkind != RELKIND_RELATION && |
2081 | relation->rd_rel->relkind != RELKIND_MATVIEW) |
2082 | { |
2083 | /* toast table entries should never be recursively toasted */ |
2084 | Assert(!HeapTupleHasExternal(tup)); |
2085 | return tup; |
2086 | } |
2087 | else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD) |
2088 | return toast_insert_or_update(relation, tup, NULL, options); |
2089 | else |
2090 | return tup; |
2091 | } |
2092 | |
2093 | /* |
2094 | * heap_multi_insert - insert multiple tuple into a heap |
2095 | * |
2096 | * This is like heap_insert(), but inserts multiple tuples in one operation. |
2097 | * That's faster than calling heap_insert() in a loop, because when multiple |
2098 | * tuples can be inserted on a single page, we can write just a single WAL |
2099 | * record covering all of them, and only need to lock/unlock the page once. |
2100 | * |
2101 | * Note: this leaks memory into the current memory context. You can create a |
2102 | * temporary context before calling this, if that's a problem. |
2103 | */ |
2104 | void |
2105 | heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples, |
2106 | CommandId cid, int options, BulkInsertState bistate) |
2107 | { |
2108 | TransactionId xid = GetCurrentTransactionId(); |
2109 | HeapTuple *heaptuples; |
2110 | int i; |
2111 | int ndone; |
2112 | PGAlignedBlock scratch; |
2113 | Page page; |
2114 | bool needwal; |
2115 | Size saveFreeSpace; |
2116 | bool need_tuple_data = RelationIsLogicallyLogged(relation); |
2117 | bool need_cids = RelationIsAccessibleInLogicalDecoding(relation); |
2118 | |
2119 | /* currently not needed (thus unsupported) for heap_multi_insert() */ |
2120 | AssertArg(!(options & HEAP_INSERT_NO_LOGICAL)); |
2121 | |
2122 | needwal = !(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation); |
2123 | saveFreeSpace = RelationGetTargetPageFreeSpace(relation, |
2124 | HEAP_DEFAULT_FILLFACTOR); |
2125 | |
2126 | /* Toast and set header data in all the slots */ |
2127 | heaptuples = palloc(ntuples * sizeof(HeapTuple)); |
2128 | for (i = 0; i < ntuples; i++) |
2129 | { |
2130 | HeapTuple tuple; |
2131 | |
2132 | tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL); |
2133 | slots[i]->tts_tableOid = RelationGetRelid(relation); |
2134 | tuple->t_tableOid = slots[i]->tts_tableOid; |
2135 | heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid, |
2136 | options); |
2137 | } |
2138 | |
2139 | /* |
2140 | * We're about to do the actual inserts -- but check for conflict first, |
2141 | * to minimize the possibility of having to roll back work we've just |
2142 | * done. |
2143 | * |
2144 | * A check here does not definitively prevent a serialization anomaly; |
2145 | * that check MUST be done at least past the point of acquiring an |
2146 | * exclusive buffer content lock on every buffer that will be affected, |
2147 | * and MAY be done after all inserts are reflected in the buffers and |
2148 | * those locks are released; otherwise there race condition. Since |
2149 | * multiple buffers can be locked and unlocked in the loop below, and it |
2150 | * would not be feasible to identify and lock all of those buffers before |
2151 | * the loop, we must do a final check at the end. |
2152 | * |
2153 | * The check here could be omitted with no loss of correctness; it is |
2154 | * present strictly as an optimization. |
2155 | * |
2156 | * For heap inserts, we only need to check for table-level SSI locks. Our |
2157 | * new tuples can't possibly conflict with existing tuple locks, and heap |
2158 | * page locks are only consolidated versions of tuple locks; they do not |
2159 | * lock "gaps" as index page locks do. So we don't need to specify a |
2160 | * buffer when making the call, which makes for a faster check. |
2161 | */ |
2162 | CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); |
2163 | |
2164 | ndone = 0; |
2165 | while (ndone < ntuples) |
2166 | { |
2167 | Buffer buffer; |
2168 | Buffer vmbuffer = InvalidBuffer; |
2169 | bool all_visible_cleared = false; |
2170 | int nthispage; |
2171 | |
2172 | CHECK_FOR_INTERRUPTS(); |
2173 | |
2174 | /* |
2175 | * Find buffer where at least the next tuple will fit. If the page is |
2176 | * all-visible, this will also pin the requisite visibility map page. |
2177 | */ |
2178 | buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len, |
2179 | InvalidBuffer, options, bistate, |
2180 | &vmbuffer, NULL); |
2181 | page = BufferGetPage(buffer); |
2182 | |
2183 | /* NO EREPORT(ERROR) from here till changes are logged */ |
2184 | START_CRIT_SECTION(); |
2185 | |
2186 | /* |
2187 | * RelationGetBufferForTuple has ensured that the first tuple fits. |
2188 | * Put that on the page, and then as many other tuples as fit. |
2189 | */ |
2190 | RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false); |
2191 | for (nthispage = 1; ndone + nthispage < ntuples; nthispage++) |
2192 | { |
2193 | HeapTuple heaptup = heaptuples[ndone + nthispage]; |
2194 | |
2195 | if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace) |
2196 | break; |
2197 | |
2198 | RelationPutHeapTuple(relation, buffer, heaptup, false); |
2199 | |
2200 | /* |
2201 | * We don't use heap_multi_insert for catalog tuples yet, but |
2202 | * better be prepared... |
2203 | */ |
2204 | if (needwal && need_cids) |
2205 | log_heap_new_cid(relation, heaptup); |
2206 | } |
2207 | |
2208 | if (PageIsAllVisible(page)) |
2209 | { |
2210 | all_visible_cleared = true; |
2211 | PageClearAllVisible(page); |
2212 | visibilitymap_clear(relation, |
2213 | BufferGetBlockNumber(buffer), |
2214 | vmbuffer, VISIBILITYMAP_VALID_BITS); |
2215 | } |
2216 | |
2217 | /* |
2218 | * XXX Should we set PageSetPrunable on this page ? See heap_insert() |
2219 | */ |
2220 | |
2221 | MarkBufferDirty(buffer); |
2222 | |
2223 | /* XLOG stuff */ |
2224 | if (needwal) |
2225 | { |
2226 | XLogRecPtr recptr; |
2227 | xl_heap_multi_insert *xlrec; |
2228 | uint8 info = XLOG_HEAP2_MULTI_INSERT; |
2229 | char *tupledata; |
2230 | int totaldatalen; |
2231 | char *scratchptr = scratch.data; |
2232 | bool init; |
2233 | int bufflags = 0; |
2234 | |
2235 | /* |
2236 | * If the page was previously empty, we can reinit the page |
2237 | * instead of restoring the whole thing. |
2238 | */ |
2239 | init = (ItemPointerGetOffsetNumber(&(heaptuples[ndone]->t_self)) == FirstOffsetNumber && |
2240 | PageGetMaxOffsetNumber(page) == FirstOffsetNumber + nthispage - 1); |
2241 | |
2242 | /* allocate xl_heap_multi_insert struct from the scratch area */ |
2243 | xlrec = (xl_heap_multi_insert *) scratchptr; |
2244 | scratchptr += SizeOfHeapMultiInsert; |
2245 | |
2246 | /* |
2247 | * Allocate offsets array. Unless we're reinitializing the page, |
2248 | * in that case the tuples are stored in order starting at |
2249 | * FirstOffsetNumber and we don't need to store the offsets |
2250 | * explicitly. |
2251 | */ |
2252 | if (!init) |
2253 | scratchptr += nthispage * sizeof(OffsetNumber); |
2254 | |
2255 | /* the rest of the scratch space is used for tuple data */ |
2256 | tupledata = scratchptr; |
2257 | |
2258 | xlrec->flags = all_visible_cleared ? XLH_INSERT_ALL_VISIBLE_CLEARED : 0; |
2259 | xlrec->ntuples = nthispage; |
2260 | |
2261 | /* |
2262 | * Write out an xl_multi_insert_tuple and the tuple data itself |
2263 | * for each tuple. |
2264 | */ |
2265 | for (i = 0; i < nthispage; i++) |
2266 | { |
2267 | HeapTuple heaptup = heaptuples[ndone + i]; |
2268 | xl_multi_insert_tuple *tuphdr; |
2269 | int datalen; |
2270 | |
2271 | if (!init) |
2272 | xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self); |
2273 | /* xl_multi_insert_tuple needs two-byte alignment. */ |
2274 | tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr); |
2275 | scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple; |
2276 | |
2277 | tuphdr->t_infomask2 = heaptup->t_data->t_infomask2; |
2278 | tuphdr->t_infomask = heaptup->t_data->t_infomask; |
2279 | tuphdr->t_hoff = heaptup->t_data->t_hoff; |
2280 | |
2281 | /* write bitmap [+ padding] [+ oid] + data */ |
2282 | datalen = heaptup->t_len - SizeofHeapTupleHeader; |
2283 | memcpy(scratchptr, |
2284 | (char *) heaptup->t_data + SizeofHeapTupleHeader, |
2285 | datalen); |
2286 | tuphdr->datalen = datalen; |
2287 | scratchptr += datalen; |
2288 | } |
2289 | totaldatalen = scratchptr - tupledata; |
2290 | Assert((scratchptr - scratch.data) < BLCKSZ); |
2291 | |
2292 | if (need_tuple_data) |
2293 | xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE; |
2294 | |
2295 | /* |
2296 | * Signal that this is the last xl_heap_multi_insert record |
2297 | * emitted by this call to heap_multi_insert(). Needed for logical |
2298 | * decoding so it knows when to cleanup temporary data. |
2299 | */ |
2300 | if (ndone + nthispage == ntuples) |
2301 | xlrec->flags |= XLH_INSERT_LAST_IN_MULTI; |
2302 | |
2303 | if (init) |
2304 | { |
2305 | info |= XLOG_HEAP_INIT_PAGE; |
2306 | bufflags |= REGBUF_WILL_INIT; |
2307 | } |
2308 | |
2309 | /* |
2310 | * If we're doing logical decoding, include the new tuple data |
2311 | * even if we take a full-page image of the page. |
2312 | */ |
2313 | if (need_tuple_data) |
2314 | bufflags |= REGBUF_KEEP_DATA; |
2315 | |
2316 | XLogBeginInsert(); |
2317 | XLogRegisterData((char *) xlrec, tupledata - scratch.data); |
2318 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags); |
2319 | |
2320 | XLogRegisterBufData(0, tupledata, totaldatalen); |
2321 | |
2322 | /* filtering by origin on a row level is much more efficient */ |
2323 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
2324 | |
2325 | recptr = XLogInsert(RM_HEAP2_ID, info); |
2326 | |
2327 | PageSetLSN(page, recptr); |
2328 | } |
2329 | |
2330 | END_CRIT_SECTION(); |
2331 | |
2332 | UnlockReleaseBuffer(buffer); |
2333 | if (vmbuffer != InvalidBuffer) |
2334 | ReleaseBuffer(vmbuffer); |
2335 | |
2336 | ndone += nthispage; |
2337 | } |
2338 | |
2339 | /* |
2340 | * We're done with the actual inserts. Check for conflicts again, to |
2341 | * ensure that all rw-conflicts in to these inserts are detected. Without |
2342 | * this final check, a sequential scan of the heap may have locked the |
2343 | * table after the "before" check, missing one opportunity to detect the |
2344 | * conflict, and then scanned the table before the new tuples were there, |
2345 | * missing the other chance to detect the conflict. |
2346 | * |
2347 | * For heap inserts, we only need to check for table-level SSI locks. Our |
2348 | * new tuples can't possibly conflict with existing tuple locks, and heap |
2349 | * page locks are only consolidated versions of tuple locks; they do not |
2350 | * lock "gaps" as index page locks do. So we don't need to specify a |
2351 | * buffer when making the call. |
2352 | */ |
2353 | CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); |
2354 | |
2355 | /* |
2356 | * If tuples are cachable, mark them for invalidation from the caches in |
2357 | * case we abort. Note it is OK to do this after releasing the buffer, |
2358 | * because the heaptuples data structure is all in local memory, not in |
2359 | * the shared buffer. |
2360 | */ |
2361 | if (IsCatalogRelation(relation)) |
2362 | { |
2363 | for (i = 0; i < ntuples; i++) |
2364 | CacheInvalidateHeapTuple(relation, heaptuples[i], NULL); |
2365 | } |
2366 | |
2367 | /* copy t_self fields back to the caller's slots */ |
2368 | for (i = 0; i < ntuples; i++) |
2369 | slots[i]->tts_tid = heaptuples[i]->t_self; |
2370 | |
2371 | pgstat_count_heap_insert(relation, ntuples); |
2372 | } |
2373 | |
2374 | /* |
2375 | * simple_heap_insert - insert a tuple |
2376 | * |
2377 | * Currently, this routine differs from heap_insert only in supplying |
2378 | * a default command ID and not allowing access to the speedup options. |
2379 | * |
2380 | * This should be used rather than using heap_insert directly in most places |
2381 | * where we are modifying system catalogs. |
2382 | */ |
2383 | void |
2384 | simple_heap_insert(Relation relation, HeapTuple tup) |
2385 | { |
2386 | heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL); |
2387 | } |
2388 | |
2389 | /* |
2390 | * Given infomask/infomask2, compute the bits that must be saved in the |
2391 | * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock, |
2392 | * xl_heap_lock_updated WAL records. |
2393 | * |
2394 | * See fix_infomask_from_infobits. |
2395 | */ |
2396 | static uint8 |
2397 | compute_infobits(uint16 infomask, uint16 infomask2) |
2398 | { |
2399 | return |
2400 | ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) | |
2401 | ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) | |
2402 | ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) | |
2403 | /* note we ignore HEAP_XMAX_SHR_LOCK here */ |
2404 | ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) | |
2405 | ((infomask2 & HEAP_KEYS_UPDATED) != 0 ? |
2406 | XLHL_KEYS_UPDATED : 0); |
2407 | } |
2408 | |
2409 | /* |
2410 | * Given two versions of the same t_infomask for a tuple, compare them and |
2411 | * return whether the relevant status for a tuple Xmax has changed. This is |
2412 | * used after a buffer lock has been released and reacquired: we want to ensure |
2413 | * that the tuple state continues to be the same it was when we previously |
2414 | * examined it. |
2415 | * |
2416 | * Note the Xmax field itself must be compared separately. |
2417 | */ |
2418 | static inline bool |
2419 | xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask) |
2420 | { |
2421 | const uint16 interesting = |
2422 | HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK; |
2423 | |
2424 | if ((new_infomask & interesting) != (old_infomask & interesting)) |
2425 | return true; |
2426 | |
2427 | return false; |
2428 | } |
2429 | |
2430 | /* |
2431 | * heap_delete - delete a tuple |
2432 | * |
2433 | * See table_tuple_delete() for an explanation of the parameters, except that |
2434 | * this routine directly takes a tuple rather than a slot. |
2435 | * |
2436 | * In the failure cases, the routine fills *tmfd with the tuple's t_ctid, |
2437 | * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last |
2438 | * only for TM_SelfModified, since we cannot obtain cmax from a combocid |
2439 | * generated by another transaction). |
2440 | */ |
2441 | TM_Result |
2442 | heap_delete(Relation relation, ItemPointer tid, |
2443 | CommandId cid, Snapshot crosscheck, bool wait, |
2444 | TM_FailureData *tmfd, bool changingPart) |
2445 | { |
2446 | TM_Result result; |
2447 | TransactionId xid = GetCurrentTransactionId(); |
2448 | ItemId lp; |
2449 | HeapTupleData tp; |
2450 | Page page; |
2451 | BlockNumber block; |
2452 | Buffer buffer; |
2453 | Buffer vmbuffer = InvalidBuffer; |
2454 | TransactionId new_xmax; |
2455 | uint16 new_infomask, |
2456 | new_infomask2; |
2457 | bool have_tuple_lock = false; |
2458 | bool iscombo; |
2459 | bool all_visible_cleared = false; |
2460 | HeapTuple old_key_tuple = NULL; /* replica identity of the tuple */ |
2461 | bool old_key_copied = false; |
2462 | |
2463 | Assert(ItemPointerIsValid(tid)); |
2464 | |
2465 | /* |
2466 | * Forbid this during a parallel operation, lest it allocate a combocid. |
2467 | * Other workers might need that combocid for visibility checks, and we |
2468 | * have no provision for broadcasting it to them. |
2469 | */ |
2470 | if (IsInParallelMode()) |
2471 | ereport(ERROR, |
2472 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
2473 | errmsg("cannot delete tuples during a parallel operation" ))); |
2474 | |
2475 | block = ItemPointerGetBlockNumber(tid); |
2476 | buffer = ReadBuffer(relation, block); |
2477 | page = BufferGetPage(buffer); |
2478 | |
2479 | /* |
2480 | * Before locking the buffer, pin the visibility map page if it appears to |
2481 | * be necessary. Since we haven't got the lock yet, someone else might be |
2482 | * in the middle of changing this, so we'll need to recheck after we have |
2483 | * the lock. |
2484 | */ |
2485 | if (PageIsAllVisible(page)) |
2486 | visibilitymap_pin(relation, block, &vmbuffer); |
2487 | |
2488 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
2489 | |
2490 | /* |
2491 | * If we didn't pin the visibility map page and the page has become all |
2492 | * visible while we were busy locking the buffer, we'll have to unlock and |
2493 | * re-lock, to avoid holding the buffer lock across an I/O. That's a bit |
2494 | * unfortunate, but hopefully shouldn't happen often. |
2495 | */ |
2496 | if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) |
2497 | { |
2498 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
2499 | visibilitymap_pin(relation, block, &vmbuffer); |
2500 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
2501 | } |
2502 | |
2503 | lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); |
2504 | Assert(ItemIdIsNormal(lp)); |
2505 | |
2506 | tp.t_tableOid = RelationGetRelid(relation); |
2507 | tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); |
2508 | tp.t_len = ItemIdGetLength(lp); |
2509 | tp.t_self = *tid; |
2510 | |
2511 | l1: |
2512 | result = HeapTupleSatisfiesUpdate(&tp, cid, buffer); |
2513 | |
2514 | if (result == TM_Invisible) |
2515 | { |
2516 | UnlockReleaseBuffer(buffer); |
2517 | ereport(ERROR, |
2518 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
2519 | errmsg("attempted to delete invisible tuple" ))); |
2520 | } |
2521 | else if (result == TM_BeingModified && wait) |
2522 | { |
2523 | TransactionId xwait; |
2524 | uint16 infomask; |
2525 | |
2526 | /* must copy state data before unlocking buffer */ |
2527 | xwait = HeapTupleHeaderGetRawXmax(tp.t_data); |
2528 | infomask = tp.t_data->t_infomask; |
2529 | |
2530 | /* |
2531 | * Sleep until concurrent transaction ends -- except when there's a |
2532 | * single locker and it's our own transaction. Note we don't care |
2533 | * which lock mode the locker has, because we need the strongest one. |
2534 | * |
2535 | * Before sleeping, we need to acquire tuple lock to establish our |
2536 | * priority for the tuple (see heap_lock_tuple). LockTuple will |
2537 | * release us when we are next-in-line for the tuple. |
2538 | * |
2539 | * If we are forced to "start over" below, we keep the tuple lock; |
2540 | * this arranges that we stay at the head of the line while rechecking |
2541 | * tuple state. |
2542 | */ |
2543 | if (infomask & HEAP_XMAX_IS_MULTI) |
2544 | { |
2545 | bool current_is_member = false; |
2546 | |
2547 | if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask, |
2548 | LockTupleExclusive, ¤t_is_member)) |
2549 | { |
2550 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
2551 | |
2552 | /* |
2553 | * Acquire the lock, if necessary (but skip it when we're |
2554 | * requesting a lock and already have one; avoids deadlock). |
2555 | */ |
2556 | if (!current_is_member) |
2557 | heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive, |
2558 | LockWaitBlock, &have_tuple_lock); |
2559 | |
2560 | /* wait for multixact */ |
2561 | MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask, |
2562 | relation, &(tp.t_self), XLTW_Delete, |
2563 | NULL); |
2564 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
2565 | |
2566 | /* |
2567 | * If xwait had just locked the tuple then some other xact |
2568 | * could update this tuple before we get to this point. Check |
2569 | * for xmax change, and start over if so. |
2570 | */ |
2571 | if (xmax_infomask_changed(tp.t_data->t_infomask, infomask) || |
2572 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data), |
2573 | xwait)) |
2574 | goto l1; |
2575 | } |
2576 | |
2577 | /* |
2578 | * You might think the multixact is necessarily done here, but not |
2579 | * so: it could have surviving members, namely our own xact or |
2580 | * other subxacts of this backend. It is legal for us to delete |
2581 | * the tuple in either case, however (the latter case is |
2582 | * essentially a situation of upgrading our former shared lock to |
2583 | * exclusive). We don't bother changing the on-disk hint bits |
2584 | * since we are about to overwrite the xmax altogether. |
2585 | */ |
2586 | } |
2587 | else if (!TransactionIdIsCurrentTransactionId(xwait)) |
2588 | { |
2589 | /* |
2590 | * Wait for regular transaction to end; but first, acquire tuple |
2591 | * lock. |
2592 | */ |
2593 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
2594 | heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive, |
2595 | LockWaitBlock, &have_tuple_lock); |
2596 | XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete); |
2597 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
2598 | |
2599 | /* |
2600 | * xwait is done, but if xwait had just locked the tuple then some |
2601 | * other xact could update this tuple before we get to this point. |
2602 | * Check for xmax change, and start over if so. |
2603 | */ |
2604 | if (xmax_infomask_changed(tp.t_data->t_infomask, infomask) || |
2605 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data), |
2606 | xwait)) |
2607 | goto l1; |
2608 | |
2609 | /* Otherwise check if it committed or aborted */ |
2610 | UpdateXmaxHintBits(tp.t_data, buffer, xwait); |
2611 | } |
2612 | |
2613 | /* |
2614 | * We may overwrite if previous xmax aborted, or if it committed but |
2615 | * only locked the tuple without updating it. |
2616 | */ |
2617 | if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) || |
2618 | HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) || |
2619 | HeapTupleHeaderIsOnlyLocked(tp.t_data)) |
2620 | result = TM_Ok; |
2621 | else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid) || |
2622 | HeapTupleHeaderIndicatesMovedPartitions(tp.t_data)) |
2623 | result = TM_Updated; |
2624 | else |
2625 | result = TM_Deleted; |
2626 | } |
2627 | |
2628 | if (crosscheck != InvalidSnapshot && result == TM_Ok) |
2629 | { |
2630 | /* Perform additional check for transaction-snapshot mode RI updates */ |
2631 | if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer)) |
2632 | result = TM_Updated; |
2633 | } |
2634 | |
2635 | if (result != TM_Ok) |
2636 | { |
2637 | Assert(result == TM_SelfModified || |
2638 | result == TM_Updated || |
2639 | result == TM_Deleted || |
2640 | result == TM_BeingModified); |
2641 | Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID)); |
2642 | Assert(result != TM_Updated || |
2643 | !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid)); |
2644 | tmfd->ctid = tp.t_data->t_ctid; |
2645 | tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data); |
2646 | if (result == TM_SelfModified) |
2647 | tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data); |
2648 | else |
2649 | tmfd->cmax = InvalidCommandId; |
2650 | UnlockReleaseBuffer(buffer); |
2651 | if (have_tuple_lock) |
2652 | UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); |
2653 | if (vmbuffer != InvalidBuffer) |
2654 | ReleaseBuffer(vmbuffer); |
2655 | return result; |
2656 | } |
2657 | |
2658 | /* |
2659 | * We're about to do the actual delete -- check for conflict first, to |
2660 | * avoid possibly having to roll back work we've just done. |
2661 | * |
2662 | * This is safe without a recheck as long as there is no possibility of |
2663 | * another process scanning the page between this check and the delete |
2664 | * being visible to the scan (i.e., an exclusive buffer content lock is |
2665 | * continuously held from this point until the tuple delete is visible). |
2666 | */ |
2667 | CheckForSerializableConflictIn(relation, &tp, buffer); |
2668 | |
2669 | /* replace cid with a combo cid if necessary */ |
2670 | HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo); |
2671 | |
2672 | /* |
2673 | * Compute replica identity tuple before entering the critical section so |
2674 | * we don't PANIC upon a memory allocation failure. |
2675 | */ |
2676 | old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied); |
2677 | |
2678 | /* |
2679 | * If this is the first possibly-multixact-able operation in the current |
2680 | * transaction, set my per-backend OldestMemberMXactId setting. We can be |
2681 | * certain that the transaction will never become a member of any older |
2682 | * MultiXactIds than that. (We have to do this even if we end up just |
2683 | * using our own TransactionId below, since some other backend could |
2684 | * incorporate our XID into a MultiXact immediately afterwards.) |
2685 | */ |
2686 | MultiXactIdSetOldestMember(); |
2687 | |
2688 | compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data), |
2689 | tp.t_data->t_infomask, tp.t_data->t_infomask2, |
2690 | xid, LockTupleExclusive, true, |
2691 | &new_xmax, &new_infomask, &new_infomask2); |
2692 | |
2693 | START_CRIT_SECTION(); |
2694 | |
2695 | /* |
2696 | * If this transaction commits, the tuple will become DEAD sooner or |
2697 | * later. Set flag that this page is a candidate for pruning once our xid |
2698 | * falls below the OldestXmin horizon. If the transaction finally aborts, |
2699 | * the subsequent page pruning will be a no-op and the hint will be |
2700 | * cleared. |
2701 | */ |
2702 | PageSetPrunable(page, xid); |
2703 | |
2704 | if (PageIsAllVisible(page)) |
2705 | { |
2706 | all_visible_cleared = true; |
2707 | PageClearAllVisible(page); |
2708 | visibilitymap_clear(relation, BufferGetBlockNumber(buffer), |
2709 | vmbuffer, VISIBILITYMAP_VALID_BITS); |
2710 | } |
2711 | |
2712 | /* store transaction information of xact deleting the tuple */ |
2713 | tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
2714 | tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
2715 | tp.t_data->t_infomask |= new_infomask; |
2716 | tp.t_data->t_infomask2 |= new_infomask2; |
2717 | HeapTupleHeaderClearHotUpdated(tp.t_data); |
2718 | HeapTupleHeaderSetXmax(tp.t_data, new_xmax); |
2719 | HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo); |
2720 | /* Make sure there is no forward chain link in t_ctid */ |
2721 | tp.t_data->t_ctid = tp.t_self; |
2722 | |
2723 | /* Signal that this is actually a move into another partition */ |
2724 | if (changingPart) |
2725 | HeapTupleHeaderSetMovedPartitions(tp.t_data); |
2726 | |
2727 | MarkBufferDirty(buffer); |
2728 | |
2729 | /* |
2730 | * XLOG stuff |
2731 | * |
2732 | * NB: heap_abort_speculative() uses the same xlog record and replay |
2733 | * routines. |
2734 | */ |
2735 | if (RelationNeedsWAL(relation)) |
2736 | { |
2737 | xl_heap_delete xlrec; |
2738 | xl_heap_header xlhdr; |
2739 | XLogRecPtr recptr; |
2740 | |
2741 | /* For logical decode we need combocids to properly decode the catalog */ |
2742 | if (RelationIsAccessibleInLogicalDecoding(relation)) |
2743 | log_heap_new_cid(relation, &tp); |
2744 | |
2745 | xlrec.flags = 0; |
2746 | if (all_visible_cleared) |
2747 | xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED; |
2748 | if (changingPart) |
2749 | xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE; |
2750 | xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask, |
2751 | tp.t_data->t_infomask2); |
2752 | xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self); |
2753 | xlrec.xmax = new_xmax; |
2754 | |
2755 | if (old_key_tuple != NULL) |
2756 | { |
2757 | if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL) |
2758 | xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE; |
2759 | else |
2760 | xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY; |
2761 | } |
2762 | |
2763 | XLogBeginInsert(); |
2764 | XLogRegisterData((char *) &xlrec, SizeOfHeapDelete); |
2765 | |
2766 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
2767 | |
2768 | /* |
2769 | * Log replica identity of the deleted tuple if there is one |
2770 | */ |
2771 | if (old_key_tuple != NULL) |
2772 | { |
2773 | xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2; |
2774 | xlhdr.t_infomask = old_key_tuple->t_data->t_infomask; |
2775 | xlhdr.t_hoff = old_key_tuple->t_data->t_hoff; |
2776 | |
2777 | XLogRegisterData((char *) &xlhdr, SizeOfHeapHeader); |
2778 | XLogRegisterData((char *) old_key_tuple->t_data |
2779 | + SizeofHeapTupleHeader, |
2780 | old_key_tuple->t_len |
2781 | - SizeofHeapTupleHeader); |
2782 | } |
2783 | |
2784 | /* filtering by origin on a row level is much more efficient */ |
2785 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
2786 | |
2787 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE); |
2788 | |
2789 | PageSetLSN(page, recptr); |
2790 | } |
2791 | |
2792 | END_CRIT_SECTION(); |
2793 | |
2794 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
2795 | |
2796 | if (vmbuffer != InvalidBuffer) |
2797 | ReleaseBuffer(vmbuffer); |
2798 | |
2799 | /* |
2800 | * If the tuple has toasted out-of-line attributes, we need to delete |
2801 | * those items too. We have to do this before releasing the buffer |
2802 | * because we need to look at the contents of the tuple, but it's OK to |
2803 | * release the content lock on the buffer first. |
2804 | */ |
2805 | if (relation->rd_rel->relkind != RELKIND_RELATION && |
2806 | relation->rd_rel->relkind != RELKIND_MATVIEW) |
2807 | { |
2808 | /* toast table entries should never be recursively toasted */ |
2809 | Assert(!HeapTupleHasExternal(&tp)); |
2810 | } |
2811 | else if (HeapTupleHasExternal(&tp)) |
2812 | toast_delete(relation, &tp, false); |
2813 | |
2814 | /* |
2815 | * Mark tuple for invalidation from system caches at next command |
2816 | * boundary. We have to do this before releasing the buffer because we |
2817 | * need to look at the contents of the tuple. |
2818 | */ |
2819 | CacheInvalidateHeapTuple(relation, &tp, NULL); |
2820 | |
2821 | /* Now we can release the buffer */ |
2822 | ReleaseBuffer(buffer); |
2823 | |
2824 | /* |
2825 | * Release the lmgr tuple lock, if we had it. |
2826 | */ |
2827 | if (have_tuple_lock) |
2828 | UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); |
2829 | |
2830 | pgstat_count_heap_delete(relation); |
2831 | |
2832 | if (old_key_tuple != NULL && old_key_copied) |
2833 | heap_freetuple(old_key_tuple); |
2834 | |
2835 | return TM_Ok; |
2836 | } |
2837 | |
2838 | /* |
2839 | * simple_heap_delete - delete a tuple |
2840 | * |
2841 | * This routine may be used to delete a tuple when concurrent updates of |
2842 | * the target tuple are not expected (for example, because we have a lock |
2843 | * on the relation associated with the tuple). Any failure is reported |
2844 | * via ereport(). |
2845 | */ |
2846 | void |
2847 | simple_heap_delete(Relation relation, ItemPointer tid) |
2848 | { |
2849 | TM_Result result; |
2850 | TM_FailureData tmfd; |
2851 | |
2852 | result = heap_delete(relation, tid, |
2853 | GetCurrentCommandId(true), InvalidSnapshot, |
2854 | true /* wait for commit */ , |
2855 | &tmfd, false /* changingPart */ ); |
2856 | switch (result) |
2857 | { |
2858 | case TM_SelfModified: |
2859 | /* Tuple was already updated in current command? */ |
2860 | elog(ERROR, "tuple already updated by self" ); |
2861 | break; |
2862 | |
2863 | case TM_Ok: |
2864 | /* done successfully */ |
2865 | break; |
2866 | |
2867 | case TM_Updated: |
2868 | elog(ERROR, "tuple concurrently updated" ); |
2869 | break; |
2870 | |
2871 | case TM_Deleted: |
2872 | elog(ERROR, "tuple concurrently deleted" ); |
2873 | break; |
2874 | |
2875 | default: |
2876 | elog(ERROR, "unrecognized heap_delete status: %u" , result); |
2877 | break; |
2878 | } |
2879 | } |
2880 | |
2881 | /* |
2882 | * heap_update - replace a tuple |
2883 | * |
2884 | * See table_tuple_update() for an explanation of the parameters, except that |
2885 | * this routine directly takes a tuple rather than a slot. |
2886 | * |
2887 | * In the failure cases, the routine fills *tmfd with the tuple's t_ctid, |
2888 | * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last |
2889 | * only for TM_SelfModified, since we cannot obtain cmax from a combocid |
2890 | * generated by another transaction). |
2891 | */ |
2892 | TM_Result |
2893 | heap_update(Relation relation, ItemPointer otid, HeapTuple newtup, |
2894 | CommandId cid, Snapshot crosscheck, bool wait, |
2895 | TM_FailureData *tmfd, LockTupleMode *lockmode) |
2896 | { |
2897 | TM_Result result; |
2898 | TransactionId xid = GetCurrentTransactionId(); |
2899 | Bitmapset *hot_attrs; |
2900 | Bitmapset *key_attrs; |
2901 | Bitmapset *id_attrs; |
2902 | Bitmapset *interesting_attrs; |
2903 | Bitmapset *modified_attrs; |
2904 | ItemId lp; |
2905 | HeapTupleData oldtup; |
2906 | HeapTuple heaptup; |
2907 | HeapTuple old_key_tuple = NULL; |
2908 | bool old_key_copied = false; |
2909 | Page page; |
2910 | BlockNumber block; |
2911 | MultiXactStatus mxact_status; |
2912 | Buffer buffer, |
2913 | newbuf, |
2914 | vmbuffer = InvalidBuffer, |
2915 | vmbuffer_new = InvalidBuffer; |
2916 | bool need_toast; |
2917 | Size newtupsize, |
2918 | pagefree; |
2919 | bool have_tuple_lock = false; |
2920 | bool iscombo; |
2921 | bool use_hot_update = false; |
2922 | bool hot_attrs_checked = false; |
2923 | bool key_intact; |
2924 | bool all_visible_cleared = false; |
2925 | bool all_visible_cleared_new = false; |
2926 | bool checked_lockers; |
2927 | bool locker_remains; |
2928 | TransactionId xmax_new_tuple, |
2929 | xmax_old_tuple; |
2930 | uint16 infomask_old_tuple, |
2931 | infomask2_old_tuple, |
2932 | infomask_new_tuple, |
2933 | infomask2_new_tuple; |
2934 | |
2935 | Assert(ItemPointerIsValid(otid)); |
2936 | |
2937 | /* |
2938 | * Forbid this during a parallel operation, lest it allocate a combocid. |
2939 | * Other workers might need that combocid for visibility checks, and we |
2940 | * have no provision for broadcasting it to them. |
2941 | */ |
2942 | if (IsInParallelMode()) |
2943 | ereport(ERROR, |
2944 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
2945 | errmsg("cannot update tuples during a parallel operation" ))); |
2946 | |
2947 | /* |
2948 | * Fetch the list of attributes to be checked for various operations. |
2949 | * |
2950 | * For HOT considerations, this is wasted effort if we fail to update or |
2951 | * have to put the new tuple on a different page. But we must compute the |
2952 | * list before obtaining buffer lock --- in the worst case, if we are |
2953 | * doing an update on one of the relevant system catalogs, we could |
2954 | * deadlock if we try to fetch the list later. In any case, the relcache |
2955 | * caches the data so this is usually pretty cheap. |
2956 | * |
2957 | * We also need columns used by the replica identity and columns that are |
2958 | * considered the "key" of rows in the table. |
2959 | * |
2960 | * Note that we get copies of each bitmap, so we need not worry about |
2961 | * relcache flush happening midway through. |
2962 | */ |
2963 | hot_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_ALL); |
2964 | key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY); |
2965 | id_attrs = RelationGetIndexAttrBitmap(relation, |
2966 | INDEX_ATTR_BITMAP_IDENTITY_KEY); |
2967 | |
2968 | |
2969 | block = ItemPointerGetBlockNumber(otid); |
2970 | buffer = ReadBuffer(relation, block); |
2971 | page = BufferGetPage(buffer); |
2972 | |
2973 | interesting_attrs = NULL; |
2974 | |
2975 | /* |
2976 | * If the page is already full, there is hardly any chance of doing a HOT |
2977 | * update on this page. It might be wasteful effort to look for index |
2978 | * column updates only to later reject HOT updates for lack of space in |
2979 | * the same page. So we be conservative and only fetch hot_attrs if the |
2980 | * page is not already full. Since we are already holding a pin on the |
2981 | * buffer, there is no chance that the buffer can get cleaned up |
2982 | * concurrently and even if that was possible, in the worst case we lose a |
2983 | * chance to do a HOT update. |
2984 | */ |
2985 | if (!PageIsFull(page)) |
2986 | { |
2987 | interesting_attrs = bms_add_members(interesting_attrs, hot_attrs); |
2988 | hot_attrs_checked = true; |
2989 | } |
2990 | interesting_attrs = bms_add_members(interesting_attrs, key_attrs); |
2991 | interesting_attrs = bms_add_members(interesting_attrs, id_attrs); |
2992 | |
2993 | /* |
2994 | * Before locking the buffer, pin the visibility map page if it appears to |
2995 | * be necessary. Since we haven't got the lock yet, someone else might be |
2996 | * in the middle of changing this, so we'll need to recheck after we have |
2997 | * the lock. |
2998 | */ |
2999 | if (PageIsAllVisible(page)) |
3000 | visibilitymap_pin(relation, block, &vmbuffer); |
3001 | |
3002 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
3003 | |
3004 | lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid)); |
3005 | Assert(ItemIdIsNormal(lp)); |
3006 | |
3007 | /* |
3008 | * Fill in enough data in oldtup for HeapDetermineModifiedColumns to work |
3009 | * properly. |
3010 | */ |
3011 | oldtup.t_tableOid = RelationGetRelid(relation); |
3012 | oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp); |
3013 | oldtup.t_len = ItemIdGetLength(lp); |
3014 | oldtup.t_self = *otid; |
3015 | |
3016 | /* the new tuple is ready, except for this: */ |
3017 | newtup->t_tableOid = RelationGetRelid(relation); |
3018 | |
3019 | /* Determine columns modified by the update. */ |
3020 | modified_attrs = HeapDetermineModifiedColumns(relation, interesting_attrs, |
3021 | &oldtup, newtup); |
3022 | |
3023 | /* |
3024 | * If we're not updating any "key" column, we can grab a weaker lock type. |
3025 | * This allows for more concurrency when we are running simultaneously |
3026 | * with foreign key checks. |
3027 | * |
3028 | * Note that if a column gets detoasted while executing the update, but |
3029 | * the value ends up being the same, this test will fail and we will use |
3030 | * the stronger lock. This is acceptable; the important case to optimize |
3031 | * is updates that don't manipulate key columns, not those that |
3032 | * serendipitiously arrive at the same key values. |
3033 | */ |
3034 | if (!bms_overlap(modified_attrs, key_attrs)) |
3035 | { |
3036 | *lockmode = LockTupleNoKeyExclusive; |
3037 | mxact_status = MultiXactStatusNoKeyUpdate; |
3038 | key_intact = true; |
3039 | |
3040 | /* |
3041 | * If this is the first possibly-multixact-able operation in the |
3042 | * current transaction, set my per-backend OldestMemberMXactId |
3043 | * setting. We can be certain that the transaction will never become a |
3044 | * member of any older MultiXactIds than that. (We have to do this |
3045 | * even if we end up just using our own TransactionId below, since |
3046 | * some other backend could incorporate our XID into a MultiXact |
3047 | * immediately afterwards.) |
3048 | */ |
3049 | MultiXactIdSetOldestMember(); |
3050 | } |
3051 | else |
3052 | { |
3053 | *lockmode = LockTupleExclusive; |
3054 | mxact_status = MultiXactStatusUpdate; |
3055 | key_intact = false; |
3056 | } |
3057 | |
3058 | /* |
3059 | * Note: beyond this point, use oldtup not otid to refer to old tuple. |
3060 | * otid may very well point at newtup->t_self, which we will overwrite |
3061 | * with the new tuple's location, so there's great risk of confusion if we |
3062 | * use otid anymore. |
3063 | */ |
3064 | |
3065 | l2: |
3066 | checked_lockers = false; |
3067 | locker_remains = false; |
3068 | result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer); |
3069 | |
3070 | /* see below about the "no wait" case */ |
3071 | Assert(result != TM_BeingModified || wait); |
3072 | |
3073 | if (result == TM_Invisible) |
3074 | { |
3075 | UnlockReleaseBuffer(buffer); |
3076 | ereport(ERROR, |
3077 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
3078 | errmsg("attempted to update invisible tuple" ))); |
3079 | } |
3080 | else if (result == TM_BeingModified && wait) |
3081 | { |
3082 | TransactionId xwait; |
3083 | uint16 infomask; |
3084 | bool can_continue = false; |
3085 | |
3086 | /* |
3087 | * XXX note that we don't consider the "no wait" case here. This |
3088 | * isn't a problem currently because no caller uses that case, but it |
3089 | * should be fixed if such a caller is introduced. It wasn't a |
3090 | * problem previously because this code would always wait, but now |
3091 | * that some tuple locks do not conflict with one of the lock modes we |
3092 | * use, it is possible that this case is interesting to handle |
3093 | * specially. |
3094 | * |
3095 | * This may cause failures with third-party code that calls |
3096 | * heap_update directly. |
3097 | */ |
3098 | |
3099 | /* must copy state data before unlocking buffer */ |
3100 | xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data); |
3101 | infomask = oldtup.t_data->t_infomask; |
3102 | |
3103 | /* |
3104 | * Now we have to do something about the existing locker. If it's a |
3105 | * multi, sleep on it; we might be awakened before it is completely |
3106 | * gone (or even not sleep at all in some cases); we need to preserve |
3107 | * it as locker, unless it is gone completely. |
3108 | * |
3109 | * If it's not a multi, we need to check for sleeping conditions |
3110 | * before actually going to sleep. If the update doesn't conflict |
3111 | * with the locks, we just continue without sleeping (but making sure |
3112 | * it is preserved). |
3113 | * |
3114 | * Before sleeping, we need to acquire tuple lock to establish our |
3115 | * priority for the tuple (see heap_lock_tuple). LockTuple will |
3116 | * release us when we are next-in-line for the tuple. Note we must |
3117 | * not acquire the tuple lock until we're sure we're going to sleep; |
3118 | * otherwise we're open for race conditions with other transactions |
3119 | * holding the tuple lock which sleep on us. |
3120 | * |
3121 | * If we are forced to "start over" below, we keep the tuple lock; |
3122 | * this arranges that we stay at the head of the line while rechecking |
3123 | * tuple state. |
3124 | */ |
3125 | if (infomask & HEAP_XMAX_IS_MULTI) |
3126 | { |
3127 | TransactionId update_xact; |
3128 | int remain; |
3129 | bool current_is_member = false; |
3130 | |
3131 | if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask, |
3132 | *lockmode, ¤t_is_member)) |
3133 | { |
3134 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
3135 | |
3136 | /* |
3137 | * Acquire the lock, if necessary (but skip it when we're |
3138 | * requesting a lock and already have one; avoids deadlock). |
3139 | */ |
3140 | if (!current_is_member) |
3141 | heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode, |
3142 | LockWaitBlock, &have_tuple_lock); |
3143 | |
3144 | /* wait for multixact */ |
3145 | MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask, |
3146 | relation, &oldtup.t_self, XLTW_Update, |
3147 | &remain); |
3148 | checked_lockers = true; |
3149 | locker_remains = remain != 0; |
3150 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
3151 | |
3152 | /* |
3153 | * If xwait had just locked the tuple then some other xact |
3154 | * could update this tuple before we get to this point. Check |
3155 | * for xmax change, and start over if so. |
3156 | */ |
3157 | if (xmax_infomask_changed(oldtup.t_data->t_infomask, |
3158 | infomask) || |
3159 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data), |
3160 | xwait)) |
3161 | goto l2; |
3162 | } |
3163 | |
3164 | /* |
3165 | * Note that the multixact may not be done by now. It could have |
3166 | * surviving members; our own xact or other subxacts of this |
3167 | * backend, and also any other concurrent transaction that locked |
3168 | * the tuple with LockTupleKeyShare if we only got |
3169 | * LockTupleNoKeyExclusive. If this is the case, we have to be |
3170 | * careful to mark the updated tuple with the surviving members in |
3171 | * Xmax. |
3172 | * |
3173 | * Note that there could have been another update in the |
3174 | * MultiXact. In that case, we need to check whether it committed |
3175 | * or aborted. If it aborted we are safe to update it again; |
3176 | * otherwise there is an update conflict, and we have to return |
3177 | * TableTuple{Deleted, Updated} below. |
3178 | * |
3179 | * In the LockTupleExclusive case, we still need to preserve the |
3180 | * surviving members: those would include the tuple locks we had |
3181 | * before this one, which are important to keep in case this |
3182 | * subxact aborts. |
3183 | */ |
3184 | if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask)) |
3185 | update_xact = HeapTupleGetUpdateXid(oldtup.t_data); |
3186 | else |
3187 | update_xact = InvalidTransactionId; |
3188 | |
3189 | /* |
3190 | * There was no UPDATE in the MultiXact; or it aborted. No |
3191 | * TransactionIdIsInProgress() call needed here, since we called |
3192 | * MultiXactIdWait() above. |
3193 | */ |
3194 | if (!TransactionIdIsValid(update_xact) || |
3195 | TransactionIdDidAbort(update_xact)) |
3196 | can_continue = true; |
3197 | } |
3198 | else if (TransactionIdIsCurrentTransactionId(xwait)) |
3199 | { |
3200 | /* |
3201 | * The only locker is ourselves; we can avoid grabbing the tuple |
3202 | * lock here, but must preserve our locking information. |
3203 | */ |
3204 | checked_lockers = true; |
3205 | locker_remains = true; |
3206 | can_continue = true; |
3207 | } |
3208 | else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact) |
3209 | { |
3210 | /* |
3211 | * If it's just a key-share locker, and we're not changing the key |
3212 | * columns, we don't need to wait for it to end; but we need to |
3213 | * preserve it as locker. |
3214 | */ |
3215 | checked_lockers = true; |
3216 | locker_remains = true; |
3217 | can_continue = true; |
3218 | } |
3219 | else |
3220 | { |
3221 | /* |
3222 | * Wait for regular transaction to end; but first, acquire tuple |
3223 | * lock. |
3224 | */ |
3225 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
3226 | heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode, |
3227 | LockWaitBlock, &have_tuple_lock); |
3228 | XactLockTableWait(xwait, relation, &oldtup.t_self, |
3229 | XLTW_Update); |
3230 | checked_lockers = true; |
3231 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
3232 | |
3233 | /* |
3234 | * xwait is done, but if xwait had just locked the tuple then some |
3235 | * other xact could update this tuple before we get to this point. |
3236 | * Check for xmax change, and start over if so. |
3237 | */ |
3238 | if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) || |
3239 | !TransactionIdEquals(xwait, |
3240 | HeapTupleHeaderGetRawXmax(oldtup.t_data))) |
3241 | goto l2; |
3242 | |
3243 | /* Otherwise check if it committed or aborted */ |
3244 | UpdateXmaxHintBits(oldtup.t_data, buffer, xwait); |
3245 | if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) |
3246 | can_continue = true; |
3247 | } |
3248 | |
3249 | if (can_continue) |
3250 | result = TM_Ok; |
3251 | else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid) || |
3252 | HeapTupleHeaderIndicatesMovedPartitions(oldtup.t_data)) |
3253 | result = TM_Updated; |
3254 | else |
3255 | result = TM_Deleted; |
3256 | } |
3257 | |
3258 | if (crosscheck != InvalidSnapshot && result == TM_Ok) |
3259 | { |
3260 | /* Perform additional check for transaction-snapshot mode RI updates */ |
3261 | if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer)) |
3262 | { |
3263 | result = TM_Updated; |
3264 | Assert(!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid)); |
3265 | } |
3266 | } |
3267 | |
3268 | if (result != TM_Ok) |
3269 | { |
3270 | Assert(result == TM_SelfModified || |
3271 | result == TM_Updated || |
3272 | result == TM_Deleted || |
3273 | result == TM_BeingModified); |
3274 | Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)); |
3275 | Assert(result != TM_Updated || |
3276 | !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid)); |
3277 | tmfd->ctid = oldtup.t_data->t_ctid; |
3278 | tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data); |
3279 | if (result == TM_SelfModified) |
3280 | tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data); |
3281 | else |
3282 | tmfd->cmax = InvalidCommandId; |
3283 | UnlockReleaseBuffer(buffer); |
3284 | if (have_tuple_lock) |
3285 | UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode); |
3286 | if (vmbuffer != InvalidBuffer) |
3287 | ReleaseBuffer(vmbuffer); |
3288 | bms_free(hot_attrs); |
3289 | bms_free(key_attrs); |
3290 | bms_free(id_attrs); |
3291 | bms_free(modified_attrs); |
3292 | bms_free(interesting_attrs); |
3293 | return result; |
3294 | } |
3295 | |
3296 | /* |
3297 | * If we didn't pin the visibility map page and the page has become all |
3298 | * visible while we were busy locking the buffer, or during some |
3299 | * subsequent window during which we had it unlocked, we'll have to unlock |
3300 | * and re-lock, to avoid holding the buffer lock across an I/O. That's a |
3301 | * bit unfortunate, especially since we'll now have to recheck whether the |
3302 | * tuple has been locked or updated under us, but hopefully it won't |
3303 | * happen very often. |
3304 | */ |
3305 | if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) |
3306 | { |
3307 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
3308 | visibilitymap_pin(relation, block, &vmbuffer); |
3309 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
3310 | goto l2; |
3311 | } |
3312 | |
3313 | /* Fill in transaction status data */ |
3314 | |
3315 | /* |
3316 | * If the tuple we're updating is locked, we need to preserve the locking |
3317 | * info in the old tuple's Xmax. Prepare a new Xmax value for this. |
3318 | */ |
3319 | compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data), |
3320 | oldtup.t_data->t_infomask, |
3321 | oldtup.t_data->t_infomask2, |
3322 | xid, *lockmode, true, |
3323 | &xmax_old_tuple, &infomask_old_tuple, |
3324 | &infomask2_old_tuple); |
3325 | |
3326 | /* |
3327 | * And also prepare an Xmax value for the new copy of the tuple. If there |
3328 | * was no xmax previously, or there was one but all lockers are now gone, |
3329 | * then use InvalidXid; otherwise, get the xmax from the old tuple. (In |
3330 | * rare cases that might also be InvalidXid and yet not have the |
3331 | * HEAP_XMAX_INVALID bit set; that's fine.) |
3332 | */ |
3333 | if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) || |
3334 | HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) || |
3335 | (checked_lockers && !locker_remains)) |
3336 | xmax_new_tuple = InvalidTransactionId; |
3337 | else |
3338 | xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data); |
3339 | |
3340 | if (!TransactionIdIsValid(xmax_new_tuple)) |
3341 | { |
3342 | infomask_new_tuple = HEAP_XMAX_INVALID; |
3343 | infomask2_new_tuple = 0; |
3344 | } |
3345 | else |
3346 | { |
3347 | /* |
3348 | * If we found a valid Xmax for the new tuple, then the infomask bits |
3349 | * to use on the new tuple depend on what was there on the old one. |
3350 | * Note that since we're doing an update, the only possibility is that |
3351 | * the lockers had FOR KEY SHARE lock. |
3352 | */ |
3353 | if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) |
3354 | { |
3355 | GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple, |
3356 | &infomask2_new_tuple); |
3357 | } |
3358 | else |
3359 | { |
3360 | infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY; |
3361 | infomask2_new_tuple = 0; |
3362 | } |
3363 | } |
3364 | |
3365 | /* |
3366 | * Prepare the new tuple with the appropriate initial values of Xmin and |
3367 | * Xmax, as well as initial infomask bits as computed above. |
3368 | */ |
3369 | newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK); |
3370 | newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK); |
3371 | HeapTupleHeaderSetXmin(newtup->t_data, xid); |
3372 | HeapTupleHeaderSetCmin(newtup->t_data, cid); |
3373 | newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple; |
3374 | newtup->t_data->t_infomask2 |= infomask2_new_tuple; |
3375 | HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple); |
3376 | |
3377 | /* |
3378 | * Replace cid with a combo cid if necessary. Note that we already put |
3379 | * the plain cid into the new tuple. |
3380 | */ |
3381 | HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo); |
3382 | |
3383 | /* |
3384 | * If the toaster needs to be activated, OR if the new tuple will not fit |
3385 | * on the same page as the old, then we need to release the content lock |
3386 | * (but not the pin!) on the old tuple's buffer while we are off doing |
3387 | * TOAST and/or table-file-extension work. We must mark the old tuple to |
3388 | * show that it's locked, else other processes may try to update it |
3389 | * themselves. |
3390 | * |
3391 | * We need to invoke the toaster if there are already any out-of-line |
3392 | * toasted values present, or if the new tuple is over-threshold. |
3393 | */ |
3394 | if (relation->rd_rel->relkind != RELKIND_RELATION && |
3395 | relation->rd_rel->relkind != RELKIND_MATVIEW) |
3396 | { |
3397 | /* toast table entries should never be recursively toasted */ |
3398 | Assert(!HeapTupleHasExternal(&oldtup)); |
3399 | Assert(!HeapTupleHasExternal(newtup)); |
3400 | need_toast = false; |
3401 | } |
3402 | else |
3403 | need_toast = (HeapTupleHasExternal(&oldtup) || |
3404 | HeapTupleHasExternal(newtup) || |
3405 | newtup->t_len > TOAST_TUPLE_THRESHOLD); |
3406 | |
3407 | pagefree = PageGetHeapFreeSpace(page); |
3408 | |
3409 | newtupsize = MAXALIGN(newtup->t_len); |
3410 | |
3411 | if (need_toast || newtupsize > pagefree) |
3412 | { |
3413 | TransactionId xmax_lock_old_tuple; |
3414 | uint16 infomask_lock_old_tuple, |
3415 | infomask2_lock_old_tuple; |
3416 | bool cleared_all_frozen = false; |
3417 | |
3418 | /* |
3419 | * To prevent concurrent sessions from updating the tuple, we have to |
3420 | * temporarily mark it locked, while we release the page-level lock. |
3421 | * |
3422 | * To satisfy the rule that any xid potentially appearing in a buffer |
3423 | * written out to disk, we unfortunately have to WAL log this |
3424 | * temporary modification. We can reuse xl_heap_lock for this |
3425 | * purpose. If we crash/error before following through with the |
3426 | * actual update, xmax will be of an aborted transaction, allowing |
3427 | * other sessions to proceed. |
3428 | */ |
3429 | |
3430 | /* |
3431 | * Compute xmax / infomask appropriate for locking the tuple. This has |
3432 | * to be done separately from the combo that's going to be used for |
3433 | * updating, because the potentially created multixact would otherwise |
3434 | * be wrong. |
3435 | */ |
3436 | compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data), |
3437 | oldtup.t_data->t_infomask, |
3438 | oldtup.t_data->t_infomask2, |
3439 | xid, *lockmode, false, |
3440 | &xmax_lock_old_tuple, &infomask_lock_old_tuple, |
3441 | &infomask2_lock_old_tuple); |
3442 | |
3443 | Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple)); |
3444 | |
3445 | START_CRIT_SECTION(); |
3446 | |
3447 | /* Clear obsolete visibility flags ... */ |
3448 | oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
3449 | oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
3450 | HeapTupleClearHotUpdated(&oldtup); |
3451 | /* ... and store info about transaction updating this tuple */ |
3452 | Assert(TransactionIdIsValid(xmax_lock_old_tuple)); |
3453 | HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple); |
3454 | oldtup.t_data->t_infomask |= infomask_lock_old_tuple; |
3455 | oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple; |
3456 | HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo); |
3457 | |
3458 | /* temporarily make it look not-updated, but locked */ |
3459 | oldtup.t_data->t_ctid = oldtup.t_self; |
3460 | |
3461 | /* |
3462 | * Clear all-frozen bit on visibility map if needed. We could |
3463 | * immediately reset ALL_VISIBLE, but given that the WAL logging |
3464 | * overhead would be unchanged, that doesn't seem necessarily |
3465 | * worthwhile. |
3466 | */ |
3467 | if (PageIsAllVisible(BufferGetPage(buffer)) && |
3468 | visibilitymap_clear(relation, block, vmbuffer, |
3469 | VISIBILITYMAP_ALL_FROZEN)) |
3470 | cleared_all_frozen = true; |
3471 | |
3472 | MarkBufferDirty(buffer); |
3473 | |
3474 | if (RelationNeedsWAL(relation)) |
3475 | { |
3476 | xl_heap_lock xlrec; |
3477 | XLogRecPtr recptr; |
3478 | |
3479 | XLogBeginInsert(); |
3480 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
3481 | |
3482 | xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self); |
3483 | xlrec.locking_xid = xmax_lock_old_tuple; |
3484 | xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask, |
3485 | oldtup.t_data->t_infomask2); |
3486 | xlrec.flags = |
3487 | cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0; |
3488 | XLogRegisterData((char *) &xlrec, SizeOfHeapLock); |
3489 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK); |
3490 | PageSetLSN(page, recptr); |
3491 | } |
3492 | |
3493 | END_CRIT_SECTION(); |
3494 | |
3495 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
3496 | |
3497 | /* |
3498 | * Let the toaster do its thing, if needed. |
3499 | * |
3500 | * Note: below this point, heaptup is the data we actually intend to |
3501 | * store into the relation; newtup is the caller's original untoasted |
3502 | * data. |
3503 | */ |
3504 | if (need_toast) |
3505 | { |
3506 | /* Note we always use WAL and FSM during updates */ |
3507 | heaptup = toast_insert_or_update(relation, newtup, &oldtup, 0); |
3508 | newtupsize = MAXALIGN(heaptup->t_len); |
3509 | } |
3510 | else |
3511 | heaptup = newtup; |
3512 | |
3513 | /* |
3514 | * Now, do we need a new page for the tuple, or not? This is a bit |
3515 | * tricky since someone else could have added tuples to the page while |
3516 | * we weren't looking. We have to recheck the available space after |
3517 | * reacquiring the buffer lock. But don't bother to do that if the |
3518 | * former amount of free space is still not enough; it's unlikely |
3519 | * there's more free now than before. |
3520 | * |
3521 | * What's more, if we need to get a new page, we will need to acquire |
3522 | * buffer locks on both old and new pages. To avoid deadlock against |
3523 | * some other backend trying to get the same two locks in the other |
3524 | * order, we must be consistent about the order we get the locks in. |
3525 | * We use the rule "lock the lower-numbered page of the relation |
3526 | * first". To implement this, we must do RelationGetBufferForTuple |
3527 | * while not holding the lock on the old page, and we must rely on it |
3528 | * to get the locks on both pages in the correct order. |
3529 | */ |
3530 | if (newtupsize > pagefree) |
3531 | { |
3532 | /* Assume there's no chance to put heaptup on same page. */ |
3533 | newbuf = RelationGetBufferForTuple(relation, heaptup->t_len, |
3534 | buffer, 0, NULL, |
3535 | &vmbuffer_new, &vmbuffer); |
3536 | } |
3537 | else |
3538 | { |
3539 | /* Re-acquire the lock on the old tuple's page. */ |
3540 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
3541 | /* Re-check using the up-to-date free space */ |
3542 | pagefree = PageGetHeapFreeSpace(page); |
3543 | if (newtupsize > pagefree) |
3544 | { |
3545 | /* |
3546 | * Rats, it doesn't fit anymore. We must now unlock and |
3547 | * relock to avoid deadlock. Fortunately, this path should |
3548 | * seldom be taken. |
3549 | */ |
3550 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
3551 | newbuf = RelationGetBufferForTuple(relation, heaptup->t_len, |
3552 | buffer, 0, NULL, |
3553 | &vmbuffer_new, &vmbuffer); |
3554 | } |
3555 | else |
3556 | { |
3557 | /* OK, it fits here, so we're done. */ |
3558 | newbuf = buffer; |
3559 | } |
3560 | } |
3561 | } |
3562 | else |
3563 | { |
3564 | /* No TOAST work needed, and it'll fit on same page */ |
3565 | newbuf = buffer; |
3566 | heaptup = newtup; |
3567 | } |
3568 | |
3569 | /* |
3570 | * We're about to do the actual update -- check for conflict first, to |
3571 | * avoid possibly having to roll back work we've just done. |
3572 | * |
3573 | * This is safe without a recheck as long as there is no possibility of |
3574 | * another process scanning the pages between this check and the update |
3575 | * being visible to the scan (i.e., exclusive buffer content lock(s) are |
3576 | * continuously held from this point until the tuple update is visible). |
3577 | * |
3578 | * For the new tuple the only check needed is at the relation level, but |
3579 | * since both tuples are in the same relation and the check for oldtup |
3580 | * will include checking the relation level, there is no benefit to a |
3581 | * separate check for the new tuple. |
3582 | */ |
3583 | CheckForSerializableConflictIn(relation, &oldtup, buffer); |
3584 | |
3585 | /* |
3586 | * At this point newbuf and buffer are both pinned and locked, and newbuf |
3587 | * has enough space for the new tuple. If they are the same buffer, only |
3588 | * one pin is held. |
3589 | */ |
3590 | |
3591 | if (newbuf == buffer) |
3592 | { |
3593 | /* |
3594 | * Since the new tuple is going into the same page, we might be able |
3595 | * to do a HOT update. Check if any of the index columns have been |
3596 | * changed. If the page was already full, we may have skipped checking |
3597 | * for index columns, and also can't do a HOT update. |
3598 | */ |
3599 | if (hot_attrs_checked && !bms_overlap(modified_attrs, hot_attrs)) |
3600 | use_hot_update = true; |
3601 | } |
3602 | else |
3603 | { |
3604 | /* Set a hint that the old page could use prune/defrag */ |
3605 | PageSetFull(page); |
3606 | } |
3607 | |
3608 | /* |
3609 | * Compute replica identity tuple before entering the critical section so |
3610 | * we don't PANIC upon a memory allocation failure. |
3611 | * ExtractReplicaIdentity() will return NULL if nothing needs to be |
3612 | * logged. |
3613 | */ |
3614 | old_key_tuple = ExtractReplicaIdentity(relation, &oldtup, |
3615 | bms_overlap(modified_attrs, id_attrs), |
3616 | &old_key_copied); |
3617 | |
3618 | /* NO EREPORT(ERROR) from here till changes are logged */ |
3619 | START_CRIT_SECTION(); |
3620 | |
3621 | /* |
3622 | * If this transaction commits, the old tuple will become DEAD sooner or |
3623 | * later. Set flag that this page is a candidate for pruning once our xid |
3624 | * falls below the OldestXmin horizon. If the transaction finally aborts, |
3625 | * the subsequent page pruning will be a no-op and the hint will be |
3626 | * cleared. |
3627 | * |
3628 | * XXX Should we set hint on newbuf as well? If the transaction aborts, |
3629 | * there would be a prunable tuple in the newbuf; but for now we choose |
3630 | * not to optimize for aborts. Note that heap_xlog_update must be kept in |
3631 | * sync if this decision changes. |
3632 | */ |
3633 | PageSetPrunable(page, xid); |
3634 | |
3635 | if (use_hot_update) |
3636 | { |
3637 | /* Mark the old tuple as HOT-updated */ |
3638 | HeapTupleSetHotUpdated(&oldtup); |
3639 | /* And mark the new tuple as heap-only */ |
3640 | HeapTupleSetHeapOnly(heaptup); |
3641 | /* Mark the caller's copy too, in case different from heaptup */ |
3642 | HeapTupleSetHeapOnly(newtup); |
3643 | } |
3644 | else |
3645 | { |
3646 | /* Make sure tuples are correctly marked as not-HOT */ |
3647 | HeapTupleClearHotUpdated(&oldtup); |
3648 | HeapTupleClearHeapOnly(heaptup); |
3649 | HeapTupleClearHeapOnly(newtup); |
3650 | } |
3651 | |
3652 | RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */ |
3653 | |
3654 | |
3655 | /* Clear obsolete visibility flags, possibly set by ourselves above... */ |
3656 | oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
3657 | oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
3658 | /* ... and store info about transaction updating this tuple */ |
3659 | Assert(TransactionIdIsValid(xmax_old_tuple)); |
3660 | HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple); |
3661 | oldtup.t_data->t_infomask |= infomask_old_tuple; |
3662 | oldtup.t_data->t_infomask2 |= infomask2_old_tuple; |
3663 | HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo); |
3664 | |
3665 | /* record address of new tuple in t_ctid of old one */ |
3666 | oldtup.t_data->t_ctid = heaptup->t_self; |
3667 | |
3668 | /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */ |
3669 | if (PageIsAllVisible(BufferGetPage(buffer))) |
3670 | { |
3671 | all_visible_cleared = true; |
3672 | PageClearAllVisible(BufferGetPage(buffer)); |
3673 | visibilitymap_clear(relation, BufferGetBlockNumber(buffer), |
3674 | vmbuffer, VISIBILITYMAP_VALID_BITS); |
3675 | } |
3676 | if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf))) |
3677 | { |
3678 | all_visible_cleared_new = true; |
3679 | PageClearAllVisible(BufferGetPage(newbuf)); |
3680 | visibilitymap_clear(relation, BufferGetBlockNumber(newbuf), |
3681 | vmbuffer_new, VISIBILITYMAP_VALID_BITS); |
3682 | } |
3683 | |
3684 | if (newbuf != buffer) |
3685 | MarkBufferDirty(newbuf); |
3686 | MarkBufferDirty(buffer); |
3687 | |
3688 | /* XLOG stuff */ |
3689 | if (RelationNeedsWAL(relation)) |
3690 | { |
3691 | XLogRecPtr recptr; |
3692 | |
3693 | /* |
3694 | * For logical decoding we need combocids to properly decode the |
3695 | * catalog. |
3696 | */ |
3697 | if (RelationIsAccessibleInLogicalDecoding(relation)) |
3698 | { |
3699 | log_heap_new_cid(relation, &oldtup); |
3700 | log_heap_new_cid(relation, heaptup); |
3701 | } |
3702 | |
3703 | recptr = log_heap_update(relation, buffer, |
3704 | newbuf, &oldtup, heaptup, |
3705 | old_key_tuple, |
3706 | all_visible_cleared, |
3707 | all_visible_cleared_new); |
3708 | if (newbuf != buffer) |
3709 | { |
3710 | PageSetLSN(BufferGetPage(newbuf), recptr); |
3711 | } |
3712 | PageSetLSN(BufferGetPage(buffer), recptr); |
3713 | } |
3714 | |
3715 | END_CRIT_SECTION(); |
3716 | |
3717 | if (newbuf != buffer) |
3718 | LockBuffer(newbuf, BUFFER_LOCK_UNLOCK); |
3719 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
3720 | |
3721 | /* |
3722 | * Mark old tuple for invalidation from system caches at next command |
3723 | * boundary, and mark the new tuple for invalidation in case we abort. We |
3724 | * have to do this before releasing the buffer because oldtup is in the |
3725 | * buffer. (heaptup is all in local memory, but it's necessary to process |
3726 | * both tuple versions in one call to inval.c so we can avoid redundant |
3727 | * sinval messages.) |
3728 | */ |
3729 | CacheInvalidateHeapTuple(relation, &oldtup, heaptup); |
3730 | |
3731 | /* Now we can release the buffer(s) */ |
3732 | if (newbuf != buffer) |
3733 | ReleaseBuffer(newbuf); |
3734 | ReleaseBuffer(buffer); |
3735 | if (BufferIsValid(vmbuffer_new)) |
3736 | ReleaseBuffer(vmbuffer_new); |
3737 | if (BufferIsValid(vmbuffer)) |
3738 | ReleaseBuffer(vmbuffer); |
3739 | |
3740 | /* |
3741 | * Release the lmgr tuple lock, if we had it. |
3742 | */ |
3743 | if (have_tuple_lock) |
3744 | UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode); |
3745 | |
3746 | pgstat_count_heap_update(relation, use_hot_update); |
3747 | |
3748 | /* |
3749 | * If heaptup is a private copy, release it. Don't forget to copy t_self |
3750 | * back to the caller's image, too. |
3751 | */ |
3752 | if (heaptup != newtup) |
3753 | { |
3754 | newtup->t_self = heaptup->t_self; |
3755 | heap_freetuple(heaptup); |
3756 | } |
3757 | |
3758 | if (old_key_tuple != NULL && old_key_copied) |
3759 | heap_freetuple(old_key_tuple); |
3760 | |
3761 | bms_free(hot_attrs); |
3762 | bms_free(key_attrs); |
3763 | bms_free(id_attrs); |
3764 | bms_free(modified_attrs); |
3765 | bms_free(interesting_attrs); |
3766 | |
3767 | return TM_Ok; |
3768 | } |
3769 | |
3770 | /* |
3771 | * Check if the specified attribute's value is same in both given tuples. |
3772 | * Subroutine for HeapDetermineModifiedColumns. |
3773 | */ |
3774 | static bool |
3775 | heap_tuple_attr_equals(TupleDesc tupdesc, int attrnum, |
3776 | HeapTuple tup1, HeapTuple tup2) |
3777 | { |
3778 | Datum value1, |
3779 | value2; |
3780 | bool isnull1, |
3781 | isnull2; |
3782 | Form_pg_attribute att; |
3783 | |
3784 | /* |
3785 | * If it's a whole-tuple reference, say "not equal". It's not really |
3786 | * worth supporting this case, since it could only succeed after a no-op |
3787 | * update, which is hardly a case worth optimizing for. |
3788 | */ |
3789 | if (attrnum == 0) |
3790 | return false; |
3791 | |
3792 | /* |
3793 | * Likewise, automatically say "not equal" for any system attribute other |
3794 | * than tableOID; we cannot expect these to be consistent in a HOT chain, |
3795 | * or even to be set correctly yet in the new tuple. |
3796 | */ |
3797 | if (attrnum < 0) |
3798 | { |
3799 | if (attrnum != TableOidAttributeNumber) |
3800 | return false; |
3801 | } |
3802 | |
3803 | /* |
3804 | * Extract the corresponding values. XXX this is pretty inefficient if |
3805 | * there are many indexed columns. Should HeapDetermineModifiedColumns do |
3806 | * a single heap_deform_tuple call on each tuple, instead? But that |
3807 | * doesn't work for system columns ... |
3808 | */ |
3809 | value1 = heap_getattr(tup1, attrnum, tupdesc, &isnull1); |
3810 | value2 = heap_getattr(tup2, attrnum, tupdesc, &isnull2); |
3811 | |
3812 | /* |
3813 | * If one value is NULL and other is not, then they are certainly not |
3814 | * equal |
3815 | */ |
3816 | if (isnull1 != isnull2) |
3817 | return false; |
3818 | |
3819 | /* |
3820 | * If both are NULL, they can be considered equal. |
3821 | */ |
3822 | if (isnull1) |
3823 | return true; |
3824 | |
3825 | /* |
3826 | * We do simple binary comparison of the two datums. This may be overly |
3827 | * strict because there can be multiple binary representations for the |
3828 | * same logical value. But we should be OK as long as there are no false |
3829 | * positives. Using a type-specific equality operator is messy because |
3830 | * there could be multiple notions of equality in different operator |
3831 | * classes; furthermore, we cannot safely invoke user-defined functions |
3832 | * while holding exclusive buffer lock. |
3833 | */ |
3834 | if (attrnum <= 0) |
3835 | { |
3836 | /* The only allowed system columns are OIDs, so do this */ |
3837 | return (DatumGetObjectId(value1) == DatumGetObjectId(value2)); |
3838 | } |
3839 | else |
3840 | { |
3841 | Assert(attrnum <= tupdesc->natts); |
3842 | att = TupleDescAttr(tupdesc, attrnum - 1); |
3843 | return datumIsEqual(value1, value2, att->attbyval, att->attlen); |
3844 | } |
3845 | } |
3846 | |
3847 | /* |
3848 | * Check which columns are being updated. |
3849 | * |
3850 | * Given an updated tuple, determine (and return into the output bitmapset), |
3851 | * from those listed as interesting, the set of columns that changed. |
3852 | * |
3853 | * The input bitmapset is destructively modified; that is OK since this is |
3854 | * invoked at most once in heap_update. |
3855 | */ |
3856 | static Bitmapset * |
3857 | HeapDetermineModifiedColumns(Relation relation, Bitmapset *interesting_cols, |
3858 | HeapTuple oldtup, HeapTuple newtup) |
3859 | { |
3860 | int attnum; |
3861 | Bitmapset *modified = NULL; |
3862 | |
3863 | while ((attnum = bms_first_member(interesting_cols)) >= 0) |
3864 | { |
3865 | attnum += FirstLowInvalidHeapAttributeNumber; |
3866 | |
3867 | if (!heap_tuple_attr_equals(RelationGetDescr(relation), |
3868 | attnum, oldtup, newtup)) |
3869 | modified = bms_add_member(modified, |
3870 | attnum - FirstLowInvalidHeapAttributeNumber); |
3871 | } |
3872 | |
3873 | return modified; |
3874 | } |
3875 | |
3876 | /* |
3877 | * simple_heap_update - replace a tuple |
3878 | * |
3879 | * This routine may be used to update a tuple when concurrent updates of |
3880 | * the target tuple are not expected (for example, because we have a lock |
3881 | * on the relation associated with the tuple). Any failure is reported |
3882 | * via ereport(). |
3883 | */ |
3884 | void |
3885 | simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup) |
3886 | { |
3887 | TM_Result result; |
3888 | TM_FailureData tmfd; |
3889 | LockTupleMode lockmode; |
3890 | |
3891 | result = heap_update(relation, otid, tup, |
3892 | GetCurrentCommandId(true), InvalidSnapshot, |
3893 | true /* wait for commit */ , |
3894 | &tmfd, &lockmode); |
3895 | switch (result) |
3896 | { |
3897 | case TM_SelfModified: |
3898 | /* Tuple was already updated in current command? */ |
3899 | elog(ERROR, "tuple already updated by self" ); |
3900 | break; |
3901 | |
3902 | case TM_Ok: |
3903 | /* done successfully */ |
3904 | break; |
3905 | |
3906 | case TM_Updated: |
3907 | elog(ERROR, "tuple concurrently updated" ); |
3908 | break; |
3909 | |
3910 | case TM_Deleted: |
3911 | elog(ERROR, "tuple concurrently deleted" ); |
3912 | break; |
3913 | |
3914 | default: |
3915 | elog(ERROR, "unrecognized heap_update status: %u" , result); |
3916 | break; |
3917 | } |
3918 | } |
3919 | |
3920 | |
3921 | /* |
3922 | * Return the MultiXactStatus corresponding to the given tuple lock mode. |
3923 | */ |
3924 | static MultiXactStatus |
3925 | get_mxact_status_for_lock(LockTupleMode mode, bool is_update) |
3926 | { |
3927 | int retval; |
3928 | |
3929 | if (is_update) |
3930 | retval = tupleLockExtraInfo[mode].updstatus; |
3931 | else |
3932 | retval = tupleLockExtraInfo[mode].lockstatus; |
3933 | |
3934 | if (retval == -1) |
3935 | elog(ERROR, "invalid lock tuple mode %d/%s" , mode, |
3936 | is_update ? "true" : "false" ); |
3937 | |
3938 | return (MultiXactStatus) retval; |
3939 | } |
3940 | |
3941 | /* |
3942 | * heap_lock_tuple - lock a tuple in shared or exclusive mode |
3943 | * |
3944 | * Note that this acquires a buffer pin, which the caller must release. |
3945 | * |
3946 | * Input parameters: |
3947 | * relation: relation containing tuple (caller must hold suitable lock) |
3948 | * tid: TID of tuple to lock |
3949 | * cid: current command ID (used for visibility test, and stored into |
3950 | * tuple's cmax if lock is successful) |
3951 | * mode: indicates if shared or exclusive tuple lock is desired |
3952 | * wait_policy: what to do if tuple lock is not available |
3953 | * follow_updates: if true, follow the update chain to also lock descendant |
3954 | * tuples. |
3955 | * |
3956 | * Output parameters: |
3957 | * *tuple: all fields filled in |
3958 | * *buffer: set to buffer holding tuple (pinned but not locked at exit) |
3959 | * *tmfd: filled in failure cases (see below) |
3960 | * |
3961 | * Function results are the same as the ones for table_tuple_lock(). |
3962 | * |
3963 | * In the failure cases other than TM_Invisible, the routine fills |
3964 | * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact, |
3965 | * if necessary), and t_cmax (the last only for TM_SelfModified, |
3966 | * since we cannot obtain cmax from a combocid generated by another |
3967 | * transaction). |
3968 | * See comments for struct TM_FailureData for additional info. |
3969 | * |
3970 | * See README.tuplock for a thorough explanation of this mechanism. |
3971 | */ |
3972 | TM_Result |
3973 | heap_lock_tuple(Relation relation, HeapTuple tuple, |
3974 | CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy, |
3975 | bool follow_updates, |
3976 | Buffer *buffer, TM_FailureData *tmfd) |
3977 | { |
3978 | TM_Result result; |
3979 | ItemPointer tid = &(tuple->t_self); |
3980 | ItemId lp; |
3981 | Page page; |
3982 | Buffer vmbuffer = InvalidBuffer; |
3983 | BlockNumber block; |
3984 | TransactionId xid, |
3985 | xmax; |
3986 | uint16 old_infomask, |
3987 | new_infomask, |
3988 | new_infomask2; |
3989 | bool first_time = true; |
3990 | bool skip_tuple_lock = false; |
3991 | bool have_tuple_lock = false; |
3992 | bool cleared_all_frozen = false; |
3993 | |
3994 | *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); |
3995 | block = ItemPointerGetBlockNumber(tid); |
3996 | |
3997 | /* |
3998 | * Before locking the buffer, pin the visibility map page if it appears to |
3999 | * be necessary. Since we haven't got the lock yet, someone else might be |
4000 | * in the middle of changing this, so we'll need to recheck after we have |
4001 | * the lock. |
4002 | */ |
4003 | if (PageIsAllVisible(BufferGetPage(*buffer))) |
4004 | visibilitymap_pin(relation, block, &vmbuffer); |
4005 | |
4006 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4007 | |
4008 | page = BufferGetPage(*buffer); |
4009 | lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); |
4010 | Assert(ItemIdIsNormal(lp)); |
4011 | |
4012 | tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp); |
4013 | tuple->t_len = ItemIdGetLength(lp); |
4014 | tuple->t_tableOid = RelationGetRelid(relation); |
4015 | |
4016 | l3: |
4017 | result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer); |
4018 | |
4019 | if (result == TM_Invisible) |
4020 | { |
4021 | /* |
4022 | * This is possible, but only when locking a tuple for ON CONFLICT |
4023 | * UPDATE. We return this value here rather than throwing an error in |
4024 | * order to give that case the opportunity to throw a more specific |
4025 | * error. |
4026 | */ |
4027 | result = TM_Invisible; |
4028 | goto out_locked; |
4029 | } |
4030 | else if (result == TM_BeingModified || |
4031 | result == TM_Updated || |
4032 | result == TM_Deleted) |
4033 | { |
4034 | TransactionId xwait; |
4035 | uint16 infomask; |
4036 | uint16 infomask2; |
4037 | bool require_sleep; |
4038 | ItemPointerData t_ctid; |
4039 | |
4040 | /* must copy state data before unlocking buffer */ |
4041 | xwait = HeapTupleHeaderGetRawXmax(tuple->t_data); |
4042 | infomask = tuple->t_data->t_infomask; |
4043 | infomask2 = tuple->t_data->t_infomask2; |
4044 | ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid); |
4045 | |
4046 | LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); |
4047 | |
4048 | /* |
4049 | * If any subtransaction of the current top transaction already holds |
4050 | * a lock as strong as or stronger than what we're requesting, we |
4051 | * effectively hold the desired lock already. We *must* succeed |
4052 | * without trying to take the tuple lock, else we will deadlock |
4053 | * against anyone wanting to acquire a stronger lock. |
4054 | * |
4055 | * Note we only do this the first time we loop on the HTSU result; |
4056 | * there is no point in testing in subsequent passes, because |
4057 | * evidently our own transaction cannot have acquired a new lock after |
4058 | * the first time we checked. |
4059 | */ |
4060 | if (first_time) |
4061 | { |
4062 | first_time = false; |
4063 | |
4064 | if (infomask & HEAP_XMAX_IS_MULTI) |
4065 | { |
4066 | int i; |
4067 | int nmembers; |
4068 | MultiXactMember *members; |
4069 | |
4070 | /* |
4071 | * We don't need to allow old multixacts here; if that had |
4072 | * been the case, HeapTupleSatisfiesUpdate would have returned |
4073 | * MayBeUpdated and we wouldn't be here. |
4074 | */ |
4075 | nmembers = |
4076 | GetMultiXactIdMembers(xwait, &members, false, |
4077 | HEAP_XMAX_IS_LOCKED_ONLY(infomask)); |
4078 | |
4079 | for (i = 0; i < nmembers; i++) |
4080 | { |
4081 | /* only consider members of our own transaction */ |
4082 | if (!TransactionIdIsCurrentTransactionId(members[i].xid)) |
4083 | continue; |
4084 | |
4085 | if (TUPLOCK_from_mxstatus(members[i].status) >= mode) |
4086 | { |
4087 | pfree(members); |
4088 | result = TM_Ok; |
4089 | goto out_unlocked; |
4090 | } |
4091 | else |
4092 | { |
4093 | /* |
4094 | * Disable acquisition of the heavyweight tuple lock. |
4095 | * Otherwise, when promoting a weaker lock, we might |
4096 | * deadlock with another locker that has acquired the |
4097 | * heavyweight tuple lock and is waiting for our |
4098 | * transaction to finish. |
4099 | * |
4100 | * Note that in this case we still need to wait for |
4101 | * the multixact if required, to avoid acquiring |
4102 | * conflicting locks. |
4103 | */ |
4104 | skip_tuple_lock = true; |
4105 | } |
4106 | } |
4107 | |
4108 | if (members) |
4109 | pfree(members); |
4110 | } |
4111 | else if (TransactionIdIsCurrentTransactionId(xwait)) |
4112 | { |
4113 | switch (mode) |
4114 | { |
4115 | case LockTupleKeyShare: |
4116 | Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) || |
4117 | HEAP_XMAX_IS_SHR_LOCKED(infomask) || |
4118 | HEAP_XMAX_IS_EXCL_LOCKED(infomask)); |
4119 | result = TM_Ok; |
4120 | goto out_unlocked; |
4121 | case LockTupleShare: |
4122 | if (HEAP_XMAX_IS_SHR_LOCKED(infomask) || |
4123 | HEAP_XMAX_IS_EXCL_LOCKED(infomask)) |
4124 | { |
4125 | result = TM_Ok; |
4126 | goto out_unlocked; |
4127 | } |
4128 | break; |
4129 | case LockTupleNoKeyExclusive: |
4130 | if (HEAP_XMAX_IS_EXCL_LOCKED(infomask)) |
4131 | { |
4132 | result = TM_Ok; |
4133 | goto out_unlocked; |
4134 | } |
4135 | break; |
4136 | case LockTupleExclusive: |
4137 | if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) && |
4138 | infomask2 & HEAP_KEYS_UPDATED) |
4139 | { |
4140 | result = TM_Ok; |
4141 | goto out_unlocked; |
4142 | } |
4143 | break; |
4144 | } |
4145 | } |
4146 | } |
4147 | |
4148 | /* |
4149 | * Initially assume that we will have to wait for the locking |
4150 | * transaction(s) to finish. We check various cases below in which |
4151 | * this can be turned off. |
4152 | */ |
4153 | require_sleep = true; |
4154 | if (mode == LockTupleKeyShare) |
4155 | { |
4156 | /* |
4157 | * If we're requesting KeyShare, and there's no update present, we |
4158 | * don't need to wait. Even if there is an update, we can still |
4159 | * continue if the key hasn't been modified. |
4160 | * |
4161 | * However, if there are updates, we need to walk the update chain |
4162 | * to mark future versions of the row as locked, too. That way, |
4163 | * if somebody deletes that future version, we're protected |
4164 | * against the key going away. This locking of future versions |
4165 | * could block momentarily, if a concurrent transaction is |
4166 | * deleting a key; or it could return a value to the effect that |
4167 | * the transaction deleting the key has already committed. So we |
4168 | * do this before re-locking the buffer; otherwise this would be |
4169 | * prone to deadlocks. |
4170 | * |
4171 | * Note that the TID we're locking was grabbed before we unlocked |
4172 | * the buffer. For it to change while we're not looking, the |
4173 | * other properties we're testing for below after re-locking the |
4174 | * buffer would also change, in which case we would restart this |
4175 | * loop above. |
4176 | */ |
4177 | if (!(infomask2 & HEAP_KEYS_UPDATED)) |
4178 | { |
4179 | bool updated; |
4180 | |
4181 | updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask); |
4182 | |
4183 | /* |
4184 | * If there are updates, follow the update chain; bail out if |
4185 | * that cannot be done. |
4186 | */ |
4187 | if (follow_updates && updated) |
4188 | { |
4189 | TM_Result res; |
4190 | |
4191 | res = heap_lock_updated_tuple(relation, tuple, &t_ctid, |
4192 | GetCurrentTransactionId(), |
4193 | mode); |
4194 | if (res != TM_Ok) |
4195 | { |
4196 | result = res; |
4197 | /* recovery code expects to have buffer lock held */ |
4198 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4199 | goto failed; |
4200 | } |
4201 | } |
4202 | |
4203 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4204 | |
4205 | /* |
4206 | * Make sure it's still an appropriate lock, else start over. |
4207 | * Also, if it wasn't updated before we released the lock, but |
4208 | * is updated now, we start over too; the reason is that we |
4209 | * now need to follow the update chain to lock the new |
4210 | * versions. |
4211 | */ |
4212 | if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) && |
4213 | ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) || |
4214 | !updated)) |
4215 | goto l3; |
4216 | |
4217 | /* Things look okay, so we can skip sleeping */ |
4218 | require_sleep = false; |
4219 | |
4220 | /* |
4221 | * Note we allow Xmax to change here; other updaters/lockers |
4222 | * could have modified it before we grabbed the buffer lock. |
4223 | * However, this is not a problem, because with the recheck we |
4224 | * just did we ensure that they still don't conflict with the |
4225 | * lock we want. |
4226 | */ |
4227 | } |
4228 | } |
4229 | else if (mode == LockTupleShare) |
4230 | { |
4231 | /* |
4232 | * If we're requesting Share, we can similarly avoid sleeping if |
4233 | * there's no update and no exclusive lock present. |
4234 | */ |
4235 | if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) && |
4236 | !HEAP_XMAX_IS_EXCL_LOCKED(infomask)) |
4237 | { |
4238 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4239 | |
4240 | /* |
4241 | * Make sure it's still an appropriate lock, else start over. |
4242 | * See above about allowing xmax to change. |
4243 | */ |
4244 | if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) || |
4245 | HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask)) |
4246 | goto l3; |
4247 | require_sleep = false; |
4248 | } |
4249 | } |
4250 | else if (mode == LockTupleNoKeyExclusive) |
4251 | { |
4252 | /* |
4253 | * If we're requesting NoKeyExclusive, we might also be able to |
4254 | * avoid sleeping; just ensure that there no conflicting lock |
4255 | * already acquired. |
4256 | */ |
4257 | if (infomask & HEAP_XMAX_IS_MULTI) |
4258 | { |
4259 | if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask, |
4260 | mode, NULL)) |
4261 | { |
4262 | /* |
4263 | * No conflict, but if the xmax changed under us in the |
4264 | * meantime, start over. |
4265 | */ |
4266 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4267 | if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) || |
4268 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), |
4269 | xwait)) |
4270 | goto l3; |
4271 | |
4272 | /* otherwise, we're good */ |
4273 | require_sleep = false; |
4274 | } |
4275 | } |
4276 | else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask)) |
4277 | { |
4278 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4279 | |
4280 | /* if the xmax changed in the meantime, start over */ |
4281 | if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) || |
4282 | !TransactionIdEquals( |
4283 | HeapTupleHeaderGetRawXmax(tuple->t_data), |
4284 | xwait)) |
4285 | goto l3; |
4286 | /* otherwise, we're good */ |
4287 | require_sleep = false; |
4288 | } |
4289 | } |
4290 | |
4291 | /* |
4292 | * As a check independent from those above, we can also avoid sleeping |
4293 | * if the current transaction is the sole locker of the tuple. Note |
4294 | * that the strength of the lock already held is irrelevant; this is |
4295 | * not about recording the lock in Xmax (which will be done regardless |
4296 | * of this optimization, below). Also, note that the cases where we |
4297 | * hold a lock stronger than we are requesting are already handled |
4298 | * above by not doing anything. |
4299 | * |
4300 | * Note we only deal with the non-multixact case here; MultiXactIdWait |
4301 | * is well equipped to deal with this situation on its own. |
4302 | */ |
4303 | if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) && |
4304 | TransactionIdIsCurrentTransactionId(xwait)) |
4305 | { |
4306 | /* ... but if the xmax changed in the meantime, start over */ |
4307 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4308 | if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) || |
4309 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), |
4310 | xwait)) |
4311 | goto l3; |
4312 | Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask)); |
4313 | require_sleep = false; |
4314 | } |
4315 | |
4316 | /* |
4317 | * Time to sleep on the other transaction/multixact, if necessary. |
4318 | * |
4319 | * If the other transaction is an update/delete that's already |
4320 | * committed, then sleeping cannot possibly do any good: if we're |
4321 | * required to sleep, get out to raise an error instead. |
4322 | * |
4323 | * By here, we either have already acquired the buffer exclusive lock, |
4324 | * or we must wait for the locking transaction or multixact; so below |
4325 | * we ensure that we grab buffer lock after the sleep. |
4326 | */ |
4327 | if (require_sleep && (result == TM_Updated || result == TM_Deleted)) |
4328 | { |
4329 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4330 | goto failed; |
4331 | } |
4332 | else if (require_sleep) |
4333 | { |
4334 | /* |
4335 | * Acquire tuple lock to establish our priority for the tuple, or |
4336 | * die trying. LockTuple will release us when we are next-in-line |
4337 | * for the tuple. We must do this even if we are share-locking, |
4338 | * but not if we already have a weaker lock on the tuple. |
4339 | * |
4340 | * If we are forced to "start over" below, we keep the tuple lock; |
4341 | * this arranges that we stay at the head of the line while |
4342 | * rechecking tuple state. |
4343 | */ |
4344 | if (!skip_tuple_lock && |
4345 | !heap_acquire_tuplock(relation, tid, mode, wait_policy, |
4346 | &have_tuple_lock)) |
4347 | { |
4348 | /* |
4349 | * This can only happen if wait_policy is Skip and the lock |
4350 | * couldn't be obtained. |
4351 | */ |
4352 | result = TM_WouldBlock; |
4353 | /* recovery code expects to have buffer lock held */ |
4354 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4355 | goto failed; |
4356 | } |
4357 | |
4358 | if (infomask & HEAP_XMAX_IS_MULTI) |
4359 | { |
4360 | MultiXactStatus status = get_mxact_status_for_lock(mode, false); |
4361 | |
4362 | /* We only ever lock tuples, never update them */ |
4363 | if (status >= MultiXactStatusNoKeyUpdate) |
4364 | elog(ERROR, "invalid lock mode in heap_lock_tuple" ); |
4365 | |
4366 | /* wait for multixact to end, or die trying */ |
4367 | switch (wait_policy) |
4368 | { |
4369 | case LockWaitBlock: |
4370 | MultiXactIdWait((MultiXactId) xwait, status, infomask, |
4371 | relation, &tuple->t_self, XLTW_Lock, NULL); |
4372 | break; |
4373 | case LockWaitSkip: |
4374 | if (!ConditionalMultiXactIdWait((MultiXactId) xwait, |
4375 | status, infomask, relation, |
4376 | NULL)) |
4377 | { |
4378 | result = TM_WouldBlock; |
4379 | /* recovery code expects to have buffer lock held */ |
4380 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4381 | goto failed; |
4382 | } |
4383 | break; |
4384 | case LockWaitError: |
4385 | if (!ConditionalMultiXactIdWait((MultiXactId) xwait, |
4386 | status, infomask, relation, |
4387 | NULL)) |
4388 | ereport(ERROR, |
4389 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
4390 | errmsg("could not obtain lock on row in relation \"%s\"" , |
4391 | RelationGetRelationName(relation)))); |
4392 | |
4393 | break; |
4394 | } |
4395 | |
4396 | /* |
4397 | * Of course, the multixact might not be done here: if we're |
4398 | * requesting a light lock mode, other transactions with light |
4399 | * locks could still be alive, as well as locks owned by our |
4400 | * own xact or other subxacts of this backend. We need to |
4401 | * preserve the surviving MultiXact members. Note that it |
4402 | * isn't absolutely necessary in the latter case, but doing so |
4403 | * is simpler. |
4404 | */ |
4405 | } |
4406 | else |
4407 | { |
4408 | /* wait for regular transaction to end, or die trying */ |
4409 | switch (wait_policy) |
4410 | { |
4411 | case LockWaitBlock: |
4412 | XactLockTableWait(xwait, relation, &tuple->t_self, |
4413 | XLTW_Lock); |
4414 | break; |
4415 | case LockWaitSkip: |
4416 | if (!ConditionalXactLockTableWait(xwait)) |
4417 | { |
4418 | result = TM_WouldBlock; |
4419 | /* recovery code expects to have buffer lock held */ |
4420 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4421 | goto failed; |
4422 | } |
4423 | break; |
4424 | case LockWaitError: |
4425 | if (!ConditionalXactLockTableWait(xwait)) |
4426 | ereport(ERROR, |
4427 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
4428 | errmsg("could not obtain lock on row in relation \"%s\"" , |
4429 | RelationGetRelationName(relation)))); |
4430 | break; |
4431 | } |
4432 | } |
4433 | |
4434 | /* if there are updates, follow the update chain */ |
4435 | if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask)) |
4436 | { |
4437 | TM_Result res; |
4438 | |
4439 | res = heap_lock_updated_tuple(relation, tuple, &t_ctid, |
4440 | GetCurrentTransactionId(), |
4441 | mode); |
4442 | if (res != TM_Ok) |
4443 | { |
4444 | result = res; |
4445 | /* recovery code expects to have buffer lock held */ |
4446 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4447 | goto failed; |
4448 | } |
4449 | } |
4450 | |
4451 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4452 | |
4453 | /* |
4454 | * xwait is done, but if xwait had just locked the tuple then some |
4455 | * other xact could update this tuple before we get to this point. |
4456 | * Check for xmax change, and start over if so. |
4457 | */ |
4458 | if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) || |
4459 | !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), |
4460 | xwait)) |
4461 | goto l3; |
4462 | |
4463 | if (!(infomask & HEAP_XMAX_IS_MULTI)) |
4464 | { |
4465 | /* |
4466 | * Otherwise check if it committed or aborted. Note we cannot |
4467 | * be here if the tuple was only locked by somebody who didn't |
4468 | * conflict with us; that would have been handled above. So |
4469 | * that transaction must necessarily be gone by now. But |
4470 | * don't check for this in the multixact case, because some |
4471 | * locker transactions might still be running. |
4472 | */ |
4473 | UpdateXmaxHintBits(tuple->t_data, *buffer, xwait); |
4474 | } |
4475 | } |
4476 | |
4477 | /* By here, we're certain that we hold buffer exclusive lock again */ |
4478 | |
4479 | /* |
4480 | * We may lock if previous xmax aborted, or if it committed but only |
4481 | * locked the tuple without updating it; or if we didn't have to wait |
4482 | * at all for whatever reason. |
4483 | */ |
4484 | if (!require_sleep || |
4485 | (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) || |
4486 | HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) || |
4487 | HeapTupleHeaderIsOnlyLocked(tuple->t_data)) |
4488 | result = TM_Ok; |
4489 | else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid) || |
4490 | HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data)) |
4491 | result = TM_Updated; |
4492 | else |
4493 | result = TM_Deleted; |
4494 | } |
4495 | |
4496 | failed: |
4497 | if (result != TM_Ok) |
4498 | { |
4499 | Assert(result == TM_SelfModified || result == TM_Updated || |
4500 | result == TM_Deleted || result == TM_WouldBlock); |
4501 | Assert(!(tuple->t_data->t_infomask & HEAP_XMAX_INVALID)); |
4502 | Assert(result != TM_Updated || |
4503 | !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid)); |
4504 | tmfd->ctid = tuple->t_data->t_ctid; |
4505 | tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data); |
4506 | if (result == TM_SelfModified) |
4507 | tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data); |
4508 | else |
4509 | tmfd->cmax = InvalidCommandId; |
4510 | goto out_locked; |
4511 | } |
4512 | |
4513 | /* |
4514 | * If we didn't pin the visibility map page and the page has become all |
4515 | * visible while we were busy locking the buffer, or during some |
4516 | * subsequent window during which we had it unlocked, we'll have to unlock |
4517 | * and re-lock, to avoid holding the buffer lock across I/O. That's a bit |
4518 | * unfortunate, especially since we'll now have to recheck whether the |
4519 | * tuple has been locked or updated under us, but hopefully it won't |
4520 | * happen very often. |
4521 | */ |
4522 | if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) |
4523 | { |
4524 | LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); |
4525 | visibilitymap_pin(relation, block, &vmbuffer); |
4526 | LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); |
4527 | goto l3; |
4528 | } |
4529 | |
4530 | xmax = HeapTupleHeaderGetRawXmax(tuple->t_data); |
4531 | old_infomask = tuple->t_data->t_infomask; |
4532 | |
4533 | /* |
4534 | * If this is the first possibly-multixact-able operation in the current |
4535 | * transaction, set my per-backend OldestMemberMXactId setting. We can be |
4536 | * certain that the transaction will never become a member of any older |
4537 | * MultiXactIds than that. (We have to do this even if we end up just |
4538 | * using our own TransactionId below, since some other backend could |
4539 | * incorporate our XID into a MultiXact immediately afterwards.) |
4540 | */ |
4541 | MultiXactIdSetOldestMember(); |
4542 | |
4543 | /* |
4544 | * Compute the new xmax and infomask to store into the tuple. Note we do |
4545 | * not modify the tuple just yet, because that would leave it in the wrong |
4546 | * state if multixact.c elogs. |
4547 | */ |
4548 | compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2, |
4549 | GetCurrentTransactionId(), mode, false, |
4550 | &xid, &new_infomask, &new_infomask2); |
4551 | |
4552 | START_CRIT_SECTION(); |
4553 | |
4554 | /* |
4555 | * Store transaction information of xact locking the tuple. |
4556 | * |
4557 | * Note: Cmax is meaningless in this context, so don't set it; this avoids |
4558 | * possibly generating a useless combo CID. Moreover, if we're locking a |
4559 | * previously updated tuple, it's important to preserve the Cmax. |
4560 | * |
4561 | * Also reset the HOT UPDATE bit, but only if there's no update; otherwise |
4562 | * we would break the HOT chain. |
4563 | */ |
4564 | tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS; |
4565 | tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
4566 | tuple->t_data->t_infomask |= new_infomask; |
4567 | tuple->t_data->t_infomask2 |= new_infomask2; |
4568 | if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask)) |
4569 | HeapTupleHeaderClearHotUpdated(tuple->t_data); |
4570 | HeapTupleHeaderSetXmax(tuple->t_data, xid); |
4571 | |
4572 | /* |
4573 | * Make sure there is no forward chain link in t_ctid. Note that in the |
4574 | * cases where the tuple has been updated, we must not overwrite t_ctid, |
4575 | * because it was set by the updater. Moreover, if the tuple has been |
4576 | * updated, we need to follow the update chain to lock the new versions of |
4577 | * the tuple as well. |
4578 | */ |
4579 | if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask)) |
4580 | tuple->t_data->t_ctid = *tid; |
4581 | |
4582 | /* Clear only the all-frozen bit on visibility map if needed */ |
4583 | if (PageIsAllVisible(page) && |
4584 | visibilitymap_clear(relation, block, vmbuffer, |
4585 | VISIBILITYMAP_ALL_FROZEN)) |
4586 | cleared_all_frozen = true; |
4587 | |
4588 | |
4589 | MarkBufferDirty(*buffer); |
4590 | |
4591 | /* |
4592 | * XLOG stuff. You might think that we don't need an XLOG record because |
4593 | * there is no state change worth restoring after a crash. You would be |
4594 | * wrong however: we have just written either a TransactionId or a |
4595 | * MultiXactId that may never have been seen on disk before, and we need |
4596 | * to make sure that there are XLOG entries covering those ID numbers. |
4597 | * Else the same IDs might be re-used after a crash, which would be |
4598 | * disastrous if this page made it to disk before the crash. Essentially |
4599 | * we have to enforce the WAL log-before-data rule even in this case. |
4600 | * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG |
4601 | * entries for everything anyway.) |
4602 | */ |
4603 | if (RelationNeedsWAL(relation)) |
4604 | { |
4605 | xl_heap_lock xlrec; |
4606 | XLogRecPtr recptr; |
4607 | |
4608 | XLogBeginInsert(); |
4609 | XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD); |
4610 | |
4611 | xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self); |
4612 | xlrec.locking_xid = xid; |
4613 | xlrec.infobits_set = compute_infobits(new_infomask, |
4614 | tuple->t_data->t_infomask2); |
4615 | xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0; |
4616 | XLogRegisterData((char *) &xlrec, SizeOfHeapLock); |
4617 | |
4618 | /* we don't decode row locks atm, so no need to log the origin */ |
4619 | |
4620 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK); |
4621 | |
4622 | PageSetLSN(page, recptr); |
4623 | } |
4624 | |
4625 | END_CRIT_SECTION(); |
4626 | |
4627 | result = TM_Ok; |
4628 | |
4629 | out_locked: |
4630 | LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); |
4631 | |
4632 | out_unlocked: |
4633 | if (BufferIsValid(vmbuffer)) |
4634 | ReleaseBuffer(vmbuffer); |
4635 | |
4636 | /* |
4637 | * Don't update the visibility map here. Locking a tuple doesn't change |
4638 | * visibility info. |
4639 | */ |
4640 | |
4641 | /* |
4642 | * Now that we have successfully marked the tuple as locked, we can |
4643 | * release the lmgr tuple lock, if we had it. |
4644 | */ |
4645 | if (have_tuple_lock) |
4646 | UnlockTupleTuplock(relation, tid, mode); |
4647 | |
4648 | return result; |
4649 | } |
4650 | |
4651 | /* |
4652 | * Acquire heavyweight lock on the given tuple, in preparation for acquiring |
4653 | * its normal, Xmax-based tuple lock. |
4654 | * |
4655 | * have_tuple_lock is an input and output parameter: on input, it indicates |
4656 | * whether the lock has previously been acquired (and this function does |
4657 | * nothing in that case). If this function returns success, have_tuple_lock |
4658 | * has been flipped to true. |
4659 | * |
4660 | * Returns false if it was unable to obtain the lock; this can only happen if |
4661 | * wait_policy is Skip. |
4662 | */ |
4663 | static bool |
4664 | heap_acquire_tuplock(Relation relation, ItemPointer tid, LockTupleMode mode, |
4665 | LockWaitPolicy wait_policy, bool *have_tuple_lock) |
4666 | { |
4667 | if (*have_tuple_lock) |
4668 | return true; |
4669 | |
4670 | switch (wait_policy) |
4671 | { |
4672 | case LockWaitBlock: |
4673 | LockTupleTuplock(relation, tid, mode); |
4674 | break; |
4675 | |
4676 | case LockWaitSkip: |
4677 | if (!ConditionalLockTupleTuplock(relation, tid, mode)) |
4678 | return false; |
4679 | break; |
4680 | |
4681 | case LockWaitError: |
4682 | if (!ConditionalLockTupleTuplock(relation, tid, mode)) |
4683 | ereport(ERROR, |
4684 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
4685 | errmsg("could not obtain lock on row in relation \"%s\"" , |
4686 | RelationGetRelationName(relation)))); |
4687 | break; |
4688 | } |
4689 | *have_tuple_lock = true; |
4690 | |
4691 | return true; |
4692 | } |
4693 | |
4694 | /* |
4695 | * Given an original set of Xmax and infomask, and a transaction (identified by |
4696 | * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and |
4697 | * corresponding infomasks to use on the tuple. |
4698 | * |
4699 | * Note that this might have side effects such as creating a new MultiXactId. |
4700 | * |
4701 | * Most callers will have called HeapTupleSatisfiesUpdate before this function; |
4702 | * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId |
4703 | * but it was not running anymore. There is a race condition, which is that the |
4704 | * MultiXactId may have finished since then, but that uncommon case is handled |
4705 | * either here, or within MultiXactIdExpand. |
4706 | * |
4707 | * There is a similar race condition possible when the old xmax was a regular |
4708 | * TransactionId. We test TransactionIdIsInProgress again just to narrow the |
4709 | * window, but it's still possible to end up creating an unnecessary |
4710 | * MultiXactId. Fortunately this is harmless. |
4711 | */ |
4712 | static void |
4713 | compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask, |
4714 | uint16 old_infomask2, TransactionId add_to_xmax, |
4715 | LockTupleMode mode, bool is_update, |
4716 | TransactionId *result_xmax, uint16 *result_infomask, |
4717 | uint16 *result_infomask2) |
4718 | { |
4719 | TransactionId new_xmax; |
4720 | uint16 new_infomask, |
4721 | new_infomask2; |
4722 | |
4723 | Assert(TransactionIdIsCurrentTransactionId(add_to_xmax)); |
4724 | |
4725 | l5: |
4726 | new_infomask = 0; |
4727 | new_infomask2 = 0; |
4728 | if (old_infomask & HEAP_XMAX_INVALID) |
4729 | { |
4730 | /* |
4731 | * No previous locker; we just insert our own TransactionId. |
4732 | * |
4733 | * Note that it's critical that this case be the first one checked, |
4734 | * because there are several blocks below that come back to this one |
4735 | * to implement certain optimizations; old_infomask might contain |
4736 | * other dirty bits in those cases, but we don't really care. |
4737 | */ |
4738 | if (is_update) |
4739 | { |
4740 | new_xmax = add_to_xmax; |
4741 | if (mode == LockTupleExclusive) |
4742 | new_infomask2 |= HEAP_KEYS_UPDATED; |
4743 | } |
4744 | else |
4745 | { |
4746 | new_infomask |= HEAP_XMAX_LOCK_ONLY; |
4747 | switch (mode) |
4748 | { |
4749 | case LockTupleKeyShare: |
4750 | new_xmax = add_to_xmax; |
4751 | new_infomask |= HEAP_XMAX_KEYSHR_LOCK; |
4752 | break; |
4753 | case LockTupleShare: |
4754 | new_xmax = add_to_xmax; |
4755 | new_infomask |= HEAP_XMAX_SHR_LOCK; |
4756 | break; |
4757 | case LockTupleNoKeyExclusive: |
4758 | new_xmax = add_to_xmax; |
4759 | new_infomask |= HEAP_XMAX_EXCL_LOCK; |
4760 | break; |
4761 | case LockTupleExclusive: |
4762 | new_xmax = add_to_xmax; |
4763 | new_infomask |= HEAP_XMAX_EXCL_LOCK; |
4764 | new_infomask2 |= HEAP_KEYS_UPDATED; |
4765 | break; |
4766 | default: |
4767 | new_xmax = InvalidTransactionId; /* silence compiler */ |
4768 | elog(ERROR, "invalid lock mode" ); |
4769 | } |
4770 | } |
4771 | } |
4772 | else if (old_infomask & HEAP_XMAX_IS_MULTI) |
4773 | { |
4774 | MultiXactStatus new_status; |
4775 | |
4776 | /* |
4777 | * Currently we don't allow XMAX_COMMITTED to be set for multis, so |
4778 | * cross-check. |
4779 | */ |
4780 | Assert(!(old_infomask & HEAP_XMAX_COMMITTED)); |
4781 | |
4782 | /* |
4783 | * A multixact together with LOCK_ONLY set but neither lock bit set |
4784 | * (i.e. a pg_upgraded share locked tuple) cannot possibly be running |
4785 | * anymore. This check is critical for databases upgraded by |
4786 | * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume |
4787 | * that such multis are never passed. |
4788 | */ |
4789 | if (HEAP_LOCKED_UPGRADED(old_infomask)) |
4790 | { |
4791 | old_infomask &= ~HEAP_XMAX_IS_MULTI; |
4792 | old_infomask |= HEAP_XMAX_INVALID; |
4793 | goto l5; |
4794 | } |
4795 | |
4796 | /* |
4797 | * If the XMAX is already a MultiXactId, then we need to expand it to |
4798 | * include add_to_xmax; but if all the members were lockers and are |
4799 | * all gone, we can do away with the IS_MULTI bit and just set |
4800 | * add_to_xmax as the only locker/updater. If all lockers are gone |
4801 | * and we have an updater that aborted, we can also do without a |
4802 | * multi. |
4803 | * |
4804 | * The cost of doing GetMultiXactIdMembers would be paid by |
4805 | * MultiXactIdExpand if we weren't to do this, so this check is not |
4806 | * incurring extra work anyhow. |
4807 | */ |
4808 | if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))) |
4809 | { |
4810 | if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) || |
4811 | !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax, |
4812 | old_infomask))) |
4813 | { |
4814 | /* |
4815 | * Reset these bits and restart; otherwise fall through to |
4816 | * create a new multi below. |
4817 | */ |
4818 | old_infomask &= ~HEAP_XMAX_IS_MULTI; |
4819 | old_infomask |= HEAP_XMAX_INVALID; |
4820 | goto l5; |
4821 | } |
4822 | } |
4823 | |
4824 | new_status = get_mxact_status_for_lock(mode, is_update); |
4825 | |
4826 | new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax, |
4827 | new_status); |
4828 | GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); |
4829 | } |
4830 | else if (old_infomask & HEAP_XMAX_COMMITTED) |
4831 | { |
4832 | /* |
4833 | * It's a committed update, so we need to preserve him as updater of |
4834 | * the tuple. |
4835 | */ |
4836 | MultiXactStatus status; |
4837 | MultiXactStatus new_status; |
4838 | |
4839 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
4840 | status = MultiXactStatusUpdate; |
4841 | else |
4842 | status = MultiXactStatusNoKeyUpdate; |
4843 | |
4844 | new_status = get_mxact_status_for_lock(mode, is_update); |
4845 | |
4846 | /* |
4847 | * since it's not running, it's obviously impossible for the old |
4848 | * updater to be identical to the current one, so we need not check |
4849 | * for that case as we do in the block above. |
4850 | */ |
4851 | new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status); |
4852 | GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); |
4853 | } |
4854 | else if (TransactionIdIsInProgress(xmax)) |
4855 | { |
4856 | /* |
4857 | * If the XMAX is a valid, in-progress TransactionId, then we need to |
4858 | * create a new MultiXactId that includes both the old locker or |
4859 | * updater and our own TransactionId. |
4860 | */ |
4861 | MultiXactStatus new_status; |
4862 | MultiXactStatus old_status; |
4863 | LockTupleMode old_mode; |
4864 | |
4865 | if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)) |
4866 | { |
4867 | if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask)) |
4868 | old_status = MultiXactStatusForKeyShare; |
4869 | else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask)) |
4870 | old_status = MultiXactStatusForShare; |
4871 | else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) |
4872 | { |
4873 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
4874 | old_status = MultiXactStatusForUpdate; |
4875 | else |
4876 | old_status = MultiXactStatusForNoKeyUpdate; |
4877 | } |
4878 | else |
4879 | { |
4880 | /* |
4881 | * LOCK_ONLY can be present alone only when a page has been |
4882 | * upgraded by pg_upgrade. But in that case, |
4883 | * TransactionIdIsInProgress() should have returned false. We |
4884 | * assume it's no longer locked in this case. |
4885 | */ |
4886 | elog(WARNING, "LOCK_ONLY found for Xid in progress %u" , xmax); |
4887 | old_infomask |= HEAP_XMAX_INVALID; |
4888 | old_infomask &= ~HEAP_XMAX_LOCK_ONLY; |
4889 | goto l5; |
4890 | } |
4891 | } |
4892 | else |
4893 | { |
4894 | /* it's an update, but which kind? */ |
4895 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
4896 | old_status = MultiXactStatusUpdate; |
4897 | else |
4898 | old_status = MultiXactStatusNoKeyUpdate; |
4899 | } |
4900 | |
4901 | old_mode = TUPLOCK_from_mxstatus(old_status); |
4902 | |
4903 | /* |
4904 | * If the lock to be acquired is for the same TransactionId as the |
4905 | * existing lock, there's an optimization possible: consider only the |
4906 | * strongest of both locks as the only one present, and restart. |
4907 | */ |
4908 | if (xmax == add_to_xmax) |
4909 | { |
4910 | /* |
4911 | * Note that it's not possible for the original tuple to be |
4912 | * updated: we wouldn't be here because the tuple would have been |
4913 | * invisible and we wouldn't try to update it. As a subtlety, |
4914 | * this code can also run when traversing an update chain to lock |
4915 | * future versions of a tuple. But we wouldn't be here either, |
4916 | * because the add_to_xmax would be different from the original |
4917 | * updater. |
4918 | */ |
4919 | Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)); |
4920 | |
4921 | /* acquire the strongest of both */ |
4922 | if (mode < old_mode) |
4923 | mode = old_mode; |
4924 | /* mustn't touch is_update */ |
4925 | |
4926 | old_infomask |= HEAP_XMAX_INVALID; |
4927 | goto l5; |
4928 | } |
4929 | |
4930 | /* otherwise, just fall back to creating a new multixact */ |
4931 | new_status = get_mxact_status_for_lock(mode, is_update); |
4932 | new_xmax = MultiXactIdCreate(xmax, old_status, |
4933 | add_to_xmax, new_status); |
4934 | GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); |
4935 | } |
4936 | else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) && |
4937 | TransactionIdDidCommit(xmax)) |
4938 | { |
4939 | /* |
4940 | * It's a committed update, so we gotta preserve him as updater of the |
4941 | * tuple. |
4942 | */ |
4943 | MultiXactStatus status; |
4944 | MultiXactStatus new_status; |
4945 | |
4946 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
4947 | status = MultiXactStatusUpdate; |
4948 | else |
4949 | status = MultiXactStatusNoKeyUpdate; |
4950 | |
4951 | new_status = get_mxact_status_for_lock(mode, is_update); |
4952 | |
4953 | /* |
4954 | * since it's not running, it's obviously impossible for the old |
4955 | * updater to be identical to the current one, so we need not check |
4956 | * for that case as we do in the block above. |
4957 | */ |
4958 | new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status); |
4959 | GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); |
4960 | } |
4961 | else |
4962 | { |
4963 | /* |
4964 | * Can get here iff the locking/updating transaction was running when |
4965 | * the infomask was extracted from the tuple, but finished before |
4966 | * TransactionIdIsInProgress got to run. Deal with it as if there was |
4967 | * no locker at all in the first place. |
4968 | */ |
4969 | old_infomask |= HEAP_XMAX_INVALID; |
4970 | goto l5; |
4971 | } |
4972 | |
4973 | *result_infomask = new_infomask; |
4974 | *result_infomask2 = new_infomask2; |
4975 | *result_xmax = new_xmax; |
4976 | } |
4977 | |
4978 | /* |
4979 | * Subroutine for heap_lock_updated_tuple_rec. |
4980 | * |
4981 | * Given a hypothetical multixact status held by the transaction identified |
4982 | * with the given xid, does the current transaction need to wait, fail, or can |
4983 | * it continue if it wanted to acquire a lock of the given mode? "needwait" |
4984 | * is set to true if waiting is necessary; if it can continue, then TM_Ok is |
4985 | * returned. If the lock is already held by the current transaction, return |
4986 | * TM_SelfModified. In case of a conflict with another transaction, a |
4987 | * different HeapTupleSatisfiesUpdate return code is returned. |
4988 | * |
4989 | * The held status is said to be hypothetical because it might correspond to a |
4990 | * lock held by a single Xid, i.e. not a real MultiXactId; we express it this |
4991 | * way for simplicity of API. |
4992 | */ |
4993 | static TM_Result |
4994 | test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid, |
4995 | LockTupleMode mode, HeapTuple tup, |
4996 | bool *needwait) |
4997 | { |
4998 | MultiXactStatus wantedstatus; |
4999 | |
5000 | *needwait = false; |
5001 | wantedstatus = get_mxact_status_for_lock(mode, false); |
5002 | |
5003 | /* |
5004 | * Note: we *must* check TransactionIdIsInProgress before |
5005 | * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c |
5006 | * for an explanation. |
5007 | */ |
5008 | if (TransactionIdIsCurrentTransactionId(xid)) |
5009 | { |
5010 | /* |
5011 | * The tuple has already been locked by our own transaction. This is |
5012 | * very rare but can happen if multiple transactions are trying to |
5013 | * lock an ancient version of the same tuple. |
5014 | */ |
5015 | return TM_SelfModified; |
5016 | } |
5017 | else if (TransactionIdIsInProgress(xid)) |
5018 | { |
5019 | /* |
5020 | * If the locking transaction is running, what we do depends on |
5021 | * whether the lock modes conflict: if they do, then we must wait for |
5022 | * it to finish; otherwise we can fall through to lock this tuple |
5023 | * version without waiting. |
5024 | */ |
5025 | if (DoLockModesConflict(LOCKMODE_from_mxstatus(status), |
5026 | LOCKMODE_from_mxstatus(wantedstatus))) |
5027 | { |
5028 | *needwait = true; |
5029 | } |
5030 | |
5031 | /* |
5032 | * If we set needwait above, then this value doesn't matter; |
5033 | * otherwise, this value signals to caller that it's okay to proceed. |
5034 | */ |
5035 | return TM_Ok; |
5036 | } |
5037 | else if (TransactionIdDidAbort(xid)) |
5038 | return TM_Ok; |
5039 | else if (TransactionIdDidCommit(xid)) |
5040 | { |
5041 | /* |
5042 | * The other transaction committed. If it was only a locker, then the |
5043 | * lock is completely gone now and we can return success; but if it |
5044 | * was an update, then what we do depends on whether the two lock |
5045 | * modes conflict. If they conflict, then we must report error to |
5046 | * caller. But if they don't, we can fall through to allow the current |
5047 | * transaction to lock the tuple. |
5048 | * |
5049 | * Note: the reason we worry about ISUPDATE here is because as soon as |
5050 | * a transaction ends, all its locks are gone and meaningless, and |
5051 | * thus we can ignore them; whereas its updates persist. In the |
5052 | * TransactionIdIsInProgress case, above, we don't need to check |
5053 | * because we know the lock is still "alive" and thus a conflict needs |
5054 | * always be checked. |
5055 | */ |
5056 | if (!ISUPDATE_from_mxstatus(status)) |
5057 | return TM_Ok; |
5058 | |
5059 | if (DoLockModesConflict(LOCKMODE_from_mxstatus(status), |
5060 | LOCKMODE_from_mxstatus(wantedstatus))) |
5061 | { |
5062 | /* bummer */ |
5063 | if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid) || |
5064 | HeapTupleHeaderIndicatesMovedPartitions(tup->t_data)) |
5065 | return TM_Updated; |
5066 | else |
5067 | return TM_Deleted; |
5068 | } |
5069 | |
5070 | return TM_Ok; |
5071 | } |
5072 | |
5073 | /* Not in progress, not aborted, not committed -- must have crashed */ |
5074 | return TM_Ok; |
5075 | } |
5076 | |
5077 | |
5078 | /* |
5079 | * Recursive part of heap_lock_updated_tuple |
5080 | * |
5081 | * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given |
5082 | * xid with the given mode; if this tuple is updated, recurse to lock the new |
5083 | * version as well. |
5084 | */ |
5085 | static TM_Result |
5086 | heap_lock_updated_tuple_rec(Relation rel, ItemPointer tid, TransactionId xid, |
5087 | LockTupleMode mode) |
5088 | { |
5089 | TM_Result result; |
5090 | ItemPointerData tupid; |
5091 | HeapTupleData mytup; |
5092 | Buffer buf; |
5093 | uint16 new_infomask, |
5094 | new_infomask2, |
5095 | old_infomask, |
5096 | old_infomask2; |
5097 | TransactionId xmax, |
5098 | new_xmax; |
5099 | TransactionId priorXmax = InvalidTransactionId; |
5100 | bool cleared_all_frozen = false; |
5101 | bool pinned_desired_page; |
5102 | Buffer vmbuffer = InvalidBuffer; |
5103 | BlockNumber block; |
5104 | |
5105 | ItemPointerCopy(tid, &tupid); |
5106 | |
5107 | for (;;) |
5108 | { |
5109 | new_infomask = 0; |
5110 | new_xmax = InvalidTransactionId; |
5111 | block = ItemPointerGetBlockNumber(&tupid); |
5112 | ItemPointerCopy(&tupid, &(mytup.t_self)); |
5113 | |
5114 | if (!heap_fetch(rel, SnapshotAny, &mytup, &buf)) |
5115 | { |
5116 | /* |
5117 | * if we fail to find the updated version of the tuple, it's |
5118 | * because it was vacuumed/pruned away after its creator |
5119 | * transaction aborted. So behave as if we got to the end of the |
5120 | * chain, and there's no further tuple to lock: return success to |
5121 | * caller. |
5122 | */ |
5123 | result = TM_Ok; |
5124 | goto out_unlocked; |
5125 | } |
5126 | |
5127 | l4: |
5128 | CHECK_FOR_INTERRUPTS(); |
5129 | |
5130 | /* |
5131 | * Before locking the buffer, pin the visibility map page if it |
5132 | * appears to be necessary. Since we haven't got the lock yet, |
5133 | * someone else might be in the middle of changing this, so we'll need |
5134 | * to recheck after we have the lock. |
5135 | */ |
5136 | if (PageIsAllVisible(BufferGetPage(buf))) |
5137 | { |
5138 | visibilitymap_pin(rel, block, &vmbuffer); |
5139 | pinned_desired_page = true; |
5140 | } |
5141 | else |
5142 | pinned_desired_page = false; |
5143 | |
5144 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
5145 | |
5146 | /* |
5147 | * If we didn't pin the visibility map page and the page has become |
5148 | * all visible while we were busy locking the buffer, we'll have to |
5149 | * unlock and re-lock, to avoid holding the buffer lock across I/O. |
5150 | * That's a bit unfortunate, but hopefully shouldn't happen often. |
5151 | * |
5152 | * Note: in some paths through this function, we will reach here |
5153 | * holding a pin on a vm page that may or may not be the one matching |
5154 | * this page. If this page isn't all-visible, we won't use the vm |
5155 | * page, but we hold onto such a pin till the end of the function. |
5156 | */ |
5157 | if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf))) |
5158 | { |
5159 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
5160 | visibilitymap_pin(rel, block, &vmbuffer); |
5161 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
5162 | } |
5163 | |
5164 | /* |
5165 | * Check the tuple XMIN against prior XMAX, if any. If we reached the |
5166 | * end of the chain, we're done, so return success. |
5167 | */ |
5168 | if (TransactionIdIsValid(priorXmax) && |
5169 | !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data), |
5170 | priorXmax)) |
5171 | { |
5172 | result = TM_Ok; |
5173 | goto out_locked; |
5174 | } |
5175 | |
5176 | /* |
5177 | * Also check Xmin: if this tuple was created by an aborted |
5178 | * (sub)transaction, then we already locked the last live one in the |
5179 | * chain, thus we're done, so return success. |
5180 | */ |
5181 | if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data))) |
5182 | { |
5183 | result = TM_Ok; |
5184 | goto out_locked; |
5185 | } |
5186 | |
5187 | old_infomask = mytup.t_data->t_infomask; |
5188 | old_infomask2 = mytup.t_data->t_infomask2; |
5189 | xmax = HeapTupleHeaderGetRawXmax(mytup.t_data); |
5190 | |
5191 | /* |
5192 | * If this tuple version has been updated or locked by some concurrent |
5193 | * transaction(s), what we do depends on whether our lock mode |
5194 | * conflicts with what those other transactions hold, and also on the |
5195 | * status of them. |
5196 | */ |
5197 | if (!(old_infomask & HEAP_XMAX_INVALID)) |
5198 | { |
5199 | TransactionId rawxmax; |
5200 | bool needwait; |
5201 | |
5202 | rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data); |
5203 | if (old_infomask & HEAP_XMAX_IS_MULTI) |
5204 | { |
5205 | int nmembers; |
5206 | int i; |
5207 | MultiXactMember *members; |
5208 | |
5209 | /* |
5210 | * We don't need a test for pg_upgrade'd tuples: this is only |
5211 | * applied to tuples after the first in an update chain. Said |
5212 | * first tuple in the chain may well be locked-in-9.2-and- |
5213 | * pg_upgraded, but that one was already locked by our caller, |
5214 | * not us; and any subsequent ones cannot be because our |
5215 | * caller must necessarily have obtained a snapshot later than |
5216 | * the pg_upgrade itself. |
5217 | */ |
5218 | Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask)); |
5219 | |
5220 | nmembers = GetMultiXactIdMembers(rawxmax, &members, false, |
5221 | HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)); |
5222 | for (i = 0; i < nmembers; i++) |
5223 | { |
5224 | result = test_lockmode_for_conflict(members[i].status, |
5225 | members[i].xid, |
5226 | mode, |
5227 | &mytup, |
5228 | &needwait); |
5229 | |
5230 | /* |
5231 | * If the tuple was already locked by ourselves in a |
5232 | * previous iteration of this (say heap_lock_tuple was |
5233 | * forced to restart the locking loop because of a change |
5234 | * in xmax), then we hold the lock already on this tuple |
5235 | * version and we don't need to do anything; and this is |
5236 | * not an error condition either. We just need to skip |
5237 | * this tuple and continue locking the next version in the |
5238 | * update chain. |
5239 | */ |
5240 | if (result == TM_SelfModified) |
5241 | { |
5242 | pfree(members); |
5243 | goto next; |
5244 | } |
5245 | |
5246 | if (needwait) |
5247 | { |
5248 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
5249 | XactLockTableWait(members[i].xid, rel, |
5250 | &mytup.t_self, |
5251 | XLTW_LockUpdated); |
5252 | pfree(members); |
5253 | goto l4; |
5254 | } |
5255 | if (result != TM_Ok) |
5256 | { |
5257 | pfree(members); |
5258 | goto out_locked; |
5259 | } |
5260 | } |
5261 | if (members) |
5262 | pfree(members); |
5263 | } |
5264 | else |
5265 | { |
5266 | MultiXactStatus status; |
5267 | |
5268 | /* |
5269 | * For a non-multi Xmax, we first need to compute the |
5270 | * corresponding MultiXactStatus by using the infomask bits. |
5271 | */ |
5272 | if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)) |
5273 | { |
5274 | if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask)) |
5275 | status = MultiXactStatusForKeyShare; |
5276 | else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask)) |
5277 | status = MultiXactStatusForShare; |
5278 | else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) |
5279 | { |
5280 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
5281 | status = MultiXactStatusForUpdate; |
5282 | else |
5283 | status = MultiXactStatusForNoKeyUpdate; |
5284 | } |
5285 | else |
5286 | { |
5287 | /* |
5288 | * LOCK_ONLY present alone (a pg_upgraded tuple marked |
5289 | * as share-locked in the old cluster) shouldn't be |
5290 | * seen in the middle of an update chain. |
5291 | */ |
5292 | elog(ERROR, "invalid lock status in tuple" ); |
5293 | } |
5294 | } |
5295 | else |
5296 | { |
5297 | /* it's an update, but which kind? */ |
5298 | if (old_infomask2 & HEAP_KEYS_UPDATED) |
5299 | status = MultiXactStatusUpdate; |
5300 | else |
5301 | status = MultiXactStatusNoKeyUpdate; |
5302 | } |
5303 | |
5304 | result = test_lockmode_for_conflict(status, rawxmax, mode, |
5305 | &mytup, &needwait); |
5306 | |
5307 | /* |
5308 | * If the tuple was already locked by ourselves in a previous |
5309 | * iteration of this (say heap_lock_tuple was forced to |
5310 | * restart the locking loop because of a change in xmax), then |
5311 | * we hold the lock already on this tuple version and we don't |
5312 | * need to do anything; and this is not an error condition |
5313 | * either. We just need to skip this tuple and continue |
5314 | * locking the next version in the update chain. |
5315 | */ |
5316 | if (result == TM_SelfModified) |
5317 | goto next; |
5318 | |
5319 | if (needwait) |
5320 | { |
5321 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
5322 | XactLockTableWait(rawxmax, rel, &mytup.t_self, |
5323 | XLTW_LockUpdated); |
5324 | goto l4; |
5325 | } |
5326 | if (result != TM_Ok) |
5327 | { |
5328 | goto out_locked; |
5329 | } |
5330 | } |
5331 | } |
5332 | |
5333 | /* compute the new Xmax and infomask values for the tuple ... */ |
5334 | compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2, |
5335 | xid, mode, false, |
5336 | &new_xmax, &new_infomask, &new_infomask2); |
5337 | |
5338 | if (PageIsAllVisible(BufferGetPage(buf)) && |
5339 | visibilitymap_clear(rel, block, vmbuffer, |
5340 | VISIBILITYMAP_ALL_FROZEN)) |
5341 | cleared_all_frozen = true; |
5342 | |
5343 | START_CRIT_SECTION(); |
5344 | |
5345 | /* ... and set them */ |
5346 | HeapTupleHeaderSetXmax(mytup.t_data, new_xmax); |
5347 | mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS; |
5348 | mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
5349 | mytup.t_data->t_infomask |= new_infomask; |
5350 | mytup.t_data->t_infomask2 |= new_infomask2; |
5351 | |
5352 | MarkBufferDirty(buf); |
5353 | |
5354 | /* XLOG stuff */ |
5355 | if (RelationNeedsWAL(rel)) |
5356 | { |
5357 | xl_heap_lock_updated xlrec; |
5358 | XLogRecPtr recptr; |
5359 | Page page = BufferGetPage(buf); |
5360 | |
5361 | XLogBeginInsert(); |
5362 | XLogRegisterBuffer(0, buf, REGBUF_STANDARD); |
5363 | |
5364 | xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self); |
5365 | xlrec.xmax = new_xmax; |
5366 | xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2); |
5367 | xlrec.flags = |
5368 | cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0; |
5369 | |
5370 | XLogRegisterData((char *) &xlrec, SizeOfHeapLockUpdated); |
5371 | |
5372 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED); |
5373 | |
5374 | PageSetLSN(page, recptr); |
5375 | } |
5376 | |
5377 | END_CRIT_SECTION(); |
5378 | |
5379 | next: |
5380 | /* if we find the end of update chain, we're done. */ |
5381 | if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID || |
5382 | HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) || |
5383 | ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) || |
5384 | HeapTupleHeaderIsOnlyLocked(mytup.t_data)) |
5385 | { |
5386 | result = TM_Ok; |
5387 | goto out_locked; |
5388 | } |
5389 | |
5390 | /* tail recursion */ |
5391 | priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data); |
5392 | ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid); |
5393 | UnlockReleaseBuffer(buf); |
5394 | } |
5395 | |
5396 | result = TM_Ok; |
5397 | |
5398 | out_locked: |
5399 | UnlockReleaseBuffer(buf); |
5400 | |
5401 | out_unlocked: |
5402 | if (vmbuffer != InvalidBuffer) |
5403 | ReleaseBuffer(vmbuffer); |
5404 | |
5405 | return result; |
5406 | } |
5407 | |
5408 | /* |
5409 | * heap_lock_updated_tuple |
5410 | * Follow update chain when locking an updated tuple, acquiring locks (row |
5411 | * marks) on the updated versions. |
5412 | * |
5413 | * The initial tuple is assumed to be already locked. |
5414 | * |
5415 | * This function doesn't check visibility, it just unconditionally marks the |
5416 | * tuple(s) as locked. If any tuple in the updated chain is being deleted |
5417 | * concurrently (or updated with the key being modified), sleep until the |
5418 | * transaction doing it is finished. |
5419 | * |
5420 | * Note that we don't acquire heavyweight tuple locks on the tuples we walk |
5421 | * when we have to wait for other transactions to release them, as opposed to |
5422 | * what heap_lock_tuple does. The reason is that having more than one |
5423 | * transaction walking the chain is probably uncommon enough that risk of |
5424 | * starvation is not likely: one of the preconditions for being here is that |
5425 | * the snapshot in use predates the update that created this tuple (because we |
5426 | * started at an earlier version of the tuple), but at the same time such a |
5427 | * transaction cannot be using repeatable read or serializable isolation |
5428 | * levels, because that would lead to a serializability failure. |
5429 | */ |
5430 | static TM_Result |
5431 | heap_lock_updated_tuple(Relation rel, HeapTuple tuple, ItemPointer ctid, |
5432 | TransactionId xid, LockTupleMode mode) |
5433 | { |
5434 | /* |
5435 | * If the tuple has not been updated, or has moved into another partition |
5436 | * (effectively a delete) stop here. |
5437 | */ |
5438 | if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) && |
5439 | !ItemPointerEquals(&tuple->t_self, ctid)) |
5440 | { |
5441 | /* |
5442 | * If this is the first possibly-multixact-able operation in the |
5443 | * current transaction, set my per-backend OldestMemberMXactId |
5444 | * setting. We can be certain that the transaction will never become a |
5445 | * member of any older MultiXactIds than that. (We have to do this |
5446 | * even if we end up just using our own TransactionId below, since |
5447 | * some other backend could incorporate our XID into a MultiXact |
5448 | * immediately afterwards.) |
5449 | */ |
5450 | MultiXactIdSetOldestMember(); |
5451 | |
5452 | return heap_lock_updated_tuple_rec(rel, ctid, xid, mode); |
5453 | } |
5454 | |
5455 | /* nothing to lock */ |
5456 | return TM_Ok; |
5457 | } |
5458 | |
5459 | /* |
5460 | * heap_finish_speculative - mark speculative insertion as successful |
5461 | * |
5462 | * To successfully finish a speculative insertion we have to clear speculative |
5463 | * token from tuple. To do so the t_ctid field, which will contain a |
5464 | * speculative token value, is modified in place to point to the tuple itself, |
5465 | * which is characteristic of a newly inserted ordinary tuple. |
5466 | * |
5467 | * NB: It is not ok to commit without either finishing or aborting a |
5468 | * speculative insertion. We could treat speculative tuples of committed |
5469 | * transactions implicitly as completed, but then we would have to be prepared |
5470 | * to deal with speculative tokens on committed tuples. That wouldn't be |
5471 | * difficult - no-one looks at the ctid field of a tuple with invalid xmax - |
5472 | * but clearing the token at completion isn't very expensive either. |
5473 | * An explicit confirmation WAL record also makes logical decoding simpler. |
5474 | */ |
5475 | void |
5476 | heap_finish_speculative(Relation relation, ItemPointer tid) |
5477 | { |
5478 | Buffer buffer; |
5479 | Page page; |
5480 | OffsetNumber offnum; |
5481 | ItemId lp = NULL; |
5482 | HeapTupleHeader htup; |
5483 | |
5484 | buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); |
5485 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
5486 | page = (Page) BufferGetPage(buffer); |
5487 | |
5488 | offnum = ItemPointerGetOffsetNumber(tid); |
5489 | if (PageGetMaxOffsetNumber(page) >= offnum) |
5490 | lp = PageGetItemId(page, offnum); |
5491 | |
5492 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
5493 | elog(ERROR, "invalid lp" ); |
5494 | |
5495 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
5496 | |
5497 | /* SpecTokenOffsetNumber should be distinguishable from any real offset */ |
5498 | StaticAssertStmt(MaxOffsetNumber < SpecTokenOffsetNumber, |
5499 | "invalid speculative token constant" ); |
5500 | |
5501 | /* NO EREPORT(ERROR) from here till changes are logged */ |
5502 | START_CRIT_SECTION(); |
5503 | |
5504 | Assert(HeapTupleHeaderIsSpeculative(htup)); |
5505 | |
5506 | MarkBufferDirty(buffer); |
5507 | |
5508 | /* |
5509 | * Replace the speculative insertion token with a real t_ctid, pointing to |
5510 | * itself like it does on regular tuples. |
5511 | */ |
5512 | htup->t_ctid = *tid; |
5513 | |
5514 | /* XLOG stuff */ |
5515 | if (RelationNeedsWAL(relation)) |
5516 | { |
5517 | xl_heap_confirm xlrec; |
5518 | XLogRecPtr recptr; |
5519 | |
5520 | xlrec.offnum = ItemPointerGetOffsetNumber(tid); |
5521 | |
5522 | XLogBeginInsert(); |
5523 | |
5524 | /* We want the same filtering on this as on a plain insert */ |
5525 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
5526 | |
5527 | XLogRegisterData((char *) &xlrec, SizeOfHeapConfirm); |
5528 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
5529 | |
5530 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM); |
5531 | |
5532 | PageSetLSN(page, recptr); |
5533 | } |
5534 | |
5535 | END_CRIT_SECTION(); |
5536 | |
5537 | UnlockReleaseBuffer(buffer); |
5538 | } |
5539 | |
5540 | /* |
5541 | * heap_abort_speculative - kill a speculatively inserted tuple |
5542 | * |
5543 | * Marks a tuple that was speculatively inserted in the same command as dead, |
5544 | * by setting its xmin as invalid. That makes it immediately appear as dead |
5545 | * to all transactions, including our own. In particular, it makes |
5546 | * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend |
5547 | * inserting a duplicate key value won't unnecessarily wait for our whole |
5548 | * transaction to finish (it'll just wait for our speculative insertion to |
5549 | * finish). |
5550 | * |
5551 | * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks |
5552 | * that arise due to a mutual dependency that is not user visible. By |
5553 | * definition, unprincipled deadlocks cannot be prevented by the user |
5554 | * reordering lock acquisition in client code, because the implementation level |
5555 | * lock acquisitions are not under the user's direct control. If speculative |
5556 | * inserters did not take this precaution, then under high concurrency they |
5557 | * could deadlock with each other, which would not be acceptable. |
5558 | * |
5559 | * This is somewhat redundant with heap_delete, but we prefer to have a |
5560 | * dedicated routine with stripped down requirements. Note that this is also |
5561 | * used to delete the TOAST tuples created during speculative insertion. |
5562 | * |
5563 | * This routine does not affect logical decoding as it only looks at |
5564 | * confirmation records. |
5565 | */ |
5566 | void |
5567 | heap_abort_speculative(Relation relation, ItemPointer tid) |
5568 | { |
5569 | TransactionId xid = GetCurrentTransactionId(); |
5570 | ItemId lp; |
5571 | HeapTupleData tp; |
5572 | Page page; |
5573 | BlockNumber block; |
5574 | Buffer buffer; |
5575 | |
5576 | Assert(ItemPointerIsValid(tid)); |
5577 | |
5578 | block = ItemPointerGetBlockNumber(tid); |
5579 | buffer = ReadBuffer(relation, block); |
5580 | page = BufferGetPage(buffer); |
5581 | |
5582 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
5583 | |
5584 | /* |
5585 | * Page can't be all visible, we just inserted into it, and are still |
5586 | * running. |
5587 | */ |
5588 | Assert(!PageIsAllVisible(page)); |
5589 | |
5590 | lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); |
5591 | Assert(ItemIdIsNormal(lp)); |
5592 | |
5593 | tp.t_tableOid = RelationGetRelid(relation); |
5594 | tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); |
5595 | tp.t_len = ItemIdGetLength(lp); |
5596 | tp.t_self = *tid; |
5597 | |
5598 | /* |
5599 | * Sanity check that the tuple really is a speculatively inserted tuple, |
5600 | * inserted by us. |
5601 | */ |
5602 | if (tp.t_data->t_choice.t_heap.t_xmin != xid) |
5603 | elog(ERROR, "attempted to kill a tuple inserted by another transaction" ); |
5604 | if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data))) |
5605 | elog(ERROR, "attempted to kill a non-speculative tuple" ); |
5606 | Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data)); |
5607 | |
5608 | /* |
5609 | * No need to check for serializable conflicts here. There is never a |
5610 | * need for a combocid, either. No need to extract replica identity, or |
5611 | * do anything special with infomask bits. |
5612 | */ |
5613 | |
5614 | START_CRIT_SECTION(); |
5615 | |
5616 | /* |
5617 | * The tuple will become DEAD immediately. Flag that this page |
5618 | * immediately is a candidate for pruning by setting xmin to |
5619 | * RecentGlobalXmin. That's not pretty, but it doesn't seem worth |
5620 | * inventing a nicer API for this. |
5621 | */ |
5622 | Assert(TransactionIdIsValid(RecentGlobalXmin)); |
5623 | PageSetPrunable(page, RecentGlobalXmin); |
5624 | |
5625 | /* store transaction information of xact deleting the tuple */ |
5626 | tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
5627 | tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
5628 | |
5629 | /* |
5630 | * Set the tuple header xmin to InvalidTransactionId. This makes the |
5631 | * tuple immediately invisible everyone. (In particular, to any |
5632 | * transactions waiting on the speculative token, woken up later.) |
5633 | */ |
5634 | HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId); |
5635 | |
5636 | /* Clear the speculative insertion token too */ |
5637 | tp.t_data->t_ctid = tp.t_self; |
5638 | |
5639 | MarkBufferDirty(buffer); |
5640 | |
5641 | /* |
5642 | * XLOG stuff |
5643 | * |
5644 | * The WAL records generated here match heap_delete(). The same recovery |
5645 | * routines are used. |
5646 | */ |
5647 | if (RelationNeedsWAL(relation)) |
5648 | { |
5649 | xl_heap_delete xlrec; |
5650 | XLogRecPtr recptr; |
5651 | |
5652 | xlrec.flags = XLH_DELETE_IS_SUPER; |
5653 | xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask, |
5654 | tp.t_data->t_infomask2); |
5655 | xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self); |
5656 | xlrec.xmax = xid; |
5657 | |
5658 | XLogBeginInsert(); |
5659 | XLogRegisterData((char *) &xlrec, SizeOfHeapDelete); |
5660 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
5661 | |
5662 | /* No replica identity & replication origin logged */ |
5663 | |
5664 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE); |
5665 | |
5666 | PageSetLSN(page, recptr); |
5667 | } |
5668 | |
5669 | END_CRIT_SECTION(); |
5670 | |
5671 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
5672 | |
5673 | if (HeapTupleHasExternal(&tp)) |
5674 | { |
5675 | Assert(!IsToastRelation(relation)); |
5676 | toast_delete(relation, &tp, true); |
5677 | } |
5678 | |
5679 | /* |
5680 | * Never need to mark tuple for invalidation, since catalogs don't support |
5681 | * speculative insertion |
5682 | */ |
5683 | |
5684 | /* Now we can release the buffer */ |
5685 | ReleaseBuffer(buffer); |
5686 | |
5687 | /* count deletion, as we counted the insertion too */ |
5688 | pgstat_count_heap_delete(relation); |
5689 | } |
5690 | |
5691 | /* |
5692 | * heap_inplace_update - update a tuple "in place" (ie, overwrite it) |
5693 | * |
5694 | * Overwriting violates both MVCC and transactional safety, so the uses |
5695 | * of this function in Postgres are extremely limited. Nonetheless we |
5696 | * find some places to use it. |
5697 | * |
5698 | * The tuple cannot change size, and therefore it's reasonable to assume |
5699 | * that its null bitmap (if any) doesn't change either. So we just |
5700 | * overwrite the data portion of the tuple without touching the null |
5701 | * bitmap or any of the header fields. |
5702 | * |
5703 | * tuple is an in-memory tuple structure containing the data to be written |
5704 | * over the target tuple. Also, tuple->t_self identifies the target tuple. |
5705 | */ |
5706 | void |
5707 | heap_inplace_update(Relation relation, HeapTuple tuple) |
5708 | { |
5709 | Buffer buffer; |
5710 | Page page; |
5711 | OffsetNumber offnum; |
5712 | ItemId lp = NULL; |
5713 | HeapTupleHeader htup; |
5714 | uint32 oldlen; |
5715 | uint32 newlen; |
5716 | |
5717 | /* |
5718 | * For now, parallel operations are required to be strictly read-only. |
5719 | * Unlike a regular update, this should never create a combo CID, so it |
5720 | * might be possible to relax this restriction, but not without more |
5721 | * thought and testing. It's not clear that it would be useful, anyway. |
5722 | */ |
5723 | if (IsInParallelMode()) |
5724 | ereport(ERROR, |
5725 | (errcode(ERRCODE_INVALID_TRANSACTION_STATE), |
5726 | errmsg("cannot update tuples during a parallel operation" ))); |
5727 | |
5728 | buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&(tuple->t_self))); |
5729 | LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); |
5730 | page = (Page) BufferGetPage(buffer); |
5731 | |
5732 | offnum = ItemPointerGetOffsetNumber(&(tuple->t_self)); |
5733 | if (PageGetMaxOffsetNumber(page) >= offnum) |
5734 | lp = PageGetItemId(page, offnum); |
5735 | |
5736 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
5737 | elog(ERROR, "invalid lp" ); |
5738 | |
5739 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
5740 | |
5741 | oldlen = ItemIdGetLength(lp) - htup->t_hoff; |
5742 | newlen = tuple->t_len - tuple->t_data->t_hoff; |
5743 | if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff) |
5744 | elog(ERROR, "wrong tuple length" ); |
5745 | |
5746 | /* NO EREPORT(ERROR) from here till changes are logged */ |
5747 | START_CRIT_SECTION(); |
5748 | |
5749 | memcpy((char *) htup + htup->t_hoff, |
5750 | (char *) tuple->t_data + tuple->t_data->t_hoff, |
5751 | newlen); |
5752 | |
5753 | MarkBufferDirty(buffer); |
5754 | |
5755 | /* XLOG stuff */ |
5756 | if (RelationNeedsWAL(relation)) |
5757 | { |
5758 | xl_heap_inplace xlrec; |
5759 | XLogRecPtr recptr; |
5760 | |
5761 | xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self); |
5762 | |
5763 | XLogBeginInsert(); |
5764 | XLogRegisterData((char *) &xlrec, SizeOfHeapInplace); |
5765 | |
5766 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
5767 | XLogRegisterBufData(0, (char *) htup + htup->t_hoff, newlen); |
5768 | |
5769 | /* inplace updates aren't decoded atm, don't log the origin */ |
5770 | |
5771 | recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE); |
5772 | |
5773 | PageSetLSN(page, recptr); |
5774 | } |
5775 | |
5776 | END_CRIT_SECTION(); |
5777 | |
5778 | UnlockReleaseBuffer(buffer); |
5779 | |
5780 | /* |
5781 | * Send out shared cache inval if necessary. Note that because we only |
5782 | * pass the new version of the tuple, this mustn't be used for any |
5783 | * operations that could change catcache lookup keys. But we aren't |
5784 | * bothering with index updates either, so that's true a fortiori. |
5785 | */ |
5786 | if (!IsBootstrapProcessingMode()) |
5787 | CacheInvalidateHeapTuple(relation, tuple, NULL); |
5788 | } |
5789 | |
5790 | #define FRM_NOOP 0x0001 |
5791 | #define FRM_INVALIDATE_XMAX 0x0002 |
5792 | #define FRM_RETURN_IS_XID 0x0004 |
5793 | #define FRM_RETURN_IS_MULTI 0x0008 |
5794 | #define FRM_MARK_COMMITTED 0x0010 |
5795 | |
5796 | /* |
5797 | * FreezeMultiXactId |
5798 | * Determine what to do during freezing when a tuple is marked by a |
5799 | * MultiXactId. |
5800 | * |
5801 | * NB -- this might have the side-effect of creating a new MultiXactId! |
5802 | * |
5803 | * "flags" is an output value; it's used to tell caller what to do on return. |
5804 | * Possible flags are: |
5805 | * FRM_NOOP |
5806 | * don't do anything -- keep existing Xmax |
5807 | * FRM_INVALIDATE_XMAX |
5808 | * mark Xmax as InvalidTransactionId and set XMAX_INVALID flag. |
5809 | * FRM_RETURN_IS_XID |
5810 | * The Xid return value is a single update Xid to set as xmax. |
5811 | * FRM_MARK_COMMITTED |
5812 | * Xmax can be marked as HEAP_XMAX_COMMITTED |
5813 | * FRM_RETURN_IS_MULTI |
5814 | * The return value is a new MultiXactId to set as new Xmax. |
5815 | * (caller must obtain proper infomask bits using GetMultiXactIdHintBits) |
5816 | */ |
5817 | static TransactionId |
5818 | FreezeMultiXactId(MultiXactId multi, uint16 t_infomask, |
5819 | TransactionId relfrozenxid, TransactionId relminmxid, |
5820 | TransactionId cutoff_xid, MultiXactId cutoff_multi, |
5821 | uint16 *flags) |
5822 | { |
5823 | TransactionId xid = InvalidTransactionId; |
5824 | int i; |
5825 | MultiXactMember *members; |
5826 | int nmembers; |
5827 | bool need_replace; |
5828 | int nnewmembers; |
5829 | MultiXactMember *newmembers; |
5830 | bool has_lockers; |
5831 | TransactionId update_xid; |
5832 | bool update_committed; |
5833 | |
5834 | *flags = 0; |
5835 | |
5836 | /* We should only be called in Multis */ |
5837 | Assert(t_infomask & HEAP_XMAX_IS_MULTI); |
5838 | |
5839 | if (!MultiXactIdIsValid(multi) || |
5840 | HEAP_LOCKED_UPGRADED(t_infomask)) |
5841 | { |
5842 | /* Ensure infomask bits are appropriately set/reset */ |
5843 | *flags |= FRM_INVALIDATE_XMAX; |
5844 | return InvalidTransactionId; |
5845 | } |
5846 | else if (MultiXactIdPrecedes(multi, relminmxid)) |
5847 | ereport(ERROR, |
5848 | (errcode(ERRCODE_DATA_CORRUPTED), |
5849 | errmsg_internal("found multixact %u from before relminmxid %u" , |
5850 | multi, relminmxid))); |
5851 | else if (MultiXactIdPrecedes(multi, cutoff_multi)) |
5852 | { |
5853 | /* |
5854 | * This old multi cannot possibly have members still running, but |
5855 | * verify just in case. If it was a locker only, it can be removed |
5856 | * without any further consideration; but if it contained an update, |
5857 | * we might need to preserve it. |
5858 | */ |
5859 | if (MultiXactIdIsRunning(multi, |
5860 | HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))) |
5861 | ereport(ERROR, |
5862 | (errcode(ERRCODE_DATA_CORRUPTED), |
5863 | errmsg_internal("multixact %u from before cutoff %u found to be still running" , |
5864 | multi, cutoff_multi))); |
5865 | |
5866 | if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)) |
5867 | { |
5868 | *flags |= FRM_INVALIDATE_XMAX; |
5869 | xid = InvalidTransactionId; /* not strictly necessary */ |
5870 | } |
5871 | else |
5872 | { |
5873 | /* replace multi by update xid */ |
5874 | xid = MultiXactIdGetUpdateXid(multi, t_infomask); |
5875 | |
5876 | /* wasn't only a lock, xid needs to be valid */ |
5877 | Assert(TransactionIdIsValid(xid)); |
5878 | |
5879 | if (TransactionIdPrecedes(xid, relfrozenxid)) |
5880 | ereport(ERROR, |
5881 | (errcode(ERRCODE_DATA_CORRUPTED), |
5882 | errmsg_internal("found update xid %u from before relfrozenxid %u" , |
5883 | xid, relfrozenxid))); |
5884 | |
5885 | /* |
5886 | * If the xid is older than the cutoff, it has to have aborted, |
5887 | * otherwise the tuple would have gotten pruned away. |
5888 | */ |
5889 | if (TransactionIdPrecedes(xid, cutoff_xid)) |
5890 | { |
5891 | if (TransactionIdDidCommit(xid)) |
5892 | ereport(ERROR, |
5893 | (errcode(ERRCODE_DATA_CORRUPTED), |
5894 | errmsg_internal("cannot freeze committed update xid %u" , xid))); |
5895 | *flags |= FRM_INVALIDATE_XMAX; |
5896 | xid = InvalidTransactionId; /* not strictly necessary */ |
5897 | } |
5898 | else |
5899 | { |
5900 | *flags |= FRM_RETURN_IS_XID; |
5901 | } |
5902 | } |
5903 | |
5904 | return xid; |
5905 | } |
5906 | |
5907 | /* |
5908 | * This multixact might have or might not have members still running, but |
5909 | * we know it's valid and is newer than the cutoff point for multis. |
5910 | * However, some member(s) of it may be below the cutoff for Xids, so we |
5911 | * need to walk the whole members array to figure out what to do, if |
5912 | * anything. |
5913 | */ |
5914 | |
5915 | nmembers = |
5916 | GetMultiXactIdMembers(multi, &members, false, |
5917 | HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)); |
5918 | if (nmembers <= 0) |
5919 | { |
5920 | /* Nothing worth keeping */ |
5921 | *flags |= FRM_INVALIDATE_XMAX; |
5922 | return InvalidTransactionId; |
5923 | } |
5924 | |
5925 | /* is there anything older than the cutoff? */ |
5926 | need_replace = false; |
5927 | for (i = 0; i < nmembers; i++) |
5928 | { |
5929 | if (TransactionIdPrecedes(members[i].xid, cutoff_xid)) |
5930 | { |
5931 | need_replace = true; |
5932 | break; |
5933 | } |
5934 | } |
5935 | |
5936 | /* |
5937 | * In the simplest case, there is no member older than the cutoff; we can |
5938 | * keep the existing MultiXactId as is. |
5939 | */ |
5940 | if (!need_replace) |
5941 | { |
5942 | *flags |= FRM_NOOP; |
5943 | pfree(members); |
5944 | return InvalidTransactionId; |
5945 | } |
5946 | |
5947 | /* |
5948 | * If the multi needs to be updated, figure out which members do we need |
5949 | * to keep. |
5950 | */ |
5951 | nnewmembers = 0; |
5952 | newmembers = palloc(sizeof(MultiXactMember) * nmembers); |
5953 | has_lockers = false; |
5954 | update_xid = InvalidTransactionId; |
5955 | update_committed = false; |
5956 | |
5957 | for (i = 0; i < nmembers; i++) |
5958 | { |
5959 | /* |
5960 | * Determine whether to keep this member or ignore it. |
5961 | */ |
5962 | if (ISUPDATE_from_mxstatus(members[i].status)) |
5963 | { |
5964 | TransactionId xid = members[i].xid; |
5965 | |
5966 | Assert(TransactionIdIsValid(xid)); |
5967 | if (TransactionIdPrecedes(xid, relfrozenxid)) |
5968 | ereport(ERROR, |
5969 | (errcode(ERRCODE_DATA_CORRUPTED), |
5970 | errmsg_internal("found update xid %u from before relfrozenxid %u" , |
5971 | xid, relfrozenxid))); |
5972 | |
5973 | /* |
5974 | * It's an update; should we keep it? If the transaction is known |
5975 | * aborted or crashed then it's okay to ignore it, otherwise not. |
5976 | * Note that an updater older than cutoff_xid cannot possibly be |
5977 | * committed, because HeapTupleSatisfiesVacuum would have returned |
5978 | * HEAPTUPLE_DEAD and we would not be trying to freeze the tuple. |
5979 | * |
5980 | * As with all tuple visibility routines, it's critical to test |
5981 | * TransactionIdIsInProgress before TransactionIdDidCommit, |
5982 | * because of race conditions explained in detail in |
5983 | * heapam_visibility.c. |
5984 | */ |
5985 | if (TransactionIdIsCurrentTransactionId(xid) || |
5986 | TransactionIdIsInProgress(xid)) |
5987 | { |
5988 | Assert(!TransactionIdIsValid(update_xid)); |
5989 | update_xid = xid; |
5990 | } |
5991 | else if (TransactionIdDidCommit(xid)) |
5992 | { |
5993 | /* |
5994 | * The transaction committed, so we can tell caller to set |
5995 | * HEAP_XMAX_COMMITTED. (We can only do this because we know |
5996 | * the transaction is not running.) |
5997 | */ |
5998 | Assert(!TransactionIdIsValid(update_xid)); |
5999 | update_committed = true; |
6000 | update_xid = xid; |
6001 | } |
6002 | else |
6003 | { |
6004 | /* |
6005 | * Not in progress, not committed -- must be aborted or |
6006 | * crashed; we can ignore it. |
6007 | */ |
6008 | } |
6009 | |
6010 | /* |
6011 | * Since the tuple wasn't marked HEAPTUPLE_DEAD by vacuum, the |
6012 | * update Xid cannot possibly be older than the xid cutoff. The |
6013 | * presence of such a tuple would cause corruption, so be paranoid |
6014 | * and check. |
6015 | */ |
6016 | if (TransactionIdIsValid(update_xid) && |
6017 | TransactionIdPrecedes(update_xid, cutoff_xid)) |
6018 | ereport(ERROR, |
6019 | (errcode(ERRCODE_DATA_CORRUPTED), |
6020 | errmsg_internal("found update xid %u from before xid cutoff %u" , |
6021 | update_xid, cutoff_xid))); |
6022 | |
6023 | /* |
6024 | * If we determined that it's an Xid corresponding to an update |
6025 | * that must be retained, additionally add it to the list of |
6026 | * members of the new Multi, in case we end up using that. (We |
6027 | * might still decide to use only an update Xid and not a multi, |
6028 | * but it's easier to maintain the list as we walk the old members |
6029 | * list.) |
6030 | */ |
6031 | if (TransactionIdIsValid(update_xid)) |
6032 | newmembers[nnewmembers++] = members[i]; |
6033 | } |
6034 | else |
6035 | { |
6036 | /* We only keep lockers if they are still running */ |
6037 | if (TransactionIdIsCurrentTransactionId(members[i].xid) || |
6038 | TransactionIdIsInProgress(members[i].xid)) |
6039 | { |
6040 | /* running locker cannot possibly be older than the cutoff */ |
6041 | Assert(!TransactionIdPrecedes(members[i].xid, cutoff_xid)); |
6042 | newmembers[nnewmembers++] = members[i]; |
6043 | has_lockers = true; |
6044 | } |
6045 | } |
6046 | } |
6047 | |
6048 | pfree(members); |
6049 | |
6050 | if (nnewmembers == 0) |
6051 | { |
6052 | /* nothing worth keeping!? Tell caller to remove the whole thing */ |
6053 | *flags |= FRM_INVALIDATE_XMAX; |
6054 | xid = InvalidTransactionId; |
6055 | } |
6056 | else if (TransactionIdIsValid(update_xid) && !has_lockers) |
6057 | { |
6058 | /* |
6059 | * If there's a single member and it's an update, pass it back alone |
6060 | * without creating a new Multi. (XXX we could do this when there's a |
6061 | * single remaining locker, too, but that would complicate the API too |
6062 | * much; moreover, the case with the single updater is more |
6063 | * interesting, because those are longer-lived.) |
6064 | */ |
6065 | Assert(nnewmembers == 1); |
6066 | *flags |= FRM_RETURN_IS_XID; |
6067 | if (update_committed) |
6068 | *flags |= FRM_MARK_COMMITTED; |
6069 | xid = update_xid; |
6070 | } |
6071 | else |
6072 | { |
6073 | /* |
6074 | * Create a new multixact with the surviving members of the previous |
6075 | * one, to set as new Xmax in the tuple. |
6076 | */ |
6077 | xid = MultiXactIdCreateFromMembers(nnewmembers, newmembers); |
6078 | *flags |= FRM_RETURN_IS_MULTI; |
6079 | } |
6080 | |
6081 | pfree(newmembers); |
6082 | |
6083 | return xid; |
6084 | } |
6085 | |
6086 | /* |
6087 | * heap_prepare_freeze_tuple |
6088 | * |
6089 | * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac) |
6090 | * are older than the specified cutoff XID and cutoff MultiXactId. If so, |
6091 | * setup enough state (in the *frz output argument) to later execute and |
6092 | * WAL-log what we would need to do, and return true. Return false if nothing |
6093 | * is to be changed. In addition, set *totally_frozen_p to true if the tuple |
6094 | * will be totally frozen after these operations are performed and false if |
6095 | * more freezing will eventually be required. |
6096 | * |
6097 | * Caller is responsible for setting the offset field, if appropriate. |
6098 | * |
6099 | * It is assumed that the caller has checked the tuple with |
6100 | * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD |
6101 | * (else we should be removing the tuple, not freezing it). |
6102 | * |
6103 | * NB: cutoff_xid *must* be <= the current global xmin, to ensure that any |
6104 | * XID older than it could neither be running nor seen as running by any |
6105 | * open transaction. This ensures that the replacement will not change |
6106 | * anyone's idea of the tuple state. |
6107 | * Similarly, cutoff_multi must be less than or equal to the smallest |
6108 | * MultiXactId used by any transaction currently open. |
6109 | * |
6110 | * If the tuple is in a shared buffer, caller must hold an exclusive lock on |
6111 | * that buffer. |
6112 | * |
6113 | * NB: It is not enough to set hint bits to indicate something is |
6114 | * committed/invalid -- they might not be set on a standby, or after crash |
6115 | * recovery. We really need to remove old xids. |
6116 | */ |
6117 | bool |
6118 | heap_prepare_freeze_tuple(HeapTupleHeader tuple, |
6119 | TransactionId relfrozenxid, TransactionId relminmxid, |
6120 | TransactionId cutoff_xid, TransactionId cutoff_multi, |
6121 | xl_heap_freeze_tuple *frz, bool *totally_frozen_p) |
6122 | { |
6123 | bool changed = false; |
6124 | bool xmax_already_frozen = false; |
6125 | bool xmin_frozen; |
6126 | bool freeze_xmax; |
6127 | TransactionId xid; |
6128 | |
6129 | frz->frzflags = 0; |
6130 | frz->t_infomask2 = tuple->t_infomask2; |
6131 | frz->t_infomask = tuple->t_infomask; |
6132 | frz->xmax = HeapTupleHeaderGetRawXmax(tuple); |
6133 | |
6134 | /* |
6135 | * Process xmin. xmin_frozen has two slightly different meanings: in the |
6136 | * !XidIsNormal case, it means "the xmin doesn't need any freezing" (it's |
6137 | * already a permanent value), while in the block below it is set true to |
6138 | * mean "xmin won't need freezing after what we do to it here" (false |
6139 | * otherwise). In both cases we're allowed to set totally_frozen, as far |
6140 | * as xmin is concerned. |
6141 | */ |
6142 | xid = HeapTupleHeaderGetXmin(tuple); |
6143 | if (!TransactionIdIsNormal(xid)) |
6144 | xmin_frozen = true; |
6145 | else |
6146 | { |
6147 | if (TransactionIdPrecedes(xid, relfrozenxid)) |
6148 | ereport(ERROR, |
6149 | (errcode(ERRCODE_DATA_CORRUPTED), |
6150 | errmsg_internal("found xmin %u from before relfrozenxid %u" , |
6151 | xid, relfrozenxid))); |
6152 | |
6153 | xmin_frozen = TransactionIdPrecedes(xid, cutoff_xid); |
6154 | if (xmin_frozen) |
6155 | { |
6156 | if (!TransactionIdDidCommit(xid)) |
6157 | ereport(ERROR, |
6158 | (errcode(ERRCODE_DATA_CORRUPTED), |
6159 | errmsg_internal("uncommitted xmin %u from before xid cutoff %u needs to be frozen" , |
6160 | xid, cutoff_xid))); |
6161 | |
6162 | frz->t_infomask |= HEAP_XMIN_FROZEN; |
6163 | changed = true; |
6164 | } |
6165 | } |
6166 | |
6167 | /* |
6168 | * Process xmax. To thoroughly examine the current Xmax value we need to |
6169 | * resolve a MultiXactId to its member Xids, in case some of them are |
6170 | * below the given cutoff for Xids. In that case, those values might need |
6171 | * freezing, too. Also, if a multi needs freezing, we cannot simply take |
6172 | * it out --- if there's a live updater Xid, it needs to be kept. |
6173 | * |
6174 | * Make sure to keep heap_tuple_needs_freeze in sync with this. |
6175 | */ |
6176 | xid = HeapTupleHeaderGetRawXmax(tuple); |
6177 | |
6178 | if (tuple->t_infomask & HEAP_XMAX_IS_MULTI) |
6179 | { |
6180 | TransactionId newxmax; |
6181 | uint16 flags; |
6182 | |
6183 | newxmax = FreezeMultiXactId(xid, tuple->t_infomask, |
6184 | relfrozenxid, relminmxid, |
6185 | cutoff_xid, cutoff_multi, &flags); |
6186 | |
6187 | freeze_xmax = (flags & FRM_INVALIDATE_XMAX); |
6188 | |
6189 | if (flags & FRM_RETURN_IS_XID) |
6190 | { |
6191 | /* |
6192 | * NB -- some of these transformations are only valid because we |
6193 | * know the return Xid is a tuple updater (i.e. not merely a |
6194 | * locker.) Also note that the only reason we don't explicitly |
6195 | * worry about HEAP_KEYS_UPDATED is because it lives in |
6196 | * t_infomask2 rather than t_infomask. |
6197 | */ |
6198 | frz->t_infomask &= ~HEAP_XMAX_BITS; |
6199 | frz->xmax = newxmax; |
6200 | if (flags & FRM_MARK_COMMITTED) |
6201 | frz->t_infomask |= HEAP_XMAX_COMMITTED; |
6202 | changed = true; |
6203 | } |
6204 | else if (flags & FRM_RETURN_IS_MULTI) |
6205 | { |
6206 | uint16 newbits; |
6207 | uint16 newbits2; |
6208 | |
6209 | /* |
6210 | * We can't use GetMultiXactIdHintBits directly on the new multi |
6211 | * here; that routine initializes the masks to all zeroes, which |
6212 | * would lose other bits we need. Doing it this way ensures all |
6213 | * unrelated bits remain untouched. |
6214 | */ |
6215 | frz->t_infomask &= ~HEAP_XMAX_BITS; |
6216 | frz->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
6217 | GetMultiXactIdHintBits(newxmax, &newbits, &newbits2); |
6218 | frz->t_infomask |= newbits; |
6219 | frz->t_infomask2 |= newbits2; |
6220 | |
6221 | frz->xmax = newxmax; |
6222 | |
6223 | changed = true; |
6224 | } |
6225 | } |
6226 | else if (TransactionIdIsNormal(xid)) |
6227 | { |
6228 | if (TransactionIdPrecedes(xid, relfrozenxid)) |
6229 | ereport(ERROR, |
6230 | (errcode(ERRCODE_DATA_CORRUPTED), |
6231 | errmsg_internal("found xmax %u from before relfrozenxid %u" , |
6232 | xid, relfrozenxid))); |
6233 | |
6234 | if (TransactionIdPrecedes(xid, cutoff_xid)) |
6235 | { |
6236 | /* |
6237 | * If we freeze xmax, make absolutely sure that it's not an XID |
6238 | * that is important. (Note, a lock-only xmax can be removed |
6239 | * independent of committedness, since a committed lock holder has |
6240 | * released the lock). |
6241 | */ |
6242 | if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) && |
6243 | TransactionIdDidCommit(xid)) |
6244 | ereport(ERROR, |
6245 | (errcode(ERRCODE_DATA_CORRUPTED), |
6246 | errmsg_internal("cannot freeze committed xmax %u" , |
6247 | xid))); |
6248 | freeze_xmax = true; |
6249 | } |
6250 | else |
6251 | freeze_xmax = false; |
6252 | } |
6253 | else if ((tuple->t_infomask & HEAP_XMAX_INVALID) || |
6254 | !TransactionIdIsValid(HeapTupleHeaderGetRawXmax(tuple))) |
6255 | { |
6256 | freeze_xmax = false; |
6257 | xmax_already_frozen = true; |
6258 | } |
6259 | else |
6260 | ereport(ERROR, |
6261 | (errcode(ERRCODE_DATA_CORRUPTED), |
6262 | errmsg_internal("found xmax %u (infomask 0x%04x) not frozen, not multi, not normal" , |
6263 | xid, tuple->t_infomask))); |
6264 | |
6265 | if (freeze_xmax) |
6266 | { |
6267 | Assert(!xmax_already_frozen); |
6268 | |
6269 | frz->xmax = InvalidTransactionId; |
6270 | |
6271 | /* |
6272 | * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED + |
6273 | * LOCKED. Normalize to INVALID just to be sure no one gets confused. |
6274 | * Also get rid of the HEAP_KEYS_UPDATED bit. |
6275 | */ |
6276 | frz->t_infomask &= ~HEAP_XMAX_BITS; |
6277 | frz->t_infomask |= HEAP_XMAX_INVALID; |
6278 | frz->t_infomask2 &= ~HEAP_HOT_UPDATED; |
6279 | frz->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
6280 | changed = true; |
6281 | } |
6282 | |
6283 | /* |
6284 | * Old-style VACUUM FULL is gone, but we have to keep this code as long as |
6285 | * we support having MOVED_OFF/MOVED_IN tuples in the database. |
6286 | */ |
6287 | if (tuple->t_infomask & HEAP_MOVED) |
6288 | { |
6289 | xid = HeapTupleHeaderGetXvac(tuple); |
6290 | |
6291 | /* |
6292 | * For Xvac, we ignore the cutoff_xid and just always perform the |
6293 | * freeze operation. The oldest release in which such a value can |
6294 | * actually be set is PostgreSQL 8.4, because old-style VACUUM FULL |
6295 | * was removed in PostgreSQL 9.0. Note that if we were to respect |
6296 | * cutoff_xid here, we'd need to make surely to clear totally_frozen |
6297 | * when we skipped freezing on that basis. |
6298 | */ |
6299 | if (TransactionIdIsNormal(xid)) |
6300 | { |
6301 | /* |
6302 | * If a MOVED_OFF tuple is not dead, the xvac transaction must |
6303 | * have failed; whereas a non-dead MOVED_IN tuple must mean the |
6304 | * xvac transaction succeeded. |
6305 | */ |
6306 | if (tuple->t_infomask & HEAP_MOVED_OFF) |
6307 | frz->frzflags |= XLH_INVALID_XVAC; |
6308 | else |
6309 | frz->frzflags |= XLH_FREEZE_XVAC; |
6310 | |
6311 | /* |
6312 | * Might as well fix the hint bits too; usually XMIN_COMMITTED |
6313 | * will already be set here, but there's a small chance not. |
6314 | */ |
6315 | Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID)); |
6316 | frz->t_infomask |= HEAP_XMIN_COMMITTED; |
6317 | changed = true; |
6318 | } |
6319 | } |
6320 | |
6321 | *totally_frozen_p = (xmin_frozen && |
6322 | (freeze_xmax || xmax_already_frozen)); |
6323 | return changed; |
6324 | } |
6325 | |
6326 | /* |
6327 | * heap_execute_freeze_tuple |
6328 | * Execute the prepared freezing of a tuple. |
6329 | * |
6330 | * Caller is responsible for ensuring that no other backend can access the |
6331 | * storage underlying this tuple, either by holding an exclusive lock on the |
6332 | * buffer containing it (which is what lazy VACUUM does), or by having it be |
6333 | * in private storage (which is what CLUSTER and friends do). |
6334 | * |
6335 | * Note: it might seem we could make the changes without exclusive lock, since |
6336 | * TransactionId read/write is assumed atomic anyway. However there is a race |
6337 | * condition: someone who just fetched an old XID that we overwrite here could |
6338 | * conceivably not finish checking the XID against pg_xact before we finish |
6339 | * the VACUUM and perhaps truncate off the part of pg_xact he needs. Getting |
6340 | * exclusive lock ensures no other backend is in process of checking the |
6341 | * tuple status. Also, getting exclusive lock makes it safe to adjust the |
6342 | * infomask bits. |
6343 | * |
6344 | * NB: All code in here must be safe to execute during crash recovery! |
6345 | */ |
6346 | void |
6347 | heap_execute_freeze_tuple(HeapTupleHeader tuple, xl_heap_freeze_tuple *frz) |
6348 | { |
6349 | HeapTupleHeaderSetXmax(tuple, frz->xmax); |
6350 | |
6351 | if (frz->frzflags & XLH_FREEZE_XVAC) |
6352 | HeapTupleHeaderSetXvac(tuple, FrozenTransactionId); |
6353 | |
6354 | if (frz->frzflags & XLH_INVALID_XVAC) |
6355 | HeapTupleHeaderSetXvac(tuple, InvalidTransactionId); |
6356 | |
6357 | tuple->t_infomask = frz->t_infomask; |
6358 | tuple->t_infomask2 = frz->t_infomask2; |
6359 | } |
6360 | |
6361 | /* |
6362 | * heap_freeze_tuple |
6363 | * Freeze tuple in place, without WAL logging. |
6364 | * |
6365 | * Useful for callers like CLUSTER that perform their own WAL logging. |
6366 | */ |
6367 | bool |
6368 | heap_freeze_tuple(HeapTupleHeader tuple, |
6369 | TransactionId relfrozenxid, TransactionId relminmxid, |
6370 | TransactionId cutoff_xid, TransactionId cutoff_multi) |
6371 | { |
6372 | xl_heap_freeze_tuple frz; |
6373 | bool do_freeze; |
6374 | bool tuple_totally_frozen; |
6375 | |
6376 | do_freeze = heap_prepare_freeze_tuple(tuple, |
6377 | relfrozenxid, relminmxid, |
6378 | cutoff_xid, cutoff_multi, |
6379 | &frz, &tuple_totally_frozen); |
6380 | |
6381 | /* |
6382 | * Note that because this is not a WAL-logged operation, we don't need to |
6383 | * fill in the offset in the freeze record. |
6384 | */ |
6385 | |
6386 | if (do_freeze) |
6387 | heap_execute_freeze_tuple(tuple, &frz); |
6388 | return do_freeze; |
6389 | } |
6390 | |
6391 | /* |
6392 | * For a given MultiXactId, return the hint bits that should be set in the |
6393 | * tuple's infomask. |
6394 | * |
6395 | * Normally this should be called for a multixact that was just created, and |
6396 | * so is on our local cache, so the GetMembers call is fast. |
6397 | */ |
6398 | static void |
6399 | GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask, |
6400 | uint16 *new_infomask2) |
6401 | { |
6402 | int nmembers; |
6403 | MultiXactMember *members; |
6404 | int i; |
6405 | uint16 bits = HEAP_XMAX_IS_MULTI; |
6406 | uint16 bits2 = 0; |
6407 | bool has_update = false; |
6408 | LockTupleMode strongest = LockTupleKeyShare; |
6409 | |
6410 | /* |
6411 | * We only use this in multis we just created, so they cannot be values |
6412 | * pre-pg_upgrade. |
6413 | */ |
6414 | nmembers = GetMultiXactIdMembers(multi, &members, false, false); |
6415 | |
6416 | for (i = 0; i < nmembers; i++) |
6417 | { |
6418 | LockTupleMode mode; |
6419 | |
6420 | /* |
6421 | * Remember the strongest lock mode held by any member of the |
6422 | * multixact. |
6423 | */ |
6424 | mode = TUPLOCK_from_mxstatus(members[i].status); |
6425 | if (mode > strongest) |
6426 | strongest = mode; |
6427 | |
6428 | /* See what other bits we need */ |
6429 | switch (members[i].status) |
6430 | { |
6431 | case MultiXactStatusForKeyShare: |
6432 | case MultiXactStatusForShare: |
6433 | case MultiXactStatusForNoKeyUpdate: |
6434 | break; |
6435 | |
6436 | case MultiXactStatusForUpdate: |
6437 | bits2 |= HEAP_KEYS_UPDATED; |
6438 | break; |
6439 | |
6440 | case MultiXactStatusNoKeyUpdate: |
6441 | has_update = true; |
6442 | break; |
6443 | |
6444 | case MultiXactStatusUpdate: |
6445 | bits2 |= HEAP_KEYS_UPDATED; |
6446 | has_update = true; |
6447 | break; |
6448 | } |
6449 | } |
6450 | |
6451 | if (strongest == LockTupleExclusive || |
6452 | strongest == LockTupleNoKeyExclusive) |
6453 | bits |= HEAP_XMAX_EXCL_LOCK; |
6454 | else if (strongest == LockTupleShare) |
6455 | bits |= HEAP_XMAX_SHR_LOCK; |
6456 | else if (strongest == LockTupleKeyShare) |
6457 | bits |= HEAP_XMAX_KEYSHR_LOCK; |
6458 | |
6459 | if (!has_update) |
6460 | bits |= HEAP_XMAX_LOCK_ONLY; |
6461 | |
6462 | if (nmembers > 0) |
6463 | pfree(members); |
6464 | |
6465 | *new_infomask = bits; |
6466 | *new_infomask2 = bits2; |
6467 | } |
6468 | |
6469 | /* |
6470 | * MultiXactIdGetUpdateXid |
6471 | * |
6472 | * Given a multixact Xmax and corresponding infomask, which does not have the |
6473 | * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating |
6474 | * transaction. |
6475 | * |
6476 | * Caller is expected to check the status of the updating transaction, if |
6477 | * necessary. |
6478 | */ |
6479 | static TransactionId |
6480 | MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask) |
6481 | { |
6482 | TransactionId update_xact = InvalidTransactionId; |
6483 | MultiXactMember *members; |
6484 | int nmembers; |
6485 | |
6486 | Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY)); |
6487 | Assert(t_infomask & HEAP_XMAX_IS_MULTI); |
6488 | |
6489 | /* |
6490 | * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from |
6491 | * pre-pg_upgrade. |
6492 | */ |
6493 | nmembers = GetMultiXactIdMembers(xmax, &members, false, false); |
6494 | |
6495 | if (nmembers > 0) |
6496 | { |
6497 | int i; |
6498 | |
6499 | for (i = 0; i < nmembers; i++) |
6500 | { |
6501 | /* Ignore lockers */ |
6502 | if (!ISUPDATE_from_mxstatus(members[i].status)) |
6503 | continue; |
6504 | |
6505 | /* there can be at most one updater */ |
6506 | Assert(update_xact == InvalidTransactionId); |
6507 | update_xact = members[i].xid; |
6508 | #ifndef USE_ASSERT_CHECKING |
6509 | |
6510 | /* |
6511 | * in an assert-enabled build, walk the whole array to ensure |
6512 | * there's no other updater. |
6513 | */ |
6514 | break; |
6515 | #endif |
6516 | } |
6517 | |
6518 | pfree(members); |
6519 | } |
6520 | |
6521 | return update_xact; |
6522 | } |
6523 | |
6524 | /* |
6525 | * HeapTupleGetUpdateXid |
6526 | * As above, but use a HeapTupleHeader |
6527 | * |
6528 | * See also HeapTupleHeaderGetUpdateXid, which can be used without previously |
6529 | * checking the hint bits. |
6530 | */ |
6531 | TransactionId |
6532 | HeapTupleGetUpdateXid(HeapTupleHeader tuple) |
6533 | { |
6534 | return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tuple), |
6535 | tuple->t_infomask); |
6536 | } |
6537 | |
6538 | /* |
6539 | * Does the given multixact conflict with the current transaction grabbing a |
6540 | * tuple lock of the given strength? |
6541 | * |
6542 | * The passed infomask pairs up with the given multixact in the tuple header. |
6543 | * |
6544 | * If current_is_member is not NULL, it is set to 'true' if the current |
6545 | * transaction is a member of the given multixact. |
6546 | */ |
6547 | static bool |
6548 | DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask, |
6549 | LockTupleMode lockmode, bool *current_is_member) |
6550 | { |
6551 | int nmembers; |
6552 | MultiXactMember *members; |
6553 | bool result = false; |
6554 | LOCKMODE wanted = tupleLockExtraInfo[lockmode].hwlock; |
6555 | |
6556 | if (HEAP_LOCKED_UPGRADED(infomask)) |
6557 | return false; |
6558 | |
6559 | nmembers = GetMultiXactIdMembers(multi, &members, false, |
6560 | HEAP_XMAX_IS_LOCKED_ONLY(infomask)); |
6561 | if (nmembers >= 0) |
6562 | { |
6563 | int i; |
6564 | |
6565 | for (i = 0; i < nmembers; i++) |
6566 | { |
6567 | TransactionId memxid; |
6568 | LOCKMODE memlockmode; |
6569 | |
6570 | if (result && (current_is_member == NULL || *current_is_member)) |
6571 | break; |
6572 | |
6573 | memlockmode = LOCKMODE_from_mxstatus(members[i].status); |
6574 | |
6575 | /* ignore members from current xact (but track their presence) */ |
6576 | memxid = members[i].xid; |
6577 | if (TransactionIdIsCurrentTransactionId(memxid)) |
6578 | { |
6579 | if (current_is_member != NULL) |
6580 | *current_is_member = true; |
6581 | continue; |
6582 | } |
6583 | else if (result) |
6584 | continue; |
6585 | |
6586 | /* ignore members that don't conflict with the lock we want */ |
6587 | if (!DoLockModesConflict(memlockmode, wanted)) |
6588 | continue; |
6589 | |
6590 | if (ISUPDATE_from_mxstatus(members[i].status)) |
6591 | { |
6592 | /* ignore aborted updaters */ |
6593 | if (TransactionIdDidAbort(memxid)) |
6594 | continue; |
6595 | } |
6596 | else |
6597 | { |
6598 | /* ignore lockers-only that are no longer in progress */ |
6599 | if (!TransactionIdIsInProgress(memxid)) |
6600 | continue; |
6601 | } |
6602 | |
6603 | /* |
6604 | * Whatever remains are either live lockers that conflict with our |
6605 | * wanted lock, and updaters that are not aborted. Those conflict |
6606 | * with what we want. Set up to return true, but keep going to |
6607 | * look for the current transaction among the multixact members, |
6608 | * if needed. |
6609 | */ |
6610 | result = true; |
6611 | } |
6612 | pfree(members); |
6613 | } |
6614 | |
6615 | return result; |
6616 | } |
6617 | |
6618 | /* |
6619 | * Do_MultiXactIdWait |
6620 | * Actual implementation for the two functions below. |
6621 | * |
6622 | * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is |
6623 | * needed to ensure we only sleep on conflicting members, and the infomask is |
6624 | * used to optimize multixact access in case it's a lock-only multi); 'nowait' |
6625 | * indicates whether to use conditional lock acquisition, to allow callers to |
6626 | * fail if lock is unavailable. 'rel', 'ctid' and 'oper' are used to set up |
6627 | * context information for error messages. 'remaining', if not NULL, receives |
6628 | * the number of members that are still running, including any (non-aborted) |
6629 | * subtransactions of our own transaction. |
6630 | * |
6631 | * We do this by sleeping on each member using XactLockTableWait. Any |
6632 | * members that belong to the current backend are *not* waited for, however; |
6633 | * this would not merely be useless but would lead to Assert failure inside |
6634 | * XactLockTableWait. By the time this returns, it is certain that all |
6635 | * transactions *of other backends* that were members of the MultiXactId |
6636 | * that conflict with the requested status are dead (and no new ones can have |
6637 | * been added, since it is not legal to add members to an existing |
6638 | * MultiXactId). |
6639 | * |
6640 | * But by the time we finish sleeping, someone else may have changed the Xmax |
6641 | * of the containing tuple, so the caller needs to iterate on us somehow. |
6642 | * |
6643 | * Note that in case we return false, the number of remaining members is |
6644 | * not to be trusted. |
6645 | */ |
6646 | static bool |
6647 | Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status, |
6648 | uint16 infomask, bool nowait, |
6649 | Relation rel, ItemPointer ctid, XLTW_Oper oper, |
6650 | int *remaining) |
6651 | { |
6652 | bool result = true; |
6653 | MultiXactMember *members; |
6654 | int nmembers; |
6655 | int remain = 0; |
6656 | |
6657 | /* for pre-pg_upgrade tuples, no need to sleep at all */ |
6658 | nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 : |
6659 | GetMultiXactIdMembers(multi, &members, false, |
6660 | HEAP_XMAX_IS_LOCKED_ONLY(infomask)); |
6661 | |
6662 | if (nmembers >= 0) |
6663 | { |
6664 | int i; |
6665 | |
6666 | for (i = 0; i < nmembers; i++) |
6667 | { |
6668 | TransactionId memxid = members[i].xid; |
6669 | MultiXactStatus memstatus = members[i].status; |
6670 | |
6671 | if (TransactionIdIsCurrentTransactionId(memxid)) |
6672 | { |
6673 | remain++; |
6674 | continue; |
6675 | } |
6676 | |
6677 | if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus), |
6678 | LOCKMODE_from_mxstatus(status))) |
6679 | { |
6680 | if (remaining && TransactionIdIsInProgress(memxid)) |
6681 | remain++; |
6682 | continue; |
6683 | } |
6684 | |
6685 | /* |
6686 | * This member conflicts with our multi, so we have to sleep (or |
6687 | * return failure, if asked to avoid waiting.) |
6688 | * |
6689 | * Note that we don't set up an error context callback ourselves, |
6690 | * but instead we pass the info down to XactLockTableWait. This |
6691 | * might seem a bit wasteful because the context is set up and |
6692 | * tore down for each member of the multixact, but in reality it |
6693 | * should be barely noticeable, and it avoids duplicate code. |
6694 | */ |
6695 | if (nowait) |
6696 | { |
6697 | result = ConditionalXactLockTableWait(memxid); |
6698 | if (!result) |
6699 | break; |
6700 | } |
6701 | else |
6702 | XactLockTableWait(memxid, rel, ctid, oper); |
6703 | } |
6704 | |
6705 | pfree(members); |
6706 | } |
6707 | |
6708 | if (remaining) |
6709 | *remaining = remain; |
6710 | |
6711 | return result; |
6712 | } |
6713 | |
6714 | /* |
6715 | * MultiXactIdWait |
6716 | * Sleep on a MultiXactId. |
6717 | * |
6718 | * By the time we finish sleeping, someone else may have changed the Xmax |
6719 | * of the containing tuple, so the caller needs to iterate on us somehow. |
6720 | * |
6721 | * We return (in *remaining, if not NULL) the number of members that are still |
6722 | * running, including any (non-aborted) subtransactions of our own transaction. |
6723 | */ |
6724 | static void |
6725 | MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask, |
6726 | Relation rel, ItemPointer ctid, XLTW_Oper oper, |
6727 | int *remaining) |
6728 | { |
6729 | (void) Do_MultiXactIdWait(multi, status, infomask, false, |
6730 | rel, ctid, oper, remaining); |
6731 | } |
6732 | |
6733 | /* |
6734 | * ConditionalMultiXactIdWait |
6735 | * As above, but only lock if we can get the lock without blocking. |
6736 | * |
6737 | * By the time we finish sleeping, someone else may have changed the Xmax |
6738 | * of the containing tuple, so the caller needs to iterate on us somehow. |
6739 | * |
6740 | * If the multixact is now all gone, return true. Returns false if some |
6741 | * transactions might still be running. |
6742 | * |
6743 | * We return (in *remaining, if not NULL) the number of members that are still |
6744 | * running, including any (non-aborted) subtransactions of our own transaction. |
6745 | */ |
6746 | static bool |
6747 | ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status, |
6748 | uint16 infomask, Relation rel, int *remaining) |
6749 | { |
6750 | return Do_MultiXactIdWait(multi, status, infomask, true, |
6751 | rel, NULL, XLTW_None, remaining); |
6752 | } |
6753 | |
6754 | /* |
6755 | * heap_tuple_needs_eventual_freeze |
6756 | * |
6757 | * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac) |
6758 | * will eventually require freezing. Similar to heap_tuple_needs_freeze, |
6759 | * but there's no cutoff, since we're trying to figure out whether freezing |
6760 | * will ever be needed, not whether it's needed now. |
6761 | */ |
6762 | bool |
6763 | heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple) |
6764 | { |
6765 | TransactionId xid; |
6766 | |
6767 | /* |
6768 | * If xmin is a normal transaction ID, this tuple is definitely not |
6769 | * frozen. |
6770 | */ |
6771 | xid = HeapTupleHeaderGetXmin(tuple); |
6772 | if (TransactionIdIsNormal(xid)) |
6773 | return true; |
6774 | |
6775 | /* |
6776 | * If xmax is a valid xact or multixact, this tuple is also not frozen. |
6777 | */ |
6778 | if (tuple->t_infomask & HEAP_XMAX_IS_MULTI) |
6779 | { |
6780 | MultiXactId multi; |
6781 | |
6782 | multi = HeapTupleHeaderGetRawXmax(tuple); |
6783 | if (MultiXactIdIsValid(multi)) |
6784 | return true; |
6785 | } |
6786 | else |
6787 | { |
6788 | xid = HeapTupleHeaderGetRawXmax(tuple); |
6789 | if (TransactionIdIsNormal(xid)) |
6790 | return true; |
6791 | } |
6792 | |
6793 | if (tuple->t_infomask & HEAP_MOVED) |
6794 | { |
6795 | xid = HeapTupleHeaderGetXvac(tuple); |
6796 | if (TransactionIdIsNormal(xid)) |
6797 | return true; |
6798 | } |
6799 | |
6800 | return false; |
6801 | } |
6802 | |
6803 | /* |
6804 | * heap_tuple_needs_freeze |
6805 | * |
6806 | * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac) |
6807 | * are older than the specified cutoff XID or MultiXactId. If so, return true. |
6808 | * |
6809 | * It doesn't matter whether the tuple is alive or dead, we are checking |
6810 | * to see if a tuple needs to be removed or frozen to avoid wraparound. |
6811 | * |
6812 | * NB: Cannot rely on hint bits here, they might not be set after a crash or |
6813 | * on a standby. |
6814 | */ |
6815 | bool |
6816 | heap_tuple_needs_freeze(HeapTupleHeader tuple, TransactionId cutoff_xid, |
6817 | MultiXactId cutoff_multi, Buffer buf) |
6818 | { |
6819 | TransactionId xid; |
6820 | |
6821 | xid = HeapTupleHeaderGetXmin(tuple); |
6822 | if (TransactionIdIsNormal(xid) && |
6823 | TransactionIdPrecedes(xid, cutoff_xid)) |
6824 | return true; |
6825 | |
6826 | /* |
6827 | * The considerations for multixacts are complicated; look at |
6828 | * heap_prepare_freeze_tuple for justifications. This routine had better |
6829 | * be in sync with that one! |
6830 | */ |
6831 | if (tuple->t_infomask & HEAP_XMAX_IS_MULTI) |
6832 | { |
6833 | MultiXactId multi; |
6834 | |
6835 | multi = HeapTupleHeaderGetRawXmax(tuple); |
6836 | if (!MultiXactIdIsValid(multi)) |
6837 | { |
6838 | /* no xmax set, ignore */ |
6839 | ; |
6840 | } |
6841 | else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask)) |
6842 | return true; |
6843 | else if (MultiXactIdPrecedes(multi, cutoff_multi)) |
6844 | return true; |
6845 | else |
6846 | { |
6847 | MultiXactMember *members; |
6848 | int nmembers; |
6849 | int i; |
6850 | |
6851 | /* need to check whether any member of the mxact is too old */ |
6852 | |
6853 | nmembers = GetMultiXactIdMembers(multi, &members, false, |
6854 | HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask)); |
6855 | |
6856 | for (i = 0; i < nmembers; i++) |
6857 | { |
6858 | if (TransactionIdPrecedes(members[i].xid, cutoff_xid)) |
6859 | { |
6860 | pfree(members); |
6861 | return true; |
6862 | } |
6863 | } |
6864 | if (nmembers > 0) |
6865 | pfree(members); |
6866 | } |
6867 | } |
6868 | else |
6869 | { |
6870 | xid = HeapTupleHeaderGetRawXmax(tuple); |
6871 | if (TransactionIdIsNormal(xid) && |
6872 | TransactionIdPrecedes(xid, cutoff_xid)) |
6873 | return true; |
6874 | } |
6875 | |
6876 | if (tuple->t_infomask & HEAP_MOVED) |
6877 | { |
6878 | xid = HeapTupleHeaderGetXvac(tuple); |
6879 | if (TransactionIdIsNormal(xid) && |
6880 | TransactionIdPrecedes(xid, cutoff_xid)) |
6881 | return true; |
6882 | } |
6883 | |
6884 | return false; |
6885 | } |
6886 | |
6887 | /* |
6888 | * If 'tuple' contains any visible XID greater than latestRemovedXid, |
6889 | * ratchet forwards latestRemovedXid to the greatest one found. |
6890 | * This is used as the basis for generating Hot Standby conflicts, so |
6891 | * if a tuple was never visible then removing it should not conflict |
6892 | * with queries. |
6893 | */ |
6894 | void |
6895 | (HeapTupleHeader tuple, |
6896 | TransactionId *latestRemovedXid) |
6897 | { |
6898 | TransactionId xmin = HeapTupleHeaderGetXmin(tuple); |
6899 | TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple); |
6900 | TransactionId xvac = HeapTupleHeaderGetXvac(tuple); |
6901 | |
6902 | if (tuple->t_infomask & HEAP_MOVED) |
6903 | { |
6904 | if (TransactionIdPrecedes(*latestRemovedXid, xvac)) |
6905 | *latestRemovedXid = xvac; |
6906 | } |
6907 | |
6908 | /* |
6909 | * Ignore tuples inserted by an aborted transaction or if the tuple was |
6910 | * updated/deleted by the inserting transaction. |
6911 | * |
6912 | * Look for a committed hint bit, or if no xmin bit is set, check clog. |
6913 | * This needs to work on both master and standby, where it is used to |
6914 | * assess btree delete records. |
6915 | */ |
6916 | if (HeapTupleHeaderXminCommitted(tuple) || |
6917 | (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin))) |
6918 | { |
6919 | if (xmax != xmin && |
6920 | TransactionIdFollows(xmax, *latestRemovedXid)) |
6921 | *latestRemovedXid = xmax; |
6922 | } |
6923 | |
6924 | /* *latestRemovedXid may still be invalid at end */ |
6925 | } |
6926 | |
6927 | #ifdef USE_PREFETCH |
6928 | /* |
6929 | * Helper function for heap_compute_xid_horizon_for_tuples. Issue prefetch |
6930 | * requests for the number of buffers indicated by prefetch_count. The |
6931 | * prefetch_state keeps track of all the buffers that we can prefetch and |
6932 | * which ones have already been prefetched; each call to this function picks |
6933 | * up where the previous call left off. |
6934 | */ |
6935 | static void |
6936 | xid_horizon_prefetch_buffer(Relation rel, |
6937 | XidHorizonPrefetchState *prefetch_state, |
6938 | int prefetch_count) |
6939 | { |
6940 | BlockNumber cur_hblkno = prefetch_state->cur_hblkno; |
6941 | int count = 0; |
6942 | int i; |
6943 | int nitems = prefetch_state->nitems; |
6944 | ItemPointerData *tids = prefetch_state->tids; |
6945 | |
6946 | for (i = prefetch_state->next_item; |
6947 | i < nitems && count < prefetch_count; |
6948 | i++) |
6949 | { |
6950 | ItemPointer htid = &tids[i]; |
6951 | |
6952 | if (cur_hblkno == InvalidBlockNumber || |
6953 | ItemPointerGetBlockNumber(htid) != cur_hblkno) |
6954 | { |
6955 | cur_hblkno = ItemPointerGetBlockNumber(htid); |
6956 | PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno); |
6957 | count++; |
6958 | } |
6959 | } |
6960 | |
6961 | /* |
6962 | * Save the prefetch position so that next time we can continue from that |
6963 | * position. |
6964 | */ |
6965 | prefetch_state->next_item = i; |
6966 | prefetch_state->cur_hblkno = cur_hblkno; |
6967 | } |
6968 | #endif |
6969 | |
6970 | /* |
6971 | * Get the latestRemovedXid from the heap pages pointed at by the index |
6972 | * tuples being deleted. |
6973 | * |
6974 | * We used to do this during recovery rather than on the primary, but that |
6975 | * approach now appears inferior. It meant that the master could generate |
6976 | * a lot of work for the standby without any back-pressure to slow down the |
6977 | * master, and it required the standby to have reached consistency, whereas |
6978 | * we want to have correct information available even before that point. |
6979 | * |
6980 | * It's possible for this to generate a fair amount of I/O, since we may be |
6981 | * deleting hundreds of tuples from a single index block. To amortize that |
6982 | * cost to some degree, this uses prefetching and combines repeat accesses to |
6983 | * the same block. |
6984 | */ |
6985 | TransactionId |
6986 | heap_compute_xid_horizon_for_tuples(Relation rel, |
6987 | ItemPointerData *tids, |
6988 | int nitems) |
6989 | { |
6990 | TransactionId latestRemovedXid = InvalidTransactionId; |
6991 | BlockNumber hblkno; |
6992 | Buffer buf = InvalidBuffer; |
6993 | Page hpage; |
6994 | #ifdef USE_PREFETCH |
6995 | XidHorizonPrefetchState prefetch_state; |
6996 | int io_concurrency; |
6997 | int prefetch_distance; |
6998 | #endif |
6999 | |
7000 | /* |
7001 | * Sort to avoid repeated lookups for the same page, and to make it more |
7002 | * likely to access items in an efficient order. In particular, this |
7003 | * ensures that if there are multiple pointers to the same page, they all |
7004 | * get processed looking up and locking the page just once. |
7005 | */ |
7006 | qsort((void *) tids, nitems, sizeof(ItemPointerData), |
7007 | (int (*) (const void *, const void *)) ItemPointerCompare); |
7008 | |
7009 | #ifdef USE_PREFETCH |
7010 | /* Initialize prefetch state. */ |
7011 | prefetch_state.cur_hblkno = InvalidBlockNumber; |
7012 | prefetch_state.next_item = 0; |
7013 | prefetch_state.nitems = nitems; |
7014 | prefetch_state.tids = tids; |
7015 | |
7016 | /* |
7017 | * Compute the prefetch distance that we will attempt to maintain. |
7018 | * |
7019 | * We don't use the regular formula to determine how much to prefetch |
7020 | * here, but instead just add a constant to effective_io_concurrency. |
7021 | * That's because it seems best to do some prefetching here even when |
7022 | * effective_io_concurrency is set to 0, but if the DBA thinks it's OK to |
7023 | * do more prefetching for other operations, then it's probably OK to do |
7024 | * more prefetching in this case, too. It may be that this formula is too |
7025 | * simplistic, but at the moment there is no evidence of that or any idea |
7026 | * about what would work better. |
7027 | * |
7028 | * Since the caller holds a buffer lock somewhere in rel, we'd better make |
7029 | * sure that isn't a catalog relation before we call code that does |
7030 | * syscache lookups, to avoid risk of deadlock. |
7031 | */ |
7032 | if (IsCatalogRelation(rel)) |
7033 | io_concurrency = effective_io_concurrency; |
7034 | else |
7035 | io_concurrency = get_tablespace_io_concurrency(rel->rd_rel->reltablespace); |
7036 | prefetch_distance = Min((io_concurrency) + 10, MAX_IO_CONCURRENCY); |
7037 | |
7038 | /* Start prefetching. */ |
7039 | xid_horizon_prefetch_buffer(rel, &prefetch_state, prefetch_distance); |
7040 | #endif |
7041 | |
7042 | /* Iterate over all tids, and check their horizon */ |
7043 | hblkno = InvalidBlockNumber; |
7044 | hpage = NULL; |
7045 | for (int i = 0; i < nitems; i++) |
7046 | { |
7047 | ItemPointer htid = &tids[i]; |
7048 | ItemId hitemid; |
7049 | OffsetNumber hoffnum; |
7050 | |
7051 | /* |
7052 | * Read heap buffer, but avoid refetching if it's the same block as |
7053 | * required for the last tid. |
7054 | */ |
7055 | if (hblkno == InvalidBlockNumber || |
7056 | ItemPointerGetBlockNumber(htid) != hblkno) |
7057 | { |
7058 | /* release old buffer */ |
7059 | if (BufferIsValid(buf)) |
7060 | { |
7061 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
7062 | ReleaseBuffer(buf); |
7063 | } |
7064 | |
7065 | hblkno = ItemPointerGetBlockNumber(htid); |
7066 | |
7067 | buf = ReadBuffer(rel, hblkno); |
7068 | |
7069 | #ifdef USE_PREFETCH |
7070 | |
7071 | /* |
7072 | * To maintain the prefetch distance, prefetch one more page for |
7073 | * each page we read. |
7074 | */ |
7075 | xid_horizon_prefetch_buffer(rel, &prefetch_state, 1); |
7076 | #endif |
7077 | |
7078 | hpage = BufferGetPage(buf); |
7079 | |
7080 | LockBuffer(buf, BUFFER_LOCK_SHARE); |
7081 | } |
7082 | |
7083 | hoffnum = ItemPointerGetOffsetNumber(htid); |
7084 | hitemid = PageGetItemId(hpage, hoffnum); |
7085 | |
7086 | /* |
7087 | * Follow any redirections until we find something useful. |
7088 | */ |
7089 | while (ItemIdIsRedirected(hitemid)) |
7090 | { |
7091 | hoffnum = ItemIdGetRedirect(hitemid); |
7092 | hitemid = PageGetItemId(hpage, hoffnum); |
7093 | CHECK_FOR_INTERRUPTS(); |
7094 | } |
7095 | |
7096 | /* |
7097 | * If the heap item has storage, then read the header and use that to |
7098 | * set latestRemovedXid. |
7099 | * |
7100 | * Some LP_DEAD items may not be accessible, so we ignore them. |
7101 | */ |
7102 | if (ItemIdHasStorage(hitemid)) |
7103 | { |
7104 | HeapTupleHeader htuphdr; |
7105 | |
7106 | htuphdr = (HeapTupleHeader) PageGetItem(hpage, hitemid); |
7107 | |
7108 | HeapTupleHeaderAdvanceLatestRemovedXid(htuphdr, &latestRemovedXid); |
7109 | } |
7110 | else if (ItemIdIsDead(hitemid)) |
7111 | { |
7112 | /* |
7113 | * Conjecture: if hitemid is dead then it had xids before the xids |
7114 | * marked on LP_NORMAL items. So we just ignore this item and move |
7115 | * onto the next, for the purposes of calculating |
7116 | * latestRemovedXid. |
7117 | */ |
7118 | } |
7119 | else |
7120 | Assert(!ItemIdIsUsed(hitemid)); |
7121 | |
7122 | } |
7123 | |
7124 | if (BufferIsValid(buf)) |
7125 | { |
7126 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
7127 | ReleaseBuffer(buf); |
7128 | } |
7129 | |
7130 | /* |
7131 | * If all heap tuples were LP_DEAD then we will be returning |
7132 | * InvalidTransactionId here, which avoids conflicts. This matches |
7133 | * existing logic which assumes that LP_DEAD tuples must already be older |
7134 | * than the latestRemovedXid on the cleanup record that set them as |
7135 | * LP_DEAD, hence must already have generated a conflict. |
7136 | */ |
7137 | |
7138 | return latestRemovedXid; |
7139 | } |
7140 | |
7141 | /* |
7142 | * Perform XLogInsert to register a heap cleanup info message. These |
7143 | * messages are sent once per VACUUM and are required because |
7144 | * of the phasing of removal operations during a lazy VACUUM. |
7145 | * see comments for vacuum_log_cleanup_info(). |
7146 | */ |
7147 | XLogRecPtr |
7148 | log_heap_cleanup_info(RelFileNode rnode, TransactionId latestRemovedXid) |
7149 | { |
7150 | xl_heap_cleanup_info xlrec; |
7151 | XLogRecPtr recptr; |
7152 | |
7153 | xlrec.node = rnode; |
7154 | xlrec.latestRemovedXid = latestRemovedXid; |
7155 | |
7156 | XLogBeginInsert(); |
7157 | XLogRegisterData((char *) &xlrec, SizeOfHeapCleanupInfo); |
7158 | |
7159 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_CLEANUP_INFO); |
7160 | |
7161 | return recptr; |
7162 | } |
7163 | |
7164 | /* |
7165 | * Perform XLogInsert for a heap-clean operation. Caller must already |
7166 | * have modified the buffer and marked it dirty. |
7167 | * |
7168 | * Note: prior to Postgres 8.3, the entries in the nowunused[] array were |
7169 | * zero-based tuple indexes. Now they are one-based like other uses |
7170 | * of OffsetNumber. |
7171 | * |
7172 | * We also include latestRemovedXid, which is the greatest XID present in |
7173 | * the removed tuples. That allows recovery processing to cancel or wait |
7174 | * for long standby queries that can still see these tuples. |
7175 | */ |
7176 | XLogRecPtr |
7177 | log_heap_clean(Relation reln, Buffer buffer, |
7178 | OffsetNumber *redirected, int nredirected, |
7179 | OffsetNumber *nowdead, int ndead, |
7180 | OffsetNumber *nowunused, int nunused, |
7181 | TransactionId latestRemovedXid) |
7182 | { |
7183 | xl_heap_clean xlrec; |
7184 | XLogRecPtr recptr; |
7185 | |
7186 | /* Caller should not call me on a non-WAL-logged relation */ |
7187 | Assert(RelationNeedsWAL(reln)); |
7188 | |
7189 | xlrec.latestRemovedXid = latestRemovedXid; |
7190 | xlrec.nredirected = nredirected; |
7191 | xlrec.ndead = ndead; |
7192 | |
7193 | XLogBeginInsert(); |
7194 | XLogRegisterData((char *) &xlrec, SizeOfHeapClean); |
7195 | |
7196 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
7197 | |
7198 | /* |
7199 | * The OffsetNumber arrays are not actually in the buffer, but we pretend |
7200 | * that they are. When XLogInsert stores the whole buffer, the offset |
7201 | * arrays need not be stored too. Note that even if all three arrays are |
7202 | * empty, we want to expose the buffer as a candidate for whole-page |
7203 | * storage, since this record type implies a defragmentation operation |
7204 | * even if no line pointers changed state. |
7205 | */ |
7206 | if (nredirected > 0) |
7207 | XLogRegisterBufData(0, (char *) redirected, |
7208 | nredirected * sizeof(OffsetNumber) * 2); |
7209 | |
7210 | if (ndead > 0) |
7211 | XLogRegisterBufData(0, (char *) nowdead, |
7212 | ndead * sizeof(OffsetNumber)); |
7213 | |
7214 | if (nunused > 0) |
7215 | XLogRegisterBufData(0, (char *) nowunused, |
7216 | nunused * sizeof(OffsetNumber)); |
7217 | |
7218 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_CLEAN); |
7219 | |
7220 | return recptr; |
7221 | } |
7222 | |
7223 | /* |
7224 | * Perform XLogInsert for a heap-freeze operation. Caller must have already |
7225 | * modified the buffer and marked it dirty. |
7226 | */ |
7227 | XLogRecPtr |
7228 | log_heap_freeze(Relation reln, Buffer buffer, TransactionId cutoff_xid, |
7229 | xl_heap_freeze_tuple *tuples, int ntuples) |
7230 | { |
7231 | xl_heap_freeze_page xlrec; |
7232 | XLogRecPtr recptr; |
7233 | |
7234 | /* Caller should not call me on a non-WAL-logged relation */ |
7235 | Assert(RelationNeedsWAL(reln)); |
7236 | /* nor when there are no tuples to freeze */ |
7237 | Assert(ntuples > 0); |
7238 | |
7239 | xlrec.cutoff_xid = cutoff_xid; |
7240 | xlrec.ntuples = ntuples; |
7241 | |
7242 | XLogBeginInsert(); |
7243 | XLogRegisterData((char *) &xlrec, SizeOfHeapFreezePage); |
7244 | |
7245 | /* |
7246 | * The freeze plan array is not actually in the buffer, but pretend that |
7247 | * it is. When XLogInsert stores the whole buffer, the freeze plan need |
7248 | * not be stored too. |
7249 | */ |
7250 | XLogRegisterBuffer(0, buffer, REGBUF_STANDARD); |
7251 | XLogRegisterBufData(0, (char *) tuples, |
7252 | ntuples * sizeof(xl_heap_freeze_tuple)); |
7253 | |
7254 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_FREEZE_PAGE); |
7255 | |
7256 | return recptr; |
7257 | } |
7258 | |
7259 | /* |
7260 | * Perform XLogInsert for a heap-visible operation. 'block' is the block |
7261 | * being marked all-visible, and vm_buffer is the buffer containing the |
7262 | * corresponding visibility map block. Both should have already been modified |
7263 | * and dirtied. |
7264 | * |
7265 | * If checksums are enabled, we also generate a full-page image of |
7266 | * heap_buffer, if necessary. |
7267 | */ |
7268 | XLogRecPtr |
7269 | log_heap_visible(RelFileNode rnode, Buffer heap_buffer, Buffer vm_buffer, |
7270 | TransactionId cutoff_xid, uint8 vmflags) |
7271 | { |
7272 | xl_heap_visible xlrec; |
7273 | XLogRecPtr recptr; |
7274 | uint8 flags; |
7275 | |
7276 | Assert(BufferIsValid(heap_buffer)); |
7277 | Assert(BufferIsValid(vm_buffer)); |
7278 | |
7279 | xlrec.cutoff_xid = cutoff_xid; |
7280 | xlrec.flags = vmflags; |
7281 | XLogBeginInsert(); |
7282 | XLogRegisterData((char *) &xlrec, SizeOfHeapVisible); |
7283 | |
7284 | XLogRegisterBuffer(0, vm_buffer, 0); |
7285 | |
7286 | flags = REGBUF_STANDARD; |
7287 | if (!XLogHintBitIsNeeded()) |
7288 | flags |= REGBUF_NO_IMAGE; |
7289 | XLogRegisterBuffer(1, heap_buffer, flags); |
7290 | |
7291 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE); |
7292 | |
7293 | return recptr; |
7294 | } |
7295 | |
7296 | /* |
7297 | * Perform XLogInsert for a heap-update operation. Caller must already |
7298 | * have modified the buffer(s) and marked them dirty. |
7299 | */ |
7300 | static XLogRecPtr |
7301 | log_heap_update(Relation reln, Buffer oldbuf, |
7302 | Buffer newbuf, HeapTuple oldtup, HeapTuple newtup, |
7303 | HeapTuple old_key_tuple, |
7304 | bool all_visible_cleared, bool new_all_visible_cleared) |
7305 | { |
7306 | xl_heap_update xlrec; |
7307 | xl_heap_header xlhdr; |
7308 | xl_heap_header xlhdr_idx; |
7309 | uint8 info; |
7310 | uint16 prefix_suffix[2]; |
7311 | uint16 prefixlen = 0, |
7312 | suffixlen = 0; |
7313 | XLogRecPtr recptr; |
7314 | Page page = BufferGetPage(newbuf); |
7315 | bool need_tuple_data = RelationIsLogicallyLogged(reln); |
7316 | bool init; |
7317 | int bufflags; |
7318 | |
7319 | /* Caller should not call me on a non-WAL-logged relation */ |
7320 | Assert(RelationNeedsWAL(reln)); |
7321 | |
7322 | XLogBeginInsert(); |
7323 | |
7324 | if (HeapTupleIsHeapOnly(newtup)) |
7325 | info = XLOG_HEAP_HOT_UPDATE; |
7326 | else |
7327 | info = XLOG_HEAP_UPDATE; |
7328 | |
7329 | /* |
7330 | * If the old and new tuple are on the same page, we only need to log the |
7331 | * parts of the new tuple that were changed. That saves on the amount of |
7332 | * WAL we need to write. Currently, we just count any unchanged bytes in |
7333 | * the beginning and end of the tuple. That's quick to check, and |
7334 | * perfectly covers the common case that only one field is updated. |
7335 | * |
7336 | * We could do this even if the old and new tuple are on different pages, |
7337 | * but only if we don't make a full-page image of the old page, which is |
7338 | * difficult to know in advance. Also, if the old tuple is corrupt for |
7339 | * some reason, it would allow the corruption to propagate the new page, |
7340 | * so it seems best to avoid. Under the general assumption that most |
7341 | * updates tend to create the new tuple version on the same page, there |
7342 | * isn't much to be gained by doing this across pages anyway. |
7343 | * |
7344 | * Skip this if we're taking a full-page image of the new page, as we |
7345 | * don't include the new tuple in the WAL record in that case. Also |
7346 | * disable if wal_level='logical', as logical decoding needs to be able to |
7347 | * read the new tuple in whole from the WAL record alone. |
7348 | */ |
7349 | if (oldbuf == newbuf && !need_tuple_data && |
7350 | !XLogCheckBufferNeedsBackup(newbuf)) |
7351 | { |
7352 | char *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff; |
7353 | char *newp = (char *) newtup->t_data + newtup->t_data->t_hoff; |
7354 | int oldlen = oldtup->t_len - oldtup->t_data->t_hoff; |
7355 | int newlen = newtup->t_len - newtup->t_data->t_hoff; |
7356 | |
7357 | /* Check for common prefix between old and new tuple */ |
7358 | for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++) |
7359 | { |
7360 | if (newp[prefixlen] != oldp[prefixlen]) |
7361 | break; |
7362 | } |
7363 | |
7364 | /* |
7365 | * Storing the length of the prefix takes 2 bytes, so we need to save |
7366 | * at least 3 bytes or there's no point. |
7367 | */ |
7368 | if (prefixlen < 3) |
7369 | prefixlen = 0; |
7370 | |
7371 | /* Same for suffix */ |
7372 | for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++) |
7373 | { |
7374 | if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1]) |
7375 | break; |
7376 | } |
7377 | if (suffixlen < 3) |
7378 | suffixlen = 0; |
7379 | } |
7380 | |
7381 | /* Prepare main WAL data chain */ |
7382 | xlrec.flags = 0; |
7383 | if (all_visible_cleared) |
7384 | xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED; |
7385 | if (new_all_visible_cleared) |
7386 | xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED; |
7387 | if (prefixlen > 0) |
7388 | xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD; |
7389 | if (suffixlen > 0) |
7390 | xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD; |
7391 | if (need_tuple_data) |
7392 | { |
7393 | xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE; |
7394 | if (old_key_tuple) |
7395 | { |
7396 | if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL) |
7397 | xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE; |
7398 | else |
7399 | xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY; |
7400 | } |
7401 | } |
7402 | |
7403 | /* If new tuple is the single and first tuple on page... */ |
7404 | if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber && |
7405 | PageGetMaxOffsetNumber(page) == FirstOffsetNumber) |
7406 | { |
7407 | info |= XLOG_HEAP_INIT_PAGE; |
7408 | init = true; |
7409 | } |
7410 | else |
7411 | init = false; |
7412 | |
7413 | /* Prepare WAL data for the old page */ |
7414 | xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self); |
7415 | xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data); |
7416 | xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask, |
7417 | oldtup->t_data->t_infomask2); |
7418 | |
7419 | /* Prepare WAL data for the new page */ |
7420 | xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self); |
7421 | xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data); |
7422 | |
7423 | bufflags = REGBUF_STANDARD; |
7424 | if (init) |
7425 | bufflags |= REGBUF_WILL_INIT; |
7426 | if (need_tuple_data) |
7427 | bufflags |= REGBUF_KEEP_DATA; |
7428 | |
7429 | XLogRegisterBuffer(0, newbuf, bufflags); |
7430 | if (oldbuf != newbuf) |
7431 | XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD); |
7432 | |
7433 | XLogRegisterData((char *) &xlrec, SizeOfHeapUpdate); |
7434 | |
7435 | /* |
7436 | * Prepare WAL data for the new tuple. |
7437 | */ |
7438 | if (prefixlen > 0 || suffixlen > 0) |
7439 | { |
7440 | if (prefixlen > 0 && suffixlen > 0) |
7441 | { |
7442 | prefix_suffix[0] = prefixlen; |
7443 | prefix_suffix[1] = suffixlen; |
7444 | XLogRegisterBufData(0, (char *) &prefix_suffix, sizeof(uint16) * 2); |
7445 | } |
7446 | else if (prefixlen > 0) |
7447 | { |
7448 | XLogRegisterBufData(0, (char *) &prefixlen, sizeof(uint16)); |
7449 | } |
7450 | else |
7451 | { |
7452 | XLogRegisterBufData(0, (char *) &suffixlen, sizeof(uint16)); |
7453 | } |
7454 | } |
7455 | |
7456 | xlhdr.t_infomask2 = newtup->t_data->t_infomask2; |
7457 | xlhdr.t_infomask = newtup->t_data->t_infomask; |
7458 | xlhdr.t_hoff = newtup->t_data->t_hoff; |
7459 | Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len); |
7460 | |
7461 | /* |
7462 | * PG73FORMAT: write bitmap [+ padding] [+ oid] + data |
7463 | * |
7464 | * The 'data' doesn't include the common prefix or suffix. |
7465 | */ |
7466 | XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader); |
7467 | if (prefixlen == 0) |
7468 | { |
7469 | XLogRegisterBufData(0, |
7470 | ((char *) newtup->t_data) + SizeofHeapTupleHeader, |
7471 | newtup->t_len - SizeofHeapTupleHeader - suffixlen); |
7472 | } |
7473 | else |
7474 | { |
7475 | /* |
7476 | * Have to write the null bitmap and data after the common prefix as |
7477 | * two separate rdata entries. |
7478 | */ |
7479 | /* bitmap [+ padding] [+ oid] */ |
7480 | if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0) |
7481 | { |
7482 | XLogRegisterBufData(0, |
7483 | ((char *) newtup->t_data) + SizeofHeapTupleHeader, |
7484 | newtup->t_data->t_hoff - SizeofHeapTupleHeader); |
7485 | } |
7486 | |
7487 | /* data after common prefix */ |
7488 | XLogRegisterBufData(0, |
7489 | ((char *) newtup->t_data) + newtup->t_data->t_hoff + prefixlen, |
7490 | newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen); |
7491 | } |
7492 | |
7493 | /* We need to log a tuple identity */ |
7494 | if (need_tuple_data && old_key_tuple) |
7495 | { |
7496 | /* don't really need this, but its more comfy to decode */ |
7497 | xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2; |
7498 | xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask; |
7499 | xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff; |
7500 | |
7501 | XLogRegisterData((char *) &xlhdr_idx, SizeOfHeapHeader); |
7502 | |
7503 | /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */ |
7504 | XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader, |
7505 | old_key_tuple->t_len - SizeofHeapTupleHeader); |
7506 | } |
7507 | |
7508 | /* filtering by origin on a row level is much more efficient */ |
7509 | XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN); |
7510 | |
7511 | recptr = XLogInsert(RM_HEAP_ID, info); |
7512 | |
7513 | return recptr; |
7514 | } |
7515 | |
7516 | /* |
7517 | * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record |
7518 | * |
7519 | * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog |
7520 | * tuples. |
7521 | */ |
7522 | static XLogRecPtr |
7523 | log_heap_new_cid(Relation relation, HeapTuple tup) |
7524 | { |
7525 | xl_heap_new_cid xlrec; |
7526 | |
7527 | XLogRecPtr recptr; |
7528 | HeapTupleHeader hdr = tup->t_data; |
7529 | |
7530 | Assert(ItemPointerIsValid(&tup->t_self)); |
7531 | Assert(tup->t_tableOid != InvalidOid); |
7532 | |
7533 | xlrec.top_xid = GetTopTransactionId(); |
7534 | xlrec.target_node = relation->rd_node; |
7535 | xlrec.target_tid = tup->t_self; |
7536 | |
7537 | /* |
7538 | * If the tuple got inserted & deleted in the same TX we definitely have a |
7539 | * combocid, set cmin and cmax. |
7540 | */ |
7541 | if (hdr->t_infomask & HEAP_COMBOCID) |
7542 | { |
7543 | Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID)); |
7544 | Assert(!HeapTupleHeaderXminInvalid(hdr)); |
7545 | xlrec.cmin = HeapTupleHeaderGetCmin(hdr); |
7546 | xlrec.cmax = HeapTupleHeaderGetCmax(hdr); |
7547 | xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr); |
7548 | } |
7549 | /* No combocid, so only cmin or cmax can be set by this TX */ |
7550 | else |
7551 | { |
7552 | /* |
7553 | * Tuple inserted. |
7554 | * |
7555 | * We need to check for LOCK ONLY because multixacts might be |
7556 | * transferred to the new tuple in case of FOR KEY SHARE updates in |
7557 | * which case there will be an xmax, although the tuple just got |
7558 | * inserted. |
7559 | */ |
7560 | if (hdr->t_infomask & HEAP_XMAX_INVALID || |
7561 | HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask)) |
7562 | { |
7563 | xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr); |
7564 | xlrec.cmax = InvalidCommandId; |
7565 | } |
7566 | /* Tuple from a different tx updated or deleted. */ |
7567 | else |
7568 | { |
7569 | xlrec.cmin = InvalidCommandId; |
7570 | xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr); |
7571 | |
7572 | } |
7573 | xlrec.combocid = InvalidCommandId; |
7574 | } |
7575 | |
7576 | /* |
7577 | * Note that we don't need to register the buffer here, because this |
7578 | * operation does not modify the page. The insert/update/delete that |
7579 | * called us certainly did, but that's WAL-logged separately. |
7580 | */ |
7581 | XLogBeginInsert(); |
7582 | XLogRegisterData((char *) &xlrec, SizeOfHeapNewCid); |
7583 | |
7584 | /* will be looked at irrespective of origin */ |
7585 | |
7586 | recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID); |
7587 | |
7588 | return recptr; |
7589 | } |
7590 | |
7591 | /* |
7592 | * Build a heap tuple representing the configured REPLICA IDENTITY to represent |
7593 | * the old tuple in a UPDATE or DELETE. |
7594 | * |
7595 | * Returns NULL if there's no need to log an identity or if there's no suitable |
7596 | * key defined. |
7597 | * |
7598 | * key_changed should be false if caller knows that no replica identity |
7599 | * columns changed value. It's always true in the DELETE case. |
7600 | * |
7601 | * *copy is set to true if the returned tuple is a modified copy rather than |
7602 | * the same tuple that was passed in. |
7603 | */ |
7604 | static HeapTuple |
7605 | (Relation relation, HeapTuple tp, bool key_changed, |
7606 | bool *copy) |
7607 | { |
7608 | TupleDesc desc = RelationGetDescr(relation); |
7609 | char replident = relation->rd_rel->relreplident; |
7610 | Bitmapset *idattrs; |
7611 | HeapTuple key_tuple; |
7612 | bool nulls[MaxHeapAttributeNumber]; |
7613 | Datum values[MaxHeapAttributeNumber]; |
7614 | |
7615 | *copy = false; |
7616 | |
7617 | if (!RelationIsLogicallyLogged(relation)) |
7618 | return NULL; |
7619 | |
7620 | if (replident == REPLICA_IDENTITY_NOTHING) |
7621 | return NULL; |
7622 | |
7623 | if (replident == REPLICA_IDENTITY_FULL) |
7624 | { |
7625 | /* |
7626 | * When logging the entire old tuple, it very well could contain |
7627 | * toasted columns. If so, force them to be inlined. |
7628 | */ |
7629 | if (HeapTupleHasExternal(tp)) |
7630 | { |
7631 | *copy = true; |
7632 | tp = toast_flatten_tuple(tp, desc); |
7633 | } |
7634 | return tp; |
7635 | } |
7636 | |
7637 | /* if the key hasn't changed and we're only logging the key, we're done */ |
7638 | if (!key_changed) |
7639 | return NULL; |
7640 | |
7641 | /* find out the replica identity columns */ |
7642 | idattrs = RelationGetIndexAttrBitmap(relation, |
7643 | INDEX_ATTR_BITMAP_IDENTITY_KEY); |
7644 | |
7645 | /* |
7646 | * If there's no defined replica identity columns, treat as !key_changed. |
7647 | * (This case should not be reachable from heap_update, since that should |
7648 | * calculate key_changed accurately. But heap_delete just passes constant |
7649 | * true for key_changed, so we can hit this case in deletes.) |
7650 | */ |
7651 | if (bms_is_empty(idattrs)) |
7652 | return NULL; |
7653 | |
7654 | /* |
7655 | * Construct a new tuple containing only the replica identity columns, |
7656 | * with nulls elsewhere. While we're at it, assert that the replica |
7657 | * identity columns aren't null. |
7658 | */ |
7659 | heap_deform_tuple(tp, desc, values, nulls); |
7660 | |
7661 | for (int i = 0; i < desc->natts; i++) |
7662 | { |
7663 | if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber, |
7664 | idattrs)) |
7665 | Assert(!nulls[i]); |
7666 | else |
7667 | nulls[i] = true; |
7668 | } |
7669 | |
7670 | key_tuple = heap_form_tuple(desc, values, nulls); |
7671 | *copy = true; |
7672 | |
7673 | bms_free(idattrs); |
7674 | |
7675 | /* |
7676 | * If the tuple, which by here only contains indexed columns, still has |
7677 | * toasted columns, force them to be inlined. This is somewhat unlikely |
7678 | * since there's limits on the size of indexed columns, so we don't |
7679 | * duplicate toast_flatten_tuple()s functionality in the above loop over |
7680 | * the indexed columns, even if it would be more efficient. |
7681 | */ |
7682 | if (HeapTupleHasExternal(key_tuple)) |
7683 | { |
7684 | HeapTuple oldtup = key_tuple; |
7685 | |
7686 | key_tuple = toast_flatten_tuple(oldtup, desc); |
7687 | heap_freetuple(oldtup); |
7688 | } |
7689 | |
7690 | return key_tuple; |
7691 | } |
7692 | |
7693 | /* |
7694 | * Handles CLEANUP_INFO |
7695 | */ |
7696 | static void |
7697 | heap_xlog_cleanup_info(XLogReaderState *record) |
7698 | { |
7699 | xl_heap_cleanup_info *xlrec = (xl_heap_cleanup_info *) XLogRecGetData(record); |
7700 | |
7701 | if (InHotStandby) |
7702 | ResolveRecoveryConflictWithSnapshot(xlrec->latestRemovedXid, xlrec->node); |
7703 | |
7704 | /* |
7705 | * Actual operation is a no-op. Record type exists to provide a means for |
7706 | * conflict processing to occur before we begin index vacuum actions. see |
7707 | * vacuumlazy.c and also comments in btvacuumpage() |
7708 | */ |
7709 | |
7710 | /* Backup blocks are not used in cleanup_info records */ |
7711 | Assert(!XLogRecHasAnyBlockRefs(record)); |
7712 | } |
7713 | |
7714 | /* |
7715 | * Handles XLOG_HEAP2_CLEAN record type |
7716 | */ |
7717 | static void |
7718 | heap_xlog_clean(XLogReaderState *record) |
7719 | { |
7720 | XLogRecPtr lsn = record->EndRecPtr; |
7721 | xl_heap_clean *xlrec = (xl_heap_clean *) XLogRecGetData(record); |
7722 | Buffer buffer; |
7723 | RelFileNode rnode; |
7724 | BlockNumber blkno; |
7725 | XLogRedoAction action; |
7726 | |
7727 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &blkno); |
7728 | |
7729 | /* |
7730 | * We're about to remove tuples. In Hot Standby mode, ensure that there's |
7731 | * no queries running for which the removed tuples are still visible. |
7732 | * |
7733 | * Not all HEAP2_CLEAN records remove tuples with xids, so we only want to |
7734 | * conflict on the records that cause MVCC failures for user queries. If |
7735 | * latestRemovedXid is invalid, skip conflict processing. |
7736 | */ |
7737 | if (InHotStandby && TransactionIdIsValid(xlrec->latestRemovedXid)) |
7738 | ResolveRecoveryConflictWithSnapshot(xlrec->latestRemovedXid, rnode); |
7739 | |
7740 | /* |
7741 | * If we have a full-page image, restore it (using a cleanup lock) and |
7742 | * we're done. |
7743 | */ |
7744 | action = XLogReadBufferForRedoExtended(record, 0, RBM_NORMAL, true, |
7745 | &buffer); |
7746 | if (action == BLK_NEEDS_REDO) |
7747 | { |
7748 | Page page = (Page) BufferGetPage(buffer); |
7749 | OffsetNumber *end; |
7750 | OffsetNumber *redirected; |
7751 | OffsetNumber *nowdead; |
7752 | OffsetNumber *nowunused; |
7753 | int nredirected; |
7754 | int ndead; |
7755 | int nunused; |
7756 | Size datalen; |
7757 | |
7758 | redirected = (OffsetNumber *) XLogRecGetBlockData(record, 0, &datalen); |
7759 | |
7760 | nredirected = xlrec->nredirected; |
7761 | ndead = xlrec->ndead; |
7762 | end = (OffsetNumber *) ((char *) redirected + datalen); |
7763 | nowdead = redirected + (nredirected * 2); |
7764 | nowunused = nowdead + ndead; |
7765 | nunused = (end - nowunused); |
7766 | Assert(nunused >= 0); |
7767 | |
7768 | /* Update all line pointers per the record, and repair fragmentation */ |
7769 | heap_page_prune_execute(buffer, |
7770 | redirected, nredirected, |
7771 | nowdead, ndead, |
7772 | nowunused, nunused); |
7773 | |
7774 | /* |
7775 | * Note: we don't worry about updating the page's prunability hints. |
7776 | * At worst this will cause an extra prune cycle to occur soon. |
7777 | */ |
7778 | |
7779 | PageSetLSN(page, lsn); |
7780 | MarkBufferDirty(buffer); |
7781 | } |
7782 | |
7783 | if (BufferIsValid(buffer)) |
7784 | { |
7785 | Size freespace = PageGetHeapFreeSpace(BufferGetPage(buffer)); |
7786 | |
7787 | UnlockReleaseBuffer(buffer); |
7788 | |
7789 | /* |
7790 | * After cleaning records from a page, it's useful to update the FSM |
7791 | * about it, as it may cause the page become target for insertions |
7792 | * later even if vacuum decides not to visit it (which is possible if |
7793 | * gets marked all-visible.) |
7794 | * |
7795 | * Do this regardless of a full-page image being applied, since the |
7796 | * FSM data is not in the page anyway. |
7797 | */ |
7798 | XLogRecordPageWithFreeSpace(rnode, blkno, freespace); |
7799 | } |
7800 | } |
7801 | |
7802 | /* |
7803 | * Replay XLOG_HEAP2_VISIBLE record. |
7804 | * |
7805 | * The critical integrity requirement here is that we must never end up with |
7806 | * a situation where the visibility map bit is set, and the page-level |
7807 | * PD_ALL_VISIBLE bit is clear. If that were to occur, then a subsequent |
7808 | * page modification would fail to clear the visibility map bit. |
7809 | */ |
7810 | static void |
7811 | heap_xlog_visible(XLogReaderState *record) |
7812 | { |
7813 | XLogRecPtr lsn = record->EndRecPtr; |
7814 | xl_heap_visible *xlrec = (xl_heap_visible *) XLogRecGetData(record); |
7815 | Buffer vmbuffer = InvalidBuffer; |
7816 | Buffer buffer; |
7817 | Page page; |
7818 | RelFileNode rnode; |
7819 | BlockNumber blkno; |
7820 | XLogRedoAction action; |
7821 | |
7822 | XLogRecGetBlockTag(record, 1, &rnode, NULL, &blkno); |
7823 | |
7824 | /* |
7825 | * If there are any Hot Standby transactions running that have an xmin |
7826 | * horizon old enough that this page isn't all-visible for them, they |
7827 | * might incorrectly decide that an index-only scan can skip a heap fetch. |
7828 | * |
7829 | * NB: It might be better to throw some kind of "soft" conflict here that |
7830 | * forces any index-only scan that is in flight to perform heap fetches, |
7831 | * rather than killing the transaction outright. |
7832 | */ |
7833 | if (InHotStandby) |
7834 | ResolveRecoveryConflictWithSnapshot(xlrec->cutoff_xid, rnode); |
7835 | |
7836 | /* |
7837 | * Read the heap page, if it still exists. If the heap file has dropped or |
7838 | * truncated later in recovery, we don't need to update the page, but we'd |
7839 | * better still update the visibility map. |
7840 | */ |
7841 | action = XLogReadBufferForRedo(record, 1, &buffer); |
7842 | if (action == BLK_NEEDS_REDO) |
7843 | { |
7844 | /* |
7845 | * We don't bump the LSN of the heap page when setting the visibility |
7846 | * map bit (unless checksums or wal_hint_bits is enabled, in which |
7847 | * case we must), because that would generate an unworkable volume of |
7848 | * full-page writes. This exposes us to torn page hazards, but since |
7849 | * we're not inspecting the existing page contents in any way, we |
7850 | * don't care. |
7851 | * |
7852 | * However, all operations that clear the visibility map bit *do* bump |
7853 | * the LSN, and those operations will only be replayed if the XLOG LSN |
7854 | * follows the page LSN. Thus, if the page LSN has advanced past our |
7855 | * XLOG record's LSN, we mustn't mark the page all-visible, because |
7856 | * the subsequent update won't be replayed to clear the flag. |
7857 | */ |
7858 | page = BufferGetPage(buffer); |
7859 | |
7860 | PageSetAllVisible(page); |
7861 | |
7862 | MarkBufferDirty(buffer); |
7863 | } |
7864 | else if (action == BLK_RESTORED) |
7865 | { |
7866 | /* |
7867 | * If heap block was backed up, we already restored it and there's |
7868 | * nothing more to do. (This can only happen with checksums or |
7869 | * wal_log_hints enabled.) |
7870 | */ |
7871 | } |
7872 | |
7873 | if (BufferIsValid(buffer)) |
7874 | { |
7875 | Size space = PageGetFreeSpace(BufferGetPage(buffer)); |
7876 | |
7877 | UnlockReleaseBuffer(buffer); |
7878 | |
7879 | /* |
7880 | * Since FSM is not WAL-logged and only updated heuristically, it |
7881 | * easily becomes stale in standbys. If the standby is later promoted |
7882 | * and runs VACUUM, it will skip updating individual free space |
7883 | * figures for pages that became all-visible (or all-frozen, depending |
7884 | * on the vacuum mode,) which is troublesome when FreeSpaceMapVacuum |
7885 | * propagates too optimistic free space values to upper FSM layers; |
7886 | * later inserters try to use such pages only to find out that they |
7887 | * are unusable. This can cause long stalls when there are many such |
7888 | * pages. |
7889 | * |
7890 | * Forestall those problems by updating FSM's idea about a page that |
7891 | * is becoming all-visible or all-frozen. |
7892 | * |
7893 | * Do this regardless of a full-page image being applied, since the |
7894 | * FSM data is not in the page anyway. |
7895 | */ |
7896 | if (xlrec->flags & VISIBILITYMAP_VALID_BITS) |
7897 | XLogRecordPageWithFreeSpace(rnode, blkno, space); |
7898 | } |
7899 | |
7900 | /* |
7901 | * Even if we skipped the heap page update due to the LSN interlock, it's |
7902 | * still safe to update the visibility map. Any WAL record that clears |
7903 | * the visibility map bit does so before checking the page LSN, so any |
7904 | * bits that need to be cleared will still be cleared. |
7905 | */ |
7906 | if (XLogReadBufferForRedoExtended(record, 0, RBM_ZERO_ON_ERROR, false, |
7907 | &vmbuffer) == BLK_NEEDS_REDO) |
7908 | { |
7909 | Page vmpage = BufferGetPage(vmbuffer); |
7910 | Relation reln; |
7911 | |
7912 | /* initialize the page if it was read as zeros */ |
7913 | if (PageIsNew(vmpage)) |
7914 | PageInit(vmpage, BLCKSZ, 0); |
7915 | |
7916 | /* |
7917 | * XLogReadBufferForRedoExtended locked the buffer. But |
7918 | * visibilitymap_set will handle locking itself. |
7919 | */ |
7920 | LockBuffer(vmbuffer, BUFFER_LOCK_UNLOCK); |
7921 | |
7922 | reln = CreateFakeRelcacheEntry(rnode); |
7923 | visibilitymap_pin(reln, blkno, &vmbuffer); |
7924 | |
7925 | /* |
7926 | * Don't set the bit if replay has already passed this point. |
7927 | * |
7928 | * It might be safe to do this unconditionally; if replay has passed |
7929 | * this point, we'll replay at least as far this time as we did |
7930 | * before, and if this bit needs to be cleared, the record responsible |
7931 | * for doing so should be again replayed, and clear it. For right |
7932 | * now, out of an abundance of conservatism, we use the same test here |
7933 | * we did for the heap page. If this results in a dropped bit, no |
7934 | * real harm is done; and the next VACUUM will fix it. |
7935 | */ |
7936 | if (lsn > PageGetLSN(vmpage)) |
7937 | visibilitymap_set(reln, blkno, InvalidBuffer, lsn, vmbuffer, |
7938 | xlrec->cutoff_xid, xlrec->flags); |
7939 | |
7940 | ReleaseBuffer(vmbuffer); |
7941 | FreeFakeRelcacheEntry(reln); |
7942 | } |
7943 | else if (BufferIsValid(vmbuffer)) |
7944 | UnlockReleaseBuffer(vmbuffer); |
7945 | } |
7946 | |
7947 | /* |
7948 | * Replay XLOG_HEAP2_FREEZE_PAGE records |
7949 | */ |
7950 | static void |
7951 | heap_xlog_freeze_page(XLogReaderState *record) |
7952 | { |
7953 | XLogRecPtr lsn = record->EndRecPtr; |
7954 | xl_heap_freeze_page *xlrec = (xl_heap_freeze_page *) XLogRecGetData(record); |
7955 | TransactionId cutoff_xid = xlrec->cutoff_xid; |
7956 | Buffer buffer; |
7957 | int ntup; |
7958 | |
7959 | /* |
7960 | * In Hot Standby mode, ensure that there's no queries running which still |
7961 | * consider the frozen xids as running. |
7962 | */ |
7963 | if (InHotStandby) |
7964 | { |
7965 | RelFileNode rnode; |
7966 | TransactionId latestRemovedXid = cutoff_xid; |
7967 | |
7968 | TransactionIdRetreat(latestRemovedXid); |
7969 | |
7970 | XLogRecGetBlockTag(record, 0, &rnode, NULL, NULL); |
7971 | ResolveRecoveryConflictWithSnapshot(latestRemovedXid, rnode); |
7972 | } |
7973 | |
7974 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
7975 | { |
7976 | Page page = BufferGetPage(buffer); |
7977 | xl_heap_freeze_tuple *tuples; |
7978 | |
7979 | tuples = (xl_heap_freeze_tuple *) XLogRecGetBlockData(record, 0, NULL); |
7980 | |
7981 | /* now execute freeze plan for each frozen tuple */ |
7982 | for (ntup = 0; ntup < xlrec->ntuples; ntup++) |
7983 | { |
7984 | xl_heap_freeze_tuple *xlrec_tp; |
7985 | ItemId lp; |
7986 | HeapTupleHeader tuple; |
7987 | |
7988 | xlrec_tp = &tuples[ntup]; |
7989 | lp = PageGetItemId(page, xlrec_tp->offset); /* offsets are one-based */ |
7990 | tuple = (HeapTupleHeader) PageGetItem(page, lp); |
7991 | |
7992 | heap_execute_freeze_tuple(tuple, xlrec_tp); |
7993 | } |
7994 | |
7995 | PageSetLSN(page, lsn); |
7996 | MarkBufferDirty(buffer); |
7997 | } |
7998 | if (BufferIsValid(buffer)) |
7999 | UnlockReleaseBuffer(buffer); |
8000 | } |
8001 | |
8002 | /* |
8003 | * Given an "infobits" field from an XLog record, set the correct bits in the |
8004 | * given infomask and infomask2 for the tuple touched by the record. |
8005 | * |
8006 | * (This is the reverse of compute_infobits). |
8007 | */ |
8008 | static void |
8009 | fix_infomask_from_infobits(uint8 infobits, uint16 *infomask, uint16 *infomask2) |
8010 | { |
8011 | *infomask &= ~(HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | |
8012 | HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_EXCL_LOCK); |
8013 | *infomask2 &= ~HEAP_KEYS_UPDATED; |
8014 | |
8015 | if (infobits & XLHL_XMAX_IS_MULTI) |
8016 | *infomask |= HEAP_XMAX_IS_MULTI; |
8017 | if (infobits & XLHL_XMAX_LOCK_ONLY) |
8018 | *infomask |= HEAP_XMAX_LOCK_ONLY; |
8019 | if (infobits & XLHL_XMAX_EXCL_LOCK) |
8020 | *infomask |= HEAP_XMAX_EXCL_LOCK; |
8021 | /* note HEAP_XMAX_SHR_LOCK isn't considered here */ |
8022 | if (infobits & XLHL_XMAX_KEYSHR_LOCK) |
8023 | *infomask |= HEAP_XMAX_KEYSHR_LOCK; |
8024 | |
8025 | if (infobits & XLHL_KEYS_UPDATED) |
8026 | *infomask2 |= HEAP_KEYS_UPDATED; |
8027 | } |
8028 | |
8029 | static void |
8030 | heap_xlog_delete(XLogReaderState *record) |
8031 | { |
8032 | XLogRecPtr lsn = record->EndRecPtr; |
8033 | xl_heap_delete *xlrec = (xl_heap_delete *) XLogRecGetData(record); |
8034 | Buffer buffer; |
8035 | Page page; |
8036 | ItemId lp = NULL; |
8037 | HeapTupleHeader htup; |
8038 | BlockNumber blkno; |
8039 | RelFileNode target_node; |
8040 | ItemPointerData target_tid; |
8041 | |
8042 | XLogRecGetBlockTag(record, 0, &target_node, NULL, &blkno); |
8043 | ItemPointerSetBlockNumber(&target_tid, blkno); |
8044 | ItemPointerSetOffsetNumber(&target_tid, xlrec->offnum); |
8045 | |
8046 | /* |
8047 | * The visibility map may need to be fixed even if the heap page is |
8048 | * already up-to-date. |
8049 | */ |
8050 | if (xlrec->flags & XLH_DELETE_ALL_VISIBLE_CLEARED) |
8051 | { |
8052 | Relation reln = CreateFakeRelcacheEntry(target_node); |
8053 | Buffer vmbuffer = InvalidBuffer; |
8054 | |
8055 | visibilitymap_pin(reln, blkno, &vmbuffer); |
8056 | visibilitymap_clear(reln, blkno, vmbuffer, VISIBILITYMAP_VALID_BITS); |
8057 | ReleaseBuffer(vmbuffer); |
8058 | FreeFakeRelcacheEntry(reln); |
8059 | } |
8060 | |
8061 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
8062 | { |
8063 | page = BufferGetPage(buffer); |
8064 | |
8065 | if (PageGetMaxOffsetNumber(page) >= xlrec->offnum) |
8066 | lp = PageGetItemId(page, xlrec->offnum); |
8067 | |
8068 | if (PageGetMaxOffsetNumber(page) < xlrec->offnum || !ItemIdIsNormal(lp)) |
8069 | elog(PANIC, "invalid lp" ); |
8070 | |
8071 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
8072 | |
8073 | htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
8074 | htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
8075 | HeapTupleHeaderClearHotUpdated(htup); |
8076 | fix_infomask_from_infobits(xlrec->infobits_set, |
8077 | &htup->t_infomask, &htup->t_infomask2); |
8078 | if (!(xlrec->flags & XLH_DELETE_IS_SUPER)) |
8079 | HeapTupleHeaderSetXmax(htup, xlrec->xmax); |
8080 | else |
8081 | HeapTupleHeaderSetXmin(htup, InvalidTransactionId); |
8082 | HeapTupleHeaderSetCmax(htup, FirstCommandId, false); |
8083 | |
8084 | /* Mark the page as a candidate for pruning */ |
8085 | PageSetPrunable(page, XLogRecGetXid(record)); |
8086 | |
8087 | if (xlrec->flags & XLH_DELETE_ALL_VISIBLE_CLEARED) |
8088 | PageClearAllVisible(page); |
8089 | |
8090 | /* Make sure t_ctid is set correctly */ |
8091 | if (xlrec->flags & XLH_DELETE_IS_PARTITION_MOVE) |
8092 | HeapTupleHeaderSetMovedPartitions(htup); |
8093 | else |
8094 | htup->t_ctid = target_tid; |
8095 | PageSetLSN(page, lsn); |
8096 | MarkBufferDirty(buffer); |
8097 | } |
8098 | if (BufferIsValid(buffer)) |
8099 | UnlockReleaseBuffer(buffer); |
8100 | } |
8101 | |
8102 | static void |
8103 | heap_xlog_insert(XLogReaderState *record) |
8104 | { |
8105 | XLogRecPtr lsn = record->EndRecPtr; |
8106 | xl_heap_insert *xlrec = (xl_heap_insert *) XLogRecGetData(record); |
8107 | Buffer buffer; |
8108 | Page page; |
8109 | union |
8110 | { |
8111 | HeapTupleHeaderData hdr; |
8112 | char data[MaxHeapTupleSize]; |
8113 | } tbuf; |
8114 | HeapTupleHeader htup; |
8115 | xl_heap_header xlhdr; |
8116 | uint32 newlen; |
8117 | Size freespace = 0; |
8118 | RelFileNode target_node; |
8119 | BlockNumber blkno; |
8120 | ItemPointerData target_tid; |
8121 | XLogRedoAction action; |
8122 | |
8123 | XLogRecGetBlockTag(record, 0, &target_node, NULL, &blkno); |
8124 | ItemPointerSetBlockNumber(&target_tid, blkno); |
8125 | ItemPointerSetOffsetNumber(&target_tid, xlrec->offnum); |
8126 | |
8127 | /* |
8128 | * The visibility map may need to be fixed even if the heap page is |
8129 | * already up-to-date. |
8130 | */ |
8131 | if (xlrec->flags & XLH_INSERT_ALL_VISIBLE_CLEARED) |
8132 | { |
8133 | Relation reln = CreateFakeRelcacheEntry(target_node); |
8134 | Buffer vmbuffer = InvalidBuffer; |
8135 | |
8136 | visibilitymap_pin(reln, blkno, &vmbuffer); |
8137 | visibilitymap_clear(reln, blkno, vmbuffer, VISIBILITYMAP_VALID_BITS); |
8138 | ReleaseBuffer(vmbuffer); |
8139 | FreeFakeRelcacheEntry(reln); |
8140 | } |
8141 | |
8142 | /* |
8143 | * If we inserted the first and only tuple on the page, re-initialize the |
8144 | * page from scratch. |
8145 | */ |
8146 | if (XLogRecGetInfo(record) & XLOG_HEAP_INIT_PAGE) |
8147 | { |
8148 | buffer = XLogInitBufferForRedo(record, 0); |
8149 | page = BufferGetPage(buffer); |
8150 | PageInit(page, BufferGetPageSize(buffer), 0); |
8151 | action = BLK_NEEDS_REDO; |
8152 | } |
8153 | else |
8154 | action = XLogReadBufferForRedo(record, 0, &buffer); |
8155 | if (action == BLK_NEEDS_REDO) |
8156 | { |
8157 | Size datalen; |
8158 | char *data; |
8159 | |
8160 | page = BufferGetPage(buffer); |
8161 | |
8162 | if (PageGetMaxOffsetNumber(page) + 1 < xlrec->offnum) |
8163 | elog(PANIC, "invalid max offset number" ); |
8164 | |
8165 | data = XLogRecGetBlockData(record, 0, &datalen); |
8166 | |
8167 | newlen = datalen - SizeOfHeapHeader; |
8168 | Assert(datalen > SizeOfHeapHeader && newlen <= MaxHeapTupleSize); |
8169 | memcpy((char *) &xlhdr, data, SizeOfHeapHeader); |
8170 | data += SizeOfHeapHeader; |
8171 | |
8172 | htup = &tbuf.hdr; |
8173 | MemSet((char *) htup, 0, SizeofHeapTupleHeader); |
8174 | /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */ |
8175 | memcpy((char *) htup + SizeofHeapTupleHeader, |
8176 | data, |
8177 | newlen); |
8178 | newlen += SizeofHeapTupleHeader; |
8179 | htup->t_infomask2 = xlhdr.t_infomask2; |
8180 | htup->t_infomask = xlhdr.t_infomask; |
8181 | htup->t_hoff = xlhdr.t_hoff; |
8182 | HeapTupleHeaderSetXmin(htup, XLogRecGetXid(record)); |
8183 | HeapTupleHeaderSetCmin(htup, FirstCommandId); |
8184 | htup->t_ctid = target_tid; |
8185 | |
8186 | if (PageAddItem(page, (Item) htup, newlen, xlrec->offnum, |
8187 | true, true) == InvalidOffsetNumber) |
8188 | elog(PANIC, "failed to add tuple" ); |
8189 | |
8190 | freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ |
8191 | |
8192 | PageSetLSN(page, lsn); |
8193 | |
8194 | if (xlrec->flags & XLH_INSERT_ALL_VISIBLE_CLEARED) |
8195 | PageClearAllVisible(page); |
8196 | |
8197 | MarkBufferDirty(buffer); |
8198 | } |
8199 | if (BufferIsValid(buffer)) |
8200 | UnlockReleaseBuffer(buffer); |
8201 | |
8202 | /* |
8203 | * If the page is running low on free space, update the FSM as well. |
8204 | * Arbitrarily, our definition of "low" is less than 20%. We can't do much |
8205 | * better than that without knowing the fill-factor for the table. |
8206 | * |
8207 | * XXX: Don't do this if the page was restored from full page image. We |
8208 | * don't bother to update the FSM in that case, it doesn't need to be |
8209 | * totally accurate anyway. |
8210 | */ |
8211 | if (action == BLK_NEEDS_REDO && freespace < BLCKSZ / 5) |
8212 | XLogRecordPageWithFreeSpace(target_node, blkno, freespace); |
8213 | } |
8214 | |
8215 | /* |
8216 | * Handles MULTI_INSERT record type. |
8217 | */ |
8218 | static void |
8219 | heap_xlog_multi_insert(XLogReaderState *record) |
8220 | { |
8221 | XLogRecPtr lsn = record->EndRecPtr; |
8222 | xl_heap_multi_insert *xlrec; |
8223 | RelFileNode rnode; |
8224 | BlockNumber blkno; |
8225 | Buffer buffer; |
8226 | Page page; |
8227 | union |
8228 | { |
8229 | HeapTupleHeaderData hdr; |
8230 | char data[MaxHeapTupleSize]; |
8231 | } tbuf; |
8232 | HeapTupleHeader htup; |
8233 | uint32 newlen; |
8234 | Size freespace = 0; |
8235 | int i; |
8236 | bool isinit = (XLogRecGetInfo(record) & XLOG_HEAP_INIT_PAGE) != 0; |
8237 | XLogRedoAction action; |
8238 | |
8239 | /* |
8240 | * Insertion doesn't overwrite MVCC data, so no conflict processing is |
8241 | * required. |
8242 | */ |
8243 | xlrec = (xl_heap_multi_insert *) XLogRecGetData(record); |
8244 | |
8245 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &blkno); |
8246 | |
8247 | /* |
8248 | * The visibility map may need to be fixed even if the heap page is |
8249 | * already up-to-date. |
8250 | */ |
8251 | if (xlrec->flags & XLH_INSERT_ALL_VISIBLE_CLEARED) |
8252 | { |
8253 | Relation reln = CreateFakeRelcacheEntry(rnode); |
8254 | Buffer vmbuffer = InvalidBuffer; |
8255 | |
8256 | visibilitymap_pin(reln, blkno, &vmbuffer); |
8257 | visibilitymap_clear(reln, blkno, vmbuffer, VISIBILITYMAP_VALID_BITS); |
8258 | ReleaseBuffer(vmbuffer); |
8259 | FreeFakeRelcacheEntry(reln); |
8260 | } |
8261 | |
8262 | if (isinit) |
8263 | { |
8264 | buffer = XLogInitBufferForRedo(record, 0); |
8265 | page = BufferGetPage(buffer); |
8266 | PageInit(page, BufferGetPageSize(buffer), 0); |
8267 | action = BLK_NEEDS_REDO; |
8268 | } |
8269 | else |
8270 | action = XLogReadBufferForRedo(record, 0, &buffer); |
8271 | if (action == BLK_NEEDS_REDO) |
8272 | { |
8273 | char *tupdata; |
8274 | char *endptr; |
8275 | Size len; |
8276 | |
8277 | /* Tuples are stored as block data */ |
8278 | tupdata = XLogRecGetBlockData(record, 0, &len); |
8279 | endptr = tupdata + len; |
8280 | |
8281 | page = (Page) BufferGetPage(buffer); |
8282 | |
8283 | for (i = 0; i < xlrec->ntuples; i++) |
8284 | { |
8285 | OffsetNumber offnum; |
8286 | xl_multi_insert_tuple *xlhdr; |
8287 | |
8288 | /* |
8289 | * If we're reinitializing the page, the tuples are stored in |
8290 | * order from FirstOffsetNumber. Otherwise there's an array of |
8291 | * offsets in the WAL record, and the tuples come after that. |
8292 | */ |
8293 | if (isinit) |
8294 | offnum = FirstOffsetNumber + i; |
8295 | else |
8296 | offnum = xlrec->offsets[i]; |
8297 | if (PageGetMaxOffsetNumber(page) + 1 < offnum) |
8298 | elog(PANIC, "invalid max offset number" ); |
8299 | |
8300 | xlhdr = (xl_multi_insert_tuple *) SHORTALIGN(tupdata); |
8301 | tupdata = ((char *) xlhdr) + SizeOfMultiInsertTuple; |
8302 | |
8303 | newlen = xlhdr->datalen; |
8304 | Assert(newlen <= MaxHeapTupleSize); |
8305 | htup = &tbuf.hdr; |
8306 | MemSet((char *) htup, 0, SizeofHeapTupleHeader); |
8307 | /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */ |
8308 | memcpy((char *) htup + SizeofHeapTupleHeader, |
8309 | (char *) tupdata, |
8310 | newlen); |
8311 | tupdata += newlen; |
8312 | |
8313 | newlen += SizeofHeapTupleHeader; |
8314 | htup->t_infomask2 = xlhdr->t_infomask2; |
8315 | htup->t_infomask = xlhdr->t_infomask; |
8316 | htup->t_hoff = xlhdr->t_hoff; |
8317 | HeapTupleHeaderSetXmin(htup, XLogRecGetXid(record)); |
8318 | HeapTupleHeaderSetCmin(htup, FirstCommandId); |
8319 | ItemPointerSetBlockNumber(&htup->t_ctid, blkno); |
8320 | ItemPointerSetOffsetNumber(&htup->t_ctid, offnum); |
8321 | |
8322 | offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true); |
8323 | if (offnum == InvalidOffsetNumber) |
8324 | elog(PANIC, "failed to add tuple" ); |
8325 | } |
8326 | if (tupdata != endptr) |
8327 | elog(PANIC, "total tuple length mismatch" ); |
8328 | |
8329 | freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ |
8330 | |
8331 | PageSetLSN(page, lsn); |
8332 | |
8333 | if (xlrec->flags & XLH_INSERT_ALL_VISIBLE_CLEARED) |
8334 | PageClearAllVisible(page); |
8335 | |
8336 | MarkBufferDirty(buffer); |
8337 | } |
8338 | if (BufferIsValid(buffer)) |
8339 | UnlockReleaseBuffer(buffer); |
8340 | |
8341 | /* |
8342 | * If the page is running low on free space, update the FSM as well. |
8343 | * Arbitrarily, our definition of "low" is less than 20%. We can't do much |
8344 | * better than that without knowing the fill-factor for the table. |
8345 | * |
8346 | * XXX: Don't do this if the page was restored from full page image. We |
8347 | * don't bother to update the FSM in that case, it doesn't need to be |
8348 | * totally accurate anyway. |
8349 | */ |
8350 | if (action == BLK_NEEDS_REDO && freespace < BLCKSZ / 5) |
8351 | XLogRecordPageWithFreeSpace(rnode, blkno, freespace); |
8352 | } |
8353 | |
8354 | /* |
8355 | * Handles UPDATE and HOT_UPDATE |
8356 | */ |
8357 | static void |
8358 | heap_xlog_update(XLogReaderState *record, bool hot_update) |
8359 | { |
8360 | XLogRecPtr lsn = record->EndRecPtr; |
8361 | xl_heap_update *xlrec = (xl_heap_update *) XLogRecGetData(record); |
8362 | RelFileNode rnode; |
8363 | BlockNumber oldblk; |
8364 | BlockNumber newblk; |
8365 | ItemPointerData newtid; |
8366 | Buffer obuffer, |
8367 | nbuffer; |
8368 | Page page; |
8369 | OffsetNumber offnum; |
8370 | ItemId lp = NULL; |
8371 | HeapTupleData oldtup; |
8372 | HeapTupleHeader htup; |
8373 | uint16 prefixlen = 0, |
8374 | suffixlen = 0; |
8375 | char *newp; |
8376 | union |
8377 | { |
8378 | HeapTupleHeaderData hdr; |
8379 | char data[MaxHeapTupleSize]; |
8380 | } tbuf; |
8381 | xl_heap_header xlhdr; |
8382 | uint32 newlen; |
8383 | Size freespace = 0; |
8384 | XLogRedoAction oldaction; |
8385 | XLogRedoAction newaction; |
8386 | |
8387 | /* initialize to keep the compiler quiet */ |
8388 | oldtup.t_data = NULL; |
8389 | oldtup.t_len = 0; |
8390 | |
8391 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &newblk); |
8392 | if (XLogRecGetBlockTag(record, 1, NULL, NULL, &oldblk)) |
8393 | { |
8394 | /* HOT updates are never done across pages */ |
8395 | Assert(!hot_update); |
8396 | } |
8397 | else |
8398 | oldblk = newblk; |
8399 | |
8400 | ItemPointerSet(&newtid, newblk, xlrec->new_offnum); |
8401 | |
8402 | /* |
8403 | * The visibility map may need to be fixed even if the heap page is |
8404 | * already up-to-date. |
8405 | */ |
8406 | if (xlrec->flags & XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) |
8407 | { |
8408 | Relation reln = CreateFakeRelcacheEntry(rnode); |
8409 | Buffer vmbuffer = InvalidBuffer; |
8410 | |
8411 | visibilitymap_pin(reln, oldblk, &vmbuffer); |
8412 | visibilitymap_clear(reln, oldblk, vmbuffer, VISIBILITYMAP_VALID_BITS); |
8413 | ReleaseBuffer(vmbuffer); |
8414 | FreeFakeRelcacheEntry(reln); |
8415 | } |
8416 | |
8417 | /* |
8418 | * In normal operation, it is important to lock the two pages in |
8419 | * page-number order, to avoid possible deadlocks against other update |
8420 | * operations going the other way. However, during WAL replay there can |
8421 | * be no other update happening, so we don't need to worry about that. But |
8422 | * we *do* need to worry that we don't expose an inconsistent state to Hot |
8423 | * Standby queries --- so the original page can't be unlocked before we've |
8424 | * added the new tuple to the new page. |
8425 | */ |
8426 | |
8427 | /* Deal with old tuple version */ |
8428 | oldaction = XLogReadBufferForRedo(record, (oldblk == newblk) ? 0 : 1, |
8429 | &obuffer); |
8430 | if (oldaction == BLK_NEEDS_REDO) |
8431 | { |
8432 | page = BufferGetPage(obuffer); |
8433 | offnum = xlrec->old_offnum; |
8434 | if (PageGetMaxOffsetNumber(page) >= offnum) |
8435 | lp = PageGetItemId(page, offnum); |
8436 | |
8437 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
8438 | elog(PANIC, "invalid lp" ); |
8439 | |
8440 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
8441 | |
8442 | oldtup.t_data = htup; |
8443 | oldtup.t_len = ItemIdGetLength(lp); |
8444 | |
8445 | htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
8446 | htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
8447 | if (hot_update) |
8448 | HeapTupleHeaderSetHotUpdated(htup); |
8449 | else |
8450 | HeapTupleHeaderClearHotUpdated(htup); |
8451 | fix_infomask_from_infobits(xlrec->old_infobits_set, &htup->t_infomask, |
8452 | &htup->t_infomask2); |
8453 | HeapTupleHeaderSetXmax(htup, xlrec->old_xmax); |
8454 | HeapTupleHeaderSetCmax(htup, FirstCommandId, false); |
8455 | /* Set forward chain link in t_ctid */ |
8456 | htup->t_ctid = newtid; |
8457 | |
8458 | /* Mark the page as a candidate for pruning */ |
8459 | PageSetPrunable(page, XLogRecGetXid(record)); |
8460 | |
8461 | if (xlrec->flags & XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED) |
8462 | PageClearAllVisible(page); |
8463 | |
8464 | PageSetLSN(page, lsn); |
8465 | MarkBufferDirty(obuffer); |
8466 | } |
8467 | |
8468 | /* |
8469 | * Read the page the new tuple goes into, if different from old. |
8470 | */ |
8471 | if (oldblk == newblk) |
8472 | { |
8473 | nbuffer = obuffer; |
8474 | newaction = oldaction; |
8475 | } |
8476 | else if (XLogRecGetInfo(record) & XLOG_HEAP_INIT_PAGE) |
8477 | { |
8478 | nbuffer = XLogInitBufferForRedo(record, 0); |
8479 | page = (Page) BufferGetPage(nbuffer); |
8480 | PageInit(page, BufferGetPageSize(nbuffer), 0); |
8481 | newaction = BLK_NEEDS_REDO; |
8482 | } |
8483 | else |
8484 | newaction = XLogReadBufferForRedo(record, 0, &nbuffer); |
8485 | |
8486 | /* |
8487 | * The visibility map may need to be fixed even if the heap page is |
8488 | * already up-to-date. |
8489 | */ |
8490 | if (xlrec->flags & XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) |
8491 | { |
8492 | Relation reln = CreateFakeRelcacheEntry(rnode); |
8493 | Buffer vmbuffer = InvalidBuffer; |
8494 | |
8495 | visibilitymap_pin(reln, newblk, &vmbuffer); |
8496 | visibilitymap_clear(reln, newblk, vmbuffer, VISIBILITYMAP_VALID_BITS); |
8497 | ReleaseBuffer(vmbuffer); |
8498 | FreeFakeRelcacheEntry(reln); |
8499 | } |
8500 | |
8501 | /* Deal with new tuple */ |
8502 | if (newaction == BLK_NEEDS_REDO) |
8503 | { |
8504 | char *recdata; |
8505 | char *recdata_end; |
8506 | Size datalen; |
8507 | Size tuplen; |
8508 | |
8509 | recdata = XLogRecGetBlockData(record, 0, &datalen); |
8510 | recdata_end = recdata + datalen; |
8511 | |
8512 | page = BufferGetPage(nbuffer); |
8513 | |
8514 | offnum = xlrec->new_offnum; |
8515 | if (PageGetMaxOffsetNumber(page) + 1 < offnum) |
8516 | elog(PANIC, "invalid max offset number" ); |
8517 | |
8518 | if (xlrec->flags & XLH_UPDATE_PREFIX_FROM_OLD) |
8519 | { |
8520 | Assert(newblk == oldblk); |
8521 | memcpy(&prefixlen, recdata, sizeof(uint16)); |
8522 | recdata += sizeof(uint16); |
8523 | } |
8524 | if (xlrec->flags & XLH_UPDATE_SUFFIX_FROM_OLD) |
8525 | { |
8526 | Assert(newblk == oldblk); |
8527 | memcpy(&suffixlen, recdata, sizeof(uint16)); |
8528 | recdata += sizeof(uint16); |
8529 | } |
8530 | |
8531 | memcpy((char *) &xlhdr, recdata, SizeOfHeapHeader); |
8532 | recdata += SizeOfHeapHeader; |
8533 | |
8534 | tuplen = recdata_end - recdata; |
8535 | Assert(tuplen <= MaxHeapTupleSize); |
8536 | |
8537 | htup = &tbuf.hdr; |
8538 | MemSet((char *) htup, 0, SizeofHeapTupleHeader); |
8539 | |
8540 | /* |
8541 | * Reconstruct the new tuple using the prefix and/or suffix from the |
8542 | * old tuple, and the data stored in the WAL record. |
8543 | */ |
8544 | newp = (char *) htup + SizeofHeapTupleHeader; |
8545 | if (prefixlen > 0) |
8546 | { |
8547 | int len; |
8548 | |
8549 | /* copy bitmap [+ padding] [+ oid] from WAL record */ |
8550 | len = xlhdr.t_hoff - SizeofHeapTupleHeader; |
8551 | memcpy(newp, recdata, len); |
8552 | recdata += len; |
8553 | newp += len; |
8554 | |
8555 | /* copy prefix from old tuple */ |
8556 | memcpy(newp, (char *) oldtup.t_data + oldtup.t_data->t_hoff, prefixlen); |
8557 | newp += prefixlen; |
8558 | |
8559 | /* copy new tuple data from WAL record */ |
8560 | len = tuplen - (xlhdr.t_hoff - SizeofHeapTupleHeader); |
8561 | memcpy(newp, recdata, len); |
8562 | recdata += len; |
8563 | newp += len; |
8564 | } |
8565 | else |
8566 | { |
8567 | /* |
8568 | * copy bitmap [+ padding] [+ oid] + data from record, all in one |
8569 | * go |
8570 | */ |
8571 | memcpy(newp, recdata, tuplen); |
8572 | recdata += tuplen; |
8573 | newp += tuplen; |
8574 | } |
8575 | Assert(recdata == recdata_end); |
8576 | |
8577 | /* copy suffix from old tuple */ |
8578 | if (suffixlen > 0) |
8579 | memcpy(newp, (char *) oldtup.t_data + oldtup.t_len - suffixlen, suffixlen); |
8580 | |
8581 | newlen = SizeofHeapTupleHeader + tuplen + prefixlen + suffixlen; |
8582 | htup->t_infomask2 = xlhdr.t_infomask2; |
8583 | htup->t_infomask = xlhdr.t_infomask; |
8584 | htup->t_hoff = xlhdr.t_hoff; |
8585 | |
8586 | HeapTupleHeaderSetXmin(htup, XLogRecGetXid(record)); |
8587 | HeapTupleHeaderSetCmin(htup, FirstCommandId); |
8588 | HeapTupleHeaderSetXmax(htup, xlrec->new_xmax); |
8589 | /* Make sure there is no forward chain link in t_ctid */ |
8590 | htup->t_ctid = newtid; |
8591 | |
8592 | offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true); |
8593 | if (offnum == InvalidOffsetNumber) |
8594 | elog(PANIC, "failed to add tuple" ); |
8595 | |
8596 | if (xlrec->flags & XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED) |
8597 | PageClearAllVisible(page); |
8598 | |
8599 | freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ |
8600 | |
8601 | PageSetLSN(page, lsn); |
8602 | MarkBufferDirty(nbuffer); |
8603 | } |
8604 | |
8605 | if (BufferIsValid(nbuffer) && nbuffer != obuffer) |
8606 | UnlockReleaseBuffer(nbuffer); |
8607 | if (BufferIsValid(obuffer)) |
8608 | UnlockReleaseBuffer(obuffer); |
8609 | |
8610 | /* |
8611 | * If the new page is running low on free space, update the FSM as well. |
8612 | * Arbitrarily, our definition of "low" is less than 20%. We can't do much |
8613 | * better than that without knowing the fill-factor for the table. |
8614 | * |
8615 | * However, don't update the FSM on HOT updates, because after crash |
8616 | * recovery, either the old or the new tuple will certainly be dead and |
8617 | * prunable. After pruning, the page will have roughly as much free space |
8618 | * as it did before the update, assuming the new tuple is about the same |
8619 | * size as the old one. |
8620 | * |
8621 | * XXX: Don't do this if the page was restored from full page image. We |
8622 | * don't bother to update the FSM in that case, it doesn't need to be |
8623 | * totally accurate anyway. |
8624 | */ |
8625 | if (newaction == BLK_NEEDS_REDO && !hot_update && freespace < BLCKSZ / 5) |
8626 | XLogRecordPageWithFreeSpace(rnode, newblk, freespace); |
8627 | } |
8628 | |
8629 | static void |
8630 | heap_xlog_confirm(XLogReaderState *record) |
8631 | { |
8632 | XLogRecPtr lsn = record->EndRecPtr; |
8633 | xl_heap_confirm *xlrec = (xl_heap_confirm *) XLogRecGetData(record); |
8634 | Buffer buffer; |
8635 | Page page; |
8636 | OffsetNumber offnum; |
8637 | ItemId lp = NULL; |
8638 | HeapTupleHeader htup; |
8639 | |
8640 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
8641 | { |
8642 | page = BufferGetPage(buffer); |
8643 | |
8644 | offnum = xlrec->offnum; |
8645 | if (PageGetMaxOffsetNumber(page) >= offnum) |
8646 | lp = PageGetItemId(page, offnum); |
8647 | |
8648 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
8649 | elog(PANIC, "invalid lp" ); |
8650 | |
8651 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
8652 | |
8653 | /* |
8654 | * Confirm tuple as actually inserted |
8655 | */ |
8656 | ItemPointerSet(&htup->t_ctid, BufferGetBlockNumber(buffer), offnum); |
8657 | |
8658 | PageSetLSN(page, lsn); |
8659 | MarkBufferDirty(buffer); |
8660 | } |
8661 | if (BufferIsValid(buffer)) |
8662 | UnlockReleaseBuffer(buffer); |
8663 | } |
8664 | |
8665 | static void |
8666 | heap_xlog_lock(XLogReaderState *record) |
8667 | { |
8668 | XLogRecPtr lsn = record->EndRecPtr; |
8669 | xl_heap_lock *xlrec = (xl_heap_lock *) XLogRecGetData(record); |
8670 | Buffer buffer; |
8671 | Page page; |
8672 | OffsetNumber offnum; |
8673 | ItemId lp = NULL; |
8674 | HeapTupleHeader htup; |
8675 | |
8676 | /* |
8677 | * The visibility map may need to be fixed even if the heap page is |
8678 | * already up-to-date. |
8679 | */ |
8680 | if (xlrec->flags & XLH_LOCK_ALL_FROZEN_CLEARED) |
8681 | { |
8682 | RelFileNode rnode; |
8683 | Buffer vmbuffer = InvalidBuffer; |
8684 | BlockNumber block; |
8685 | Relation reln; |
8686 | |
8687 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &block); |
8688 | reln = CreateFakeRelcacheEntry(rnode); |
8689 | |
8690 | visibilitymap_pin(reln, block, &vmbuffer); |
8691 | visibilitymap_clear(reln, block, vmbuffer, VISIBILITYMAP_ALL_FROZEN); |
8692 | |
8693 | ReleaseBuffer(vmbuffer); |
8694 | FreeFakeRelcacheEntry(reln); |
8695 | } |
8696 | |
8697 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
8698 | { |
8699 | page = (Page) BufferGetPage(buffer); |
8700 | |
8701 | offnum = xlrec->offnum; |
8702 | if (PageGetMaxOffsetNumber(page) >= offnum) |
8703 | lp = PageGetItemId(page, offnum); |
8704 | |
8705 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
8706 | elog(PANIC, "invalid lp" ); |
8707 | |
8708 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
8709 | |
8710 | htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
8711 | htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
8712 | fix_infomask_from_infobits(xlrec->infobits_set, &htup->t_infomask, |
8713 | &htup->t_infomask2); |
8714 | |
8715 | /* |
8716 | * Clear relevant update flags, but only if the modified infomask says |
8717 | * there's no update. |
8718 | */ |
8719 | if (HEAP_XMAX_IS_LOCKED_ONLY(htup->t_infomask)) |
8720 | { |
8721 | HeapTupleHeaderClearHotUpdated(htup); |
8722 | /* Make sure there is no forward chain link in t_ctid */ |
8723 | ItemPointerSet(&htup->t_ctid, |
8724 | BufferGetBlockNumber(buffer), |
8725 | offnum); |
8726 | } |
8727 | HeapTupleHeaderSetXmax(htup, xlrec->locking_xid); |
8728 | HeapTupleHeaderSetCmax(htup, FirstCommandId, false); |
8729 | PageSetLSN(page, lsn); |
8730 | MarkBufferDirty(buffer); |
8731 | } |
8732 | if (BufferIsValid(buffer)) |
8733 | UnlockReleaseBuffer(buffer); |
8734 | } |
8735 | |
8736 | static void |
8737 | heap_xlog_lock_updated(XLogReaderState *record) |
8738 | { |
8739 | XLogRecPtr lsn = record->EndRecPtr; |
8740 | xl_heap_lock_updated *xlrec; |
8741 | Buffer buffer; |
8742 | Page page; |
8743 | OffsetNumber offnum; |
8744 | ItemId lp = NULL; |
8745 | HeapTupleHeader htup; |
8746 | |
8747 | xlrec = (xl_heap_lock_updated *) XLogRecGetData(record); |
8748 | |
8749 | /* |
8750 | * The visibility map may need to be fixed even if the heap page is |
8751 | * already up-to-date. |
8752 | */ |
8753 | if (xlrec->flags & XLH_LOCK_ALL_FROZEN_CLEARED) |
8754 | { |
8755 | RelFileNode rnode; |
8756 | Buffer vmbuffer = InvalidBuffer; |
8757 | BlockNumber block; |
8758 | Relation reln; |
8759 | |
8760 | XLogRecGetBlockTag(record, 0, &rnode, NULL, &block); |
8761 | reln = CreateFakeRelcacheEntry(rnode); |
8762 | |
8763 | visibilitymap_pin(reln, block, &vmbuffer); |
8764 | visibilitymap_clear(reln, block, vmbuffer, VISIBILITYMAP_ALL_FROZEN); |
8765 | |
8766 | ReleaseBuffer(vmbuffer); |
8767 | FreeFakeRelcacheEntry(reln); |
8768 | } |
8769 | |
8770 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
8771 | { |
8772 | page = BufferGetPage(buffer); |
8773 | |
8774 | offnum = xlrec->offnum; |
8775 | if (PageGetMaxOffsetNumber(page) >= offnum) |
8776 | lp = PageGetItemId(page, offnum); |
8777 | |
8778 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
8779 | elog(PANIC, "invalid lp" ); |
8780 | |
8781 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
8782 | |
8783 | htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); |
8784 | htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; |
8785 | fix_infomask_from_infobits(xlrec->infobits_set, &htup->t_infomask, |
8786 | &htup->t_infomask2); |
8787 | HeapTupleHeaderSetXmax(htup, xlrec->xmax); |
8788 | |
8789 | PageSetLSN(page, lsn); |
8790 | MarkBufferDirty(buffer); |
8791 | } |
8792 | if (BufferIsValid(buffer)) |
8793 | UnlockReleaseBuffer(buffer); |
8794 | } |
8795 | |
8796 | static void |
8797 | heap_xlog_inplace(XLogReaderState *record) |
8798 | { |
8799 | XLogRecPtr lsn = record->EndRecPtr; |
8800 | xl_heap_inplace *xlrec = (xl_heap_inplace *) XLogRecGetData(record); |
8801 | Buffer buffer; |
8802 | Page page; |
8803 | OffsetNumber offnum; |
8804 | ItemId lp = NULL; |
8805 | HeapTupleHeader htup; |
8806 | uint32 oldlen; |
8807 | Size newlen; |
8808 | |
8809 | if (XLogReadBufferForRedo(record, 0, &buffer) == BLK_NEEDS_REDO) |
8810 | { |
8811 | char *newtup = XLogRecGetBlockData(record, 0, &newlen); |
8812 | |
8813 | page = BufferGetPage(buffer); |
8814 | |
8815 | offnum = xlrec->offnum; |
8816 | if (PageGetMaxOffsetNumber(page) >= offnum) |
8817 | lp = PageGetItemId(page, offnum); |
8818 | |
8819 | if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) |
8820 | elog(PANIC, "invalid lp" ); |
8821 | |
8822 | htup = (HeapTupleHeader) PageGetItem(page, lp); |
8823 | |
8824 | oldlen = ItemIdGetLength(lp) - htup->t_hoff; |
8825 | if (oldlen != newlen) |
8826 | elog(PANIC, "wrong tuple length" ); |
8827 | |
8828 | memcpy((char *) htup + htup->t_hoff, newtup, newlen); |
8829 | |
8830 | PageSetLSN(page, lsn); |
8831 | MarkBufferDirty(buffer); |
8832 | } |
8833 | if (BufferIsValid(buffer)) |
8834 | UnlockReleaseBuffer(buffer); |
8835 | } |
8836 | |
8837 | void |
8838 | heap_redo(XLogReaderState *record) |
8839 | { |
8840 | uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
8841 | |
8842 | /* |
8843 | * These operations don't overwrite MVCC data so no conflict processing is |
8844 | * required. The ones in heap2 rmgr do. |
8845 | */ |
8846 | |
8847 | switch (info & XLOG_HEAP_OPMASK) |
8848 | { |
8849 | case XLOG_HEAP_INSERT: |
8850 | heap_xlog_insert(record); |
8851 | break; |
8852 | case XLOG_HEAP_DELETE: |
8853 | heap_xlog_delete(record); |
8854 | break; |
8855 | case XLOG_HEAP_UPDATE: |
8856 | heap_xlog_update(record, false); |
8857 | break; |
8858 | case XLOG_HEAP_TRUNCATE: |
8859 | |
8860 | /* |
8861 | * TRUNCATE is a no-op because the actions are already logged as |
8862 | * SMGR WAL records. TRUNCATE WAL record only exists for logical |
8863 | * decoding. |
8864 | */ |
8865 | break; |
8866 | case XLOG_HEAP_HOT_UPDATE: |
8867 | heap_xlog_update(record, true); |
8868 | break; |
8869 | case XLOG_HEAP_CONFIRM: |
8870 | heap_xlog_confirm(record); |
8871 | break; |
8872 | case XLOG_HEAP_LOCK: |
8873 | heap_xlog_lock(record); |
8874 | break; |
8875 | case XLOG_HEAP_INPLACE: |
8876 | heap_xlog_inplace(record); |
8877 | break; |
8878 | default: |
8879 | elog(PANIC, "heap_redo: unknown op code %u" , info); |
8880 | } |
8881 | } |
8882 | |
8883 | void |
8884 | heap2_redo(XLogReaderState *record) |
8885 | { |
8886 | uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
8887 | |
8888 | switch (info & XLOG_HEAP_OPMASK) |
8889 | { |
8890 | case XLOG_HEAP2_CLEAN: |
8891 | heap_xlog_clean(record); |
8892 | break; |
8893 | case XLOG_HEAP2_FREEZE_PAGE: |
8894 | heap_xlog_freeze_page(record); |
8895 | break; |
8896 | case XLOG_HEAP2_CLEANUP_INFO: |
8897 | heap_xlog_cleanup_info(record); |
8898 | break; |
8899 | case XLOG_HEAP2_VISIBLE: |
8900 | heap_xlog_visible(record); |
8901 | break; |
8902 | case XLOG_HEAP2_MULTI_INSERT: |
8903 | heap_xlog_multi_insert(record); |
8904 | break; |
8905 | case XLOG_HEAP2_LOCK_UPDATED: |
8906 | heap_xlog_lock_updated(record); |
8907 | break; |
8908 | case XLOG_HEAP2_NEW_CID: |
8909 | |
8910 | /* |
8911 | * Nothing to do on a real replay, only used during logical |
8912 | * decoding. |
8913 | */ |
8914 | break; |
8915 | case XLOG_HEAP2_REWRITE: |
8916 | heap_xlog_logical_rewrite(record); |
8917 | break; |
8918 | default: |
8919 | elog(PANIC, "heap2_redo: unknown op code %u" , info); |
8920 | } |
8921 | } |
8922 | |
8923 | /* |
8924 | * heap_sync - sync a heap, for use when no WAL has been written |
8925 | * |
8926 | * This forces the heap contents (including TOAST heap if any) down to disk. |
8927 | * If we skipped using WAL, and WAL is otherwise needed, we must force the |
8928 | * relation down to disk before it's safe to commit the transaction. This |
8929 | * requires writing out any dirty buffers and then doing a forced fsync. |
8930 | * |
8931 | * Indexes are not touched. (Currently, index operations associated with |
8932 | * the commands that use this are WAL-logged and so do not need fsync. |
8933 | * That behavior might change someday, but in any case it's likely that |
8934 | * any fsync decisions required would be per-index and hence not appropriate |
8935 | * to be done here.) |
8936 | */ |
8937 | void |
8938 | heap_sync(Relation rel) |
8939 | { |
8940 | /* non-WAL-logged tables never need fsync */ |
8941 | if (!RelationNeedsWAL(rel)) |
8942 | return; |
8943 | |
8944 | /* main heap */ |
8945 | FlushRelationBuffers(rel); |
8946 | /* FlushRelationBuffers will have opened rd_smgr */ |
8947 | smgrimmedsync(rel->rd_smgr, MAIN_FORKNUM); |
8948 | |
8949 | /* FSM is not critical, don't bother syncing it */ |
8950 | |
8951 | /* toast heap, if any */ |
8952 | if (OidIsValid(rel->rd_rel->reltoastrelid)) |
8953 | { |
8954 | Relation toastrel; |
8955 | |
8956 | toastrel = table_open(rel->rd_rel->reltoastrelid, AccessShareLock); |
8957 | FlushRelationBuffers(toastrel); |
8958 | smgrimmedsync(toastrel->rd_smgr, MAIN_FORKNUM); |
8959 | table_close(toastrel, AccessShareLock); |
8960 | } |
8961 | } |
8962 | |
8963 | /* |
8964 | * Mask a heap page before performing consistency checks on it. |
8965 | */ |
8966 | void |
8967 | heap_mask(char *pagedata, BlockNumber blkno) |
8968 | { |
8969 | Page page = (Page) pagedata; |
8970 | OffsetNumber off; |
8971 | |
8972 | mask_page_lsn_and_checksum(page); |
8973 | |
8974 | mask_page_hint_bits(page); |
8975 | mask_unused_space(page); |
8976 | |
8977 | for (off = 1; off <= PageGetMaxOffsetNumber(page); off++) |
8978 | { |
8979 | ItemId iid = PageGetItemId(page, off); |
8980 | char *page_item; |
8981 | |
8982 | page_item = (char *) (page + ItemIdGetOffset(iid)); |
8983 | |
8984 | if (ItemIdIsNormal(iid)) |
8985 | { |
8986 | HeapTupleHeader page_htup = (HeapTupleHeader) page_item; |
8987 | |
8988 | /* |
8989 | * If xmin of a tuple is not yet frozen, we should ignore |
8990 | * differences in hint bits, since they can be set without |
8991 | * emitting WAL. |
8992 | */ |
8993 | if (!HeapTupleHeaderXminFrozen(page_htup)) |
8994 | page_htup->t_infomask &= ~HEAP_XACT_MASK; |
8995 | else |
8996 | { |
8997 | /* Still we need to mask xmax hint bits. */ |
8998 | page_htup->t_infomask &= ~HEAP_XMAX_INVALID; |
8999 | page_htup->t_infomask &= ~HEAP_XMAX_COMMITTED; |
9000 | } |
9001 | |
9002 | /* |
9003 | * During replay, we set Command Id to FirstCommandId. Hence, mask |
9004 | * it. See heap_xlog_insert() for details. |
9005 | */ |
9006 | page_htup->t_choice.t_heap.t_field3.t_cid = MASK_MARKER; |
9007 | |
9008 | /* |
9009 | * For a speculative tuple, heap_insert() does not set ctid in the |
9010 | * caller-passed heap tuple itself, leaving the ctid field to |
9011 | * contain a speculative token value - a per-backend monotonically |
9012 | * increasing identifier. Besides, it does not WAL-log ctid under |
9013 | * any circumstances. |
9014 | * |
9015 | * During redo, heap_xlog_insert() sets t_ctid to current block |
9016 | * number and self offset number. It doesn't care about any |
9017 | * speculative insertions in master. Hence, we set t_ctid to |
9018 | * current block number and self offset number to ignore any |
9019 | * inconsistency. |
9020 | */ |
9021 | if (HeapTupleHeaderIsSpeculative(page_htup)) |
9022 | ItemPointerSet(&page_htup->t_ctid, blkno, off); |
9023 | |
9024 | /* |
9025 | * NB: Not ignoring ctid changes due to the tuple having moved |
9026 | * (i.e. HeapTupleHeaderIndicatesMovedPartitions), because that's |
9027 | * important information that needs to be in-sync between primary |
9028 | * and standby, and thus is WAL logged. |
9029 | */ |
9030 | } |
9031 | |
9032 | /* |
9033 | * Ignore any padding bytes after the tuple, when the length of the |
9034 | * item is not MAXALIGNed. |
9035 | */ |
9036 | if (ItemIdHasStorage(iid)) |
9037 | { |
9038 | int len = ItemIdGetLength(iid); |
9039 | int padlen = MAXALIGN(len) - len; |
9040 | |
9041 | if (padlen > 0) |
9042 | memset(page_item + len, MASK_MARKER, padlen); |
9043 | } |
9044 | } |
9045 | } |
9046 | |