| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * xlog.c |
| 4 | * PostgreSQL write-ahead log manager |
| 5 | * |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * src/backend/access/transam/xlog.c |
| 11 | * |
| 12 | *------------------------------------------------------------------------- |
| 13 | */ |
| 14 | |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <ctype.h> |
| 18 | #include <math.h> |
| 19 | #include <time.h> |
| 20 | #include <fcntl.h> |
| 21 | #include <sys/stat.h> |
| 22 | #include <sys/time.h> |
| 23 | #include <unistd.h> |
| 24 | |
| 25 | #include "access/clog.h" |
| 26 | #include "access/commit_ts.h" |
| 27 | #include "access/multixact.h" |
| 28 | #include "access/rewriteheap.h" |
| 29 | #include "access/subtrans.h" |
| 30 | #include "access/timeline.h" |
| 31 | #include "access/transam.h" |
| 32 | #include "access/tuptoaster.h" |
| 33 | #include "access/twophase.h" |
| 34 | #include "access/xact.h" |
| 35 | #include "access/xlog_internal.h" |
| 36 | #include "access/xloginsert.h" |
| 37 | #include "access/xlogreader.h" |
| 38 | #include "access/xlogutils.h" |
| 39 | #include "catalog/catversion.h" |
| 40 | #include "catalog/pg_control.h" |
| 41 | #include "catalog/pg_database.h" |
| 42 | #include "commands/tablespace.h" |
| 43 | #include "common/controldata_utils.h" |
| 44 | #include "miscadmin.h" |
| 45 | #include "pgstat.h" |
| 46 | #include "port/atomics.h" |
| 47 | #include "postmaster/bgwriter.h" |
| 48 | #include "postmaster/walwriter.h" |
| 49 | #include "postmaster/startup.h" |
| 50 | #include "replication/basebackup.h" |
| 51 | #include "replication/logical.h" |
| 52 | #include "replication/slot.h" |
| 53 | #include "replication/origin.h" |
| 54 | #include "replication/snapbuild.h" |
| 55 | #include "replication/walreceiver.h" |
| 56 | #include "replication/walsender.h" |
| 57 | #include "storage/bufmgr.h" |
| 58 | #include "storage/fd.h" |
| 59 | #include "storage/ipc.h" |
| 60 | #include "storage/large_object.h" |
| 61 | #include "storage/latch.h" |
| 62 | #include "storage/pmsignal.h" |
| 63 | #include "storage/predicate.h" |
| 64 | #include "storage/proc.h" |
| 65 | #include "storage/procarray.h" |
| 66 | #include "storage/reinit.h" |
| 67 | #include "storage/smgr.h" |
| 68 | #include "storage/spin.h" |
| 69 | #include "storage/sync.h" |
| 70 | #include "utils/builtins.h" |
| 71 | #include "utils/guc.h" |
| 72 | #include "utils/memutils.h" |
| 73 | #include "utils/ps_status.h" |
| 74 | #include "utils/relmapper.h" |
| 75 | #include "utils/snapmgr.h" |
| 76 | #include "utils/timestamp.h" |
| 77 | #include "pg_trace.h" |
| 78 | |
| 79 | extern uint32 bootstrap_data_checksum_version; |
| 80 | |
| 81 | /* Unsupported old recovery command file names (relative to $PGDATA) */ |
| 82 | #define RECOVERY_COMMAND_FILE "recovery.conf" |
| 83 | #define RECOVERY_COMMAND_DONE "recovery.done" |
| 84 | |
| 85 | /* User-settable parameters */ |
| 86 | int max_wal_size_mb = 1024; /* 1 GB */ |
| 87 | int min_wal_size_mb = 80; /* 80 MB */ |
| 88 | int wal_keep_segments = 0; |
| 89 | int XLOGbuffers = -1; |
| 90 | int XLogArchiveTimeout = 0; |
| 91 | int XLogArchiveMode = ARCHIVE_MODE_OFF; |
| 92 | char *XLogArchiveCommand = NULL; |
| 93 | bool EnableHotStandby = false; |
| 94 | bool fullPageWrites = true; |
| 95 | bool wal_log_hints = false; |
| 96 | bool wal_compression = false; |
| 97 | char *wal_consistency_checking_string = NULL; |
| 98 | bool *wal_consistency_checking = NULL; |
| 99 | bool wal_init_zero = true; |
| 100 | bool wal_recycle = true; |
| 101 | bool log_checkpoints = false; |
| 102 | int sync_method = DEFAULT_SYNC_METHOD; |
| 103 | int wal_level = WAL_LEVEL_MINIMAL; |
| 104 | int CommitDelay = 0; /* precommit delay in microseconds */ |
| 105 | int CommitSiblings = 5; /* # concurrent xacts needed to sleep */ |
| 106 | int wal_retrieve_retry_interval = 5000; |
| 107 | |
| 108 | #ifdef WAL_DEBUG |
| 109 | bool XLOG_DEBUG = false; |
| 110 | #endif |
| 111 | |
| 112 | int wal_segment_size = DEFAULT_XLOG_SEG_SIZE; |
| 113 | |
| 114 | /* |
| 115 | * Number of WAL insertion locks to use. A higher value allows more insertions |
| 116 | * to happen concurrently, but adds some CPU overhead to flushing the WAL, |
| 117 | * which needs to iterate all the locks. |
| 118 | */ |
| 119 | #define NUM_XLOGINSERT_LOCKS 8 |
| 120 | |
| 121 | /* |
| 122 | * Max distance from last checkpoint, before triggering a new xlog-based |
| 123 | * checkpoint. |
| 124 | */ |
| 125 | int CheckPointSegments; |
| 126 | |
| 127 | /* Estimated distance between checkpoints, in bytes */ |
| 128 | static double CheckPointDistanceEstimate = 0; |
| 129 | static double PrevCheckPointDistance = 0; |
| 130 | |
| 131 | /* |
| 132 | * GUC support |
| 133 | */ |
| 134 | const struct config_enum_entry sync_method_options[] = { |
| 135 | {"fsync" , SYNC_METHOD_FSYNC, false}, |
| 136 | #ifdef HAVE_FSYNC_WRITETHROUGH |
| 137 | {"fsync_writethrough" , SYNC_METHOD_FSYNC_WRITETHROUGH, false}, |
| 138 | #endif |
| 139 | #ifdef HAVE_FDATASYNC |
| 140 | {"fdatasync" , SYNC_METHOD_FDATASYNC, false}, |
| 141 | #endif |
| 142 | #ifdef OPEN_SYNC_FLAG |
| 143 | {"open_sync" , SYNC_METHOD_OPEN, false}, |
| 144 | #endif |
| 145 | #ifdef OPEN_DATASYNC_FLAG |
| 146 | {"open_datasync" , SYNC_METHOD_OPEN_DSYNC, false}, |
| 147 | #endif |
| 148 | {NULL, 0, false} |
| 149 | }; |
| 150 | |
| 151 | |
| 152 | /* |
| 153 | * Although only "on", "off", and "always" are documented, |
| 154 | * we accept all the likely variants of "on" and "off". |
| 155 | */ |
| 156 | const struct config_enum_entry archive_mode_options[] = { |
| 157 | {"always" , ARCHIVE_MODE_ALWAYS, false}, |
| 158 | {"on" , ARCHIVE_MODE_ON, false}, |
| 159 | {"off" , ARCHIVE_MODE_OFF, false}, |
| 160 | {"true" , ARCHIVE_MODE_ON, true}, |
| 161 | {"false" , ARCHIVE_MODE_OFF, true}, |
| 162 | {"yes" , ARCHIVE_MODE_ON, true}, |
| 163 | {"no" , ARCHIVE_MODE_OFF, true}, |
| 164 | {"1" , ARCHIVE_MODE_ON, true}, |
| 165 | {"0" , ARCHIVE_MODE_OFF, true}, |
| 166 | {NULL, 0, false} |
| 167 | }; |
| 168 | |
| 169 | const struct config_enum_entry recovery_target_action_options[] = { |
| 170 | {"pause" , RECOVERY_TARGET_ACTION_PAUSE, false}, |
| 171 | {"promote" , RECOVERY_TARGET_ACTION_PROMOTE, false}, |
| 172 | {"shutdown" , RECOVERY_TARGET_ACTION_SHUTDOWN, false}, |
| 173 | {NULL, 0, false} |
| 174 | }; |
| 175 | |
| 176 | /* |
| 177 | * Statistics for current checkpoint are collected in this global struct. |
| 178 | * Because only the checkpointer or a stand-alone backend can perform |
| 179 | * checkpoints, this will be unused in normal backends. |
| 180 | */ |
| 181 | CheckpointStatsData CheckpointStats; |
| 182 | |
| 183 | /* |
| 184 | * ThisTimeLineID will be same in all backends --- it identifies current |
| 185 | * WAL timeline for the database system. |
| 186 | */ |
| 187 | TimeLineID ThisTimeLineID = 0; |
| 188 | |
| 189 | /* |
| 190 | * Are we doing recovery from XLOG? |
| 191 | * |
| 192 | * This is only ever true in the startup process; it should be read as meaning |
| 193 | * "this process is replaying WAL records", rather than "the system is in |
| 194 | * recovery mode". It should be examined primarily by functions that need |
| 195 | * to act differently when called from a WAL redo function (e.g., to skip WAL |
| 196 | * logging). To check whether the system is in recovery regardless of which |
| 197 | * process you're running in, use RecoveryInProgress() but only after shared |
| 198 | * memory startup and lock initialization. |
| 199 | */ |
| 200 | bool InRecovery = false; |
| 201 | |
| 202 | /* Are we in Hot Standby mode? Only valid in startup process, see xlog.h */ |
| 203 | HotStandbyState standbyState = STANDBY_DISABLED; |
| 204 | |
| 205 | static XLogRecPtr LastRec; |
| 206 | |
| 207 | /* Local copy of WalRcv->receivedUpto */ |
| 208 | static XLogRecPtr receivedUpto = 0; |
| 209 | static TimeLineID receiveTLI = 0; |
| 210 | |
| 211 | /* |
| 212 | * During recovery, lastFullPageWrites keeps track of full_page_writes that |
| 213 | * the replayed WAL records indicate. It's initialized with full_page_writes |
| 214 | * that the recovery starting checkpoint record indicates, and then updated |
| 215 | * each time XLOG_FPW_CHANGE record is replayed. |
| 216 | */ |
| 217 | static bool lastFullPageWrites; |
| 218 | |
| 219 | /* |
| 220 | * Local copy of SharedRecoveryInProgress variable. True actually means "not |
| 221 | * known, need to check the shared state". |
| 222 | */ |
| 223 | static bool LocalRecoveryInProgress = true; |
| 224 | |
| 225 | /* |
| 226 | * Local copy of SharedHotStandbyActive variable. False actually means "not |
| 227 | * known, need to check the shared state". |
| 228 | */ |
| 229 | static bool LocalHotStandbyActive = false; |
| 230 | |
| 231 | /* |
| 232 | * Local state for XLogInsertAllowed(): |
| 233 | * 1: unconditionally allowed to insert XLOG |
| 234 | * 0: unconditionally not allowed to insert XLOG |
| 235 | * -1: must check RecoveryInProgress(); disallow until it is false |
| 236 | * Most processes start with -1 and transition to 1 after seeing that recovery |
| 237 | * is not in progress. But we can also force the value for special cases. |
| 238 | * The coding in XLogInsertAllowed() depends on the first two of these states |
| 239 | * being numerically the same as bool true and false. |
| 240 | */ |
| 241 | static int LocalXLogInsertAllowed = -1; |
| 242 | |
| 243 | /* |
| 244 | * When ArchiveRecoveryRequested is set, archive recovery was requested, |
| 245 | * ie. signal files were present. When InArchiveRecovery is set, we are |
| 246 | * currently recovering using offline XLOG archives. These variables are only |
| 247 | * valid in the startup process. |
| 248 | * |
| 249 | * When ArchiveRecoveryRequested is true, but InArchiveRecovery is false, we're |
| 250 | * currently performing crash recovery using only XLOG files in pg_wal, but |
| 251 | * will switch to using offline XLOG archives as soon as we reach the end of |
| 252 | * WAL in pg_wal. |
| 253 | */ |
| 254 | bool ArchiveRecoveryRequested = false; |
| 255 | bool InArchiveRecovery = false; |
| 256 | |
| 257 | static bool standby_signal_file_found = false; |
| 258 | static bool recovery_signal_file_found = false; |
| 259 | |
| 260 | /* Was the last xlog file restored from archive, or local? */ |
| 261 | static bool restoredFromArchive = false; |
| 262 | |
| 263 | /* Buffers dedicated to consistency checks of size BLCKSZ */ |
| 264 | static char *replay_image_masked = NULL; |
| 265 | static char *master_image_masked = NULL; |
| 266 | |
| 267 | /* options formerly taken from recovery.conf for archive recovery */ |
| 268 | char *recoveryRestoreCommand = NULL; |
| 269 | char *recoveryEndCommand = NULL; |
| 270 | char *archiveCleanupCommand = NULL; |
| 271 | RecoveryTargetType recoveryTarget = RECOVERY_TARGET_UNSET; |
| 272 | bool recoveryTargetInclusive = true; |
| 273 | int recoveryTargetAction = RECOVERY_TARGET_ACTION_PAUSE; |
| 274 | TransactionId recoveryTargetXid; |
| 275 | char *recovery_target_time_string; |
| 276 | static TimestampTz recoveryTargetTime; |
| 277 | const char *recoveryTargetName; |
| 278 | XLogRecPtr recoveryTargetLSN; |
| 279 | int recovery_min_apply_delay = 0; |
| 280 | TimestampTz recoveryDelayUntilTime; |
| 281 | |
| 282 | /* options formerly taken from recovery.conf for XLOG streaming */ |
| 283 | bool StandbyModeRequested = false; |
| 284 | char *PrimaryConnInfo = NULL; |
| 285 | char *PrimarySlotName = NULL; |
| 286 | char *PromoteTriggerFile = NULL; |
| 287 | |
| 288 | /* are we currently in standby mode? */ |
| 289 | bool StandbyMode = false; |
| 290 | |
| 291 | /* whether request for fast promotion has been made yet */ |
| 292 | static bool fast_promote = false; |
| 293 | |
| 294 | /* |
| 295 | * if recoveryStopsBefore/After returns true, it saves information of the stop |
| 296 | * point here |
| 297 | */ |
| 298 | static TransactionId recoveryStopXid; |
| 299 | static TimestampTz recoveryStopTime; |
| 300 | static XLogRecPtr recoveryStopLSN; |
| 301 | static char recoveryStopName[MAXFNAMELEN]; |
| 302 | static bool recoveryStopAfter; |
| 303 | |
| 304 | /* |
| 305 | * During normal operation, the only timeline we care about is ThisTimeLineID. |
| 306 | * During recovery, however, things are more complicated. To simplify life |
| 307 | * for rmgr code, we keep ThisTimeLineID set to the "current" timeline as we |
| 308 | * scan through the WAL history (that is, it is the line that was active when |
| 309 | * the currently-scanned WAL record was generated). We also need these |
| 310 | * timeline values: |
| 311 | * |
| 312 | * recoveryTargetTimeLineGoal: what the user requested, if any |
| 313 | * |
| 314 | * recoveryTargetTLIRequested: numeric value of requested timeline, if constant |
| 315 | * |
| 316 | * recoveryTargetTLI: the currently understood target timeline; changes |
| 317 | * |
| 318 | * expectedTLEs: a list of TimeLineHistoryEntries for recoveryTargetTLI and the timelines of |
| 319 | * its known parents, newest first (so recoveryTargetTLI is always the |
| 320 | * first list member). Only these TLIs are expected to be seen in the WAL |
| 321 | * segments we read, and indeed only these TLIs will be considered as |
| 322 | * candidate WAL files to open at all. |
| 323 | * |
| 324 | * curFileTLI: the TLI appearing in the name of the current input WAL file. |
| 325 | * (This is not necessarily the same as ThisTimeLineID, because we could |
| 326 | * be scanning data that was copied from an ancestor timeline when the current |
| 327 | * file was created.) During a sequential scan we do not allow this value |
| 328 | * to decrease. |
| 329 | */ |
| 330 | RecoveryTargetTimeLineGoal recoveryTargetTimeLineGoal = RECOVERY_TARGET_TIMELINE_LATEST; |
| 331 | TimeLineID recoveryTargetTLIRequested = 0; |
| 332 | TimeLineID recoveryTargetTLI = 0; |
| 333 | static List *expectedTLEs; |
| 334 | static TimeLineID curFileTLI; |
| 335 | |
| 336 | /* |
| 337 | * ProcLastRecPtr points to the start of the last XLOG record inserted by the |
| 338 | * current backend. It is updated for all inserts. XactLastRecEnd points to |
| 339 | * end+1 of the last record, and is reset when we end a top-level transaction, |
| 340 | * or start a new one; so it can be used to tell if the current transaction has |
| 341 | * created any XLOG records. |
| 342 | * |
| 343 | * While in parallel mode, this may not be fully up to date. When committing, |
| 344 | * a transaction can assume this covers all xlog records written either by the |
| 345 | * user backend or by any parallel worker which was present at any point during |
| 346 | * the transaction. But when aborting, or when still in parallel mode, other |
| 347 | * parallel backends may have written WAL records at later LSNs than the value |
| 348 | * stored here. The parallel leader advances its own copy, when necessary, |
| 349 | * in WaitForParallelWorkersToFinish. |
| 350 | */ |
| 351 | XLogRecPtr ProcLastRecPtr = InvalidXLogRecPtr; |
| 352 | XLogRecPtr XactLastRecEnd = InvalidXLogRecPtr; |
| 353 | XLogRecPtr XactLastCommitEnd = InvalidXLogRecPtr; |
| 354 | |
| 355 | /* |
| 356 | * RedoRecPtr is this backend's local copy of the REDO record pointer |
| 357 | * (which is almost but not quite the same as a pointer to the most recent |
| 358 | * CHECKPOINT record). We update this from the shared-memory copy, |
| 359 | * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we |
| 360 | * hold an insertion lock). See XLogInsertRecord for details. We are also |
| 361 | * allowed to update from XLogCtl->RedoRecPtr if we hold the info_lck; |
| 362 | * see GetRedoRecPtr. A freshly spawned backend obtains the value during |
| 363 | * InitXLOGAccess. |
| 364 | */ |
| 365 | static XLogRecPtr RedoRecPtr; |
| 366 | |
| 367 | /* |
| 368 | * doPageWrites is this backend's local copy of (forcePageWrites || |
| 369 | * fullPageWrites). It is used together with RedoRecPtr to decide whether |
| 370 | * a full-page image of a page need to be taken. |
| 371 | */ |
| 372 | static bool doPageWrites; |
| 373 | |
| 374 | /* Has the recovery code requested a walreceiver wakeup? */ |
| 375 | static bool doRequestWalReceiverReply; |
| 376 | |
| 377 | /* |
| 378 | * RedoStartLSN points to the checkpoint's REDO location which is specified |
| 379 | * in a backup label file, backup history file or control file. In standby |
| 380 | * mode, XLOG streaming usually starts from the position where an invalid |
| 381 | * record was found. But if we fail to read even the initial checkpoint |
| 382 | * record, we use the REDO location instead of the checkpoint location as |
| 383 | * the start position of XLOG streaming. Otherwise we would have to jump |
| 384 | * backwards to the REDO location after reading the checkpoint record, |
| 385 | * because the REDO record can precede the checkpoint record. |
| 386 | */ |
| 387 | static XLogRecPtr RedoStartLSN = InvalidXLogRecPtr; |
| 388 | |
| 389 | /*---------- |
| 390 | * Shared-memory data structures for XLOG control |
| 391 | * |
| 392 | * LogwrtRqst indicates a byte position that we need to write and/or fsync |
| 393 | * the log up to (all records before that point must be written or fsynced). |
| 394 | * LogwrtResult indicates the byte positions we have already written/fsynced. |
| 395 | * These structs are identical but are declared separately to indicate their |
| 396 | * slightly different functions. |
| 397 | * |
| 398 | * To read XLogCtl->LogwrtResult, you must hold either info_lck or |
| 399 | * WALWriteLock. To update it, you need to hold both locks. The point of |
| 400 | * this arrangement is that the value can be examined by code that already |
| 401 | * holds WALWriteLock without needing to grab info_lck as well. In addition |
| 402 | * to the shared variable, each backend has a private copy of LogwrtResult, |
| 403 | * which is updated when convenient. |
| 404 | * |
| 405 | * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst |
| 406 | * (protected by info_lck), but we don't need to cache any copies of it. |
| 407 | * |
| 408 | * info_lck is only held long enough to read/update the protected variables, |
| 409 | * so it's a plain spinlock. The other locks are held longer (potentially |
| 410 | * over I/O operations), so we use LWLocks for them. These locks are: |
| 411 | * |
| 412 | * WALBufMappingLock: must be held to replace a page in the WAL buffer cache. |
| 413 | * It is only held while initializing and changing the mapping. If the |
| 414 | * contents of the buffer being replaced haven't been written yet, the mapping |
| 415 | * lock is released while the write is done, and reacquired afterwards. |
| 416 | * |
| 417 | * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or |
| 418 | * XLogFlush). |
| 419 | * |
| 420 | * ControlFileLock: must be held to read/update control file or create |
| 421 | * new log file. |
| 422 | * |
| 423 | * CheckpointLock: must be held to do a checkpoint or restartpoint (ensures |
| 424 | * only one checkpointer at a time; currently, with all checkpoints done by |
| 425 | * the checkpointer, this is just pro forma). |
| 426 | * |
| 427 | *---------- |
| 428 | */ |
| 429 | |
| 430 | typedef struct XLogwrtRqst |
| 431 | { |
| 432 | XLogRecPtr Write; /* last byte + 1 to write out */ |
| 433 | XLogRecPtr Flush; /* last byte + 1 to flush */ |
| 434 | } XLogwrtRqst; |
| 435 | |
| 436 | typedef struct XLogwrtResult |
| 437 | { |
| 438 | XLogRecPtr Write; /* last byte + 1 written out */ |
| 439 | XLogRecPtr Flush; /* last byte + 1 flushed */ |
| 440 | } XLogwrtResult; |
| 441 | |
| 442 | /* |
| 443 | * Inserting to WAL is protected by a small fixed number of WAL insertion |
| 444 | * locks. To insert to the WAL, you must hold one of the locks - it doesn't |
| 445 | * matter which one. To lock out other concurrent insertions, you must hold |
| 446 | * of them. Each WAL insertion lock consists of a lightweight lock, plus an |
| 447 | * indicator of how far the insertion has progressed (insertingAt). |
| 448 | * |
| 449 | * The insertingAt values are read when a process wants to flush WAL from |
| 450 | * the in-memory buffers to disk, to check that all the insertions to the |
| 451 | * region the process is about to write out have finished. You could simply |
| 452 | * wait for all currently in-progress insertions to finish, but the |
| 453 | * insertingAt indicator allows you to ignore insertions to later in the WAL, |
| 454 | * so that you only wait for the insertions that are modifying the buffers |
| 455 | * you're about to write out. |
| 456 | * |
| 457 | * This isn't just an optimization. If all the WAL buffers are dirty, an |
| 458 | * inserter that's holding a WAL insert lock might need to evict an old WAL |
| 459 | * buffer, which requires flushing the WAL. If it's possible for an inserter |
| 460 | * to block on another inserter unnecessarily, deadlock can arise when two |
| 461 | * inserters holding a WAL insert lock wait for each other to finish their |
| 462 | * insertion. |
| 463 | * |
| 464 | * Small WAL records that don't cross a page boundary never update the value, |
| 465 | * the WAL record is just copied to the page and the lock is released. But |
| 466 | * to avoid the deadlock-scenario explained above, the indicator is always |
| 467 | * updated before sleeping while holding an insertion lock. |
| 468 | * |
| 469 | * lastImportantAt contains the LSN of the last important WAL record inserted |
| 470 | * using a given lock. This value is used to detect if there has been |
| 471 | * important WAL activity since the last time some action, like a checkpoint, |
| 472 | * was performed - allowing to not repeat the action if not. The LSN is |
| 473 | * updated for all insertions, unless the XLOG_MARK_UNIMPORTANT flag was |
| 474 | * set. lastImportantAt is never cleared, only overwritten by the LSN of newer |
| 475 | * records. Tracking the WAL activity directly in WALInsertLock has the |
| 476 | * advantage of not needing any additional locks to update the value. |
| 477 | */ |
| 478 | typedef struct |
| 479 | { |
| 480 | LWLock lock; |
| 481 | XLogRecPtr insertingAt; |
| 482 | XLogRecPtr lastImportantAt; |
| 483 | } WALInsertLock; |
| 484 | |
| 485 | /* |
| 486 | * All the WAL insertion locks are allocated as an array in shared memory. We |
| 487 | * force the array stride to be a power of 2, which saves a few cycles in |
| 488 | * indexing, but more importantly also ensures that individual slots don't |
| 489 | * cross cache line boundaries. (Of course, we have to also ensure that the |
| 490 | * array start address is suitably aligned.) |
| 491 | */ |
| 492 | typedef union WALInsertLockPadded |
| 493 | { |
| 494 | WALInsertLock l; |
| 495 | char pad[PG_CACHE_LINE_SIZE]; |
| 496 | } WALInsertLockPadded; |
| 497 | |
| 498 | /* |
| 499 | * State of an exclusive backup, necessary to control concurrent activities |
| 500 | * across sessions when working on exclusive backups. |
| 501 | * |
| 502 | * EXCLUSIVE_BACKUP_NONE means that there is no exclusive backup actually |
| 503 | * running, to be more precise pg_start_backup() is not being executed for |
| 504 | * an exclusive backup and there is no exclusive backup in progress. |
| 505 | * EXCLUSIVE_BACKUP_STARTING means that pg_start_backup() is starting an |
| 506 | * exclusive backup. |
| 507 | * EXCLUSIVE_BACKUP_IN_PROGRESS means that pg_start_backup() has finished |
| 508 | * running and an exclusive backup is in progress. pg_stop_backup() is |
| 509 | * needed to finish it. |
| 510 | * EXCLUSIVE_BACKUP_STOPPING means that pg_stop_backup() is stopping an |
| 511 | * exclusive backup. |
| 512 | */ |
| 513 | typedef enum ExclusiveBackupState |
| 514 | { |
| 515 | EXCLUSIVE_BACKUP_NONE = 0, |
| 516 | EXCLUSIVE_BACKUP_STARTING, |
| 517 | EXCLUSIVE_BACKUP_IN_PROGRESS, |
| 518 | EXCLUSIVE_BACKUP_STOPPING |
| 519 | } ExclusiveBackupState; |
| 520 | |
| 521 | /* |
| 522 | * Session status of running backup, used for sanity checks in SQL-callable |
| 523 | * functions to start and stop backups. |
| 524 | */ |
| 525 | static SessionBackupState sessionBackupState = SESSION_BACKUP_NONE; |
| 526 | |
| 527 | /* |
| 528 | * Shared state data for WAL insertion. |
| 529 | */ |
| 530 | typedef struct XLogCtlInsert |
| 531 | { |
| 532 | slock_t insertpos_lck; /* protects CurrBytePos and PrevBytePos */ |
| 533 | |
| 534 | /* |
| 535 | * CurrBytePos is the end of reserved WAL. The next record will be |
| 536 | * inserted at that position. PrevBytePos is the start position of the |
| 537 | * previously inserted (or rather, reserved) record - it is copied to the |
| 538 | * prev-link of the next record. These are stored as "usable byte |
| 539 | * positions" rather than XLogRecPtrs (see XLogBytePosToRecPtr()). |
| 540 | */ |
| 541 | uint64 CurrBytePos; |
| 542 | uint64 PrevBytePos; |
| 543 | |
| 544 | /* |
| 545 | * Make sure the above heavily-contended spinlock and byte positions are |
| 546 | * on their own cache line. In particular, the RedoRecPtr and full page |
| 547 | * write variables below should be on a different cache line. They are |
| 548 | * read on every WAL insertion, but updated rarely, and we don't want |
| 549 | * those reads to steal the cache line containing Curr/PrevBytePos. |
| 550 | */ |
| 551 | char pad[PG_CACHE_LINE_SIZE]; |
| 552 | |
| 553 | /* |
| 554 | * fullPageWrites is the master copy used by all backends to determine |
| 555 | * whether to write full-page to WAL, instead of using process-local one. |
| 556 | * This is required because, when full_page_writes is changed by SIGHUP, |
| 557 | * we must WAL-log it before it actually affects WAL-logging by backends. |
| 558 | * Checkpointer sets at startup or after SIGHUP. |
| 559 | * |
| 560 | * To read these fields, you must hold an insertion lock. To modify them, |
| 561 | * you must hold ALL the locks. |
| 562 | */ |
| 563 | XLogRecPtr RedoRecPtr; /* current redo point for insertions */ |
| 564 | bool forcePageWrites; /* forcing full-page writes for PITR? */ |
| 565 | bool fullPageWrites; |
| 566 | |
| 567 | /* |
| 568 | * exclusiveBackupState indicates the state of an exclusive backup (see |
| 569 | * comments of ExclusiveBackupState for more details). nonExclusiveBackups |
| 570 | * is a counter indicating the number of streaming base backups currently |
| 571 | * in progress. forcePageWrites is set to true when either of these is |
| 572 | * non-zero. lastBackupStart is the latest checkpoint redo location used |
| 573 | * as a starting point for an online backup. |
| 574 | */ |
| 575 | ExclusiveBackupState exclusiveBackupState; |
| 576 | int nonExclusiveBackups; |
| 577 | XLogRecPtr lastBackupStart; |
| 578 | |
| 579 | /* |
| 580 | * WAL insertion locks. |
| 581 | */ |
| 582 | WALInsertLockPadded *WALInsertLocks; |
| 583 | } XLogCtlInsert; |
| 584 | |
| 585 | /* |
| 586 | * Total shared-memory state for XLOG. |
| 587 | */ |
| 588 | typedef struct XLogCtlData |
| 589 | { |
| 590 | XLogCtlInsert Insert; |
| 591 | |
| 592 | /* Protected by info_lck: */ |
| 593 | XLogwrtRqst LogwrtRqst; |
| 594 | XLogRecPtr RedoRecPtr; /* a recent copy of Insert->RedoRecPtr */ |
| 595 | FullTransactionId ckptFullXid; /* nextFullXid of latest checkpoint */ |
| 596 | XLogRecPtr asyncXactLSN; /* LSN of newest async commit/abort */ |
| 597 | XLogRecPtr replicationSlotMinLSN; /* oldest LSN needed by any slot */ |
| 598 | |
| 599 | XLogSegNo lastRemovedSegNo; /* latest removed/recycled XLOG segment */ |
| 600 | |
| 601 | /* Fake LSN counter, for unlogged relations. Protected by ulsn_lck. */ |
| 602 | XLogRecPtr unloggedLSN; |
| 603 | slock_t ulsn_lck; |
| 604 | |
| 605 | /* Time and LSN of last xlog segment switch. Protected by WALWriteLock. */ |
| 606 | pg_time_t lastSegSwitchTime; |
| 607 | XLogRecPtr lastSegSwitchLSN; |
| 608 | |
| 609 | /* |
| 610 | * Protected by info_lck and WALWriteLock (you must hold either lock to |
| 611 | * read it, but both to update) |
| 612 | */ |
| 613 | XLogwrtResult LogwrtResult; |
| 614 | |
| 615 | /* |
| 616 | * Latest initialized page in the cache (last byte position + 1). |
| 617 | * |
| 618 | * To change the identity of a buffer (and InitializedUpTo), you need to |
| 619 | * hold WALBufMappingLock. To change the identity of a buffer that's |
| 620 | * still dirty, the old page needs to be written out first, and for that |
| 621 | * you need WALWriteLock, and you need to ensure that there are no |
| 622 | * in-progress insertions to the page by calling |
| 623 | * WaitXLogInsertionsToFinish(). |
| 624 | */ |
| 625 | XLogRecPtr InitializedUpTo; |
| 626 | |
| 627 | /* |
| 628 | * These values do not change after startup, although the pointed-to pages |
| 629 | * and xlblocks values certainly do. xlblock values are protected by |
| 630 | * WALBufMappingLock. |
| 631 | */ |
| 632 | char *pages; /* buffers for unwritten XLOG pages */ |
| 633 | XLogRecPtr *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */ |
| 634 | int XLogCacheBlck; /* highest allocated xlog buffer index */ |
| 635 | |
| 636 | /* |
| 637 | * Shared copy of ThisTimeLineID. Does not change after end-of-recovery. |
| 638 | * If we created a new timeline when the system was started up, |
| 639 | * PrevTimeLineID is the old timeline's ID that we forked off from. |
| 640 | * Otherwise it's equal to ThisTimeLineID. |
| 641 | */ |
| 642 | TimeLineID ThisTimeLineID; |
| 643 | TimeLineID PrevTimeLineID; |
| 644 | |
| 645 | /* |
| 646 | * SharedRecoveryInProgress indicates if we're still in crash or archive |
| 647 | * recovery. Protected by info_lck. |
| 648 | */ |
| 649 | bool SharedRecoveryInProgress; |
| 650 | |
| 651 | /* |
| 652 | * SharedHotStandbyActive indicates if we're still in crash or archive |
| 653 | * recovery. Protected by info_lck. |
| 654 | */ |
| 655 | bool SharedHotStandbyActive; |
| 656 | |
| 657 | /* |
| 658 | * WalWriterSleeping indicates whether the WAL writer is currently in |
| 659 | * low-power mode (and hence should be nudged if an async commit occurs). |
| 660 | * Protected by info_lck. |
| 661 | */ |
| 662 | bool WalWriterSleeping; |
| 663 | |
| 664 | /* |
| 665 | * recoveryWakeupLatch is used to wake up the startup process to continue |
| 666 | * WAL replay, if it is waiting for WAL to arrive or failover trigger file |
| 667 | * to appear. |
| 668 | */ |
| 669 | Latch recoveryWakeupLatch; |
| 670 | |
| 671 | /* |
| 672 | * During recovery, we keep a copy of the latest checkpoint record here. |
| 673 | * lastCheckPointRecPtr points to start of checkpoint record and |
| 674 | * lastCheckPointEndPtr points to end+1 of checkpoint record. Used by the |
| 675 | * checkpointer when it wants to create a restartpoint. |
| 676 | * |
| 677 | * Protected by info_lck. |
| 678 | */ |
| 679 | XLogRecPtr lastCheckPointRecPtr; |
| 680 | XLogRecPtr lastCheckPointEndPtr; |
| 681 | CheckPoint lastCheckPoint; |
| 682 | |
| 683 | /* |
| 684 | * lastReplayedEndRecPtr points to end+1 of the last record successfully |
| 685 | * replayed. When we're currently replaying a record, ie. in a redo |
| 686 | * function, replayEndRecPtr points to the end+1 of the record being |
| 687 | * replayed, otherwise it's equal to lastReplayedEndRecPtr. |
| 688 | */ |
| 689 | XLogRecPtr lastReplayedEndRecPtr; |
| 690 | TimeLineID lastReplayedTLI; |
| 691 | XLogRecPtr replayEndRecPtr; |
| 692 | TimeLineID replayEndTLI; |
| 693 | /* timestamp of last COMMIT/ABORT record replayed (or being replayed) */ |
| 694 | TimestampTz recoveryLastXTime; |
| 695 | |
| 696 | /* |
| 697 | * timestamp of when we started replaying the current chunk of WAL data, |
| 698 | * only relevant for replication or archive recovery |
| 699 | */ |
| 700 | TimestampTz currentChunkStartTime; |
| 701 | /* Are we requested to pause recovery? */ |
| 702 | bool recoveryPause; |
| 703 | |
| 704 | /* |
| 705 | * lastFpwDisableRecPtr points to the start of the last replayed |
| 706 | * XLOG_FPW_CHANGE record that instructs full_page_writes is disabled. |
| 707 | */ |
| 708 | XLogRecPtr lastFpwDisableRecPtr; |
| 709 | |
| 710 | slock_t info_lck; /* locks shared variables shown above */ |
| 711 | } XLogCtlData; |
| 712 | |
| 713 | static XLogCtlData *XLogCtl = NULL; |
| 714 | |
| 715 | /* a private copy of XLogCtl->Insert.WALInsertLocks, for convenience */ |
| 716 | static WALInsertLockPadded *WALInsertLocks = NULL; |
| 717 | |
| 718 | /* |
| 719 | * We maintain an image of pg_control in shared memory. |
| 720 | */ |
| 721 | static ControlFileData *ControlFile = NULL; |
| 722 | |
| 723 | /* |
| 724 | * Calculate the amount of space left on the page after 'endptr'. Beware |
| 725 | * multiple evaluation! |
| 726 | */ |
| 727 | #define INSERT_FREESPACE(endptr) \ |
| 728 | (((endptr) % XLOG_BLCKSZ == 0) ? 0 : (XLOG_BLCKSZ - (endptr) % XLOG_BLCKSZ)) |
| 729 | |
| 730 | /* Macro to advance to next buffer index. */ |
| 731 | #define NextBufIdx(idx) \ |
| 732 | (((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1)) |
| 733 | |
| 734 | /* |
| 735 | * XLogRecPtrToBufIdx returns the index of the WAL buffer that holds, or |
| 736 | * would hold if it was in cache, the page containing 'recptr'. |
| 737 | */ |
| 738 | #define XLogRecPtrToBufIdx(recptr) \ |
| 739 | (((recptr) / XLOG_BLCKSZ) % (XLogCtl->XLogCacheBlck + 1)) |
| 740 | |
| 741 | /* |
| 742 | * These are the number of bytes in a WAL page usable for WAL data. |
| 743 | */ |
| 744 | #define UsableBytesInPage (XLOG_BLCKSZ - SizeOfXLogShortPHD) |
| 745 | |
| 746 | /* Convert min_wal_size_mb and max wal_size_mb to equivalent segment count */ |
| 747 | #define ConvertToXSegs(x, segsize) \ |
| 748 | (x / ((segsize) / (1024 * 1024))) |
| 749 | |
| 750 | /* The number of bytes in a WAL segment usable for WAL data. */ |
| 751 | static int UsableBytesInSegment; |
| 752 | |
| 753 | /* |
| 754 | * Private, possibly out-of-date copy of shared LogwrtResult. |
| 755 | * See discussion above. |
| 756 | */ |
| 757 | static XLogwrtResult LogwrtResult = {0, 0}; |
| 758 | |
| 759 | /* |
| 760 | * Codes indicating where we got a WAL file from during recovery, or where |
| 761 | * to attempt to get one. |
| 762 | */ |
| 763 | typedef enum |
| 764 | { |
| 765 | XLOG_FROM_ANY = 0, /* request to read WAL from any source */ |
| 766 | XLOG_FROM_ARCHIVE, /* restored using restore_command */ |
| 767 | XLOG_FROM_PG_WAL, /* existing file in pg_wal */ |
| 768 | XLOG_FROM_STREAM /* streamed from master */ |
| 769 | } XLogSource; |
| 770 | |
| 771 | /* human-readable names for XLogSources, for debugging output */ |
| 772 | static const char *xlogSourceNames[] = {"any" , "archive" , "pg_wal" , "stream" }; |
| 773 | |
| 774 | /* |
| 775 | * openLogFile is -1 or a kernel FD for an open log file segment. |
| 776 | * openLogSegNo identifies the segment. These variables are only used to |
| 777 | * write the XLOG, and so will normally refer to the active segment. |
| 778 | */ |
| 779 | static int openLogFile = -1; |
| 780 | static XLogSegNo openLogSegNo = 0; |
| 781 | |
| 782 | /* |
| 783 | * These variables are used similarly to the ones above, but for reading |
| 784 | * the XLOG. Note, however, that readOff generally represents the offset |
| 785 | * of the page just read, not the seek position of the FD itself, which |
| 786 | * will be just past that page. readLen indicates how much of the current |
| 787 | * page has been read into readBuf, and readSource indicates where we got |
| 788 | * the currently open file from. |
| 789 | */ |
| 790 | static int readFile = -1; |
| 791 | static XLogSegNo readSegNo = 0; |
| 792 | static uint32 readOff = 0; |
| 793 | static uint32 readLen = 0; |
| 794 | static XLogSource readSource = 0; /* XLOG_FROM_* code */ |
| 795 | |
| 796 | /* |
| 797 | * Keeps track of which source we're currently reading from. This is |
| 798 | * different from readSource in that this is always set, even when we don't |
| 799 | * currently have a WAL file open. If lastSourceFailed is set, our last |
| 800 | * attempt to read from currentSource failed, and we should try another source |
| 801 | * next. |
| 802 | */ |
| 803 | static XLogSource currentSource = 0; /* XLOG_FROM_* code */ |
| 804 | static bool lastSourceFailed = false; |
| 805 | |
| 806 | typedef struct |
| 807 | { |
| 808 | int ; |
| 809 | bool ; /* are we fetching a checkpoint record? */ |
| 810 | bool randAccess; |
| 811 | } ; |
| 812 | |
| 813 | /* |
| 814 | * These variables track when we last obtained some WAL data to process, |
| 815 | * and where we got it from. (XLogReceiptSource is initially the same as |
| 816 | * readSource, but readSource gets reset to zero when we don't have data |
| 817 | * to process right now. It is also different from currentSource, which |
| 818 | * also changes when we try to read from a source and fail, while |
| 819 | * XLogReceiptSource tracks where we last successfully read some WAL.) |
| 820 | */ |
| 821 | static TimestampTz XLogReceiptTime = 0; |
| 822 | static XLogSource XLogReceiptSource = 0; /* XLOG_FROM_* code */ |
| 823 | |
| 824 | /* State information for XLOG reading */ |
| 825 | static XLogRecPtr ReadRecPtr; /* start of last record read */ |
| 826 | static XLogRecPtr EndRecPtr; /* end+1 of last record read */ |
| 827 | |
| 828 | /* |
| 829 | * Local copies of equivalent fields in the control file. When running |
| 830 | * crash recovery, minRecoveryPoint is set to InvalidXLogRecPtr as we |
| 831 | * expect to replay all the WAL available, and updateMinRecoveryPoint is |
| 832 | * switched to false to prevent any updates while replaying records. |
| 833 | * Those values are kept consistent as long as crash recovery runs. |
| 834 | */ |
| 835 | static XLogRecPtr minRecoveryPoint; |
| 836 | static TimeLineID minRecoveryPointTLI; |
| 837 | static bool updateMinRecoveryPoint = true; |
| 838 | |
| 839 | /* |
| 840 | * Have we reached a consistent database state? In crash recovery, we have |
| 841 | * to replay all the WAL, so reachedConsistency is never set. During archive |
| 842 | * recovery, the database is consistent once minRecoveryPoint is reached. |
| 843 | */ |
| 844 | bool reachedConsistency = false; |
| 845 | |
| 846 | static bool InRedo = false; |
| 847 | |
| 848 | /* Have we launched bgwriter during recovery? */ |
| 849 | static bool bgwriterLaunched = false; |
| 850 | |
| 851 | /* For WALInsertLockAcquire/Release functions */ |
| 852 | static int MyLockNo = 0; |
| 853 | static bool holdingAllLocks = false; |
| 854 | |
| 855 | #ifdef WAL_DEBUG |
| 856 | static MemoryContext walDebugCxt = NULL; |
| 857 | #endif |
| 858 | |
| 859 | static void readRecoverySignalFile(void); |
| 860 | static void validateRecoveryParameters(void); |
| 861 | static void exitArchiveRecovery(TimeLineID endTLI, XLogRecPtr endOfLog); |
| 862 | static bool recoveryStopsBefore(XLogReaderState *record); |
| 863 | static bool recoveryStopsAfter(XLogReaderState *record); |
| 864 | static void recoveryPausesHere(void); |
| 865 | static bool recoveryApplyDelay(XLogReaderState *record); |
| 866 | static void SetLatestXTime(TimestampTz xtime); |
| 867 | static void SetCurrentChunkStartTime(TimestampTz xtime); |
| 868 | static void CheckRequiredParameterValues(void); |
| 869 | static void XLogReportParameters(void); |
| 870 | static void checkTimeLineSwitch(XLogRecPtr lsn, TimeLineID newTLI, |
| 871 | TimeLineID prevTLI); |
| 872 | static void LocalSetXLogInsertAllowed(void); |
| 873 | static void CreateEndOfRecoveryRecord(void); |
| 874 | static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags); |
| 875 | static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo); |
| 876 | static XLogRecPtr XLogGetReplicationSlotMinimumLSN(void); |
| 877 | |
| 878 | static void AdvanceXLInsertBuffer(XLogRecPtr upto, bool opportunistic); |
| 879 | static bool XLogCheckpointNeeded(XLogSegNo new_segno); |
| 880 | static void XLogWrite(XLogwrtRqst WriteRqst, bool flexible); |
| 881 | static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath, |
| 882 | bool find_free, XLogSegNo max_segno, |
| 883 | bool use_lock); |
| 884 | static int XLogFileRead(XLogSegNo segno, int emode, TimeLineID tli, |
| 885 | int source, bool notfoundOk); |
| 886 | static int XLogFileReadAnyTLI(XLogSegNo segno, int emode, int source); |
| 887 | static int XLogPageRead(XLogReaderState *xlogreader, XLogRecPtr targetPagePtr, |
| 888 | int reqLen, XLogRecPtr targetRecPtr, char *readBuf, |
| 889 | TimeLineID *readTLI); |
| 890 | static bool WaitForWALToBecomeAvailable(XLogRecPtr RecPtr, bool randAccess, |
| 891 | bool fetching_ckpt, XLogRecPtr tliRecPtr); |
| 892 | static int emode_for_corrupt_record(int emode, XLogRecPtr RecPtr); |
| 893 | static void XLogFileClose(void); |
| 894 | static void PreallocXlogFiles(XLogRecPtr endptr); |
| 895 | static void RemoveTempXlogFiles(void); |
| 896 | static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr RedoRecPtr, XLogRecPtr endptr); |
| 897 | static void RemoveXlogFile(const char *segname, XLogRecPtr RedoRecPtr, XLogRecPtr endptr); |
| 898 | static void UpdateLastRemovedPtr(char *filename); |
| 899 | static void ValidateXLOGDirectoryStructure(void); |
| 900 | static void CleanupBackupHistory(void); |
| 901 | static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force); |
| 902 | static XLogRecord *ReadRecord(XLogReaderState *xlogreader, XLogRecPtr RecPtr, |
| 903 | int emode, bool fetching_ckpt); |
| 904 | static void CheckRecoveryConsistency(void); |
| 905 | static XLogRecord *ReadCheckpointRecord(XLogReaderState *xlogreader, |
| 906 | XLogRecPtr RecPtr, int whichChkpti, bool report); |
| 907 | static bool rescanLatestTimeLine(void); |
| 908 | static void WriteControlFile(void); |
| 909 | static void ReadControlFile(void); |
| 910 | static char *str_time(pg_time_t tnow); |
| 911 | static bool CheckForStandbyTrigger(void); |
| 912 | |
| 913 | #ifdef WAL_DEBUG |
| 914 | static void xlog_outrec(StringInfo buf, XLogReaderState *record); |
| 915 | #endif |
| 916 | static void xlog_outdesc(StringInfo buf, XLogReaderState *record); |
| 917 | static void pg_start_backup_callback(int code, Datum arg); |
| 918 | static void pg_stop_backup_callback(int code, Datum arg); |
| 919 | static bool read_backup_label(XLogRecPtr *checkPointLoc, |
| 920 | bool *backupEndRequired, bool *backupFromStandby); |
| 921 | static bool read_tablespace_map(List **tablespaces); |
| 922 | |
| 923 | static void rm_redo_error_callback(void *arg); |
| 924 | static int get_sync_bit(int method); |
| 925 | |
| 926 | static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch, |
| 927 | XLogRecData *rdata, |
| 928 | XLogRecPtr StartPos, XLogRecPtr EndPos); |
| 929 | static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, |
| 930 | XLogRecPtr *EndPos, XLogRecPtr *PrevPtr); |
| 931 | static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, |
| 932 | XLogRecPtr *PrevPtr); |
| 933 | static XLogRecPtr WaitXLogInsertionsToFinish(XLogRecPtr upto); |
| 934 | static char *GetXLogBuffer(XLogRecPtr ptr); |
| 935 | static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos); |
| 936 | static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos); |
| 937 | static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr); |
| 938 | static void checkXLogConsistency(XLogReaderState *record); |
| 939 | |
| 940 | static void WALInsertLockAcquire(void); |
| 941 | static void WALInsertLockAcquireExclusive(void); |
| 942 | static void WALInsertLockRelease(void); |
| 943 | static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt); |
| 944 | |
| 945 | /* |
| 946 | * Insert an XLOG record represented by an already-constructed chain of data |
| 947 | * chunks. This is a low-level routine; to construct the WAL record header |
| 948 | * and data, use the higher-level routines in xloginsert.c. |
| 949 | * |
| 950 | * If 'fpw_lsn' is valid, it is the oldest LSN among the pages that this |
| 951 | * WAL record applies to, that were not included in the record as full page |
| 952 | * images. If fpw_lsn <= RedoRecPtr, the function does not perform the |
| 953 | * insertion and returns InvalidXLogRecPtr. The caller can then recalculate |
| 954 | * which pages need a full-page image, and retry. If fpw_lsn is invalid, the |
| 955 | * record is always inserted. |
| 956 | * |
| 957 | * 'flags' gives more in-depth control on the record being inserted. See |
| 958 | * XLogSetRecordFlags() for details. |
| 959 | * |
| 960 | * The first XLogRecData in the chain must be for the record header, and its |
| 961 | * data must be MAXALIGNed. XLogInsertRecord fills in the xl_prev and |
| 962 | * xl_crc fields in the header, the rest of the header must already be filled |
| 963 | * by the caller. |
| 964 | * |
| 965 | * Returns XLOG pointer to end of record (beginning of next record). |
| 966 | * This can be used as LSN for data pages affected by the logged action. |
| 967 | * (LSN is the XLOG point up to which the XLOG must be flushed to disk |
| 968 | * before the data page can be written out. This implements the basic |
| 969 | * WAL rule "write the log before the data".) |
| 970 | */ |
| 971 | XLogRecPtr |
| 972 | XLogInsertRecord(XLogRecData *rdata, |
| 973 | XLogRecPtr fpw_lsn, |
| 974 | uint8 flags) |
| 975 | { |
| 976 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 977 | pg_crc32c rdata_crc; |
| 978 | bool inserted; |
| 979 | XLogRecord *rechdr = (XLogRecord *) rdata->data; |
| 980 | uint8 info = rechdr->xl_info & ~XLR_INFO_MASK; |
| 981 | bool isLogSwitch = (rechdr->xl_rmid == RM_XLOG_ID && |
| 982 | info == XLOG_SWITCH); |
| 983 | XLogRecPtr StartPos; |
| 984 | XLogRecPtr EndPos; |
| 985 | bool prevDoPageWrites = doPageWrites; |
| 986 | |
| 987 | /* we assume that all of the record header is in the first chunk */ |
| 988 | Assert(rdata->len >= SizeOfXLogRecord); |
| 989 | |
| 990 | /* cross-check on whether we should be here or not */ |
| 991 | if (!XLogInsertAllowed()) |
| 992 | elog(ERROR, "cannot make new WAL entries during recovery" ); |
| 993 | |
| 994 | /*---------- |
| 995 | * |
| 996 | * We have now done all the preparatory work we can without holding a |
| 997 | * lock or modifying shared state. From here on, inserting the new WAL |
| 998 | * record to the shared WAL buffer cache is a two-step process: |
| 999 | * |
| 1000 | * 1. Reserve the right amount of space from the WAL. The current head of |
| 1001 | * reserved space is kept in Insert->CurrBytePos, and is protected by |
| 1002 | * insertpos_lck. |
| 1003 | * |
| 1004 | * 2. Copy the record to the reserved WAL space. This involves finding the |
| 1005 | * correct WAL buffer containing the reserved space, and copying the |
| 1006 | * record in place. This can be done concurrently in multiple processes. |
| 1007 | * |
| 1008 | * To keep track of which insertions are still in-progress, each concurrent |
| 1009 | * inserter acquires an insertion lock. In addition to just indicating that |
| 1010 | * an insertion is in progress, the lock tells others how far the inserter |
| 1011 | * has progressed. There is a small fixed number of insertion locks, |
| 1012 | * determined by NUM_XLOGINSERT_LOCKS. When an inserter crosses a page |
| 1013 | * boundary, it updates the value stored in the lock to the how far it has |
| 1014 | * inserted, to allow the previous buffer to be flushed. |
| 1015 | * |
| 1016 | * Holding onto an insertion lock also protects RedoRecPtr and |
| 1017 | * fullPageWrites from changing until the insertion is finished. |
| 1018 | * |
| 1019 | * Step 2 can usually be done completely in parallel. If the required WAL |
| 1020 | * page is not initialized yet, you have to grab WALBufMappingLock to |
| 1021 | * initialize it, but the WAL writer tries to do that ahead of insertions |
| 1022 | * to avoid that from happening in the critical path. |
| 1023 | * |
| 1024 | *---------- |
| 1025 | */ |
| 1026 | START_CRIT_SECTION(); |
| 1027 | if (isLogSwitch) |
| 1028 | WALInsertLockAcquireExclusive(); |
| 1029 | else |
| 1030 | WALInsertLockAcquire(); |
| 1031 | |
| 1032 | /* |
| 1033 | * Check to see if my copy of RedoRecPtr is out of date. If so, may have |
| 1034 | * to go back and have the caller recompute everything. This can only |
| 1035 | * happen just after a checkpoint, so it's better to be slow in this case |
| 1036 | * and fast otherwise. |
| 1037 | * |
| 1038 | * Also check to see if fullPageWrites or forcePageWrites was just turned |
| 1039 | * on; if we weren't already doing full-page writes then go back and |
| 1040 | * recompute. |
| 1041 | * |
| 1042 | * If we aren't doing full-page writes then RedoRecPtr doesn't actually |
| 1043 | * affect the contents of the XLOG record, so we'll update our local copy |
| 1044 | * but not force a recomputation. (If doPageWrites was just turned off, |
| 1045 | * we could recompute the record without full pages, but we choose not to |
| 1046 | * bother.) |
| 1047 | */ |
| 1048 | if (RedoRecPtr != Insert->RedoRecPtr) |
| 1049 | { |
| 1050 | Assert(RedoRecPtr < Insert->RedoRecPtr); |
| 1051 | RedoRecPtr = Insert->RedoRecPtr; |
| 1052 | } |
| 1053 | doPageWrites = (Insert->fullPageWrites || Insert->forcePageWrites); |
| 1054 | |
| 1055 | if (doPageWrites && |
| 1056 | (!prevDoPageWrites || |
| 1057 | (fpw_lsn != InvalidXLogRecPtr && fpw_lsn <= RedoRecPtr))) |
| 1058 | { |
| 1059 | /* |
| 1060 | * Oops, some buffer now needs to be backed up that the caller didn't |
| 1061 | * back up. Start over. |
| 1062 | */ |
| 1063 | WALInsertLockRelease(); |
| 1064 | END_CRIT_SECTION(); |
| 1065 | return InvalidXLogRecPtr; |
| 1066 | } |
| 1067 | |
| 1068 | /* |
| 1069 | * Reserve space for the record in the WAL. This also sets the xl_prev |
| 1070 | * pointer. |
| 1071 | */ |
| 1072 | if (isLogSwitch) |
| 1073 | inserted = ReserveXLogSwitch(&StartPos, &EndPos, &rechdr->xl_prev); |
| 1074 | else |
| 1075 | { |
| 1076 | ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos, |
| 1077 | &rechdr->xl_prev); |
| 1078 | inserted = true; |
| 1079 | } |
| 1080 | |
| 1081 | if (inserted) |
| 1082 | { |
| 1083 | /* |
| 1084 | * Now that xl_prev has been filled in, calculate CRC of the record |
| 1085 | * header. |
| 1086 | */ |
| 1087 | rdata_crc = rechdr->xl_crc; |
| 1088 | COMP_CRC32C(rdata_crc, rechdr, offsetof(XLogRecord, xl_crc)); |
| 1089 | FIN_CRC32C(rdata_crc); |
| 1090 | rechdr->xl_crc = rdata_crc; |
| 1091 | |
| 1092 | /* |
| 1093 | * All the record data, including the header, is now ready to be |
| 1094 | * inserted. Copy the record in the space reserved. |
| 1095 | */ |
| 1096 | CopyXLogRecordToWAL(rechdr->xl_tot_len, isLogSwitch, rdata, |
| 1097 | StartPos, EndPos); |
| 1098 | |
| 1099 | /* |
| 1100 | * Unless record is flagged as not important, update LSN of last |
| 1101 | * important record in the current slot. When holding all locks, just |
| 1102 | * update the first one. |
| 1103 | */ |
| 1104 | if ((flags & XLOG_MARK_UNIMPORTANT) == 0) |
| 1105 | { |
| 1106 | int lockno = holdingAllLocks ? 0 : MyLockNo; |
| 1107 | |
| 1108 | WALInsertLocks[lockno].l.lastImportantAt = StartPos; |
| 1109 | } |
| 1110 | } |
| 1111 | else |
| 1112 | { |
| 1113 | /* |
| 1114 | * This was an xlog-switch record, but the current insert location was |
| 1115 | * already exactly at the beginning of a segment, so there was no need |
| 1116 | * to do anything. |
| 1117 | */ |
| 1118 | } |
| 1119 | |
| 1120 | /* |
| 1121 | * Done! Let others know that we're finished. |
| 1122 | */ |
| 1123 | WALInsertLockRelease(); |
| 1124 | |
| 1125 | MarkCurrentTransactionIdLoggedIfAny(); |
| 1126 | |
| 1127 | END_CRIT_SECTION(); |
| 1128 | |
| 1129 | /* |
| 1130 | * Update shared LogwrtRqst.Write, if we crossed page boundary. |
| 1131 | */ |
| 1132 | if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ) |
| 1133 | { |
| 1134 | SpinLockAcquire(&XLogCtl->info_lck); |
| 1135 | /* advance global request to include new block(s) */ |
| 1136 | if (XLogCtl->LogwrtRqst.Write < EndPos) |
| 1137 | XLogCtl->LogwrtRqst.Write = EndPos; |
| 1138 | /* update local result copy while I have the chance */ |
| 1139 | LogwrtResult = XLogCtl->LogwrtResult; |
| 1140 | SpinLockRelease(&XLogCtl->info_lck); |
| 1141 | } |
| 1142 | |
| 1143 | /* |
| 1144 | * If this was an XLOG_SWITCH record, flush the record and the empty |
| 1145 | * padding space that fills the rest of the segment, and perform |
| 1146 | * end-of-segment actions (eg, notifying archiver). |
| 1147 | */ |
| 1148 | if (isLogSwitch) |
| 1149 | { |
| 1150 | TRACE_POSTGRESQL_WAL_SWITCH(); |
| 1151 | XLogFlush(EndPos); |
| 1152 | |
| 1153 | /* |
| 1154 | * Even though we reserved the rest of the segment for us, which is |
| 1155 | * reflected in EndPos, we return a pointer to just the end of the |
| 1156 | * xlog-switch record. |
| 1157 | */ |
| 1158 | if (inserted) |
| 1159 | { |
| 1160 | EndPos = StartPos + SizeOfXLogRecord; |
| 1161 | if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ) |
| 1162 | { |
| 1163 | uint64 offset = XLogSegmentOffset(EndPos, wal_segment_size); |
| 1164 | |
| 1165 | if (offset == EndPos % XLOG_BLCKSZ) |
| 1166 | EndPos += SizeOfXLogLongPHD; |
| 1167 | else |
| 1168 | EndPos += SizeOfXLogShortPHD; |
| 1169 | } |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | #ifdef WAL_DEBUG |
| 1174 | if (XLOG_DEBUG) |
| 1175 | { |
| 1176 | static XLogReaderState *debug_reader = NULL; |
| 1177 | StringInfoData buf; |
| 1178 | StringInfoData recordBuf; |
| 1179 | char *errormsg = NULL; |
| 1180 | MemoryContext oldCxt; |
| 1181 | |
| 1182 | oldCxt = MemoryContextSwitchTo(walDebugCxt); |
| 1183 | |
| 1184 | initStringInfo(&buf); |
| 1185 | appendStringInfo(&buf, "INSERT @ %X/%X: " , |
| 1186 | (uint32) (EndPos >> 32), (uint32) EndPos); |
| 1187 | |
| 1188 | /* |
| 1189 | * We have to piece together the WAL record data from the XLogRecData |
| 1190 | * entries, so that we can pass it to the rm_desc function as one |
| 1191 | * contiguous chunk. |
| 1192 | */ |
| 1193 | initStringInfo(&recordBuf); |
| 1194 | for (; rdata != NULL; rdata = rdata->next) |
| 1195 | appendBinaryStringInfo(&recordBuf, rdata->data, rdata->len); |
| 1196 | |
| 1197 | if (!debug_reader) |
| 1198 | debug_reader = XLogReaderAllocate(wal_segment_size, NULL, NULL); |
| 1199 | |
| 1200 | if (!debug_reader) |
| 1201 | { |
| 1202 | appendStringInfoString(&buf, "error decoding record: out of memory" ); |
| 1203 | } |
| 1204 | else if (!DecodeXLogRecord(debug_reader, (XLogRecord *) recordBuf.data, |
| 1205 | &errormsg)) |
| 1206 | { |
| 1207 | appendStringInfo(&buf, "error decoding record: %s" , |
| 1208 | errormsg ? errormsg : "no error message" ); |
| 1209 | } |
| 1210 | else |
| 1211 | { |
| 1212 | appendStringInfoString(&buf, " - " ); |
| 1213 | xlog_outdesc(&buf, debug_reader); |
| 1214 | } |
| 1215 | elog(LOG, "%s" , buf.data); |
| 1216 | |
| 1217 | pfree(buf.data); |
| 1218 | pfree(recordBuf.data); |
| 1219 | MemoryContextSwitchTo(oldCxt); |
| 1220 | } |
| 1221 | #endif |
| 1222 | |
| 1223 | /* |
| 1224 | * Update our global variables |
| 1225 | */ |
| 1226 | ProcLastRecPtr = StartPos; |
| 1227 | XactLastRecEnd = EndPos; |
| 1228 | |
| 1229 | return EndPos; |
| 1230 | } |
| 1231 | |
| 1232 | /* |
| 1233 | * Reserves the right amount of space for a record of given size from the WAL. |
| 1234 | * *StartPos is set to the beginning of the reserved section, *EndPos to |
| 1235 | * its end+1. *PrevPtr is set to the beginning of the previous record; it is |
| 1236 | * used to set the xl_prev of this record. |
| 1237 | * |
| 1238 | * This is the performance critical part of XLogInsert that must be serialized |
| 1239 | * across backends. The rest can happen mostly in parallel. Try to keep this |
| 1240 | * section as short as possible, insertpos_lck can be heavily contended on a |
| 1241 | * busy system. |
| 1242 | * |
| 1243 | * NB: The space calculation here must match the code in CopyXLogRecordToWAL, |
| 1244 | * where we actually copy the record to the reserved space. |
| 1245 | */ |
| 1246 | static void |
| 1247 | ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, XLogRecPtr *EndPos, |
| 1248 | XLogRecPtr *PrevPtr) |
| 1249 | { |
| 1250 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 1251 | uint64 startbytepos; |
| 1252 | uint64 endbytepos; |
| 1253 | uint64 prevbytepos; |
| 1254 | |
| 1255 | size = MAXALIGN(size); |
| 1256 | |
| 1257 | /* All (non xlog-switch) records should contain data. */ |
| 1258 | Assert(size > SizeOfXLogRecord); |
| 1259 | |
| 1260 | /* |
| 1261 | * The duration the spinlock needs to be held is minimized by minimizing |
| 1262 | * the calculations that have to be done while holding the lock. The |
| 1263 | * current tip of reserved WAL is kept in CurrBytePos, as a byte position |
| 1264 | * that only counts "usable" bytes in WAL, that is, it excludes all WAL |
| 1265 | * page headers. The mapping between "usable" byte positions and physical |
| 1266 | * positions (XLogRecPtrs) can be done outside the locked region, and |
| 1267 | * because the usable byte position doesn't include any headers, reserving |
| 1268 | * X bytes from WAL is almost as simple as "CurrBytePos += X". |
| 1269 | */ |
| 1270 | SpinLockAcquire(&Insert->insertpos_lck); |
| 1271 | |
| 1272 | startbytepos = Insert->CurrBytePos; |
| 1273 | endbytepos = startbytepos + size; |
| 1274 | prevbytepos = Insert->PrevBytePos; |
| 1275 | Insert->CurrBytePos = endbytepos; |
| 1276 | Insert->PrevBytePos = startbytepos; |
| 1277 | |
| 1278 | SpinLockRelease(&Insert->insertpos_lck); |
| 1279 | |
| 1280 | *StartPos = XLogBytePosToRecPtr(startbytepos); |
| 1281 | *EndPos = XLogBytePosToEndRecPtr(endbytepos); |
| 1282 | *PrevPtr = XLogBytePosToRecPtr(prevbytepos); |
| 1283 | |
| 1284 | /* |
| 1285 | * Check that the conversions between "usable byte positions" and |
| 1286 | * XLogRecPtrs work consistently in both directions. |
| 1287 | */ |
| 1288 | Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos); |
| 1289 | Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos); |
| 1290 | Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos); |
| 1291 | } |
| 1292 | |
| 1293 | /* |
| 1294 | * Like ReserveXLogInsertLocation(), but for an xlog-switch record. |
| 1295 | * |
| 1296 | * A log-switch record is handled slightly differently. The rest of the |
| 1297 | * segment will be reserved for this insertion, as indicated by the returned |
| 1298 | * *EndPos value. However, if we are already at the beginning of the current |
| 1299 | * segment, *StartPos and *EndPos are set to the current location without |
| 1300 | * reserving any space, and the function returns false. |
| 1301 | */ |
| 1302 | static bool |
| 1303 | ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr) |
| 1304 | { |
| 1305 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 1306 | uint64 startbytepos; |
| 1307 | uint64 endbytepos; |
| 1308 | uint64 prevbytepos; |
| 1309 | uint32 size = MAXALIGN(SizeOfXLogRecord); |
| 1310 | XLogRecPtr ptr; |
| 1311 | uint32 segleft; |
| 1312 | |
| 1313 | /* |
| 1314 | * These calculations are a bit heavy-weight to be done while holding a |
| 1315 | * spinlock, but since we're holding all the WAL insertion locks, there |
| 1316 | * are no other inserters competing for it. GetXLogInsertRecPtr() does |
| 1317 | * compete for it, but that's not called very frequently. |
| 1318 | */ |
| 1319 | SpinLockAcquire(&Insert->insertpos_lck); |
| 1320 | |
| 1321 | startbytepos = Insert->CurrBytePos; |
| 1322 | |
| 1323 | ptr = XLogBytePosToEndRecPtr(startbytepos); |
| 1324 | if (XLogSegmentOffset(ptr, wal_segment_size) == 0) |
| 1325 | { |
| 1326 | SpinLockRelease(&Insert->insertpos_lck); |
| 1327 | *EndPos = *StartPos = ptr; |
| 1328 | return false; |
| 1329 | } |
| 1330 | |
| 1331 | endbytepos = startbytepos + size; |
| 1332 | prevbytepos = Insert->PrevBytePos; |
| 1333 | |
| 1334 | *StartPos = XLogBytePosToRecPtr(startbytepos); |
| 1335 | *EndPos = XLogBytePosToEndRecPtr(endbytepos); |
| 1336 | |
| 1337 | segleft = wal_segment_size - XLogSegmentOffset(*EndPos, wal_segment_size); |
| 1338 | if (segleft != wal_segment_size) |
| 1339 | { |
| 1340 | /* consume the rest of the segment */ |
| 1341 | *EndPos += segleft; |
| 1342 | endbytepos = XLogRecPtrToBytePos(*EndPos); |
| 1343 | } |
| 1344 | Insert->CurrBytePos = endbytepos; |
| 1345 | Insert->PrevBytePos = startbytepos; |
| 1346 | |
| 1347 | SpinLockRelease(&Insert->insertpos_lck); |
| 1348 | |
| 1349 | *PrevPtr = XLogBytePosToRecPtr(prevbytepos); |
| 1350 | |
| 1351 | Assert(XLogSegmentOffset(*EndPos, wal_segment_size) == 0); |
| 1352 | Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos); |
| 1353 | Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos); |
| 1354 | Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos); |
| 1355 | |
| 1356 | return true; |
| 1357 | } |
| 1358 | |
| 1359 | /* |
| 1360 | * Checks whether the current buffer page and backup page stored in the |
| 1361 | * WAL record are consistent or not. Before comparing the two pages, a |
| 1362 | * masking can be applied to the pages to ignore certain areas like hint bits, |
| 1363 | * unused space between pd_lower and pd_upper among other things. This |
| 1364 | * function should be called once WAL replay has been completed for a |
| 1365 | * given record. |
| 1366 | */ |
| 1367 | static void |
| 1368 | checkXLogConsistency(XLogReaderState *record) |
| 1369 | { |
| 1370 | RmgrId rmid = XLogRecGetRmid(record); |
| 1371 | RelFileNode rnode; |
| 1372 | ForkNumber forknum; |
| 1373 | BlockNumber blkno; |
| 1374 | int block_id; |
| 1375 | |
| 1376 | /* Records with no backup blocks have no need for consistency checks. */ |
| 1377 | if (!XLogRecHasAnyBlockRefs(record)) |
| 1378 | return; |
| 1379 | |
| 1380 | Assert((XLogRecGetInfo(record) & XLR_CHECK_CONSISTENCY) != 0); |
| 1381 | |
| 1382 | for (block_id = 0; block_id <= record->max_block_id; block_id++) |
| 1383 | { |
| 1384 | Buffer buf; |
| 1385 | Page page; |
| 1386 | |
| 1387 | if (!XLogRecGetBlockTag(record, block_id, &rnode, &forknum, &blkno)) |
| 1388 | { |
| 1389 | /* |
| 1390 | * WAL record doesn't contain a block reference with the given id. |
| 1391 | * Do nothing. |
| 1392 | */ |
| 1393 | continue; |
| 1394 | } |
| 1395 | |
| 1396 | Assert(XLogRecHasBlockImage(record, block_id)); |
| 1397 | |
| 1398 | if (XLogRecBlockImageApply(record, block_id)) |
| 1399 | { |
| 1400 | /* |
| 1401 | * WAL record has already applied the page, so bypass the |
| 1402 | * consistency check as that would result in comparing the full |
| 1403 | * page stored in the record with itself. |
| 1404 | */ |
| 1405 | continue; |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * Read the contents from the current buffer and store it in a |
| 1410 | * temporary page. |
| 1411 | */ |
| 1412 | buf = XLogReadBufferExtended(rnode, forknum, blkno, |
| 1413 | RBM_NORMAL_NO_LOG); |
| 1414 | if (!BufferIsValid(buf)) |
| 1415 | continue; |
| 1416 | |
| 1417 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 1418 | page = BufferGetPage(buf); |
| 1419 | |
| 1420 | /* |
| 1421 | * Take a copy of the local page where WAL has been applied to have a |
| 1422 | * comparison base before masking it... |
| 1423 | */ |
| 1424 | memcpy(replay_image_masked, page, BLCKSZ); |
| 1425 | |
| 1426 | /* No need for this page anymore now that a copy is in. */ |
| 1427 | UnlockReleaseBuffer(buf); |
| 1428 | |
| 1429 | /* |
| 1430 | * If the block LSN is already ahead of this WAL record, we can't |
| 1431 | * expect contents to match. This can happen if recovery is |
| 1432 | * restarted. |
| 1433 | */ |
| 1434 | if (PageGetLSN(replay_image_masked) > record->EndRecPtr) |
| 1435 | continue; |
| 1436 | |
| 1437 | /* |
| 1438 | * Read the contents from the backup copy, stored in WAL record and |
| 1439 | * store it in a temporary page. There is no need to allocate a new |
| 1440 | * page here, a local buffer is fine to hold its contents and a mask |
| 1441 | * can be directly applied on it. |
| 1442 | */ |
| 1443 | if (!RestoreBlockImage(record, block_id, master_image_masked)) |
| 1444 | elog(ERROR, "failed to restore block image" ); |
| 1445 | |
| 1446 | /* |
| 1447 | * If masking function is defined, mask both the master and replay |
| 1448 | * images |
| 1449 | */ |
| 1450 | if (RmgrTable[rmid].rm_mask != NULL) |
| 1451 | { |
| 1452 | RmgrTable[rmid].rm_mask(replay_image_masked, blkno); |
| 1453 | RmgrTable[rmid].rm_mask(master_image_masked, blkno); |
| 1454 | } |
| 1455 | |
| 1456 | /* Time to compare the master and replay images. */ |
| 1457 | if (memcmp(replay_image_masked, master_image_masked, BLCKSZ) != 0) |
| 1458 | { |
| 1459 | elog(FATAL, |
| 1460 | "inconsistent page found, rel %u/%u/%u, forknum %u, blkno %u" , |
| 1461 | rnode.spcNode, rnode.dbNode, rnode.relNode, |
| 1462 | forknum, blkno); |
| 1463 | } |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | /* |
| 1468 | * Subroutine of XLogInsertRecord. Copies a WAL record to an already-reserved |
| 1469 | * area in the WAL. |
| 1470 | */ |
| 1471 | static void |
| 1472 | CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata, |
| 1473 | XLogRecPtr StartPos, XLogRecPtr EndPos) |
| 1474 | { |
| 1475 | char *currpos; |
| 1476 | int freespace; |
| 1477 | int written; |
| 1478 | XLogRecPtr CurrPos; |
| 1479 | XLogPageHeader pagehdr; |
| 1480 | |
| 1481 | /* |
| 1482 | * Get a pointer to the right place in the right WAL buffer to start |
| 1483 | * inserting to. |
| 1484 | */ |
| 1485 | CurrPos = StartPos; |
| 1486 | currpos = GetXLogBuffer(CurrPos); |
| 1487 | freespace = INSERT_FREESPACE(CurrPos); |
| 1488 | |
| 1489 | /* |
| 1490 | * there should be enough space for at least the first field (xl_tot_len) |
| 1491 | * on this page. |
| 1492 | */ |
| 1493 | Assert(freespace >= sizeof(uint32)); |
| 1494 | |
| 1495 | /* Copy record data */ |
| 1496 | written = 0; |
| 1497 | while (rdata != NULL) |
| 1498 | { |
| 1499 | char *rdata_data = rdata->data; |
| 1500 | int rdata_len = rdata->len; |
| 1501 | |
| 1502 | while (rdata_len > freespace) |
| 1503 | { |
| 1504 | /* |
| 1505 | * Write what fits on this page, and continue on the next page. |
| 1506 | */ |
| 1507 | Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || freespace == 0); |
| 1508 | memcpy(currpos, rdata_data, freespace); |
| 1509 | rdata_data += freespace; |
| 1510 | rdata_len -= freespace; |
| 1511 | written += freespace; |
| 1512 | CurrPos += freespace; |
| 1513 | |
| 1514 | /* |
| 1515 | * Get pointer to beginning of next page, and set the xlp_rem_len |
| 1516 | * in the page header. Set XLP_FIRST_IS_CONTRECORD. |
| 1517 | * |
| 1518 | * It's safe to set the contrecord flag and xlp_rem_len without a |
| 1519 | * lock on the page. All the other flags were already set when the |
| 1520 | * page was initialized, in AdvanceXLInsertBuffer, and we're the |
| 1521 | * only backend that needs to set the contrecord flag. |
| 1522 | */ |
| 1523 | currpos = GetXLogBuffer(CurrPos); |
| 1524 | pagehdr = (XLogPageHeader) currpos; |
| 1525 | pagehdr->xlp_rem_len = write_len - written; |
| 1526 | pagehdr->xlp_info |= XLP_FIRST_IS_CONTRECORD; |
| 1527 | |
| 1528 | /* skip over the page header */ |
| 1529 | if (XLogSegmentOffset(CurrPos, wal_segment_size) == 0) |
| 1530 | { |
| 1531 | CurrPos += SizeOfXLogLongPHD; |
| 1532 | currpos += SizeOfXLogLongPHD; |
| 1533 | } |
| 1534 | else |
| 1535 | { |
| 1536 | CurrPos += SizeOfXLogShortPHD; |
| 1537 | currpos += SizeOfXLogShortPHD; |
| 1538 | } |
| 1539 | freespace = INSERT_FREESPACE(CurrPos); |
| 1540 | } |
| 1541 | |
| 1542 | Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || rdata_len == 0); |
| 1543 | memcpy(currpos, rdata_data, rdata_len); |
| 1544 | currpos += rdata_len; |
| 1545 | CurrPos += rdata_len; |
| 1546 | freespace -= rdata_len; |
| 1547 | written += rdata_len; |
| 1548 | |
| 1549 | rdata = rdata->next; |
| 1550 | } |
| 1551 | Assert(written == write_len); |
| 1552 | |
| 1553 | /* |
| 1554 | * If this was an xlog-switch, it's not enough to write the switch record, |
| 1555 | * we also have to consume all the remaining space in the WAL segment. We |
| 1556 | * have already reserved that space, but we need to actually fill it. |
| 1557 | */ |
| 1558 | if (isLogSwitch && XLogSegmentOffset(CurrPos, wal_segment_size) != 0) |
| 1559 | { |
| 1560 | /* An xlog-switch record doesn't contain any data besides the header */ |
| 1561 | Assert(write_len == SizeOfXLogRecord); |
| 1562 | |
| 1563 | /* Assert that we did reserve the right amount of space */ |
| 1564 | Assert(XLogSegmentOffset(EndPos, wal_segment_size) == 0); |
| 1565 | |
| 1566 | /* Use up all the remaining space on the current page */ |
| 1567 | CurrPos += freespace; |
| 1568 | |
| 1569 | /* |
| 1570 | * Cause all remaining pages in the segment to be flushed, leaving the |
| 1571 | * XLog position where it should be, at the start of the next segment. |
| 1572 | * We do this one page at a time, to make sure we don't deadlock |
| 1573 | * against ourselves if wal_buffers < wal_segment_size. |
| 1574 | */ |
| 1575 | while (CurrPos < EndPos) |
| 1576 | { |
| 1577 | /* |
| 1578 | * The minimal action to flush the page would be to call |
| 1579 | * WALInsertLockUpdateInsertingAt(CurrPos) followed by |
| 1580 | * AdvanceXLInsertBuffer(...). The page would be left initialized |
| 1581 | * mostly to zeros, except for the page header (always the short |
| 1582 | * variant, as this is never a segment's first page). |
| 1583 | * |
| 1584 | * The large vistas of zeros are good for compressibility, but the |
| 1585 | * headers interrupting them every XLOG_BLCKSZ (with values that |
| 1586 | * differ from page to page) are not. The effect varies with |
| 1587 | * compression tool, but bzip2 for instance compresses about an |
| 1588 | * order of magnitude worse if those headers are left in place. |
| 1589 | * |
| 1590 | * Rather than complicating AdvanceXLInsertBuffer itself (which is |
| 1591 | * called in heavily-loaded circumstances as well as this lightly- |
| 1592 | * loaded one) with variant behavior, we just use GetXLogBuffer |
| 1593 | * (which itself calls the two methods we need) to get the pointer |
| 1594 | * and zero most of the page. Then we just zero the page header. |
| 1595 | */ |
| 1596 | currpos = GetXLogBuffer(CurrPos); |
| 1597 | MemSet(currpos, 0, SizeOfXLogShortPHD); |
| 1598 | |
| 1599 | CurrPos += XLOG_BLCKSZ; |
| 1600 | } |
| 1601 | } |
| 1602 | else |
| 1603 | { |
| 1604 | /* Align the end position, so that the next record starts aligned */ |
| 1605 | CurrPos = MAXALIGN64(CurrPos); |
| 1606 | } |
| 1607 | |
| 1608 | if (CurrPos != EndPos) |
| 1609 | elog(PANIC, "space reserved for WAL record does not match what was written" ); |
| 1610 | } |
| 1611 | |
| 1612 | /* |
| 1613 | * Acquire a WAL insertion lock, for inserting to WAL. |
| 1614 | */ |
| 1615 | static void |
| 1616 | WALInsertLockAcquire(void) |
| 1617 | { |
| 1618 | bool immed; |
| 1619 | |
| 1620 | /* |
| 1621 | * It doesn't matter which of the WAL insertion locks we acquire, so try |
| 1622 | * the one we used last time. If the system isn't particularly busy, it's |
| 1623 | * a good bet that it's still available, and it's good to have some |
| 1624 | * affinity to a particular lock so that you don't unnecessarily bounce |
| 1625 | * cache lines between processes when there's no contention. |
| 1626 | * |
| 1627 | * If this is the first time through in this backend, pick a lock |
| 1628 | * (semi-)randomly. This allows the locks to be used evenly if you have a |
| 1629 | * lot of very short connections. |
| 1630 | */ |
| 1631 | static int lockToTry = -1; |
| 1632 | |
| 1633 | if (lockToTry == -1) |
| 1634 | lockToTry = MyProc->pgprocno % NUM_XLOGINSERT_LOCKS; |
| 1635 | MyLockNo = lockToTry; |
| 1636 | |
| 1637 | /* |
| 1638 | * The insertingAt value is initially set to 0, as we don't know our |
| 1639 | * insert location yet. |
| 1640 | */ |
| 1641 | immed = LWLockAcquire(&WALInsertLocks[MyLockNo].l.lock, LW_EXCLUSIVE); |
| 1642 | if (!immed) |
| 1643 | { |
| 1644 | /* |
| 1645 | * If we couldn't get the lock immediately, try another lock next |
| 1646 | * time. On a system with more insertion locks than concurrent |
| 1647 | * inserters, this causes all the inserters to eventually migrate to a |
| 1648 | * lock that no-one else is using. On a system with more inserters |
| 1649 | * than locks, it still helps to distribute the inserters evenly |
| 1650 | * across the locks. |
| 1651 | */ |
| 1652 | lockToTry = (lockToTry + 1) % NUM_XLOGINSERT_LOCKS; |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * Acquire all WAL insertion locks, to prevent other backends from inserting |
| 1658 | * to WAL. |
| 1659 | */ |
| 1660 | static void |
| 1661 | WALInsertLockAcquireExclusive(void) |
| 1662 | { |
| 1663 | int i; |
| 1664 | |
| 1665 | /* |
| 1666 | * When holding all the locks, all but the last lock's insertingAt |
| 1667 | * indicator is set to 0xFFFFFFFFFFFFFFFF, which is higher than any real |
| 1668 | * XLogRecPtr value, to make sure that no-one blocks waiting on those. |
| 1669 | */ |
| 1670 | for (i = 0; i < NUM_XLOGINSERT_LOCKS - 1; i++) |
| 1671 | { |
| 1672 | LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE); |
| 1673 | LWLockUpdateVar(&WALInsertLocks[i].l.lock, |
| 1674 | &WALInsertLocks[i].l.insertingAt, |
| 1675 | PG_UINT64_MAX); |
| 1676 | } |
| 1677 | /* Variable value reset to 0 at release */ |
| 1678 | LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE); |
| 1679 | |
| 1680 | holdingAllLocks = true; |
| 1681 | } |
| 1682 | |
| 1683 | /* |
| 1684 | * Release our insertion lock (or locks, if we're holding them all). |
| 1685 | * |
| 1686 | * NB: Reset all variables to 0, so they cause LWLockWaitForVar to block the |
| 1687 | * next time the lock is acquired. |
| 1688 | */ |
| 1689 | static void |
| 1690 | WALInsertLockRelease(void) |
| 1691 | { |
| 1692 | if (holdingAllLocks) |
| 1693 | { |
| 1694 | int i; |
| 1695 | |
| 1696 | for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++) |
| 1697 | LWLockReleaseClearVar(&WALInsertLocks[i].l.lock, |
| 1698 | &WALInsertLocks[i].l.insertingAt, |
| 1699 | 0); |
| 1700 | |
| 1701 | holdingAllLocks = false; |
| 1702 | } |
| 1703 | else |
| 1704 | { |
| 1705 | LWLockReleaseClearVar(&WALInsertLocks[MyLockNo].l.lock, |
| 1706 | &WALInsertLocks[MyLockNo].l.insertingAt, |
| 1707 | 0); |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | /* |
| 1712 | * Update our insertingAt value, to let others know that we've finished |
| 1713 | * inserting up to that point. |
| 1714 | */ |
| 1715 | static void |
| 1716 | WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt) |
| 1717 | { |
| 1718 | if (holdingAllLocks) |
| 1719 | { |
| 1720 | /* |
| 1721 | * We use the last lock to mark our actual position, see comments in |
| 1722 | * WALInsertLockAcquireExclusive. |
| 1723 | */ |
| 1724 | LWLockUpdateVar(&WALInsertLocks[NUM_XLOGINSERT_LOCKS - 1].l.lock, |
| 1725 | &WALInsertLocks[NUM_XLOGINSERT_LOCKS - 1].l.insertingAt, |
| 1726 | insertingAt); |
| 1727 | } |
| 1728 | else |
| 1729 | LWLockUpdateVar(&WALInsertLocks[MyLockNo].l.lock, |
| 1730 | &WALInsertLocks[MyLockNo].l.insertingAt, |
| 1731 | insertingAt); |
| 1732 | } |
| 1733 | |
| 1734 | /* |
| 1735 | * Wait for any WAL insertions < upto to finish. |
| 1736 | * |
| 1737 | * Returns the location of the oldest insertion that is still in-progress. |
| 1738 | * Any WAL prior to that point has been fully copied into WAL buffers, and |
| 1739 | * can be flushed out to disk. Because this waits for any insertions older |
| 1740 | * than 'upto' to finish, the return value is always >= 'upto'. |
| 1741 | * |
| 1742 | * Note: When you are about to write out WAL, you must call this function |
| 1743 | * *before* acquiring WALWriteLock, to avoid deadlocks. This function might |
| 1744 | * need to wait for an insertion to finish (or at least advance to next |
| 1745 | * uninitialized page), and the inserter might need to evict an old WAL buffer |
| 1746 | * to make room for a new one, which in turn requires WALWriteLock. |
| 1747 | */ |
| 1748 | static XLogRecPtr |
| 1749 | WaitXLogInsertionsToFinish(XLogRecPtr upto) |
| 1750 | { |
| 1751 | uint64 bytepos; |
| 1752 | XLogRecPtr reservedUpto; |
| 1753 | XLogRecPtr finishedUpto; |
| 1754 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 1755 | int i; |
| 1756 | |
| 1757 | if (MyProc == NULL) |
| 1758 | elog(PANIC, "cannot wait without a PGPROC structure" ); |
| 1759 | |
| 1760 | /* Read the current insert position */ |
| 1761 | SpinLockAcquire(&Insert->insertpos_lck); |
| 1762 | bytepos = Insert->CurrBytePos; |
| 1763 | SpinLockRelease(&Insert->insertpos_lck); |
| 1764 | reservedUpto = XLogBytePosToEndRecPtr(bytepos); |
| 1765 | |
| 1766 | /* |
| 1767 | * No-one should request to flush a piece of WAL that hasn't even been |
| 1768 | * reserved yet. However, it can happen if there is a block with a bogus |
| 1769 | * LSN on disk, for example. XLogFlush checks for that situation and |
| 1770 | * complains, but only after the flush. Here we just assume that to mean |
| 1771 | * that all WAL that has been reserved needs to be finished. In this |
| 1772 | * corner-case, the return value can be smaller than 'upto' argument. |
| 1773 | */ |
| 1774 | if (upto > reservedUpto) |
| 1775 | { |
| 1776 | elog(LOG, "request to flush past end of generated WAL; request %X/%X, currpos %X/%X" , |
| 1777 | (uint32) (upto >> 32), (uint32) upto, |
| 1778 | (uint32) (reservedUpto >> 32), (uint32) reservedUpto); |
| 1779 | upto = reservedUpto; |
| 1780 | } |
| 1781 | |
| 1782 | /* |
| 1783 | * Loop through all the locks, sleeping on any in-progress insert older |
| 1784 | * than 'upto'. |
| 1785 | * |
| 1786 | * finishedUpto is our return value, indicating the point upto which all |
| 1787 | * the WAL insertions have been finished. Initialize it to the head of |
| 1788 | * reserved WAL, and as we iterate through the insertion locks, back it |
| 1789 | * out for any insertion that's still in progress. |
| 1790 | */ |
| 1791 | finishedUpto = reservedUpto; |
| 1792 | for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++) |
| 1793 | { |
| 1794 | XLogRecPtr insertingat = InvalidXLogRecPtr; |
| 1795 | |
| 1796 | do |
| 1797 | { |
| 1798 | /* |
| 1799 | * See if this insertion is in progress. LWLockWait will wait for |
| 1800 | * the lock to be released, or for the 'value' to be set by a |
| 1801 | * LWLockUpdateVar call. When a lock is initially acquired, its |
| 1802 | * value is 0 (InvalidXLogRecPtr), which means that we don't know |
| 1803 | * where it's inserting yet. We will have to wait for it. If |
| 1804 | * it's a small insertion, the record will most likely fit on the |
| 1805 | * same page and the inserter will release the lock without ever |
| 1806 | * calling LWLockUpdateVar. But if it has to sleep, it will |
| 1807 | * advertise the insertion point with LWLockUpdateVar before |
| 1808 | * sleeping. |
| 1809 | */ |
| 1810 | if (LWLockWaitForVar(&WALInsertLocks[i].l.lock, |
| 1811 | &WALInsertLocks[i].l.insertingAt, |
| 1812 | insertingat, &insertingat)) |
| 1813 | { |
| 1814 | /* the lock was free, so no insertion in progress */ |
| 1815 | insertingat = InvalidXLogRecPtr; |
| 1816 | break; |
| 1817 | } |
| 1818 | |
| 1819 | /* |
| 1820 | * This insertion is still in progress. Have to wait, unless the |
| 1821 | * inserter has proceeded past 'upto'. |
| 1822 | */ |
| 1823 | } while (insertingat < upto); |
| 1824 | |
| 1825 | if (insertingat != InvalidXLogRecPtr && insertingat < finishedUpto) |
| 1826 | finishedUpto = insertingat; |
| 1827 | } |
| 1828 | return finishedUpto; |
| 1829 | } |
| 1830 | |
| 1831 | /* |
| 1832 | * Get a pointer to the right location in the WAL buffer containing the |
| 1833 | * given XLogRecPtr. |
| 1834 | * |
| 1835 | * If the page is not initialized yet, it is initialized. That might require |
| 1836 | * evicting an old dirty buffer from the buffer cache, which means I/O. |
| 1837 | * |
| 1838 | * The caller must ensure that the page containing the requested location |
| 1839 | * isn't evicted yet, and won't be evicted. The way to ensure that is to |
| 1840 | * hold onto a WAL insertion lock with the insertingAt position set to |
| 1841 | * something <= ptr. GetXLogBuffer() will update insertingAt if it needs |
| 1842 | * to evict an old page from the buffer. (This means that once you call |
| 1843 | * GetXLogBuffer() with a given 'ptr', you must not access anything before |
| 1844 | * that point anymore, and must not call GetXLogBuffer() with an older 'ptr' |
| 1845 | * later, because older buffers might be recycled already) |
| 1846 | */ |
| 1847 | static char * |
| 1848 | GetXLogBuffer(XLogRecPtr ptr) |
| 1849 | { |
| 1850 | int idx; |
| 1851 | XLogRecPtr endptr; |
| 1852 | static uint64 cachedPage = 0; |
| 1853 | static char *cachedPos = NULL; |
| 1854 | XLogRecPtr expectedEndPtr; |
| 1855 | |
| 1856 | /* |
| 1857 | * Fast path for the common case that we need to access again the same |
| 1858 | * page as last time. |
| 1859 | */ |
| 1860 | if (ptr / XLOG_BLCKSZ == cachedPage) |
| 1861 | { |
| 1862 | Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC); |
| 1863 | Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ)); |
| 1864 | return cachedPos + ptr % XLOG_BLCKSZ; |
| 1865 | } |
| 1866 | |
| 1867 | /* |
| 1868 | * The XLog buffer cache is organized so that a page is always loaded to a |
| 1869 | * particular buffer. That way we can easily calculate the buffer a given |
| 1870 | * page must be loaded into, from the XLogRecPtr alone. |
| 1871 | */ |
| 1872 | idx = XLogRecPtrToBufIdx(ptr); |
| 1873 | |
| 1874 | /* |
| 1875 | * See what page is loaded in the buffer at the moment. It could be the |
| 1876 | * page we're looking for, or something older. It can't be anything newer |
| 1877 | * - that would imply the page we're looking for has already been written |
| 1878 | * out to disk and evicted, and the caller is responsible for making sure |
| 1879 | * that doesn't happen. |
| 1880 | * |
| 1881 | * However, we don't hold a lock while we read the value. If someone has |
| 1882 | * just initialized the page, it's possible that we get a "torn read" of |
| 1883 | * the XLogRecPtr if 64-bit fetches are not atomic on this platform. In |
| 1884 | * that case we will see a bogus value. That's ok, we'll grab the mapping |
| 1885 | * lock (in AdvanceXLInsertBuffer) and retry if we see anything else than |
| 1886 | * the page we're looking for. But it means that when we do this unlocked |
| 1887 | * read, we might see a value that appears to be ahead of the page we're |
| 1888 | * looking for. Don't PANIC on that, until we've verified the value while |
| 1889 | * holding the lock. |
| 1890 | */ |
| 1891 | expectedEndPtr = ptr; |
| 1892 | expectedEndPtr += XLOG_BLCKSZ - ptr % XLOG_BLCKSZ; |
| 1893 | |
| 1894 | endptr = XLogCtl->xlblocks[idx]; |
| 1895 | if (expectedEndPtr != endptr) |
| 1896 | { |
| 1897 | XLogRecPtr initializedUpto; |
| 1898 | |
| 1899 | /* |
| 1900 | * Before calling AdvanceXLInsertBuffer(), which can block, let others |
| 1901 | * know how far we're finished with inserting the record. |
| 1902 | * |
| 1903 | * NB: If 'ptr' points to just after the page header, advertise a |
| 1904 | * position at the beginning of the page rather than 'ptr' itself. If |
| 1905 | * there are no other insertions running, someone might try to flush |
| 1906 | * up to our advertised location. If we advertised a position after |
| 1907 | * the page header, someone might try to flush the page header, even |
| 1908 | * though page might actually not be initialized yet. As the first |
| 1909 | * inserter on the page, we are effectively responsible for making |
| 1910 | * sure that it's initialized, before we let insertingAt to move past |
| 1911 | * the page header. |
| 1912 | */ |
| 1913 | if (ptr % XLOG_BLCKSZ == SizeOfXLogShortPHD && |
| 1914 | XLogSegmentOffset(ptr, wal_segment_size) > XLOG_BLCKSZ) |
| 1915 | initializedUpto = ptr - SizeOfXLogShortPHD; |
| 1916 | else if (ptr % XLOG_BLCKSZ == SizeOfXLogLongPHD && |
| 1917 | XLogSegmentOffset(ptr, wal_segment_size) < XLOG_BLCKSZ) |
| 1918 | initializedUpto = ptr - SizeOfXLogLongPHD; |
| 1919 | else |
| 1920 | initializedUpto = ptr; |
| 1921 | |
| 1922 | WALInsertLockUpdateInsertingAt(initializedUpto); |
| 1923 | |
| 1924 | AdvanceXLInsertBuffer(ptr, false); |
| 1925 | endptr = XLogCtl->xlblocks[idx]; |
| 1926 | |
| 1927 | if (expectedEndPtr != endptr) |
| 1928 | elog(PANIC, "could not find WAL buffer for %X/%X" , |
| 1929 | (uint32) (ptr >> 32), (uint32) ptr); |
| 1930 | } |
| 1931 | else |
| 1932 | { |
| 1933 | /* |
| 1934 | * Make sure the initialization of the page is visible to us, and |
| 1935 | * won't arrive later to overwrite the WAL data we write on the page. |
| 1936 | */ |
| 1937 | pg_memory_barrier(); |
| 1938 | } |
| 1939 | |
| 1940 | /* |
| 1941 | * Found the buffer holding this page. Return a pointer to the right |
| 1942 | * offset within the page. |
| 1943 | */ |
| 1944 | cachedPage = ptr / XLOG_BLCKSZ; |
| 1945 | cachedPos = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ; |
| 1946 | |
| 1947 | Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC); |
| 1948 | Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ)); |
| 1949 | |
| 1950 | return cachedPos + ptr % XLOG_BLCKSZ; |
| 1951 | } |
| 1952 | |
| 1953 | /* |
| 1954 | * Converts a "usable byte position" to XLogRecPtr. A usable byte position |
| 1955 | * is the position starting from the beginning of WAL, excluding all WAL |
| 1956 | * page headers. |
| 1957 | */ |
| 1958 | static XLogRecPtr |
| 1959 | XLogBytePosToRecPtr(uint64 bytepos) |
| 1960 | { |
| 1961 | uint64 fullsegs; |
| 1962 | uint64 fullpages; |
| 1963 | uint64 bytesleft; |
| 1964 | uint32 seg_offset; |
| 1965 | XLogRecPtr result; |
| 1966 | |
| 1967 | fullsegs = bytepos / UsableBytesInSegment; |
| 1968 | bytesleft = bytepos % UsableBytesInSegment; |
| 1969 | |
| 1970 | if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD) |
| 1971 | { |
| 1972 | /* fits on first page of segment */ |
| 1973 | seg_offset = bytesleft + SizeOfXLogLongPHD; |
| 1974 | } |
| 1975 | else |
| 1976 | { |
| 1977 | /* account for the first page on segment with long header */ |
| 1978 | seg_offset = XLOG_BLCKSZ; |
| 1979 | bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD; |
| 1980 | |
| 1981 | fullpages = bytesleft / UsableBytesInPage; |
| 1982 | bytesleft = bytesleft % UsableBytesInPage; |
| 1983 | |
| 1984 | seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD; |
| 1985 | } |
| 1986 | |
| 1987 | XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result); |
| 1988 | |
| 1989 | return result; |
| 1990 | } |
| 1991 | |
| 1992 | /* |
| 1993 | * Like XLogBytePosToRecPtr, but if the position is at a page boundary, |
| 1994 | * returns a pointer to the beginning of the page (ie. before page header), |
| 1995 | * not to where the first xlog record on that page would go to. This is used |
| 1996 | * when converting a pointer to the end of a record. |
| 1997 | */ |
| 1998 | static XLogRecPtr |
| 1999 | XLogBytePosToEndRecPtr(uint64 bytepos) |
| 2000 | { |
| 2001 | uint64 fullsegs; |
| 2002 | uint64 fullpages; |
| 2003 | uint64 bytesleft; |
| 2004 | uint32 seg_offset; |
| 2005 | XLogRecPtr result; |
| 2006 | |
| 2007 | fullsegs = bytepos / UsableBytesInSegment; |
| 2008 | bytesleft = bytepos % UsableBytesInSegment; |
| 2009 | |
| 2010 | if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD) |
| 2011 | { |
| 2012 | /* fits on first page of segment */ |
| 2013 | if (bytesleft == 0) |
| 2014 | seg_offset = 0; |
| 2015 | else |
| 2016 | seg_offset = bytesleft + SizeOfXLogLongPHD; |
| 2017 | } |
| 2018 | else |
| 2019 | { |
| 2020 | /* account for the first page on segment with long header */ |
| 2021 | seg_offset = XLOG_BLCKSZ; |
| 2022 | bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD; |
| 2023 | |
| 2024 | fullpages = bytesleft / UsableBytesInPage; |
| 2025 | bytesleft = bytesleft % UsableBytesInPage; |
| 2026 | |
| 2027 | if (bytesleft == 0) |
| 2028 | seg_offset += fullpages * XLOG_BLCKSZ + bytesleft; |
| 2029 | else |
| 2030 | seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD; |
| 2031 | } |
| 2032 | |
| 2033 | XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result); |
| 2034 | |
| 2035 | return result; |
| 2036 | } |
| 2037 | |
| 2038 | /* |
| 2039 | * Convert an XLogRecPtr to a "usable byte position". |
| 2040 | */ |
| 2041 | static uint64 |
| 2042 | XLogRecPtrToBytePos(XLogRecPtr ptr) |
| 2043 | { |
| 2044 | uint64 fullsegs; |
| 2045 | uint32 fullpages; |
| 2046 | uint32 offset; |
| 2047 | uint64 result; |
| 2048 | |
| 2049 | XLByteToSeg(ptr, fullsegs, wal_segment_size); |
| 2050 | |
| 2051 | fullpages = (XLogSegmentOffset(ptr, wal_segment_size)) / XLOG_BLCKSZ; |
| 2052 | offset = ptr % XLOG_BLCKSZ; |
| 2053 | |
| 2054 | if (fullpages == 0) |
| 2055 | { |
| 2056 | result = fullsegs * UsableBytesInSegment; |
| 2057 | if (offset > 0) |
| 2058 | { |
| 2059 | Assert(offset >= SizeOfXLogLongPHD); |
| 2060 | result += offset - SizeOfXLogLongPHD; |
| 2061 | } |
| 2062 | } |
| 2063 | else |
| 2064 | { |
| 2065 | result = fullsegs * UsableBytesInSegment + |
| 2066 | (XLOG_BLCKSZ - SizeOfXLogLongPHD) + /* account for first page */ |
| 2067 | (fullpages - 1) * UsableBytesInPage; /* full pages */ |
| 2068 | if (offset > 0) |
| 2069 | { |
| 2070 | Assert(offset >= SizeOfXLogShortPHD); |
| 2071 | result += offset - SizeOfXLogShortPHD; |
| 2072 | } |
| 2073 | } |
| 2074 | |
| 2075 | return result; |
| 2076 | } |
| 2077 | |
| 2078 | /* |
| 2079 | * Initialize XLOG buffers, writing out old buffers if they still contain |
| 2080 | * unwritten data, upto the page containing 'upto'. Or if 'opportunistic' is |
| 2081 | * true, initialize as many pages as we can without having to write out |
| 2082 | * unwritten data. Any new pages are initialized to zeros, with pages headers |
| 2083 | * initialized properly. |
| 2084 | */ |
| 2085 | static void |
| 2086 | AdvanceXLInsertBuffer(XLogRecPtr upto, bool opportunistic) |
| 2087 | { |
| 2088 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 2089 | int nextidx; |
| 2090 | XLogRecPtr ; |
| 2091 | XLogwrtRqst WriteRqst; |
| 2092 | XLogRecPtr NewPageEndPtr = InvalidXLogRecPtr; |
| 2093 | XLogRecPtr NewPageBeginPtr; |
| 2094 | XLogPageHeader NewPage; |
| 2095 | int npages = 0; |
| 2096 | |
| 2097 | LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE); |
| 2098 | |
| 2099 | /* |
| 2100 | * Now that we have the lock, check if someone initialized the page |
| 2101 | * already. |
| 2102 | */ |
| 2103 | while (upto >= XLogCtl->InitializedUpTo || opportunistic) |
| 2104 | { |
| 2105 | nextidx = XLogRecPtrToBufIdx(XLogCtl->InitializedUpTo); |
| 2106 | |
| 2107 | /* |
| 2108 | * Get ending-offset of the buffer page we need to replace (this may |
| 2109 | * be zero if the buffer hasn't been used yet). Fall through if it's |
| 2110 | * already written out. |
| 2111 | */ |
| 2112 | OldPageRqstPtr = XLogCtl->xlblocks[nextidx]; |
| 2113 | if (LogwrtResult.Write < OldPageRqstPtr) |
| 2114 | { |
| 2115 | /* |
| 2116 | * Nope, got work to do. If we just want to pre-initialize as much |
| 2117 | * as we can without flushing, give up now. |
| 2118 | */ |
| 2119 | if (opportunistic) |
| 2120 | break; |
| 2121 | |
| 2122 | /* Before waiting, get info_lck and update LogwrtResult */ |
| 2123 | SpinLockAcquire(&XLogCtl->info_lck); |
| 2124 | if (XLogCtl->LogwrtRqst.Write < OldPageRqstPtr) |
| 2125 | XLogCtl->LogwrtRqst.Write = OldPageRqstPtr; |
| 2126 | LogwrtResult = XLogCtl->LogwrtResult; |
| 2127 | SpinLockRelease(&XLogCtl->info_lck); |
| 2128 | |
| 2129 | /* |
| 2130 | * Now that we have an up-to-date LogwrtResult value, see if we |
| 2131 | * still need to write it or if someone else already did. |
| 2132 | */ |
| 2133 | if (LogwrtResult.Write < OldPageRqstPtr) |
| 2134 | { |
| 2135 | /* |
| 2136 | * Must acquire write lock. Release WALBufMappingLock first, |
| 2137 | * to make sure that all insertions that we need to wait for |
| 2138 | * can finish (up to this same position). Otherwise we risk |
| 2139 | * deadlock. |
| 2140 | */ |
| 2141 | LWLockRelease(WALBufMappingLock); |
| 2142 | |
| 2143 | WaitXLogInsertionsToFinish(OldPageRqstPtr); |
| 2144 | |
| 2145 | LWLockAcquire(WALWriteLock, LW_EXCLUSIVE); |
| 2146 | |
| 2147 | LogwrtResult = XLogCtl->LogwrtResult; |
| 2148 | if (LogwrtResult.Write >= OldPageRqstPtr) |
| 2149 | { |
| 2150 | /* OK, someone wrote it already */ |
| 2151 | LWLockRelease(WALWriteLock); |
| 2152 | } |
| 2153 | else |
| 2154 | { |
| 2155 | /* Have to write it ourselves */ |
| 2156 | TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START(); |
| 2157 | WriteRqst.Write = OldPageRqstPtr; |
| 2158 | WriteRqst.Flush = 0; |
| 2159 | XLogWrite(WriteRqst, false); |
| 2160 | LWLockRelease(WALWriteLock); |
| 2161 | TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE(); |
| 2162 | } |
| 2163 | /* Re-acquire WALBufMappingLock and retry */ |
| 2164 | LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE); |
| 2165 | continue; |
| 2166 | } |
| 2167 | } |
| 2168 | |
| 2169 | /* |
| 2170 | * Now the next buffer slot is free and we can set it up to be the |
| 2171 | * next output page. |
| 2172 | */ |
| 2173 | NewPageBeginPtr = XLogCtl->InitializedUpTo; |
| 2174 | NewPageEndPtr = NewPageBeginPtr + XLOG_BLCKSZ; |
| 2175 | |
| 2176 | Assert(XLogRecPtrToBufIdx(NewPageBeginPtr) == nextidx); |
| 2177 | |
| 2178 | NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ); |
| 2179 | |
| 2180 | /* |
| 2181 | * Be sure to re-zero the buffer so that bytes beyond what we've |
| 2182 | * written will look like zeroes and not valid XLOG records... |
| 2183 | */ |
| 2184 | MemSet((char *) NewPage, 0, XLOG_BLCKSZ); |
| 2185 | |
| 2186 | /* |
| 2187 | * Fill the new page's header |
| 2188 | */ |
| 2189 | NewPage->xlp_magic = XLOG_PAGE_MAGIC; |
| 2190 | |
| 2191 | /* NewPage->xlp_info = 0; */ /* done by memset */ |
| 2192 | NewPage->xlp_tli = ThisTimeLineID; |
| 2193 | NewPage->xlp_pageaddr = NewPageBeginPtr; |
| 2194 | |
| 2195 | /* NewPage->xlp_rem_len = 0; */ /* done by memset */ |
| 2196 | |
| 2197 | /* |
| 2198 | * If online backup is not in progress, mark the header to indicate |
| 2199 | * that WAL records beginning in this page have removable backup |
| 2200 | * blocks. This allows the WAL archiver to know whether it is safe to |
| 2201 | * compress archived WAL data by transforming full-block records into |
| 2202 | * the non-full-block format. It is sufficient to record this at the |
| 2203 | * page level because we force a page switch (in fact a segment |
| 2204 | * switch) when starting a backup, so the flag will be off before any |
| 2205 | * records can be written during the backup. At the end of a backup, |
| 2206 | * the last page will be marked as all unsafe when perhaps only part |
| 2207 | * is unsafe, but at worst the archiver would miss the opportunity to |
| 2208 | * compress a few records. |
| 2209 | */ |
| 2210 | if (!Insert->forcePageWrites) |
| 2211 | NewPage->xlp_info |= XLP_BKP_REMOVABLE; |
| 2212 | |
| 2213 | /* |
| 2214 | * If first page of an XLOG segment file, make it a long header. |
| 2215 | */ |
| 2216 | if ((XLogSegmentOffset(NewPage->xlp_pageaddr, wal_segment_size)) == 0) |
| 2217 | { |
| 2218 | XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage; |
| 2219 | |
| 2220 | NewLongPage->xlp_sysid = ControlFile->system_identifier; |
| 2221 | NewLongPage->xlp_seg_size = wal_segment_size; |
| 2222 | NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ; |
| 2223 | NewPage->xlp_info |= XLP_LONG_HEADER; |
| 2224 | } |
| 2225 | |
| 2226 | /* |
| 2227 | * Make sure the initialization of the page becomes visible to others |
| 2228 | * before the xlblocks update. GetXLogBuffer() reads xlblocks without |
| 2229 | * holding a lock. |
| 2230 | */ |
| 2231 | pg_write_barrier(); |
| 2232 | |
| 2233 | *((volatile XLogRecPtr *) &XLogCtl->xlblocks[nextidx]) = NewPageEndPtr; |
| 2234 | |
| 2235 | XLogCtl->InitializedUpTo = NewPageEndPtr; |
| 2236 | |
| 2237 | npages++; |
| 2238 | } |
| 2239 | LWLockRelease(WALBufMappingLock); |
| 2240 | |
| 2241 | #ifdef WAL_DEBUG |
| 2242 | if (XLOG_DEBUG && npages > 0) |
| 2243 | { |
| 2244 | elog(DEBUG1, "initialized %d pages, up to %X/%X" , |
| 2245 | npages, (uint32) (NewPageEndPtr >> 32), (uint32) NewPageEndPtr); |
| 2246 | } |
| 2247 | #endif |
| 2248 | } |
| 2249 | |
| 2250 | /* |
| 2251 | * Calculate CheckPointSegments based on max_wal_size_mb and |
| 2252 | * checkpoint_completion_target. |
| 2253 | */ |
| 2254 | static void |
| 2255 | CalculateCheckpointSegments(void) |
| 2256 | { |
| 2257 | double target; |
| 2258 | |
| 2259 | /*------- |
| 2260 | * Calculate the distance at which to trigger a checkpoint, to avoid |
| 2261 | * exceeding max_wal_size_mb. This is based on two assumptions: |
| 2262 | * |
| 2263 | * a) we keep WAL for only one checkpoint cycle (prior to PG11 we kept |
| 2264 | * WAL for two checkpoint cycles to allow us to recover from the |
| 2265 | * secondary checkpoint if the first checkpoint failed, though we |
| 2266 | * only did this on the master anyway, not on standby. Keeping just |
| 2267 | * one checkpoint simplifies processing and reduces disk space in |
| 2268 | * many smaller databases.) |
| 2269 | * b) during checkpoint, we consume checkpoint_completion_target * |
| 2270 | * number of segments consumed between checkpoints. |
| 2271 | *------- |
| 2272 | */ |
| 2273 | target = (double) ConvertToXSegs(max_wal_size_mb, wal_segment_size) / |
| 2274 | (1.0 + CheckPointCompletionTarget); |
| 2275 | |
| 2276 | /* round down */ |
| 2277 | CheckPointSegments = (int) target; |
| 2278 | |
| 2279 | if (CheckPointSegments < 1) |
| 2280 | CheckPointSegments = 1; |
| 2281 | } |
| 2282 | |
| 2283 | void |
| 2284 | assign_max_wal_size(int newval, void *) |
| 2285 | { |
| 2286 | max_wal_size_mb = newval; |
| 2287 | CalculateCheckpointSegments(); |
| 2288 | } |
| 2289 | |
| 2290 | void |
| 2291 | assign_checkpoint_completion_target(double newval, void *) |
| 2292 | { |
| 2293 | CheckPointCompletionTarget = newval; |
| 2294 | CalculateCheckpointSegments(); |
| 2295 | } |
| 2296 | |
| 2297 | /* |
| 2298 | * At a checkpoint, how many WAL segments to recycle as preallocated future |
| 2299 | * XLOG segments? Returns the highest segment that should be preallocated. |
| 2300 | */ |
| 2301 | static XLogSegNo |
| 2302 | XLOGfileslop(XLogRecPtr RedoRecPtr) |
| 2303 | { |
| 2304 | XLogSegNo minSegNo; |
| 2305 | XLogSegNo maxSegNo; |
| 2306 | double distance; |
| 2307 | XLogSegNo recycleSegNo; |
| 2308 | |
| 2309 | /* |
| 2310 | * Calculate the segment numbers that min_wal_size_mb and max_wal_size_mb |
| 2311 | * correspond to. Always recycle enough segments to meet the minimum, and |
| 2312 | * remove enough segments to stay below the maximum. |
| 2313 | */ |
| 2314 | minSegNo = RedoRecPtr / wal_segment_size + |
| 2315 | ConvertToXSegs(min_wal_size_mb, wal_segment_size) - 1; |
| 2316 | maxSegNo = RedoRecPtr / wal_segment_size + |
| 2317 | ConvertToXSegs(max_wal_size_mb, wal_segment_size) - 1; |
| 2318 | |
| 2319 | /* |
| 2320 | * Between those limits, recycle enough segments to get us through to the |
| 2321 | * estimated end of next checkpoint. |
| 2322 | * |
| 2323 | * To estimate where the next checkpoint will finish, assume that the |
| 2324 | * system runs steadily consuming CheckPointDistanceEstimate bytes between |
| 2325 | * every checkpoint. |
| 2326 | */ |
| 2327 | distance = (1.0 + CheckPointCompletionTarget) * CheckPointDistanceEstimate; |
| 2328 | /* add 10% for good measure. */ |
| 2329 | distance *= 1.10; |
| 2330 | |
| 2331 | recycleSegNo = (XLogSegNo) ceil(((double) RedoRecPtr + distance) / |
| 2332 | wal_segment_size); |
| 2333 | |
| 2334 | if (recycleSegNo < minSegNo) |
| 2335 | recycleSegNo = minSegNo; |
| 2336 | if (recycleSegNo > maxSegNo) |
| 2337 | recycleSegNo = maxSegNo; |
| 2338 | |
| 2339 | return recycleSegNo; |
| 2340 | } |
| 2341 | |
| 2342 | /* |
| 2343 | * Check whether we've consumed enough xlog space that a checkpoint is needed. |
| 2344 | * |
| 2345 | * new_segno indicates a log file that has just been filled up (or read |
| 2346 | * during recovery). We measure the distance from RedoRecPtr to new_segno |
| 2347 | * and see if that exceeds CheckPointSegments. |
| 2348 | * |
| 2349 | * Note: it is caller's responsibility that RedoRecPtr is up-to-date. |
| 2350 | */ |
| 2351 | static bool |
| 2352 | XLogCheckpointNeeded(XLogSegNo new_segno) |
| 2353 | { |
| 2354 | XLogSegNo old_segno; |
| 2355 | |
| 2356 | XLByteToSeg(RedoRecPtr, old_segno, wal_segment_size); |
| 2357 | |
| 2358 | if (new_segno >= old_segno + (uint64) (CheckPointSegments - 1)) |
| 2359 | return true; |
| 2360 | return false; |
| 2361 | } |
| 2362 | |
| 2363 | /* |
| 2364 | * Write and/or fsync the log at least as far as WriteRqst indicates. |
| 2365 | * |
| 2366 | * If flexible == true, we don't have to write as far as WriteRqst, but |
| 2367 | * may stop at any convenient boundary (such as a cache or logfile boundary). |
| 2368 | * This option allows us to avoid uselessly issuing multiple writes when a |
| 2369 | * single one would do. |
| 2370 | * |
| 2371 | * Must be called with WALWriteLock held. WaitXLogInsertionsToFinish(WriteRqst) |
| 2372 | * must be called before grabbing the lock, to make sure the data is ready to |
| 2373 | * write. |
| 2374 | */ |
| 2375 | static void |
| 2376 | XLogWrite(XLogwrtRqst WriteRqst, bool flexible) |
| 2377 | { |
| 2378 | bool ispartialpage; |
| 2379 | bool last_iteration; |
| 2380 | bool finishing_seg; |
| 2381 | bool use_existent; |
| 2382 | int curridx; |
| 2383 | int npages; |
| 2384 | int startidx; |
| 2385 | uint32 startoffset; |
| 2386 | |
| 2387 | /* We should always be inside a critical section here */ |
| 2388 | Assert(CritSectionCount > 0); |
| 2389 | |
| 2390 | /* |
| 2391 | * Update local LogwrtResult (caller probably did this already, but...) |
| 2392 | */ |
| 2393 | LogwrtResult = XLogCtl->LogwrtResult; |
| 2394 | |
| 2395 | /* |
| 2396 | * Since successive pages in the xlog cache are consecutively allocated, |
| 2397 | * we can usually gather multiple pages together and issue just one |
| 2398 | * write() call. npages is the number of pages we have determined can be |
| 2399 | * written together; startidx is the cache block index of the first one, |
| 2400 | * and startoffset is the file offset at which it should go. The latter |
| 2401 | * two variables are only valid when npages > 0, but we must initialize |
| 2402 | * all of them to keep the compiler quiet. |
| 2403 | */ |
| 2404 | npages = 0; |
| 2405 | startidx = 0; |
| 2406 | startoffset = 0; |
| 2407 | |
| 2408 | /* |
| 2409 | * Within the loop, curridx is the cache block index of the page to |
| 2410 | * consider writing. Begin at the buffer containing the next unwritten |
| 2411 | * page, or last partially written page. |
| 2412 | */ |
| 2413 | curridx = XLogRecPtrToBufIdx(LogwrtResult.Write); |
| 2414 | |
| 2415 | while (LogwrtResult.Write < WriteRqst.Write) |
| 2416 | { |
| 2417 | /* |
| 2418 | * Make sure we're not ahead of the insert process. This could happen |
| 2419 | * if we're passed a bogus WriteRqst.Write that is past the end of the |
| 2420 | * last page that's been initialized by AdvanceXLInsertBuffer. |
| 2421 | */ |
| 2422 | XLogRecPtr EndPtr = XLogCtl->xlblocks[curridx]; |
| 2423 | |
| 2424 | if (LogwrtResult.Write >= EndPtr) |
| 2425 | elog(PANIC, "xlog write request %X/%X is past end of log %X/%X" , |
| 2426 | (uint32) (LogwrtResult.Write >> 32), |
| 2427 | (uint32) LogwrtResult.Write, |
| 2428 | (uint32) (EndPtr >> 32), (uint32) EndPtr); |
| 2429 | |
| 2430 | /* Advance LogwrtResult.Write to end of current buffer page */ |
| 2431 | LogwrtResult.Write = EndPtr; |
| 2432 | ispartialpage = WriteRqst.Write < LogwrtResult.Write; |
| 2433 | |
| 2434 | if (!XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo, |
| 2435 | wal_segment_size)) |
| 2436 | { |
| 2437 | /* |
| 2438 | * Switch to new logfile segment. We cannot have any pending |
| 2439 | * pages here (since we dump what we have at segment end). |
| 2440 | */ |
| 2441 | Assert(npages == 0); |
| 2442 | if (openLogFile >= 0) |
| 2443 | XLogFileClose(); |
| 2444 | XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo, |
| 2445 | wal_segment_size); |
| 2446 | |
| 2447 | /* create/use new log file */ |
| 2448 | use_existent = true; |
| 2449 | openLogFile = XLogFileInit(openLogSegNo, &use_existent, true); |
| 2450 | } |
| 2451 | |
| 2452 | /* Make sure we have the current logfile open */ |
| 2453 | if (openLogFile < 0) |
| 2454 | { |
| 2455 | XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo, |
| 2456 | wal_segment_size); |
| 2457 | openLogFile = XLogFileOpen(openLogSegNo); |
| 2458 | } |
| 2459 | |
| 2460 | /* Add current page to the set of pending pages-to-dump */ |
| 2461 | if (npages == 0) |
| 2462 | { |
| 2463 | /* first of group */ |
| 2464 | startidx = curridx; |
| 2465 | startoffset = XLogSegmentOffset(LogwrtResult.Write - XLOG_BLCKSZ, |
| 2466 | wal_segment_size); |
| 2467 | } |
| 2468 | npages++; |
| 2469 | |
| 2470 | /* |
| 2471 | * Dump the set if this will be the last loop iteration, or if we are |
| 2472 | * at the last page of the cache area (since the next page won't be |
| 2473 | * contiguous in memory), or if we are at the end of the logfile |
| 2474 | * segment. |
| 2475 | */ |
| 2476 | last_iteration = WriteRqst.Write <= LogwrtResult.Write; |
| 2477 | |
| 2478 | finishing_seg = !ispartialpage && |
| 2479 | (startoffset + npages * XLOG_BLCKSZ) >= wal_segment_size; |
| 2480 | |
| 2481 | if (last_iteration || |
| 2482 | curridx == XLogCtl->XLogCacheBlck || |
| 2483 | finishing_seg) |
| 2484 | { |
| 2485 | char *from; |
| 2486 | Size nbytes; |
| 2487 | Size nleft; |
| 2488 | int written; |
| 2489 | |
| 2490 | /* OK to write the page(s) */ |
| 2491 | from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ; |
| 2492 | nbytes = npages * (Size) XLOG_BLCKSZ; |
| 2493 | nleft = nbytes; |
| 2494 | do |
| 2495 | { |
| 2496 | errno = 0; |
| 2497 | pgstat_report_wait_start(WAIT_EVENT_WAL_WRITE); |
| 2498 | written = pg_pwrite(openLogFile, from, nleft, startoffset); |
| 2499 | pgstat_report_wait_end(); |
| 2500 | if (written <= 0) |
| 2501 | { |
| 2502 | if (errno == EINTR) |
| 2503 | continue; |
| 2504 | ereport(PANIC, |
| 2505 | (errcode_for_file_access(), |
| 2506 | errmsg("could not write to log file %s " |
| 2507 | "at offset %u, length %zu: %m" , |
| 2508 | XLogFileNameP(ThisTimeLineID, openLogSegNo), |
| 2509 | startoffset, nleft))); |
| 2510 | } |
| 2511 | nleft -= written; |
| 2512 | from += written; |
| 2513 | startoffset += written; |
| 2514 | } while (nleft > 0); |
| 2515 | |
| 2516 | npages = 0; |
| 2517 | |
| 2518 | /* |
| 2519 | * If we just wrote the whole last page of a logfile segment, |
| 2520 | * fsync the segment immediately. This avoids having to go back |
| 2521 | * and re-open prior segments when an fsync request comes along |
| 2522 | * later. Doing it here ensures that one and only one backend will |
| 2523 | * perform this fsync. |
| 2524 | * |
| 2525 | * This is also the right place to notify the Archiver that the |
| 2526 | * segment is ready to copy to archival storage, and to update the |
| 2527 | * timer for archive_timeout, and to signal for a checkpoint if |
| 2528 | * too many logfile segments have been used since the last |
| 2529 | * checkpoint. |
| 2530 | */ |
| 2531 | if (finishing_seg) |
| 2532 | { |
| 2533 | issue_xlog_fsync(openLogFile, openLogSegNo); |
| 2534 | |
| 2535 | /* signal that we need to wakeup walsenders later */ |
| 2536 | WalSndWakeupRequest(); |
| 2537 | |
| 2538 | LogwrtResult.Flush = LogwrtResult.Write; /* end of page */ |
| 2539 | |
| 2540 | if (XLogArchivingActive()) |
| 2541 | XLogArchiveNotifySeg(openLogSegNo); |
| 2542 | |
| 2543 | XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL); |
| 2544 | XLogCtl->lastSegSwitchLSN = LogwrtResult.Flush; |
| 2545 | |
| 2546 | /* |
| 2547 | * Request a checkpoint if we've consumed too much xlog since |
| 2548 | * the last one. For speed, we first check using the local |
| 2549 | * copy of RedoRecPtr, which might be out of date; if it looks |
| 2550 | * like a checkpoint is needed, forcibly update RedoRecPtr and |
| 2551 | * recheck. |
| 2552 | */ |
| 2553 | if (IsUnderPostmaster && XLogCheckpointNeeded(openLogSegNo)) |
| 2554 | { |
| 2555 | (void) GetRedoRecPtr(); |
| 2556 | if (XLogCheckpointNeeded(openLogSegNo)) |
| 2557 | RequestCheckpoint(CHECKPOINT_CAUSE_XLOG); |
| 2558 | } |
| 2559 | } |
| 2560 | } |
| 2561 | |
| 2562 | if (ispartialpage) |
| 2563 | { |
| 2564 | /* Only asked to write a partial page */ |
| 2565 | LogwrtResult.Write = WriteRqst.Write; |
| 2566 | break; |
| 2567 | } |
| 2568 | curridx = NextBufIdx(curridx); |
| 2569 | |
| 2570 | /* If flexible, break out of loop as soon as we wrote something */ |
| 2571 | if (flexible && npages == 0) |
| 2572 | break; |
| 2573 | } |
| 2574 | |
| 2575 | Assert(npages == 0); |
| 2576 | |
| 2577 | /* |
| 2578 | * If asked to flush, do so |
| 2579 | */ |
| 2580 | if (LogwrtResult.Flush < WriteRqst.Flush && |
| 2581 | LogwrtResult.Flush < LogwrtResult.Write) |
| 2582 | |
| 2583 | { |
| 2584 | /* |
| 2585 | * Could get here without iterating above loop, in which case we might |
| 2586 | * have no open file or the wrong one. However, we do not need to |
| 2587 | * fsync more than one file. |
| 2588 | */ |
| 2589 | if (sync_method != SYNC_METHOD_OPEN && |
| 2590 | sync_method != SYNC_METHOD_OPEN_DSYNC) |
| 2591 | { |
| 2592 | if (openLogFile >= 0 && |
| 2593 | !XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo, |
| 2594 | wal_segment_size)) |
| 2595 | XLogFileClose(); |
| 2596 | if (openLogFile < 0) |
| 2597 | { |
| 2598 | XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo, |
| 2599 | wal_segment_size); |
| 2600 | openLogFile = XLogFileOpen(openLogSegNo); |
| 2601 | } |
| 2602 | |
| 2603 | issue_xlog_fsync(openLogFile, openLogSegNo); |
| 2604 | } |
| 2605 | |
| 2606 | /* signal that we need to wakeup walsenders later */ |
| 2607 | WalSndWakeupRequest(); |
| 2608 | |
| 2609 | LogwrtResult.Flush = LogwrtResult.Write; |
| 2610 | } |
| 2611 | |
| 2612 | /* |
| 2613 | * Update shared-memory status |
| 2614 | * |
| 2615 | * We make sure that the shared 'request' values do not fall behind the |
| 2616 | * 'result' values. This is not absolutely essential, but it saves some |
| 2617 | * code in a couple of places. |
| 2618 | */ |
| 2619 | { |
| 2620 | SpinLockAcquire(&XLogCtl->info_lck); |
| 2621 | XLogCtl->LogwrtResult = LogwrtResult; |
| 2622 | if (XLogCtl->LogwrtRqst.Write < LogwrtResult.Write) |
| 2623 | XLogCtl->LogwrtRqst.Write = LogwrtResult.Write; |
| 2624 | if (XLogCtl->LogwrtRqst.Flush < LogwrtResult.Flush) |
| 2625 | XLogCtl->LogwrtRqst.Flush = LogwrtResult.Flush; |
| 2626 | SpinLockRelease(&XLogCtl->info_lck); |
| 2627 | } |
| 2628 | } |
| 2629 | |
| 2630 | /* |
| 2631 | * Record the LSN for an asynchronous transaction commit/abort |
| 2632 | * and nudge the WALWriter if there is work for it to do. |
| 2633 | * (This should not be called for synchronous commits.) |
| 2634 | */ |
| 2635 | void |
| 2636 | XLogSetAsyncXactLSN(XLogRecPtr asyncXactLSN) |
| 2637 | { |
| 2638 | XLogRecPtr WriteRqstPtr = asyncXactLSN; |
| 2639 | bool sleeping; |
| 2640 | |
| 2641 | SpinLockAcquire(&XLogCtl->info_lck); |
| 2642 | LogwrtResult = XLogCtl->LogwrtResult; |
| 2643 | sleeping = XLogCtl->WalWriterSleeping; |
| 2644 | if (XLogCtl->asyncXactLSN < asyncXactLSN) |
| 2645 | XLogCtl->asyncXactLSN = asyncXactLSN; |
| 2646 | SpinLockRelease(&XLogCtl->info_lck); |
| 2647 | |
| 2648 | /* |
| 2649 | * If the WALWriter is sleeping, we should kick it to make it come out of |
| 2650 | * low-power mode. Otherwise, determine whether there's a full page of |
| 2651 | * WAL available to write. |
| 2652 | */ |
| 2653 | if (!sleeping) |
| 2654 | { |
| 2655 | /* back off to last completed page boundary */ |
| 2656 | WriteRqstPtr -= WriteRqstPtr % XLOG_BLCKSZ; |
| 2657 | |
| 2658 | /* if we have already flushed that far, we're done */ |
| 2659 | if (WriteRqstPtr <= LogwrtResult.Flush) |
| 2660 | return; |
| 2661 | } |
| 2662 | |
| 2663 | /* |
| 2664 | * Nudge the WALWriter: it has a full page of WAL to write, or we want it |
| 2665 | * to come out of low-power mode so that this async commit will reach disk |
| 2666 | * within the expected amount of time. |
| 2667 | */ |
| 2668 | if (ProcGlobal->walwriterLatch) |
| 2669 | SetLatch(ProcGlobal->walwriterLatch); |
| 2670 | } |
| 2671 | |
| 2672 | /* |
| 2673 | * Record the LSN up to which we can remove WAL because it's not required by |
| 2674 | * any replication slot. |
| 2675 | */ |
| 2676 | void |
| 2677 | XLogSetReplicationSlotMinimumLSN(XLogRecPtr lsn) |
| 2678 | { |
| 2679 | SpinLockAcquire(&XLogCtl->info_lck); |
| 2680 | XLogCtl->replicationSlotMinLSN = lsn; |
| 2681 | SpinLockRelease(&XLogCtl->info_lck); |
| 2682 | } |
| 2683 | |
| 2684 | |
| 2685 | /* |
| 2686 | * Return the oldest LSN we must retain to satisfy the needs of some |
| 2687 | * replication slot. |
| 2688 | */ |
| 2689 | static XLogRecPtr |
| 2690 | XLogGetReplicationSlotMinimumLSN(void) |
| 2691 | { |
| 2692 | XLogRecPtr retval; |
| 2693 | |
| 2694 | SpinLockAcquire(&XLogCtl->info_lck); |
| 2695 | retval = XLogCtl->replicationSlotMinLSN; |
| 2696 | SpinLockRelease(&XLogCtl->info_lck); |
| 2697 | |
| 2698 | return retval; |
| 2699 | } |
| 2700 | |
| 2701 | /* |
| 2702 | * Advance minRecoveryPoint in control file. |
| 2703 | * |
| 2704 | * If we crash during recovery, we must reach this point again before the |
| 2705 | * database is consistent. |
| 2706 | * |
| 2707 | * If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint |
| 2708 | * is only updated if it's not already greater than or equal to 'lsn'. |
| 2709 | */ |
| 2710 | static void |
| 2711 | UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force) |
| 2712 | { |
| 2713 | /* Quick check using our local copy of the variable */ |
| 2714 | if (!updateMinRecoveryPoint || (!force && lsn <= minRecoveryPoint)) |
| 2715 | return; |
| 2716 | |
| 2717 | /* |
| 2718 | * An invalid minRecoveryPoint means that we need to recover all the WAL, |
| 2719 | * i.e., we're doing crash recovery. We never modify the control file's |
| 2720 | * value in that case, so we can short-circuit future checks here too. The |
| 2721 | * local values of minRecoveryPoint and minRecoveryPointTLI should not be |
| 2722 | * updated until crash recovery finishes. We only do this for the startup |
| 2723 | * process as it should not update its own reference of minRecoveryPoint |
| 2724 | * until it has finished crash recovery to make sure that all WAL |
| 2725 | * available is replayed in this case. This also saves from extra locks |
| 2726 | * taken on the control file from the startup process. |
| 2727 | */ |
| 2728 | if (XLogRecPtrIsInvalid(minRecoveryPoint) && InRecovery) |
| 2729 | { |
| 2730 | updateMinRecoveryPoint = false; |
| 2731 | return; |
| 2732 | } |
| 2733 | |
| 2734 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 2735 | |
| 2736 | /* update local copy */ |
| 2737 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
| 2738 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
| 2739 | |
| 2740 | if (XLogRecPtrIsInvalid(minRecoveryPoint)) |
| 2741 | updateMinRecoveryPoint = false; |
| 2742 | else if (force || minRecoveryPoint < lsn) |
| 2743 | { |
| 2744 | XLogRecPtr newMinRecoveryPoint; |
| 2745 | TimeLineID newMinRecoveryPointTLI; |
| 2746 | |
| 2747 | /* |
| 2748 | * To avoid having to update the control file too often, we update it |
| 2749 | * all the way to the last record being replayed, even though 'lsn' |
| 2750 | * would suffice for correctness. This also allows the 'force' case |
| 2751 | * to not need a valid 'lsn' value. |
| 2752 | * |
| 2753 | * Another important reason for doing it this way is that the passed |
| 2754 | * 'lsn' value could be bogus, i.e., past the end of available WAL, if |
| 2755 | * the caller got it from a corrupted heap page. Accepting such a |
| 2756 | * value as the min recovery point would prevent us from coming up at |
| 2757 | * all. Instead, we just log a warning and continue with recovery. |
| 2758 | * (See also the comments about corrupt LSNs in XLogFlush.) |
| 2759 | */ |
| 2760 | SpinLockAcquire(&XLogCtl->info_lck); |
| 2761 | newMinRecoveryPoint = XLogCtl->replayEndRecPtr; |
| 2762 | newMinRecoveryPointTLI = XLogCtl->replayEndTLI; |
| 2763 | SpinLockRelease(&XLogCtl->info_lck); |
| 2764 | |
| 2765 | if (!force && newMinRecoveryPoint < lsn) |
| 2766 | elog(WARNING, |
| 2767 | "xlog min recovery request %X/%X is past current point %X/%X" , |
| 2768 | (uint32) (lsn >> 32), (uint32) lsn, |
| 2769 | (uint32) (newMinRecoveryPoint >> 32), |
| 2770 | (uint32) newMinRecoveryPoint); |
| 2771 | |
| 2772 | /* update control file */ |
| 2773 | if (ControlFile->minRecoveryPoint < newMinRecoveryPoint) |
| 2774 | { |
| 2775 | ControlFile->minRecoveryPoint = newMinRecoveryPoint; |
| 2776 | ControlFile->minRecoveryPointTLI = newMinRecoveryPointTLI; |
| 2777 | UpdateControlFile(); |
| 2778 | minRecoveryPoint = newMinRecoveryPoint; |
| 2779 | minRecoveryPointTLI = newMinRecoveryPointTLI; |
| 2780 | |
| 2781 | ereport(DEBUG2, |
| 2782 | (errmsg("updated min recovery point to %X/%X on timeline %u" , |
| 2783 | (uint32) (minRecoveryPoint >> 32), |
| 2784 | (uint32) minRecoveryPoint, |
| 2785 | newMinRecoveryPointTLI))); |
| 2786 | } |
| 2787 | } |
| 2788 | LWLockRelease(ControlFileLock); |
| 2789 | } |
| 2790 | |
| 2791 | /* |
| 2792 | * Ensure that all XLOG data through the given position is flushed to disk. |
| 2793 | * |
| 2794 | * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not |
| 2795 | * already held, and we try to avoid acquiring it if possible. |
| 2796 | */ |
| 2797 | void |
| 2798 | XLogFlush(XLogRecPtr record) |
| 2799 | { |
| 2800 | XLogRecPtr WriteRqstPtr; |
| 2801 | XLogwrtRqst WriteRqst; |
| 2802 | |
| 2803 | /* |
| 2804 | * During REDO, we are reading not writing WAL. Therefore, instead of |
| 2805 | * trying to flush the WAL, we should update minRecoveryPoint instead. We |
| 2806 | * test XLogInsertAllowed(), not InRecovery, because we need checkpointer |
| 2807 | * to act this way too, and because when it tries to write the |
| 2808 | * end-of-recovery checkpoint, it should indeed flush. |
| 2809 | */ |
| 2810 | if (!XLogInsertAllowed()) |
| 2811 | { |
| 2812 | UpdateMinRecoveryPoint(record, false); |
| 2813 | return; |
| 2814 | } |
| 2815 | |
| 2816 | /* Quick exit if already known flushed */ |
| 2817 | if (record <= LogwrtResult.Flush) |
| 2818 | return; |
| 2819 | |
| 2820 | #ifdef WAL_DEBUG |
| 2821 | if (XLOG_DEBUG) |
| 2822 | elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X" , |
| 2823 | (uint32) (record >> 32), (uint32) record, |
| 2824 | (uint32) (LogwrtResult.Write >> 32), (uint32) LogwrtResult.Write, |
| 2825 | (uint32) (LogwrtResult.Flush >> 32), (uint32) LogwrtResult.Flush); |
| 2826 | #endif |
| 2827 | |
| 2828 | START_CRIT_SECTION(); |
| 2829 | |
| 2830 | /* |
| 2831 | * Since fsync is usually a horribly expensive operation, we try to |
| 2832 | * piggyback as much data as we can on each fsync: if we see any more data |
| 2833 | * entered into the xlog buffer, we'll write and fsync that too, so that |
| 2834 | * the final value of LogwrtResult.Flush is as large as possible. This |
| 2835 | * gives us some chance of avoiding another fsync immediately after. |
| 2836 | */ |
| 2837 | |
| 2838 | /* initialize to given target; may increase below */ |
| 2839 | WriteRqstPtr = record; |
| 2840 | |
| 2841 | /* |
| 2842 | * Now wait until we get the write lock, or someone else does the flush |
| 2843 | * for us. |
| 2844 | */ |
| 2845 | for (;;) |
| 2846 | { |
| 2847 | XLogRecPtr insertpos; |
| 2848 | |
| 2849 | /* read LogwrtResult and update local state */ |
| 2850 | SpinLockAcquire(&XLogCtl->info_lck); |
| 2851 | if (WriteRqstPtr < XLogCtl->LogwrtRqst.Write) |
| 2852 | WriteRqstPtr = XLogCtl->LogwrtRqst.Write; |
| 2853 | LogwrtResult = XLogCtl->LogwrtResult; |
| 2854 | SpinLockRelease(&XLogCtl->info_lck); |
| 2855 | |
| 2856 | /* done already? */ |
| 2857 | if (record <= LogwrtResult.Flush) |
| 2858 | break; |
| 2859 | |
| 2860 | /* |
| 2861 | * Before actually performing the write, wait for all in-flight |
| 2862 | * insertions to the pages we're about to write to finish. |
| 2863 | */ |
| 2864 | insertpos = WaitXLogInsertionsToFinish(WriteRqstPtr); |
| 2865 | |
| 2866 | /* |
| 2867 | * Try to get the write lock. If we can't get it immediately, wait |
| 2868 | * until it's released, and recheck if we still need to do the flush |
| 2869 | * or if the backend that held the lock did it for us already. This |
| 2870 | * helps to maintain a good rate of group committing when the system |
| 2871 | * is bottlenecked by the speed of fsyncing. |
| 2872 | */ |
| 2873 | if (!LWLockAcquireOrWait(WALWriteLock, LW_EXCLUSIVE)) |
| 2874 | { |
| 2875 | /* |
| 2876 | * The lock is now free, but we didn't acquire it yet. Before we |
| 2877 | * do, loop back to check if someone else flushed the record for |
| 2878 | * us already. |
| 2879 | */ |
| 2880 | continue; |
| 2881 | } |
| 2882 | |
| 2883 | /* Got the lock; recheck whether request is satisfied */ |
| 2884 | LogwrtResult = XLogCtl->LogwrtResult; |
| 2885 | if (record <= LogwrtResult.Flush) |
| 2886 | { |
| 2887 | LWLockRelease(WALWriteLock); |
| 2888 | break; |
| 2889 | } |
| 2890 | |
| 2891 | /* |
| 2892 | * Sleep before flush! By adding a delay here, we may give further |
| 2893 | * backends the opportunity to join the backlog of group commit |
| 2894 | * followers; this can significantly improve transaction throughput, |
| 2895 | * at the risk of increasing transaction latency. |
| 2896 | * |
| 2897 | * We do not sleep if enableFsync is not turned on, nor if there are |
| 2898 | * fewer than CommitSiblings other backends with active transactions. |
| 2899 | */ |
| 2900 | if (CommitDelay > 0 && enableFsync && |
| 2901 | MinimumActiveBackends(CommitSiblings)) |
| 2902 | { |
| 2903 | pg_usleep(CommitDelay); |
| 2904 | |
| 2905 | /* |
| 2906 | * Re-check how far we can now flush the WAL. It's generally not |
| 2907 | * safe to call WaitXLogInsertionsToFinish while holding |
| 2908 | * WALWriteLock, because an in-progress insertion might need to |
| 2909 | * also grab WALWriteLock to make progress. But we know that all |
| 2910 | * the insertions up to insertpos have already finished, because |
| 2911 | * that's what the earlier WaitXLogInsertionsToFinish() returned. |
| 2912 | * We're only calling it again to allow insertpos to be moved |
| 2913 | * further forward, not to actually wait for anyone. |
| 2914 | */ |
| 2915 | insertpos = WaitXLogInsertionsToFinish(insertpos); |
| 2916 | } |
| 2917 | |
| 2918 | /* try to write/flush later additions to XLOG as well */ |
| 2919 | WriteRqst.Write = insertpos; |
| 2920 | WriteRqst.Flush = insertpos; |
| 2921 | |
| 2922 | XLogWrite(WriteRqst, false); |
| 2923 | |
| 2924 | LWLockRelease(WALWriteLock); |
| 2925 | /* done */ |
| 2926 | break; |
| 2927 | } |
| 2928 | |
| 2929 | END_CRIT_SECTION(); |
| 2930 | |
| 2931 | /* wake up walsenders now that we've released heavily contended locks */ |
| 2932 | WalSndWakeupProcessRequests(); |
| 2933 | |
| 2934 | /* |
| 2935 | * If we still haven't flushed to the request point then we have a |
| 2936 | * problem; most likely, the requested flush point is past end of XLOG. |
| 2937 | * This has been seen to occur when a disk page has a corrupted LSN. |
| 2938 | * |
| 2939 | * Formerly we treated this as a PANIC condition, but that hurts the |
| 2940 | * system's robustness rather than helping it: we do not want to take down |
| 2941 | * the whole system due to corruption on one data page. In particular, if |
| 2942 | * the bad page is encountered again during recovery then we would be |
| 2943 | * unable to restart the database at all! (This scenario actually |
| 2944 | * happened in the field several times with 7.1 releases.) As of 8.4, bad |
| 2945 | * LSNs encountered during recovery are UpdateMinRecoveryPoint's problem; |
| 2946 | * the only time we can reach here during recovery is while flushing the |
| 2947 | * end-of-recovery checkpoint record, and we don't expect that to have a |
| 2948 | * bad LSN. |
| 2949 | * |
| 2950 | * Note that for calls from xact.c, the ERROR will be promoted to PANIC |
| 2951 | * since xact.c calls this routine inside a critical section. However, |
| 2952 | * calls from bufmgr.c are not within critical sections and so we will not |
| 2953 | * force a restart for a bad LSN on a data page. |
| 2954 | */ |
| 2955 | if (LogwrtResult.Flush < record) |
| 2956 | elog(ERROR, |
| 2957 | "xlog flush request %X/%X is not satisfied --- flushed only to %X/%X" , |
| 2958 | (uint32) (record >> 32), (uint32) record, |
| 2959 | (uint32) (LogwrtResult.Flush >> 32), (uint32) LogwrtResult.Flush); |
| 2960 | } |
| 2961 | |
| 2962 | /* |
| 2963 | * Write & flush xlog, but without specifying exactly where to. |
| 2964 | * |
| 2965 | * We normally write only completed blocks; but if there is nothing to do on |
| 2966 | * that basis, we check for unwritten async commits in the current incomplete |
| 2967 | * block, and write through the latest one of those. Thus, if async commits |
| 2968 | * are not being used, we will write complete blocks only. |
| 2969 | * |
| 2970 | * If, based on the above, there's anything to write we do so immediately. But |
| 2971 | * to avoid calling fsync, fdatasync et. al. at a rate that'd impact |
| 2972 | * concurrent IO, we only flush WAL every wal_writer_delay ms, or if there's |
| 2973 | * more than wal_writer_flush_after unflushed blocks. |
| 2974 | * |
| 2975 | * We can guarantee that async commits reach disk after at most three |
| 2976 | * wal_writer_delay cycles. (When flushing complete blocks, we allow XLogWrite |
| 2977 | * to write "flexibly", meaning it can stop at the end of the buffer ring; |
| 2978 | * this makes a difference only with very high load or long wal_writer_delay, |
| 2979 | * but imposes one extra cycle for the worst case for async commits.) |
| 2980 | * |
| 2981 | * This routine is invoked periodically by the background walwriter process. |
| 2982 | * |
| 2983 | * Returns true if there was any work to do, even if we skipped flushing due |
| 2984 | * to wal_writer_delay/wal_writer_flush_after. |
| 2985 | */ |
| 2986 | bool |
| 2987 | XLogBackgroundFlush(void) |
| 2988 | { |
| 2989 | XLogwrtRqst WriteRqst; |
| 2990 | bool flexible = true; |
| 2991 | static TimestampTz lastflush; |
| 2992 | TimestampTz now; |
| 2993 | int flushbytes; |
| 2994 | |
| 2995 | /* XLOG doesn't need flushing during recovery */ |
| 2996 | if (RecoveryInProgress()) |
| 2997 | return false; |
| 2998 | |
| 2999 | /* read LogwrtResult and update local state */ |
| 3000 | SpinLockAcquire(&XLogCtl->info_lck); |
| 3001 | LogwrtResult = XLogCtl->LogwrtResult; |
| 3002 | WriteRqst = XLogCtl->LogwrtRqst; |
| 3003 | SpinLockRelease(&XLogCtl->info_lck); |
| 3004 | |
| 3005 | /* back off to last completed page boundary */ |
| 3006 | WriteRqst.Write -= WriteRqst.Write % XLOG_BLCKSZ; |
| 3007 | |
| 3008 | /* if we have already flushed that far, consider async commit records */ |
| 3009 | if (WriteRqst.Write <= LogwrtResult.Flush) |
| 3010 | { |
| 3011 | SpinLockAcquire(&XLogCtl->info_lck); |
| 3012 | WriteRqst.Write = XLogCtl->asyncXactLSN; |
| 3013 | SpinLockRelease(&XLogCtl->info_lck); |
| 3014 | flexible = false; /* ensure it all gets written */ |
| 3015 | } |
| 3016 | |
| 3017 | /* |
| 3018 | * If already known flushed, we're done. Just need to check if we are |
| 3019 | * holding an open file handle to a logfile that's no longer in use, |
| 3020 | * preventing the file from being deleted. |
| 3021 | */ |
| 3022 | if (WriteRqst.Write <= LogwrtResult.Flush) |
| 3023 | { |
| 3024 | if (openLogFile >= 0) |
| 3025 | { |
| 3026 | if (!XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo, |
| 3027 | wal_segment_size)) |
| 3028 | { |
| 3029 | XLogFileClose(); |
| 3030 | } |
| 3031 | } |
| 3032 | return false; |
| 3033 | } |
| 3034 | |
| 3035 | /* |
| 3036 | * Determine how far to flush WAL, based on the wal_writer_delay and |
| 3037 | * wal_writer_flush_after GUCs. |
| 3038 | */ |
| 3039 | now = GetCurrentTimestamp(); |
| 3040 | flushbytes = |
| 3041 | WriteRqst.Write / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ; |
| 3042 | |
| 3043 | if (WalWriterFlushAfter == 0 || lastflush == 0) |
| 3044 | { |
| 3045 | /* first call, or block based limits disabled */ |
| 3046 | WriteRqst.Flush = WriteRqst.Write; |
| 3047 | lastflush = now; |
| 3048 | } |
| 3049 | else if (TimestampDifferenceExceeds(lastflush, now, WalWriterDelay)) |
| 3050 | { |
| 3051 | /* |
| 3052 | * Flush the writes at least every WalWriteDelay ms. This is important |
| 3053 | * to bound the amount of time it takes for an asynchronous commit to |
| 3054 | * hit disk. |
| 3055 | */ |
| 3056 | WriteRqst.Flush = WriteRqst.Write; |
| 3057 | lastflush = now; |
| 3058 | } |
| 3059 | else if (flushbytes >= WalWriterFlushAfter) |
| 3060 | { |
| 3061 | /* exceeded wal_writer_flush_after blocks, flush */ |
| 3062 | WriteRqst.Flush = WriteRqst.Write; |
| 3063 | lastflush = now; |
| 3064 | } |
| 3065 | else |
| 3066 | { |
| 3067 | /* no flushing, this time round */ |
| 3068 | WriteRqst.Flush = 0; |
| 3069 | } |
| 3070 | |
| 3071 | #ifdef WAL_DEBUG |
| 3072 | if (XLOG_DEBUG) |
| 3073 | elog(LOG, "xlog bg flush request write %X/%X; flush: %X/%X, current is write %X/%X; flush %X/%X" , |
| 3074 | (uint32) (WriteRqst.Write >> 32), (uint32) WriteRqst.Write, |
| 3075 | (uint32) (WriteRqst.Flush >> 32), (uint32) WriteRqst.Flush, |
| 3076 | (uint32) (LogwrtResult.Write >> 32), (uint32) LogwrtResult.Write, |
| 3077 | (uint32) (LogwrtResult.Flush >> 32), (uint32) LogwrtResult.Flush); |
| 3078 | #endif |
| 3079 | |
| 3080 | START_CRIT_SECTION(); |
| 3081 | |
| 3082 | /* now wait for any in-progress insertions to finish and get write lock */ |
| 3083 | WaitXLogInsertionsToFinish(WriteRqst.Write); |
| 3084 | LWLockAcquire(WALWriteLock, LW_EXCLUSIVE); |
| 3085 | LogwrtResult = XLogCtl->LogwrtResult; |
| 3086 | if (WriteRqst.Write > LogwrtResult.Write || |
| 3087 | WriteRqst.Flush > LogwrtResult.Flush) |
| 3088 | { |
| 3089 | XLogWrite(WriteRqst, flexible); |
| 3090 | } |
| 3091 | LWLockRelease(WALWriteLock); |
| 3092 | |
| 3093 | END_CRIT_SECTION(); |
| 3094 | |
| 3095 | /* wake up walsenders now that we've released heavily contended locks */ |
| 3096 | WalSndWakeupProcessRequests(); |
| 3097 | |
| 3098 | /* |
| 3099 | * Great, done. To take some work off the critical path, try to initialize |
| 3100 | * as many of the no-longer-needed WAL buffers for future use as we can. |
| 3101 | */ |
| 3102 | AdvanceXLInsertBuffer(InvalidXLogRecPtr, true); |
| 3103 | |
| 3104 | /* |
| 3105 | * If we determined that we need to write data, but somebody else |
| 3106 | * wrote/flushed already, it should be considered as being active, to |
| 3107 | * avoid hibernating too early. |
| 3108 | */ |
| 3109 | return true; |
| 3110 | } |
| 3111 | |
| 3112 | /* |
| 3113 | * Test whether XLOG data has been flushed up to (at least) the given position. |
| 3114 | * |
| 3115 | * Returns true if a flush is still needed. (It may be that someone else |
| 3116 | * is already in process of flushing that far, however.) |
| 3117 | */ |
| 3118 | bool |
| 3119 | XLogNeedsFlush(XLogRecPtr record) |
| 3120 | { |
| 3121 | /* |
| 3122 | * During recovery, we don't flush WAL but update minRecoveryPoint |
| 3123 | * instead. So "needs flush" is taken to mean whether minRecoveryPoint |
| 3124 | * would need to be updated. |
| 3125 | */ |
| 3126 | if (RecoveryInProgress()) |
| 3127 | { |
| 3128 | /* |
| 3129 | * An invalid minRecoveryPoint means that we need to recover all the |
| 3130 | * WAL, i.e., we're doing crash recovery. We never modify the control |
| 3131 | * file's value in that case, so we can short-circuit future checks |
| 3132 | * here too. This triggers a quick exit path for the startup process, |
| 3133 | * which cannot update its local copy of minRecoveryPoint as long as |
| 3134 | * it has not replayed all WAL available when doing crash recovery. |
| 3135 | */ |
| 3136 | if (XLogRecPtrIsInvalid(minRecoveryPoint) && InRecovery) |
| 3137 | updateMinRecoveryPoint = false; |
| 3138 | |
| 3139 | /* Quick exit if already known to be updated or cannot be updated */ |
| 3140 | if (record <= minRecoveryPoint || !updateMinRecoveryPoint) |
| 3141 | return false; |
| 3142 | |
| 3143 | /* |
| 3144 | * Update local copy of minRecoveryPoint. But if the lock is busy, |
| 3145 | * just return a conservative guess. |
| 3146 | */ |
| 3147 | if (!LWLockConditionalAcquire(ControlFileLock, LW_SHARED)) |
| 3148 | return true; |
| 3149 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
| 3150 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
| 3151 | LWLockRelease(ControlFileLock); |
| 3152 | |
| 3153 | /* |
| 3154 | * Check minRecoveryPoint for any other process than the startup |
| 3155 | * process doing crash recovery, which should not update the control |
| 3156 | * file value if crash recovery is still running. |
| 3157 | */ |
| 3158 | if (XLogRecPtrIsInvalid(minRecoveryPoint)) |
| 3159 | updateMinRecoveryPoint = false; |
| 3160 | |
| 3161 | /* check again */ |
| 3162 | if (record <= minRecoveryPoint || !updateMinRecoveryPoint) |
| 3163 | return false; |
| 3164 | else |
| 3165 | return true; |
| 3166 | } |
| 3167 | |
| 3168 | /* Quick exit if already known flushed */ |
| 3169 | if (record <= LogwrtResult.Flush) |
| 3170 | return false; |
| 3171 | |
| 3172 | /* read LogwrtResult and update local state */ |
| 3173 | SpinLockAcquire(&XLogCtl->info_lck); |
| 3174 | LogwrtResult = XLogCtl->LogwrtResult; |
| 3175 | SpinLockRelease(&XLogCtl->info_lck); |
| 3176 | |
| 3177 | /* check again */ |
| 3178 | if (record <= LogwrtResult.Flush) |
| 3179 | return false; |
| 3180 | |
| 3181 | return true; |
| 3182 | } |
| 3183 | |
| 3184 | /* |
| 3185 | * Create a new XLOG file segment, or open a pre-existing one. |
| 3186 | * |
| 3187 | * log, seg: identify segment to be created/opened. |
| 3188 | * |
| 3189 | * *use_existent: if true, OK to use a pre-existing file (else, any |
| 3190 | * pre-existing file will be deleted). On return, true if a pre-existing |
| 3191 | * file was used. |
| 3192 | * |
| 3193 | * use_lock: if true, acquire ControlFileLock while moving file into |
| 3194 | * place. This should be true except during bootstrap log creation. The |
| 3195 | * caller must *not* hold the lock at call. |
| 3196 | * |
| 3197 | * Returns FD of opened file. |
| 3198 | * |
| 3199 | * Note: errors here are ERROR not PANIC because we might or might not be |
| 3200 | * inside a critical section (eg, during checkpoint there is no reason to |
| 3201 | * take down the system on failure). They will promote to PANIC if we are |
| 3202 | * in a critical section. |
| 3203 | */ |
| 3204 | int |
| 3205 | XLogFileInit(XLogSegNo logsegno, bool *use_existent, bool use_lock) |
| 3206 | { |
| 3207 | char path[MAXPGPATH]; |
| 3208 | char tmppath[MAXPGPATH]; |
| 3209 | PGAlignedXLogBlock zbuffer; |
| 3210 | XLogSegNo installed_segno; |
| 3211 | XLogSegNo max_segno; |
| 3212 | int fd; |
| 3213 | int nbytes; |
| 3214 | int save_errno; |
| 3215 | |
| 3216 | XLogFilePath(path, ThisTimeLineID, logsegno, wal_segment_size); |
| 3217 | |
| 3218 | /* |
| 3219 | * Try to use existent file (checkpoint maker may have created it already) |
| 3220 | */ |
| 3221 | if (*use_existent) |
| 3222 | { |
| 3223 | fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method)); |
| 3224 | if (fd < 0) |
| 3225 | { |
| 3226 | if (errno != ENOENT) |
| 3227 | ereport(ERROR, |
| 3228 | (errcode_for_file_access(), |
| 3229 | errmsg("could not open file \"%s\": %m" , path))); |
| 3230 | } |
| 3231 | else |
| 3232 | return fd; |
| 3233 | } |
| 3234 | |
| 3235 | /* |
| 3236 | * Initialize an empty (all zeroes) segment. NOTE: it is possible that |
| 3237 | * another process is doing the same thing. If so, we will end up |
| 3238 | * pre-creating an extra log segment. That seems OK, and better than |
| 3239 | * holding the lock throughout this lengthy process. |
| 3240 | */ |
| 3241 | elog(DEBUG2, "creating and filling new WAL file" ); |
| 3242 | |
| 3243 | snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d" , (int) getpid()); |
| 3244 | |
| 3245 | unlink(tmppath); |
| 3246 | |
| 3247 | /* do not use get_sync_bit() here --- want to fsync only at end of fill */ |
| 3248 | fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY); |
| 3249 | if (fd < 0) |
| 3250 | ereport(ERROR, |
| 3251 | (errcode_for_file_access(), |
| 3252 | errmsg("could not create file \"%s\": %m" , tmppath))); |
| 3253 | |
| 3254 | memset(zbuffer.data, 0, XLOG_BLCKSZ); |
| 3255 | |
| 3256 | pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_WRITE); |
| 3257 | save_errno = 0; |
| 3258 | if (wal_init_zero) |
| 3259 | { |
| 3260 | /* |
| 3261 | * Zero-fill the file. With this setting, we do this the hard way to |
| 3262 | * ensure that all the file space has really been allocated. On |
| 3263 | * platforms that allow "holes" in files, just seeking to the end |
| 3264 | * doesn't allocate intermediate space. This way, we know that we |
| 3265 | * have all the space and (after the fsync below) that all the |
| 3266 | * indirect blocks are down on disk. Therefore, fdatasync(2) or |
| 3267 | * O_DSYNC will be sufficient to sync future writes to the log file. |
| 3268 | */ |
| 3269 | for (nbytes = 0; nbytes < wal_segment_size; nbytes += XLOG_BLCKSZ) |
| 3270 | { |
| 3271 | errno = 0; |
| 3272 | if (write(fd, zbuffer.data, XLOG_BLCKSZ) != XLOG_BLCKSZ) |
| 3273 | { |
| 3274 | /* if write didn't set errno, assume no disk space */ |
| 3275 | save_errno = errno ? errno : ENOSPC; |
| 3276 | break; |
| 3277 | } |
| 3278 | } |
| 3279 | } |
| 3280 | else |
| 3281 | { |
| 3282 | /* |
| 3283 | * Otherwise, seeking to the end and writing a solitary byte is |
| 3284 | * enough. |
| 3285 | */ |
| 3286 | errno = 0; |
| 3287 | if (pg_pwrite(fd, zbuffer.data, 1, wal_segment_size - 1) != 1) |
| 3288 | { |
| 3289 | /* if write didn't set errno, assume no disk space */ |
| 3290 | save_errno = errno ? errno : ENOSPC; |
| 3291 | } |
| 3292 | } |
| 3293 | pgstat_report_wait_end(); |
| 3294 | |
| 3295 | if (save_errno) |
| 3296 | { |
| 3297 | /* |
| 3298 | * If we fail to make the file, delete it to release disk space |
| 3299 | */ |
| 3300 | unlink(tmppath); |
| 3301 | |
| 3302 | close(fd); |
| 3303 | |
| 3304 | errno = save_errno; |
| 3305 | |
| 3306 | ereport(ERROR, |
| 3307 | (errcode_for_file_access(), |
| 3308 | errmsg("could not write to file \"%s\": %m" , tmppath))); |
| 3309 | } |
| 3310 | |
| 3311 | pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_SYNC); |
| 3312 | if (pg_fsync(fd) != 0) |
| 3313 | { |
| 3314 | int save_errno = errno; |
| 3315 | |
| 3316 | close(fd); |
| 3317 | errno = save_errno; |
| 3318 | ereport(ERROR, |
| 3319 | (errcode_for_file_access(), |
| 3320 | errmsg("could not fsync file \"%s\": %m" , tmppath))); |
| 3321 | } |
| 3322 | pgstat_report_wait_end(); |
| 3323 | |
| 3324 | if (close(fd)) |
| 3325 | ereport(ERROR, |
| 3326 | (errcode_for_file_access(), |
| 3327 | errmsg("could not close file \"%s\": %m" , tmppath))); |
| 3328 | |
| 3329 | /* |
| 3330 | * Now move the segment into place with its final name. |
| 3331 | * |
| 3332 | * If caller didn't want to use a pre-existing file, get rid of any |
| 3333 | * pre-existing file. Otherwise, cope with possibility that someone else |
| 3334 | * has created the file while we were filling ours: if so, use ours to |
| 3335 | * pre-create a future log segment. |
| 3336 | */ |
| 3337 | installed_segno = logsegno; |
| 3338 | |
| 3339 | /* |
| 3340 | * XXX: What should we use as max_segno? We used to use XLOGfileslop when |
| 3341 | * that was a constant, but that was always a bit dubious: normally, at a |
| 3342 | * checkpoint, XLOGfileslop was the offset from the checkpoint record, but |
| 3343 | * here, it was the offset from the insert location. We can't do the |
| 3344 | * normal XLOGfileslop calculation here because we don't have access to |
| 3345 | * the prior checkpoint's redo location. So somewhat arbitrarily, just use |
| 3346 | * CheckPointSegments. |
| 3347 | */ |
| 3348 | max_segno = logsegno + CheckPointSegments; |
| 3349 | if (!InstallXLogFileSegment(&installed_segno, tmppath, |
| 3350 | *use_existent, max_segno, |
| 3351 | use_lock)) |
| 3352 | { |
| 3353 | /* |
| 3354 | * No need for any more future segments, or InstallXLogFileSegment() |
| 3355 | * failed to rename the file into place. If the rename failed, opening |
| 3356 | * the file below will fail. |
| 3357 | */ |
| 3358 | unlink(tmppath); |
| 3359 | } |
| 3360 | |
| 3361 | /* Set flag to tell caller there was no existent file */ |
| 3362 | *use_existent = false; |
| 3363 | |
| 3364 | /* Now open original target segment (might not be file I just made) */ |
| 3365 | fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method)); |
| 3366 | if (fd < 0) |
| 3367 | ereport(ERROR, |
| 3368 | (errcode_for_file_access(), |
| 3369 | errmsg("could not open file \"%s\": %m" , path))); |
| 3370 | |
| 3371 | elog(DEBUG2, "done creating and filling new WAL file" ); |
| 3372 | |
| 3373 | return fd; |
| 3374 | } |
| 3375 | |
| 3376 | /* |
| 3377 | * Create a new XLOG file segment by copying a pre-existing one. |
| 3378 | * |
| 3379 | * destsegno: identify segment to be created. |
| 3380 | * |
| 3381 | * srcTLI, srcsegno: identify segment to be copied (could be from |
| 3382 | * a different timeline) |
| 3383 | * |
| 3384 | * upto: how much of the source file to copy (the rest is filled with |
| 3385 | * zeros) |
| 3386 | * |
| 3387 | * Currently this is only used during recovery, and so there are no locking |
| 3388 | * considerations. But we should be just as tense as XLogFileInit to avoid |
| 3389 | * emplacing a bogus file. |
| 3390 | */ |
| 3391 | static void |
| 3392 | XLogFileCopy(XLogSegNo destsegno, TimeLineID srcTLI, XLogSegNo srcsegno, |
| 3393 | int upto) |
| 3394 | { |
| 3395 | char path[MAXPGPATH]; |
| 3396 | char tmppath[MAXPGPATH]; |
| 3397 | PGAlignedXLogBlock buffer; |
| 3398 | int srcfd; |
| 3399 | int fd; |
| 3400 | int nbytes; |
| 3401 | |
| 3402 | /* |
| 3403 | * Open the source file |
| 3404 | */ |
| 3405 | XLogFilePath(path, srcTLI, srcsegno, wal_segment_size); |
| 3406 | srcfd = OpenTransientFile(path, O_RDONLY | PG_BINARY); |
| 3407 | if (srcfd < 0) |
| 3408 | ereport(ERROR, |
| 3409 | (errcode_for_file_access(), |
| 3410 | errmsg("could not open file \"%s\": %m" , path))); |
| 3411 | |
| 3412 | /* |
| 3413 | * Copy into a temp file name. |
| 3414 | */ |
| 3415 | snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d" , (int) getpid()); |
| 3416 | |
| 3417 | unlink(tmppath); |
| 3418 | |
| 3419 | /* do not use get_sync_bit() here --- want to fsync only at end of fill */ |
| 3420 | fd = OpenTransientFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY); |
| 3421 | if (fd < 0) |
| 3422 | ereport(ERROR, |
| 3423 | (errcode_for_file_access(), |
| 3424 | errmsg("could not create file \"%s\": %m" , tmppath))); |
| 3425 | |
| 3426 | /* |
| 3427 | * Do the data copying. |
| 3428 | */ |
| 3429 | for (nbytes = 0; nbytes < wal_segment_size; nbytes += sizeof(buffer)) |
| 3430 | { |
| 3431 | int nread; |
| 3432 | |
| 3433 | nread = upto - nbytes; |
| 3434 | |
| 3435 | /* |
| 3436 | * The part that is not read from the source file is filled with |
| 3437 | * zeros. |
| 3438 | */ |
| 3439 | if (nread < sizeof(buffer)) |
| 3440 | memset(buffer.data, 0, sizeof(buffer)); |
| 3441 | |
| 3442 | if (nread > 0) |
| 3443 | { |
| 3444 | int r; |
| 3445 | |
| 3446 | if (nread > sizeof(buffer)) |
| 3447 | nread = sizeof(buffer); |
| 3448 | pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_READ); |
| 3449 | r = read(srcfd, buffer.data, nread); |
| 3450 | if (r != nread) |
| 3451 | { |
| 3452 | if (r < 0) |
| 3453 | ereport(ERROR, |
| 3454 | (errcode_for_file_access(), |
| 3455 | errmsg("could not read file \"%s\": %m" , |
| 3456 | path))); |
| 3457 | else |
| 3458 | ereport(ERROR, |
| 3459 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 3460 | errmsg("could not read file \"%s\": read %d of %zu" , |
| 3461 | path, r, (Size) nread))); |
| 3462 | } |
| 3463 | pgstat_report_wait_end(); |
| 3464 | } |
| 3465 | errno = 0; |
| 3466 | pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_WRITE); |
| 3467 | if ((int) write(fd, buffer.data, sizeof(buffer)) != (int) sizeof(buffer)) |
| 3468 | { |
| 3469 | int save_errno = errno; |
| 3470 | |
| 3471 | /* |
| 3472 | * If we fail to make the file, delete it to release disk space |
| 3473 | */ |
| 3474 | unlink(tmppath); |
| 3475 | /* if write didn't set errno, assume problem is no disk space */ |
| 3476 | errno = save_errno ? save_errno : ENOSPC; |
| 3477 | |
| 3478 | ereport(ERROR, |
| 3479 | (errcode_for_file_access(), |
| 3480 | errmsg("could not write to file \"%s\": %m" , tmppath))); |
| 3481 | } |
| 3482 | pgstat_report_wait_end(); |
| 3483 | } |
| 3484 | |
| 3485 | pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_SYNC); |
| 3486 | if (pg_fsync(fd) != 0) |
| 3487 | ereport(data_sync_elevel(ERROR), |
| 3488 | (errcode_for_file_access(), |
| 3489 | errmsg("could not fsync file \"%s\": %m" , tmppath))); |
| 3490 | pgstat_report_wait_end(); |
| 3491 | |
| 3492 | if (CloseTransientFile(fd)) |
| 3493 | ereport(ERROR, |
| 3494 | (errcode_for_file_access(), |
| 3495 | errmsg("could not close file \"%s\": %m" , tmppath))); |
| 3496 | |
| 3497 | if (CloseTransientFile(srcfd)) |
| 3498 | ereport(ERROR, |
| 3499 | (errcode_for_file_access(), |
| 3500 | errmsg("could not close file \"%s\": %m" , path))); |
| 3501 | |
| 3502 | /* |
| 3503 | * Now move the segment into place with its final name. |
| 3504 | */ |
| 3505 | if (!InstallXLogFileSegment(&destsegno, tmppath, false, 0, false)) |
| 3506 | elog(ERROR, "InstallXLogFileSegment should not have failed" ); |
| 3507 | } |
| 3508 | |
| 3509 | /* |
| 3510 | * Install a new XLOG segment file as a current or future log segment. |
| 3511 | * |
| 3512 | * This is used both to install a newly-created segment (which has a temp |
| 3513 | * filename while it's being created) and to recycle an old segment. |
| 3514 | * |
| 3515 | * *segno: identify segment to install as (or first possible target). |
| 3516 | * When find_free is true, this is modified on return to indicate the |
| 3517 | * actual installation location or last segment searched. |
| 3518 | * |
| 3519 | * tmppath: initial name of file to install. It will be renamed into place. |
| 3520 | * |
| 3521 | * find_free: if true, install the new segment at the first empty segno |
| 3522 | * number at or after the passed numbers. If false, install the new segment |
| 3523 | * exactly where specified, deleting any existing segment file there. |
| 3524 | * |
| 3525 | * max_segno: maximum segment number to install the new file as. Fail if no |
| 3526 | * free slot is found between *segno and max_segno. (Ignored when find_free |
| 3527 | * is false.) |
| 3528 | * |
| 3529 | * use_lock: if true, acquire ControlFileLock while moving file into |
| 3530 | * place. This should be true except during bootstrap log creation. The |
| 3531 | * caller must *not* hold the lock at call. |
| 3532 | * |
| 3533 | * Returns true if the file was installed successfully. false indicates that |
| 3534 | * max_segno limit was exceeded, or an error occurred while renaming the |
| 3535 | * file into place. |
| 3536 | */ |
| 3537 | static bool |
| 3538 | InstallXLogFileSegment(XLogSegNo *segno, char *tmppath, |
| 3539 | bool find_free, XLogSegNo max_segno, |
| 3540 | bool use_lock) |
| 3541 | { |
| 3542 | char path[MAXPGPATH]; |
| 3543 | struct stat stat_buf; |
| 3544 | |
| 3545 | XLogFilePath(path, ThisTimeLineID, *segno, wal_segment_size); |
| 3546 | |
| 3547 | /* |
| 3548 | * We want to be sure that only one process does this at a time. |
| 3549 | */ |
| 3550 | if (use_lock) |
| 3551 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 3552 | |
| 3553 | if (!find_free) |
| 3554 | { |
| 3555 | /* Force installation: get rid of any pre-existing segment file */ |
| 3556 | durable_unlink(path, DEBUG1); |
| 3557 | } |
| 3558 | else |
| 3559 | { |
| 3560 | /* Find a free slot to put it in */ |
| 3561 | while (stat(path, &stat_buf) == 0) |
| 3562 | { |
| 3563 | if ((*segno) >= max_segno) |
| 3564 | { |
| 3565 | /* Failed to find a free slot within specified range */ |
| 3566 | if (use_lock) |
| 3567 | LWLockRelease(ControlFileLock); |
| 3568 | return false; |
| 3569 | } |
| 3570 | (*segno)++; |
| 3571 | XLogFilePath(path, ThisTimeLineID, *segno, wal_segment_size); |
| 3572 | } |
| 3573 | } |
| 3574 | |
| 3575 | /* |
| 3576 | * Perform the rename using link if available, paranoidly trying to avoid |
| 3577 | * overwriting an existing file (there shouldn't be one). |
| 3578 | */ |
| 3579 | if (durable_link_or_rename(tmppath, path, LOG) != 0) |
| 3580 | { |
| 3581 | if (use_lock) |
| 3582 | LWLockRelease(ControlFileLock); |
| 3583 | /* durable_link_or_rename already emitted log message */ |
| 3584 | return false; |
| 3585 | } |
| 3586 | |
| 3587 | if (use_lock) |
| 3588 | LWLockRelease(ControlFileLock); |
| 3589 | |
| 3590 | return true; |
| 3591 | } |
| 3592 | |
| 3593 | /* |
| 3594 | * Open a pre-existing logfile segment for writing. |
| 3595 | */ |
| 3596 | int |
| 3597 | XLogFileOpen(XLogSegNo segno) |
| 3598 | { |
| 3599 | char path[MAXPGPATH]; |
| 3600 | int fd; |
| 3601 | |
| 3602 | XLogFilePath(path, ThisTimeLineID, segno, wal_segment_size); |
| 3603 | |
| 3604 | fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method)); |
| 3605 | if (fd < 0) |
| 3606 | ereport(PANIC, |
| 3607 | (errcode_for_file_access(), |
| 3608 | errmsg("could not open file \"%s\": %m" , path))); |
| 3609 | |
| 3610 | return fd; |
| 3611 | } |
| 3612 | |
| 3613 | /* |
| 3614 | * Open a logfile segment for reading (during recovery). |
| 3615 | * |
| 3616 | * If source == XLOG_FROM_ARCHIVE, the segment is retrieved from archive. |
| 3617 | * Otherwise, it's assumed to be already available in pg_wal. |
| 3618 | */ |
| 3619 | static int |
| 3620 | XLogFileRead(XLogSegNo segno, int emode, TimeLineID tli, |
| 3621 | int source, bool notfoundOk) |
| 3622 | { |
| 3623 | char xlogfname[MAXFNAMELEN]; |
| 3624 | char activitymsg[MAXFNAMELEN + 16]; |
| 3625 | char path[MAXPGPATH]; |
| 3626 | int fd; |
| 3627 | |
| 3628 | XLogFileName(xlogfname, tli, segno, wal_segment_size); |
| 3629 | |
| 3630 | switch (source) |
| 3631 | { |
| 3632 | case XLOG_FROM_ARCHIVE: |
| 3633 | /* Report recovery progress in PS display */ |
| 3634 | snprintf(activitymsg, sizeof(activitymsg), "waiting for %s" , |
| 3635 | xlogfname); |
| 3636 | set_ps_display(activitymsg, false); |
| 3637 | |
| 3638 | restoredFromArchive = RestoreArchivedFile(path, xlogfname, |
| 3639 | "RECOVERYXLOG" , |
| 3640 | wal_segment_size, |
| 3641 | InRedo); |
| 3642 | if (!restoredFromArchive) |
| 3643 | return -1; |
| 3644 | break; |
| 3645 | |
| 3646 | case XLOG_FROM_PG_WAL: |
| 3647 | case XLOG_FROM_STREAM: |
| 3648 | XLogFilePath(path, tli, segno, wal_segment_size); |
| 3649 | restoredFromArchive = false; |
| 3650 | break; |
| 3651 | |
| 3652 | default: |
| 3653 | elog(ERROR, "invalid XLogFileRead source %d" , source); |
| 3654 | } |
| 3655 | |
| 3656 | /* |
| 3657 | * If the segment was fetched from archival storage, replace the existing |
| 3658 | * xlog segment (if any) with the archival version. |
| 3659 | */ |
| 3660 | if (source == XLOG_FROM_ARCHIVE) |
| 3661 | { |
| 3662 | KeepFileRestoredFromArchive(path, xlogfname); |
| 3663 | |
| 3664 | /* |
| 3665 | * Set path to point at the new file in pg_wal. |
| 3666 | */ |
| 3667 | snprintf(path, MAXPGPATH, XLOGDIR "/%s" , xlogfname); |
| 3668 | } |
| 3669 | |
| 3670 | fd = BasicOpenFile(path, O_RDONLY | PG_BINARY); |
| 3671 | if (fd >= 0) |
| 3672 | { |
| 3673 | /* Success! */ |
| 3674 | curFileTLI = tli; |
| 3675 | |
| 3676 | /* Report recovery progress in PS display */ |
| 3677 | snprintf(activitymsg, sizeof(activitymsg), "recovering %s" , |
| 3678 | xlogfname); |
| 3679 | set_ps_display(activitymsg, false); |
| 3680 | |
| 3681 | /* Track source of data in assorted state variables */ |
| 3682 | readSource = source; |
| 3683 | XLogReceiptSource = source; |
| 3684 | /* In FROM_STREAM case, caller tracks receipt time, not me */ |
| 3685 | if (source != XLOG_FROM_STREAM) |
| 3686 | XLogReceiptTime = GetCurrentTimestamp(); |
| 3687 | |
| 3688 | return fd; |
| 3689 | } |
| 3690 | if (errno != ENOENT || !notfoundOk) /* unexpected failure? */ |
| 3691 | ereport(PANIC, |
| 3692 | (errcode_for_file_access(), |
| 3693 | errmsg("could not open file \"%s\": %m" , path))); |
| 3694 | return -1; |
| 3695 | } |
| 3696 | |
| 3697 | /* |
| 3698 | * Open a logfile segment for reading (during recovery). |
| 3699 | * |
| 3700 | * This version searches for the segment with any TLI listed in expectedTLEs. |
| 3701 | */ |
| 3702 | static int |
| 3703 | XLogFileReadAnyTLI(XLogSegNo segno, int emode, int source) |
| 3704 | { |
| 3705 | char path[MAXPGPATH]; |
| 3706 | ListCell *cell; |
| 3707 | int fd; |
| 3708 | List *tles; |
| 3709 | |
| 3710 | /* |
| 3711 | * Loop looking for a suitable timeline ID: we might need to read any of |
| 3712 | * the timelines listed in expectedTLEs. |
| 3713 | * |
| 3714 | * We expect curFileTLI on entry to be the TLI of the preceding file in |
| 3715 | * sequence, or 0 if there was no predecessor. We do not allow curFileTLI |
| 3716 | * to go backwards; this prevents us from picking up the wrong file when a |
| 3717 | * parent timeline extends to higher segment numbers than the child we |
| 3718 | * want to read. |
| 3719 | * |
| 3720 | * If we haven't read the timeline history file yet, read it now, so that |
| 3721 | * we know which TLIs to scan. We don't save the list in expectedTLEs, |
| 3722 | * however, unless we actually find a valid segment. That way if there is |
| 3723 | * neither a timeline history file nor a WAL segment in the archive, and |
| 3724 | * streaming replication is set up, we'll read the timeline history file |
| 3725 | * streamed from the master when we start streaming, instead of recovering |
| 3726 | * with a dummy history generated here. |
| 3727 | */ |
| 3728 | if (expectedTLEs) |
| 3729 | tles = expectedTLEs; |
| 3730 | else |
| 3731 | tles = readTimeLineHistory(recoveryTargetTLI); |
| 3732 | |
| 3733 | foreach(cell, tles) |
| 3734 | { |
| 3735 | TimeLineID tli = ((TimeLineHistoryEntry *) lfirst(cell))->tli; |
| 3736 | |
| 3737 | if (tli < curFileTLI) |
| 3738 | break; /* don't bother looking at too-old TLIs */ |
| 3739 | |
| 3740 | if (source == XLOG_FROM_ANY || source == XLOG_FROM_ARCHIVE) |
| 3741 | { |
| 3742 | fd = XLogFileRead(segno, emode, tli, |
| 3743 | XLOG_FROM_ARCHIVE, true); |
| 3744 | if (fd != -1) |
| 3745 | { |
| 3746 | elog(DEBUG1, "got WAL segment from archive" ); |
| 3747 | if (!expectedTLEs) |
| 3748 | expectedTLEs = tles; |
| 3749 | return fd; |
| 3750 | } |
| 3751 | } |
| 3752 | |
| 3753 | if (source == XLOG_FROM_ANY || source == XLOG_FROM_PG_WAL) |
| 3754 | { |
| 3755 | fd = XLogFileRead(segno, emode, tli, |
| 3756 | XLOG_FROM_PG_WAL, true); |
| 3757 | if (fd != -1) |
| 3758 | { |
| 3759 | if (!expectedTLEs) |
| 3760 | expectedTLEs = tles; |
| 3761 | return fd; |
| 3762 | } |
| 3763 | } |
| 3764 | } |
| 3765 | |
| 3766 | /* Couldn't find it. For simplicity, complain about front timeline */ |
| 3767 | XLogFilePath(path, recoveryTargetTLI, segno, wal_segment_size); |
| 3768 | errno = ENOENT; |
| 3769 | ereport(emode, |
| 3770 | (errcode_for_file_access(), |
| 3771 | errmsg("could not open file \"%s\": %m" , path))); |
| 3772 | return -1; |
| 3773 | } |
| 3774 | |
| 3775 | /* |
| 3776 | * Close the current logfile segment for writing. |
| 3777 | */ |
| 3778 | static void |
| 3779 | XLogFileClose(void) |
| 3780 | { |
| 3781 | Assert(openLogFile >= 0); |
| 3782 | |
| 3783 | /* |
| 3784 | * WAL segment files will not be re-read in normal operation, so we advise |
| 3785 | * the OS to release any cached pages. But do not do so if WAL archiving |
| 3786 | * or streaming is active, because archiver and walsender process could |
| 3787 | * use the cache to read the WAL segment. |
| 3788 | */ |
| 3789 | #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED) |
| 3790 | if (!XLogIsNeeded()) |
| 3791 | (void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED); |
| 3792 | #endif |
| 3793 | |
| 3794 | if (close(openLogFile)) |
| 3795 | ereport(PANIC, |
| 3796 | (errcode_for_file_access(), |
| 3797 | errmsg("could not close file \"%s\": %m" , |
| 3798 | XLogFileNameP(ThisTimeLineID, openLogSegNo)))); |
| 3799 | openLogFile = -1; |
| 3800 | } |
| 3801 | |
| 3802 | /* |
| 3803 | * Preallocate log files beyond the specified log endpoint. |
| 3804 | * |
| 3805 | * XXX this is currently extremely conservative, since it forces only one |
| 3806 | * future log segment to exist, and even that only if we are 75% done with |
| 3807 | * the current one. This is only appropriate for very low-WAL-volume systems. |
| 3808 | * High-volume systems will be OK once they've built up a sufficient set of |
| 3809 | * recycled log segments, but the startup transient is likely to include |
| 3810 | * a lot of segment creations by foreground processes, which is not so good. |
| 3811 | */ |
| 3812 | static void |
| 3813 | PreallocXlogFiles(XLogRecPtr endptr) |
| 3814 | { |
| 3815 | XLogSegNo _logSegNo; |
| 3816 | int lf; |
| 3817 | bool use_existent; |
| 3818 | uint64 offset; |
| 3819 | |
| 3820 | XLByteToPrevSeg(endptr, _logSegNo, wal_segment_size); |
| 3821 | offset = XLogSegmentOffset(endptr - 1, wal_segment_size); |
| 3822 | if (offset >= (uint32) (0.75 * wal_segment_size)) |
| 3823 | { |
| 3824 | _logSegNo++; |
| 3825 | use_existent = true; |
| 3826 | lf = XLogFileInit(_logSegNo, &use_existent, true); |
| 3827 | close(lf); |
| 3828 | if (!use_existent) |
| 3829 | CheckpointStats.ckpt_segs_added++; |
| 3830 | } |
| 3831 | } |
| 3832 | |
| 3833 | /* |
| 3834 | * Throws an error if the given log segment has already been removed or |
| 3835 | * recycled. The caller should only pass a segment that it knows to have |
| 3836 | * existed while the server has been running, as this function always |
| 3837 | * succeeds if no WAL segments have been removed since startup. |
| 3838 | * 'tli' is only used in the error message. |
| 3839 | * |
| 3840 | * Note: this function guarantees to keep errno unchanged on return. |
| 3841 | * This supports callers that use this to possibly deliver a better |
| 3842 | * error message about a missing file, while still being able to throw |
| 3843 | * a normal file-access error afterwards, if this does return. |
| 3844 | */ |
| 3845 | void |
| 3846 | CheckXLogRemoved(XLogSegNo segno, TimeLineID tli) |
| 3847 | { |
| 3848 | int save_errno = errno; |
| 3849 | XLogSegNo lastRemovedSegNo; |
| 3850 | |
| 3851 | SpinLockAcquire(&XLogCtl->info_lck); |
| 3852 | lastRemovedSegNo = XLogCtl->lastRemovedSegNo; |
| 3853 | SpinLockRelease(&XLogCtl->info_lck); |
| 3854 | |
| 3855 | if (segno <= lastRemovedSegNo) |
| 3856 | { |
| 3857 | char filename[MAXFNAMELEN]; |
| 3858 | |
| 3859 | XLogFileName(filename, tli, segno, wal_segment_size); |
| 3860 | errno = save_errno; |
| 3861 | ereport(ERROR, |
| 3862 | (errcode_for_file_access(), |
| 3863 | errmsg("requested WAL segment %s has already been removed" , |
| 3864 | filename))); |
| 3865 | } |
| 3866 | errno = save_errno; |
| 3867 | } |
| 3868 | |
| 3869 | /* |
| 3870 | * Return the last WAL segment removed, or 0 if no segment has been removed |
| 3871 | * since startup. |
| 3872 | * |
| 3873 | * NB: the result can be out of date arbitrarily fast, the caller has to deal |
| 3874 | * with that. |
| 3875 | */ |
| 3876 | XLogSegNo |
| 3877 | XLogGetLastRemovedSegno(void) |
| 3878 | { |
| 3879 | XLogSegNo lastRemovedSegNo; |
| 3880 | |
| 3881 | SpinLockAcquire(&XLogCtl->info_lck); |
| 3882 | lastRemovedSegNo = XLogCtl->lastRemovedSegNo; |
| 3883 | SpinLockRelease(&XLogCtl->info_lck); |
| 3884 | |
| 3885 | return lastRemovedSegNo; |
| 3886 | } |
| 3887 | |
| 3888 | /* |
| 3889 | * Update the last removed segno pointer in shared memory, to reflect |
| 3890 | * that the given XLOG file has been removed. |
| 3891 | */ |
| 3892 | static void |
| 3893 | UpdateLastRemovedPtr(char *filename) |
| 3894 | { |
| 3895 | uint32 tli; |
| 3896 | XLogSegNo segno; |
| 3897 | |
| 3898 | XLogFromFileName(filename, &tli, &segno, wal_segment_size); |
| 3899 | |
| 3900 | SpinLockAcquire(&XLogCtl->info_lck); |
| 3901 | if (segno > XLogCtl->lastRemovedSegNo) |
| 3902 | XLogCtl->lastRemovedSegNo = segno; |
| 3903 | SpinLockRelease(&XLogCtl->info_lck); |
| 3904 | } |
| 3905 | |
| 3906 | /* |
| 3907 | * Remove all temporary log files in pg_wal |
| 3908 | * |
| 3909 | * This is called at the beginning of recovery after a previous crash, |
| 3910 | * at a point where no other processes write fresh WAL data. |
| 3911 | */ |
| 3912 | static void |
| 3913 | RemoveTempXlogFiles(void) |
| 3914 | { |
| 3915 | DIR *xldir; |
| 3916 | struct dirent *xlde; |
| 3917 | |
| 3918 | elog(DEBUG2, "removing all temporary WAL segments" ); |
| 3919 | |
| 3920 | xldir = AllocateDir(XLOGDIR); |
| 3921 | while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) |
| 3922 | { |
| 3923 | char path[MAXPGPATH]; |
| 3924 | |
| 3925 | if (strncmp(xlde->d_name, "xlogtemp." , 9) != 0) |
| 3926 | continue; |
| 3927 | |
| 3928 | snprintf(path, MAXPGPATH, XLOGDIR "/%s" , xlde->d_name); |
| 3929 | unlink(path); |
| 3930 | elog(DEBUG2, "removed temporary WAL segment \"%s\"" , path); |
| 3931 | } |
| 3932 | FreeDir(xldir); |
| 3933 | } |
| 3934 | |
| 3935 | /* |
| 3936 | * Recycle or remove all log files older or equal to passed segno. |
| 3937 | * |
| 3938 | * endptr is current (or recent) end of xlog, and RedoRecPtr is the |
| 3939 | * redo pointer of the last checkpoint. These are used to determine |
| 3940 | * whether we want to recycle rather than delete no-longer-wanted log files. |
| 3941 | */ |
| 3942 | static void |
| 3943 | RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr RedoRecPtr, XLogRecPtr endptr) |
| 3944 | { |
| 3945 | DIR *xldir; |
| 3946 | struct dirent *xlde; |
| 3947 | char lastoff[MAXFNAMELEN]; |
| 3948 | |
| 3949 | /* |
| 3950 | * Construct a filename of the last segment to be kept. The timeline ID |
| 3951 | * doesn't matter, we ignore that in the comparison. (During recovery, |
| 3952 | * ThisTimeLineID isn't set, so we can't use that.) |
| 3953 | */ |
| 3954 | XLogFileName(lastoff, 0, segno, wal_segment_size); |
| 3955 | |
| 3956 | elog(DEBUG2, "attempting to remove WAL segments older than log file %s" , |
| 3957 | lastoff); |
| 3958 | |
| 3959 | xldir = AllocateDir(XLOGDIR); |
| 3960 | |
| 3961 | while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) |
| 3962 | { |
| 3963 | /* Ignore files that are not XLOG segments */ |
| 3964 | if (!IsXLogFileName(xlde->d_name) && |
| 3965 | !IsPartialXLogFileName(xlde->d_name)) |
| 3966 | continue; |
| 3967 | |
| 3968 | /* |
| 3969 | * We ignore the timeline part of the XLOG segment identifiers in |
| 3970 | * deciding whether a segment is still needed. This ensures that we |
| 3971 | * won't prematurely remove a segment from a parent timeline. We could |
| 3972 | * probably be a little more proactive about removing segments of |
| 3973 | * non-parent timelines, but that would be a whole lot more |
| 3974 | * complicated. |
| 3975 | * |
| 3976 | * We use the alphanumeric sorting property of the filenames to decide |
| 3977 | * which ones are earlier than the lastoff segment. |
| 3978 | */ |
| 3979 | if (strcmp(xlde->d_name + 8, lastoff + 8) <= 0) |
| 3980 | { |
| 3981 | if (XLogArchiveCheckDone(xlde->d_name)) |
| 3982 | { |
| 3983 | /* Update the last removed location in shared memory first */ |
| 3984 | UpdateLastRemovedPtr(xlde->d_name); |
| 3985 | |
| 3986 | RemoveXlogFile(xlde->d_name, RedoRecPtr, endptr); |
| 3987 | } |
| 3988 | } |
| 3989 | } |
| 3990 | |
| 3991 | FreeDir(xldir); |
| 3992 | } |
| 3993 | |
| 3994 | /* |
| 3995 | * Remove WAL files that are not part of the given timeline's history. |
| 3996 | * |
| 3997 | * This is called during recovery, whenever we switch to follow a new |
| 3998 | * timeline, and at the end of recovery when we create a new timeline. We |
| 3999 | * wouldn't otherwise care about extra WAL files lying in pg_wal, but they |
| 4000 | * might be leftover pre-allocated or recycled WAL segments on the old timeline |
| 4001 | * that we haven't used yet, and contain garbage. If we just leave them in |
| 4002 | * pg_wal, they will eventually be archived, and we can't let that happen. |
| 4003 | * Files that belong to our timeline history are valid, because we have |
| 4004 | * successfully replayed them, but from others we can't be sure. |
| 4005 | * |
| 4006 | * 'switchpoint' is the current point in WAL where we switch to new timeline, |
| 4007 | * and 'newTLI' is the new timeline we switch to. |
| 4008 | */ |
| 4009 | static void |
| 4010 | RemoveNonParentXlogFiles(XLogRecPtr switchpoint, TimeLineID newTLI) |
| 4011 | { |
| 4012 | DIR *xldir; |
| 4013 | struct dirent *xlde; |
| 4014 | char switchseg[MAXFNAMELEN]; |
| 4015 | XLogSegNo endLogSegNo; |
| 4016 | |
| 4017 | XLByteToPrevSeg(switchpoint, endLogSegNo, wal_segment_size); |
| 4018 | |
| 4019 | /* |
| 4020 | * Construct a filename of the last segment to be kept. |
| 4021 | */ |
| 4022 | XLogFileName(switchseg, newTLI, endLogSegNo, wal_segment_size); |
| 4023 | |
| 4024 | elog(DEBUG2, "attempting to remove WAL segments newer than log file %s" , |
| 4025 | switchseg); |
| 4026 | |
| 4027 | xldir = AllocateDir(XLOGDIR); |
| 4028 | |
| 4029 | while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) |
| 4030 | { |
| 4031 | /* Ignore files that are not XLOG segments */ |
| 4032 | if (!IsXLogFileName(xlde->d_name)) |
| 4033 | continue; |
| 4034 | |
| 4035 | /* |
| 4036 | * Remove files that are on a timeline older than the new one we're |
| 4037 | * switching to, but with a segment number >= the first segment on the |
| 4038 | * new timeline. |
| 4039 | */ |
| 4040 | if (strncmp(xlde->d_name, switchseg, 8) < 0 && |
| 4041 | strcmp(xlde->d_name + 8, switchseg + 8) > 0) |
| 4042 | { |
| 4043 | /* |
| 4044 | * If the file has already been marked as .ready, however, don't |
| 4045 | * remove it yet. It should be OK to remove it - files that are |
| 4046 | * not part of our timeline history are not required for recovery |
| 4047 | * - but seems safer to let them be archived and removed later. |
| 4048 | */ |
| 4049 | if (!XLogArchiveIsReady(xlde->d_name)) |
| 4050 | RemoveXlogFile(xlde->d_name, InvalidXLogRecPtr, switchpoint); |
| 4051 | } |
| 4052 | } |
| 4053 | |
| 4054 | FreeDir(xldir); |
| 4055 | } |
| 4056 | |
| 4057 | /* |
| 4058 | * Recycle or remove a log file that's no longer needed. |
| 4059 | * |
| 4060 | * endptr is current (or recent) end of xlog, and RedoRecPtr is the |
| 4061 | * redo pointer of the last checkpoint. These are used to determine |
| 4062 | * whether we want to recycle rather than delete no-longer-wanted log files. |
| 4063 | * If RedoRecPtr is not known, pass invalid, and the function will recycle, |
| 4064 | * somewhat arbitrarily, 10 future segments. |
| 4065 | */ |
| 4066 | static void |
| 4067 | RemoveXlogFile(const char *segname, XLogRecPtr RedoRecPtr, XLogRecPtr endptr) |
| 4068 | { |
| 4069 | char path[MAXPGPATH]; |
| 4070 | #ifdef WIN32 |
| 4071 | char newpath[MAXPGPATH]; |
| 4072 | #endif |
| 4073 | struct stat statbuf; |
| 4074 | XLogSegNo endlogSegNo; |
| 4075 | XLogSegNo recycleSegNo; |
| 4076 | |
| 4077 | if (wal_recycle) |
| 4078 | { |
| 4079 | /* |
| 4080 | * Initialize info about where to try to recycle to. |
| 4081 | */ |
| 4082 | XLByteToSeg(endptr, endlogSegNo, wal_segment_size); |
| 4083 | if (RedoRecPtr == InvalidXLogRecPtr) |
| 4084 | recycleSegNo = endlogSegNo + 10; |
| 4085 | else |
| 4086 | recycleSegNo = XLOGfileslop(RedoRecPtr); |
| 4087 | } |
| 4088 | else |
| 4089 | recycleSegNo = 0; /* keep compiler quiet */ |
| 4090 | |
| 4091 | snprintf(path, MAXPGPATH, XLOGDIR "/%s" , segname); |
| 4092 | |
| 4093 | /* |
| 4094 | * Before deleting the file, see if it can be recycled as a future log |
| 4095 | * segment. Only recycle normal files, pg_standby for example can create |
| 4096 | * symbolic links pointing to a separate archive directory. |
| 4097 | */ |
| 4098 | if (wal_recycle && |
| 4099 | endlogSegNo <= recycleSegNo && |
| 4100 | lstat(path, &statbuf) == 0 && S_ISREG(statbuf.st_mode) && |
| 4101 | InstallXLogFileSegment(&endlogSegNo, path, |
| 4102 | true, recycleSegNo, true)) |
| 4103 | { |
| 4104 | ereport(DEBUG2, |
| 4105 | (errmsg("recycled write-ahead log file \"%s\"" , |
| 4106 | segname))); |
| 4107 | CheckpointStats.ckpt_segs_recycled++; |
| 4108 | /* Needn't recheck that slot on future iterations */ |
| 4109 | endlogSegNo++; |
| 4110 | } |
| 4111 | else |
| 4112 | { |
| 4113 | /* No need for any more future segments... */ |
| 4114 | int rc; |
| 4115 | |
| 4116 | ereport(DEBUG2, |
| 4117 | (errmsg("removing write-ahead log file \"%s\"" , |
| 4118 | segname))); |
| 4119 | |
| 4120 | #ifdef WIN32 |
| 4121 | |
| 4122 | /* |
| 4123 | * On Windows, if another process (e.g another backend) holds the file |
| 4124 | * open in FILE_SHARE_DELETE mode, unlink will succeed, but the file |
| 4125 | * will still show up in directory listing until the last handle is |
| 4126 | * closed. To avoid confusing the lingering deleted file for a live |
| 4127 | * WAL file that needs to be archived, rename it before deleting it. |
| 4128 | * |
| 4129 | * If another process holds the file open without FILE_SHARE_DELETE |
| 4130 | * flag, rename will fail. We'll try again at the next checkpoint. |
| 4131 | */ |
| 4132 | snprintf(newpath, MAXPGPATH, "%s.deleted" , path); |
| 4133 | if (rename(path, newpath) != 0) |
| 4134 | { |
| 4135 | ereport(LOG, |
| 4136 | (errcode_for_file_access(), |
| 4137 | errmsg("could not rename file \"%s\": %m" , |
| 4138 | path))); |
| 4139 | return; |
| 4140 | } |
| 4141 | rc = durable_unlink(newpath, LOG); |
| 4142 | #else |
| 4143 | rc = durable_unlink(path, LOG); |
| 4144 | #endif |
| 4145 | if (rc != 0) |
| 4146 | { |
| 4147 | /* Message already logged by durable_unlink() */ |
| 4148 | return; |
| 4149 | } |
| 4150 | CheckpointStats.ckpt_segs_removed++; |
| 4151 | } |
| 4152 | |
| 4153 | XLogArchiveCleanup(segname); |
| 4154 | } |
| 4155 | |
| 4156 | /* |
| 4157 | * Verify whether pg_wal and pg_wal/archive_status exist. |
| 4158 | * If the latter does not exist, recreate it. |
| 4159 | * |
| 4160 | * It is not the goal of this function to verify the contents of these |
| 4161 | * directories, but to help in cases where someone has performed a cluster |
| 4162 | * copy for PITR purposes but omitted pg_wal from the copy. |
| 4163 | * |
| 4164 | * We could also recreate pg_wal if it doesn't exist, but a deliberate |
| 4165 | * policy decision was made not to. It is fairly common for pg_wal to be |
| 4166 | * a symlink, and if that was the DBA's intent then automatically making a |
| 4167 | * plain directory would result in degraded performance with no notice. |
| 4168 | */ |
| 4169 | static void |
| 4170 | ValidateXLOGDirectoryStructure(void) |
| 4171 | { |
| 4172 | char path[MAXPGPATH]; |
| 4173 | struct stat stat_buf; |
| 4174 | |
| 4175 | /* Check for pg_wal; if it doesn't exist, error out */ |
| 4176 | if (stat(XLOGDIR, &stat_buf) != 0 || |
| 4177 | !S_ISDIR(stat_buf.st_mode)) |
| 4178 | ereport(FATAL, |
| 4179 | (errmsg("required WAL directory \"%s\" does not exist" , |
| 4180 | XLOGDIR))); |
| 4181 | |
| 4182 | /* Check for archive_status */ |
| 4183 | snprintf(path, MAXPGPATH, XLOGDIR "/archive_status" ); |
| 4184 | if (stat(path, &stat_buf) == 0) |
| 4185 | { |
| 4186 | /* Check for weird cases where it exists but isn't a directory */ |
| 4187 | if (!S_ISDIR(stat_buf.st_mode)) |
| 4188 | ereport(FATAL, |
| 4189 | (errmsg("required WAL directory \"%s\" does not exist" , |
| 4190 | path))); |
| 4191 | } |
| 4192 | else |
| 4193 | { |
| 4194 | ereport(LOG, |
| 4195 | (errmsg("creating missing WAL directory \"%s\"" , path))); |
| 4196 | if (MakePGDirectory(path) < 0) |
| 4197 | ereport(FATAL, |
| 4198 | (errmsg("could not create missing directory \"%s\": %m" , |
| 4199 | path))); |
| 4200 | } |
| 4201 | } |
| 4202 | |
| 4203 | /* |
| 4204 | * Remove previous backup history files. This also retries creation of |
| 4205 | * .ready files for any backup history files for which XLogArchiveNotify |
| 4206 | * failed earlier. |
| 4207 | */ |
| 4208 | static void |
| 4209 | CleanupBackupHistory(void) |
| 4210 | { |
| 4211 | DIR *xldir; |
| 4212 | struct dirent *xlde; |
| 4213 | char path[MAXPGPATH + sizeof(XLOGDIR)]; |
| 4214 | |
| 4215 | xldir = AllocateDir(XLOGDIR); |
| 4216 | |
| 4217 | while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) |
| 4218 | { |
| 4219 | if (IsBackupHistoryFileName(xlde->d_name)) |
| 4220 | { |
| 4221 | if (XLogArchiveCheckDone(xlde->d_name)) |
| 4222 | { |
| 4223 | elog(DEBUG2, "removing WAL backup history file \"%s\"" , |
| 4224 | xlde->d_name); |
| 4225 | snprintf(path, sizeof(path), XLOGDIR "/%s" , xlde->d_name); |
| 4226 | unlink(path); |
| 4227 | XLogArchiveCleanup(xlde->d_name); |
| 4228 | } |
| 4229 | } |
| 4230 | } |
| 4231 | |
| 4232 | FreeDir(xldir); |
| 4233 | } |
| 4234 | |
| 4235 | /* |
| 4236 | * Attempt to read an XLOG record. |
| 4237 | * |
| 4238 | * If RecPtr is valid, try to read a record at that position. Otherwise |
| 4239 | * try to read a record just after the last one previously read. |
| 4240 | * |
| 4241 | * If no valid record is available, returns NULL, or fails if emode is PANIC. |
| 4242 | * (emode must be either PANIC, LOG). In standby mode, retries until a valid |
| 4243 | * record is available. |
| 4244 | */ |
| 4245 | static XLogRecord * |
| 4246 | ReadRecord(XLogReaderState *xlogreader, XLogRecPtr RecPtr, int emode, |
| 4247 | bool fetching_ckpt) |
| 4248 | { |
| 4249 | XLogRecord *record; |
| 4250 | XLogPageReadPrivate *private = (XLogPageReadPrivate *) xlogreader->private_data; |
| 4251 | |
| 4252 | /* Pass through parameters to XLogPageRead */ |
| 4253 | private->fetching_ckpt = fetching_ckpt; |
| 4254 | private->emode = emode; |
| 4255 | private->randAccess = (RecPtr != InvalidXLogRecPtr); |
| 4256 | |
| 4257 | /* This is the first attempt to read this page. */ |
| 4258 | lastSourceFailed = false; |
| 4259 | |
| 4260 | for (;;) |
| 4261 | { |
| 4262 | char *errormsg; |
| 4263 | |
| 4264 | record = XLogReadRecord(xlogreader, RecPtr, &errormsg); |
| 4265 | ReadRecPtr = xlogreader->ReadRecPtr; |
| 4266 | EndRecPtr = xlogreader->EndRecPtr; |
| 4267 | if (record == NULL) |
| 4268 | { |
| 4269 | if (readFile >= 0) |
| 4270 | { |
| 4271 | close(readFile); |
| 4272 | readFile = -1; |
| 4273 | } |
| 4274 | |
| 4275 | /* |
| 4276 | * We only end up here without a message when XLogPageRead() |
| 4277 | * failed - in that case we already logged something. In |
| 4278 | * StandbyMode that only happens if we have been triggered, so we |
| 4279 | * shouldn't loop anymore in that case. |
| 4280 | */ |
| 4281 | if (errormsg) |
| 4282 | ereport(emode_for_corrupt_record(emode, |
| 4283 | RecPtr ? RecPtr : EndRecPtr), |
| 4284 | (errmsg_internal("%s" , errormsg) /* already translated */ )); |
| 4285 | } |
| 4286 | |
| 4287 | /* |
| 4288 | * Check page TLI is one of the expected values. |
| 4289 | */ |
| 4290 | else if (!tliInHistory(xlogreader->latestPageTLI, expectedTLEs)) |
| 4291 | { |
| 4292 | char fname[MAXFNAMELEN]; |
| 4293 | XLogSegNo segno; |
| 4294 | int32 offset; |
| 4295 | |
| 4296 | XLByteToSeg(xlogreader->latestPagePtr, segno, wal_segment_size); |
| 4297 | offset = XLogSegmentOffset(xlogreader->latestPagePtr, |
| 4298 | wal_segment_size); |
| 4299 | XLogFileName(fname, xlogreader->readPageTLI, segno, |
| 4300 | wal_segment_size); |
| 4301 | ereport(emode_for_corrupt_record(emode, |
| 4302 | RecPtr ? RecPtr : EndRecPtr), |
| 4303 | (errmsg("unexpected timeline ID %u in log segment %s, offset %u" , |
| 4304 | xlogreader->latestPageTLI, |
| 4305 | fname, |
| 4306 | offset))); |
| 4307 | record = NULL; |
| 4308 | } |
| 4309 | |
| 4310 | if (record) |
| 4311 | { |
| 4312 | /* Great, got a record */ |
| 4313 | return record; |
| 4314 | } |
| 4315 | else |
| 4316 | { |
| 4317 | /* No valid record available from this source */ |
| 4318 | lastSourceFailed = true; |
| 4319 | |
| 4320 | /* |
| 4321 | * If archive recovery was requested, but we were still doing |
| 4322 | * crash recovery, switch to archive recovery and retry using the |
| 4323 | * offline archive. We have now replayed all the valid WAL in |
| 4324 | * pg_wal, so we are presumably now consistent. |
| 4325 | * |
| 4326 | * We require that there's at least some valid WAL present in |
| 4327 | * pg_wal, however (!fetching_ckpt). We could recover using the |
| 4328 | * WAL from the archive, even if pg_wal is completely empty, but |
| 4329 | * we'd have no idea how far we'd have to replay to reach |
| 4330 | * consistency. So err on the safe side and give up. |
| 4331 | */ |
| 4332 | if (!InArchiveRecovery && ArchiveRecoveryRequested && |
| 4333 | !fetching_ckpt) |
| 4334 | { |
| 4335 | ereport(DEBUG1, |
| 4336 | (errmsg_internal("reached end of WAL in pg_wal, entering archive recovery" ))); |
| 4337 | InArchiveRecovery = true; |
| 4338 | if (StandbyModeRequested) |
| 4339 | StandbyMode = true; |
| 4340 | |
| 4341 | /* initialize minRecoveryPoint to this record */ |
| 4342 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 4343 | ControlFile->state = DB_IN_ARCHIVE_RECOVERY; |
| 4344 | if (ControlFile->minRecoveryPoint < EndRecPtr) |
| 4345 | { |
| 4346 | ControlFile->minRecoveryPoint = EndRecPtr; |
| 4347 | ControlFile->minRecoveryPointTLI = ThisTimeLineID; |
| 4348 | } |
| 4349 | /* update local copy */ |
| 4350 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
| 4351 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
| 4352 | |
| 4353 | /* |
| 4354 | * The startup process can update its local copy of |
| 4355 | * minRecoveryPoint from this point. |
| 4356 | */ |
| 4357 | updateMinRecoveryPoint = true; |
| 4358 | |
| 4359 | UpdateControlFile(); |
| 4360 | LWLockRelease(ControlFileLock); |
| 4361 | |
| 4362 | CheckRecoveryConsistency(); |
| 4363 | |
| 4364 | /* |
| 4365 | * Before we retry, reset lastSourceFailed and currentSource |
| 4366 | * so that we will check the archive next. |
| 4367 | */ |
| 4368 | lastSourceFailed = false; |
| 4369 | currentSource = 0; |
| 4370 | |
| 4371 | continue; |
| 4372 | } |
| 4373 | |
| 4374 | /* In standby mode, loop back to retry. Otherwise, give up. */ |
| 4375 | if (StandbyMode && !CheckForStandbyTrigger()) |
| 4376 | continue; |
| 4377 | else |
| 4378 | return NULL; |
| 4379 | } |
| 4380 | } |
| 4381 | } |
| 4382 | |
| 4383 | /* |
| 4384 | * Scan for new timelines that might have appeared in the archive since we |
| 4385 | * started recovery. |
| 4386 | * |
| 4387 | * If there are any, the function changes recovery target TLI to the latest |
| 4388 | * one and returns 'true'. |
| 4389 | */ |
| 4390 | static bool |
| 4391 | rescanLatestTimeLine(void) |
| 4392 | { |
| 4393 | List *newExpectedTLEs; |
| 4394 | bool found; |
| 4395 | ListCell *cell; |
| 4396 | TimeLineID newtarget; |
| 4397 | TimeLineID oldtarget = recoveryTargetTLI; |
| 4398 | TimeLineHistoryEntry *currentTle = NULL; |
| 4399 | |
| 4400 | newtarget = findNewestTimeLine(recoveryTargetTLI); |
| 4401 | if (newtarget == recoveryTargetTLI) |
| 4402 | { |
| 4403 | /* No new timelines found */ |
| 4404 | return false; |
| 4405 | } |
| 4406 | |
| 4407 | /* |
| 4408 | * Determine the list of expected TLIs for the new TLI |
| 4409 | */ |
| 4410 | |
| 4411 | newExpectedTLEs = readTimeLineHistory(newtarget); |
| 4412 | |
| 4413 | /* |
| 4414 | * If the current timeline is not part of the history of the new timeline, |
| 4415 | * we cannot proceed to it. |
| 4416 | */ |
| 4417 | found = false; |
| 4418 | foreach(cell, newExpectedTLEs) |
| 4419 | { |
| 4420 | currentTle = (TimeLineHistoryEntry *) lfirst(cell); |
| 4421 | |
| 4422 | if (currentTle->tli == recoveryTargetTLI) |
| 4423 | { |
| 4424 | found = true; |
| 4425 | break; |
| 4426 | } |
| 4427 | } |
| 4428 | if (!found) |
| 4429 | { |
| 4430 | ereport(LOG, |
| 4431 | (errmsg("new timeline %u is not a child of database system timeline %u" , |
| 4432 | newtarget, |
| 4433 | ThisTimeLineID))); |
| 4434 | return false; |
| 4435 | } |
| 4436 | |
| 4437 | /* |
| 4438 | * The current timeline was found in the history file, but check that the |
| 4439 | * next timeline was forked off from it *after* the current recovery |
| 4440 | * location. |
| 4441 | */ |
| 4442 | if (currentTle->end < EndRecPtr) |
| 4443 | { |
| 4444 | ereport(LOG, |
| 4445 | (errmsg("new timeline %u forked off current database system timeline %u before current recovery point %X/%X" , |
| 4446 | newtarget, |
| 4447 | ThisTimeLineID, |
| 4448 | (uint32) (EndRecPtr >> 32), (uint32) EndRecPtr))); |
| 4449 | return false; |
| 4450 | } |
| 4451 | |
| 4452 | /* The new timeline history seems valid. Switch target */ |
| 4453 | recoveryTargetTLI = newtarget; |
| 4454 | list_free_deep(expectedTLEs); |
| 4455 | expectedTLEs = newExpectedTLEs; |
| 4456 | |
| 4457 | /* |
| 4458 | * As in StartupXLOG(), try to ensure we have all the history files |
| 4459 | * between the old target and new target in pg_wal. |
| 4460 | */ |
| 4461 | restoreTimeLineHistoryFiles(oldtarget + 1, newtarget); |
| 4462 | |
| 4463 | ereport(LOG, |
| 4464 | (errmsg("new target timeline is %u" , |
| 4465 | recoveryTargetTLI))); |
| 4466 | |
| 4467 | return true; |
| 4468 | } |
| 4469 | |
| 4470 | /* |
| 4471 | * I/O routines for pg_control |
| 4472 | * |
| 4473 | * *ControlFile is a buffer in shared memory that holds an image of the |
| 4474 | * contents of pg_control. WriteControlFile() initializes pg_control |
| 4475 | * given a preloaded buffer, ReadControlFile() loads the buffer from |
| 4476 | * the pg_control file (during postmaster or standalone-backend startup), |
| 4477 | * and UpdateControlFile() rewrites pg_control after we modify xlog state. |
| 4478 | * |
| 4479 | * For simplicity, WriteControlFile() initializes the fields of pg_control |
| 4480 | * that are related to checking backend/database compatibility, and |
| 4481 | * ReadControlFile() verifies they are correct. We could split out the |
| 4482 | * I/O and compatibility-check functions, but there seems no need currently. |
| 4483 | */ |
| 4484 | static void |
| 4485 | WriteControlFile(void) |
| 4486 | { |
| 4487 | int fd; |
| 4488 | char buffer[PG_CONTROL_FILE_SIZE]; /* need not be aligned */ |
| 4489 | |
| 4490 | /* |
| 4491 | * Ensure that the size of the pg_control data structure is sane. See the |
| 4492 | * comments for these symbols in pg_control.h. |
| 4493 | */ |
| 4494 | StaticAssertStmt(sizeof(ControlFileData) <= PG_CONTROL_MAX_SAFE_SIZE, |
| 4495 | "pg_control is too large for atomic disk writes" ); |
| 4496 | StaticAssertStmt(sizeof(ControlFileData) <= PG_CONTROL_FILE_SIZE, |
| 4497 | "sizeof(ControlFileData) exceeds PG_CONTROL_FILE_SIZE" ); |
| 4498 | |
| 4499 | /* |
| 4500 | * Initialize version and compatibility-check fields |
| 4501 | */ |
| 4502 | ControlFile->pg_control_version = PG_CONTROL_VERSION; |
| 4503 | ControlFile->catalog_version_no = CATALOG_VERSION_NO; |
| 4504 | |
| 4505 | ControlFile->maxAlign = MAXIMUM_ALIGNOF; |
| 4506 | ControlFile->floatFormat = FLOATFORMAT_VALUE; |
| 4507 | |
| 4508 | ControlFile->blcksz = BLCKSZ; |
| 4509 | ControlFile->relseg_size = RELSEG_SIZE; |
| 4510 | ControlFile->xlog_blcksz = XLOG_BLCKSZ; |
| 4511 | ControlFile->xlog_seg_size = wal_segment_size; |
| 4512 | |
| 4513 | ControlFile->nameDataLen = NAMEDATALEN; |
| 4514 | ControlFile->indexMaxKeys = INDEX_MAX_KEYS; |
| 4515 | |
| 4516 | ControlFile->toast_max_chunk_size = TOAST_MAX_CHUNK_SIZE; |
| 4517 | ControlFile->loblksize = LOBLKSIZE; |
| 4518 | |
| 4519 | ControlFile->float4ByVal = FLOAT4PASSBYVAL; |
| 4520 | ControlFile->float8ByVal = FLOAT8PASSBYVAL; |
| 4521 | |
| 4522 | /* Contents are protected with a CRC */ |
| 4523 | INIT_CRC32C(ControlFile->crc); |
| 4524 | COMP_CRC32C(ControlFile->crc, |
| 4525 | (char *) ControlFile, |
| 4526 | offsetof(ControlFileData, crc)); |
| 4527 | FIN_CRC32C(ControlFile->crc); |
| 4528 | |
| 4529 | /* |
| 4530 | * We write out PG_CONTROL_FILE_SIZE bytes into pg_control, zero-padding |
| 4531 | * the excess over sizeof(ControlFileData). This reduces the odds of |
| 4532 | * premature-EOF errors when reading pg_control. We'll still fail when we |
| 4533 | * check the contents of the file, but hopefully with a more specific |
| 4534 | * error than "couldn't read pg_control". |
| 4535 | */ |
| 4536 | memset(buffer, 0, PG_CONTROL_FILE_SIZE); |
| 4537 | memcpy(buffer, ControlFile, sizeof(ControlFileData)); |
| 4538 | |
| 4539 | fd = BasicOpenFile(XLOG_CONTROL_FILE, |
| 4540 | O_RDWR | O_CREAT | O_EXCL | PG_BINARY); |
| 4541 | if (fd < 0) |
| 4542 | ereport(PANIC, |
| 4543 | (errcode_for_file_access(), |
| 4544 | errmsg("could not create file \"%s\": %m" , |
| 4545 | XLOG_CONTROL_FILE))); |
| 4546 | |
| 4547 | errno = 0; |
| 4548 | pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_WRITE); |
| 4549 | if (write(fd, buffer, PG_CONTROL_FILE_SIZE) != PG_CONTROL_FILE_SIZE) |
| 4550 | { |
| 4551 | /* if write didn't set errno, assume problem is no disk space */ |
| 4552 | if (errno == 0) |
| 4553 | errno = ENOSPC; |
| 4554 | ereport(PANIC, |
| 4555 | (errcode_for_file_access(), |
| 4556 | errmsg("could not write to file \"%s\": %m" , |
| 4557 | XLOG_CONTROL_FILE))); |
| 4558 | } |
| 4559 | pgstat_report_wait_end(); |
| 4560 | |
| 4561 | pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_SYNC); |
| 4562 | if (pg_fsync(fd) != 0) |
| 4563 | ereport(PANIC, |
| 4564 | (errcode_for_file_access(), |
| 4565 | errmsg("could not fsync file \"%s\": %m" , |
| 4566 | XLOG_CONTROL_FILE))); |
| 4567 | pgstat_report_wait_end(); |
| 4568 | |
| 4569 | if (close(fd)) |
| 4570 | ereport(PANIC, |
| 4571 | (errcode_for_file_access(), |
| 4572 | errmsg("could not close file \"%s\": %m" , |
| 4573 | XLOG_CONTROL_FILE))); |
| 4574 | } |
| 4575 | |
| 4576 | static void |
| 4577 | ReadControlFile(void) |
| 4578 | { |
| 4579 | pg_crc32c crc; |
| 4580 | int fd; |
| 4581 | static char wal_segsz_str[20]; |
| 4582 | int r; |
| 4583 | |
| 4584 | /* |
| 4585 | * Read data... |
| 4586 | */ |
| 4587 | fd = BasicOpenFile(XLOG_CONTROL_FILE, |
| 4588 | O_RDWR | PG_BINARY); |
| 4589 | if (fd < 0) |
| 4590 | ereport(PANIC, |
| 4591 | (errcode_for_file_access(), |
| 4592 | errmsg("could not open file \"%s\": %m" , |
| 4593 | XLOG_CONTROL_FILE))); |
| 4594 | |
| 4595 | pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_READ); |
| 4596 | r = read(fd, ControlFile, sizeof(ControlFileData)); |
| 4597 | if (r != sizeof(ControlFileData)) |
| 4598 | { |
| 4599 | if (r < 0) |
| 4600 | ereport(PANIC, |
| 4601 | (errcode_for_file_access(), |
| 4602 | errmsg("could not read file \"%s\": %m" , |
| 4603 | XLOG_CONTROL_FILE))); |
| 4604 | else |
| 4605 | ereport(PANIC, |
| 4606 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 4607 | errmsg("could not read file \"%s\": read %d of %zu" , |
| 4608 | XLOG_CONTROL_FILE, r, sizeof(ControlFileData)))); |
| 4609 | } |
| 4610 | pgstat_report_wait_end(); |
| 4611 | |
| 4612 | close(fd); |
| 4613 | |
| 4614 | /* |
| 4615 | * Check for expected pg_control format version. If this is wrong, the |
| 4616 | * CRC check will likely fail because we'll be checking the wrong number |
| 4617 | * of bytes. Complaining about wrong version will probably be more |
| 4618 | * enlightening than complaining about wrong CRC. |
| 4619 | */ |
| 4620 | |
| 4621 | if (ControlFile->pg_control_version != PG_CONTROL_VERSION && ControlFile->pg_control_version % 65536 == 0 && ControlFile->pg_control_version / 65536 != 0) |
| 4622 | ereport(FATAL, |
| 4623 | (errmsg("database files are incompatible with server" ), |
| 4624 | errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x)," |
| 4625 | " but the server was compiled with PG_CONTROL_VERSION %d (0x%08x)." , |
| 4626 | ControlFile->pg_control_version, ControlFile->pg_control_version, |
| 4627 | PG_CONTROL_VERSION, PG_CONTROL_VERSION), |
| 4628 | errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb." ))); |
| 4629 | |
| 4630 | if (ControlFile->pg_control_version != PG_CONTROL_VERSION) |
| 4631 | ereport(FATAL, |
| 4632 | (errmsg("database files are incompatible with server" ), |
| 4633 | errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d," |
| 4634 | " but the server was compiled with PG_CONTROL_VERSION %d." , |
| 4635 | ControlFile->pg_control_version, PG_CONTROL_VERSION), |
| 4636 | errhint("It looks like you need to initdb." ))); |
| 4637 | |
| 4638 | /* Now check the CRC. */ |
| 4639 | INIT_CRC32C(crc); |
| 4640 | COMP_CRC32C(crc, |
| 4641 | (char *) ControlFile, |
| 4642 | offsetof(ControlFileData, crc)); |
| 4643 | FIN_CRC32C(crc); |
| 4644 | |
| 4645 | if (!EQ_CRC32C(crc, ControlFile->crc)) |
| 4646 | ereport(FATAL, |
| 4647 | (errmsg("incorrect checksum in control file" ))); |
| 4648 | |
| 4649 | /* |
| 4650 | * Do compatibility checking immediately. If the database isn't |
| 4651 | * compatible with the backend executable, we want to abort before we can |
| 4652 | * possibly do any damage. |
| 4653 | */ |
| 4654 | if (ControlFile->catalog_version_no != CATALOG_VERSION_NO) |
| 4655 | ereport(FATAL, |
| 4656 | (errmsg("database files are incompatible with server" ), |
| 4657 | errdetail("The database cluster was initialized with CATALOG_VERSION_NO %d," |
| 4658 | " but the server was compiled with CATALOG_VERSION_NO %d." , |
| 4659 | ControlFile->catalog_version_no, CATALOG_VERSION_NO), |
| 4660 | errhint("It looks like you need to initdb." ))); |
| 4661 | if (ControlFile->maxAlign != MAXIMUM_ALIGNOF) |
| 4662 | ereport(FATAL, |
| 4663 | (errmsg("database files are incompatible with server" ), |
| 4664 | errdetail("The database cluster was initialized with MAXALIGN %d," |
| 4665 | " but the server was compiled with MAXALIGN %d." , |
| 4666 | ControlFile->maxAlign, MAXIMUM_ALIGNOF), |
| 4667 | errhint("It looks like you need to initdb." ))); |
| 4668 | if (ControlFile->floatFormat != FLOATFORMAT_VALUE) |
| 4669 | ereport(FATAL, |
| 4670 | (errmsg("database files are incompatible with server" ), |
| 4671 | errdetail("The database cluster appears to use a different floating-point number format than the server executable." ), |
| 4672 | errhint("It looks like you need to initdb." ))); |
| 4673 | if (ControlFile->blcksz != BLCKSZ) |
| 4674 | ereport(FATAL, |
| 4675 | (errmsg("database files are incompatible with server" ), |
| 4676 | errdetail("The database cluster was initialized with BLCKSZ %d," |
| 4677 | " but the server was compiled with BLCKSZ %d." , |
| 4678 | ControlFile->blcksz, BLCKSZ), |
| 4679 | errhint("It looks like you need to recompile or initdb." ))); |
| 4680 | if (ControlFile->relseg_size != RELSEG_SIZE) |
| 4681 | ereport(FATAL, |
| 4682 | (errmsg("database files are incompatible with server" ), |
| 4683 | errdetail("The database cluster was initialized with RELSEG_SIZE %d," |
| 4684 | " but the server was compiled with RELSEG_SIZE %d." , |
| 4685 | ControlFile->relseg_size, RELSEG_SIZE), |
| 4686 | errhint("It looks like you need to recompile or initdb." ))); |
| 4687 | if (ControlFile->xlog_blcksz != XLOG_BLCKSZ) |
| 4688 | ereport(FATAL, |
| 4689 | (errmsg("database files are incompatible with server" ), |
| 4690 | errdetail("The database cluster was initialized with XLOG_BLCKSZ %d," |
| 4691 | " but the server was compiled with XLOG_BLCKSZ %d." , |
| 4692 | ControlFile->xlog_blcksz, XLOG_BLCKSZ), |
| 4693 | errhint("It looks like you need to recompile or initdb." ))); |
| 4694 | if (ControlFile->nameDataLen != NAMEDATALEN) |
| 4695 | ereport(FATAL, |
| 4696 | (errmsg("database files are incompatible with server" ), |
| 4697 | errdetail("The database cluster was initialized with NAMEDATALEN %d," |
| 4698 | " but the server was compiled with NAMEDATALEN %d." , |
| 4699 | ControlFile->nameDataLen, NAMEDATALEN), |
| 4700 | errhint("It looks like you need to recompile or initdb." ))); |
| 4701 | if (ControlFile->indexMaxKeys != INDEX_MAX_KEYS) |
| 4702 | ereport(FATAL, |
| 4703 | (errmsg("database files are incompatible with server" ), |
| 4704 | errdetail("The database cluster was initialized with INDEX_MAX_KEYS %d," |
| 4705 | " but the server was compiled with INDEX_MAX_KEYS %d." , |
| 4706 | ControlFile->indexMaxKeys, INDEX_MAX_KEYS), |
| 4707 | errhint("It looks like you need to recompile or initdb." ))); |
| 4708 | if (ControlFile->toast_max_chunk_size != TOAST_MAX_CHUNK_SIZE) |
| 4709 | ereport(FATAL, |
| 4710 | (errmsg("database files are incompatible with server" ), |
| 4711 | errdetail("The database cluster was initialized with TOAST_MAX_CHUNK_SIZE %d," |
| 4712 | " but the server was compiled with TOAST_MAX_CHUNK_SIZE %d." , |
| 4713 | ControlFile->toast_max_chunk_size, (int) TOAST_MAX_CHUNK_SIZE), |
| 4714 | errhint("It looks like you need to recompile or initdb." ))); |
| 4715 | if (ControlFile->loblksize != LOBLKSIZE) |
| 4716 | ereport(FATAL, |
| 4717 | (errmsg("database files are incompatible with server" ), |
| 4718 | errdetail("The database cluster was initialized with LOBLKSIZE %d," |
| 4719 | " but the server was compiled with LOBLKSIZE %d." , |
| 4720 | ControlFile->loblksize, (int) LOBLKSIZE), |
| 4721 | errhint("It looks like you need to recompile or initdb." ))); |
| 4722 | |
| 4723 | #ifdef USE_FLOAT4_BYVAL |
| 4724 | if (ControlFile->float4ByVal != true) |
| 4725 | ereport(FATAL, |
| 4726 | (errmsg("database files are incompatible with server" ), |
| 4727 | errdetail("The database cluster was initialized without USE_FLOAT4_BYVAL" |
| 4728 | " but the server was compiled with USE_FLOAT4_BYVAL." ), |
| 4729 | errhint("It looks like you need to recompile or initdb." ))); |
| 4730 | #else |
| 4731 | if (ControlFile->float4ByVal != false) |
| 4732 | ereport(FATAL, |
| 4733 | (errmsg("database files are incompatible with server" ), |
| 4734 | errdetail("The database cluster was initialized with USE_FLOAT4_BYVAL" |
| 4735 | " but the server was compiled without USE_FLOAT4_BYVAL." ), |
| 4736 | errhint("It looks like you need to recompile or initdb." ))); |
| 4737 | #endif |
| 4738 | |
| 4739 | #ifdef USE_FLOAT8_BYVAL |
| 4740 | if (ControlFile->float8ByVal != true) |
| 4741 | ereport(FATAL, |
| 4742 | (errmsg("database files are incompatible with server" ), |
| 4743 | errdetail("The database cluster was initialized without USE_FLOAT8_BYVAL" |
| 4744 | " but the server was compiled with USE_FLOAT8_BYVAL." ), |
| 4745 | errhint("It looks like you need to recompile or initdb." ))); |
| 4746 | #else |
| 4747 | if (ControlFile->float8ByVal != false) |
| 4748 | ereport(FATAL, |
| 4749 | (errmsg("database files are incompatible with server" ), |
| 4750 | errdetail("The database cluster was initialized with USE_FLOAT8_BYVAL" |
| 4751 | " but the server was compiled without USE_FLOAT8_BYVAL." ), |
| 4752 | errhint("It looks like you need to recompile or initdb." ))); |
| 4753 | #endif |
| 4754 | |
| 4755 | wal_segment_size = ControlFile->xlog_seg_size; |
| 4756 | |
| 4757 | if (!IsValidWalSegSize(wal_segment_size)) |
| 4758 | ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 4759 | errmsg_plural("WAL segment size must be a power of two between 1 MB and 1 GB, but the control file specifies %d byte" , |
| 4760 | "WAL segment size must be a power of two between 1 MB and 1 GB, but the control file specifies %d bytes" , |
| 4761 | wal_segment_size, |
| 4762 | wal_segment_size))); |
| 4763 | |
| 4764 | snprintf(wal_segsz_str, sizeof(wal_segsz_str), "%d" , wal_segment_size); |
| 4765 | SetConfigOption("wal_segment_size" , wal_segsz_str, PGC_INTERNAL, |
| 4766 | PGC_S_OVERRIDE); |
| 4767 | |
| 4768 | /* check and update variables dependent on wal_segment_size */ |
| 4769 | if (ConvertToXSegs(min_wal_size_mb, wal_segment_size) < 2) |
| 4770 | ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 4771 | errmsg("\"min_wal_size\" must be at least twice \"wal_segment_size\"" ))); |
| 4772 | |
| 4773 | if (ConvertToXSegs(max_wal_size_mb, wal_segment_size) < 2) |
| 4774 | ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 4775 | errmsg("\"max_wal_size\" must be at least twice \"wal_segment_size\"" ))); |
| 4776 | |
| 4777 | UsableBytesInSegment = |
| 4778 | (wal_segment_size / XLOG_BLCKSZ * UsableBytesInPage) - |
| 4779 | (SizeOfXLogLongPHD - SizeOfXLogShortPHD); |
| 4780 | |
| 4781 | CalculateCheckpointSegments(); |
| 4782 | |
| 4783 | /* Make the initdb settings visible as GUC variables, too */ |
| 4784 | SetConfigOption("data_checksums" , DataChecksumsEnabled() ? "yes" : "no" , |
| 4785 | PGC_INTERNAL, PGC_S_OVERRIDE); |
| 4786 | } |
| 4787 | |
| 4788 | /* |
| 4789 | * Utility wrapper to update the control file. Note that the control |
| 4790 | * file gets flushed. |
| 4791 | */ |
| 4792 | void |
| 4793 | UpdateControlFile(void) |
| 4794 | { |
| 4795 | update_controlfile(DataDir, ControlFile, true); |
| 4796 | } |
| 4797 | |
| 4798 | /* |
| 4799 | * Returns the unique system identifier from control file. |
| 4800 | */ |
| 4801 | uint64 |
| 4802 | GetSystemIdentifier(void) |
| 4803 | { |
| 4804 | Assert(ControlFile != NULL); |
| 4805 | return ControlFile->system_identifier; |
| 4806 | } |
| 4807 | |
| 4808 | /* |
| 4809 | * Returns the random nonce from control file. |
| 4810 | */ |
| 4811 | char * |
| 4812 | GetMockAuthenticationNonce(void) |
| 4813 | { |
| 4814 | Assert(ControlFile != NULL); |
| 4815 | return ControlFile->mock_authentication_nonce; |
| 4816 | } |
| 4817 | |
| 4818 | /* |
| 4819 | * Are checksums enabled for data pages? |
| 4820 | */ |
| 4821 | bool |
| 4822 | DataChecksumsEnabled(void) |
| 4823 | { |
| 4824 | Assert(ControlFile != NULL); |
| 4825 | return (ControlFile->data_checksum_version > 0); |
| 4826 | } |
| 4827 | |
| 4828 | /* |
| 4829 | * Returns a fake LSN for unlogged relations. |
| 4830 | * |
| 4831 | * Each call generates an LSN that is greater than any previous value |
| 4832 | * returned. The current counter value is saved and restored across clean |
| 4833 | * shutdowns, but like unlogged relations, does not survive a crash. This can |
| 4834 | * be used in lieu of real LSN values returned by XLogInsert, if you need an |
| 4835 | * LSN-like increasing sequence of numbers without writing any WAL. |
| 4836 | */ |
| 4837 | XLogRecPtr |
| 4838 | GetFakeLSNForUnloggedRel(void) |
| 4839 | { |
| 4840 | XLogRecPtr nextUnloggedLSN; |
| 4841 | |
| 4842 | /* increment the unloggedLSN counter, need SpinLock */ |
| 4843 | SpinLockAcquire(&XLogCtl->ulsn_lck); |
| 4844 | nextUnloggedLSN = XLogCtl->unloggedLSN++; |
| 4845 | SpinLockRelease(&XLogCtl->ulsn_lck); |
| 4846 | |
| 4847 | return nextUnloggedLSN; |
| 4848 | } |
| 4849 | |
| 4850 | /* |
| 4851 | * Auto-tune the number of XLOG buffers. |
| 4852 | * |
| 4853 | * The preferred setting for wal_buffers is about 3% of shared_buffers, with |
| 4854 | * a maximum of one XLOG segment (there is little reason to think that more |
| 4855 | * is helpful, at least so long as we force an fsync when switching log files) |
| 4856 | * and a minimum of 8 blocks (which was the default value prior to PostgreSQL |
| 4857 | * 9.1, when auto-tuning was added). |
| 4858 | * |
| 4859 | * This should not be called until NBuffers has received its final value. |
| 4860 | */ |
| 4861 | static int |
| 4862 | XLOGChooseNumBuffers(void) |
| 4863 | { |
| 4864 | int xbuffers; |
| 4865 | |
| 4866 | xbuffers = NBuffers / 32; |
| 4867 | if (xbuffers > (wal_segment_size / XLOG_BLCKSZ)) |
| 4868 | xbuffers = (wal_segment_size / XLOG_BLCKSZ); |
| 4869 | if (xbuffers < 8) |
| 4870 | xbuffers = 8; |
| 4871 | return xbuffers; |
| 4872 | } |
| 4873 | |
| 4874 | /* |
| 4875 | * GUC check_hook for wal_buffers |
| 4876 | */ |
| 4877 | bool |
| 4878 | check_wal_buffers(int *newval, void **, GucSource source) |
| 4879 | { |
| 4880 | /* |
| 4881 | * -1 indicates a request for auto-tune. |
| 4882 | */ |
| 4883 | if (*newval == -1) |
| 4884 | { |
| 4885 | /* |
| 4886 | * If we haven't yet changed the boot_val default of -1, just let it |
| 4887 | * be. We'll fix it when XLOGShmemSize is called. |
| 4888 | */ |
| 4889 | if (XLOGbuffers == -1) |
| 4890 | return true; |
| 4891 | |
| 4892 | /* Otherwise, substitute the auto-tune value */ |
| 4893 | *newval = XLOGChooseNumBuffers(); |
| 4894 | } |
| 4895 | |
| 4896 | /* |
| 4897 | * We clamp manually-set values to at least 4 blocks. Prior to PostgreSQL |
| 4898 | * 9.1, a minimum of 4 was enforced by guc.c, but since that is no longer |
| 4899 | * the case, we just silently treat such values as a request for the |
| 4900 | * minimum. (We could throw an error instead, but that doesn't seem very |
| 4901 | * helpful.) |
| 4902 | */ |
| 4903 | if (*newval < 4) |
| 4904 | *newval = 4; |
| 4905 | |
| 4906 | return true; |
| 4907 | } |
| 4908 | |
| 4909 | /* |
| 4910 | * Read the control file, set respective GUCs. |
| 4911 | * |
| 4912 | * This is to be called during startup, including a crash recovery cycle, |
| 4913 | * unless in bootstrap mode, where no control file yet exists. As there's no |
| 4914 | * usable shared memory yet (its sizing can depend on the contents of the |
| 4915 | * control file!), first store the contents in local memory. XLOGShmemInit() |
| 4916 | * will then copy it to shared memory later. |
| 4917 | * |
| 4918 | * reset just controls whether previous contents are to be expected (in the |
| 4919 | * reset case, there's a dangling pointer into old shared memory), or not. |
| 4920 | */ |
| 4921 | void |
| 4922 | LocalProcessControlFile(bool reset) |
| 4923 | { |
| 4924 | Assert(reset || ControlFile == NULL); |
| 4925 | ControlFile = palloc(sizeof(ControlFileData)); |
| 4926 | ReadControlFile(); |
| 4927 | } |
| 4928 | |
| 4929 | /* |
| 4930 | * Initialization of shared memory for XLOG |
| 4931 | */ |
| 4932 | Size |
| 4933 | XLOGShmemSize(void) |
| 4934 | { |
| 4935 | Size size; |
| 4936 | |
| 4937 | /* |
| 4938 | * If the value of wal_buffers is -1, use the preferred auto-tune value. |
| 4939 | * This isn't an amazingly clean place to do this, but we must wait till |
| 4940 | * NBuffers has received its final value, and must do it before using the |
| 4941 | * value of XLOGbuffers to do anything important. |
| 4942 | */ |
| 4943 | if (XLOGbuffers == -1) |
| 4944 | { |
| 4945 | char buf[32]; |
| 4946 | |
| 4947 | snprintf(buf, sizeof(buf), "%d" , XLOGChooseNumBuffers()); |
| 4948 | SetConfigOption("wal_buffers" , buf, PGC_POSTMASTER, PGC_S_OVERRIDE); |
| 4949 | } |
| 4950 | Assert(XLOGbuffers > 0); |
| 4951 | |
| 4952 | /* XLogCtl */ |
| 4953 | size = sizeof(XLogCtlData); |
| 4954 | |
| 4955 | /* WAL insertion locks, plus alignment */ |
| 4956 | size = add_size(size, mul_size(sizeof(WALInsertLockPadded), NUM_XLOGINSERT_LOCKS + 1)); |
| 4957 | /* xlblocks array */ |
| 4958 | size = add_size(size, mul_size(sizeof(XLogRecPtr), XLOGbuffers)); |
| 4959 | /* extra alignment padding for XLOG I/O buffers */ |
| 4960 | size = add_size(size, XLOG_BLCKSZ); |
| 4961 | /* and the buffers themselves */ |
| 4962 | size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers)); |
| 4963 | |
| 4964 | /* |
| 4965 | * Note: we don't count ControlFileData, it comes out of the "slop factor" |
| 4966 | * added by CreateSharedMemoryAndSemaphores. This lets us use this |
| 4967 | * routine again below to compute the actual allocation size. |
| 4968 | */ |
| 4969 | |
| 4970 | return size; |
| 4971 | } |
| 4972 | |
| 4973 | void |
| 4974 | XLOGShmemInit(void) |
| 4975 | { |
| 4976 | bool foundCFile, |
| 4977 | foundXLog; |
| 4978 | char *allocptr; |
| 4979 | int i; |
| 4980 | ControlFileData *localControlFile; |
| 4981 | |
| 4982 | #ifdef WAL_DEBUG |
| 4983 | |
| 4984 | /* |
| 4985 | * Create a memory context for WAL debugging that's exempt from the normal |
| 4986 | * "no pallocs in critical section" rule. Yes, that can lead to a PANIC if |
| 4987 | * an allocation fails, but wal_debug is not for production use anyway. |
| 4988 | */ |
| 4989 | if (walDebugCxt == NULL) |
| 4990 | { |
| 4991 | walDebugCxt = AllocSetContextCreate(TopMemoryContext, |
| 4992 | "WAL Debug" , |
| 4993 | ALLOCSET_DEFAULT_SIZES); |
| 4994 | MemoryContextAllowInCriticalSection(walDebugCxt, true); |
| 4995 | } |
| 4996 | #endif |
| 4997 | |
| 4998 | |
| 4999 | XLogCtl = (XLogCtlData *) |
| 5000 | ShmemInitStruct("XLOG Ctl" , XLOGShmemSize(), &foundXLog); |
| 5001 | |
| 5002 | localControlFile = ControlFile; |
| 5003 | ControlFile = (ControlFileData *) |
| 5004 | ShmemInitStruct("Control File" , sizeof(ControlFileData), &foundCFile); |
| 5005 | |
| 5006 | if (foundCFile || foundXLog) |
| 5007 | { |
| 5008 | /* both should be present or neither */ |
| 5009 | Assert(foundCFile && foundXLog); |
| 5010 | |
| 5011 | /* Initialize local copy of WALInsertLocks and register the tranche */ |
| 5012 | WALInsertLocks = XLogCtl->Insert.WALInsertLocks; |
| 5013 | LWLockRegisterTranche(LWTRANCHE_WAL_INSERT, |
| 5014 | "wal_insert" ); |
| 5015 | |
| 5016 | if (localControlFile) |
| 5017 | pfree(localControlFile); |
| 5018 | return; |
| 5019 | } |
| 5020 | memset(XLogCtl, 0, sizeof(XLogCtlData)); |
| 5021 | |
| 5022 | /* |
| 5023 | * Already have read control file locally, unless in bootstrap mode. Move |
| 5024 | * contents into shared memory. |
| 5025 | */ |
| 5026 | if (localControlFile) |
| 5027 | { |
| 5028 | memcpy(ControlFile, localControlFile, sizeof(ControlFileData)); |
| 5029 | pfree(localControlFile); |
| 5030 | } |
| 5031 | |
| 5032 | /* |
| 5033 | * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a |
| 5034 | * multiple of the alignment for same, so no extra alignment padding is |
| 5035 | * needed here. |
| 5036 | */ |
| 5037 | allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData); |
| 5038 | XLogCtl->xlblocks = (XLogRecPtr *) allocptr; |
| 5039 | memset(XLogCtl->xlblocks, 0, sizeof(XLogRecPtr) * XLOGbuffers); |
| 5040 | allocptr += sizeof(XLogRecPtr) * XLOGbuffers; |
| 5041 | |
| 5042 | |
| 5043 | /* WAL insertion locks. Ensure they're aligned to the full padded size */ |
| 5044 | allocptr += sizeof(WALInsertLockPadded) - |
| 5045 | ((uintptr_t) allocptr) % sizeof(WALInsertLockPadded); |
| 5046 | WALInsertLocks = XLogCtl->Insert.WALInsertLocks = |
| 5047 | (WALInsertLockPadded *) allocptr; |
| 5048 | allocptr += sizeof(WALInsertLockPadded) * NUM_XLOGINSERT_LOCKS; |
| 5049 | |
| 5050 | LWLockRegisterTranche(LWTRANCHE_WAL_INSERT, "wal_insert" ); |
| 5051 | for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++) |
| 5052 | { |
| 5053 | LWLockInitialize(&WALInsertLocks[i].l.lock, LWTRANCHE_WAL_INSERT); |
| 5054 | WALInsertLocks[i].l.insertingAt = InvalidXLogRecPtr; |
| 5055 | WALInsertLocks[i].l.lastImportantAt = InvalidXLogRecPtr; |
| 5056 | } |
| 5057 | |
| 5058 | /* |
| 5059 | * Align the start of the page buffers to a full xlog block size boundary. |
| 5060 | * This simplifies some calculations in XLOG insertion. It is also |
| 5061 | * required for O_DIRECT. |
| 5062 | */ |
| 5063 | allocptr = (char *) TYPEALIGN(XLOG_BLCKSZ, allocptr); |
| 5064 | XLogCtl->pages = allocptr; |
| 5065 | memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers); |
| 5066 | |
| 5067 | /* |
| 5068 | * Do basic initialization of XLogCtl shared data. (StartupXLOG will fill |
| 5069 | * in additional info.) |
| 5070 | */ |
| 5071 | XLogCtl->XLogCacheBlck = XLOGbuffers - 1; |
| 5072 | XLogCtl->SharedRecoveryInProgress = true; |
| 5073 | XLogCtl->SharedHotStandbyActive = false; |
| 5074 | XLogCtl->WalWriterSleeping = false; |
| 5075 | |
| 5076 | SpinLockInit(&XLogCtl->Insert.insertpos_lck); |
| 5077 | SpinLockInit(&XLogCtl->info_lck); |
| 5078 | SpinLockInit(&XLogCtl->ulsn_lck); |
| 5079 | InitSharedLatch(&XLogCtl->recoveryWakeupLatch); |
| 5080 | } |
| 5081 | |
| 5082 | /* |
| 5083 | * This func must be called ONCE on system install. It creates pg_control |
| 5084 | * and the initial XLOG segment. |
| 5085 | */ |
| 5086 | void |
| 5087 | BootStrapXLOG(void) |
| 5088 | { |
| 5089 | CheckPoint checkPoint; |
| 5090 | char *buffer; |
| 5091 | XLogPageHeader page; |
| 5092 | XLogLongPageHeader longpage; |
| 5093 | XLogRecord *record; |
| 5094 | char *recptr; |
| 5095 | bool use_existent; |
| 5096 | uint64 sysidentifier; |
| 5097 | char mock_auth_nonce[MOCK_AUTH_NONCE_LEN]; |
| 5098 | struct timeval tv; |
| 5099 | pg_crc32c crc; |
| 5100 | |
| 5101 | /* |
| 5102 | * Select a hopefully-unique system identifier code for this installation. |
| 5103 | * We use the result of gettimeofday(), including the fractional seconds |
| 5104 | * field, as being about as unique as we can easily get. (Think not to |
| 5105 | * use random(), since it hasn't been seeded and there's no portable way |
| 5106 | * to seed it other than the system clock value...) The upper half of the |
| 5107 | * uint64 value is just the tv_sec part, while the lower half contains the |
| 5108 | * tv_usec part (which must fit in 20 bits), plus 12 bits from our current |
| 5109 | * PID for a little extra uniqueness. A person knowing this encoding can |
| 5110 | * determine the initialization time of the installation, which could |
| 5111 | * perhaps be useful sometimes. |
| 5112 | */ |
| 5113 | gettimeofday(&tv, NULL); |
| 5114 | sysidentifier = ((uint64) tv.tv_sec) << 32; |
| 5115 | sysidentifier |= ((uint64) tv.tv_usec) << 12; |
| 5116 | sysidentifier |= getpid() & 0xFFF; |
| 5117 | |
| 5118 | /* |
| 5119 | * Generate a random nonce. This is used for authentication requests that |
| 5120 | * will fail because the user does not exist. The nonce is used to create |
| 5121 | * a genuine-looking password challenge for the non-existent user, in lieu |
| 5122 | * of an actual stored password. |
| 5123 | */ |
| 5124 | if (!pg_strong_random(mock_auth_nonce, MOCK_AUTH_NONCE_LEN)) |
| 5125 | ereport(PANIC, |
| 5126 | (errcode(ERRCODE_INTERNAL_ERROR), |
| 5127 | errmsg("could not generate secret authorization token" ))); |
| 5128 | |
| 5129 | /* First timeline ID is always 1 */ |
| 5130 | ThisTimeLineID = 1; |
| 5131 | |
| 5132 | /* page buffer must be aligned suitably for O_DIRECT */ |
| 5133 | buffer = (char *) palloc(XLOG_BLCKSZ + XLOG_BLCKSZ); |
| 5134 | page = (XLogPageHeader) TYPEALIGN(XLOG_BLCKSZ, buffer); |
| 5135 | memset(page, 0, XLOG_BLCKSZ); |
| 5136 | |
| 5137 | /* |
| 5138 | * Set up information for the initial checkpoint record |
| 5139 | * |
| 5140 | * The initial checkpoint record is written to the beginning of the WAL |
| 5141 | * segment with logid=0 logseg=1. The very first WAL segment, 0/0, is not |
| 5142 | * used, so that we can use 0/0 to mean "before any valid WAL segment". |
| 5143 | */ |
| 5144 | checkPoint.redo = wal_segment_size + SizeOfXLogLongPHD; |
| 5145 | checkPoint.ThisTimeLineID = ThisTimeLineID; |
| 5146 | checkPoint.PrevTimeLineID = ThisTimeLineID; |
| 5147 | checkPoint.fullPageWrites = fullPageWrites; |
| 5148 | checkPoint.nextFullXid = |
| 5149 | FullTransactionIdFromEpochAndXid(0, FirstNormalTransactionId); |
| 5150 | checkPoint.nextOid = FirstBootstrapObjectId; |
| 5151 | checkPoint.nextMulti = FirstMultiXactId; |
| 5152 | checkPoint.nextMultiOffset = 0; |
| 5153 | checkPoint.oldestXid = FirstNormalTransactionId; |
| 5154 | checkPoint.oldestXidDB = TemplateDbOid; |
| 5155 | checkPoint.oldestMulti = FirstMultiXactId; |
| 5156 | checkPoint.oldestMultiDB = TemplateDbOid; |
| 5157 | checkPoint.oldestCommitTsXid = InvalidTransactionId; |
| 5158 | checkPoint.newestCommitTsXid = InvalidTransactionId; |
| 5159 | checkPoint.time = (pg_time_t) time(NULL); |
| 5160 | checkPoint.oldestActiveXid = InvalidTransactionId; |
| 5161 | |
| 5162 | ShmemVariableCache->nextFullXid = checkPoint.nextFullXid; |
| 5163 | ShmemVariableCache->nextOid = checkPoint.nextOid; |
| 5164 | ShmemVariableCache->oidCount = 0; |
| 5165 | MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset); |
| 5166 | AdvanceOldestClogXid(checkPoint.oldestXid); |
| 5167 | SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB); |
| 5168 | SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true); |
| 5169 | SetCommitTsLimit(InvalidTransactionId, InvalidTransactionId); |
| 5170 | |
| 5171 | /* Set up the XLOG page header */ |
| 5172 | page->xlp_magic = XLOG_PAGE_MAGIC; |
| 5173 | page->xlp_info = XLP_LONG_HEADER; |
| 5174 | page->xlp_tli = ThisTimeLineID; |
| 5175 | page->xlp_pageaddr = wal_segment_size; |
| 5176 | longpage = (XLogLongPageHeader) page; |
| 5177 | longpage->xlp_sysid = sysidentifier; |
| 5178 | longpage->xlp_seg_size = wal_segment_size; |
| 5179 | longpage->xlp_xlog_blcksz = XLOG_BLCKSZ; |
| 5180 | |
| 5181 | /* Insert the initial checkpoint record */ |
| 5182 | recptr = ((char *) page + SizeOfXLogLongPHD); |
| 5183 | record = (XLogRecord *) recptr; |
| 5184 | record->xl_prev = 0; |
| 5185 | record->xl_xid = InvalidTransactionId; |
| 5186 | record->xl_tot_len = SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(checkPoint); |
| 5187 | record->xl_info = XLOG_CHECKPOINT_SHUTDOWN; |
| 5188 | record->xl_rmid = RM_XLOG_ID; |
| 5189 | recptr += SizeOfXLogRecord; |
| 5190 | /* fill the XLogRecordDataHeaderShort struct */ |
| 5191 | *(recptr++) = (char) XLR_BLOCK_ID_DATA_SHORT; |
| 5192 | *(recptr++) = sizeof(checkPoint); |
| 5193 | memcpy(recptr, &checkPoint, sizeof(checkPoint)); |
| 5194 | recptr += sizeof(checkPoint); |
| 5195 | Assert(recptr - (char *) record == record->xl_tot_len); |
| 5196 | |
| 5197 | INIT_CRC32C(crc); |
| 5198 | COMP_CRC32C(crc, ((char *) record) + SizeOfXLogRecord, record->xl_tot_len - SizeOfXLogRecord); |
| 5199 | COMP_CRC32C(crc, (char *) record, offsetof(XLogRecord, xl_crc)); |
| 5200 | FIN_CRC32C(crc); |
| 5201 | record->xl_crc = crc; |
| 5202 | |
| 5203 | /* Create first XLOG segment file */ |
| 5204 | use_existent = false; |
| 5205 | openLogFile = XLogFileInit(1, &use_existent, false); |
| 5206 | |
| 5207 | /* Write the first page with the initial record */ |
| 5208 | errno = 0; |
| 5209 | pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_WRITE); |
| 5210 | if (write(openLogFile, page, XLOG_BLCKSZ) != XLOG_BLCKSZ) |
| 5211 | { |
| 5212 | /* if write didn't set errno, assume problem is no disk space */ |
| 5213 | if (errno == 0) |
| 5214 | errno = ENOSPC; |
| 5215 | ereport(PANIC, |
| 5216 | (errcode_for_file_access(), |
| 5217 | errmsg("could not write bootstrap write-ahead log file: %m" ))); |
| 5218 | } |
| 5219 | pgstat_report_wait_end(); |
| 5220 | |
| 5221 | pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_SYNC); |
| 5222 | if (pg_fsync(openLogFile) != 0) |
| 5223 | ereport(PANIC, |
| 5224 | (errcode_for_file_access(), |
| 5225 | errmsg("could not fsync bootstrap write-ahead log file: %m" ))); |
| 5226 | pgstat_report_wait_end(); |
| 5227 | |
| 5228 | if (close(openLogFile)) |
| 5229 | ereport(PANIC, |
| 5230 | (errcode_for_file_access(), |
| 5231 | errmsg("could not close bootstrap write-ahead log file: %m" ))); |
| 5232 | |
| 5233 | openLogFile = -1; |
| 5234 | |
| 5235 | /* Now create pg_control */ |
| 5236 | |
| 5237 | memset(ControlFile, 0, sizeof(ControlFileData)); |
| 5238 | /* Initialize pg_control status fields */ |
| 5239 | ControlFile->system_identifier = sysidentifier; |
| 5240 | memcpy(ControlFile->mock_authentication_nonce, mock_auth_nonce, MOCK_AUTH_NONCE_LEN); |
| 5241 | ControlFile->state = DB_SHUTDOWNED; |
| 5242 | ControlFile->time = checkPoint.time; |
| 5243 | ControlFile->checkPoint = checkPoint.redo; |
| 5244 | ControlFile->checkPointCopy = checkPoint; |
| 5245 | ControlFile->unloggedLSN = FirstNormalUnloggedLSN; |
| 5246 | |
| 5247 | /* Set important parameter values for use when replaying WAL */ |
| 5248 | ControlFile->MaxConnections = MaxConnections; |
| 5249 | ControlFile->max_worker_processes = max_worker_processes; |
| 5250 | ControlFile->max_wal_senders = max_wal_senders; |
| 5251 | ControlFile->max_prepared_xacts = max_prepared_xacts; |
| 5252 | ControlFile->max_locks_per_xact = max_locks_per_xact; |
| 5253 | ControlFile->wal_level = wal_level; |
| 5254 | ControlFile->wal_log_hints = wal_log_hints; |
| 5255 | ControlFile->track_commit_timestamp = track_commit_timestamp; |
| 5256 | ControlFile->data_checksum_version = bootstrap_data_checksum_version; |
| 5257 | |
| 5258 | /* some additional ControlFile fields are set in WriteControlFile() */ |
| 5259 | |
| 5260 | WriteControlFile(); |
| 5261 | |
| 5262 | /* Bootstrap the commit log, too */ |
| 5263 | BootStrapCLOG(); |
| 5264 | BootStrapCommitTs(); |
| 5265 | BootStrapSUBTRANS(); |
| 5266 | BootStrapMultiXact(); |
| 5267 | |
| 5268 | pfree(buffer); |
| 5269 | |
| 5270 | /* |
| 5271 | * Force control file to be read - in contrast to normal processing we'd |
| 5272 | * otherwise never run the checks and GUC related initializations therein. |
| 5273 | */ |
| 5274 | ReadControlFile(); |
| 5275 | } |
| 5276 | |
| 5277 | static char * |
| 5278 | str_time(pg_time_t tnow) |
| 5279 | { |
| 5280 | static char buf[128]; |
| 5281 | |
| 5282 | pg_strftime(buf, sizeof(buf), |
| 5283 | "%Y-%m-%d %H:%M:%S %Z" , |
| 5284 | pg_localtime(&tnow, log_timezone)); |
| 5285 | |
| 5286 | return buf; |
| 5287 | } |
| 5288 | |
| 5289 | /* |
| 5290 | * See if there are any recovery signal files and if so, set state for |
| 5291 | * recovery. |
| 5292 | * |
| 5293 | * See if there is a recovery command file (recovery.conf), and if so |
| 5294 | * throw an ERROR since as of PG12 we no longer recognize that. |
| 5295 | */ |
| 5296 | static void |
| 5297 | readRecoverySignalFile(void) |
| 5298 | { |
| 5299 | struct stat stat_buf; |
| 5300 | |
| 5301 | if (IsBootstrapProcessingMode()) |
| 5302 | return; |
| 5303 | |
| 5304 | /* |
| 5305 | * Check for old recovery API file: recovery.conf |
| 5306 | */ |
| 5307 | if (stat(RECOVERY_COMMAND_FILE, &stat_buf) == 0) |
| 5308 | ereport(FATAL, |
| 5309 | (errcode_for_file_access(), |
| 5310 | errmsg("using recovery command file \"%s\" is not supported" , |
| 5311 | RECOVERY_COMMAND_FILE))); |
| 5312 | |
| 5313 | /* |
| 5314 | * Remove unused .done file, if present. Ignore if absent. |
| 5315 | */ |
| 5316 | unlink(RECOVERY_COMMAND_DONE); |
| 5317 | |
| 5318 | /* |
| 5319 | * Check for recovery signal files and if found, fsync them since they |
| 5320 | * represent server state information. We don't sweat too much about the |
| 5321 | * possibility of fsync failure, however. |
| 5322 | * |
| 5323 | * If present, standby signal file takes precedence. If neither is present |
| 5324 | * then we won't enter archive recovery. |
| 5325 | */ |
| 5326 | if (stat(STANDBY_SIGNAL_FILE, &stat_buf) == 0) |
| 5327 | { |
| 5328 | int fd; |
| 5329 | |
| 5330 | fd = BasicOpenFilePerm(STANDBY_SIGNAL_FILE, O_RDWR | PG_BINARY | get_sync_bit(sync_method), |
| 5331 | S_IRUSR | S_IWUSR); |
| 5332 | if (fd >= 0) |
| 5333 | { |
| 5334 | (void) pg_fsync(fd); |
| 5335 | close(fd); |
| 5336 | } |
| 5337 | standby_signal_file_found = true; |
| 5338 | } |
| 5339 | else if (stat(RECOVERY_SIGNAL_FILE, &stat_buf) == 0) |
| 5340 | { |
| 5341 | int fd; |
| 5342 | |
| 5343 | fd = BasicOpenFilePerm(RECOVERY_SIGNAL_FILE, O_RDWR | PG_BINARY | get_sync_bit(sync_method), |
| 5344 | S_IRUSR | S_IWUSR); |
| 5345 | if (fd >= 0) |
| 5346 | { |
| 5347 | (void) pg_fsync(fd); |
| 5348 | close(fd); |
| 5349 | } |
| 5350 | recovery_signal_file_found = true; |
| 5351 | } |
| 5352 | |
| 5353 | StandbyModeRequested = false; |
| 5354 | ArchiveRecoveryRequested = false; |
| 5355 | if (standby_signal_file_found) |
| 5356 | { |
| 5357 | StandbyModeRequested = true; |
| 5358 | ArchiveRecoveryRequested = true; |
| 5359 | } |
| 5360 | else if (recovery_signal_file_found) |
| 5361 | { |
| 5362 | StandbyModeRequested = false; |
| 5363 | ArchiveRecoveryRequested = true; |
| 5364 | } |
| 5365 | else |
| 5366 | return; |
| 5367 | |
| 5368 | /* |
| 5369 | * We don't support standby mode in standalone backends; that requires |
| 5370 | * other processes such as the WAL receiver to be alive. |
| 5371 | */ |
| 5372 | if (StandbyModeRequested && !IsUnderPostmaster) |
| 5373 | ereport(FATAL, |
| 5374 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 5375 | errmsg("standby mode is not supported by single-user servers" ))); |
| 5376 | } |
| 5377 | |
| 5378 | static void |
| 5379 | validateRecoveryParameters(void) |
| 5380 | { |
| 5381 | if (!ArchiveRecoveryRequested) |
| 5382 | return; |
| 5383 | |
| 5384 | /* |
| 5385 | * Check for compulsory parameters |
| 5386 | */ |
| 5387 | if (StandbyModeRequested) |
| 5388 | { |
| 5389 | if ((PrimaryConnInfo == NULL || strcmp(PrimaryConnInfo, "" ) == 0) && |
| 5390 | (recoveryRestoreCommand == NULL || strcmp(recoveryRestoreCommand, "" ) == 0)) |
| 5391 | ereport(WARNING, |
| 5392 | (errmsg("specified neither primary_conninfo nor restore_command" ), |
| 5393 | errhint("The database server will regularly poll the pg_wal subdirectory to check for files placed there." ))); |
| 5394 | } |
| 5395 | else |
| 5396 | { |
| 5397 | if (recoveryRestoreCommand == NULL || |
| 5398 | strcmp(recoveryRestoreCommand, "" ) == 0) |
| 5399 | ereport(FATAL, |
| 5400 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5401 | errmsg("must specify restore_command when standby mode is not enabled" ))); |
| 5402 | } |
| 5403 | |
| 5404 | /* |
| 5405 | * Override any inconsistent requests. Note that this is a change of |
| 5406 | * behaviour in 9.5; prior to this we simply ignored a request to pause if |
| 5407 | * hot_standby = off, which was surprising behaviour. |
| 5408 | */ |
| 5409 | if (recoveryTargetAction == RECOVERY_TARGET_ACTION_PAUSE && |
| 5410 | !EnableHotStandby) |
| 5411 | recoveryTargetAction = RECOVERY_TARGET_ACTION_SHUTDOWN; |
| 5412 | |
| 5413 | /* |
| 5414 | * Final parsing of recovery_target_time string; see also |
| 5415 | * check_recovery_target_time(). |
| 5416 | */ |
| 5417 | if (recoveryTarget == RECOVERY_TARGET_TIME) |
| 5418 | { |
| 5419 | recoveryTargetTime = DatumGetTimestampTz(DirectFunctionCall3(timestamptz_in, |
| 5420 | CStringGetDatum(recovery_target_time_string), |
| 5421 | ObjectIdGetDatum(InvalidOid), |
| 5422 | Int32GetDatum(-1))); |
| 5423 | } |
| 5424 | |
| 5425 | /* |
| 5426 | * If user specified recovery_target_timeline, validate it or compute the |
| 5427 | * "latest" value. We can't do this until after we've gotten the restore |
| 5428 | * command and set InArchiveRecovery, because we need to fetch timeline |
| 5429 | * history files from the archive. |
| 5430 | */ |
| 5431 | if (recoveryTargetTimeLineGoal == RECOVERY_TARGET_TIMELINE_NUMERIC) |
| 5432 | { |
| 5433 | TimeLineID rtli = recoveryTargetTLIRequested; |
| 5434 | |
| 5435 | /* Timeline 1 does not have a history file, all else should */ |
| 5436 | if (rtli != 1 && !existsTimeLineHistory(rtli)) |
| 5437 | ereport(FATAL, |
| 5438 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 5439 | errmsg("recovery target timeline %u does not exist" , |
| 5440 | rtli))); |
| 5441 | recoveryTargetTLI = rtli; |
| 5442 | } |
| 5443 | else if (recoveryTargetTimeLineGoal == RECOVERY_TARGET_TIMELINE_LATEST) |
| 5444 | { |
| 5445 | /* We start the "latest" search from pg_control's timeline */ |
| 5446 | recoveryTargetTLI = findNewestTimeLine(recoveryTargetTLI); |
| 5447 | } |
| 5448 | else |
| 5449 | { |
| 5450 | /* |
| 5451 | * else we just use the recoveryTargetTLI as already read from |
| 5452 | * ControlFile |
| 5453 | */ |
| 5454 | Assert(recoveryTargetTimeLineGoal == RECOVERY_TARGET_TIMELINE_CONTROLFILE); |
| 5455 | } |
| 5456 | } |
| 5457 | |
| 5458 | /* |
| 5459 | * Exit archive-recovery state |
| 5460 | */ |
| 5461 | static void |
| 5462 | exitArchiveRecovery(TimeLineID endTLI, XLogRecPtr endOfLog) |
| 5463 | { |
| 5464 | char recoveryPath[MAXPGPATH]; |
| 5465 | char xlogfname[MAXFNAMELEN]; |
| 5466 | XLogSegNo endLogSegNo; |
| 5467 | XLogSegNo startLogSegNo; |
| 5468 | |
| 5469 | /* we always switch to a new timeline after archive recovery */ |
| 5470 | Assert(endTLI != ThisTimeLineID); |
| 5471 | |
| 5472 | /* |
| 5473 | * We are no longer in archive recovery state. |
| 5474 | */ |
| 5475 | InArchiveRecovery = false; |
| 5476 | |
| 5477 | /* |
| 5478 | * Update min recovery point one last time. |
| 5479 | */ |
| 5480 | UpdateMinRecoveryPoint(InvalidXLogRecPtr, true); |
| 5481 | |
| 5482 | /* |
| 5483 | * If the ending log segment is still open, close it (to avoid problems on |
| 5484 | * Windows with trying to rename or delete an open file). |
| 5485 | */ |
| 5486 | if (readFile >= 0) |
| 5487 | { |
| 5488 | close(readFile); |
| 5489 | readFile = -1; |
| 5490 | } |
| 5491 | |
| 5492 | /* |
| 5493 | * Calculate the last segment on the old timeline, and the first segment |
| 5494 | * on the new timeline. If the switch happens in the middle of a segment, |
| 5495 | * they are the same, but if the switch happens exactly at a segment |
| 5496 | * boundary, startLogSegNo will be endLogSegNo + 1. |
| 5497 | */ |
| 5498 | XLByteToPrevSeg(endOfLog, endLogSegNo, wal_segment_size); |
| 5499 | XLByteToSeg(endOfLog, startLogSegNo, wal_segment_size); |
| 5500 | |
| 5501 | /* |
| 5502 | * Initialize the starting WAL segment for the new timeline. If the switch |
| 5503 | * happens in the middle of a segment, copy data from the last WAL segment |
| 5504 | * of the old timeline up to the switch point, to the starting WAL segment |
| 5505 | * on the new timeline. |
| 5506 | */ |
| 5507 | if (endLogSegNo == startLogSegNo) |
| 5508 | { |
| 5509 | /* |
| 5510 | * Make a copy of the file on the new timeline. |
| 5511 | * |
| 5512 | * Writing WAL isn't allowed yet, so there are no locking |
| 5513 | * considerations. But we should be just as tense as XLogFileInit to |
| 5514 | * avoid emplacing a bogus file. |
| 5515 | */ |
| 5516 | XLogFileCopy(endLogSegNo, endTLI, endLogSegNo, |
| 5517 | XLogSegmentOffset(endOfLog, wal_segment_size)); |
| 5518 | } |
| 5519 | else |
| 5520 | { |
| 5521 | /* |
| 5522 | * The switch happened at a segment boundary, so just create the next |
| 5523 | * segment on the new timeline. |
| 5524 | */ |
| 5525 | bool use_existent = true; |
| 5526 | int fd; |
| 5527 | |
| 5528 | fd = XLogFileInit(startLogSegNo, &use_existent, true); |
| 5529 | |
| 5530 | if (close(fd)) |
| 5531 | ereport(ERROR, |
| 5532 | (errcode_for_file_access(), |
| 5533 | errmsg("could not close file \"%s\": %m" , |
| 5534 | XLogFileNameP(ThisTimeLineID, startLogSegNo)))); |
| 5535 | } |
| 5536 | |
| 5537 | /* |
| 5538 | * Let's just make real sure there are not .ready or .done flags posted |
| 5539 | * for the new segment. |
| 5540 | */ |
| 5541 | XLogFileName(xlogfname, ThisTimeLineID, startLogSegNo, wal_segment_size); |
| 5542 | XLogArchiveCleanup(xlogfname); |
| 5543 | |
| 5544 | /* |
| 5545 | * Since there might be a partial WAL segment named RECOVERYXLOG, get rid |
| 5546 | * of it. |
| 5547 | */ |
| 5548 | snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYXLOG" ); |
| 5549 | unlink(recoveryPath); /* ignore any error */ |
| 5550 | |
| 5551 | /* Get rid of any remaining recovered timeline-history file, too */ |
| 5552 | snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYHISTORY" ); |
| 5553 | unlink(recoveryPath); /* ignore any error */ |
| 5554 | |
| 5555 | /* |
| 5556 | * Remove the signal files out of the way, so that we don't accidentally |
| 5557 | * re-enter archive recovery mode in a subsequent crash. |
| 5558 | */ |
| 5559 | if (standby_signal_file_found) |
| 5560 | durable_unlink(STANDBY_SIGNAL_FILE, FATAL); |
| 5561 | |
| 5562 | if (recovery_signal_file_found) |
| 5563 | durable_unlink(RECOVERY_SIGNAL_FILE, FATAL); |
| 5564 | |
| 5565 | ereport(LOG, |
| 5566 | (errmsg("archive recovery complete" ))); |
| 5567 | } |
| 5568 | |
| 5569 | /* |
| 5570 | * Extract timestamp from WAL record. |
| 5571 | * |
| 5572 | * If the record contains a timestamp, returns true, and saves the timestamp |
| 5573 | * in *recordXtime. If the record type has no timestamp, returns false. |
| 5574 | * Currently, only transaction commit/abort records and restore points contain |
| 5575 | * timestamps. |
| 5576 | */ |
| 5577 | static bool |
| 5578 | getRecordTimestamp(XLogReaderState *record, TimestampTz *recordXtime) |
| 5579 | { |
| 5580 | uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
| 5581 | uint8 xact_info = info & XLOG_XACT_OPMASK; |
| 5582 | uint8 rmid = XLogRecGetRmid(record); |
| 5583 | |
| 5584 | if (rmid == RM_XLOG_ID && info == XLOG_RESTORE_POINT) |
| 5585 | { |
| 5586 | *recordXtime = ((xl_restore_point *) XLogRecGetData(record))->rp_time; |
| 5587 | return true; |
| 5588 | } |
| 5589 | if (rmid == RM_XACT_ID && (xact_info == XLOG_XACT_COMMIT || |
| 5590 | xact_info == XLOG_XACT_COMMIT_PREPARED)) |
| 5591 | { |
| 5592 | *recordXtime = ((xl_xact_commit *) XLogRecGetData(record))->xact_time; |
| 5593 | return true; |
| 5594 | } |
| 5595 | if (rmid == RM_XACT_ID && (xact_info == XLOG_XACT_ABORT || |
| 5596 | xact_info == XLOG_XACT_ABORT_PREPARED)) |
| 5597 | { |
| 5598 | *recordXtime = ((xl_xact_abort *) XLogRecGetData(record))->xact_time; |
| 5599 | return true; |
| 5600 | } |
| 5601 | return false; |
| 5602 | } |
| 5603 | |
| 5604 | /* |
| 5605 | * For point-in-time recovery, this function decides whether we want to |
| 5606 | * stop applying the XLOG before the current record. |
| 5607 | * |
| 5608 | * Returns true if we are stopping, false otherwise. If stopping, some |
| 5609 | * information is saved in recoveryStopXid et al for use in annotating the |
| 5610 | * new timeline's history file. |
| 5611 | */ |
| 5612 | static bool |
| 5613 | recoveryStopsBefore(XLogReaderState *record) |
| 5614 | { |
| 5615 | bool stopsHere = false; |
| 5616 | uint8 xact_info; |
| 5617 | bool isCommit; |
| 5618 | TimestampTz recordXtime = 0; |
| 5619 | TransactionId recordXid; |
| 5620 | |
| 5621 | /* |
| 5622 | * Ignore recovery target settings when not in archive recovery (meaning |
| 5623 | * we are in crash recovery). |
| 5624 | */ |
| 5625 | if (!ArchiveRecoveryRequested) |
| 5626 | return false; |
| 5627 | |
| 5628 | /* Check if we should stop as soon as reaching consistency */ |
| 5629 | if (recoveryTarget == RECOVERY_TARGET_IMMEDIATE && reachedConsistency) |
| 5630 | { |
| 5631 | ereport(LOG, |
| 5632 | (errmsg("recovery stopping after reaching consistency" ))); |
| 5633 | |
| 5634 | recoveryStopAfter = false; |
| 5635 | recoveryStopXid = InvalidTransactionId; |
| 5636 | recoveryStopLSN = InvalidXLogRecPtr; |
| 5637 | recoveryStopTime = 0; |
| 5638 | recoveryStopName[0] = '\0'; |
| 5639 | return true; |
| 5640 | } |
| 5641 | |
| 5642 | /* Check if target LSN has been reached */ |
| 5643 | if (recoveryTarget == RECOVERY_TARGET_LSN && |
| 5644 | !recoveryTargetInclusive && |
| 5645 | record->ReadRecPtr >= recoveryTargetLSN) |
| 5646 | { |
| 5647 | recoveryStopAfter = false; |
| 5648 | recoveryStopXid = InvalidTransactionId; |
| 5649 | recoveryStopLSN = record->ReadRecPtr; |
| 5650 | recoveryStopTime = 0; |
| 5651 | recoveryStopName[0] = '\0'; |
| 5652 | ereport(LOG, |
| 5653 | (errmsg("recovery stopping before WAL location (LSN) \"%X/%X\"" , |
| 5654 | (uint32) (recoveryStopLSN >> 32), |
| 5655 | (uint32) recoveryStopLSN))); |
| 5656 | return true; |
| 5657 | } |
| 5658 | |
| 5659 | /* Otherwise we only consider stopping before COMMIT or ABORT records. */ |
| 5660 | if (XLogRecGetRmid(record) != RM_XACT_ID) |
| 5661 | return false; |
| 5662 | |
| 5663 | xact_info = XLogRecGetInfo(record) & XLOG_XACT_OPMASK; |
| 5664 | |
| 5665 | if (xact_info == XLOG_XACT_COMMIT) |
| 5666 | { |
| 5667 | isCommit = true; |
| 5668 | recordXid = XLogRecGetXid(record); |
| 5669 | } |
| 5670 | else if (xact_info == XLOG_XACT_COMMIT_PREPARED) |
| 5671 | { |
| 5672 | xl_xact_commit *xlrec = (xl_xact_commit *) XLogRecGetData(record); |
| 5673 | xl_xact_parsed_commit parsed; |
| 5674 | |
| 5675 | isCommit = true; |
| 5676 | ParseCommitRecord(XLogRecGetInfo(record), |
| 5677 | xlrec, |
| 5678 | &parsed); |
| 5679 | recordXid = parsed.twophase_xid; |
| 5680 | } |
| 5681 | else if (xact_info == XLOG_XACT_ABORT) |
| 5682 | { |
| 5683 | isCommit = false; |
| 5684 | recordXid = XLogRecGetXid(record); |
| 5685 | } |
| 5686 | else if (xact_info == XLOG_XACT_ABORT_PREPARED) |
| 5687 | { |
| 5688 | xl_xact_abort *xlrec = (xl_xact_abort *) XLogRecGetData(record); |
| 5689 | xl_xact_parsed_abort parsed; |
| 5690 | |
| 5691 | isCommit = true; |
| 5692 | ParseAbortRecord(XLogRecGetInfo(record), |
| 5693 | xlrec, |
| 5694 | &parsed); |
| 5695 | recordXid = parsed.twophase_xid; |
| 5696 | } |
| 5697 | else |
| 5698 | return false; |
| 5699 | |
| 5700 | if (recoveryTarget == RECOVERY_TARGET_XID && !recoveryTargetInclusive) |
| 5701 | { |
| 5702 | /* |
| 5703 | * There can be only one transaction end record with this exact |
| 5704 | * transactionid |
| 5705 | * |
| 5706 | * when testing for an xid, we MUST test for equality only, since |
| 5707 | * transactions are numbered in the order they start, not the order |
| 5708 | * they complete. A higher numbered xid will complete before you about |
| 5709 | * 50% of the time... |
| 5710 | */ |
| 5711 | stopsHere = (recordXid == recoveryTargetXid); |
| 5712 | } |
| 5713 | |
| 5714 | if (recoveryTarget == RECOVERY_TARGET_TIME && |
| 5715 | getRecordTimestamp(record, &recordXtime)) |
| 5716 | { |
| 5717 | /* |
| 5718 | * There can be many transactions that share the same commit time, so |
| 5719 | * we stop after the last one, if we are inclusive, or stop at the |
| 5720 | * first one if we are exclusive |
| 5721 | */ |
| 5722 | if (recoveryTargetInclusive) |
| 5723 | stopsHere = (recordXtime > recoveryTargetTime); |
| 5724 | else |
| 5725 | stopsHere = (recordXtime >= recoveryTargetTime); |
| 5726 | } |
| 5727 | |
| 5728 | if (stopsHere) |
| 5729 | { |
| 5730 | recoveryStopAfter = false; |
| 5731 | recoveryStopXid = recordXid; |
| 5732 | recoveryStopTime = recordXtime; |
| 5733 | recoveryStopLSN = InvalidXLogRecPtr; |
| 5734 | recoveryStopName[0] = '\0'; |
| 5735 | |
| 5736 | if (isCommit) |
| 5737 | { |
| 5738 | ereport(LOG, |
| 5739 | (errmsg("recovery stopping before commit of transaction %u, time %s" , |
| 5740 | recoveryStopXid, |
| 5741 | timestamptz_to_str(recoveryStopTime)))); |
| 5742 | } |
| 5743 | else |
| 5744 | { |
| 5745 | ereport(LOG, |
| 5746 | (errmsg("recovery stopping before abort of transaction %u, time %s" , |
| 5747 | recoveryStopXid, |
| 5748 | timestamptz_to_str(recoveryStopTime)))); |
| 5749 | } |
| 5750 | } |
| 5751 | |
| 5752 | return stopsHere; |
| 5753 | } |
| 5754 | |
| 5755 | /* |
| 5756 | * Same as recoveryStopsBefore, but called after applying the record. |
| 5757 | * |
| 5758 | * We also track the timestamp of the latest applied COMMIT/ABORT |
| 5759 | * record in XLogCtl->recoveryLastXTime. |
| 5760 | */ |
| 5761 | static bool |
| 5762 | recoveryStopsAfter(XLogReaderState *record) |
| 5763 | { |
| 5764 | uint8 info; |
| 5765 | uint8 xact_info; |
| 5766 | uint8 rmid; |
| 5767 | TimestampTz recordXtime; |
| 5768 | |
| 5769 | /* |
| 5770 | * Ignore recovery target settings when not in archive recovery (meaning |
| 5771 | * we are in crash recovery). |
| 5772 | */ |
| 5773 | if (!ArchiveRecoveryRequested) |
| 5774 | return false; |
| 5775 | |
| 5776 | info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
| 5777 | rmid = XLogRecGetRmid(record); |
| 5778 | |
| 5779 | /* |
| 5780 | * There can be many restore points that share the same name; we stop at |
| 5781 | * the first one. |
| 5782 | */ |
| 5783 | if (recoveryTarget == RECOVERY_TARGET_NAME && |
| 5784 | rmid == RM_XLOG_ID && info == XLOG_RESTORE_POINT) |
| 5785 | { |
| 5786 | xl_restore_point *recordRestorePointData; |
| 5787 | |
| 5788 | recordRestorePointData = (xl_restore_point *) XLogRecGetData(record); |
| 5789 | |
| 5790 | if (strcmp(recordRestorePointData->rp_name, recoveryTargetName) == 0) |
| 5791 | { |
| 5792 | recoveryStopAfter = true; |
| 5793 | recoveryStopXid = InvalidTransactionId; |
| 5794 | recoveryStopLSN = InvalidXLogRecPtr; |
| 5795 | (void) getRecordTimestamp(record, &recoveryStopTime); |
| 5796 | strlcpy(recoveryStopName, recordRestorePointData->rp_name, MAXFNAMELEN); |
| 5797 | |
| 5798 | ereport(LOG, |
| 5799 | (errmsg("recovery stopping at restore point \"%s\", time %s" , |
| 5800 | recoveryStopName, |
| 5801 | timestamptz_to_str(recoveryStopTime)))); |
| 5802 | return true; |
| 5803 | } |
| 5804 | } |
| 5805 | |
| 5806 | /* Check if the target LSN has been reached */ |
| 5807 | if (recoveryTarget == RECOVERY_TARGET_LSN && |
| 5808 | recoveryTargetInclusive && |
| 5809 | record->ReadRecPtr >= recoveryTargetLSN) |
| 5810 | { |
| 5811 | recoveryStopAfter = true; |
| 5812 | recoveryStopXid = InvalidTransactionId; |
| 5813 | recoveryStopLSN = record->ReadRecPtr; |
| 5814 | recoveryStopTime = 0; |
| 5815 | recoveryStopName[0] = '\0'; |
| 5816 | ereport(LOG, |
| 5817 | (errmsg("recovery stopping after WAL location (LSN) \"%X/%X\"" , |
| 5818 | (uint32) (recoveryStopLSN >> 32), |
| 5819 | (uint32) recoveryStopLSN))); |
| 5820 | return true; |
| 5821 | } |
| 5822 | |
| 5823 | if (rmid != RM_XACT_ID) |
| 5824 | return false; |
| 5825 | |
| 5826 | xact_info = info & XLOG_XACT_OPMASK; |
| 5827 | |
| 5828 | if (xact_info == XLOG_XACT_COMMIT || |
| 5829 | xact_info == XLOG_XACT_COMMIT_PREPARED || |
| 5830 | xact_info == XLOG_XACT_ABORT || |
| 5831 | xact_info == XLOG_XACT_ABORT_PREPARED) |
| 5832 | { |
| 5833 | TransactionId recordXid; |
| 5834 | |
| 5835 | /* Update the last applied transaction timestamp */ |
| 5836 | if (getRecordTimestamp(record, &recordXtime)) |
| 5837 | SetLatestXTime(recordXtime); |
| 5838 | |
| 5839 | /* Extract the XID of the committed/aborted transaction */ |
| 5840 | if (xact_info == XLOG_XACT_COMMIT_PREPARED) |
| 5841 | { |
| 5842 | xl_xact_commit *xlrec = (xl_xact_commit *) XLogRecGetData(record); |
| 5843 | xl_xact_parsed_commit parsed; |
| 5844 | |
| 5845 | ParseCommitRecord(XLogRecGetInfo(record), |
| 5846 | xlrec, |
| 5847 | &parsed); |
| 5848 | recordXid = parsed.twophase_xid; |
| 5849 | } |
| 5850 | else if (xact_info == XLOG_XACT_ABORT_PREPARED) |
| 5851 | { |
| 5852 | xl_xact_abort *xlrec = (xl_xact_abort *) XLogRecGetData(record); |
| 5853 | xl_xact_parsed_abort parsed; |
| 5854 | |
| 5855 | ParseAbortRecord(XLogRecGetInfo(record), |
| 5856 | xlrec, |
| 5857 | &parsed); |
| 5858 | recordXid = parsed.twophase_xid; |
| 5859 | } |
| 5860 | else |
| 5861 | recordXid = XLogRecGetXid(record); |
| 5862 | |
| 5863 | /* |
| 5864 | * There can be only one transaction end record with this exact |
| 5865 | * transactionid |
| 5866 | * |
| 5867 | * when testing for an xid, we MUST test for equality only, since |
| 5868 | * transactions are numbered in the order they start, not the order |
| 5869 | * they complete. A higher numbered xid will complete before you about |
| 5870 | * 50% of the time... |
| 5871 | */ |
| 5872 | if (recoveryTarget == RECOVERY_TARGET_XID && recoveryTargetInclusive && |
| 5873 | recordXid == recoveryTargetXid) |
| 5874 | { |
| 5875 | recoveryStopAfter = true; |
| 5876 | recoveryStopXid = recordXid; |
| 5877 | recoveryStopTime = recordXtime; |
| 5878 | recoveryStopLSN = InvalidXLogRecPtr; |
| 5879 | recoveryStopName[0] = '\0'; |
| 5880 | |
| 5881 | if (xact_info == XLOG_XACT_COMMIT || |
| 5882 | xact_info == XLOG_XACT_COMMIT_PREPARED) |
| 5883 | { |
| 5884 | ereport(LOG, |
| 5885 | (errmsg("recovery stopping after commit of transaction %u, time %s" , |
| 5886 | recoveryStopXid, |
| 5887 | timestamptz_to_str(recoveryStopTime)))); |
| 5888 | } |
| 5889 | else if (xact_info == XLOG_XACT_ABORT || |
| 5890 | xact_info == XLOG_XACT_ABORT_PREPARED) |
| 5891 | { |
| 5892 | ereport(LOG, |
| 5893 | (errmsg("recovery stopping after abort of transaction %u, time %s" , |
| 5894 | recoveryStopXid, |
| 5895 | timestamptz_to_str(recoveryStopTime)))); |
| 5896 | } |
| 5897 | return true; |
| 5898 | } |
| 5899 | } |
| 5900 | |
| 5901 | /* Check if we should stop as soon as reaching consistency */ |
| 5902 | if (recoveryTarget == RECOVERY_TARGET_IMMEDIATE && reachedConsistency) |
| 5903 | { |
| 5904 | ereport(LOG, |
| 5905 | (errmsg("recovery stopping after reaching consistency" ))); |
| 5906 | |
| 5907 | recoveryStopAfter = true; |
| 5908 | recoveryStopXid = InvalidTransactionId; |
| 5909 | recoveryStopTime = 0; |
| 5910 | recoveryStopLSN = InvalidXLogRecPtr; |
| 5911 | recoveryStopName[0] = '\0'; |
| 5912 | return true; |
| 5913 | } |
| 5914 | |
| 5915 | return false; |
| 5916 | } |
| 5917 | |
| 5918 | /* |
| 5919 | * Wait until shared recoveryPause flag is cleared. |
| 5920 | * |
| 5921 | * XXX Could also be done with shared latch, avoiding the pg_usleep loop. |
| 5922 | * Probably not worth the trouble though. This state shouldn't be one that |
| 5923 | * anyone cares about server power consumption in. |
| 5924 | */ |
| 5925 | static void |
| 5926 | recoveryPausesHere(void) |
| 5927 | { |
| 5928 | /* Don't pause unless users can connect! */ |
| 5929 | if (!LocalHotStandbyActive) |
| 5930 | return; |
| 5931 | |
| 5932 | ereport(LOG, |
| 5933 | (errmsg("recovery has paused" ), |
| 5934 | errhint("Execute pg_wal_replay_resume() to continue." ))); |
| 5935 | |
| 5936 | while (RecoveryIsPaused()) |
| 5937 | { |
| 5938 | pg_usleep(1000000L); /* 1000 ms */ |
| 5939 | HandleStartupProcInterrupts(); |
| 5940 | } |
| 5941 | } |
| 5942 | |
| 5943 | bool |
| 5944 | RecoveryIsPaused(void) |
| 5945 | { |
| 5946 | bool recoveryPause; |
| 5947 | |
| 5948 | SpinLockAcquire(&XLogCtl->info_lck); |
| 5949 | recoveryPause = XLogCtl->recoveryPause; |
| 5950 | SpinLockRelease(&XLogCtl->info_lck); |
| 5951 | |
| 5952 | return recoveryPause; |
| 5953 | } |
| 5954 | |
| 5955 | void |
| 5956 | SetRecoveryPause(bool recoveryPause) |
| 5957 | { |
| 5958 | SpinLockAcquire(&XLogCtl->info_lck); |
| 5959 | XLogCtl->recoveryPause = recoveryPause; |
| 5960 | SpinLockRelease(&XLogCtl->info_lck); |
| 5961 | } |
| 5962 | |
| 5963 | /* |
| 5964 | * When recovery_min_apply_delay is set, we wait long enough to make sure |
| 5965 | * certain record types are applied at least that interval behind the master. |
| 5966 | * |
| 5967 | * Returns true if we waited. |
| 5968 | * |
| 5969 | * Note that the delay is calculated between the WAL record log time and |
| 5970 | * the current time on standby. We would prefer to keep track of when this |
| 5971 | * standby received each WAL record, which would allow a more consistent |
| 5972 | * approach and one not affected by time synchronisation issues, but that |
| 5973 | * is significantly more effort and complexity for little actual gain in |
| 5974 | * usability. |
| 5975 | */ |
| 5976 | static bool |
| 5977 | recoveryApplyDelay(XLogReaderState *record) |
| 5978 | { |
| 5979 | uint8 xact_info; |
| 5980 | TimestampTz xtime; |
| 5981 | long secs; |
| 5982 | int microsecs; |
| 5983 | |
| 5984 | /* nothing to do if no delay configured */ |
| 5985 | if (recovery_min_apply_delay <= 0) |
| 5986 | return false; |
| 5987 | |
| 5988 | /* no delay is applied on a database not yet consistent */ |
| 5989 | if (!reachedConsistency) |
| 5990 | return false; |
| 5991 | |
| 5992 | /* |
| 5993 | * Is it a COMMIT record? |
| 5994 | * |
| 5995 | * We deliberately choose not to delay aborts since they have no effect on |
| 5996 | * MVCC. We already allow replay of records that don't have a timestamp, |
| 5997 | * so there is already opportunity for issues caused by early conflicts on |
| 5998 | * standbys. |
| 5999 | */ |
| 6000 | if (XLogRecGetRmid(record) != RM_XACT_ID) |
| 6001 | return false; |
| 6002 | |
| 6003 | xact_info = XLogRecGetInfo(record) & XLOG_XACT_OPMASK; |
| 6004 | |
| 6005 | if (xact_info != XLOG_XACT_COMMIT && |
| 6006 | xact_info != XLOG_XACT_COMMIT_PREPARED) |
| 6007 | return false; |
| 6008 | |
| 6009 | if (!getRecordTimestamp(record, &xtime)) |
| 6010 | return false; |
| 6011 | |
| 6012 | recoveryDelayUntilTime = |
| 6013 | TimestampTzPlusMilliseconds(xtime, recovery_min_apply_delay); |
| 6014 | |
| 6015 | /* |
| 6016 | * Exit without arming the latch if it's already past time to apply this |
| 6017 | * record |
| 6018 | */ |
| 6019 | TimestampDifference(GetCurrentTimestamp(), recoveryDelayUntilTime, |
| 6020 | &secs, µsecs); |
| 6021 | if (secs <= 0 && microsecs <= 0) |
| 6022 | return false; |
| 6023 | |
| 6024 | while (true) |
| 6025 | { |
| 6026 | ResetLatch(&XLogCtl->recoveryWakeupLatch); |
| 6027 | |
| 6028 | /* might change the trigger file's location */ |
| 6029 | HandleStartupProcInterrupts(); |
| 6030 | |
| 6031 | if (CheckForStandbyTrigger()) |
| 6032 | break; |
| 6033 | |
| 6034 | /* |
| 6035 | * Wait for difference between GetCurrentTimestamp() and |
| 6036 | * recoveryDelayUntilTime |
| 6037 | */ |
| 6038 | TimestampDifference(GetCurrentTimestamp(), recoveryDelayUntilTime, |
| 6039 | &secs, µsecs); |
| 6040 | |
| 6041 | /* NB: We're ignoring waits below min_apply_delay's resolution. */ |
| 6042 | if (secs <= 0 && microsecs / 1000 <= 0) |
| 6043 | break; |
| 6044 | |
| 6045 | elog(DEBUG2, "recovery apply delay %ld seconds, %d milliseconds" , |
| 6046 | secs, microsecs / 1000); |
| 6047 | |
| 6048 | (void) WaitLatch(&XLogCtl->recoveryWakeupLatch, |
| 6049 | WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH, |
| 6050 | secs * 1000L + microsecs / 1000, |
| 6051 | WAIT_EVENT_RECOVERY_APPLY_DELAY); |
| 6052 | } |
| 6053 | return true; |
| 6054 | } |
| 6055 | |
| 6056 | /* |
| 6057 | * Save timestamp of latest processed commit/abort record. |
| 6058 | * |
| 6059 | * We keep this in XLogCtl, not a simple static variable, so that it can be |
| 6060 | * seen by processes other than the startup process. Note in particular |
| 6061 | * that CreateRestartPoint is executed in the checkpointer. |
| 6062 | */ |
| 6063 | static void |
| 6064 | SetLatestXTime(TimestampTz xtime) |
| 6065 | { |
| 6066 | SpinLockAcquire(&XLogCtl->info_lck); |
| 6067 | XLogCtl->recoveryLastXTime = xtime; |
| 6068 | SpinLockRelease(&XLogCtl->info_lck); |
| 6069 | } |
| 6070 | |
| 6071 | /* |
| 6072 | * Fetch timestamp of latest processed commit/abort record. |
| 6073 | */ |
| 6074 | TimestampTz |
| 6075 | GetLatestXTime(void) |
| 6076 | { |
| 6077 | TimestampTz xtime; |
| 6078 | |
| 6079 | SpinLockAcquire(&XLogCtl->info_lck); |
| 6080 | xtime = XLogCtl->recoveryLastXTime; |
| 6081 | SpinLockRelease(&XLogCtl->info_lck); |
| 6082 | |
| 6083 | return xtime; |
| 6084 | } |
| 6085 | |
| 6086 | /* |
| 6087 | * Save timestamp of the next chunk of WAL records to apply. |
| 6088 | * |
| 6089 | * We keep this in XLogCtl, not a simple static variable, so that it can be |
| 6090 | * seen by all backends. |
| 6091 | */ |
| 6092 | static void |
| 6093 | SetCurrentChunkStartTime(TimestampTz xtime) |
| 6094 | { |
| 6095 | SpinLockAcquire(&XLogCtl->info_lck); |
| 6096 | XLogCtl->currentChunkStartTime = xtime; |
| 6097 | SpinLockRelease(&XLogCtl->info_lck); |
| 6098 | } |
| 6099 | |
| 6100 | /* |
| 6101 | * Fetch timestamp of latest processed commit/abort record. |
| 6102 | * Startup process maintains an accurate local copy in XLogReceiptTime |
| 6103 | */ |
| 6104 | TimestampTz |
| 6105 | GetCurrentChunkReplayStartTime(void) |
| 6106 | { |
| 6107 | TimestampTz xtime; |
| 6108 | |
| 6109 | SpinLockAcquire(&XLogCtl->info_lck); |
| 6110 | xtime = XLogCtl->currentChunkStartTime; |
| 6111 | SpinLockRelease(&XLogCtl->info_lck); |
| 6112 | |
| 6113 | return xtime; |
| 6114 | } |
| 6115 | |
| 6116 | /* |
| 6117 | * Returns time of receipt of current chunk of XLOG data, as well as |
| 6118 | * whether it was received from streaming replication or from archives. |
| 6119 | */ |
| 6120 | void |
| 6121 | GetXLogReceiptTime(TimestampTz *rtime, bool *fromStream) |
| 6122 | { |
| 6123 | /* |
| 6124 | * This must be executed in the startup process, since we don't export the |
| 6125 | * relevant state to shared memory. |
| 6126 | */ |
| 6127 | Assert(InRecovery); |
| 6128 | |
| 6129 | *rtime = XLogReceiptTime; |
| 6130 | *fromStream = (XLogReceiptSource == XLOG_FROM_STREAM); |
| 6131 | } |
| 6132 | |
| 6133 | /* |
| 6134 | * Note that text field supplied is a parameter name and does not require |
| 6135 | * translation |
| 6136 | */ |
| 6137 | #define RecoveryRequiresIntParameter(param_name, currValue, minValue) \ |
| 6138 | do { \ |
| 6139 | if ((currValue) < (minValue)) \ |
| 6140 | ereport(ERROR, \ |
| 6141 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), \ |
| 6142 | errmsg("hot standby is not possible because " \ |
| 6143 | "%s = %d is a lower setting than on the master server " \ |
| 6144 | "(its value was %d)", \ |
| 6145 | param_name, \ |
| 6146 | currValue, \ |
| 6147 | minValue))); \ |
| 6148 | } while(0) |
| 6149 | |
| 6150 | /* |
| 6151 | * Check to see if required parameters are set high enough on this server |
| 6152 | * for various aspects of recovery operation. |
| 6153 | * |
| 6154 | * Note that all the parameters which this function tests need to be |
| 6155 | * listed in Administrator's Overview section in high-availability.sgml. |
| 6156 | * If you change them, don't forget to update the list. |
| 6157 | */ |
| 6158 | static void |
| 6159 | CheckRequiredParameterValues(void) |
| 6160 | { |
| 6161 | /* |
| 6162 | * For archive recovery, the WAL must be generated with at least 'replica' |
| 6163 | * wal_level. |
| 6164 | */ |
| 6165 | if (ArchiveRecoveryRequested && ControlFile->wal_level == WAL_LEVEL_MINIMAL) |
| 6166 | { |
| 6167 | ereport(WARNING, |
| 6168 | (errmsg("WAL was generated with wal_level=minimal, data may be missing" ), |
| 6169 | errhint("This happens if you temporarily set wal_level=minimal without taking a new base backup." ))); |
| 6170 | } |
| 6171 | |
| 6172 | /* |
| 6173 | * For Hot Standby, the WAL must be generated with 'replica' mode, and we |
| 6174 | * must have at least as many backend slots as the primary. |
| 6175 | */ |
| 6176 | if (ArchiveRecoveryRequested && EnableHotStandby) |
| 6177 | { |
| 6178 | if (ControlFile->wal_level < WAL_LEVEL_REPLICA) |
| 6179 | ereport(ERROR, |
| 6180 | (errmsg("hot standby is not possible because wal_level was not set to \"replica\" or higher on the master server" ), |
| 6181 | errhint("Either set wal_level to \"replica\" on the master, or turn off hot_standby here." ))); |
| 6182 | |
| 6183 | /* We ignore autovacuum_max_workers when we make this test. */ |
| 6184 | RecoveryRequiresIntParameter("max_connections" , |
| 6185 | MaxConnections, |
| 6186 | ControlFile->MaxConnections); |
| 6187 | RecoveryRequiresIntParameter("max_worker_processes" , |
| 6188 | max_worker_processes, |
| 6189 | ControlFile->max_worker_processes); |
| 6190 | RecoveryRequiresIntParameter("max_wal_senders" , |
| 6191 | max_wal_senders, |
| 6192 | ControlFile->max_wal_senders); |
| 6193 | RecoveryRequiresIntParameter("max_prepared_transactions" , |
| 6194 | max_prepared_xacts, |
| 6195 | ControlFile->max_prepared_xacts); |
| 6196 | RecoveryRequiresIntParameter("max_locks_per_transaction" , |
| 6197 | max_locks_per_xact, |
| 6198 | ControlFile->max_locks_per_xact); |
| 6199 | } |
| 6200 | } |
| 6201 | |
| 6202 | /* |
| 6203 | * This must be called ONCE during postmaster or standalone-backend startup |
| 6204 | */ |
| 6205 | void |
| 6206 | StartupXLOG(void) |
| 6207 | { |
| 6208 | XLogCtlInsert *Insert; |
| 6209 | CheckPoint checkPoint; |
| 6210 | bool wasShutdown; |
| 6211 | bool reachedStopPoint = false; |
| 6212 | bool haveBackupLabel = false; |
| 6213 | bool haveTblspcMap = false; |
| 6214 | XLogRecPtr RecPtr, |
| 6215 | checkPointLoc, |
| 6216 | EndOfLog; |
| 6217 | TimeLineID EndOfLogTLI; |
| 6218 | TimeLineID PrevTimeLineID; |
| 6219 | XLogRecord *record; |
| 6220 | TransactionId oldestActiveXID; |
| 6221 | bool backupEndRequired = false; |
| 6222 | bool backupFromStandby = false; |
| 6223 | DBState dbstate_at_startup; |
| 6224 | XLogReaderState *xlogreader; |
| 6225 | XLogPageReadPrivate private; |
| 6226 | bool fast_promoted = false; |
| 6227 | struct stat st; |
| 6228 | |
| 6229 | /* |
| 6230 | * We should have an aux process resource owner to use, and we should not |
| 6231 | * be in a transaction that's installed some other resowner. |
| 6232 | */ |
| 6233 | Assert(AuxProcessResourceOwner != NULL); |
| 6234 | Assert(CurrentResourceOwner == NULL || |
| 6235 | CurrentResourceOwner == AuxProcessResourceOwner); |
| 6236 | CurrentResourceOwner = AuxProcessResourceOwner; |
| 6237 | |
| 6238 | /* |
| 6239 | * Verify XLOG status looks valid. |
| 6240 | */ |
| 6241 | if (ControlFile->state < DB_SHUTDOWNED || |
| 6242 | ControlFile->state > DB_IN_PRODUCTION || |
| 6243 | !XRecOffIsValid(ControlFile->checkPoint)) |
| 6244 | ereport(FATAL, |
| 6245 | (errmsg("control file contains invalid data" ))); |
| 6246 | |
| 6247 | if (ControlFile->state == DB_SHUTDOWNED) |
| 6248 | { |
| 6249 | /* This is the expected case, so don't be chatty in standalone mode */ |
| 6250 | ereport(IsPostmasterEnvironment ? LOG : NOTICE, |
| 6251 | (errmsg("database system was shut down at %s" , |
| 6252 | str_time(ControlFile->time)))); |
| 6253 | } |
| 6254 | else if (ControlFile->state == DB_SHUTDOWNED_IN_RECOVERY) |
| 6255 | ereport(LOG, |
| 6256 | (errmsg("database system was shut down in recovery at %s" , |
| 6257 | str_time(ControlFile->time)))); |
| 6258 | else if (ControlFile->state == DB_SHUTDOWNING) |
| 6259 | ereport(LOG, |
| 6260 | (errmsg("database system shutdown was interrupted; last known up at %s" , |
| 6261 | str_time(ControlFile->time)))); |
| 6262 | else if (ControlFile->state == DB_IN_CRASH_RECOVERY) |
| 6263 | ereport(LOG, |
| 6264 | (errmsg("database system was interrupted while in recovery at %s" , |
| 6265 | str_time(ControlFile->time)), |
| 6266 | errhint("This probably means that some data is corrupted and" |
| 6267 | " you will have to use the last backup for recovery." ))); |
| 6268 | else if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY) |
| 6269 | ereport(LOG, |
| 6270 | (errmsg("database system was interrupted while in recovery at log time %s" , |
| 6271 | str_time(ControlFile->checkPointCopy.time)), |
| 6272 | errhint("If this has occurred more than once some data might be corrupted" |
| 6273 | " and you might need to choose an earlier recovery target." ))); |
| 6274 | else if (ControlFile->state == DB_IN_PRODUCTION) |
| 6275 | ereport(LOG, |
| 6276 | (errmsg("database system was interrupted; last known up at %s" , |
| 6277 | str_time(ControlFile->time)))); |
| 6278 | |
| 6279 | /* This is just to allow attaching to startup process with a debugger */ |
| 6280 | #ifdef XLOG_REPLAY_DELAY |
| 6281 | if (ControlFile->state != DB_SHUTDOWNED) |
| 6282 | pg_usleep(60000000L); |
| 6283 | #endif |
| 6284 | |
| 6285 | /* |
| 6286 | * Verify that pg_wal and pg_wal/archive_status exist. In cases where |
| 6287 | * someone has performed a copy for PITR, these directories may have been |
| 6288 | * excluded and need to be re-created. |
| 6289 | */ |
| 6290 | ValidateXLOGDirectoryStructure(); |
| 6291 | |
| 6292 | /*---------- |
| 6293 | * If we previously crashed, perform a couple of actions: |
| 6294 | * - The pg_wal directory may still include some temporary WAL segments |
| 6295 | * used when creating a new segment, so perform some clean up to not |
| 6296 | * bloat this path. This is done first as there is no point to sync this |
| 6297 | * temporary data. |
| 6298 | * - There might be data which we had written, intending to fsync it, |
| 6299 | * but which we had not actually fsync'd yet. Therefore, a power failure |
| 6300 | * in the near future might cause earlier unflushed writes to be lost, |
| 6301 | * even though more recent data written to disk from here on would be |
| 6302 | * persisted. To avoid that, fsync the entire data directory. |
| 6303 | *--------- |
| 6304 | */ |
| 6305 | if (ControlFile->state != DB_SHUTDOWNED && |
| 6306 | ControlFile->state != DB_SHUTDOWNED_IN_RECOVERY) |
| 6307 | { |
| 6308 | RemoveTempXlogFiles(); |
| 6309 | SyncDataDirectory(); |
| 6310 | } |
| 6311 | |
| 6312 | /* |
| 6313 | * Initialize on the assumption we want to recover to the latest timeline |
| 6314 | * that's active according to pg_control. |
| 6315 | */ |
| 6316 | if (ControlFile->minRecoveryPointTLI > |
| 6317 | ControlFile->checkPointCopy.ThisTimeLineID) |
| 6318 | recoveryTargetTLI = ControlFile->minRecoveryPointTLI; |
| 6319 | else |
| 6320 | recoveryTargetTLI = ControlFile->checkPointCopy.ThisTimeLineID; |
| 6321 | |
| 6322 | /* |
| 6323 | * Check for signal files, and if so set up state for offline recovery |
| 6324 | */ |
| 6325 | readRecoverySignalFile(); |
| 6326 | validateRecoveryParameters(); |
| 6327 | |
| 6328 | if (ArchiveRecoveryRequested) |
| 6329 | { |
| 6330 | if (StandbyModeRequested) |
| 6331 | ereport(LOG, |
| 6332 | (errmsg("entering standby mode" ))); |
| 6333 | else if (recoveryTarget == RECOVERY_TARGET_XID) |
| 6334 | ereport(LOG, |
| 6335 | (errmsg("starting point-in-time recovery to XID %u" , |
| 6336 | recoveryTargetXid))); |
| 6337 | else if (recoveryTarget == RECOVERY_TARGET_TIME) |
| 6338 | ereport(LOG, |
| 6339 | (errmsg("starting point-in-time recovery to %s" , |
| 6340 | timestamptz_to_str(recoveryTargetTime)))); |
| 6341 | else if (recoveryTarget == RECOVERY_TARGET_NAME) |
| 6342 | ereport(LOG, |
| 6343 | (errmsg("starting point-in-time recovery to \"%s\"" , |
| 6344 | recoveryTargetName))); |
| 6345 | else if (recoveryTarget == RECOVERY_TARGET_LSN) |
| 6346 | ereport(LOG, |
| 6347 | (errmsg("starting point-in-time recovery to WAL location (LSN) \"%X/%X\"" , |
| 6348 | (uint32) (recoveryTargetLSN >> 32), |
| 6349 | (uint32) recoveryTargetLSN))); |
| 6350 | else if (recoveryTarget == RECOVERY_TARGET_IMMEDIATE) |
| 6351 | ereport(LOG, |
| 6352 | (errmsg("starting point-in-time recovery to earliest consistent point" ))); |
| 6353 | else |
| 6354 | ereport(LOG, |
| 6355 | (errmsg("starting archive recovery" ))); |
| 6356 | } |
| 6357 | |
| 6358 | /* |
| 6359 | * Take ownership of the wakeup latch if we're going to sleep during |
| 6360 | * recovery. |
| 6361 | */ |
| 6362 | if (StandbyModeRequested) |
| 6363 | OwnLatch(&XLogCtl->recoveryWakeupLatch); |
| 6364 | |
| 6365 | /* Set up XLOG reader facility */ |
| 6366 | MemSet(&private, 0, sizeof(XLogPageReadPrivate)); |
| 6367 | xlogreader = XLogReaderAllocate(wal_segment_size, &XLogPageRead, &private); |
| 6368 | if (!xlogreader) |
| 6369 | ereport(ERROR, |
| 6370 | (errcode(ERRCODE_OUT_OF_MEMORY), |
| 6371 | errmsg("out of memory" ), |
| 6372 | errdetail("Failed while allocating a WAL reading processor." ))); |
| 6373 | xlogreader->system_identifier = ControlFile->system_identifier; |
| 6374 | |
| 6375 | /* |
| 6376 | * Allocate two page buffers dedicated to WAL consistency checks. We do |
| 6377 | * it this way, rather than just making static arrays, for two reasons: |
| 6378 | * (1) no need to waste the storage in most instantiations of the backend; |
| 6379 | * (2) a static char array isn't guaranteed to have any particular |
| 6380 | * alignment, whereas palloc() will provide MAXALIGN'd storage. |
| 6381 | */ |
| 6382 | replay_image_masked = (char *) palloc(BLCKSZ); |
| 6383 | master_image_masked = (char *) palloc(BLCKSZ); |
| 6384 | |
| 6385 | if (read_backup_label(&checkPointLoc, &backupEndRequired, |
| 6386 | &backupFromStandby)) |
| 6387 | { |
| 6388 | List *tablespaces = NIL; |
| 6389 | |
| 6390 | /* |
| 6391 | * Archive recovery was requested, and thanks to the backup label |
| 6392 | * file, we know how far we need to replay to reach consistency. Enter |
| 6393 | * archive recovery directly. |
| 6394 | */ |
| 6395 | InArchiveRecovery = true; |
| 6396 | if (StandbyModeRequested) |
| 6397 | StandbyMode = true; |
| 6398 | |
| 6399 | /* |
| 6400 | * When a backup_label file is present, we want to roll forward from |
| 6401 | * the checkpoint it identifies, rather than using pg_control. |
| 6402 | */ |
| 6403 | record = ReadCheckpointRecord(xlogreader, checkPointLoc, 0, true); |
| 6404 | if (record != NULL) |
| 6405 | { |
| 6406 | memcpy(&checkPoint, XLogRecGetData(xlogreader), sizeof(CheckPoint)); |
| 6407 | wasShutdown = ((record->xl_info & ~XLR_INFO_MASK) == XLOG_CHECKPOINT_SHUTDOWN); |
| 6408 | ereport(DEBUG1, |
| 6409 | (errmsg("checkpoint record is at %X/%X" , |
| 6410 | (uint32) (checkPointLoc >> 32), (uint32) checkPointLoc))); |
| 6411 | InRecovery = true; /* force recovery even if SHUTDOWNED */ |
| 6412 | |
| 6413 | /* |
| 6414 | * Make sure that REDO location exists. This may not be the case |
| 6415 | * if there was a crash during an online backup, which left a |
| 6416 | * backup_label around that references a WAL segment that's |
| 6417 | * already been archived. |
| 6418 | */ |
| 6419 | if (checkPoint.redo < checkPointLoc) |
| 6420 | { |
| 6421 | if (!ReadRecord(xlogreader, checkPoint.redo, LOG, false)) |
| 6422 | ereport(FATAL, |
| 6423 | (errmsg("could not find redo location referenced by checkpoint record" ), |
| 6424 | errhint("If you are restoring from a backup, touch \"%s/recovery.signal\" and add required recovery options.\n" |
| 6425 | "If you are not restoring from a backup, try removing the file \"%s/backup_label\".\n" |
| 6426 | "Be careful: removing \"%s/backup_label\" will result in a corrupt cluster if restoring from a backup." , |
| 6427 | DataDir, DataDir, DataDir))); |
| 6428 | } |
| 6429 | } |
| 6430 | else |
| 6431 | { |
| 6432 | ereport(FATAL, |
| 6433 | (errmsg("could not locate required checkpoint record" ), |
| 6434 | errhint("If you are restoring from a backup, touch \"%s/recovery.signal\" and add required recovery options.\n" |
| 6435 | "If you are not restoring from a backup, try removing the file \"%s/backup_label\".\n" |
| 6436 | "Be careful: removing \"%s/backup_label\" will result in a corrupt cluster if restoring from a backup." , |
| 6437 | DataDir, DataDir, DataDir))); |
| 6438 | wasShutdown = false; /* keep compiler quiet */ |
| 6439 | } |
| 6440 | |
| 6441 | /* read the tablespace_map file if present and create symlinks. */ |
| 6442 | if (read_tablespace_map(&tablespaces)) |
| 6443 | { |
| 6444 | ListCell *lc; |
| 6445 | |
| 6446 | foreach(lc, tablespaces) |
| 6447 | { |
| 6448 | tablespaceinfo *ti = lfirst(lc); |
| 6449 | char *linkloc; |
| 6450 | |
| 6451 | linkloc = psprintf("pg_tblspc/%s" , ti->oid); |
| 6452 | |
| 6453 | /* |
| 6454 | * Remove the existing symlink if any and Create the symlink |
| 6455 | * under PGDATA. |
| 6456 | */ |
| 6457 | remove_tablespace_symlink(linkloc); |
| 6458 | |
| 6459 | if (symlink(ti->path, linkloc) < 0) |
| 6460 | ereport(ERROR, |
| 6461 | (errcode_for_file_access(), |
| 6462 | errmsg("could not create symbolic link \"%s\": %m" , |
| 6463 | linkloc))); |
| 6464 | |
| 6465 | pfree(ti->oid); |
| 6466 | pfree(ti->path); |
| 6467 | pfree(ti); |
| 6468 | } |
| 6469 | |
| 6470 | /* set flag to delete it later */ |
| 6471 | haveTblspcMap = true; |
| 6472 | } |
| 6473 | |
| 6474 | /* set flag to delete it later */ |
| 6475 | haveBackupLabel = true; |
| 6476 | } |
| 6477 | else |
| 6478 | { |
| 6479 | /* |
| 6480 | * If tablespace_map file is present without backup_label file, there |
| 6481 | * is no use of such file. There is no harm in retaining it, but it |
| 6482 | * is better to get rid of the map file so that we don't have any |
| 6483 | * redundant file in data directory and it will avoid any sort of |
| 6484 | * confusion. It seems prudent though to just rename the file out of |
| 6485 | * the way rather than delete it completely, also we ignore any error |
| 6486 | * that occurs in rename operation as even if map file is present |
| 6487 | * without backup_label file, it is harmless. |
| 6488 | */ |
| 6489 | if (stat(TABLESPACE_MAP, &st) == 0) |
| 6490 | { |
| 6491 | unlink(TABLESPACE_MAP_OLD); |
| 6492 | if (durable_rename(TABLESPACE_MAP, TABLESPACE_MAP_OLD, DEBUG1) == 0) |
| 6493 | ereport(LOG, |
| 6494 | (errmsg("ignoring file \"%s\" because no file \"%s\" exists" , |
| 6495 | TABLESPACE_MAP, BACKUP_LABEL_FILE), |
| 6496 | errdetail("File \"%s\" was renamed to \"%s\"." , |
| 6497 | TABLESPACE_MAP, TABLESPACE_MAP_OLD))); |
| 6498 | else |
| 6499 | ereport(LOG, |
| 6500 | (errmsg("ignoring file \"%s\" because no file \"%s\" exists" , |
| 6501 | TABLESPACE_MAP, BACKUP_LABEL_FILE), |
| 6502 | errdetail("Could not rename file \"%s\" to \"%s\": %m." , |
| 6503 | TABLESPACE_MAP, TABLESPACE_MAP_OLD))); |
| 6504 | } |
| 6505 | |
| 6506 | /* |
| 6507 | * It's possible that archive recovery was requested, but we don't |
| 6508 | * know how far we need to replay the WAL before we reach consistency. |
| 6509 | * This can happen for example if a base backup is taken from a |
| 6510 | * running server using an atomic filesystem snapshot, without calling |
| 6511 | * pg_start/stop_backup. Or if you just kill a running master server |
| 6512 | * and put it into archive recovery by creating a recovery signal |
| 6513 | * file. |
| 6514 | * |
| 6515 | * Our strategy in that case is to perform crash recovery first, |
| 6516 | * replaying all the WAL present in pg_wal, and only enter archive |
| 6517 | * recovery after that. |
| 6518 | * |
| 6519 | * But usually we already know how far we need to replay the WAL (up |
| 6520 | * to minRecoveryPoint, up to backupEndPoint, or until we see an |
| 6521 | * end-of-backup record), and we can enter archive recovery directly. |
| 6522 | */ |
| 6523 | if (ArchiveRecoveryRequested && |
| 6524 | (ControlFile->minRecoveryPoint != InvalidXLogRecPtr || |
| 6525 | ControlFile->backupEndRequired || |
| 6526 | ControlFile->backupEndPoint != InvalidXLogRecPtr || |
| 6527 | ControlFile->state == DB_SHUTDOWNED)) |
| 6528 | { |
| 6529 | InArchiveRecovery = true; |
| 6530 | if (StandbyModeRequested) |
| 6531 | StandbyMode = true; |
| 6532 | } |
| 6533 | |
| 6534 | /* Get the last valid checkpoint record. */ |
| 6535 | checkPointLoc = ControlFile->checkPoint; |
| 6536 | RedoStartLSN = ControlFile->checkPointCopy.redo; |
| 6537 | record = ReadCheckpointRecord(xlogreader, checkPointLoc, 1, true); |
| 6538 | if (record != NULL) |
| 6539 | { |
| 6540 | ereport(DEBUG1, |
| 6541 | (errmsg("checkpoint record is at %X/%X" , |
| 6542 | (uint32) (checkPointLoc >> 32), (uint32) checkPointLoc))); |
| 6543 | } |
| 6544 | else |
| 6545 | { |
| 6546 | /* |
| 6547 | * We used to attempt to go back to a secondary checkpoint record |
| 6548 | * here, but only when not in standby mode. We now just fail if we |
| 6549 | * can't read the last checkpoint because this allows us to |
| 6550 | * simplify processing around checkpoints. |
| 6551 | */ |
| 6552 | ereport(PANIC, |
| 6553 | (errmsg("could not locate a valid checkpoint record" ))); |
| 6554 | } |
| 6555 | memcpy(&checkPoint, XLogRecGetData(xlogreader), sizeof(CheckPoint)); |
| 6556 | wasShutdown = ((record->xl_info & ~XLR_INFO_MASK) == XLOG_CHECKPOINT_SHUTDOWN); |
| 6557 | } |
| 6558 | |
| 6559 | /* |
| 6560 | * Clear out any old relcache cache files. This is *necessary* if we do |
| 6561 | * any WAL replay, since that would probably result in the cache files |
| 6562 | * being out of sync with database reality. In theory we could leave them |
| 6563 | * in place if the database had been cleanly shut down, but it seems |
| 6564 | * safest to just remove them always and let them be rebuilt during the |
| 6565 | * first backend startup. These files needs to be removed from all |
| 6566 | * directories including pg_tblspc, however the symlinks are created only |
| 6567 | * after reading tablespace_map file in case of archive recovery from |
| 6568 | * backup, so needs to clear old relcache files here after creating |
| 6569 | * symlinks. |
| 6570 | */ |
| 6571 | RelationCacheInitFileRemove(); |
| 6572 | |
| 6573 | /* |
| 6574 | * If the location of the checkpoint record is not on the expected |
| 6575 | * timeline in the history of the requested timeline, we cannot proceed: |
| 6576 | * the backup is not part of the history of the requested timeline. |
| 6577 | */ |
| 6578 | Assert(expectedTLEs); /* was initialized by reading checkpoint |
| 6579 | * record */ |
| 6580 | if (tliOfPointInHistory(checkPointLoc, expectedTLEs) != |
| 6581 | checkPoint.ThisTimeLineID) |
| 6582 | { |
| 6583 | XLogRecPtr switchpoint; |
| 6584 | |
| 6585 | /* |
| 6586 | * tliSwitchPoint will throw an error if the checkpoint's timeline is |
| 6587 | * not in expectedTLEs at all. |
| 6588 | */ |
| 6589 | switchpoint = tliSwitchPoint(ControlFile->checkPointCopy.ThisTimeLineID, expectedTLEs, NULL); |
| 6590 | ereport(FATAL, |
| 6591 | (errmsg("requested timeline %u is not a child of this server's history" , |
| 6592 | recoveryTargetTLI), |
| 6593 | errdetail("Latest checkpoint is at %X/%X on timeline %u, but in the history of the requested timeline, the server forked off from that timeline at %X/%X." , |
| 6594 | (uint32) (ControlFile->checkPoint >> 32), |
| 6595 | (uint32) ControlFile->checkPoint, |
| 6596 | ControlFile->checkPointCopy.ThisTimeLineID, |
| 6597 | (uint32) (switchpoint >> 32), |
| 6598 | (uint32) switchpoint))); |
| 6599 | } |
| 6600 | |
| 6601 | /* |
| 6602 | * The min recovery point should be part of the requested timeline's |
| 6603 | * history, too. |
| 6604 | */ |
| 6605 | if (!XLogRecPtrIsInvalid(ControlFile->minRecoveryPoint) && |
| 6606 | tliOfPointInHistory(ControlFile->minRecoveryPoint - 1, expectedTLEs) != |
| 6607 | ControlFile->minRecoveryPointTLI) |
| 6608 | ereport(FATAL, |
| 6609 | (errmsg("requested timeline %u does not contain minimum recovery point %X/%X on timeline %u" , |
| 6610 | recoveryTargetTLI, |
| 6611 | (uint32) (ControlFile->minRecoveryPoint >> 32), |
| 6612 | (uint32) ControlFile->minRecoveryPoint, |
| 6613 | ControlFile->minRecoveryPointTLI))); |
| 6614 | |
| 6615 | LastRec = RecPtr = checkPointLoc; |
| 6616 | |
| 6617 | ereport(DEBUG1, |
| 6618 | (errmsg_internal("redo record is at %X/%X; shutdown %s" , |
| 6619 | (uint32) (checkPoint.redo >> 32), (uint32) checkPoint.redo, |
| 6620 | wasShutdown ? "true" : "false" ))); |
| 6621 | ereport(DEBUG1, |
| 6622 | (errmsg_internal("next transaction ID: " UINT64_FORMAT "; next OID: %u" , |
| 6623 | U64FromFullTransactionId(checkPoint.nextFullXid), |
| 6624 | checkPoint.nextOid))); |
| 6625 | ereport(DEBUG1, |
| 6626 | (errmsg_internal("next MultiXactId: %u; next MultiXactOffset: %u" , |
| 6627 | checkPoint.nextMulti, checkPoint.nextMultiOffset))); |
| 6628 | ereport(DEBUG1, |
| 6629 | (errmsg_internal("oldest unfrozen transaction ID: %u, in database %u" , |
| 6630 | checkPoint.oldestXid, checkPoint.oldestXidDB))); |
| 6631 | ereport(DEBUG1, |
| 6632 | (errmsg_internal("oldest MultiXactId: %u, in database %u" , |
| 6633 | checkPoint.oldestMulti, checkPoint.oldestMultiDB))); |
| 6634 | ereport(DEBUG1, |
| 6635 | (errmsg_internal("commit timestamp Xid oldest/newest: %u/%u" , |
| 6636 | checkPoint.oldestCommitTsXid, |
| 6637 | checkPoint.newestCommitTsXid))); |
| 6638 | if (!TransactionIdIsNormal(XidFromFullTransactionId(checkPoint.nextFullXid))) |
| 6639 | ereport(PANIC, |
| 6640 | (errmsg("invalid next transaction ID" ))); |
| 6641 | |
| 6642 | /* initialize shared memory variables from the checkpoint record */ |
| 6643 | ShmemVariableCache->nextFullXid = checkPoint.nextFullXid; |
| 6644 | ShmemVariableCache->nextOid = checkPoint.nextOid; |
| 6645 | ShmemVariableCache->oidCount = 0; |
| 6646 | MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset); |
| 6647 | AdvanceOldestClogXid(checkPoint.oldestXid); |
| 6648 | SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB); |
| 6649 | SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true); |
| 6650 | SetCommitTsLimit(checkPoint.oldestCommitTsXid, |
| 6651 | checkPoint.newestCommitTsXid); |
| 6652 | XLogCtl->ckptFullXid = checkPoint.nextFullXid; |
| 6653 | |
| 6654 | /* |
| 6655 | * Initialize replication slots, before there's a chance to remove |
| 6656 | * required resources. |
| 6657 | */ |
| 6658 | StartupReplicationSlots(); |
| 6659 | |
| 6660 | /* |
| 6661 | * Startup logical state, needs to be setup now so we have proper data |
| 6662 | * during crash recovery. |
| 6663 | */ |
| 6664 | StartupReorderBuffer(); |
| 6665 | |
| 6666 | /* |
| 6667 | * Startup MultiXact. We need to do this early to be able to replay |
| 6668 | * truncations. |
| 6669 | */ |
| 6670 | StartupMultiXact(); |
| 6671 | |
| 6672 | /* |
| 6673 | * Ditto for commit timestamps. Activate the facility if the setting is |
| 6674 | * enabled in the control file, as there should be no tracking of commit |
| 6675 | * timestamps done when the setting was disabled. This facility can be |
| 6676 | * started or stopped when replaying a XLOG_PARAMETER_CHANGE record. |
| 6677 | */ |
| 6678 | if (ControlFile->track_commit_timestamp) |
| 6679 | StartupCommitTs(); |
| 6680 | |
| 6681 | /* |
| 6682 | * Recover knowledge about replay progress of known replication partners. |
| 6683 | */ |
| 6684 | StartupReplicationOrigin(); |
| 6685 | |
| 6686 | /* |
| 6687 | * Initialize unlogged LSN. On a clean shutdown, it's restored from the |
| 6688 | * control file. On recovery, all unlogged relations are blown away, so |
| 6689 | * the unlogged LSN counter can be reset too. |
| 6690 | */ |
| 6691 | if (ControlFile->state == DB_SHUTDOWNED) |
| 6692 | XLogCtl->unloggedLSN = ControlFile->unloggedLSN; |
| 6693 | else |
| 6694 | XLogCtl->unloggedLSN = 1; |
| 6695 | |
| 6696 | /* |
| 6697 | * We must replay WAL entries using the same TimeLineID they were created |
| 6698 | * under, so temporarily adopt the TLI indicated by the checkpoint (see |
| 6699 | * also xlog_redo()). |
| 6700 | */ |
| 6701 | ThisTimeLineID = checkPoint.ThisTimeLineID; |
| 6702 | |
| 6703 | /* |
| 6704 | * Copy any missing timeline history files between 'now' and the recovery |
| 6705 | * target timeline from archive to pg_wal. While we don't need those files |
| 6706 | * ourselves - the history file of the recovery target timeline covers all |
| 6707 | * the previous timelines in the history too - a cascading standby server |
| 6708 | * might be interested in them. Or, if you archive the WAL from this |
| 6709 | * server to a different archive than the master, it'd be good for all the |
| 6710 | * history files to get archived there after failover, so that you can use |
| 6711 | * one of the old timelines as a PITR target. Timeline history files are |
| 6712 | * small, so it's better to copy them unnecessarily than not copy them and |
| 6713 | * regret later. |
| 6714 | */ |
| 6715 | restoreTimeLineHistoryFiles(ThisTimeLineID, recoveryTargetTLI); |
| 6716 | |
| 6717 | /* |
| 6718 | * Before running in recovery, scan pg_twophase and fill in its status to |
| 6719 | * be able to work on entries generated by redo. Doing a scan before |
| 6720 | * taking any recovery action has the merit to discard any 2PC files that |
| 6721 | * are newer than the first record to replay, saving from any conflicts at |
| 6722 | * replay. This avoids as well any subsequent scans when doing recovery |
| 6723 | * of the on-disk two-phase data. |
| 6724 | */ |
| 6725 | restoreTwoPhaseData(); |
| 6726 | |
| 6727 | lastFullPageWrites = checkPoint.fullPageWrites; |
| 6728 | |
| 6729 | RedoRecPtr = XLogCtl->RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo; |
| 6730 | doPageWrites = lastFullPageWrites; |
| 6731 | |
| 6732 | if (RecPtr < checkPoint.redo) |
| 6733 | ereport(PANIC, |
| 6734 | (errmsg("invalid redo in checkpoint record" ))); |
| 6735 | |
| 6736 | /* |
| 6737 | * Check whether we need to force recovery from WAL. If it appears to |
| 6738 | * have been a clean shutdown and we did not have a recovery signal file, |
| 6739 | * then assume no recovery needed. |
| 6740 | */ |
| 6741 | if (checkPoint.redo < RecPtr) |
| 6742 | { |
| 6743 | if (wasShutdown) |
| 6744 | ereport(PANIC, |
| 6745 | (errmsg("invalid redo record in shutdown checkpoint" ))); |
| 6746 | InRecovery = true; |
| 6747 | } |
| 6748 | else if (ControlFile->state != DB_SHUTDOWNED) |
| 6749 | InRecovery = true; |
| 6750 | else if (ArchiveRecoveryRequested) |
| 6751 | { |
| 6752 | /* force recovery due to presence of recovery signal file */ |
| 6753 | InRecovery = true; |
| 6754 | } |
| 6755 | |
| 6756 | /* REDO */ |
| 6757 | if (InRecovery) |
| 6758 | { |
| 6759 | int rmid; |
| 6760 | |
| 6761 | /* |
| 6762 | * Update pg_control to show that we are recovering and to show the |
| 6763 | * selected checkpoint as the place we are starting from. We also mark |
| 6764 | * pg_control with any minimum recovery stop point obtained from a |
| 6765 | * backup history file. |
| 6766 | */ |
| 6767 | dbstate_at_startup = ControlFile->state; |
| 6768 | if (InArchiveRecovery) |
| 6769 | ControlFile->state = DB_IN_ARCHIVE_RECOVERY; |
| 6770 | else |
| 6771 | { |
| 6772 | ereport(LOG, |
| 6773 | (errmsg("database system was not properly shut down; " |
| 6774 | "automatic recovery in progress" ))); |
| 6775 | if (recoveryTargetTLI > ControlFile->checkPointCopy.ThisTimeLineID) |
| 6776 | ereport(LOG, |
| 6777 | (errmsg("crash recovery starts in timeline %u " |
| 6778 | "and has target timeline %u" , |
| 6779 | ControlFile->checkPointCopy.ThisTimeLineID, |
| 6780 | recoveryTargetTLI))); |
| 6781 | ControlFile->state = DB_IN_CRASH_RECOVERY; |
| 6782 | } |
| 6783 | ControlFile->checkPoint = checkPointLoc; |
| 6784 | ControlFile->checkPointCopy = checkPoint; |
| 6785 | if (InArchiveRecovery) |
| 6786 | { |
| 6787 | /* initialize minRecoveryPoint if not set yet */ |
| 6788 | if (ControlFile->minRecoveryPoint < checkPoint.redo) |
| 6789 | { |
| 6790 | ControlFile->minRecoveryPoint = checkPoint.redo; |
| 6791 | ControlFile->minRecoveryPointTLI = checkPoint.ThisTimeLineID; |
| 6792 | } |
| 6793 | } |
| 6794 | |
| 6795 | /* |
| 6796 | * Set backupStartPoint if we're starting recovery from a base backup. |
| 6797 | * |
| 6798 | * Also set backupEndPoint and use minRecoveryPoint as the backup end |
| 6799 | * location if we're starting recovery from a base backup which was |
| 6800 | * taken from a standby. In this case, the database system status in |
| 6801 | * pg_control must indicate that the database was already in recovery. |
| 6802 | * Usually that will be DB_IN_ARCHIVE_RECOVERY but also can be |
| 6803 | * DB_SHUTDOWNED_IN_RECOVERY if recovery previously was interrupted |
| 6804 | * before reaching this point; e.g. because restore_command or |
| 6805 | * primary_conninfo were faulty. |
| 6806 | * |
| 6807 | * Any other state indicates that the backup somehow became corrupted |
| 6808 | * and we can't sensibly continue with recovery. |
| 6809 | */ |
| 6810 | if (haveBackupLabel) |
| 6811 | { |
| 6812 | ControlFile->backupStartPoint = checkPoint.redo; |
| 6813 | ControlFile->backupEndRequired = backupEndRequired; |
| 6814 | |
| 6815 | if (backupFromStandby) |
| 6816 | { |
| 6817 | if (dbstate_at_startup != DB_IN_ARCHIVE_RECOVERY && |
| 6818 | dbstate_at_startup != DB_SHUTDOWNED_IN_RECOVERY) |
| 6819 | ereport(FATAL, |
| 6820 | (errmsg("backup_label contains data inconsistent with control file" ), |
| 6821 | errhint("This means that the backup is corrupted and you will " |
| 6822 | "have to use another backup for recovery." ))); |
| 6823 | ControlFile->backupEndPoint = ControlFile->minRecoveryPoint; |
| 6824 | } |
| 6825 | } |
| 6826 | ControlFile->time = (pg_time_t) time(NULL); |
| 6827 | /* No need to hold ControlFileLock yet, we aren't up far enough */ |
| 6828 | UpdateControlFile(); |
| 6829 | |
| 6830 | /* |
| 6831 | * Initialize our local copy of minRecoveryPoint. When doing crash |
| 6832 | * recovery we want to replay up to the end of WAL. Particularly, in |
| 6833 | * the case of a promoted standby minRecoveryPoint value in the |
| 6834 | * control file is only updated after the first checkpoint. However, |
| 6835 | * if the instance crashes before the first post-recovery checkpoint |
| 6836 | * is completed then recovery will use a stale location causing the |
| 6837 | * startup process to think that there are still invalid page |
| 6838 | * references when checking for data consistency. |
| 6839 | */ |
| 6840 | if (InArchiveRecovery) |
| 6841 | { |
| 6842 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
| 6843 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
| 6844 | } |
| 6845 | else |
| 6846 | { |
| 6847 | minRecoveryPoint = InvalidXLogRecPtr; |
| 6848 | minRecoveryPointTLI = 0; |
| 6849 | } |
| 6850 | |
| 6851 | /* |
| 6852 | * Reset pgstat data, because it may be invalid after recovery. |
| 6853 | */ |
| 6854 | pgstat_reset_all(); |
| 6855 | |
| 6856 | /* |
| 6857 | * If there was a backup label file, it's done its job and the info |
| 6858 | * has now been propagated into pg_control. We must get rid of the |
| 6859 | * label file so that if we crash during recovery, we'll pick up at |
| 6860 | * the latest recovery restartpoint instead of going all the way back |
| 6861 | * to the backup start point. It seems prudent though to just rename |
| 6862 | * the file out of the way rather than delete it completely. |
| 6863 | */ |
| 6864 | if (haveBackupLabel) |
| 6865 | { |
| 6866 | unlink(BACKUP_LABEL_OLD); |
| 6867 | durable_rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD, FATAL); |
| 6868 | } |
| 6869 | |
| 6870 | /* |
| 6871 | * If there was a tablespace_map file, it's done its job and the |
| 6872 | * symlinks have been created. We must get rid of the map file so |
| 6873 | * that if we crash during recovery, we don't create symlinks again. |
| 6874 | * It seems prudent though to just rename the file out of the way |
| 6875 | * rather than delete it completely. |
| 6876 | */ |
| 6877 | if (haveTblspcMap) |
| 6878 | { |
| 6879 | unlink(TABLESPACE_MAP_OLD); |
| 6880 | durable_rename(TABLESPACE_MAP, TABLESPACE_MAP_OLD, FATAL); |
| 6881 | } |
| 6882 | |
| 6883 | /* Check that the GUCs used to generate the WAL allow recovery */ |
| 6884 | CheckRequiredParameterValues(); |
| 6885 | |
| 6886 | /* |
| 6887 | * We're in recovery, so unlogged relations may be trashed and must be |
| 6888 | * reset. This should be done BEFORE allowing Hot Standby |
| 6889 | * connections, so that read-only backends don't try to read whatever |
| 6890 | * garbage is left over from before. |
| 6891 | */ |
| 6892 | ResetUnloggedRelations(UNLOGGED_RELATION_CLEANUP); |
| 6893 | |
| 6894 | /* |
| 6895 | * Likewise, delete any saved transaction snapshot files that got left |
| 6896 | * behind by crashed backends. |
| 6897 | */ |
| 6898 | DeleteAllExportedSnapshotFiles(); |
| 6899 | |
| 6900 | /* |
| 6901 | * Initialize for Hot Standby, if enabled. We won't let backends in |
| 6902 | * yet, not until we've reached the min recovery point specified in |
| 6903 | * control file and we've established a recovery snapshot from a |
| 6904 | * running-xacts WAL record. |
| 6905 | */ |
| 6906 | if (ArchiveRecoveryRequested && EnableHotStandby) |
| 6907 | { |
| 6908 | TransactionId *xids; |
| 6909 | int nxids; |
| 6910 | |
| 6911 | ereport(DEBUG1, |
| 6912 | (errmsg("initializing for hot standby" ))); |
| 6913 | |
| 6914 | InitRecoveryTransactionEnvironment(); |
| 6915 | |
| 6916 | if (wasShutdown) |
| 6917 | oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids); |
| 6918 | else |
| 6919 | oldestActiveXID = checkPoint.oldestActiveXid; |
| 6920 | Assert(TransactionIdIsValid(oldestActiveXID)); |
| 6921 | |
| 6922 | /* Tell procarray about the range of xids it has to deal with */ |
| 6923 | ProcArrayInitRecovery(XidFromFullTransactionId(ShmemVariableCache->nextFullXid)); |
| 6924 | |
| 6925 | /* |
| 6926 | * Startup commit log and subtrans only. MultiXact and commit |
| 6927 | * timestamp have already been started up and other SLRUs are not |
| 6928 | * maintained during recovery and need not be started yet. |
| 6929 | */ |
| 6930 | StartupCLOG(); |
| 6931 | StartupSUBTRANS(oldestActiveXID); |
| 6932 | |
| 6933 | /* |
| 6934 | * If we're beginning at a shutdown checkpoint, we know that |
| 6935 | * nothing was running on the master at this point. So fake-up an |
| 6936 | * empty running-xacts record and use that here and now. Recover |
| 6937 | * additional standby state for prepared transactions. |
| 6938 | */ |
| 6939 | if (wasShutdown) |
| 6940 | { |
| 6941 | RunningTransactionsData running; |
| 6942 | TransactionId latestCompletedXid; |
| 6943 | |
| 6944 | /* |
| 6945 | * Construct a RunningTransactions snapshot representing a |
| 6946 | * shut down server, with only prepared transactions still |
| 6947 | * alive. We're never overflowed at this point because all |
| 6948 | * subxids are listed with their parent prepared transactions. |
| 6949 | */ |
| 6950 | running.xcnt = nxids; |
| 6951 | running.subxcnt = 0; |
| 6952 | running.subxid_overflow = false; |
| 6953 | running.nextXid = XidFromFullTransactionId(checkPoint.nextFullXid); |
| 6954 | running.oldestRunningXid = oldestActiveXID; |
| 6955 | latestCompletedXid = XidFromFullTransactionId(checkPoint.nextFullXid); |
| 6956 | TransactionIdRetreat(latestCompletedXid); |
| 6957 | Assert(TransactionIdIsNormal(latestCompletedXid)); |
| 6958 | running.latestCompletedXid = latestCompletedXid; |
| 6959 | running.xids = xids; |
| 6960 | |
| 6961 | ProcArrayApplyRecoveryInfo(&running); |
| 6962 | |
| 6963 | StandbyRecoverPreparedTransactions(); |
| 6964 | } |
| 6965 | } |
| 6966 | |
| 6967 | /* Initialize resource managers */ |
| 6968 | for (rmid = 0; rmid <= RM_MAX_ID; rmid++) |
| 6969 | { |
| 6970 | if (RmgrTable[rmid].rm_startup != NULL) |
| 6971 | RmgrTable[rmid].rm_startup(); |
| 6972 | } |
| 6973 | |
| 6974 | /* |
| 6975 | * Initialize shared variables for tracking progress of WAL replay, as |
| 6976 | * if we had just replayed the record before the REDO location (or the |
| 6977 | * checkpoint record itself, if it's a shutdown checkpoint). |
| 6978 | */ |
| 6979 | SpinLockAcquire(&XLogCtl->info_lck); |
| 6980 | if (checkPoint.redo < RecPtr) |
| 6981 | XLogCtl->replayEndRecPtr = checkPoint.redo; |
| 6982 | else |
| 6983 | XLogCtl->replayEndRecPtr = EndRecPtr; |
| 6984 | XLogCtl->replayEndTLI = ThisTimeLineID; |
| 6985 | XLogCtl->lastReplayedEndRecPtr = XLogCtl->replayEndRecPtr; |
| 6986 | XLogCtl->lastReplayedTLI = XLogCtl->replayEndTLI; |
| 6987 | XLogCtl->recoveryLastXTime = 0; |
| 6988 | XLogCtl->currentChunkStartTime = 0; |
| 6989 | XLogCtl->recoveryPause = false; |
| 6990 | SpinLockRelease(&XLogCtl->info_lck); |
| 6991 | |
| 6992 | /* Also ensure XLogReceiptTime has a sane value */ |
| 6993 | XLogReceiptTime = GetCurrentTimestamp(); |
| 6994 | |
| 6995 | /* |
| 6996 | * Let postmaster know we've started redo now, so that it can launch |
| 6997 | * checkpointer to perform restartpoints. We don't bother during |
| 6998 | * crash recovery as restartpoints can only be performed during |
| 6999 | * archive recovery. And we'd like to keep crash recovery simple, to |
| 7000 | * avoid introducing bugs that could affect you when recovering after |
| 7001 | * crash. |
| 7002 | * |
| 7003 | * After this point, we can no longer assume that we're the only |
| 7004 | * process in addition to postmaster! Also, fsync requests are |
| 7005 | * subsequently to be handled by the checkpointer, not locally. |
| 7006 | */ |
| 7007 | if (ArchiveRecoveryRequested && IsUnderPostmaster) |
| 7008 | { |
| 7009 | PublishStartupProcessInformation(); |
| 7010 | EnableSyncRequestForwarding(); |
| 7011 | SendPostmasterSignal(PMSIGNAL_RECOVERY_STARTED); |
| 7012 | bgwriterLaunched = true; |
| 7013 | } |
| 7014 | |
| 7015 | /* |
| 7016 | * Allow read-only connections immediately if we're consistent |
| 7017 | * already. |
| 7018 | */ |
| 7019 | CheckRecoveryConsistency(); |
| 7020 | |
| 7021 | /* |
| 7022 | * Find the first record that logically follows the checkpoint --- it |
| 7023 | * might physically precede it, though. |
| 7024 | */ |
| 7025 | if (checkPoint.redo < RecPtr) |
| 7026 | { |
| 7027 | /* back up to find the record */ |
| 7028 | record = ReadRecord(xlogreader, checkPoint.redo, PANIC, false); |
| 7029 | } |
| 7030 | else |
| 7031 | { |
| 7032 | /* just have to read next record after CheckPoint */ |
| 7033 | record = ReadRecord(xlogreader, InvalidXLogRecPtr, LOG, false); |
| 7034 | } |
| 7035 | |
| 7036 | if (record != NULL) |
| 7037 | { |
| 7038 | ErrorContextCallback errcallback; |
| 7039 | TimestampTz xtime; |
| 7040 | |
| 7041 | InRedo = true; |
| 7042 | |
| 7043 | ereport(LOG, |
| 7044 | (errmsg("redo starts at %X/%X" , |
| 7045 | (uint32) (ReadRecPtr >> 32), (uint32) ReadRecPtr))); |
| 7046 | |
| 7047 | /* |
| 7048 | * main redo apply loop |
| 7049 | */ |
| 7050 | do |
| 7051 | { |
| 7052 | bool switchedTLI = false; |
| 7053 | |
| 7054 | #ifdef WAL_DEBUG |
| 7055 | if (XLOG_DEBUG || |
| 7056 | (rmid == RM_XACT_ID && trace_recovery_messages <= DEBUG2) || |
| 7057 | (rmid != RM_XACT_ID && trace_recovery_messages <= DEBUG3)) |
| 7058 | { |
| 7059 | StringInfoData buf; |
| 7060 | |
| 7061 | initStringInfo(&buf); |
| 7062 | appendStringInfo(&buf, "REDO @ %X/%X; LSN %X/%X: " , |
| 7063 | (uint32) (ReadRecPtr >> 32), (uint32) ReadRecPtr, |
| 7064 | (uint32) (EndRecPtr >> 32), (uint32) EndRecPtr); |
| 7065 | xlog_outrec(&buf, xlogreader); |
| 7066 | appendStringInfoString(&buf, " - " ); |
| 7067 | xlog_outdesc(&buf, xlogreader); |
| 7068 | elog(LOG, "%s" , buf.data); |
| 7069 | pfree(buf.data); |
| 7070 | } |
| 7071 | #endif |
| 7072 | |
| 7073 | /* Handle interrupt signals of startup process */ |
| 7074 | HandleStartupProcInterrupts(); |
| 7075 | |
| 7076 | /* |
| 7077 | * Pause WAL replay, if requested by a hot-standby session via |
| 7078 | * SetRecoveryPause(). |
| 7079 | * |
| 7080 | * Note that we intentionally don't take the info_lck spinlock |
| 7081 | * here. We might therefore read a slightly stale value of |
| 7082 | * the recoveryPause flag, but it can't be very stale (no |
| 7083 | * worse than the last spinlock we did acquire). Since a |
| 7084 | * pause request is a pretty asynchronous thing anyway, |
| 7085 | * possibly responding to it one WAL record later than we |
| 7086 | * otherwise would is a minor issue, so it doesn't seem worth |
| 7087 | * adding another spinlock cycle to prevent that. |
| 7088 | */ |
| 7089 | if (((volatile XLogCtlData *) XLogCtl)->recoveryPause) |
| 7090 | recoveryPausesHere(); |
| 7091 | |
| 7092 | /* |
| 7093 | * Have we reached our recovery target? |
| 7094 | */ |
| 7095 | if (recoveryStopsBefore(xlogreader)) |
| 7096 | { |
| 7097 | reachedStopPoint = true; /* see below */ |
| 7098 | break; |
| 7099 | } |
| 7100 | |
| 7101 | /* |
| 7102 | * If we've been asked to lag the master, wait on latch until |
| 7103 | * enough time has passed. |
| 7104 | */ |
| 7105 | if (recoveryApplyDelay(xlogreader)) |
| 7106 | { |
| 7107 | /* |
| 7108 | * We test for paused recovery again here. If user sets |
| 7109 | * delayed apply, it may be because they expect to pause |
| 7110 | * recovery in case of problems, so we must test again |
| 7111 | * here otherwise pausing during the delay-wait wouldn't |
| 7112 | * work. |
| 7113 | */ |
| 7114 | if (((volatile XLogCtlData *) XLogCtl)->recoveryPause) |
| 7115 | recoveryPausesHere(); |
| 7116 | } |
| 7117 | |
| 7118 | /* Setup error traceback support for ereport() */ |
| 7119 | errcallback.callback = rm_redo_error_callback; |
| 7120 | errcallback.arg = (void *) xlogreader; |
| 7121 | errcallback.previous = error_context_stack; |
| 7122 | error_context_stack = &errcallback; |
| 7123 | |
| 7124 | /* |
| 7125 | * ShmemVariableCache->nextFullXid must be beyond record's |
| 7126 | * xid. |
| 7127 | */ |
| 7128 | AdvanceNextFullTransactionIdPastXid(record->xl_xid); |
| 7129 | |
| 7130 | /* |
| 7131 | * Before replaying this record, check if this record causes |
| 7132 | * the current timeline to change. The record is already |
| 7133 | * considered to be part of the new timeline, so we update |
| 7134 | * ThisTimeLineID before replaying it. That's important so |
| 7135 | * that replayEndTLI, which is recorded as the minimum |
| 7136 | * recovery point's TLI if recovery stops after this record, |
| 7137 | * is set correctly. |
| 7138 | */ |
| 7139 | if (record->xl_rmid == RM_XLOG_ID) |
| 7140 | { |
| 7141 | TimeLineID newTLI = ThisTimeLineID; |
| 7142 | TimeLineID prevTLI = ThisTimeLineID; |
| 7143 | uint8 info = record->xl_info & ~XLR_INFO_MASK; |
| 7144 | |
| 7145 | if (info == XLOG_CHECKPOINT_SHUTDOWN) |
| 7146 | { |
| 7147 | CheckPoint checkPoint; |
| 7148 | |
| 7149 | memcpy(&checkPoint, XLogRecGetData(xlogreader), sizeof(CheckPoint)); |
| 7150 | newTLI = checkPoint.ThisTimeLineID; |
| 7151 | prevTLI = checkPoint.PrevTimeLineID; |
| 7152 | } |
| 7153 | else if (info == XLOG_END_OF_RECOVERY) |
| 7154 | { |
| 7155 | xl_end_of_recovery xlrec; |
| 7156 | |
| 7157 | memcpy(&xlrec, XLogRecGetData(xlogreader), sizeof(xl_end_of_recovery)); |
| 7158 | newTLI = xlrec.ThisTimeLineID; |
| 7159 | prevTLI = xlrec.PrevTimeLineID; |
| 7160 | } |
| 7161 | |
| 7162 | if (newTLI != ThisTimeLineID) |
| 7163 | { |
| 7164 | /* Check that it's OK to switch to this TLI */ |
| 7165 | checkTimeLineSwitch(EndRecPtr, newTLI, prevTLI); |
| 7166 | |
| 7167 | /* Following WAL records should be run with new TLI */ |
| 7168 | ThisTimeLineID = newTLI; |
| 7169 | switchedTLI = true; |
| 7170 | } |
| 7171 | } |
| 7172 | |
| 7173 | /* |
| 7174 | * Update shared replayEndRecPtr before replaying this record, |
| 7175 | * so that XLogFlush will update minRecoveryPoint correctly. |
| 7176 | */ |
| 7177 | SpinLockAcquire(&XLogCtl->info_lck); |
| 7178 | XLogCtl->replayEndRecPtr = EndRecPtr; |
| 7179 | XLogCtl->replayEndTLI = ThisTimeLineID; |
| 7180 | SpinLockRelease(&XLogCtl->info_lck); |
| 7181 | |
| 7182 | /* |
| 7183 | * If we are attempting to enter Hot Standby mode, process |
| 7184 | * XIDs we see |
| 7185 | */ |
| 7186 | if (standbyState >= STANDBY_INITIALIZED && |
| 7187 | TransactionIdIsValid(record->xl_xid)) |
| 7188 | RecordKnownAssignedTransactionIds(record->xl_xid); |
| 7189 | |
| 7190 | /* Now apply the WAL record itself */ |
| 7191 | RmgrTable[record->xl_rmid].rm_redo(xlogreader); |
| 7192 | |
| 7193 | /* |
| 7194 | * After redo, check whether the backup pages associated with |
| 7195 | * the WAL record are consistent with the existing pages. This |
| 7196 | * check is done only if consistency check is enabled for this |
| 7197 | * record. |
| 7198 | */ |
| 7199 | if ((record->xl_info & XLR_CHECK_CONSISTENCY) != 0) |
| 7200 | checkXLogConsistency(xlogreader); |
| 7201 | |
| 7202 | /* Pop the error context stack */ |
| 7203 | error_context_stack = errcallback.previous; |
| 7204 | |
| 7205 | /* |
| 7206 | * Update lastReplayedEndRecPtr after this record has been |
| 7207 | * successfully replayed. |
| 7208 | */ |
| 7209 | SpinLockAcquire(&XLogCtl->info_lck); |
| 7210 | XLogCtl->lastReplayedEndRecPtr = EndRecPtr; |
| 7211 | XLogCtl->lastReplayedTLI = ThisTimeLineID; |
| 7212 | SpinLockRelease(&XLogCtl->info_lck); |
| 7213 | |
| 7214 | /* |
| 7215 | * If rm_redo called XLogRequestWalReceiverReply, then we wake |
| 7216 | * up the receiver so that it notices the updated |
| 7217 | * lastReplayedEndRecPtr and sends a reply to the master. |
| 7218 | */ |
| 7219 | if (doRequestWalReceiverReply) |
| 7220 | { |
| 7221 | doRequestWalReceiverReply = false; |
| 7222 | WalRcvForceReply(); |
| 7223 | } |
| 7224 | |
| 7225 | /* Remember this record as the last-applied one */ |
| 7226 | LastRec = ReadRecPtr; |
| 7227 | |
| 7228 | /* Allow read-only connections if we're consistent now */ |
| 7229 | CheckRecoveryConsistency(); |
| 7230 | |
| 7231 | /* Is this a timeline switch? */ |
| 7232 | if (switchedTLI) |
| 7233 | { |
| 7234 | /* |
| 7235 | * Before we continue on the new timeline, clean up any |
| 7236 | * (possibly bogus) future WAL segments on the old |
| 7237 | * timeline. |
| 7238 | */ |
| 7239 | RemoveNonParentXlogFiles(EndRecPtr, ThisTimeLineID); |
| 7240 | |
| 7241 | /* |
| 7242 | * Wake up any walsenders to notice that we are on a new |
| 7243 | * timeline. |
| 7244 | */ |
| 7245 | if (switchedTLI && AllowCascadeReplication()) |
| 7246 | WalSndWakeup(); |
| 7247 | } |
| 7248 | |
| 7249 | /* Exit loop if we reached inclusive recovery target */ |
| 7250 | if (recoveryStopsAfter(xlogreader)) |
| 7251 | { |
| 7252 | reachedStopPoint = true; |
| 7253 | break; |
| 7254 | } |
| 7255 | |
| 7256 | /* Else, try to fetch the next WAL record */ |
| 7257 | record = ReadRecord(xlogreader, InvalidXLogRecPtr, LOG, false); |
| 7258 | } while (record != NULL); |
| 7259 | |
| 7260 | /* |
| 7261 | * end of main redo apply loop |
| 7262 | */ |
| 7263 | |
| 7264 | if (reachedStopPoint) |
| 7265 | { |
| 7266 | if (!reachedConsistency) |
| 7267 | ereport(FATAL, |
| 7268 | (errmsg("requested recovery stop point is before consistent recovery point" ))); |
| 7269 | |
| 7270 | /* |
| 7271 | * This is the last point where we can restart recovery with a |
| 7272 | * new recovery target, if we shutdown and begin again. After |
| 7273 | * this, Resource Managers may choose to do permanent |
| 7274 | * corrective actions at end of recovery. |
| 7275 | */ |
| 7276 | switch (recoveryTargetAction) |
| 7277 | { |
| 7278 | case RECOVERY_TARGET_ACTION_SHUTDOWN: |
| 7279 | |
| 7280 | /* |
| 7281 | * exit with special return code to request shutdown |
| 7282 | * of postmaster. Log messages issued from |
| 7283 | * postmaster. |
| 7284 | */ |
| 7285 | proc_exit(3); |
| 7286 | |
| 7287 | case RECOVERY_TARGET_ACTION_PAUSE: |
| 7288 | SetRecoveryPause(true); |
| 7289 | recoveryPausesHere(); |
| 7290 | |
| 7291 | /* drop into promote */ |
| 7292 | |
| 7293 | case RECOVERY_TARGET_ACTION_PROMOTE: |
| 7294 | break; |
| 7295 | } |
| 7296 | } |
| 7297 | |
| 7298 | /* Allow resource managers to do any required cleanup. */ |
| 7299 | for (rmid = 0; rmid <= RM_MAX_ID; rmid++) |
| 7300 | { |
| 7301 | if (RmgrTable[rmid].rm_cleanup != NULL) |
| 7302 | RmgrTable[rmid].rm_cleanup(); |
| 7303 | } |
| 7304 | |
| 7305 | ereport(LOG, |
| 7306 | (errmsg("redo done at %X/%X" , |
| 7307 | (uint32) (ReadRecPtr >> 32), (uint32) ReadRecPtr))); |
| 7308 | xtime = GetLatestXTime(); |
| 7309 | if (xtime) |
| 7310 | ereport(LOG, |
| 7311 | (errmsg("last completed transaction was at log time %s" , |
| 7312 | timestamptz_to_str(xtime)))); |
| 7313 | |
| 7314 | InRedo = false; |
| 7315 | } |
| 7316 | else |
| 7317 | { |
| 7318 | /* there are no WAL records following the checkpoint */ |
| 7319 | ereport(LOG, |
| 7320 | (errmsg("redo is not required" ))); |
| 7321 | } |
| 7322 | } |
| 7323 | |
| 7324 | /* |
| 7325 | * Kill WAL receiver, if it's still running, before we continue to write |
| 7326 | * the startup checkpoint record. It will trump over the checkpoint and |
| 7327 | * subsequent records if it's still alive when we start writing WAL. |
| 7328 | */ |
| 7329 | ShutdownWalRcv(); |
| 7330 | |
| 7331 | /* |
| 7332 | * Reset unlogged relations to the contents of their INIT fork. This is |
| 7333 | * done AFTER recovery is complete so as to include any unlogged relations |
| 7334 | * created during recovery, but BEFORE recovery is marked as having |
| 7335 | * completed successfully. Otherwise we'd not retry if any of the post |
| 7336 | * end-of-recovery steps fail. |
| 7337 | */ |
| 7338 | if (InRecovery) |
| 7339 | ResetUnloggedRelations(UNLOGGED_RELATION_INIT); |
| 7340 | |
| 7341 | /* |
| 7342 | * We don't need the latch anymore. It's not strictly necessary to disown |
| 7343 | * it, but let's do it for the sake of tidiness. |
| 7344 | */ |
| 7345 | if (StandbyModeRequested) |
| 7346 | DisownLatch(&XLogCtl->recoveryWakeupLatch); |
| 7347 | |
| 7348 | /* |
| 7349 | * We are now done reading the xlog from stream. Turn off streaming |
| 7350 | * recovery to force fetching the files (which would be required at end of |
| 7351 | * recovery, e.g., timeline history file) from archive or pg_wal. |
| 7352 | */ |
| 7353 | StandbyMode = false; |
| 7354 | |
| 7355 | /* |
| 7356 | * Re-fetch the last valid or last applied record, so we can identify the |
| 7357 | * exact endpoint of what we consider the valid portion of WAL. |
| 7358 | */ |
| 7359 | record = ReadRecord(xlogreader, LastRec, PANIC, false); |
| 7360 | EndOfLog = EndRecPtr; |
| 7361 | |
| 7362 | /* |
| 7363 | * EndOfLogTLI is the TLI in the filename of the XLOG segment containing |
| 7364 | * the end-of-log. It could be different from the timeline that EndOfLog |
| 7365 | * nominally belongs to, if there was a timeline switch in that segment, |
| 7366 | * and we were reading the old WAL from a segment belonging to a higher |
| 7367 | * timeline. |
| 7368 | */ |
| 7369 | EndOfLogTLI = xlogreader->readPageTLI; |
| 7370 | |
| 7371 | /* |
| 7372 | * Complain if we did not roll forward far enough to render the backup |
| 7373 | * dump consistent. Note: it is indeed okay to look at the local variable |
| 7374 | * minRecoveryPoint here, even though ControlFile->minRecoveryPoint might |
| 7375 | * be further ahead --- ControlFile->minRecoveryPoint cannot have been |
| 7376 | * advanced beyond the WAL we processed. |
| 7377 | */ |
| 7378 | if (InRecovery && |
| 7379 | (EndOfLog < minRecoveryPoint || |
| 7380 | !XLogRecPtrIsInvalid(ControlFile->backupStartPoint))) |
| 7381 | { |
| 7382 | /* |
| 7383 | * Ran off end of WAL before reaching end-of-backup WAL record, or |
| 7384 | * minRecoveryPoint. That's usually a bad sign, indicating that you |
| 7385 | * tried to recover from an online backup but never called |
| 7386 | * pg_stop_backup(), or you didn't archive all the WAL up to that |
| 7387 | * point. However, this also happens in crash recovery, if the system |
| 7388 | * crashes while an online backup is in progress. We must not treat |
| 7389 | * that as an error, or the database will refuse to start up. |
| 7390 | */ |
| 7391 | if (ArchiveRecoveryRequested || ControlFile->backupEndRequired) |
| 7392 | { |
| 7393 | if (ControlFile->backupEndRequired) |
| 7394 | ereport(FATAL, |
| 7395 | (errmsg("WAL ends before end of online backup" ), |
| 7396 | errhint("All WAL generated while online backup was taken must be available at recovery." ))); |
| 7397 | else if (!XLogRecPtrIsInvalid(ControlFile->backupStartPoint)) |
| 7398 | ereport(FATAL, |
| 7399 | (errmsg("WAL ends before end of online backup" ), |
| 7400 | errhint("Online backup started with pg_start_backup() must be ended with pg_stop_backup(), and all WAL up to that point must be available at recovery." ))); |
| 7401 | else |
| 7402 | ereport(FATAL, |
| 7403 | (errmsg("WAL ends before consistent recovery point" ))); |
| 7404 | } |
| 7405 | } |
| 7406 | |
| 7407 | /* |
| 7408 | * Pre-scan prepared transactions to find out the range of XIDs present. |
| 7409 | * This information is not quite needed yet, but it is positioned here so |
| 7410 | * as potential problems are detected before any on-disk change is done. |
| 7411 | */ |
| 7412 | oldestActiveXID = PrescanPreparedTransactions(NULL, NULL); |
| 7413 | |
| 7414 | /* |
| 7415 | * Consider whether we need to assign a new timeline ID. |
| 7416 | * |
| 7417 | * If we are doing an archive recovery, we always assign a new ID. This |
| 7418 | * handles a couple of issues. If we stopped short of the end of WAL |
| 7419 | * during recovery, then we are clearly generating a new timeline and must |
| 7420 | * assign it a unique new ID. Even if we ran to the end, modifying the |
| 7421 | * current last segment is problematic because it may result in trying to |
| 7422 | * overwrite an already-archived copy of that segment, and we encourage |
| 7423 | * DBAs to make their archive_commands reject that. We can dodge the |
| 7424 | * problem by making the new active segment have a new timeline ID. |
| 7425 | * |
| 7426 | * In a normal crash recovery, we can just extend the timeline we were in. |
| 7427 | */ |
| 7428 | PrevTimeLineID = ThisTimeLineID; |
| 7429 | if (ArchiveRecoveryRequested) |
| 7430 | { |
| 7431 | char reason[200]; |
| 7432 | |
| 7433 | Assert(InArchiveRecovery); |
| 7434 | |
| 7435 | ThisTimeLineID = findNewestTimeLine(recoveryTargetTLI) + 1; |
| 7436 | ereport(LOG, |
| 7437 | (errmsg("selected new timeline ID: %u" , ThisTimeLineID))); |
| 7438 | |
| 7439 | /* |
| 7440 | * Create a comment for the history file to explain why and where |
| 7441 | * timeline changed. |
| 7442 | */ |
| 7443 | if (recoveryTarget == RECOVERY_TARGET_XID) |
| 7444 | snprintf(reason, sizeof(reason), |
| 7445 | "%s transaction %u" , |
| 7446 | recoveryStopAfter ? "after" : "before" , |
| 7447 | recoveryStopXid); |
| 7448 | else if (recoveryTarget == RECOVERY_TARGET_TIME) |
| 7449 | snprintf(reason, sizeof(reason), |
| 7450 | "%s %s\n" , |
| 7451 | recoveryStopAfter ? "after" : "before" , |
| 7452 | timestamptz_to_str(recoveryStopTime)); |
| 7453 | else if (recoveryTarget == RECOVERY_TARGET_LSN) |
| 7454 | snprintf(reason, sizeof(reason), |
| 7455 | "%s LSN %X/%X\n" , |
| 7456 | recoveryStopAfter ? "after" : "before" , |
| 7457 | (uint32) (recoveryStopLSN >> 32), |
| 7458 | (uint32) recoveryStopLSN); |
| 7459 | else if (recoveryTarget == RECOVERY_TARGET_NAME) |
| 7460 | snprintf(reason, sizeof(reason), |
| 7461 | "at restore point \"%s\"" , |
| 7462 | recoveryStopName); |
| 7463 | else if (recoveryTarget == RECOVERY_TARGET_IMMEDIATE) |
| 7464 | snprintf(reason, sizeof(reason), "reached consistency" ); |
| 7465 | else |
| 7466 | snprintf(reason, sizeof(reason), "no recovery target specified" ); |
| 7467 | |
| 7468 | /* |
| 7469 | * We are now done reading the old WAL. Turn off archive fetching if |
| 7470 | * it was active, and make a writable copy of the last WAL segment. |
| 7471 | * (Note that we also have a copy of the last block of the old WAL in |
| 7472 | * readBuf; we will use that below.) |
| 7473 | */ |
| 7474 | exitArchiveRecovery(EndOfLogTLI, EndOfLog); |
| 7475 | |
| 7476 | /* |
| 7477 | * Write the timeline history file, and have it archived. After this |
| 7478 | * point (or rather, as soon as the file is archived), the timeline |
| 7479 | * will appear as "taken" in the WAL archive and to any standby |
| 7480 | * servers. If we crash before actually switching to the new |
| 7481 | * timeline, standby servers will nevertheless think that we switched |
| 7482 | * to the new timeline, and will try to connect to the new timeline. |
| 7483 | * To minimize the window for that, try to do as little as possible |
| 7484 | * between here and writing the end-of-recovery record. |
| 7485 | */ |
| 7486 | writeTimeLineHistory(ThisTimeLineID, recoveryTargetTLI, |
| 7487 | EndRecPtr, reason); |
| 7488 | } |
| 7489 | |
| 7490 | /* Save the selected TimeLineID in shared memory, too */ |
| 7491 | XLogCtl->ThisTimeLineID = ThisTimeLineID; |
| 7492 | XLogCtl->PrevTimeLineID = PrevTimeLineID; |
| 7493 | |
| 7494 | /* |
| 7495 | * Prepare to write WAL starting at EndOfLog location, and init xlog |
| 7496 | * buffer cache using the block containing the last record from the |
| 7497 | * previous incarnation. |
| 7498 | */ |
| 7499 | Insert = &XLogCtl->Insert; |
| 7500 | Insert->PrevBytePos = XLogRecPtrToBytePos(LastRec); |
| 7501 | Insert->CurrBytePos = XLogRecPtrToBytePos(EndOfLog); |
| 7502 | |
| 7503 | /* |
| 7504 | * Tricky point here: readBuf contains the *last* block that the LastRec |
| 7505 | * record spans, not the one it starts in. The last block is indeed the |
| 7506 | * one we want to use. |
| 7507 | */ |
| 7508 | if (EndOfLog % XLOG_BLCKSZ != 0) |
| 7509 | { |
| 7510 | char *page; |
| 7511 | int len; |
| 7512 | int firstIdx; |
| 7513 | XLogRecPtr pageBeginPtr; |
| 7514 | |
| 7515 | pageBeginPtr = EndOfLog - (EndOfLog % XLOG_BLCKSZ); |
| 7516 | Assert(readOff == XLogSegmentOffset(pageBeginPtr, wal_segment_size)); |
| 7517 | |
| 7518 | firstIdx = XLogRecPtrToBufIdx(EndOfLog); |
| 7519 | |
| 7520 | /* Copy the valid part of the last block, and zero the rest */ |
| 7521 | page = &XLogCtl->pages[firstIdx * XLOG_BLCKSZ]; |
| 7522 | len = EndOfLog % XLOG_BLCKSZ; |
| 7523 | memcpy(page, xlogreader->readBuf, len); |
| 7524 | memset(page + len, 0, XLOG_BLCKSZ - len); |
| 7525 | |
| 7526 | XLogCtl->xlblocks[firstIdx] = pageBeginPtr + XLOG_BLCKSZ; |
| 7527 | XLogCtl->InitializedUpTo = pageBeginPtr + XLOG_BLCKSZ; |
| 7528 | } |
| 7529 | else |
| 7530 | { |
| 7531 | /* |
| 7532 | * There is no partial block to copy. Just set InitializedUpTo, and |
| 7533 | * let the first attempt to insert a log record to initialize the next |
| 7534 | * buffer. |
| 7535 | */ |
| 7536 | XLogCtl->InitializedUpTo = EndOfLog; |
| 7537 | } |
| 7538 | |
| 7539 | LogwrtResult.Write = LogwrtResult.Flush = EndOfLog; |
| 7540 | |
| 7541 | XLogCtl->LogwrtResult = LogwrtResult; |
| 7542 | |
| 7543 | XLogCtl->LogwrtRqst.Write = EndOfLog; |
| 7544 | XLogCtl->LogwrtRqst.Flush = EndOfLog; |
| 7545 | |
| 7546 | /* |
| 7547 | * Update full_page_writes in shared memory and write an XLOG_FPW_CHANGE |
| 7548 | * record before resource manager writes cleanup WAL records or checkpoint |
| 7549 | * record is written. |
| 7550 | */ |
| 7551 | Insert->fullPageWrites = lastFullPageWrites; |
| 7552 | LocalSetXLogInsertAllowed(); |
| 7553 | UpdateFullPageWrites(); |
| 7554 | LocalXLogInsertAllowed = -1; |
| 7555 | |
| 7556 | if (InRecovery) |
| 7557 | { |
| 7558 | /* |
| 7559 | * Perform a checkpoint to update all our recovery activity to disk. |
| 7560 | * |
| 7561 | * Note that we write a shutdown checkpoint rather than an on-line |
| 7562 | * one. This is not particularly critical, but since we may be |
| 7563 | * assigning a new TLI, using a shutdown checkpoint allows us to have |
| 7564 | * the rule that TLI only changes in shutdown checkpoints, which |
| 7565 | * allows some extra error checking in xlog_redo. |
| 7566 | * |
| 7567 | * In fast promotion, only create a lightweight end-of-recovery record |
| 7568 | * instead of a full checkpoint. A checkpoint is requested later, |
| 7569 | * after we're fully out of recovery mode and already accepting |
| 7570 | * queries. |
| 7571 | */ |
| 7572 | if (bgwriterLaunched) |
| 7573 | { |
| 7574 | if (fast_promote) |
| 7575 | { |
| 7576 | checkPointLoc = ControlFile->checkPoint; |
| 7577 | |
| 7578 | /* |
| 7579 | * Confirm the last checkpoint is available for us to recover |
| 7580 | * from if we fail. |
| 7581 | */ |
| 7582 | record = ReadCheckpointRecord(xlogreader, checkPointLoc, 1, false); |
| 7583 | if (record != NULL) |
| 7584 | { |
| 7585 | fast_promoted = true; |
| 7586 | |
| 7587 | /* |
| 7588 | * Insert a special WAL record to mark the end of |
| 7589 | * recovery, since we aren't doing a checkpoint. That |
| 7590 | * means that the checkpointer process may likely be in |
| 7591 | * the middle of a time-smoothed restartpoint and could |
| 7592 | * continue to be for minutes after this. That sounds |
| 7593 | * strange, but the effect is roughly the same and it |
| 7594 | * would be stranger to try to come out of the |
| 7595 | * restartpoint and then checkpoint. We request a |
| 7596 | * checkpoint later anyway, just for safety. |
| 7597 | */ |
| 7598 | CreateEndOfRecoveryRecord(); |
| 7599 | } |
| 7600 | } |
| 7601 | |
| 7602 | if (!fast_promoted) |
| 7603 | RequestCheckpoint(CHECKPOINT_END_OF_RECOVERY | |
| 7604 | CHECKPOINT_IMMEDIATE | |
| 7605 | CHECKPOINT_WAIT); |
| 7606 | } |
| 7607 | else |
| 7608 | CreateCheckPoint(CHECKPOINT_END_OF_RECOVERY | CHECKPOINT_IMMEDIATE); |
| 7609 | |
| 7610 | /* |
| 7611 | * And finally, execute the recovery_end_command, if any. |
| 7612 | */ |
| 7613 | if (recoveryEndCommand && strcmp(recoveryEndCommand, "" ) != 0) |
| 7614 | ExecuteRecoveryCommand(recoveryEndCommand, |
| 7615 | "recovery_end_command" , |
| 7616 | true); |
| 7617 | } |
| 7618 | |
| 7619 | if (ArchiveRecoveryRequested) |
| 7620 | { |
| 7621 | /* |
| 7622 | * We switched to a new timeline. Clean up segments on the old |
| 7623 | * timeline. |
| 7624 | * |
| 7625 | * If there are any higher-numbered segments on the old timeline, |
| 7626 | * remove them. They might contain valid WAL, but they might also be |
| 7627 | * pre-allocated files containing garbage. In any case, they are not |
| 7628 | * part of the new timeline's history so we don't need them. |
| 7629 | */ |
| 7630 | RemoveNonParentXlogFiles(EndOfLog, ThisTimeLineID); |
| 7631 | |
| 7632 | /* |
| 7633 | * If the switch happened in the middle of a segment, what to do with |
| 7634 | * the last, partial segment on the old timeline? If we don't archive |
| 7635 | * it, and the server that created the WAL never archives it either |
| 7636 | * (e.g. because it was hit by a meteor), it will never make it to the |
| 7637 | * archive. That's OK from our point of view, because the new segment |
| 7638 | * that we created with the new TLI contains all the WAL from the old |
| 7639 | * timeline up to the switch point. But if you later try to do PITR to |
| 7640 | * the "missing" WAL on the old timeline, recovery won't find it in |
| 7641 | * the archive. It's physically present in the new file with new TLI, |
| 7642 | * but recovery won't look there when it's recovering to the older |
| 7643 | * timeline. On the other hand, if we archive the partial segment, and |
| 7644 | * the original server on that timeline is still running and archives |
| 7645 | * the completed version of the same segment later, it will fail. (We |
| 7646 | * used to do that in 9.4 and below, and it caused such problems). |
| 7647 | * |
| 7648 | * As a compromise, we rename the last segment with the .partial |
| 7649 | * suffix, and archive it. Archive recovery will never try to read |
| 7650 | * .partial segments, so they will normally go unused. But in the odd |
| 7651 | * PITR case, the administrator can copy them manually to the pg_wal |
| 7652 | * directory (removing the suffix). They can be useful in debugging, |
| 7653 | * too. |
| 7654 | * |
| 7655 | * If a .done or .ready file already exists for the old timeline, |
| 7656 | * however, we had already determined that the segment is complete, so |
| 7657 | * we can let it be archived normally. (In particular, if it was |
| 7658 | * restored from the archive to begin with, it's expected to have a |
| 7659 | * .done file). |
| 7660 | */ |
| 7661 | if (XLogSegmentOffset(EndOfLog, wal_segment_size) != 0 && |
| 7662 | XLogArchivingActive()) |
| 7663 | { |
| 7664 | char origfname[MAXFNAMELEN]; |
| 7665 | XLogSegNo endLogSegNo; |
| 7666 | |
| 7667 | XLByteToPrevSeg(EndOfLog, endLogSegNo, wal_segment_size); |
| 7668 | XLogFileName(origfname, EndOfLogTLI, endLogSegNo, wal_segment_size); |
| 7669 | |
| 7670 | if (!XLogArchiveIsReadyOrDone(origfname)) |
| 7671 | { |
| 7672 | char origpath[MAXPGPATH]; |
| 7673 | char partialfname[MAXFNAMELEN]; |
| 7674 | char partialpath[MAXPGPATH]; |
| 7675 | |
| 7676 | XLogFilePath(origpath, EndOfLogTLI, endLogSegNo, wal_segment_size); |
| 7677 | snprintf(partialfname, MAXFNAMELEN, "%s.partial" , origfname); |
| 7678 | snprintf(partialpath, MAXPGPATH, "%s.partial" , origpath); |
| 7679 | |
| 7680 | /* |
| 7681 | * Make sure there's no .done or .ready file for the .partial |
| 7682 | * file. |
| 7683 | */ |
| 7684 | XLogArchiveCleanup(partialfname); |
| 7685 | |
| 7686 | durable_rename(origpath, partialpath, ERROR); |
| 7687 | XLogArchiveNotify(partialfname); |
| 7688 | } |
| 7689 | } |
| 7690 | } |
| 7691 | |
| 7692 | /* |
| 7693 | * Preallocate additional log files, if wanted. |
| 7694 | */ |
| 7695 | PreallocXlogFiles(EndOfLog); |
| 7696 | |
| 7697 | /* |
| 7698 | * Okay, we're officially UP. |
| 7699 | */ |
| 7700 | InRecovery = false; |
| 7701 | |
| 7702 | /* start the archive_timeout timer and LSN running */ |
| 7703 | XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL); |
| 7704 | XLogCtl->lastSegSwitchLSN = EndOfLog; |
| 7705 | |
| 7706 | /* also initialize latestCompletedXid, to nextXid - 1 */ |
| 7707 | LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); |
| 7708 | ShmemVariableCache->latestCompletedXid = XidFromFullTransactionId(ShmemVariableCache->nextFullXid); |
| 7709 | TransactionIdRetreat(ShmemVariableCache->latestCompletedXid); |
| 7710 | LWLockRelease(ProcArrayLock); |
| 7711 | |
| 7712 | /* |
| 7713 | * Start up the commit log and subtrans, if not already done for hot |
| 7714 | * standby. (commit timestamps are started below, if necessary.) |
| 7715 | */ |
| 7716 | if (standbyState == STANDBY_DISABLED) |
| 7717 | { |
| 7718 | StartupCLOG(); |
| 7719 | StartupSUBTRANS(oldestActiveXID); |
| 7720 | } |
| 7721 | |
| 7722 | /* |
| 7723 | * Perform end of recovery actions for any SLRUs that need it. |
| 7724 | */ |
| 7725 | TrimCLOG(); |
| 7726 | TrimMultiXact(); |
| 7727 | |
| 7728 | /* Reload shared-memory state for prepared transactions */ |
| 7729 | RecoverPreparedTransactions(); |
| 7730 | |
| 7731 | /* |
| 7732 | * Shutdown the recovery environment. This must occur after |
| 7733 | * RecoverPreparedTransactions(), see notes for lock_twophase_recover() |
| 7734 | */ |
| 7735 | if (standbyState != STANDBY_DISABLED) |
| 7736 | ShutdownRecoveryTransactionEnvironment(); |
| 7737 | |
| 7738 | /* Shut down xlogreader */ |
| 7739 | if (readFile >= 0) |
| 7740 | { |
| 7741 | close(readFile); |
| 7742 | readFile = -1; |
| 7743 | } |
| 7744 | XLogReaderFree(xlogreader); |
| 7745 | |
| 7746 | /* |
| 7747 | * If any of the critical GUCs have changed, log them before we allow |
| 7748 | * backends to write WAL. |
| 7749 | */ |
| 7750 | LocalSetXLogInsertAllowed(); |
| 7751 | XLogReportParameters(); |
| 7752 | |
| 7753 | /* |
| 7754 | * Local WAL inserts enabled, so it's time to finish initialization of |
| 7755 | * commit timestamp. |
| 7756 | */ |
| 7757 | CompleteCommitTsInitialization(); |
| 7758 | |
| 7759 | /* |
| 7760 | * All done with end-of-recovery actions. |
| 7761 | * |
| 7762 | * Now allow backends to write WAL and update the control file status in |
| 7763 | * consequence. The boolean flag allowing backends to write WAL is |
| 7764 | * updated while holding ControlFileLock to prevent other backends to look |
| 7765 | * at an inconsistent state of the control file in shared memory. There |
| 7766 | * is still a small window during which backends can write WAL and the |
| 7767 | * control file is still referring to a system not in DB_IN_PRODUCTION |
| 7768 | * state while looking at the on-disk control file. |
| 7769 | * |
| 7770 | * Also, although the boolean flag to allow WAL is probably atomic in |
| 7771 | * itself, we use the info_lck here to ensure that there are no race |
| 7772 | * conditions concerning visibility of other recent updates to shared |
| 7773 | * memory. |
| 7774 | */ |
| 7775 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 7776 | ControlFile->state = DB_IN_PRODUCTION; |
| 7777 | ControlFile->time = (pg_time_t) time(NULL); |
| 7778 | |
| 7779 | SpinLockAcquire(&XLogCtl->info_lck); |
| 7780 | XLogCtl->SharedRecoveryInProgress = false; |
| 7781 | SpinLockRelease(&XLogCtl->info_lck); |
| 7782 | |
| 7783 | UpdateControlFile(); |
| 7784 | LWLockRelease(ControlFileLock); |
| 7785 | |
| 7786 | /* |
| 7787 | * If there were cascading standby servers connected to us, nudge any wal |
| 7788 | * sender processes to notice that we've been promoted. |
| 7789 | */ |
| 7790 | WalSndWakeup(); |
| 7791 | |
| 7792 | /* |
| 7793 | * If this was a fast promotion, request an (online) checkpoint now. This |
| 7794 | * isn't required for consistency, but the last restartpoint might be far |
| 7795 | * back, and in case of a crash, recovering from it might take a longer |
| 7796 | * than is appropriate now that we're not in standby mode anymore. |
| 7797 | */ |
| 7798 | if (fast_promoted) |
| 7799 | RequestCheckpoint(CHECKPOINT_FORCE); |
| 7800 | } |
| 7801 | |
| 7802 | /* |
| 7803 | * Checks if recovery has reached a consistent state. When consistency is |
| 7804 | * reached and we have a valid starting standby snapshot, tell postmaster |
| 7805 | * that it can start accepting read-only connections. |
| 7806 | */ |
| 7807 | static void |
| 7808 | CheckRecoveryConsistency(void) |
| 7809 | { |
| 7810 | XLogRecPtr lastReplayedEndRecPtr; |
| 7811 | |
| 7812 | /* |
| 7813 | * During crash recovery, we don't reach a consistent state until we've |
| 7814 | * replayed all the WAL. |
| 7815 | */ |
| 7816 | if (XLogRecPtrIsInvalid(minRecoveryPoint)) |
| 7817 | return; |
| 7818 | |
| 7819 | Assert(InArchiveRecovery); |
| 7820 | |
| 7821 | /* |
| 7822 | * assume that we are called in the startup process, and hence don't need |
| 7823 | * a lock to read lastReplayedEndRecPtr |
| 7824 | */ |
| 7825 | lastReplayedEndRecPtr = XLogCtl->lastReplayedEndRecPtr; |
| 7826 | |
| 7827 | /* |
| 7828 | * Have we reached the point where our base backup was completed? |
| 7829 | */ |
| 7830 | if (!XLogRecPtrIsInvalid(ControlFile->backupEndPoint) && |
| 7831 | ControlFile->backupEndPoint <= lastReplayedEndRecPtr) |
| 7832 | { |
| 7833 | /* |
| 7834 | * We have reached the end of base backup, as indicated by pg_control. |
| 7835 | * The data on disk is now consistent. Reset backupStartPoint and |
| 7836 | * backupEndPoint, and update minRecoveryPoint to make sure we don't |
| 7837 | * allow starting up at an earlier point even if recovery is stopped |
| 7838 | * and restarted soon after this. |
| 7839 | */ |
| 7840 | elog(DEBUG1, "end of backup reached" ); |
| 7841 | |
| 7842 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 7843 | |
| 7844 | if (ControlFile->minRecoveryPoint < lastReplayedEndRecPtr) |
| 7845 | ControlFile->minRecoveryPoint = lastReplayedEndRecPtr; |
| 7846 | |
| 7847 | ControlFile->backupStartPoint = InvalidXLogRecPtr; |
| 7848 | ControlFile->backupEndPoint = InvalidXLogRecPtr; |
| 7849 | ControlFile->backupEndRequired = false; |
| 7850 | UpdateControlFile(); |
| 7851 | |
| 7852 | LWLockRelease(ControlFileLock); |
| 7853 | } |
| 7854 | |
| 7855 | /* |
| 7856 | * Have we passed our safe starting point? Note that minRecoveryPoint is |
| 7857 | * known to be incorrectly set if ControlFile->backupEndRequired, until |
| 7858 | * the XLOG_BACKUP_END arrives to advise us of the correct |
| 7859 | * minRecoveryPoint. All we know prior to that is that we're not |
| 7860 | * consistent yet. |
| 7861 | */ |
| 7862 | if (!reachedConsistency && !ControlFile->backupEndRequired && |
| 7863 | minRecoveryPoint <= lastReplayedEndRecPtr && |
| 7864 | XLogRecPtrIsInvalid(ControlFile->backupStartPoint)) |
| 7865 | { |
| 7866 | /* |
| 7867 | * Check to see if the XLOG sequence contained any unresolved |
| 7868 | * references to uninitialized pages. |
| 7869 | */ |
| 7870 | XLogCheckInvalidPages(); |
| 7871 | |
| 7872 | reachedConsistency = true; |
| 7873 | ereport(LOG, |
| 7874 | (errmsg("consistent recovery state reached at %X/%X" , |
| 7875 | (uint32) (lastReplayedEndRecPtr >> 32), |
| 7876 | (uint32) lastReplayedEndRecPtr))); |
| 7877 | } |
| 7878 | |
| 7879 | /* |
| 7880 | * Have we got a valid starting snapshot that will allow queries to be |
| 7881 | * run? If so, we can tell postmaster that the database is consistent now, |
| 7882 | * enabling connections. |
| 7883 | */ |
| 7884 | if (standbyState == STANDBY_SNAPSHOT_READY && |
| 7885 | !LocalHotStandbyActive && |
| 7886 | reachedConsistency && |
| 7887 | IsUnderPostmaster) |
| 7888 | { |
| 7889 | SpinLockAcquire(&XLogCtl->info_lck); |
| 7890 | XLogCtl->SharedHotStandbyActive = true; |
| 7891 | SpinLockRelease(&XLogCtl->info_lck); |
| 7892 | |
| 7893 | LocalHotStandbyActive = true; |
| 7894 | |
| 7895 | SendPostmasterSignal(PMSIGNAL_BEGIN_HOT_STANDBY); |
| 7896 | } |
| 7897 | } |
| 7898 | |
| 7899 | /* |
| 7900 | * Is the system still in recovery? |
| 7901 | * |
| 7902 | * Unlike testing InRecovery, this works in any process that's connected to |
| 7903 | * shared memory. |
| 7904 | * |
| 7905 | * As a side-effect, we initialize the local TimeLineID and RedoRecPtr |
| 7906 | * variables the first time we see that recovery is finished. |
| 7907 | */ |
| 7908 | bool |
| 7909 | RecoveryInProgress(void) |
| 7910 | { |
| 7911 | /* |
| 7912 | * We check shared state each time only until we leave recovery mode. We |
| 7913 | * can't re-enter recovery, so there's no need to keep checking after the |
| 7914 | * shared variable has once been seen false. |
| 7915 | */ |
| 7916 | if (!LocalRecoveryInProgress) |
| 7917 | return false; |
| 7918 | else |
| 7919 | { |
| 7920 | /* |
| 7921 | * use volatile pointer to make sure we make a fresh read of the |
| 7922 | * shared variable. |
| 7923 | */ |
| 7924 | volatile XLogCtlData *xlogctl = XLogCtl; |
| 7925 | |
| 7926 | LocalRecoveryInProgress = xlogctl->SharedRecoveryInProgress; |
| 7927 | |
| 7928 | /* |
| 7929 | * Initialize TimeLineID and RedoRecPtr when we discover that recovery |
| 7930 | * is finished. InitPostgres() relies upon this behaviour to ensure |
| 7931 | * that InitXLOGAccess() is called at backend startup. (If you change |
| 7932 | * this, see also LocalSetXLogInsertAllowed.) |
| 7933 | */ |
| 7934 | if (!LocalRecoveryInProgress) |
| 7935 | { |
| 7936 | /* |
| 7937 | * If we just exited recovery, make sure we read TimeLineID and |
| 7938 | * RedoRecPtr after SharedRecoveryInProgress (for machines with |
| 7939 | * weak memory ordering). |
| 7940 | */ |
| 7941 | pg_memory_barrier(); |
| 7942 | InitXLOGAccess(); |
| 7943 | } |
| 7944 | |
| 7945 | /* |
| 7946 | * Note: We don't need a memory barrier when we're still in recovery. |
| 7947 | * We might exit recovery immediately after return, so the caller |
| 7948 | * can't rely on 'true' meaning that we're still in recovery anyway. |
| 7949 | */ |
| 7950 | |
| 7951 | return LocalRecoveryInProgress; |
| 7952 | } |
| 7953 | } |
| 7954 | |
| 7955 | /* |
| 7956 | * Is HotStandby active yet? This is only important in special backends |
| 7957 | * since normal backends won't ever be able to connect until this returns |
| 7958 | * true. Postmaster knows this by way of signal, not via shared memory. |
| 7959 | * |
| 7960 | * Unlike testing standbyState, this works in any process that's connected to |
| 7961 | * shared memory. (And note that standbyState alone doesn't tell the truth |
| 7962 | * anyway.) |
| 7963 | */ |
| 7964 | bool |
| 7965 | HotStandbyActive(void) |
| 7966 | { |
| 7967 | /* |
| 7968 | * We check shared state each time only until Hot Standby is active. We |
| 7969 | * can't de-activate Hot Standby, so there's no need to keep checking |
| 7970 | * after the shared variable has once been seen true. |
| 7971 | */ |
| 7972 | if (LocalHotStandbyActive) |
| 7973 | return true; |
| 7974 | else |
| 7975 | { |
| 7976 | /* spinlock is essential on machines with weak memory ordering! */ |
| 7977 | SpinLockAcquire(&XLogCtl->info_lck); |
| 7978 | LocalHotStandbyActive = XLogCtl->SharedHotStandbyActive; |
| 7979 | SpinLockRelease(&XLogCtl->info_lck); |
| 7980 | |
| 7981 | return LocalHotStandbyActive; |
| 7982 | } |
| 7983 | } |
| 7984 | |
| 7985 | /* |
| 7986 | * Like HotStandbyActive(), but to be used only in WAL replay code, |
| 7987 | * where we don't need to ask any other process what the state is. |
| 7988 | */ |
| 7989 | bool |
| 7990 | HotStandbyActiveInReplay(void) |
| 7991 | { |
| 7992 | Assert(AmStartupProcess() || !IsPostmasterEnvironment); |
| 7993 | return LocalHotStandbyActive; |
| 7994 | } |
| 7995 | |
| 7996 | /* |
| 7997 | * Is this process allowed to insert new WAL records? |
| 7998 | * |
| 7999 | * Ordinarily this is essentially equivalent to !RecoveryInProgress(). |
| 8000 | * But we also have provisions for forcing the result "true" or "false" |
| 8001 | * within specific processes regardless of the global state. |
| 8002 | */ |
| 8003 | bool |
| 8004 | XLogInsertAllowed(void) |
| 8005 | { |
| 8006 | /* |
| 8007 | * If value is "unconditionally true" or "unconditionally false", just |
| 8008 | * return it. This provides the normal fast path once recovery is known |
| 8009 | * done. |
| 8010 | */ |
| 8011 | if (LocalXLogInsertAllowed >= 0) |
| 8012 | return (bool) LocalXLogInsertAllowed; |
| 8013 | |
| 8014 | /* |
| 8015 | * Else, must check to see if we're still in recovery. |
| 8016 | */ |
| 8017 | if (RecoveryInProgress()) |
| 8018 | return false; |
| 8019 | |
| 8020 | /* |
| 8021 | * On exit from recovery, reset to "unconditionally true", since there is |
| 8022 | * no need to keep checking. |
| 8023 | */ |
| 8024 | LocalXLogInsertAllowed = 1; |
| 8025 | return true; |
| 8026 | } |
| 8027 | |
| 8028 | /* |
| 8029 | * Make XLogInsertAllowed() return true in the current process only. |
| 8030 | * |
| 8031 | * Note: it is allowed to switch LocalXLogInsertAllowed back to -1 later, |
| 8032 | * and even call LocalSetXLogInsertAllowed() again after that. |
| 8033 | */ |
| 8034 | static void |
| 8035 | LocalSetXLogInsertAllowed(void) |
| 8036 | { |
| 8037 | Assert(LocalXLogInsertAllowed == -1); |
| 8038 | LocalXLogInsertAllowed = 1; |
| 8039 | |
| 8040 | /* Initialize as RecoveryInProgress() would do when switching state */ |
| 8041 | InitXLOGAccess(); |
| 8042 | } |
| 8043 | |
| 8044 | /* |
| 8045 | * Subroutine to try to fetch and validate a prior checkpoint record. |
| 8046 | * |
| 8047 | * whichChkpt identifies the checkpoint (merely for reporting purposes). |
| 8048 | * 1 for "primary", 0 for "other" (backup_label) |
| 8049 | */ |
| 8050 | static XLogRecord * |
| 8051 | ReadCheckpointRecord(XLogReaderState *xlogreader, XLogRecPtr RecPtr, |
| 8052 | int whichChkpt, bool report) |
| 8053 | { |
| 8054 | XLogRecord *record; |
| 8055 | uint8 info; |
| 8056 | |
| 8057 | if (!XRecOffIsValid(RecPtr)) |
| 8058 | { |
| 8059 | if (!report) |
| 8060 | return NULL; |
| 8061 | |
| 8062 | switch (whichChkpt) |
| 8063 | { |
| 8064 | case 1: |
| 8065 | ereport(LOG, |
| 8066 | (errmsg("invalid primary checkpoint link in control file" ))); |
| 8067 | break; |
| 8068 | default: |
| 8069 | ereport(LOG, |
| 8070 | (errmsg("invalid checkpoint link in backup_label file" ))); |
| 8071 | break; |
| 8072 | } |
| 8073 | return NULL; |
| 8074 | } |
| 8075 | |
| 8076 | record = ReadRecord(xlogreader, RecPtr, LOG, true); |
| 8077 | |
| 8078 | if (record == NULL) |
| 8079 | { |
| 8080 | if (!report) |
| 8081 | return NULL; |
| 8082 | |
| 8083 | switch (whichChkpt) |
| 8084 | { |
| 8085 | case 1: |
| 8086 | ereport(LOG, |
| 8087 | (errmsg("invalid primary checkpoint record" ))); |
| 8088 | break; |
| 8089 | default: |
| 8090 | ereport(LOG, |
| 8091 | (errmsg("invalid checkpoint record" ))); |
| 8092 | break; |
| 8093 | } |
| 8094 | return NULL; |
| 8095 | } |
| 8096 | if (record->xl_rmid != RM_XLOG_ID) |
| 8097 | { |
| 8098 | switch (whichChkpt) |
| 8099 | { |
| 8100 | case 1: |
| 8101 | ereport(LOG, |
| 8102 | (errmsg("invalid resource manager ID in primary checkpoint record" ))); |
| 8103 | break; |
| 8104 | default: |
| 8105 | ereport(LOG, |
| 8106 | (errmsg("invalid resource manager ID in checkpoint record" ))); |
| 8107 | break; |
| 8108 | } |
| 8109 | return NULL; |
| 8110 | } |
| 8111 | info = record->xl_info & ~XLR_INFO_MASK; |
| 8112 | if (info != XLOG_CHECKPOINT_SHUTDOWN && |
| 8113 | info != XLOG_CHECKPOINT_ONLINE) |
| 8114 | { |
| 8115 | switch (whichChkpt) |
| 8116 | { |
| 8117 | case 1: |
| 8118 | ereport(LOG, |
| 8119 | (errmsg("invalid xl_info in primary checkpoint record" ))); |
| 8120 | break; |
| 8121 | default: |
| 8122 | ereport(LOG, |
| 8123 | (errmsg("invalid xl_info in checkpoint record" ))); |
| 8124 | break; |
| 8125 | } |
| 8126 | return NULL; |
| 8127 | } |
| 8128 | if (record->xl_tot_len != SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(CheckPoint)) |
| 8129 | { |
| 8130 | switch (whichChkpt) |
| 8131 | { |
| 8132 | case 1: |
| 8133 | ereport(LOG, |
| 8134 | (errmsg("invalid length of primary checkpoint record" ))); |
| 8135 | break; |
| 8136 | default: |
| 8137 | ereport(LOG, |
| 8138 | (errmsg("invalid length of checkpoint record" ))); |
| 8139 | break; |
| 8140 | } |
| 8141 | return NULL; |
| 8142 | } |
| 8143 | return record; |
| 8144 | } |
| 8145 | |
| 8146 | /* |
| 8147 | * This must be called in a backend process before creating WAL records |
| 8148 | * (except in a standalone backend, which does StartupXLOG instead). We need |
| 8149 | * to initialize the local copies of ThisTimeLineID and RedoRecPtr. |
| 8150 | * |
| 8151 | * Note: before Postgres 8.0, we went to some effort to keep the postmaster |
| 8152 | * process's copies of ThisTimeLineID and RedoRecPtr valid too. This was |
| 8153 | * unnecessary however, since the postmaster itself never touches XLOG anyway. |
| 8154 | */ |
| 8155 | void |
| 8156 | InitXLOGAccess(void) |
| 8157 | { |
| 8158 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 8159 | |
| 8160 | /* ThisTimeLineID doesn't change so we need no lock to copy it */ |
| 8161 | ThisTimeLineID = XLogCtl->ThisTimeLineID; |
| 8162 | Assert(ThisTimeLineID != 0 || IsBootstrapProcessingMode()); |
| 8163 | |
| 8164 | /* set wal_segment_size */ |
| 8165 | wal_segment_size = ControlFile->xlog_seg_size; |
| 8166 | |
| 8167 | /* Use GetRedoRecPtr to copy the RedoRecPtr safely */ |
| 8168 | (void) GetRedoRecPtr(); |
| 8169 | /* Also update our copy of doPageWrites. */ |
| 8170 | doPageWrites = (Insert->fullPageWrites || Insert->forcePageWrites); |
| 8171 | |
| 8172 | /* Also initialize the working areas for constructing WAL records */ |
| 8173 | InitXLogInsert(); |
| 8174 | } |
| 8175 | |
| 8176 | /* |
| 8177 | * Return the current Redo pointer from shared memory. |
| 8178 | * |
| 8179 | * As a side-effect, the local RedoRecPtr copy is updated. |
| 8180 | */ |
| 8181 | XLogRecPtr |
| 8182 | GetRedoRecPtr(void) |
| 8183 | { |
| 8184 | XLogRecPtr ptr; |
| 8185 | |
| 8186 | /* |
| 8187 | * The possibly not up-to-date copy in XlogCtl is enough. Even if we |
| 8188 | * grabbed a WAL insertion lock to read the master copy, someone might |
| 8189 | * update it just after we've released the lock. |
| 8190 | */ |
| 8191 | SpinLockAcquire(&XLogCtl->info_lck); |
| 8192 | ptr = XLogCtl->RedoRecPtr; |
| 8193 | SpinLockRelease(&XLogCtl->info_lck); |
| 8194 | |
| 8195 | if (RedoRecPtr < ptr) |
| 8196 | RedoRecPtr = ptr; |
| 8197 | |
| 8198 | return RedoRecPtr; |
| 8199 | } |
| 8200 | |
| 8201 | /* |
| 8202 | * Return information needed to decide whether a modified block needs a |
| 8203 | * full-page image to be included in the WAL record. |
| 8204 | * |
| 8205 | * The returned values are cached copies from backend-private memory, and |
| 8206 | * possibly out-of-date. XLogInsertRecord will re-check them against |
| 8207 | * up-to-date values, while holding the WAL insert lock. |
| 8208 | */ |
| 8209 | void |
| 8210 | GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p) |
| 8211 | { |
| 8212 | *RedoRecPtr_p = RedoRecPtr; |
| 8213 | *doPageWrites_p = doPageWrites; |
| 8214 | } |
| 8215 | |
| 8216 | /* |
| 8217 | * GetInsertRecPtr -- Returns the current insert position. |
| 8218 | * |
| 8219 | * NOTE: The value *actually* returned is the position of the last full |
| 8220 | * xlog page. It lags behind the real insert position by at most 1 page. |
| 8221 | * For that, we don't need to scan through WAL insertion locks, and an |
| 8222 | * approximation is enough for the current usage of this function. |
| 8223 | */ |
| 8224 | XLogRecPtr |
| 8225 | GetInsertRecPtr(void) |
| 8226 | { |
| 8227 | XLogRecPtr recptr; |
| 8228 | |
| 8229 | SpinLockAcquire(&XLogCtl->info_lck); |
| 8230 | recptr = XLogCtl->LogwrtRqst.Write; |
| 8231 | SpinLockRelease(&XLogCtl->info_lck); |
| 8232 | |
| 8233 | return recptr; |
| 8234 | } |
| 8235 | |
| 8236 | /* |
| 8237 | * GetFlushRecPtr -- Returns the current flush position, ie, the last WAL |
| 8238 | * position known to be fsync'd to disk. |
| 8239 | */ |
| 8240 | XLogRecPtr |
| 8241 | GetFlushRecPtr(void) |
| 8242 | { |
| 8243 | SpinLockAcquire(&XLogCtl->info_lck); |
| 8244 | LogwrtResult = XLogCtl->LogwrtResult; |
| 8245 | SpinLockRelease(&XLogCtl->info_lck); |
| 8246 | |
| 8247 | return LogwrtResult.Flush; |
| 8248 | } |
| 8249 | |
| 8250 | /* |
| 8251 | * GetLastImportantRecPtr -- Returns the LSN of the last important record |
| 8252 | * inserted. All records not explicitly marked as unimportant are considered |
| 8253 | * important. |
| 8254 | * |
| 8255 | * The LSN is determined by computing the maximum of |
| 8256 | * WALInsertLocks[i].lastImportantAt. |
| 8257 | */ |
| 8258 | XLogRecPtr |
| 8259 | GetLastImportantRecPtr(void) |
| 8260 | { |
| 8261 | XLogRecPtr res = InvalidXLogRecPtr; |
| 8262 | int i; |
| 8263 | |
| 8264 | for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++) |
| 8265 | { |
| 8266 | XLogRecPtr last_important; |
| 8267 | |
| 8268 | /* |
| 8269 | * Need to take a lock to prevent torn reads of the LSN, which are |
| 8270 | * possible on some of the supported platforms. WAL insert locks only |
| 8271 | * support exclusive mode, so we have to use that. |
| 8272 | */ |
| 8273 | LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE); |
| 8274 | last_important = WALInsertLocks[i].l.lastImportantAt; |
| 8275 | LWLockRelease(&WALInsertLocks[i].l.lock); |
| 8276 | |
| 8277 | if (res < last_important) |
| 8278 | res = last_important; |
| 8279 | } |
| 8280 | |
| 8281 | return res; |
| 8282 | } |
| 8283 | |
| 8284 | /* |
| 8285 | * Get the time and LSN of the last xlog segment switch |
| 8286 | */ |
| 8287 | pg_time_t |
| 8288 | GetLastSegSwitchData(XLogRecPtr *lastSwitchLSN) |
| 8289 | { |
| 8290 | pg_time_t result; |
| 8291 | |
| 8292 | /* Need WALWriteLock, but shared lock is sufficient */ |
| 8293 | LWLockAcquire(WALWriteLock, LW_SHARED); |
| 8294 | result = XLogCtl->lastSegSwitchTime; |
| 8295 | *lastSwitchLSN = XLogCtl->lastSegSwitchLSN; |
| 8296 | LWLockRelease(WALWriteLock); |
| 8297 | |
| 8298 | return result; |
| 8299 | } |
| 8300 | |
| 8301 | /* |
| 8302 | * This must be called ONCE during postmaster or standalone-backend shutdown |
| 8303 | */ |
| 8304 | void |
| 8305 | ShutdownXLOG(int code, Datum arg) |
| 8306 | { |
| 8307 | /* |
| 8308 | * We should have an aux process resource owner to use, and we should not |
| 8309 | * be in a transaction that's installed some other resowner. |
| 8310 | */ |
| 8311 | Assert(AuxProcessResourceOwner != NULL); |
| 8312 | Assert(CurrentResourceOwner == NULL || |
| 8313 | CurrentResourceOwner == AuxProcessResourceOwner); |
| 8314 | CurrentResourceOwner = AuxProcessResourceOwner; |
| 8315 | |
| 8316 | /* Don't be chatty in standalone mode */ |
| 8317 | ereport(IsPostmasterEnvironment ? LOG : NOTICE, |
| 8318 | (errmsg("shutting down" ))); |
| 8319 | |
| 8320 | /* |
| 8321 | * Signal walsenders to move to stopping state. |
| 8322 | */ |
| 8323 | WalSndInitStopping(); |
| 8324 | |
| 8325 | /* |
| 8326 | * Wait for WAL senders to be in stopping state. This prevents commands |
| 8327 | * from writing new WAL. |
| 8328 | */ |
| 8329 | WalSndWaitStopping(); |
| 8330 | |
| 8331 | if (RecoveryInProgress()) |
| 8332 | CreateRestartPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE); |
| 8333 | else |
| 8334 | { |
| 8335 | /* |
| 8336 | * If archiving is enabled, rotate the last XLOG file so that all the |
| 8337 | * remaining records are archived (postmaster wakes up the archiver |
| 8338 | * process one more time at the end of shutdown). The checkpoint |
| 8339 | * record will go to the next XLOG file and won't be archived (yet). |
| 8340 | */ |
| 8341 | if (XLogArchivingActive() && XLogArchiveCommandSet()) |
| 8342 | RequestXLogSwitch(false); |
| 8343 | |
| 8344 | CreateCheckPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE); |
| 8345 | } |
| 8346 | ShutdownCLOG(); |
| 8347 | ShutdownCommitTs(); |
| 8348 | ShutdownSUBTRANS(); |
| 8349 | ShutdownMultiXact(); |
| 8350 | } |
| 8351 | |
| 8352 | /* |
| 8353 | * Log start of a checkpoint. |
| 8354 | */ |
| 8355 | static void |
| 8356 | LogCheckpointStart(int flags, bool restartpoint) |
| 8357 | { |
| 8358 | elog(LOG, "%s starting:%s%s%s%s%s%s%s%s" , |
| 8359 | restartpoint ? "restartpoint" : "checkpoint" , |
| 8360 | (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "" , |
| 8361 | (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "" , |
| 8362 | (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "" , |
| 8363 | (flags & CHECKPOINT_FORCE) ? " force" : "" , |
| 8364 | (flags & CHECKPOINT_WAIT) ? " wait" : "" , |
| 8365 | (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "" , |
| 8366 | (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "" , |
| 8367 | (flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "" ); |
| 8368 | } |
| 8369 | |
| 8370 | /* |
| 8371 | * Log end of a checkpoint. |
| 8372 | */ |
| 8373 | static void |
| 8374 | LogCheckpointEnd(bool restartpoint) |
| 8375 | { |
| 8376 | long write_secs, |
| 8377 | sync_secs, |
| 8378 | total_secs, |
| 8379 | longest_secs, |
| 8380 | average_secs; |
| 8381 | int write_usecs, |
| 8382 | sync_usecs, |
| 8383 | total_usecs, |
| 8384 | longest_usecs, |
| 8385 | average_usecs; |
| 8386 | uint64 average_sync_time; |
| 8387 | |
| 8388 | CheckpointStats.ckpt_end_t = GetCurrentTimestamp(); |
| 8389 | |
| 8390 | TimestampDifference(CheckpointStats.ckpt_write_t, |
| 8391 | CheckpointStats.ckpt_sync_t, |
| 8392 | &write_secs, &write_usecs); |
| 8393 | |
| 8394 | TimestampDifference(CheckpointStats.ckpt_sync_t, |
| 8395 | CheckpointStats.ckpt_sync_end_t, |
| 8396 | &sync_secs, &sync_usecs); |
| 8397 | |
| 8398 | /* Accumulate checkpoint timing summary data, in milliseconds. */ |
| 8399 | BgWriterStats.m_checkpoint_write_time += |
| 8400 | write_secs * 1000 + write_usecs / 1000; |
| 8401 | BgWriterStats.m_checkpoint_sync_time += |
| 8402 | sync_secs * 1000 + sync_usecs / 1000; |
| 8403 | |
| 8404 | /* |
| 8405 | * All of the published timing statistics are accounted for. Only |
| 8406 | * continue if a log message is to be written. |
| 8407 | */ |
| 8408 | if (!log_checkpoints) |
| 8409 | return; |
| 8410 | |
| 8411 | TimestampDifference(CheckpointStats.ckpt_start_t, |
| 8412 | CheckpointStats.ckpt_end_t, |
| 8413 | &total_secs, &total_usecs); |
| 8414 | |
| 8415 | /* |
| 8416 | * Timing values returned from CheckpointStats are in microseconds. |
| 8417 | * Convert to the second plus microsecond form that TimestampDifference |
| 8418 | * returns for homogeneous printing. |
| 8419 | */ |
| 8420 | longest_secs = (long) (CheckpointStats.ckpt_longest_sync / 1000000); |
| 8421 | longest_usecs = CheckpointStats.ckpt_longest_sync - |
| 8422 | (uint64) longest_secs * 1000000; |
| 8423 | |
| 8424 | average_sync_time = 0; |
| 8425 | if (CheckpointStats.ckpt_sync_rels > 0) |
| 8426 | average_sync_time = CheckpointStats.ckpt_agg_sync_time / |
| 8427 | CheckpointStats.ckpt_sync_rels; |
| 8428 | average_secs = (long) (average_sync_time / 1000000); |
| 8429 | average_usecs = average_sync_time - (uint64) average_secs * 1000000; |
| 8430 | |
| 8431 | elog(LOG, "%s complete: wrote %d buffers (%.1f%%); " |
| 8432 | "%d WAL file(s) added, %d removed, %d recycled; " |
| 8433 | "write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; " |
| 8434 | "sync files=%d, longest=%ld.%03d s, average=%ld.%03d s; " |
| 8435 | "distance=%d kB, estimate=%d kB" , |
| 8436 | restartpoint ? "restartpoint" : "checkpoint" , |
| 8437 | CheckpointStats.ckpt_bufs_written, |
| 8438 | (double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers, |
| 8439 | CheckpointStats.ckpt_segs_added, |
| 8440 | CheckpointStats.ckpt_segs_removed, |
| 8441 | CheckpointStats.ckpt_segs_recycled, |
| 8442 | write_secs, write_usecs / 1000, |
| 8443 | sync_secs, sync_usecs / 1000, |
| 8444 | total_secs, total_usecs / 1000, |
| 8445 | CheckpointStats.ckpt_sync_rels, |
| 8446 | longest_secs, longest_usecs / 1000, |
| 8447 | average_secs, average_usecs / 1000, |
| 8448 | (int) (PrevCheckPointDistance / 1024.0), |
| 8449 | (int) (CheckPointDistanceEstimate / 1024.0)); |
| 8450 | } |
| 8451 | |
| 8452 | /* |
| 8453 | * Update the estimate of distance between checkpoints. |
| 8454 | * |
| 8455 | * The estimate is used to calculate the number of WAL segments to keep |
| 8456 | * preallocated, see XLOGFileSlop(). |
| 8457 | */ |
| 8458 | static void |
| 8459 | UpdateCheckPointDistanceEstimate(uint64 nbytes) |
| 8460 | { |
| 8461 | /* |
| 8462 | * To estimate the number of segments consumed between checkpoints, keep a |
| 8463 | * moving average of the amount of WAL generated in previous checkpoint |
| 8464 | * cycles. However, if the load is bursty, with quiet periods and busy |
| 8465 | * periods, we want to cater for the peak load. So instead of a plain |
| 8466 | * moving average, let the average decline slowly if the previous cycle |
| 8467 | * used less WAL than estimated, but bump it up immediately if it used |
| 8468 | * more. |
| 8469 | * |
| 8470 | * When checkpoints are triggered by max_wal_size, this should converge to |
| 8471 | * CheckpointSegments * wal_segment_size, |
| 8472 | * |
| 8473 | * Note: This doesn't pay any attention to what caused the checkpoint. |
| 8474 | * Checkpoints triggered manually with CHECKPOINT command, or by e.g. |
| 8475 | * starting a base backup, are counted the same as those created |
| 8476 | * automatically. The slow-decline will largely mask them out, if they are |
| 8477 | * not frequent. If they are frequent, it seems reasonable to count them |
| 8478 | * in as any others; if you issue a manual checkpoint every 5 minutes and |
| 8479 | * never let a timed checkpoint happen, it makes sense to base the |
| 8480 | * preallocation on that 5 minute interval rather than whatever |
| 8481 | * checkpoint_timeout is set to. |
| 8482 | */ |
| 8483 | PrevCheckPointDistance = nbytes; |
| 8484 | if (CheckPointDistanceEstimate < nbytes) |
| 8485 | CheckPointDistanceEstimate = nbytes; |
| 8486 | else |
| 8487 | CheckPointDistanceEstimate = |
| 8488 | (0.90 * CheckPointDistanceEstimate + 0.10 * (double) nbytes); |
| 8489 | } |
| 8490 | |
| 8491 | /* |
| 8492 | * Perform a checkpoint --- either during shutdown, or on-the-fly |
| 8493 | * |
| 8494 | * flags is a bitwise OR of the following: |
| 8495 | * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown. |
| 8496 | * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery. |
| 8497 | * CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP, |
| 8498 | * ignoring checkpoint_completion_target parameter. |
| 8499 | * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred |
| 8500 | * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or |
| 8501 | * CHECKPOINT_END_OF_RECOVERY). |
| 8502 | * CHECKPOINT_FLUSH_ALL: also flush buffers of unlogged tables. |
| 8503 | * |
| 8504 | * Note: flags contains other bits, of interest here only for logging purposes. |
| 8505 | * In particular note that this routine is synchronous and does not pay |
| 8506 | * attention to CHECKPOINT_WAIT. |
| 8507 | * |
| 8508 | * If !shutdown then we are writing an online checkpoint. This is a very special |
| 8509 | * kind of operation and WAL record because the checkpoint action occurs over |
| 8510 | * a period of time yet logically occurs at just a single LSN. The logical |
| 8511 | * position of the WAL record (redo ptr) is the same or earlier than the |
| 8512 | * physical position. When we replay WAL we locate the checkpoint via its |
| 8513 | * physical position then read the redo ptr and actually start replay at the |
| 8514 | * earlier logical position. Note that we don't write *anything* to WAL at |
| 8515 | * the logical position, so that location could be any other kind of WAL record. |
| 8516 | * All of this mechanism allows us to continue working while we checkpoint. |
| 8517 | * As a result, timing of actions is critical here and be careful to note that |
| 8518 | * this function will likely take minutes to execute on a busy system. |
| 8519 | */ |
| 8520 | void |
| 8521 | CreateCheckPoint(int flags) |
| 8522 | { |
| 8523 | bool shutdown; |
| 8524 | CheckPoint checkPoint; |
| 8525 | XLogRecPtr recptr; |
| 8526 | XLogSegNo _logSegNo; |
| 8527 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 8528 | uint32 freespace; |
| 8529 | XLogRecPtr PriorRedoPtr; |
| 8530 | XLogRecPtr curInsert; |
| 8531 | XLogRecPtr last_important_lsn; |
| 8532 | VirtualTransactionId *vxids; |
| 8533 | int nvxids; |
| 8534 | |
| 8535 | /* |
| 8536 | * An end-of-recovery checkpoint is really a shutdown checkpoint, just |
| 8537 | * issued at a different time. |
| 8538 | */ |
| 8539 | if (flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY)) |
| 8540 | shutdown = true; |
| 8541 | else |
| 8542 | shutdown = false; |
| 8543 | |
| 8544 | /* sanity check */ |
| 8545 | if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0) |
| 8546 | elog(ERROR, "can't create a checkpoint during recovery" ); |
| 8547 | |
| 8548 | /* |
| 8549 | * Initialize InitXLogInsert working areas before entering the critical |
| 8550 | * section. Normally, this is done by the first call to |
| 8551 | * RecoveryInProgress() or LocalSetXLogInsertAllowed(), but when creating |
| 8552 | * an end-of-recovery checkpoint, the LocalSetXLogInsertAllowed call is |
| 8553 | * done below in a critical section, and InitXLogInsert cannot be called |
| 8554 | * in a critical section. |
| 8555 | */ |
| 8556 | InitXLogInsert(); |
| 8557 | |
| 8558 | /* |
| 8559 | * Acquire CheckpointLock to ensure only one checkpoint happens at a time. |
| 8560 | * (This is just pro forma, since in the present system structure there is |
| 8561 | * only one process that is allowed to issue checkpoints at any given |
| 8562 | * time.) |
| 8563 | */ |
| 8564 | LWLockAcquire(CheckpointLock, LW_EXCLUSIVE); |
| 8565 | |
| 8566 | /* |
| 8567 | * Prepare to accumulate statistics. |
| 8568 | * |
| 8569 | * Note: because it is possible for log_checkpoints to change while a |
| 8570 | * checkpoint proceeds, we always accumulate stats, even if |
| 8571 | * log_checkpoints is currently off. |
| 8572 | */ |
| 8573 | MemSet(&CheckpointStats, 0, sizeof(CheckpointStats)); |
| 8574 | CheckpointStats.ckpt_start_t = GetCurrentTimestamp(); |
| 8575 | |
| 8576 | /* |
| 8577 | * Use a critical section to force system panic if we have trouble. |
| 8578 | */ |
| 8579 | START_CRIT_SECTION(); |
| 8580 | |
| 8581 | if (shutdown) |
| 8582 | { |
| 8583 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 8584 | ControlFile->state = DB_SHUTDOWNING; |
| 8585 | ControlFile->time = (pg_time_t) time(NULL); |
| 8586 | UpdateControlFile(); |
| 8587 | LWLockRelease(ControlFileLock); |
| 8588 | } |
| 8589 | |
| 8590 | /* |
| 8591 | * Let smgr prepare for checkpoint; this has to happen before we determine |
| 8592 | * the REDO pointer. Note that smgr must not do anything that'd have to |
| 8593 | * be undone if we decide no checkpoint is needed. |
| 8594 | */ |
| 8595 | SyncPreCheckpoint(); |
| 8596 | |
| 8597 | /* Begin filling in the checkpoint WAL record */ |
| 8598 | MemSet(&checkPoint, 0, sizeof(checkPoint)); |
| 8599 | checkPoint.time = (pg_time_t) time(NULL); |
| 8600 | |
| 8601 | /* |
| 8602 | * For Hot Standby, derive the oldestActiveXid before we fix the redo |
| 8603 | * pointer. This allows us to begin accumulating changes to assemble our |
| 8604 | * starting snapshot of locks and transactions. |
| 8605 | */ |
| 8606 | if (!shutdown && XLogStandbyInfoActive()) |
| 8607 | checkPoint.oldestActiveXid = GetOldestActiveTransactionId(); |
| 8608 | else |
| 8609 | checkPoint.oldestActiveXid = InvalidTransactionId; |
| 8610 | |
| 8611 | /* |
| 8612 | * Get location of last important record before acquiring insert locks (as |
| 8613 | * GetLastImportantRecPtr() also locks WAL locks). |
| 8614 | */ |
| 8615 | last_important_lsn = GetLastImportantRecPtr(); |
| 8616 | |
| 8617 | /* |
| 8618 | * We must block concurrent insertions while examining insert state to |
| 8619 | * determine the checkpoint REDO pointer. |
| 8620 | */ |
| 8621 | WALInsertLockAcquireExclusive(); |
| 8622 | curInsert = XLogBytePosToRecPtr(Insert->CurrBytePos); |
| 8623 | |
| 8624 | /* |
| 8625 | * If this isn't a shutdown or forced checkpoint, and if there has been no |
| 8626 | * WAL activity requiring a checkpoint, skip it. The idea here is to |
| 8627 | * avoid inserting duplicate checkpoints when the system is idle. |
| 8628 | */ |
| 8629 | if ((flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY | |
| 8630 | CHECKPOINT_FORCE)) == 0) |
| 8631 | { |
| 8632 | if (last_important_lsn == ControlFile->checkPoint) |
| 8633 | { |
| 8634 | WALInsertLockRelease(); |
| 8635 | LWLockRelease(CheckpointLock); |
| 8636 | END_CRIT_SECTION(); |
| 8637 | ereport(DEBUG1, |
| 8638 | (errmsg("checkpoint skipped because system is idle" ))); |
| 8639 | return; |
| 8640 | } |
| 8641 | } |
| 8642 | |
| 8643 | /* |
| 8644 | * An end-of-recovery checkpoint is created before anyone is allowed to |
| 8645 | * write WAL. To allow us to write the checkpoint record, temporarily |
| 8646 | * enable XLogInsertAllowed. (This also ensures ThisTimeLineID is |
| 8647 | * initialized, which we need here and in AdvanceXLInsertBuffer.) |
| 8648 | */ |
| 8649 | if (flags & CHECKPOINT_END_OF_RECOVERY) |
| 8650 | LocalSetXLogInsertAllowed(); |
| 8651 | |
| 8652 | checkPoint.ThisTimeLineID = ThisTimeLineID; |
| 8653 | if (flags & CHECKPOINT_END_OF_RECOVERY) |
| 8654 | checkPoint.PrevTimeLineID = XLogCtl->PrevTimeLineID; |
| 8655 | else |
| 8656 | checkPoint.PrevTimeLineID = ThisTimeLineID; |
| 8657 | |
| 8658 | checkPoint.fullPageWrites = Insert->fullPageWrites; |
| 8659 | |
| 8660 | /* |
| 8661 | * Compute new REDO record ptr = location of next XLOG record. |
| 8662 | * |
| 8663 | * NB: this is NOT necessarily where the checkpoint record itself will be, |
| 8664 | * since other backends may insert more XLOG records while we're off doing |
| 8665 | * the buffer flush work. Those XLOG records are logically after the |
| 8666 | * checkpoint, even though physically before it. Got that? |
| 8667 | */ |
| 8668 | freespace = INSERT_FREESPACE(curInsert); |
| 8669 | if (freespace == 0) |
| 8670 | { |
| 8671 | if (XLogSegmentOffset(curInsert, wal_segment_size) == 0) |
| 8672 | curInsert += SizeOfXLogLongPHD; |
| 8673 | else |
| 8674 | curInsert += SizeOfXLogShortPHD; |
| 8675 | } |
| 8676 | checkPoint.redo = curInsert; |
| 8677 | |
| 8678 | /* |
| 8679 | * Here we update the shared RedoRecPtr for future XLogInsert calls; this |
| 8680 | * must be done while holding all the insertion locks. |
| 8681 | * |
| 8682 | * Note: if we fail to complete the checkpoint, RedoRecPtr will be left |
| 8683 | * pointing past where it really needs to point. This is okay; the only |
| 8684 | * consequence is that XLogInsert might back up whole buffers that it |
| 8685 | * didn't really need to. We can't postpone advancing RedoRecPtr because |
| 8686 | * XLogInserts that happen while we are dumping buffers must assume that |
| 8687 | * their buffer changes are not included in the checkpoint. |
| 8688 | */ |
| 8689 | RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo; |
| 8690 | |
| 8691 | /* |
| 8692 | * Now we can release the WAL insertion locks, allowing other xacts to |
| 8693 | * proceed while we are flushing disk buffers. |
| 8694 | */ |
| 8695 | WALInsertLockRelease(); |
| 8696 | |
| 8697 | /* Update the info_lck-protected copy of RedoRecPtr as well */ |
| 8698 | SpinLockAcquire(&XLogCtl->info_lck); |
| 8699 | XLogCtl->RedoRecPtr = checkPoint.redo; |
| 8700 | SpinLockRelease(&XLogCtl->info_lck); |
| 8701 | |
| 8702 | /* |
| 8703 | * If enabled, log checkpoint start. We postpone this until now so as not |
| 8704 | * to log anything if we decided to skip the checkpoint. |
| 8705 | */ |
| 8706 | if (log_checkpoints) |
| 8707 | LogCheckpointStart(flags, false); |
| 8708 | |
| 8709 | TRACE_POSTGRESQL_CHECKPOINT_START(flags); |
| 8710 | |
| 8711 | /* |
| 8712 | * Get the other info we need for the checkpoint record. |
| 8713 | * |
| 8714 | * We don't need to save oldestClogXid in the checkpoint, it only matters |
| 8715 | * for the short period in which clog is being truncated, and if we crash |
| 8716 | * during that we'll redo the clog truncation and fix up oldestClogXid |
| 8717 | * there. |
| 8718 | */ |
| 8719 | LWLockAcquire(XidGenLock, LW_SHARED); |
| 8720 | checkPoint.nextFullXid = ShmemVariableCache->nextFullXid; |
| 8721 | checkPoint.oldestXid = ShmemVariableCache->oldestXid; |
| 8722 | checkPoint.oldestXidDB = ShmemVariableCache->oldestXidDB; |
| 8723 | LWLockRelease(XidGenLock); |
| 8724 | |
| 8725 | LWLockAcquire(CommitTsLock, LW_SHARED); |
| 8726 | checkPoint.oldestCommitTsXid = ShmemVariableCache->oldestCommitTsXid; |
| 8727 | checkPoint.newestCommitTsXid = ShmemVariableCache->newestCommitTsXid; |
| 8728 | LWLockRelease(CommitTsLock); |
| 8729 | |
| 8730 | LWLockAcquire(OidGenLock, LW_SHARED); |
| 8731 | checkPoint.nextOid = ShmemVariableCache->nextOid; |
| 8732 | if (!shutdown) |
| 8733 | checkPoint.nextOid += ShmemVariableCache->oidCount; |
| 8734 | LWLockRelease(OidGenLock); |
| 8735 | |
| 8736 | MultiXactGetCheckptMulti(shutdown, |
| 8737 | &checkPoint.nextMulti, |
| 8738 | &checkPoint.nextMultiOffset, |
| 8739 | &checkPoint.oldestMulti, |
| 8740 | &checkPoint.oldestMultiDB); |
| 8741 | |
| 8742 | /* |
| 8743 | * Having constructed the checkpoint record, ensure all shmem disk buffers |
| 8744 | * and commit-log buffers are flushed to disk. |
| 8745 | * |
| 8746 | * This I/O could fail for various reasons. If so, we will fail to |
| 8747 | * complete the checkpoint, but there is no reason to force a system |
| 8748 | * panic. Accordingly, exit critical section while doing it. |
| 8749 | */ |
| 8750 | END_CRIT_SECTION(); |
| 8751 | |
| 8752 | /* |
| 8753 | * In some cases there are groups of actions that must all occur on one |
| 8754 | * side or the other of a checkpoint record. Before flushing the |
| 8755 | * checkpoint record we must explicitly wait for any backend currently |
| 8756 | * performing those groups of actions. |
| 8757 | * |
| 8758 | * One example is end of transaction, so we must wait for any transactions |
| 8759 | * that are currently in commit critical sections. If an xact inserted |
| 8760 | * its commit record into XLOG just before the REDO point, then a crash |
| 8761 | * restart from the REDO point would not replay that record, which means |
| 8762 | * that our flushing had better include the xact's update of pg_xact. So |
| 8763 | * we wait till he's out of his commit critical section before proceeding. |
| 8764 | * See notes in RecordTransactionCommit(). |
| 8765 | * |
| 8766 | * Because we've already released the insertion locks, this test is a bit |
| 8767 | * fuzzy: it is possible that we will wait for xacts we didn't really need |
| 8768 | * to wait for. But the delay should be short and it seems better to make |
| 8769 | * checkpoint take a bit longer than to hold off insertions longer than |
| 8770 | * necessary. (In fact, the whole reason we have this issue is that xact.c |
| 8771 | * does commit record XLOG insertion and clog update as two separate steps |
| 8772 | * protected by different locks, but again that seems best on grounds of |
| 8773 | * minimizing lock contention.) |
| 8774 | * |
| 8775 | * A transaction that has not yet set delayChkpt when we look cannot be at |
| 8776 | * risk, since he's not inserted his commit record yet; and one that's |
| 8777 | * already cleared it is not at risk either, since he's done fixing clog |
| 8778 | * and we will correctly flush the update below. So we cannot miss any |
| 8779 | * xacts we need to wait for. |
| 8780 | */ |
| 8781 | vxids = GetVirtualXIDsDelayingChkpt(&nvxids); |
| 8782 | if (nvxids > 0) |
| 8783 | { |
| 8784 | do |
| 8785 | { |
| 8786 | pg_usleep(10000L); /* wait for 10 msec */ |
| 8787 | } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids)); |
| 8788 | } |
| 8789 | pfree(vxids); |
| 8790 | |
| 8791 | CheckPointGuts(checkPoint.redo, flags); |
| 8792 | |
| 8793 | /* |
| 8794 | * Take a snapshot of running transactions and write this to WAL. This |
| 8795 | * allows us to reconstruct the state of running transactions during |
| 8796 | * archive recovery, if required. Skip, if this info disabled. |
| 8797 | * |
| 8798 | * If we are shutting down, or Startup process is completing crash |
| 8799 | * recovery we don't need to write running xact data. |
| 8800 | */ |
| 8801 | if (!shutdown && XLogStandbyInfoActive()) |
| 8802 | LogStandbySnapshot(); |
| 8803 | |
| 8804 | START_CRIT_SECTION(); |
| 8805 | |
| 8806 | /* |
| 8807 | * Now insert the checkpoint record into XLOG. |
| 8808 | */ |
| 8809 | XLogBeginInsert(); |
| 8810 | XLogRegisterData((char *) (&checkPoint), sizeof(checkPoint)); |
| 8811 | recptr = XLogInsert(RM_XLOG_ID, |
| 8812 | shutdown ? XLOG_CHECKPOINT_SHUTDOWN : |
| 8813 | XLOG_CHECKPOINT_ONLINE); |
| 8814 | |
| 8815 | XLogFlush(recptr); |
| 8816 | |
| 8817 | /* |
| 8818 | * We mustn't write any new WAL after a shutdown checkpoint, or it will be |
| 8819 | * overwritten at next startup. No-one should even try, this just allows |
| 8820 | * sanity-checking. In the case of an end-of-recovery checkpoint, we want |
| 8821 | * to just temporarily disable writing until the system has exited |
| 8822 | * recovery. |
| 8823 | */ |
| 8824 | if (shutdown) |
| 8825 | { |
| 8826 | if (flags & CHECKPOINT_END_OF_RECOVERY) |
| 8827 | LocalXLogInsertAllowed = -1; /* return to "check" state */ |
| 8828 | else |
| 8829 | LocalXLogInsertAllowed = 0; /* never again write WAL */ |
| 8830 | } |
| 8831 | |
| 8832 | /* |
| 8833 | * We now have ProcLastRecPtr = start of actual checkpoint record, recptr |
| 8834 | * = end of actual checkpoint record. |
| 8835 | */ |
| 8836 | if (shutdown && checkPoint.redo != ProcLastRecPtr) |
| 8837 | ereport(PANIC, |
| 8838 | (errmsg("concurrent write-ahead log activity while database system is shutting down" ))); |
| 8839 | |
| 8840 | /* |
| 8841 | * Remember the prior checkpoint's redo ptr for |
| 8842 | * UpdateCheckPointDistanceEstimate() |
| 8843 | */ |
| 8844 | PriorRedoPtr = ControlFile->checkPointCopy.redo; |
| 8845 | |
| 8846 | /* |
| 8847 | * Update the control file. |
| 8848 | */ |
| 8849 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 8850 | if (shutdown) |
| 8851 | ControlFile->state = DB_SHUTDOWNED; |
| 8852 | ControlFile->checkPoint = ProcLastRecPtr; |
| 8853 | ControlFile->checkPointCopy = checkPoint; |
| 8854 | ControlFile->time = (pg_time_t) time(NULL); |
| 8855 | /* crash recovery should always recover to the end of WAL */ |
| 8856 | ControlFile->minRecoveryPoint = InvalidXLogRecPtr; |
| 8857 | ControlFile->minRecoveryPointTLI = 0; |
| 8858 | |
| 8859 | /* |
| 8860 | * Persist unloggedLSN value. It's reset on crash recovery, so this goes |
| 8861 | * unused on non-shutdown checkpoints, but seems useful to store it always |
| 8862 | * for debugging purposes. |
| 8863 | */ |
| 8864 | SpinLockAcquire(&XLogCtl->ulsn_lck); |
| 8865 | ControlFile->unloggedLSN = XLogCtl->unloggedLSN; |
| 8866 | SpinLockRelease(&XLogCtl->ulsn_lck); |
| 8867 | |
| 8868 | UpdateControlFile(); |
| 8869 | LWLockRelease(ControlFileLock); |
| 8870 | |
| 8871 | /* Update shared-memory copy of checkpoint XID/epoch */ |
| 8872 | SpinLockAcquire(&XLogCtl->info_lck); |
| 8873 | XLogCtl->ckptFullXid = checkPoint.nextFullXid; |
| 8874 | SpinLockRelease(&XLogCtl->info_lck); |
| 8875 | |
| 8876 | /* |
| 8877 | * We are now done with critical updates; no need for system panic if we |
| 8878 | * have trouble while fooling with old log segments. |
| 8879 | */ |
| 8880 | END_CRIT_SECTION(); |
| 8881 | |
| 8882 | /* |
| 8883 | * Let smgr do post-checkpoint cleanup (eg, deleting old files). |
| 8884 | */ |
| 8885 | SyncPostCheckpoint(); |
| 8886 | |
| 8887 | /* |
| 8888 | * Update the average distance between checkpoints if the prior checkpoint |
| 8889 | * exists. |
| 8890 | */ |
| 8891 | if (PriorRedoPtr != InvalidXLogRecPtr) |
| 8892 | UpdateCheckPointDistanceEstimate(RedoRecPtr - PriorRedoPtr); |
| 8893 | |
| 8894 | /* |
| 8895 | * Delete old log files, those no longer needed for last checkpoint to |
| 8896 | * prevent the disk holding the xlog from growing full. |
| 8897 | */ |
| 8898 | XLByteToSeg(RedoRecPtr, _logSegNo, wal_segment_size); |
| 8899 | KeepLogSeg(recptr, &_logSegNo); |
| 8900 | _logSegNo--; |
| 8901 | RemoveOldXlogFiles(_logSegNo, RedoRecPtr, recptr); |
| 8902 | |
| 8903 | /* |
| 8904 | * Make more log segments if needed. (Do this after recycling old log |
| 8905 | * segments, since that may supply some of the needed files.) |
| 8906 | */ |
| 8907 | if (!shutdown) |
| 8908 | PreallocXlogFiles(recptr); |
| 8909 | |
| 8910 | /* |
| 8911 | * Truncate pg_subtrans if possible. We can throw away all data before |
| 8912 | * the oldest XMIN of any running transaction. No future transaction will |
| 8913 | * attempt to reference any pg_subtrans entry older than that (see Asserts |
| 8914 | * in subtrans.c). During recovery, though, we mustn't do this because |
| 8915 | * StartupSUBTRANS hasn't been called yet. |
| 8916 | */ |
| 8917 | if (!RecoveryInProgress()) |
| 8918 | TruncateSUBTRANS(GetOldestXmin(NULL, PROCARRAY_FLAGS_DEFAULT)); |
| 8919 | |
| 8920 | /* Real work is done, but log and update stats before releasing lock. */ |
| 8921 | LogCheckpointEnd(false); |
| 8922 | |
| 8923 | TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written, |
| 8924 | NBuffers, |
| 8925 | CheckpointStats.ckpt_segs_added, |
| 8926 | CheckpointStats.ckpt_segs_removed, |
| 8927 | CheckpointStats.ckpt_segs_recycled); |
| 8928 | |
| 8929 | LWLockRelease(CheckpointLock); |
| 8930 | } |
| 8931 | |
| 8932 | /* |
| 8933 | * Mark the end of recovery in WAL though without running a full checkpoint. |
| 8934 | * We can expect that a restartpoint is likely to be in progress as we |
| 8935 | * do this, though we are unwilling to wait for it to complete. So be |
| 8936 | * careful to avoid taking the CheckpointLock anywhere here. |
| 8937 | * |
| 8938 | * CreateRestartPoint() allows for the case where recovery may end before |
| 8939 | * the restartpoint completes so there is no concern of concurrent behaviour. |
| 8940 | */ |
| 8941 | static void |
| 8942 | CreateEndOfRecoveryRecord(void) |
| 8943 | { |
| 8944 | xl_end_of_recovery xlrec; |
| 8945 | XLogRecPtr recptr; |
| 8946 | |
| 8947 | /* sanity check */ |
| 8948 | if (!RecoveryInProgress()) |
| 8949 | elog(ERROR, "can only be used to end recovery" ); |
| 8950 | |
| 8951 | xlrec.end_time = GetCurrentTimestamp(); |
| 8952 | |
| 8953 | WALInsertLockAcquireExclusive(); |
| 8954 | xlrec.ThisTimeLineID = ThisTimeLineID; |
| 8955 | xlrec.PrevTimeLineID = XLogCtl->PrevTimeLineID; |
| 8956 | WALInsertLockRelease(); |
| 8957 | |
| 8958 | LocalSetXLogInsertAllowed(); |
| 8959 | |
| 8960 | START_CRIT_SECTION(); |
| 8961 | |
| 8962 | XLogBeginInsert(); |
| 8963 | XLogRegisterData((char *) &xlrec, sizeof(xl_end_of_recovery)); |
| 8964 | recptr = XLogInsert(RM_XLOG_ID, XLOG_END_OF_RECOVERY); |
| 8965 | |
| 8966 | XLogFlush(recptr); |
| 8967 | |
| 8968 | /* |
| 8969 | * Update the control file so that crash recovery can follow the timeline |
| 8970 | * changes to this point. |
| 8971 | */ |
| 8972 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 8973 | ControlFile->time = (pg_time_t) time(NULL); |
| 8974 | ControlFile->minRecoveryPoint = recptr; |
| 8975 | ControlFile->minRecoveryPointTLI = ThisTimeLineID; |
| 8976 | UpdateControlFile(); |
| 8977 | LWLockRelease(ControlFileLock); |
| 8978 | |
| 8979 | END_CRIT_SECTION(); |
| 8980 | |
| 8981 | LocalXLogInsertAllowed = -1; /* return to "check" state */ |
| 8982 | } |
| 8983 | |
| 8984 | /* |
| 8985 | * Flush all data in shared memory to disk, and fsync |
| 8986 | * |
| 8987 | * This is the common code shared between regular checkpoints and |
| 8988 | * recovery restartpoints. |
| 8989 | */ |
| 8990 | static void |
| 8991 | CheckPointGuts(XLogRecPtr checkPointRedo, int flags) |
| 8992 | { |
| 8993 | CheckPointCLOG(); |
| 8994 | CheckPointCommitTs(); |
| 8995 | CheckPointSUBTRANS(); |
| 8996 | CheckPointMultiXact(); |
| 8997 | CheckPointPredicate(); |
| 8998 | CheckPointRelationMap(); |
| 8999 | CheckPointReplicationSlots(); |
| 9000 | CheckPointSnapBuild(); |
| 9001 | CheckPointLogicalRewriteHeap(); |
| 9002 | CheckPointBuffers(flags); /* performs all required fsyncs */ |
| 9003 | CheckPointReplicationOrigin(); |
| 9004 | /* We deliberately delay 2PC checkpointing as long as possible */ |
| 9005 | CheckPointTwoPhase(checkPointRedo); |
| 9006 | } |
| 9007 | |
| 9008 | /* |
| 9009 | * Save a checkpoint for recovery restart if appropriate |
| 9010 | * |
| 9011 | * This function is called each time a checkpoint record is read from XLOG. |
| 9012 | * It must determine whether the checkpoint represents a safe restartpoint or |
| 9013 | * not. If so, the checkpoint record is stashed in shared memory so that |
| 9014 | * CreateRestartPoint can consult it. (Note that the latter function is |
| 9015 | * executed by the checkpointer, while this one will be executed by the |
| 9016 | * startup process.) |
| 9017 | */ |
| 9018 | static void |
| 9019 | RecoveryRestartPoint(const CheckPoint *checkPoint) |
| 9020 | { |
| 9021 | /* |
| 9022 | * Also refrain from creating a restartpoint if we have seen any |
| 9023 | * references to non-existent pages. Restarting recovery from the |
| 9024 | * restartpoint would not see the references, so we would lose the |
| 9025 | * cross-check that the pages belonged to a relation that was dropped |
| 9026 | * later. |
| 9027 | */ |
| 9028 | if (XLogHaveInvalidPages()) |
| 9029 | { |
| 9030 | elog(trace_recovery(DEBUG2), |
| 9031 | "could not record restart point at %X/%X because there " |
| 9032 | "are unresolved references to invalid pages" , |
| 9033 | (uint32) (checkPoint->redo >> 32), |
| 9034 | (uint32) checkPoint->redo); |
| 9035 | return; |
| 9036 | } |
| 9037 | |
| 9038 | /* |
| 9039 | * Copy the checkpoint record to shared memory, so that checkpointer can |
| 9040 | * work out the next time it wants to perform a restartpoint. |
| 9041 | */ |
| 9042 | SpinLockAcquire(&XLogCtl->info_lck); |
| 9043 | XLogCtl->lastCheckPointRecPtr = ReadRecPtr; |
| 9044 | XLogCtl->lastCheckPointEndPtr = EndRecPtr; |
| 9045 | XLogCtl->lastCheckPoint = *checkPoint; |
| 9046 | SpinLockRelease(&XLogCtl->info_lck); |
| 9047 | } |
| 9048 | |
| 9049 | /* |
| 9050 | * Establish a restartpoint if possible. |
| 9051 | * |
| 9052 | * This is similar to CreateCheckPoint, but is used during WAL recovery |
| 9053 | * to establish a point from which recovery can roll forward without |
| 9054 | * replaying the entire recovery log. |
| 9055 | * |
| 9056 | * Returns true if a new restartpoint was established. We can only establish |
| 9057 | * a restartpoint if we have replayed a safe checkpoint record since last |
| 9058 | * restartpoint. |
| 9059 | */ |
| 9060 | bool |
| 9061 | CreateRestartPoint(int flags) |
| 9062 | { |
| 9063 | XLogRecPtr lastCheckPointRecPtr; |
| 9064 | XLogRecPtr lastCheckPointEndPtr; |
| 9065 | CheckPoint lastCheckPoint; |
| 9066 | XLogRecPtr PriorRedoPtr; |
| 9067 | XLogRecPtr receivePtr; |
| 9068 | XLogRecPtr replayPtr; |
| 9069 | TimeLineID replayTLI; |
| 9070 | XLogRecPtr endptr; |
| 9071 | XLogSegNo _logSegNo; |
| 9072 | TimestampTz xtime; |
| 9073 | |
| 9074 | /* |
| 9075 | * Acquire CheckpointLock to ensure only one restartpoint or checkpoint |
| 9076 | * happens at a time. |
| 9077 | */ |
| 9078 | LWLockAcquire(CheckpointLock, LW_EXCLUSIVE); |
| 9079 | |
| 9080 | /* Get a local copy of the last safe checkpoint record. */ |
| 9081 | SpinLockAcquire(&XLogCtl->info_lck); |
| 9082 | lastCheckPointRecPtr = XLogCtl->lastCheckPointRecPtr; |
| 9083 | lastCheckPointEndPtr = XLogCtl->lastCheckPointEndPtr; |
| 9084 | lastCheckPoint = XLogCtl->lastCheckPoint; |
| 9085 | SpinLockRelease(&XLogCtl->info_lck); |
| 9086 | |
| 9087 | /* |
| 9088 | * Check that we're still in recovery mode. It's ok if we exit recovery |
| 9089 | * mode after this check, the restart point is valid anyway. |
| 9090 | */ |
| 9091 | if (!RecoveryInProgress()) |
| 9092 | { |
| 9093 | ereport(DEBUG2, |
| 9094 | (errmsg("skipping restartpoint, recovery has already ended" ))); |
| 9095 | LWLockRelease(CheckpointLock); |
| 9096 | return false; |
| 9097 | } |
| 9098 | |
| 9099 | /* |
| 9100 | * If the last checkpoint record we've replayed is already our last |
| 9101 | * restartpoint, we can't perform a new restart point. We still update |
| 9102 | * minRecoveryPoint in that case, so that if this is a shutdown restart |
| 9103 | * point, we won't start up earlier than before. That's not strictly |
| 9104 | * necessary, but when hot standby is enabled, it would be rather weird if |
| 9105 | * the database opened up for read-only connections at a point-in-time |
| 9106 | * before the last shutdown. Such time travel is still possible in case of |
| 9107 | * immediate shutdown, though. |
| 9108 | * |
| 9109 | * We don't explicitly advance minRecoveryPoint when we do create a |
| 9110 | * restartpoint. It's assumed that flushing the buffers will do that as a |
| 9111 | * side-effect. |
| 9112 | */ |
| 9113 | if (XLogRecPtrIsInvalid(lastCheckPointRecPtr) || |
| 9114 | lastCheckPoint.redo <= ControlFile->checkPointCopy.redo) |
| 9115 | { |
| 9116 | ereport(DEBUG2, |
| 9117 | (errmsg("skipping restartpoint, already performed at %X/%X" , |
| 9118 | (uint32) (lastCheckPoint.redo >> 32), |
| 9119 | (uint32) lastCheckPoint.redo))); |
| 9120 | |
| 9121 | UpdateMinRecoveryPoint(InvalidXLogRecPtr, true); |
| 9122 | if (flags & CHECKPOINT_IS_SHUTDOWN) |
| 9123 | { |
| 9124 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 9125 | ControlFile->state = DB_SHUTDOWNED_IN_RECOVERY; |
| 9126 | ControlFile->time = (pg_time_t) time(NULL); |
| 9127 | UpdateControlFile(); |
| 9128 | LWLockRelease(ControlFileLock); |
| 9129 | } |
| 9130 | LWLockRelease(CheckpointLock); |
| 9131 | return false; |
| 9132 | } |
| 9133 | |
| 9134 | /* |
| 9135 | * Update the shared RedoRecPtr so that the startup process can calculate |
| 9136 | * the number of segments replayed since last restartpoint, and request a |
| 9137 | * restartpoint if it exceeds CheckPointSegments. |
| 9138 | * |
| 9139 | * Like in CreateCheckPoint(), hold off insertions to update it, although |
| 9140 | * during recovery this is just pro forma, because no WAL insertions are |
| 9141 | * happening. |
| 9142 | */ |
| 9143 | WALInsertLockAcquireExclusive(); |
| 9144 | RedoRecPtr = XLogCtl->Insert.RedoRecPtr = lastCheckPoint.redo; |
| 9145 | WALInsertLockRelease(); |
| 9146 | |
| 9147 | /* Also update the info_lck-protected copy */ |
| 9148 | SpinLockAcquire(&XLogCtl->info_lck); |
| 9149 | XLogCtl->RedoRecPtr = lastCheckPoint.redo; |
| 9150 | SpinLockRelease(&XLogCtl->info_lck); |
| 9151 | |
| 9152 | /* |
| 9153 | * Prepare to accumulate statistics. |
| 9154 | * |
| 9155 | * Note: because it is possible for log_checkpoints to change while a |
| 9156 | * checkpoint proceeds, we always accumulate stats, even if |
| 9157 | * log_checkpoints is currently off. |
| 9158 | */ |
| 9159 | MemSet(&CheckpointStats, 0, sizeof(CheckpointStats)); |
| 9160 | CheckpointStats.ckpt_start_t = GetCurrentTimestamp(); |
| 9161 | |
| 9162 | if (log_checkpoints) |
| 9163 | LogCheckpointStart(flags, true); |
| 9164 | |
| 9165 | CheckPointGuts(lastCheckPoint.redo, flags); |
| 9166 | |
| 9167 | /* |
| 9168 | * Remember the prior checkpoint's redo ptr for |
| 9169 | * UpdateCheckPointDistanceEstimate() |
| 9170 | */ |
| 9171 | PriorRedoPtr = ControlFile->checkPointCopy.redo; |
| 9172 | |
| 9173 | /* |
| 9174 | * Update pg_control, using current time. Check that it still shows |
| 9175 | * IN_ARCHIVE_RECOVERY state and an older checkpoint, else do nothing; |
| 9176 | * this is a quick hack to make sure nothing really bad happens if somehow |
| 9177 | * we get here after the end-of-recovery checkpoint. |
| 9178 | */ |
| 9179 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 9180 | if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY && |
| 9181 | ControlFile->checkPointCopy.redo < lastCheckPoint.redo) |
| 9182 | { |
| 9183 | ControlFile->checkPoint = lastCheckPointRecPtr; |
| 9184 | ControlFile->checkPointCopy = lastCheckPoint; |
| 9185 | ControlFile->time = (pg_time_t) time(NULL); |
| 9186 | |
| 9187 | /* |
| 9188 | * Ensure minRecoveryPoint is past the checkpoint record. Normally, |
| 9189 | * this will have happened already while writing out dirty buffers, |
| 9190 | * but not necessarily - e.g. because no buffers were dirtied. We do |
| 9191 | * this because a non-exclusive base backup uses minRecoveryPoint to |
| 9192 | * determine which WAL files must be included in the backup, and the |
| 9193 | * file (or files) containing the checkpoint record must be included, |
| 9194 | * at a minimum. Note that for an ordinary restart of recovery there's |
| 9195 | * no value in having the minimum recovery point any earlier than this |
| 9196 | * anyway, because redo will begin just after the checkpoint record. |
| 9197 | */ |
| 9198 | if (ControlFile->minRecoveryPoint < lastCheckPointEndPtr) |
| 9199 | { |
| 9200 | ControlFile->minRecoveryPoint = lastCheckPointEndPtr; |
| 9201 | ControlFile->minRecoveryPointTLI = lastCheckPoint.ThisTimeLineID; |
| 9202 | |
| 9203 | /* update local copy */ |
| 9204 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
| 9205 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
| 9206 | } |
| 9207 | if (flags & CHECKPOINT_IS_SHUTDOWN) |
| 9208 | ControlFile->state = DB_SHUTDOWNED_IN_RECOVERY; |
| 9209 | UpdateControlFile(); |
| 9210 | } |
| 9211 | LWLockRelease(ControlFileLock); |
| 9212 | |
| 9213 | /* |
| 9214 | * Update the average distance between checkpoints/restartpoints if the |
| 9215 | * prior checkpoint exists. |
| 9216 | */ |
| 9217 | if (PriorRedoPtr != InvalidXLogRecPtr) |
| 9218 | UpdateCheckPointDistanceEstimate(RedoRecPtr - PriorRedoPtr); |
| 9219 | |
| 9220 | /* |
| 9221 | * Delete old log files, those no longer needed for last restartpoint to |
| 9222 | * prevent the disk holding the xlog from growing full. |
| 9223 | */ |
| 9224 | XLByteToSeg(RedoRecPtr, _logSegNo, wal_segment_size); |
| 9225 | |
| 9226 | /* |
| 9227 | * Retreat _logSegNo using the current end of xlog replayed or received, |
| 9228 | * whichever is later. |
| 9229 | */ |
| 9230 | receivePtr = GetWalRcvWriteRecPtr(NULL, NULL); |
| 9231 | replayPtr = GetXLogReplayRecPtr(&replayTLI); |
| 9232 | endptr = (receivePtr < replayPtr) ? replayPtr : receivePtr; |
| 9233 | KeepLogSeg(endptr, &_logSegNo); |
| 9234 | _logSegNo--; |
| 9235 | |
| 9236 | /* |
| 9237 | * Try to recycle segments on a useful timeline. If we've been promoted |
| 9238 | * since the beginning of this restartpoint, use the new timeline chosen |
| 9239 | * at end of recovery (RecoveryInProgress() sets ThisTimeLineID in that |
| 9240 | * case). If we're still in recovery, use the timeline we're currently |
| 9241 | * replaying. |
| 9242 | * |
| 9243 | * There is no guarantee that the WAL segments will be useful on the |
| 9244 | * current timeline; if recovery proceeds to a new timeline right after |
| 9245 | * this, the pre-allocated WAL segments on this timeline will not be used, |
| 9246 | * and will go wasted until recycled on the next restartpoint. We'll live |
| 9247 | * with that. |
| 9248 | */ |
| 9249 | if (RecoveryInProgress()) |
| 9250 | ThisTimeLineID = replayTLI; |
| 9251 | |
| 9252 | RemoveOldXlogFiles(_logSegNo, RedoRecPtr, endptr); |
| 9253 | |
| 9254 | /* |
| 9255 | * Make more log segments if needed. (Do this after recycling old log |
| 9256 | * segments, since that may supply some of the needed files.) |
| 9257 | */ |
| 9258 | PreallocXlogFiles(endptr); |
| 9259 | |
| 9260 | /* |
| 9261 | * ThisTimeLineID is normally not set when we're still in recovery. |
| 9262 | * However, recycling/preallocating segments above needed ThisTimeLineID |
| 9263 | * to determine which timeline to install the segments on. Reset it now, |
| 9264 | * to restore the normal state of affairs for debugging purposes. |
| 9265 | */ |
| 9266 | if (RecoveryInProgress()) |
| 9267 | ThisTimeLineID = 0; |
| 9268 | |
| 9269 | /* |
| 9270 | * Truncate pg_subtrans if possible. We can throw away all data before |
| 9271 | * the oldest XMIN of any running transaction. No future transaction will |
| 9272 | * attempt to reference any pg_subtrans entry older than that (see Asserts |
| 9273 | * in subtrans.c). When hot standby is disabled, though, we mustn't do |
| 9274 | * this because StartupSUBTRANS hasn't been called yet. |
| 9275 | */ |
| 9276 | if (EnableHotStandby) |
| 9277 | TruncateSUBTRANS(GetOldestXmin(NULL, PROCARRAY_FLAGS_DEFAULT)); |
| 9278 | |
| 9279 | /* Real work is done, but log and update before releasing lock. */ |
| 9280 | LogCheckpointEnd(true); |
| 9281 | |
| 9282 | xtime = GetLatestXTime(); |
| 9283 | ereport((log_checkpoints ? LOG : DEBUG2), |
| 9284 | (errmsg("recovery restart point at %X/%X" , |
| 9285 | (uint32) (lastCheckPoint.redo >> 32), (uint32) lastCheckPoint.redo), |
| 9286 | xtime ? errdetail("Last completed transaction was at log time %s." , |
| 9287 | timestamptz_to_str(xtime)) : 0)); |
| 9288 | |
| 9289 | LWLockRelease(CheckpointLock); |
| 9290 | |
| 9291 | /* |
| 9292 | * Finally, execute archive_cleanup_command, if any. |
| 9293 | */ |
| 9294 | if (archiveCleanupCommand && strcmp(archiveCleanupCommand, "" ) != 0) |
| 9295 | ExecuteRecoveryCommand(archiveCleanupCommand, |
| 9296 | "archive_cleanup_command" , |
| 9297 | false); |
| 9298 | |
| 9299 | return true; |
| 9300 | } |
| 9301 | |
| 9302 | /* |
| 9303 | * Retreat *logSegNo to the last segment that we need to retain because of |
| 9304 | * either wal_keep_segments or replication slots. |
| 9305 | * |
| 9306 | * This is calculated by subtracting wal_keep_segments from the given xlog |
| 9307 | * location, recptr and by making sure that that result is below the |
| 9308 | * requirement of replication slots. |
| 9309 | */ |
| 9310 | static void |
| 9311 | KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo) |
| 9312 | { |
| 9313 | XLogSegNo segno; |
| 9314 | XLogRecPtr keep; |
| 9315 | |
| 9316 | XLByteToSeg(recptr, segno, wal_segment_size); |
| 9317 | keep = XLogGetReplicationSlotMinimumLSN(); |
| 9318 | |
| 9319 | /* compute limit for wal_keep_segments first */ |
| 9320 | if (wal_keep_segments > 0) |
| 9321 | { |
| 9322 | /* avoid underflow, don't go below 1 */ |
| 9323 | if (segno <= wal_keep_segments) |
| 9324 | segno = 1; |
| 9325 | else |
| 9326 | segno = segno - wal_keep_segments; |
| 9327 | } |
| 9328 | |
| 9329 | /* then check whether slots limit removal further */ |
| 9330 | if (max_replication_slots > 0 && keep != InvalidXLogRecPtr) |
| 9331 | { |
| 9332 | XLogSegNo slotSegNo; |
| 9333 | |
| 9334 | XLByteToSeg(keep, slotSegNo, wal_segment_size); |
| 9335 | |
| 9336 | if (slotSegNo <= 0) |
| 9337 | segno = 1; |
| 9338 | else if (slotSegNo < segno) |
| 9339 | segno = slotSegNo; |
| 9340 | } |
| 9341 | |
| 9342 | /* don't delete WAL segments newer than the calculated segment */ |
| 9343 | if (segno < *logSegNo) |
| 9344 | *logSegNo = segno; |
| 9345 | } |
| 9346 | |
| 9347 | /* |
| 9348 | * Write a NEXTOID log record |
| 9349 | */ |
| 9350 | void |
| 9351 | XLogPutNextOid(Oid nextOid) |
| 9352 | { |
| 9353 | XLogBeginInsert(); |
| 9354 | XLogRegisterData((char *) (&nextOid), sizeof(Oid)); |
| 9355 | (void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID); |
| 9356 | |
| 9357 | /* |
| 9358 | * We need not flush the NEXTOID record immediately, because any of the |
| 9359 | * just-allocated OIDs could only reach disk as part of a tuple insert or |
| 9360 | * update that would have its own XLOG record that must follow the NEXTOID |
| 9361 | * record. Therefore, the standard buffer LSN interlock applied to those |
| 9362 | * records will ensure no such OID reaches disk before the NEXTOID record |
| 9363 | * does. |
| 9364 | * |
| 9365 | * Note, however, that the above statement only covers state "within" the |
| 9366 | * database. When we use a generated OID as a file or directory name, we |
| 9367 | * are in a sense violating the basic WAL rule, because that filesystem |
| 9368 | * change may reach disk before the NEXTOID WAL record does. The impact |
| 9369 | * of this is that if a database crash occurs immediately afterward, we |
| 9370 | * might after restart re-generate the same OID and find that it conflicts |
| 9371 | * with the leftover file or directory. But since for safety's sake we |
| 9372 | * always loop until finding a nonconflicting filename, this poses no real |
| 9373 | * problem in practice. See pgsql-hackers discussion 27-Sep-2006. |
| 9374 | */ |
| 9375 | } |
| 9376 | |
| 9377 | /* |
| 9378 | * Write an XLOG SWITCH record. |
| 9379 | * |
| 9380 | * Here we just blindly issue an XLogInsert request for the record. |
| 9381 | * All the magic happens inside XLogInsert. |
| 9382 | * |
| 9383 | * The return value is either the end+1 address of the switch record, |
| 9384 | * or the end+1 address of the prior segment if we did not need to |
| 9385 | * write a switch record because we are already at segment start. |
| 9386 | */ |
| 9387 | XLogRecPtr |
| 9388 | RequestXLogSwitch(bool mark_unimportant) |
| 9389 | { |
| 9390 | XLogRecPtr RecPtr; |
| 9391 | |
| 9392 | /* XLOG SWITCH has no data */ |
| 9393 | XLogBeginInsert(); |
| 9394 | |
| 9395 | if (mark_unimportant) |
| 9396 | XLogSetRecordFlags(XLOG_MARK_UNIMPORTANT); |
| 9397 | RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH); |
| 9398 | |
| 9399 | return RecPtr; |
| 9400 | } |
| 9401 | |
| 9402 | /* |
| 9403 | * Write a RESTORE POINT record |
| 9404 | */ |
| 9405 | XLogRecPtr |
| 9406 | XLogRestorePoint(const char *rpName) |
| 9407 | { |
| 9408 | XLogRecPtr RecPtr; |
| 9409 | xl_restore_point xlrec; |
| 9410 | |
| 9411 | xlrec.rp_time = GetCurrentTimestamp(); |
| 9412 | strlcpy(xlrec.rp_name, rpName, MAXFNAMELEN); |
| 9413 | |
| 9414 | XLogBeginInsert(); |
| 9415 | XLogRegisterData((char *) &xlrec, sizeof(xl_restore_point)); |
| 9416 | |
| 9417 | RecPtr = XLogInsert(RM_XLOG_ID, XLOG_RESTORE_POINT); |
| 9418 | |
| 9419 | ereport(LOG, |
| 9420 | (errmsg("restore point \"%s\" created at %X/%X" , |
| 9421 | rpName, (uint32) (RecPtr >> 32), (uint32) RecPtr))); |
| 9422 | |
| 9423 | return RecPtr; |
| 9424 | } |
| 9425 | |
| 9426 | /* |
| 9427 | * Check if any of the GUC parameters that are critical for hot standby |
| 9428 | * have changed, and update the value in pg_control file if necessary. |
| 9429 | */ |
| 9430 | static void |
| 9431 | XLogReportParameters(void) |
| 9432 | { |
| 9433 | if (wal_level != ControlFile->wal_level || |
| 9434 | wal_log_hints != ControlFile->wal_log_hints || |
| 9435 | MaxConnections != ControlFile->MaxConnections || |
| 9436 | max_worker_processes != ControlFile->max_worker_processes || |
| 9437 | max_wal_senders != ControlFile->max_wal_senders || |
| 9438 | max_prepared_xacts != ControlFile->max_prepared_xacts || |
| 9439 | max_locks_per_xact != ControlFile->max_locks_per_xact || |
| 9440 | track_commit_timestamp != ControlFile->track_commit_timestamp) |
| 9441 | { |
| 9442 | /* |
| 9443 | * The change in number of backend slots doesn't need to be WAL-logged |
| 9444 | * if archiving is not enabled, as you can't start archive recovery |
| 9445 | * with wal_level=minimal anyway. We don't really care about the |
| 9446 | * values in pg_control either if wal_level=minimal, but seems better |
| 9447 | * to keep them up-to-date to avoid confusion. |
| 9448 | */ |
| 9449 | if (wal_level != ControlFile->wal_level || XLogIsNeeded()) |
| 9450 | { |
| 9451 | xl_parameter_change xlrec; |
| 9452 | XLogRecPtr recptr; |
| 9453 | |
| 9454 | xlrec.MaxConnections = MaxConnections; |
| 9455 | xlrec.max_worker_processes = max_worker_processes; |
| 9456 | xlrec.max_wal_senders = max_wal_senders; |
| 9457 | xlrec.max_prepared_xacts = max_prepared_xacts; |
| 9458 | xlrec.max_locks_per_xact = max_locks_per_xact; |
| 9459 | xlrec.wal_level = wal_level; |
| 9460 | xlrec.wal_log_hints = wal_log_hints; |
| 9461 | xlrec.track_commit_timestamp = track_commit_timestamp; |
| 9462 | |
| 9463 | XLogBeginInsert(); |
| 9464 | XLogRegisterData((char *) &xlrec, sizeof(xlrec)); |
| 9465 | |
| 9466 | recptr = XLogInsert(RM_XLOG_ID, XLOG_PARAMETER_CHANGE); |
| 9467 | XLogFlush(recptr); |
| 9468 | } |
| 9469 | |
| 9470 | ControlFile->MaxConnections = MaxConnections; |
| 9471 | ControlFile->max_worker_processes = max_worker_processes; |
| 9472 | ControlFile->max_wal_senders = max_wal_senders; |
| 9473 | ControlFile->max_prepared_xacts = max_prepared_xacts; |
| 9474 | ControlFile->max_locks_per_xact = max_locks_per_xact; |
| 9475 | ControlFile->wal_level = wal_level; |
| 9476 | ControlFile->wal_log_hints = wal_log_hints; |
| 9477 | ControlFile->track_commit_timestamp = track_commit_timestamp; |
| 9478 | UpdateControlFile(); |
| 9479 | } |
| 9480 | } |
| 9481 | |
| 9482 | /* |
| 9483 | * Update full_page_writes in shared memory, and write an |
| 9484 | * XLOG_FPW_CHANGE record if necessary. |
| 9485 | * |
| 9486 | * Note: this function assumes there is no other process running |
| 9487 | * concurrently that could update it. |
| 9488 | */ |
| 9489 | void |
| 9490 | UpdateFullPageWrites(void) |
| 9491 | { |
| 9492 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 9493 | bool recoveryInProgress; |
| 9494 | |
| 9495 | /* |
| 9496 | * Do nothing if full_page_writes has not been changed. |
| 9497 | * |
| 9498 | * It's safe to check the shared full_page_writes without the lock, |
| 9499 | * because we assume that there is no concurrently running process which |
| 9500 | * can update it. |
| 9501 | */ |
| 9502 | if (fullPageWrites == Insert->fullPageWrites) |
| 9503 | return; |
| 9504 | |
| 9505 | /* |
| 9506 | * Perform this outside critical section so that the WAL insert |
| 9507 | * initialization done by RecoveryInProgress() doesn't trigger an |
| 9508 | * assertion failure. |
| 9509 | */ |
| 9510 | recoveryInProgress = RecoveryInProgress(); |
| 9511 | |
| 9512 | START_CRIT_SECTION(); |
| 9513 | |
| 9514 | /* |
| 9515 | * It's always safe to take full page images, even when not strictly |
| 9516 | * required, but not the other round. So if we're setting full_page_writes |
| 9517 | * to true, first set it true and then write the WAL record. If we're |
| 9518 | * setting it to false, first write the WAL record and then set the global |
| 9519 | * flag. |
| 9520 | */ |
| 9521 | if (fullPageWrites) |
| 9522 | { |
| 9523 | WALInsertLockAcquireExclusive(); |
| 9524 | Insert->fullPageWrites = true; |
| 9525 | WALInsertLockRelease(); |
| 9526 | } |
| 9527 | |
| 9528 | /* |
| 9529 | * Write an XLOG_FPW_CHANGE record. This allows us to keep track of |
| 9530 | * full_page_writes during archive recovery, if required. |
| 9531 | */ |
| 9532 | if (XLogStandbyInfoActive() && !recoveryInProgress) |
| 9533 | { |
| 9534 | XLogBeginInsert(); |
| 9535 | XLogRegisterData((char *) (&fullPageWrites), sizeof(bool)); |
| 9536 | |
| 9537 | XLogInsert(RM_XLOG_ID, XLOG_FPW_CHANGE); |
| 9538 | } |
| 9539 | |
| 9540 | if (!fullPageWrites) |
| 9541 | { |
| 9542 | WALInsertLockAcquireExclusive(); |
| 9543 | Insert->fullPageWrites = false; |
| 9544 | WALInsertLockRelease(); |
| 9545 | } |
| 9546 | END_CRIT_SECTION(); |
| 9547 | } |
| 9548 | |
| 9549 | /* |
| 9550 | * Check that it's OK to switch to new timeline during recovery. |
| 9551 | * |
| 9552 | * 'lsn' is the address of the shutdown checkpoint record we're about to |
| 9553 | * replay. (Currently, timeline can only change at a shutdown checkpoint). |
| 9554 | */ |
| 9555 | static void |
| 9556 | checkTimeLineSwitch(XLogRecPtr lsn, TimeLineID newTLI, TimeLineID prevTLI) |
| 9557 | { |
| 9558 | /* Check that the record agrees on what the current (old) timeline is */ |
| 9559 | if (prevTLI != ThisTimeLineID) |
| 9560 | ereport(PANIC, |
| 9561 | (errmsg("unexpected previous timeline ID %u (current timeline ID %u) in checkpoint record" , |
| 9562 | prevTLI, ThisTimeLineID))); |
| 9563 | |
| 9564 | /* |
| 9565 | * The new timeline better be in the list of timelines we expect to see, |
| 9566 | * according to the timeline history. It should also not decrease. |
| 9567 | */ |
| 9568 | if (newTLI < ThisTimeLineID || !tliInHistory(newTLI, expectedTLEs)) |
| 9569 | ereport(PANIC, |
| 9570 | (errmsg("unexpected timeline ID %u (after %u) in checkpoint record" , |
| 9571 | newTLI, ThisTimeLineID))); |
| 9572 | |
| 9573 | /* |
| 9574 | * If we have not yet reached min recovery point, and we're about to |
| 9575 | * switch to a timeline greater than the timeline of the min recovery |
| 9576 | * point: trouble. After switching to the new timeline, we could not |
| 9577 | * possibly visit the min recovery point on the correct timeline anymore. |
| 9578 | * This can happen if there is a newer timeline in the archive that |
| 9579 | * branched before the timeline the min recovery point is on, and you |
| 9580 | * attempt to do PITR to the new timeline. |
| 9581 | */ |
| 9582 | if (!XLogRecPtrIsInvalid(minRecoveryPoint) && |
| 9583 | lsn < minRecoveryPoint && |
| 9584 | newTLI > minRecoveryPointTLI) |
| 9585 | ereport(PANIC, |
| 9586 | (errmsg("unexpected timeline ID %u in checkpoint record, before reaching minimum recovery point %X/%X on timeline %u" , |
| 9587 | newTLI, |
| 9588 | (uint32) (minRecoveryPoint >> 32), |
| 9589 | (uint32) minRecoveryPoint, |
| 9590 | minRecoveryPointTLI))); |
| 9591 | |
| 9592 | /* Looks good */ |
| 9593 | } |
| 9594 | |
| 9595 | /* |
| 9596 | * XLOG resource manager's routines |
| 9597 | * |
| 9598 | * Definitions of info values are in include/catalog/pg_control.h, though |
| 9599 | * not all record types are related to control file updates. |
| 9600 | */ |
| 9601 | void |
| 9602 | xlog_redo(XLogReaderState *record) |
| 9603 | { |
| 9604 | uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
| 9605 | XLogRecPtr lsn = record->EndRecPtr; |
| 9606 | |
| 9607 | /* in XLOG rmgr, backup blocks are only used by XLOG_FPI records */ |
| 9608 | Assert(info == XLOG_FPI || info == XLOG_FPI_FOR_HINT || |
| 9609 | !XLogRecHasAnyBlockRefs(record)); |
| 9610 | |
| 9611 | if (info == XLOG_NEXTOID) |
| 9612 | { |
| 9613 | Oid nextOid; |
| 9614 | |
| 9615 | /* |
| 9616 | * We used to try to take the maximum of ShmemVariableCache->nextOid |
| 9617 | * and the recorded nextOid, but that fails if the OID counter wraps |
| 9618 | * around. Since no OID allocation should be happening during replay |
| 9619 | * anyway, better to just believe the record exactly. We still take |
| 9620 | * OidGenLock while setting the variable, just in case. |
| 9621 | */ |
| 9622 | memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid)); |
| 9623 | LWLockAcquire(OidGenLock, LW_EXCLUSIVE); |
| 9624 | ShmemVariableCache->nextOid = nextOid; |
| 9625 | ShmemVariableCache->oidCount = 0; |
| 9626 | LWLockRelease(OidGenLock); |
| 9627 | } |
| 9628 | else if (info == XLOG_CHECKPOINT_SHUTDOWN) |
| 9629 | { |
| 9630 | CheckPoint checkPoint; |
| 9631 | |
| 9632 | memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint)); |
| 9633 | /* In a SHUTDOWN checkpoint, believe the counters exactly */ |
| 9634 | LWLockAcquire(XidGenLock, LW_EXCLUSIVE); |
| 9635 | ShmemVariableCache->nextFullXid = checkPoint.nextFullXid; |
| 9636 | LWLockRelease(XidGenLock); |
| 9637 | LWLockAcquire(OidGenLock, LW_EXCLUSIVE); |
| 9638 | ShmemVariableCache->nextOid = checkPoint.nextOid; |
| 9639 | ShmemVariableCache->oidCount = 0; |
| 9640 | LWLockRelease(OidGenLock); |
| 9641 | MultiXactSetNextMXact(checkPoint.nextMulti, |
| 9642 | checkPoint.nextMultiOffset); |
| 9643 | |
| 9644 | MultiXactAdvanceOldest(checkPoint.oldestMulti, |
| 9645 | checkPoint.oldestMultiDB); |
| 9646 | |
| 9647 | /* |
| 9648 | * No need to set oldestClogXid here as well; it'll be set when we |
| 9649 | * redo an xl_clog_truncate if it changed since initialization. |
| 9650 | */ |
| 9651 | SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB); |
| 9652 | |
| 9653 | /* |
| 9654 | * If we see a shutdown checkpoint while waiting for an end-of-backup |
| 9655 | * record, the backup was canceled and the end-of-backup record will |
| 9656 | * never arrive. |
| 9657 | */ |
| 9658 | if (ArchiveRecoveryRequested && |
| 9659 | !XLogRecPtrIsInvalid(ControlFile->backupStartPoint) && |
| 9660 | XLogRecPtrIsInvalid(ControlFile->backupEndPoint)) |
| 9661 | ereport(PANIC, |
| 9662 | (errmsg("online backup was canceled, recovery cannot continue" ))); |
| 9663 | |
| 9664 | /* |
| 9665 | * If we see a shutdown checkpoint, we know that nothing was running |
| 9666 | * on the master at this point. So fake-up an empty running-xacts |
| 9667 | * record and use that here and now. Recover additional standby state |
| 9668 | * for prepared transactions. |
| 9669 | */ |
| 9670 | if (standbyState >= STANDBY_INITIALIZED) |
| 9671 | { |
| 9672 | TransactionId *xids; |
| 9673 | int nxids; |
| 9674 | TransactionId oldestActiveXID; |
| 9675 | TransactionId latestCompletedXid; |
| 9676 | RunningTransactionsData running; |
| 9677 | |
| 9678 | oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids); |
| 9679 | |
| 9680 | /* |
| 9681 | * Construct a RunningTransactions snapshot representing a shut |
| 9682 | * down server, with only prepared transactions still alive. We're |
| 9683 | * never overflowed at this point because all subxids are listed |
| 9684 | * with their parent prepared transactions. |
| 9685 | */ |
| 9686 | running.xcnt = nxids; |
| 9687 | running.subxcnt = 0; |
| 9688 | running.subxid_overflow = false; |
| 9689 | running.nextXid = XidFromFullTransactionId(checkPoint.nextFullXid); |
| 9690 | running.oldestRunningXid = oldestActiveXID; |
| 9691 | latestCompletedXid = XidFromFullTransactionId(checkPoint.nextFullXid); |
| 9692 | TransactionIdRetreat(latestCompletedXid); |
| 9693 | Assert(TransactionIdIsNormal(latestCompletedXid)); |
| 9694 | running.latestCompletedXid = latestCompletedXid; |
| 9695 | running.xids = xids; |
| 9696 | |
| 9697 | ProcArrayApplyRecoveryInfo(&running); |
| 9698 | |
| 9699 | StandbyRecoverPreparedTransactions(); |
| 9700 | } |
| 9701 | |
| 9702 | /* ControlFile->checkPointCopy always tracks the latest ckpt XID */ |
| 9703 | ControlFile->checkPointCopy.nextFullXid = checkPoint.nextFullXid; |
| 9704 | |
| 9705 | /* Update shared-memory copy of checkpoint XID/epoch */ |
| 9706 | SpinLockAcquire(&XLogCtl->info_lck); |
| 9707 | XLogCtl->ckptFullXid = checkPoint.nextFullXid; |
| 9708 | SpinLockRelease(&XLogCtl->info_lck); |
| 9709 | |
| 9710 | /* |
| 9711 | * We should've already switched to the new TLI before replaying this |
| 9712 | * record. |
| 9713 | */ |
| 9714 | if (checkPoint.ThisTimeLineID != ThisTimeLineID) |
| 9715 | ereport(PANIC, |
| 9716 | (errmsg("unexpected timeline ID %u (should be %u) in checkpoint record" , |
| 9717 | checkPoint.ThisTimeLineID, ThisTimeLineID))); |
| 9718 | |
| 9719 | RecoveryRestartPoint(&checkPoint); |
| 9720 | } |
| 9721 | else if (info == XLOG_CHECKPOINT_ONLINE) |
| 9722 | { |
| 9723 | CheckPoint checkPoint; |
| 9724 | |
| 9725 | memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint)); |
| 9726 | /* In an ONLINE checkpoint, treat the XID counter as a minimum */ |
| 9727 | LWLockAcquire(XidGenLock, LW_EXCLUSIVE); |
| 9728 | if (FullTransactionIdPrecedes(ShmemVariableCache->nextFullXid, |
| 9729 | checkPoint.nextFullXid)) |
| 9730 | ShmemVariableCache->nextFullXid = checkPoint.nextFullXid; |
| 9731 | LWLockRelease(XidGenLock); |
| 9732 | |
| 9733 | /* |
| 9734 | * We ignore the nextOid counter in an ONLINE checkpoint, preferring |
| 9735 | * to track OID assignment through XLOG_NEXTOID records. The nextOid |
| 9736 | * counter is from the start of the checkpoint and might well be stale |
| 9737 | * compared to later XLOG_NEXTOID records. We could try to take the |
| 9738 | * maximum of the nextOid counter and our latest value, but since |
| 9739 | * there's no particular guarantee about the speed with which the OID |
| 9740 | * counter wraps around, that's a risky thing to do. In any case, |
| 9741 | * users of the nextOid counter are required to avoid assignment of |
| 9742 | * duplicates, so that a somewhat out-of-date value should be safe. |
| 9743 | */ |
| 9744 | |
| 9745 | /* Handle multixact */ |
| 9746 | MultiXactAdvanceNextMXact(checkPoint.nextMulti, |
| 9747 | checkPoint.nextMultiOffset); |
| 9748 | |
| 9749 | /* |
| 9750 | * NB: This may perform multixact truncation when replaying WAL |
| 9751 | * generated by an older primary. |
| 9752 | */ |
| 9753 | MultiXactAdvanceOldest(checkPoint.oldestMulti, |
| 9754 | checkPoint.oldestMultiDB); |
| 9755 | if (TransactionIdPrecedes(ShmemVariableCache->oldestXid, |
| 9756 | checkPoint.oldestXid)) |
| 9757 | SetTransactionIdLimit(checkPoint.oldestXid, |
| 9758 | checkPoint.oldestXidDB); |
| 9759 | /* ControlFile->checkPointCopy always tracks the latest ckpt XID */ |
| 9760 | ControlFile->checkPointCopy.nextFullXid = checkPoint.nextFullXid; |
| 9761 | |
| 9762 | /* Update shared-memory copy of checkpoint XID/epoch */ |
| 9763 | SpinLockAcquire(&XLogCtl->info_lck); |
| 9764 | XLogCtl->ckptFullXid = checkPoint.nextFullXid; |
| 9765 | SpinLockRelease(&XLogCtl->info_lck); |
| 9766 | |
| 9767 | /* TLI should not change in an on-line checkpoint */ |
| 9768 | if (checkPoint.ThisTimeLineID != ThisTimeLineID) |
| 9769 | ereport(PANIC, |
| 9770 | (errmsg("unexpected timeline ID %u (should be %u) in checkpoint record" , |
| 9771 | checkPoint.ThisTimeLineID, ThisTimeLineID))); |
| 9772 | |
| 9773 | RecoveryRestartPoint(&checkPoint); |
| 9774 | } |
| 9775 | else if (info == XLOG_END_OF_RECOVERY) |
| 9776 | { |
| 9777 | xl_end_of_recovery xlrec; |
| 9778 | |
| 9779 | memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_end_of_recovery)); |
| 9780 | |
| 9781 | /* |
| 9782 | * For Hot Standby, we could treat this like a Shutdown Checkpoint, |
| 9783 | * but this case is rarer and harder to test, so the benefit doesn't |
| 9784 | * outweigh the potential extra cost of maintenance. |
| 9785 | */ |
| 9786 | |
| 9787 | /* |
| 9788 | * We should've already switched to the new TLI before replaying this |
| 9789 | * record. |
| 9790 | */ |
| 9791 | if (xlrec.ThisTimeLineID != ThisTimeLineID) |
| 9792 | ereport(PANIC, |
| 9793 | (errmsg("unexpected timeline ID %u (should be %u) in checkpoint record" , |
| 9794 | xlrec.ThisTimeLineID, ThisTimeLineID))); |
| 9795 | } |
| 9796 | else if (info == XLOG_NOOP) |
| 9797 | { |
| 9798 | /* nothing to do here */ |
| 9799 | } |
| 9800 | else if (info == XLOG_SWITCH) |
| 9801 | { |
| 9802 | /* nothing to do here */ |
| 9803 | } |
| 9804 | else if (info == XLOG_RESTORE_POINT) |
| 9805 | { |
| 9806 | /* nothing to do here */ |
| 9807 | } |
| 9808 | else if (info == XLOG_FPI || info == XLOG_FPI_FOR_HINT) |
| 9809 | { |
| 9810 | /* |
| 9811 | * Full-page image (FPI) records contain nothing else but a backup |
| 9812 | * block (or multiple backup blocks). Every block reference must |
| 9813 | * include a full-page image - otherwise there would be no point in |
| 9814 | * this record. |
| 9815 | * |
| 9816 | * No recovery conflicts are generated by these generic records - if a |
| 9817 | * resource manager needs to generate conflicts, it has to define a |
| 9818 | * separate WAL record type and redo routine. |
| 9819 | * |
| 9820 | * XLOG_FPI_FOR_HINT records are generated when a page needs to be |
| 9821 | * WAL- logged because of a hint bit update. They are only generated |
| 9822 | * when checksums are enabled. There is no difference in handling |
| 9823 | * XLOG_FPI and XLOG_FPI_FOR_HINT records, they use a different info |
| 9824 | * code just to distinguish them for statistics purposes. |
| 9825 | */ |
| 9826 | for (uint8 block_id = 0; block_id <= record->max_block_id; block_id++) |
| 9827 | { |
| 9828 | Buffer buffer; |
| 9829 | |
| 9830 | if (XLogReadBufferForRedo(record, block_id, &buffer) != BLK_RESTORED) |
| 9831 | elog(ERROR, "unexpected XLogReadBufferForRedo result when restoring backup block" ); |
| 9832 | UnlockReleaseBuffer(buffer); |
| 9833 | } |
| 9834 | } |
| 9835 | else if (info == XLOG_BACKUP_END) |
| 9836 | { |
| 9837 | XLogRecPtr startpoint; |
| 9838 | |
| 9839 | memcpy(&startpoint, XLogRecGetData(record), sizeof(startpoint)); |
| 9840 | |
| 9841 | if (ControlFile->backupStartPoint == startpoint) |
| 9842 | { |
| 9843 | /* |
| 9844 | * We have reached the end of base backup, the point where |
| 9845 | * pg_stop_backup() was done. The data on disk is now consistent. |
| 9846 | * Reset backupStartPoint, and update minRecoveryPoint to make |
| 9847 | * sure we don't allow starting up at an earlier point even if |
| 9848 | * recovery is stopped and restarted soon after this. |
| 9849 | */ |
| 9850 | elog(DEBUG1, "end of backup reached" ); |
| 9851 | |
| 9852 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 9853 | |
| 9854 | if (ControlFile->minRecoveryPoint < lsn) |
| 9855 | { |
| 9856 | ControlFile->minRecoveryPoint = lsn; |
| 9857 | ControlFile->minRecoveryPointTLI = ThisTimeLineID; |
| 9858 | } |
| 9859 | ControlFile->backupStartPoint = InvalidXLogRecPtr; |
| 9860 | ControlFile->backupEndRequired = false; |
| 9861 | UpdateControlFile(); |
| 9862 | |
| 9863 | LWLockRelease(ControlFileLock); |
| 9864 | } |
| 9865 | } |
| 9866 | else if (info == XLOG_PARAMETER_CHANGE) |
| 9867 | { |
| 9868 | xl_parameter_change xlrec; |
| 9869 | |
| 9870 | /* Update our copy of the parameters in pg_control */ |
| 9871 | memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_parameter_change)); |
| 9872 | |
| 9873 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
| 9874 | ControlFile->MaxConnections = xlrec.MaxConnections; |
| 9875 | ControlFile->max_worker_processes = xlrec.max_worker_processes; |
| 9876 | ControlFile->max_wal_senders = xlrec.max_wal_senders; |
| 9877 | ControlFile->max_prepared_xacts = xlrec.max_prepared_xacts; |
| 9878 | ControlFile->max_locks_per_xact = xlrec.max_locks_per_xact; |
| 9879 | ControlFile->wal_level = xlrec.wal_level; |
| 9880 | ControlFile->wal_log_hints = xlrec.wal_log_hints; |
| 9881 | |
| 9882 | /* |
| 9883 | * Update minRecoveryPoint to ensure that if recovery is aborted, we |
| 9884 | * recover back up to this point before allowing hot standby again. |
| 9885 | * This is important if the max_* settings are decreased, to ensure |
| 9886 | * you don't run queries against the WAL preceding the change. The |
| 9887 | * local copies cannot be updated as long as crash recovery is |
| 9888 | * happening and we expect all the WAL to be replayed. |
| 9889 | */ |
| 9890 | if (InArchiveRecovery) |
| 9891 | { |
| 9892 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
| 9893 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
| 9894 | } |
| 9895 | if (minRecoveryPoint != InvalidXLogRecPtr && minRecoveryPoint < lsn) |
| 9896 | { |
| 9897 | ControlFile->minRecoveryPoint = lsn; |
| 9898 | ControlFile->minRecoveryPointTLI = ThisTimeLineID; |
| 9899 | } |
| 9900 | |
| 9901 | CommitTsParameterChange(xlrec.track_commit_timestamp, |
| 9902 | ControlFile->track_commit_timestamp); |
| 9903 | ControlFile->track_commit_timestamp = xlrec.track_commit_timestamp; |
| 9904 | |
| 9905 | UpdateControlFile(); |
| 9906 | LWLockRelease(ControlFileLock); |
| 9907 | |
| 9908 | /* Check to see if any parameter change gives a problem on recovery */ |
| 9909 | CheckRequiredParameterValues(); |
| 9910 | } |
| 9911 | else if (info == XLOG_FPW_CHANGE) |
| 9912 | { |
| 9913 | bool fpw; |
| 9914 | |
| 9915 | memcpy(&fpw, XLogRecGetData(record), sizeof(bool)); |
| 9916 | |
| 9917 | /* |
| 9918 | * Update the LSN of the last replayed XLOG_FPW_CHANGE record so that |
| 9919 | * do_pg_start_backup() and do_pg_stop_backup() can check whether |
| 9920 | * full_page_writes has been disabled during online backup. |
| 9921 | */ |
| 9922 | if (!fpw) |
| 9923 | { |
| 9924 | SpinLockAcquire(&XLogCtl->info_lck); |
| 9925 | if (XLogCtl->lastFpwDisableRecPtr < ReadRecPtr) |
| 9926 | XLogCtl->lastFpwDisableRecPtr = ReadRecPtr; |
| 9927 | SpinLockRelease(&XLogCtl->info_lck); |
| 9928 | } |
| 9929 | |
| 9930 | /* Keep track of full_page_writes */ |
| 9931 | lastFullPageWrites = fpw; |
| 9932 | } |
| 9933 | } |
| 9934 | |
| 9935 | #ifdef WAL_DEBUG |
| 9936 | |
| 9937 | static void |
| 9938 | xlog_outrec(StringInfo buf, XLogReaderState *record) |
| 9939 | { |
| 9940 | int block_id; |
| 9941 | |
| 9942 | appendStringInfo(buf, "prev %X/%X; xid %u" , |
| 9943 | (uint32) (XLogRecGetPrev(record) >> 32), |
| 9944 | (uint32) XLogRecGetPrev(record), |
| 9945 | XLogRecGetXid(record)); |
| 9946 | |
| 9947 | appendStringInfo(buf, "; len %u" , |
| 9948 | XLogRecGetDataLen(record)); |
| 9949 | |
| 9950 | /* decode block references */ |
| 9951 | for (block_id = 0; block_id <= record->max_block_id; block_id++) |
| 9952 | { |
| 9953 | RelFileNode rnode; |
| 9954 | ForkNumber forknum; |
| 9955 | BlockNumber blk; |
| 9956 | |
| 9957 | if (!XLogRecHasBlockRef(record, block_id)) |
| 9958 | continue; |
| 9959 | |
| 9960 | XLogRecGetBlockTag(record, block_id, &rnode, &forknum, &blk); |
| 9961 | if (forknum != MAIN_FORKNUM) |
| 9962 | appendStringInfo(buf, "; blkref #%u: rel %u/%u/%u, fork %u, blk %u" , |
| 9963 | block_id, |
| 9964 | rnode.spcNode, rnode.dbNode, rnode.relNode, |
| 9965 | forknum, |
| 9966 | blk); |
| 9967 | else |
| 9968 | appendStringInfo(buf, "; blkref #%u: rel %u/%u/%u, blk %u" , |
| 9969 | block_id, |
| 9970 | rnode.spcNode, rnode.dbNode, rnode.relNode, |
| 9971 | blk); |
| 9972 | if (XLogRecHasBlockImage(record, block_id)) |
| 9973 | appendStringInfoString(buf, " FPW" ); |
| 9974 | } |
| 9975 | } |
| 9976 | #endif /* WAL_DEBUG */ |
| 9977 | |
| 9978 | /* |
| 9979 | * Returns a string describing an XLogRecord, consisting of its identity |
| 9980 | * optionally followed by a colon, a space, and a further description. |
| 9981 | */ |
| 9982 | static void |
| 9983 | xlog_outdesc(StringInfo buf, XLogReaderState *record) |
| 9984 | { |
| 9985 | RmgrId rmid = XLogRecGetRmid(record); |
| 9986 | uint8 info = XLogRecGetInfo(record); |
| 9987 | const char *id; |
| 9988 | |
| 9989 | appendStringInfoString(buf, RmgrTable[rmid].rm_name); |
| 9990 | appendStringInfoChar(buf, '/'); |
| 9991 | |
| 9992 | id = RmgrTable[rmid].rm_identify(info); |
| 9993 | if (id == NULL) |
| 9994 | appendStringInfo(buf, "UNKNOWN (%X): " , info & ~XLR_INFO_MASK); |
| 9995 | else |
| 9996 | appendStringInfo(buf, "%s: " , id); |
| 9997 | |
| 9998 | RmgrTable[rmid].rm_desc(buf, record); |
| 9999 | } |
| 10000 | |
| 10001 | |
| 10002 | /* |
| 10003 | * Return the (possible) sync flag used for opening a file, depending on the |
| 10004 | * value of the GUC wal_sync_method. |
| 10005 | */ |
| 10006 | static int |
| 10007 | get_sync_bit(int method) |
| 10008 | { |
| 10009 | int o_direct_flag = 0; |
| 10010 | |
| 10011 | /* If fsync is disabled, never open in sync mode */ |
| 10012 | if (!enableFsync) |
| 10013 | return 0; |
| 10014 | |
| 10015 | /* |
| 10016 | * Optimize writes by bypassing kernel cache with O_DIRECT when using |
| 10017 | * O_SYNC/O_FSYNC and O_DSYNC. But only if archiving and streaming are |
| 10018 | * disabled, otherwise the archive command or walsender process will read |
| 10019 | * the WAL soon after writing it, which is guaranteed to cause a physical |
| 10020 | * read if we bypassed the kernel cache. We also skip the |
| 10021 | * posix_fadvise(POSIX_FADV_DONTNEED) call in XLogFileClose() for the same |
| 10022 | * reason. |
| 10023 | * |
| 10024 | * Never use O_DIRECT in walreceiver process for similar reasons; the WAL |
| 10025 | * written by walreceiver is normally read by the startup process soon |
| 10026 | * after its written. Also, walreceiver performs unaligned writes, which |
| 10027 | * don't work with O_DIRECT, so it is required for correctness too. |
| 10028 | */ |
| 10029 | if (!XLogIsNeeded() && !AmWalReceiverProcess()) |
| 10030 | o_direct_flag = PG_O_DIRECT; |
| 10031 | |
| 10032 | switch (method) |
| 10033 | { |
| 10034 | /* |
| 10035 | * enum values for all sync options are defined even if they are |
| 10036 | * not supported on the current platform. But if not, they are |
| 10037 | * not included in the enum option array, and therefore will never |
| 10038 | * be seen here. |
| 10039 | */ |
| 10040 | case SYNC_METHOD_FSYNC: |
| 10041 | case SYNC_METHOD_FSYNC_WRITETHROUGH: |
| 10042 | case SYNC_METHOD_FDATASYNC: |
| 10043 | return 0; |
| 10044 | #ifdef OPEN_SYNC_FLAG |
| 10045 | case SYNC_METHOD_OPEN: |
| 10046 | return OPEN_SYNC_FLAG | o_direct_flag; |
| 10047 | #endif |
| 10048 | #ifdef OPEN_DATASYNC_FLAG |
| 10049 | case SYNC_METHOD_OPEN_DSYNC: |
| 10050 | return OPEN_DATASYNC_FLAG | o_direct_flag; |
| 10051 | #endif |
| 10052 | default: |
| 10053 | /* can't happen (unless we are out of sync with option array) */ |
| 10054 | elog(ERROR, "unrecognized wal_sync_method: %d" , method); |
| 10055 | return 0; /* silence warning */ |
| 10056 | } |
| 10057 | } |
| 10058 | |
| 10059 | /* |
| 10060 | * GUC support |
| 10061 | */ |
| 10062 | void |
| 10063 | assign_xlog_sync_method(int new_sync_method, void *) |
| 10064 | { |
| 10065 | if (sync_method != new_sync_method) |
| 10066 | { |
| 10067 | /* |
| 10068 | * To ensure that no blocks escape unsynced, force an fsync on the |
| 10069 | * currently open log segment (if any). Also, if the open flag is |
| 10070 | * changing, close the log file so it will be reopened (with new flag |
| 10071 | * bit) at next use. |
| 10072 | */ |
| 10073 | if (openLogFile >= 0) |
| 10074 | { |
| 10075 | pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC_METHOD_ASSIGN); |
| 10076 | if (pg_fsync(openLogFile) != 0) |
| 10077 | ereport(PANIC, |
| 10078 | (errcode_for_file_access(), |
| 10079 | errmsg("could not fsync file \"%s\": %m" , |
| 10080 | XLogFileNameP(ThisTimeLineID, openLogSegNo)))); |
| 10081 | pgstat_report_wait_end(); |
| 10082 | if (get_sync_bit(sync_method) != get_sync_bit(new_sync_method)) |
| 10083 | XLogFileClose(); |
| 10084 | } |
| 10085 | } |
| 10086 | } |
| 10087 | |
| 10088 | |
| 10089 | /* |
| 10090 | * Issue appropriate kind of fsync (if any) for an XLOG output file. |
| 10091 | * |
| 10092 | * 'fd' is a file descriptor for the XLOG file to be fsync'd. |
| 10093 | * 'segno' is for error reporting purposes. |
| 10094 | */ |
| 10095 | void |
| 10096 | issue_xlog_fsync(int fd, XLogSegNo segno) |
| 10097 | { |
| 10098 | pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC); |
| 10099 | switch (sync_method) |
| 10100 | { |
| 10101 | case SYNC_METHOD_FSYNC: |
| 10102 | if (pg_fsync_no_writethrough(fd) != 0) |
| 10103 | ereport(PANIC, |
| 10104 | (errcode_for_file_access(), |
| 10105 | errmsg("could not fsync file \"%s\": %m" , |
| 10106 | XLogFileNameP(ThisTimeLineID, segno)))); |
| 10107 | break; |
| 10108 | #ifdef HAVE_FSYNC_WRITETHROUGH |
| 10109 | case SYNC_METHOD_FSYNC_WRITETHROUGH: |
| 10110 | if (pg_fsync_writethrough(fd) != 0) |
| 10111 | ereport(PANIC, |
| 10112 | (errcode_for_file_access(), |
| 10113 | errmsg("could not fsync write-through file \"%s\": %m" , |
| 10114 | XLogFileNameP(ThisTimeLineID, segno)))); |
| 10115 | break; |
| 10116 | #endif |
| 10117 | #ifdef HAVE_FDATASYNC |
| 10118 | case SYNC_METHOD_FDATASYNC: |
| 10119 | if (pg_fdatasync(fd) != 0) |
| 10120 | ereport(PANIC, |
| 10121 | (errcode_for_file_access(), |
| 10122 | errmsg("could not fdatasync file \"%s\": %m" , |
| 10123 | XLogFileNameP(ThisTimeLineID, segno)))); |
| 10124 | break; |
| 10125 | #endif |
| 10126 | case SYNC_METHOD_OPEN: |
| 10127 | case SYNC_METHOD_OPEN_DSYNC: |
| 10128 | /* write synced it already */ |
| 10129 | break; |
| 10130 | default: |
| 10131 | elog(PANIC, "unrecognized wal_sync_method: %d" , sync_method); |
| 10132 | break; |
| 10133 | } |
| 10134 | pgstat_report_wait_end(); |
| 10135 | } |
| 10136 | |
| 10137 | /* |
| 10138 | * Return the filename of given log segment, as a palloc'd string. |
| 10139 | */ |
| 10140 | char * |
| 10141 | XLogFileNameP(TimeLineID tli, XLogSegNo segno) |
| 10142 | { |
| 10143 | char *result = palloc(MAXFNAMELEN); |
| 10144 | |
| 10145 | XLogFileName(result, tli, segno, wal_segment_size); |
| 10146 | return result; |
| 10147 | } |
| 10148 | |
| 10149 | /* |
| 10150 | * do_pg_start_backup |
| 10151 | * |
| 10152 | * Utility function called at the start of an online backup. It creates the |
| 10153 | * necessary starting checkpoint and constructs the backup label file. |
| 10154 | * |
| 10155 | * There are two kind of backups: exclusive and non-exclusive. An exclusive |
| 10156 | * backup is started with pg_start_backup(), and there can be only one active |
| 10157 | * at a time. The backup and tablespace map files of an exclusive backup are |
| 10158 | * written to $PGDATA/backup_label and $PGDATA/tablespace_map, and they are |
| 10159 | * removed by pg_stop_backup(). |
| 10160 | * |
| 10161 | * A non-exclusive backup is used for the streaming base backups (see |
| 10162 | * src/backend/replication/basebackup.c). The difference to exclusive backups |
| 10163 | * is that the backup label and tablespace map files are not written to disk. |
| 10164 | * Instead, their would-be contents are returned in *labelfile and *tblspcmapfile, |
| 10165 | * and the caller is responsible for including them in the backup archive as |
| 10166 | * 'backup_label' and 'tablespace_map'. There can be many non-exclusive backups |
| 10167 | * active at the same time, and they don't conflict with an exclusive backup |
| 10168 | * either. |
| 10169 | * |
| 10170 | * tblspcmapfile is required mainly for tar format in windows as native windows |
| 10171 | * utilities are not able to create symlinks while extracting files from tar. |
| 10172 | * However for consistency, the same is used for all platforms. |
| 10173 | * |
| 10174 | * needtblspcmapfile is true for the cases (exclusive backup and for |
| 10175 | * non-exclusive backup only when tar format is used for taking backup) |
| 10176 | * when backup needs to generate tablespace_map file, it is used to |
| 10177 | * embed escape character before newline character in tablespace path. |
| 10178 | * |
| 10179 | * Returns the minimum WAL location that must be present to restore from this |
| 10180 | * backup, and the corresponding timeline ID in *starttli_p. |
| 10181 | * |
| 10182 | * Every successfully started non-exclusive backup must be stopped by calling |
| 10183 | * do_pg_stop_backup() or do_pg_abort_backup(). |
| 10184 | * |
| 10185 | * It is the responsibility of the caller of this function to verify the |
| 10186 | * permissions of the calling user! |
| 10187 | */ |
| 10188 | XLogRecPtr |
| 10189 | do_pg_start_backup(const char *backupidstr, bool fast, TimeLineID *starttli_p, |
| 10190 | StringInfo labelfile, List **tablespaces, |
| 10191 | StringInfo tblspcmapfile, bool infotbssize, |
| 10192 | bool needtblspcmapfile) |
| 10193 | { |
| 10194 | bool exclusive = (labelfile == NULL); |
| 10195 | bool backup_started_in_recovery = false; |
| 10196 | XLogRecPtr checkpointloc; |
| 10197 | XLogRecPtr startpoint; |
| 10198 | TimeLineID starttli; |
| 10199 | pg_time_t stamp_time; |
| 10200 | char strfbuf[128]; |
| 10201 | char xlogfilename[MAXFNAMELEN]; |
| 10202 | XLogSegNo _logSegNo; |
| 10203 | struct stat stat_buf; |
| 10204 | FILE *fp; |
| 10205 | |
| 10206 | backup_started_in_recovery = RecoveryInProgress(); |
| 10207 | |
| 10208 | /* |
| 10209 | * Currently only non-exclusive backup can be taken during recovery. |
| 10210 | */ |
| 10211 | if (backup_started_in_recovery && exclusive) |
| 10212 | ereport(ERROR, |
| 10213 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10214 | errmsg("recovery is in progress" ), |
| 10215 | errhint("WAL control functions cannot be executed during recovery." ))); |
| 10216 | |
| 10217 | /* |
| 10218 | * During recovery, we don't need to check WAL level. Because, if WAL |
| 10219 | * level is not sufficient, it's impossible to get here during recovery. |
| 10220 | */ |
| 10221 | if (!backup_started_in_recovery && !XLogIsNeeded()) |
| 10222 | ereport(ERROR, |
| 10223 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10224 | errmsg("WAL level not sufficient for making an online backup" ), |
| 10225 | errhint("wal_level must be set to \"replica\" or \"logical\" at server start." ))); |
| 10226 | |
| 10227 | if (strlen(backupidstr) > MAXPGPATH) |
| 10228 | ereport(ERROR, |
| 10229 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 10230 | errmsg("backup label too long (max %d bytes)" , |
| 10231 | MAXPGPATH))); |
| 10232 | |
| 10233 | /* |
| 10234 | * Mark backup active in shared memory. We must do full-page WAL writes |
| 10235 | * during an on-line backup even if not doing so at other times, because |
| 10236 | * it's quite possible for the backup dump to obtain a "torn" (partially |
| 10237 | * written) copy of a database page if it reads the page concurrently with |
| 10238 | * our write to the same page. This can be fixed as long as the first |
| 10239 | * write to the page in the WAL sequence is a full-page write. Hence, we |
| 10240 | * turn on forcePageWrites and then force a CHECKPOINT, to ensure there |
| 10241 | * are no dirty pages in shared memory that might get dumped while the |
| 10242 | * backup is in progress without having a corresponding WAL record. (Once |
| 10243 | * the backup is complete, we need not force full-page writes anymore, |
| 10244 | * since we expect that any pages not modified during the backup interval |
| 10245 | * must have been correctly captured by the backup.) |
| 10246 | * |
| 10247 | * Note that forcePageWrites has no effect during an online backup from |
| 10248 | * the standby. |
| 10249 | * |
| 10250 | * We must hold all the insertion locks to change the value of |
| 10251 | * forcePageWrites, to ensure adequate interlocking against |
| 10252 | * XLogInsertRecord(). |
| 10253 | */ |
| 10254 | WALInsertLockAcquireExclusive(); |
| 10255 | if (exclusive) |
| 10256 | { |
| 10257 | /* |
| 10258 | * At first, mark that we're now starting an exclusive backup, to |
| 10259 | * ensure that there are no other sessions currently running |
| 10260 | * pg_start_backup() or pg_stop_backup(). |
| 10261 | */ |
| 10262 | if (XLogCtl->Insert.exclusiveBackupState != EXCLUSIVE_BACKUP_NONE) |
| 10263 | { |
| 10264 | WALInsertLockRelease(); |
| 10265 | ereport(ERROR, |
| 10266 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10267 | errmsg("a backup is already in progress" ), |
| 10268 | errhint("Run pg_stop_backup() and try again." ))); |
| 10269 | } |
| 10270 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_STARTING; |
| 10271 | } |
| 10272 | else |
| 10273 | XLogCtl->Insert.nonExclusiveBackups++; |
| 10274 | XLogCtl->Insert.forcePageWrites = true; |
| 10275 | WALInsertLockRelease(); |
| 10276 | |
| 10277 | /* Ensure we release forcePageWrites if fail below */ |
| 10278 | PG_ENSURE_ERROR_CLEANUP(pg_start_backup_callback, (Datum) BoolGetDatum(exclusive)); |
| 10279 | { |
| 10280 | bool gotUniqueStartpoint = false; |
| 10281 | DIR *tblspcdir; |
| 10282 | struct dirent *de; |
| 10283 | tablespaceinfo *ti; |
| 10284 | int datadirpathlen; |
| 10285 | |
| 10286 | /* |
| 10287 | * Force an XLOG file switch before the checkpoint, to ensure that the |
| 10288 | * WAL segment the checkpoint is written to doesn't contain pages with |
| 10289 | * old timeline IDs. That would otherwise happen if you called |
| 10290 | * pg_start_backup() right after restoring from a PITR archive: the |
| 10291 | * first WAL segment containing the startup checkpoint has pages in |
| 10292 | * the beginning with the old timeline ID. That can cause trouble at |
| 10293 | * recovery: we won't have a history file covering the old timeline if |
| 10294 | * pg_wal directory was not included in the base backup and the WAL |
| 10295 | * archive was cleared too before starting the backup. |
| 10296 | * |
| 10297 | * This also ensures that we have emitted a WAL page header that has |
| 10298 | * XLP_BKP_REMOVABLE off before we emit the checkpoint record. |
| 10299 | * Therefore, if a WAL archiver (such as pglesslog) is trying to |
| 10300 | * compress out removable backup blocks, it won't remove any that |
| 10301 | * occur after this point. |
| 10302 | * |
| 10303 | * During recovery, we skip forcing XLOG file switch, which means that |
| 10304 | * the backup taken during recovery is not available for the special |
| 10305 | * recovery case described above. |
| 10306 | */ |
| 10307 | if (!backup_started_in_recovery) |
| 10308 | RequestXLogSwitch(false); |
| 10309 | |
| 10310 | do |
| 10311 | { |
| 10312 | bool checkpointfpw; |
| 10313 | |
| 10314 | /* |
| 10315 | * Force a CHECKPOINT. Aside from being necessary to prevent torn |
| 10316 | * page problems, this guarantees that two successive backup runs |
| 10317 | * will have different checkpoint positions and hence different |
| 10318 | * history file names, even if nothing happened in between. |
| 10319 | * |
| 10320 | * During recovery, establish a restartpoint if possible. We use |
| 10321 | * the last restartpoint as the backup starting checkpoint. This |
| 10322 | * means that two successive backup runs can have same checkpoint |
| 10323 | * positions. |
| 10324 | * |
| 10325 | * Since the fact that we are executing do_pg_start_backup() |
| 10326 | * during recovery means that checkpointer is running, we can use |
| 10327 | * RequestCheckpoint() to establish a restartpoint. |
| 10328 | * |
| 10329 | * We use CHECKPOINT_IMMEDIATE only if requested by user (via |
| 10330 | * passing fast = true). Otherwise this can take awhile. |
| 10331 | */ |
| 10332 | RequestCheckpoint(CHECKPOINT_FORCE | CHECKPOINT_WAIT | |
| 10333 | (fast ? CHECKPOINT_IMMEDIATE : 0)); |
| 10334 | |
| 10335 | /* |
| 10336 | * Now we need to fetch the checkpoint record location, and also |
| 10337 | * its REDO pointer. The oldest point in WAL that would be needed |
| 10338 | * to restore starting from the checkpoint is precisely the REDO |
| 10339 | * pointer. |
| 10340 | */ |
| 10341 | LWLockAcquire(ControlFileLock, LW_SHARED); |
| 10342 | checkpointloc = ControlFile->checkPoint; |
| 10343 | startpoint = ControlFile->checkPointCopy.redo; |
| 10344 | starttli = ControlFile->checkPointCopy.ThisTimeLineID; |
| 10345 | checkpointfpw = ControlFile->checkPointCopy.fullPageWrites; |
| 10346 | LWLockRelease(ControlFileLock); |
| 10347 | |
| 10348 | if (backup_started_in_recovery) |
| 10349 | { |
| 10350 | XLogRecPtr recptr; |
| 10351 | |
| 10352 | /* |
| 10353 | * Check to see if all WAL replayed during online backup |
| 10354 | * (i.e., since last restartpoint used as backup starting |
| 10355 | * checkpoint) contain full-page writes. |
| 10356 | */ |
| 10357 | SpinLockAcquire(&XLogCtl->info_lck); |
| 10358 | recptr = XLogCtl->lastFpwDisableRecPtr; |
| 10359 | SpinLockRelease(&XLogCtl->info_lck); |
| 10360 | |
| 10361 | if (!checkpointfpw || startpoint <= recptr) |
| 10362 | ereport(ERROR, |
| 10363 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10364 | errmsg("WAL generated with full_page_writes=off was replayed " |
| 10365 | "since last restartpoint" ), |
| 10366 | errhint("This means that the backup being taken on the standby " |
| 10367 | "is corrupt and should not be used. " |
| 10368 | "Enable full_page_writes and run CHECKPOINT on the master, " |
| 10369 | "and then try an online backup again." ))); |
| 10370 | |
| 10371 | /* |
| 10372 | * During recovery, since we don't use the end-of-backup WAL |
| 10373 | * record and don't write the backup history file, the |
| 10374 | * starting WAL location doesn't need to be unique. This means |
| 10375 | * that two base backups started at the same time might use |
| 10376 | * the same checkpoint as starting locations. |
| 10377 | */ |
| 10378 | gotUniqueStartpoint = true; |
| 10379 | } |
| 10380 | |
| 10381 | /* |
| 10382 | * If two base backups are started at the same time (in WAL sender |
| 10383 | * processes), we need to make sure that they use different |
| 10384 | * checkpoints as starting locations, because we use the starting |
| 10385 | * WAL location as a unique identifier for the base backup in the |
| 10386 | * end-of-backup WAL record and when we write the backup history |
| 10387 | * file. Perhaps it would be better generate a separate unique ID |
| 10388 | * for each backup instead of forcing another checkpoint, but |
| 10389 | * taking a checkpoint right after another is not that expensive |
| 10390 | * either because only few buffers have been dirtied yet. |
| 10391 | */ |
| 10392 | WALInsertLockAcquireExclusive(); |
| 10393 | if (XLogCtl->Insert.lastBackupStart < startpoint) |
| 10394 | { |
| 10395 | XLogCtl->Insert.lastBackupStart = startpoint; |
| 10396 | gotUniqueStartpoint = true; |
| 10397 | } |
| 10398 | WALInsertLockRelease(); |
| 10399 | } while (!gotUniqueStartpoint); |
| 10400 | |
| 10401 | XLByteToSeg(startpoint, _logSegNo, wal_segment_size); |
| 10402 | XLogFileName(xlogfilename, starttli, _logSegNo, wal_segment_size); |
| 10403 | |
| 10404 | /* |
| 10405 | * Construct tablespace_map file |
| 10406 | */ |
| 10407 | if (exclusive) |
| 10408 | tblspcmapfile = makeStringInfo(); |
| 10409 | |
| 10410 | datadirpathlen = strlen(DataDir); |
| 10411 | |
| 10412 | /* Collect information about all tablespaces */ |
| 10413 | tblspcdir = AllocateDir("pg_tblspc" ); |
| 10414 | while ((de = ReadDir(tblspcdir, "pg_tblspc" )) != NULL) |
| 10415 | { |
| 10416 | char fullpath[MAXPGPATH + 10]; |
| 10417 | char linkpath[MAXPGPATH]; |
| 10418 | char *relpath = NULL; |
| 10419 | int rllen; |
| 10420 | StringInfoData buflinkpath; |
| 10421 | char *s = linkpath; |
| 10422 | |
| 10423 | /* Skip special stuff */ |
| 10424 | if (strcmp(de->d_name, "." ) == 0 || strcmp(de->d_name, ".." ) == 0) |
| 10425 | continue; |
| 10426 | |
| 10427 | snprintf(fullpath, sizeof(fullpath), "pg_tblspc/%s" , de->d_name); |
| 10428 | |
| 10429 | #if defined(HAVE_READLINK) || defined(WIN32) |
| 10430 | rllen = readlink(fullpath, linkpath, sizeof(linkpath)); |
| 10431 | if (rllen < 0) |
| 10432 | { |
| 10433 | ereport(WARNING, |
| 10434 | (errmsg("could not read symbolic link \"%s\": %m" , |
| 10435 | fullpath))); |
| 10436 | continue; |
| 10437 | } |
| 10438 | else if (rllen >= sizeof(linkpath)) |
| 10439 | { |
| 10440 | ereport(WARNING, |
| 10441 | (errmsg("symbolic link \"%s\" target is too long" , |
| 10442 | fullpath))); |
| 10443 | continue; |
| 10444 | } |
| 10445 | linkpath[rllen] = '\0'; |
| 10446 | |
| 10447 | /* |
| 10448 | * Add the escape character '\\' before newline in a string to |
| 10449 | * ensure that we can distinguish between the newline in the |
| 10450 | * tablespace path and end of line while reading tablespace_map |
| 10451 | * file during archive recovery. |
| 10452 | */ |
| 10453 | initStringInfo(&buflinkpath); |
| 10454 | |
| 10455 | while (*s) |
| 10456 | { |
| 10457 | if ((*s == '\n' || *s == '\r') && needtblspcmapfile) |
| 10458 | appendStringInfoChar(&buflinkpath, '\\'); |
| 10459 | appendStringInfoChar(&buflinkpath, *s++); |
| 10460 | } |
| 10461 | |
| 10462 | /* |
| 10463 | * Relpath holds the relative path of the tablespace directory |
| 10464 | * when it's located within PGDATA, or NULL if it's located |
| 10465 | * elsewhere. |
| 10466 | */ |
| 10467 | if (rllen > datadirpathlen && |
| 10468 | strncmp(linkpath, DataDir, datadirpathlen) == 0 && |
| 10469 | IS_DIR_SEP(linkpath[datadirpathlen])) |
| 10470 | relpath = linkpath + datadirpathlen + 1; |
| 10471 | |
| 10472 | ti = palloc(sizeof(tablespaceinfo)); |
| 10473 | ti->oid = pstrdup(de->d_name); |
| 10474 | ti->path = pstrdup(buflinkpath.data); |
| 10475 | ti->rpath = relpath ? pstrdup(relpath) : NULL; |
| 10476 | ti->size = infotbssize ? sendTablespace(fullpath, true) : -1; |
| 10477 | |
| 10478 | if (tablespaces) |
| 10479 | *tablespaces = lappend(*tablespaces, ti); |
| 10480 | |
| 10481 | appendStringInfo(tblspcmapfile, "%s %s\n" , ti->oid, ti->path); |
| 10482 | |
| 10483 | pfree(buflinkpath.data); |
| 10484 | #else |
| 10485 | |
| 10486 | /* |
| 10487 | * If the platform does not have symbolic links, it should not be |
| 10488 | * possible to have tablespaces - clearly somebody else created |
| 10489 | * them. Warn about it and ignore. |
| 10490 | */ |
| 10491 | ereport(WARNING, |
| 10492 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 10493 | errmsg("tablespaces are not supported on this platform" ))); |
| 10494 | #endif |
| 10495 | } |
| 10496 | FreeDir(tblspcdir); |
| 10497 | |
| 10498 | /* |
| 10499 | * Construct backup label file |
| 10500 | */ |
| 10501 | if (exclusive) |
| 10502 | labelfile = makeStringInfo(); |
| 10503 | |
| 10504 | /* Use the log timezone here, not the session timezone */ |
| 10505 | stamp_time = (pg_time_t) time(NULL); |
| 10506 | pg_strftime(strfbuf, sizeof(strfbuf), |
| 10507 | "%Y-%m-%d %H:%M:%S %Z" , |
| 10508 | pg_localtime(&stamp_time, log_timezone)); |
| 10509 | appendStringInfo(labelfile, "START WAL LOCATION: %X/%X (file %s)\n" , |
| 10510 | (uint32) (startpoint >> 32), (uint32) startpoint, xlogfilename); |
| 10511 | appendStringInfo(labelfile, "CHECKPOINT LOCATION: %X/%X\n" , |
| 10512 | (uint32) (checkpointloc >> 32), (uint32) checkpointloc); |
| 10513 | appendStringInfo(labelfile, "BACKUP METHOD: %s\n" , |
| 10514 | exclusive ? "pg_start_backup" : "streamed" ); |
| 10515 | appendStringInfo(labelfile, "BACKUP FROM: %s\n" , |
| 10516 | backup_started_in_recovery ? "standby" : "master" ); |
| 10517 | appendStringInfo(labelfile, "START TIME: %s\n" , strfbuf); |
| 10518 | appendStringInfo(labelfile, "LABEL: %s\n" , backupidstr); |
| 10519 | appendStringInfo(labelfile, "START TIMELINE: %u\n" , starttli); |
| 10520 | |
| 10521 | /* |
| 10522 | * Okay, write the file, or return its contents to caller. |
| 10523 | */ |
| 10524 | if (exclusive) |
| 10525 | { |
| 10526 | /* |
| 10527 | * Check for existing backup label --- implies a backup is already |
| 10528 | * running. (XXX given that we checked exclusiveBackupState |
| 10529 | * above, maybe it would be OK to just unlink any such label |
| 10530 | * file?) |
| 10531 | */ |
| 10532 | if (stat(BACKUP_LABEL_FILE, &stat_buf) != 0) |
| 10533 | { |
| 10534 | if (errno != ENOENT) |
| 10535 | ereport(ERROR, |
| 10536 | (errcode_for_file_access(), |
| 10537 | errmsg("could not stat file \"%s\": %m" , |
| 10538 | BACKUP_LABEL_FILE))); |
| 10539 | } |
| 10540 | else |
| 10541 | ereport(ERROR, |
| 10542 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10543 | errmsg("a backup is already in progress" ), |
| 10544 | errhint("If you're sure there is no backup in progress, remove file \"%s\" and try again." , |
| 10545 | BACKUP_LABEL_FILE))); |
| 10546 | |
| 10547 | fp = AllocateFile(BACKUP_LABEL_FILE, "w" ); |
| 10548 | |
| 10549 | if (!fp) |
| 10550 | ereport(ERROR, |
| 10551 | (errcode_for_file_access(), |
| 10552 | errmsg("could not create file \"%s\": %m" , |
| 10553 | BACKUP_LABEL_FILE))); |
| 10554 | if (fwrite(labelfile->data, labelfile->len, 1, fp) != 1 || |
| 10555 | fflush(fp) != 0 || |
| 10556 | pg_fsync(fileno(fp)) != 0 || |
| 10557 | ferror(fp) || |
| 10558 | FreeFile(fp)) |
| 10559 | ereport(ERROR, |
| 10560 | (errcode_for_file_access(), |
| 10561 | errmsg("could not write file \"%s\": %m" , |
| 10562 | BACKUP_LABEL_FILE))); |
| 10563 | /* Allocated locally for exclusive backups, so free separately */ |
| 10564 | pfree(labelfile->data); |
| 10565 | pfree(labelfile); |
| 10566 | |
| 10567 | /* Write backup tablespace_map file. */ |
| 10568 | if (tblspcmapfile->len > 0) |
| 10569 | { |
| 10570 | if (stat(TABLESPACE_MAP, &stat_buf) != 0) |
| 10571 | { |
| 10572 | if (errno != ENOENT) |
| 10573 | ereport(ERROR, |
| 10574 | (errcode_for_file_access(), |
| 10575 | errmsg("could not stat file \"%s\": %m" , |
| 10576 | TABLESPACE_MAP))); |
| 10577 | } |
| 10578 | else |
| 10579 | ereport(ERROR, |
| 10580 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10581 | errmsg("a backup is already in progress" ), |
| 10582 | errhint("If you're sure there is no backup in progress, remove file \"%s\" and try again." , |
| 10583 | TABLESPACE_MAP))); |
| 10584 | |
| 10585 | fp = AllocateFile(TABLESPACE_MAP, "w" ); |
| 10586 | |
| 10587 | if (!fp) |
| 10588 | ereport(ERROR, |
| 10589 | (errcode_for_file_access(), |
| 10590 | errmsg("could not create file \"%s\": %m" , |
| 10591 | TABLESPACE_MAP))); |
| 10592 | if (fwrite(tblspcmapfile->data, tblspcmapfile->len, 1, fp) != 1 || |
| 10593 | fflush(fp) != 0 || |
| 10594 | pg_fsync(fileno(fp)) != 0 || |
| 10595 | ferror(fp) || |
| 10596 | FreeFile(fp)) |
| 10597 | ereport(ERROR, |
| 10598 | (errcode_for_file_access(), |
| 10599 | errmsg("could not write file \"%s\": %m" , |
| 10600 | TABLESPACE_MAP))); |
| 10601 | } |
| 10602 | |
| 10603 | /* Allocated locally for exclusive backups, so free separately */ |
| 10604 | pfree(tblspcmapfile->data); |
| 10605 | pfree(tblspcmapfile); |
| 10606 | } |
| 10607 | } |
| 10608 | PG_END_ENSURE_ERROR_CLEANUP(pg_start_backup_callback, (Datum) BoolGetDatum(exclusive)); |
| 10609 | |
| 10610 | /* |
| 10611 | * Mark that start phase has correctly finished for an exclusive backup. |
| 10612 | * Session-level locks are updated as well to reflect that state. |
| 10613 | * |
| 10614 | * Note that CHECK_FOR_INTERRUPTS() must not occur while updating backup |
| 10615 | * counters and session-level lock. Otherwise they can be updated |
| 10616 | * inconsistently, and which might cause do_pg_abort_backup() to fail. |
| 10617 | */ |
| 10618 | if (exclusive) |
| 10619 | { |
| 10620 | WALInsertLockAcquireExclusive(); |
| 10621 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_IN_PROGRESS; |
| 10622 | |
| 10623 | /* Set session-level lock */ |
| 10624 | sessionBackupState = SESSION_BACKUP_EXCLUSIVE; |
| 10625 | WALInsertLockRelease(); |
| 10626 | } |
| 10627 | else |
| 10628 | sessionBackupState = SESSION_BACKUP_NON_EXCLUSIVE; |
| 10629 | |
| 10630 | /* |
| 10631 | * We're done. As a convenience, return the starting WAL location. |
| 10632 | */ |
| 10633 | if (starttli_p) |
| 10634 | *starttli_p = starttli; |
| 10635 | return startpoint; |
| 10636 | } |
| 10637 | |
| 10638 | /* Error cleanup callback for pg_start_backup */ |
| 10639 | static void |
| 10640 | pg_start_backup_callback(int code, Datum arg) |
| 10641 | { |
| 10642 | bool exclusive = DatumGetBool(arg); |
| 10643 | |
| 10644 | /* Update backup counters and forcePageWrites on failure */ |
| 10645 | WALInsertLockAcquireExclusive(); |
| 10646 | if (exclusive) |
| 10647 | { |
| 10648 | Assert(XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_STARTING); |
| 10649 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_NONE; |
| 10650 | } |
| 10651 | else |
| 10652 | { |
| 10653 | Assert(XLogCtl->Insert.nonExclusiveBackups > 0); |
| 10654 | XLogCtl->Insert.nonExclusiveBackups--; |
| 10655 | } |
| 10656 | |
| 10657 | if (XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_NONE && |
| 10658 | XLogCtl->Insert.nonExclusiveBackups == 0) |
| 10659 | { |
| 10660 | XLogCtl->Insert.forcePageWrites = false; |
| 10661 | } |
| 10662 | WALInsertLockRelease(); |
| 10663 | } |
| 10664 | |
| 10665 | /* |
| 10666 | * Error cleanup callback for pg_stop_backup |
| 10667 | */ |
| 10668 | static void |
| 10669 | pg_stop_backup_callback(int code, Datum arg) |
| 10670 | { |
| 10671 | bool exclusive = DatumGetBool(arg); |
| 10672 | |
| 10673 | /* Update backup status on failure */ |
| 10674 | WALInsertLockAcquireExclusive(); |
| 10675 | if (exclusive) |
| 10676 | { |
| 10677 | Assert(XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_STOPPING); |
| 10678 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_IN_PROGRESS; |
| 10679 | } |
| 10680 | WALInsertLockRelease(); |
| 10681 | } |
| 10682 | |
| 10683 | /* |
| 10684 | * Utility routine to fetch the session-level status of a backup running. |
| 10685 | */ |
| 10686 | SessionBackupState |
| 10687 | get_backup_status(void) |
| 10688 | { |
| 10689 | return sessionBackupState; |
| 10690 | } |
| 10691 | |
| 10692 | /* |
| 10693 | * do_pg_stop_backup |
| 10694 | * |
| 10695 | * Utility function called at the end of an online backup. It cleans up the |
| 10696 | * backup state and can optionally wait for WAL segments to be archived. |
| 10697 | * |
| 10698 | * If labelfile is NULL, this stops an exclusive backup. Otherwise this stops |
| 10699 | * the non-exclusive backup specified by 'labelfile'. |
| 10700 | * |
| 10701 | * Returns the last WAL location that must be present to restore from this |
| 10702 | * backup, and the corresponding timeline ID in *stoptli_p. |
| 10703 | * |
| 10704 | * It is the responsibility of the caller of this function to verify the |
| 10705 | * permissions of the calling user! |
| 10706 | */ |
| 10707 | XLogRecPtr |
| 10708 | do_pg_stop_backup(char *labelfile, bool waitforarchive, TimeLineID *stoptli_p) |
| 10709 | { |
| 10710 | bool exclusive = (labelfile == NULL); |
| 10711 | bool backup_started_in_recovery = false; |
| 10712 | XLogRecPtr startpoint; |
| 10713 | XLogRecPtr stoppoint; |
| 10714 | TimeLineID stoptli; |
| 10715 | pg_time_t stamp_time; |
| 10716 | char strfbuf[128]; |
| 10717 | char histfilepath[MAXPGPATH]; |
| 10718 | char startxlogfilename[MAXFNAMELEN]; |
| 10719 | char stopxlogfilename[MAXFNAMELEN]; |
| 10720 | char lastxlogfilename[MAXFNAMELEN]; |
| 10721 | char histfilename[MAXFNAMELEN]; |
| 10722 | char backupfrom[20]; |
| 10723 | XLogSegNo _logSegNo; |
| 10724 | FILE *lfp; |
| 10725 | FILE *fp; |
| 10726 | char ch; |
| 10727 | int seconds_before_warning; |
| 10728 | int waits = 0; |
| 10729 | bool reported_waiting = false; |
| 10730 | char *remaining; |
| 10731 | char *ptr; |
| 10732 | uint32 hi, |
| 10733 | lo; |
| 10734 | |
| 10735 | backup_started_in_recovery = RecoveryInProgress(); |
| 10736 | |
| 10737 | /* |
| 10738 | * Currently only non-exclusive backup can be taken during recovery. |
| 10739 | */ |
| 10740 | if (backup_started_in_recovery && exclusive) |
| 10741 | ereport(ERROR, |
| 10742 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10743 | errmsg("recovery is in progress" ), |
| 10744 | errhint("WAL control functions cannot be executed during recovery." ))); |
| 10745 | |
| 10746 | /* |
| 10747 | * During recovery, we don't need to check WAL level. Because, if WAL |
| 10748 | * level is not sufficient, it's impossible to get here during recovery. |
| 10749 | */ |
| 10750 | if (!backup_started_in_recovery && !XLogIsNeeded()) |
| 10751 | ereport(ERROR, |
| 10752 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10753 | errmsg("WAL level not sufficient for making an online backup" ), |
| 10754 | errhint("wal_level must be set to \"replica\" or \"logical\" at server start." ))); |
| 10755 | |
| 10756 | if (exclusive) |
| 10757 | { |
| 10758 | /* |
| 10759 | * At first, mark that we're now stopping an exclusive backup, to |
| 10760 | * ensure that there are no other sessions currently running |
| 10761 | * pg_start_backup() or pg_stop_backup(). |
| 10762 | */ |
| 10763 | WALInsertLockAcquireExclusive(); |
| 10764 | if (XLogCtl->Insert.exclusiveBackupState != EXCLUSIVE_BACKUP_IN_PROGRESS) |
| 10765 | { |
| 10766 | WALInsertLockRelease(); |
| 10767 | ereport(ERROR, |
| 10768 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10769 | errmsg("exclusive backup not in progress" ))); |
| 10770 | } |
| 10771 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_STOPPING; |
| 10772 | WALInsertLockRelease(); |
| 10773 | |
| 10774 | /* |
| 10775 | * Remove backup_label. In case of failure, the state for an exclusive |
| 10776 | * backup is switched back to in-progress. |
| 10777 | */ |
| 10778 | PG_ENSURE_ERROR_CLEANUP(pg_stop_backup_callback, (Datum) BoolGetDatum(exclusive)); |
| 10779 | { |
| 10780 | /* |
| 10781 | * Read the existing label file into memory. |
| 10782 | */ |
| 10783 | struct stat statbuf; |
| 10784 | int r; |
| 10785 | |
| 10786 | if (stat(BACKUP_LABEL_FILE, &statbuf)) |
| 10787 | { |
| 10788 | /* should not happen per the upper checks */ |
| 10789 | if (errno != ENOENT) |
| 10790 | ereport(ERROR, |
| 10791 | (errcode_for_file_access(), |
| 10792 | errmsg("could not stat file \"%s\": %m" , |
| 10793 | BACKUP_LABEL_FILE))); |
| 10794 | ereport(ERROR, |
| 10795 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10796 | errmsg("a backup is not in progress" ))); |
| 10797 | } |
| 10798 | |
| 10799 | lfp = AllocateFile(BACKUP_LABEL_FILE, "r" ); |
| 10800 | if (!lfp) |
| 10801 | { |
| 10802 | ereport(ERROR, |
| 10803 | (errcode_for_file_access(), |
| 10804 | errmsg("could not read file \"%s\": %m" , |
| 10805 | BACKUP_LABEL_FILE))); |
| 10806 | } |
| 10807 | labelfile = palloc(statbuf.st_size + 1); |
| 10808 | r = fread(labelfile, statbuf.st_size, 1, lfp); |
| 10809 | labelfile[statbuf.st_size] = '\0'; |
| 10810 | |
| 10811 | /* |
| 10812 | * Close and remove the backup label file |
| 10813 | */ |
| 10814 | if (r != 1 || ferror(lfp) || FreeFile(lfp)) |
| 10815 | ereport(ERROR, |
| 10816 | (errcode_for_file_access(), |
| 10817 | errmsg("could not read file \"%s\": %m" , |
| 10818 | BACKUP_LABEL_FILE))); |
| 10819 | durable_unlink(BACKUP_LABEL_FILE, ERROR); |
| 10820 | |
| 10821 | /* |
| 10822 | * Remove tablespace_map file if present, it is created only if |
| 10823 | * there are tablespaces. |
| 10824 | */ |
| 10825 | durable_unlink(TABLESPACE_MAP, DEBUG1); |
| 10826 | } |
| 10827 | PG_END_ENSURE_ERROR_CLEANUP(pg_stop_backup_callback, (Datum) BoolGetDatum(exclusive)); |
| 10828 | } |
| 10829 | |
| 10830 | /* |
| 10831 | * OK to update backup counters, forcePageWrites and session-level lock. |
| 10832 | * |
| 10833 | * Note that CHECK_FOR_INTERRUPTS() must not occur while updating them. |
| 10834 | * Otherwise they can be updated inconsistently, and which might cause |
| 10835 | * do_pg_abort_backup() to fail. |
| 10836 | */ |
| 10837 | WALInsertLockAcquireExclusive(); |
| 10838 | if (exclusive) |
| 10839 | { |
| 10840 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_NONE; |
| 10841 | } |
| 10842 | else |
| 10843 | { |
| 10844 | /* |
| 10845 | * The user-visible pg_start/stop_backup() functions that operate on |
| 10846 | * exclusive backups can be called at any time, but for non-exclusive |
| 10847 | * backups, it is expected that each do_pg_start_backup() call is |
| 10848 | * matched by exactly one do_pg_stop_backup() call. |
| 10849 | */ |
| 10850 | Assert(XLogCtl->Insert.nonExclusiveBackups > 0); |
| 10851 | XLogCtl->Insert.nonExclusiveBackups--; |
| 10852 | } |
| 10853 | |
| 10854 | if (XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_NONE && |
| 10855 | XLogCtl->Insert.nonExclusiveBackups == 0) |
| 10856 | { |
| 10857 | XLogCtl->Insert.forcePageWrites = false; |
| 10858 | } |
| 10859 | |
| 10860 | /* |
| 10861 | * Clean up session-level lock. |
| 10862 | * |
| 10863 | * You might think that WALInsertLockRelease() can be called before |
| 10864 | * cleaning up session-level lock because session-level lock doesn't need |
| 10865 | * to be protected with WAL insertion lock. But since |
| 10866 | * CHECK_FOR_INTERRUPTS() can occur in it, session-level lock must be |
| 10867 | * cleaned up before it. |
| 10868 | */ |
| 10869 | sessionBackupState = SESSION_BACKUP_NONE; |
| 10870 | |
| 10871 | WALInsertLockRelease(); |
| 10872 | |
| 10873 | /* |
| 10874 | * Read and parse the START WAL LOCATION line (this code is pretty crude, |
| 10875 | * but we are not expecting any variability in the file format). |
| 10876 | */ |
| 10877 | if (sscanf(labelfile, "START WAL LOCATION: %X/%X (file %24s)%c" , |
| 10878 | &hi, &lo, startxlogfilename, |
| 10879 | &ch) != 4 || ch != '\n') |
| 10880 | ereport(ERROR, |
| 10881 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10882 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE))); |
| 10883 | startpoint = ((uint64) hi) << 32 | lo; |
| 10884 | remaining = strchr(labelfile, '\n') + 1; /* %n is not portable enough */ |
| 10885 | |
| 10886 | /* |
| 10887 | * Parse the BACKUP FROM line. If we are taking an online backup from the |
| 10888 | * standby, we confirm that the standby has not been promoted during the |
| 10889 | * backup. |
| 10890 | */ |
| 10891 | ptr = strstr(remaining, "BACKUP FROM:" ); |
| 10892 | if (!ptr || sscanf(ptr, "BACKUP FROM: %19s\n" , backupfrom) != 1) |
| 10893 | ereport(ERROR, |
| 10894 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10895 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE))); |
| 10896 | if (strcmp(backupfrom, "standby" ) == 0 && !backup_started_in_recovery) |
| 10897 | ereport(ERROR, |
| 10898 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10899 | errmsg("the standby was promoted during online backup" ), |
| 10900 | errhint("This means that the backup being taken is corrupt " |
| 10901 | "and should not be used. " |
| 10902 | "Try taking another online backup." ))); |
| 10903 | |
| 10904 | /* |
| 10905 | * During recovery, we don't write an end-of-backup record. We assume that |
| 10906 | * pg_control was backed up last and its minimum recovery point can be |
| 10907 | * available as the backup end location. Since we don't have an |
| 10908 | * end-of-backup record, we use the pg_control value to check whether |
| 10909 | * we've reached the end of backup when starting recovery from this |
| 10910 | * backup. We have no way of checking if pg_control wasn't backed up last |
| 10911 | * however. |
| 10912 | * |
| 10913 | * We don't force a switch to new WAL file but it is still possible to |
| 10914 | * wait for all the required files to be archived if waitforarchive is |
| 10915 | * true. This is okay if we use the backup to start a standby and fetch |
| 10916 | * the missing WAL using streaming replication. But in the case of an |
| 10917 | * archive recovery, a user should set waitforarchive to true and wait for |
| 10918 | * them to be archived to ensure that all the required files are |
| 10919 | * available. |
| 10920 | * |
| 10921 | * We return the current minimum recovery point as the backup end |
| 10922 | * location. Note that it can be greater than the exact backup end |
| 10923 | * location if the minimum recovery point is updated after the backup of |
| 10924 | * pg_control. This is harmless for current uses. |
| 10925 | * |
| 10926 | * XXX currently a backup history file is for informational and debug |
| 10927 | * purposes only. It's not essential for an online backup. Furthermore, |
| 10928 | * even if it's created, it will not be archived during recovery because |
| 10929 | * an archiver is not invoked. So it doesn't seem worthwhile to write a |
| 10930 | * backup history file during recovery. |
| 10931 | */ |
| 10932 | if (backup_started_in_recovery) |
| 10933 | { |
| 10934 | XLogRecPtr recptr; |
| 10935 | |
| 10936 | /* |
| 10937 | * Check to see if all WAL replayed during online backup contain |
| 10938 | * full-page writes. |
| 10939 | */ |
| 10940 | SpinLockAcquire(&XLogCtl->info_lck); |
| 10941 | recptr = XLogCtl->lastFpwDisableRecPtr; |
| 10942 | SpinLockRelease(&XLogCtl->info_lck); |
| 10943 | |
| 10944 | if (startpoint <= recptr) |
| 10945 | ereport(ERROR, |
| 10946 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 10947 | errmsg("WAL generated with full_page_writes=off was replayed " |
| 10948 | "during online backup" ), |
| 10949 | errhint("This means that the backup being taken on the standby " |
| 10950 | "is corrupt and should not be used. " |
| 10951 | "Enable full_page_writes and run CHECKPOINT on the master, " |
| 10952 | "and then try an online backup again." ))); |
| 10953 | |
| 10954 | |
| 10955 | LWLockAcquire(ControlFileLock, LW_SHARED); |
| 10956 | stoppoint = ControlFile->minRecoveryPoint; |
| 10957 | stoptli = ControlFile->minRecoveryPointTLI; |
| 10958 | LWLockRelease(ControlFileLock); |
| 10959 | } |
| 10960 | else |
| 10961 | { |
| 10962 | /* |
| 10963 | * Write the backup-end xlog record |
| 10964 | */ |
| 10965 | XLogBeginInsert(); |
| 10966 | XLogRegisterData((char *) (&startpoint), sizeof(startpoint)); |
| 10967 | stoppoint = XLogInsert(RM_XLOG_ID, XLOG_BACKUP_END); |
| 10968 | stoptli = ThisTimeLineID; |
| 10969 | |
| 10970 | /* |
| 10971 | * Force a switch to a new xlog segment file, so that the backup is |
| 10972 | * valid as soon as archiver moves out the current segment file. |
| 10973 | */ |
| 10974 | RequestXLogSwitch(false); |
| 10975 | |
| 10976 | XLByteToPrevSeg(stoppoint, _logSegNo, wal_segment_size); |
| 10977 | XLogFileName(stopxlogfilename, stoptli, _logSegNo, wal_segment_size); |
| 10978 | |
| 10979 | /* Use the log timezone here, not the session timezone */ |
| 10980 | stamp_time = (pg_time_t) time(NULL); |
| 10981 | pg_strftime(strfbuf, sizeof(strfbuf), |
| 10982 | "%Y-%m-%d %H:%M:%S %Z" , |
| 10983 | pg_localtime(&stamp_time, log_timezone)); |
| 10984 | |
| 10985 | /* |
| 10986 | * Write the backup history file |
| 10987 | */ |
| 10988 | XLByteToSeg(startpoint, _logSegNo, wal_segment_size); |
| 10989 | BackupHistoryFilePath(histfilepath, stoptli, _logSegNo, |
| 10990 | startpoint, wal_segment_size); |
| 10991 | fp = AllocateFile(histfilepath, "w" ); |
| 10992 | if (!fp) |
| 10993 | ereport(ERROR, |
| 10994 | (errcode_for_file_access(), |
| 10995 | errmsg("could not create file \"%s\": %m" , |
| 10996 | histfilepath))); |
| 10997 | fprintf(fp, "START WAL LOCATION: %X/%X (file %s)\n" , |
| 10998 | (uint32) (startpoint >> 32), (uint32) startpoint, startxlogfilename); |
| 10999 | fprintf(fp, "STOP WAL LOCATION: %X/%X (file %s)\n" , |
| 11000 | (uint32) (stoppoint >> 32), (uint32) stoppoint, stopxlogfilename); |
| 11001 | |
| 11002 | /* |
| 11003 | * Transfer remaining lines including label and start timeline to |
| 11004 | * history file. |
| 11005 | */ |
| 11006 | fprintf(fp, "%s" , remaining); |
| 11007 | fprintf(fp, "STOP TIME: %s\n" , strfbuf); |
| 11008 | fprintf(fp, "STOP TIMELINE: %u\n" , stoptli); |
| 11009 | if (fflush(fp) || ferror(fp) || FreeFile(fp)) |
| 11010 | ereport(ERROR, |
| 11011 | (errcode_for_file_access(), |
| 11012 | errmsg("could not write file \"%s\": %m" , |
| 11013 | histfilepath))); |
| 11014 | |
| 11015 | /* |
| 11016 | * Clean out any no-longer-needed history files. As a side effect, |
| 11017 | * this will post a .ready file for the newly created history file, |
| 11018 | * notifying the archiver that history file may be archived |
| 11019 | * immediately. |
| 11020 | */ |
| 11021 | CleanupBackupHistory(); |
| 11022 | } |
| 11023 | |
| 11024 | /* |
| 11025 | * If archiving is enabled, wait for all the required WAL files to be |
| 11026 | * archived before returning. If archiving isn't enabled, the required WAL |
| 11027 | * needs to be transported via streaming replication (hopefully with |
| 11028 | * wal_keep_segments set high enough), or some more exotic mechanism like |
| 11029 | * polling and copying files from pg_wal with script. We have no knowledge |
| 11030 | * of those mechanisms, so it's up to the user to ensure that he gets all |
| 11031 | * the required WAL. |
| 11032 | * |
| 11033 | * We wait until both the last WAL file filled during backup and the |
| 11034 | * history file have been archived, and assume that the alphabetic sorting |
| 11035 | * property of the WAL files ensures any earlier WAL files are safely |
| 11036 | * archived as well. |
| 11037 | * |
| 11038 | * We wait forever, since archive_command is supposed to work and we |
| 11039 | * assume the admin wanted his backup to work completely. If you don't |
| 11040 | * wish to wait, then either waitforarchive should be passed in as false, |
| 11041 | * or you can set statement_timeout. Also, some notices are issued to |
| 11042 | * clue in anyone who might be doing this interactively. |
| 11043 | */ |
| 11044 | |
| 11045 | if (waitforarchive && |
| 11046 | ((!backup_started_in_recovery && XLogArchivingActive()) || |
| 11047 | (backup_started_in_recovery && XLogArchivingAlways()))) |
| 11048 | { |
| 11049 | XLByteToPrevSeg(stoppoint, _logSegNo, wal_segment_size); |
| 11050 | XLogFileName(lastxlogfilename, stoptli, _logSegNo, wal_segment_size); |
| 11051 | |
| 11052 | XLByteToSeg(startpoint, _logSegNo, wal_segment_size); |
| 11053 | BackupHistoryFileName(histfilename, stoptli, _logSegNo, |
| 11054 | startpoint, wal_segment_size); |
| 11055 | |
| 11056 | seconds_before_warning = 60; |
| 11057 | waits = 0; |
| 11058 | |
| 11059 | while (XLogArchiveIsBusy(lastxlogfilename) || |
| 11060 | XLogArchiveIsBusy(histfilename)) |
| 11061 | { |
| 11062 | CHECK_FOR_INTERRUPTS(); |
| 11063 | |
| 11064 | if (!reported_waiting && waits > 5) |
| 11065 | { |
| 11066 | ereport(NOTICE, |
| 11067 | (errmsg("base backup done, waiting for required WAL segments to be archived" ))); |
| 11068 | reported_waiting = true; |
| 11069 | } |
| 11070 | |
| 11071 | pg_usleep(1000000L); |
| 11072 | |
| 11073 | if (++waits >= seconds_before_warning) |
| 11074 | { |
| 11075 | seconds_before_warning *= 2; /* This wraps in >10 years... */ |
| 11076 | ereport(WARNING, |
| 11077 | (errmsg("still waiting for all required WAL segments to be archived (%d seconds elapsed)" , |
| 11078 | waits), |
| 11079 | errhint("Check that your archive_command is executing properly. " |
| 11080 | "You can safely cancel this backup, " |
| 11081 | "but the database backup will not be usable without all the WAL segments." ))); |
| 11082 | } |
| 11083 | } |
| 11084 | |
| 11085 | ereport(NOTICE, |
| 11086 | (errmsg("all required WAL segments have been archived" ))); |
| 11087 | } |
| 11088 | else if (waitforarchive) |
| 11089 | ereport(NOTICE, |
| 11090 | (errmsg("WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup" ))); |
| 11091 | |
| 11092 | /* |
| 11093 | * We're done. As a convenience, return the ending WAL location. |
| 11094 | */ |
| 11095 | if (stoptli_p) |
| 11096 | *stoptli_p = stoptli; |
| 11097 | return stoppoint; |
| 11098 | } |
| 11099 | |
| 11100 | |
| 11101 | /* |
| 11102 | * do_pg_abort_backup: abort a running backup |
| 11103 | * |
| 11104 | * This does just the most basic steps of do_pg_stop_backup(), by taking the |
| 11105 | * system out of backup mode, thus making it a lot more safe to call from |
| 11106 | * an error handler. |
| 11107 | * |
| 11108 | * NB: This is only for aborting a non-exclusive backup that doesn't write |
| 11109 | * backup_label. A backup started with pg_start_backup() needs to be finished |
| 11110 | * with pg_stop_backup(). |
| 11111 | */ |
| 11112 | void |
| 11113 | do_pg_abort_backup(void) |
| 11114 | { |
| 11115 | /* |
| 11116 | * Quick exit if session is not keeping around a non-exclusive backup |
| 11117 | * already started. |
| 11118 | */ |
| 11119 | if (sessionBackupState == SESSION_BACKUP_NONE) |
| 11120 | return; |
| 11121 | |
| 11122 | WALInsertLockAcquireExclusive(); |
| 11123 | Assert(XLogCtl->Insert.nonExclusiveBackups > 0); |
| 11124 | Assert(sessionBackupState == SESSION_BACKUP_NON_EXCLUSIVE); |
| 11125 | XLogCtl->Insert.nonExclusiveBackups--; |
| 11126 | |
| 11127 | if (XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_NONE && |
| 11128 | XLogCtl->Insert.nonExclusiveBackups == 0) |
| 11129 | { |
| 11130 | XLogCtl->Insert.forcePageWrites = false; |
| 11131 | } |
| 11132 | WALInsertLockRelease(); |
| 11133 | } |
| 11134 | |
| 11135 | /* |
| 11136 | * Get latest redo apply position. |
| 11137 | * |
| 11138 | * Exported to allow WALReceiver to read the pointer directly. |
| 11139 | */ |
| 11140 | XLogRecPtr |
| 11141 | GetXLogReplayRecPtr(TimeLineID *replayTLI) |
| 11142 | { |
| 11143 | XLogRecPtr recptr; |
| 11144 | TimeLineID tli; |
| 11145 | |
| 11146 | SpinLockAcquire(&XLogCtl->info_lck); |
| 11147 | recptr = XLogCtl->lastReplayedEndRecPtr; |
| 11148 | tli = XLogCtl->lastReplayedTLI; |
| 11149 | SpinLockRelease(&XLogCtl->info_lck); |
| 11150 | |
| 11151 | if (replayTLI) |
| 11152 | *replayTLI = tli; |
| 11153 | return recptr; |
| 11154 | } |
| 11155 | |
| 11156 | /* |
| 11157 | * Get latest WAL insert pointer |
| 11158 | */ |
| 11159 | XLogRecPtr |
| 11160 | GetXLogInsertRecPtr(void) |
| 11161 | { |
| 11162 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
| 11163 | uint64 current_bytepos; |
| 11164 | |
| 11165 | SpinLockAcquire(&Insert->insertpos_lck); |
| 11166 | current_bytepos = Insert->CurrBytePos; |
| 11167 | SpinLockRelease(&Insert->insertpos_lck); |
| 11168 | |
| 11169 | return XLogBytePosToRecPtr(current_bytepos); |
| 11170 | } |
| 11171 | |
| 11172 | /* |
| 11173 | * Get latest WAL write pointer |
| 11174 | */ |
| 11175 | XLogRecPtr |
| 11176 | GetXLogWriteRecPtr(void) |
| 11177 | { |
| 11178 | SpinLockAcquire(&XLogCtl->info_lck); |
| 11179 | LogwrtResult = XLogCtl->LogwrtResult; |
| 11180 | SpinLockRelease(&XLogCtl->info_lck); |
| 11181 | |
| 11182 | return LogwrtResult.Write; |
| 11183 | } |
| 11184 | |
| 11185 | /* |
| 11186 | * Returns the redo pointer of the last checkpoint or restartpoint. This is |
| 11187 | * the oldest point in WAL that we still need, if we have to restart recovery. |
| 11188 | */ |
| 11189 | void |
| 11190 | GetOldestRestartPoint(XLogRecPtr *oldrecptr, TimeLineID *oldtli) |
| 11191 | { |
| 11192 | LWLockAcquire(ControlFileLock, LW_SHARED); |
| 11193 | *oldrecptr = ControlFile->checkPointCopy.redo; |
| 11194 | *oldtli = ControlFile->checkPointCopy.ThisTimeLineID; |
| 11195 | LWLockRelease(ControlFileLock); |
| 11196 | } |
| 11197 | |
| 11198 | /* |
| 11199 | * read_backup_label: check to see if a backup_label file is present |
| 11200 | * |
| 11201 | * If we see a backup_label during recovery, we assume that we are recovering |
| 11202 | * from a backup dump file, and we therefore roll forward from the checkpoint |
| 11203 | * identified by the label file, NOT what pg_control says. This avoids the |
| 11204 | * problem that pg_control might have been archived one or more checkpoints |
| 11205 | * later than the start of the dump, and so if we rely on it as the start |
| 11206 | * point, we will fail to restore a consistent database state. |
| 11207 | * |
| 11208 | * Returns true if a backup_label was found (and fills the checkpoint |
| 11209 | * location and its REDO location into *checkPointLoc and RedoStartLSN, |
| 11210 | * respectively); returns false if not. If this backup_label came from a |
| 11211 | * streamed backup, *backupEndRequired is set to true. If this backup_label |
| 11212 | * was created during recovery, *backupFromStandby is set to true. |
| 11213 | */ |
| 11214 | static bool |
| 11215 | read_backup_label(XLogRecPtr *checkPointLoc, bool *backupEndRequired, |
| 11216 | bool *backupFromStandby) |
| 11217 | { |
| 11218 | char startxlogfilename[MAXFNAMELEN]; |
| 11219 | TimeLineID tli_from_walseg, |
| 11220 | tli_from_file; |
| 11221 | FILE *lfp; |
| 11222 | char ch; |
| 11223 | char backuptype[20]; |
| 11224 | char backupfrom[20]; |
| 11225 | char backuplabel[MAXPGPATH]; |
| 11226 | char backuptime[128]; |
| 11227 | uint32 hi, |
| 11228 | lo; |
| 11229 | |
| 11230 | *backupEndRequired = false; |
| 11231 | *backupFromStandby = false; |
| 11232 | |
| 11233 | /* |
| 11234 | * See if label file is present |
| 11235 | */ |
| 11236 | lfp = AllocateFile(BACKUP_LABEL_FILE, "r" ); |
| 11237 | if (!lfp) |
| 11238 | { |
| 11239 | if (errno != ENOENT) |
| 11240 | ereport(FATAL, |
| 11241 | (errcode_for_file_access(), |
| 11242 | errmsg("could not read file \"%s\": %m" , |
| 11243 | BACKUP_LABEL_FILE))); |
| 11244 | return false; /* it's not there, all is fine */ |
| 11245 | } |
| 11246 | |
| 11247 | /* |
| 11248 | * Read and parse the START WAL LOCATION and CHECKPOINT lines (this code |
| 11249 | * is pretty crude, but we are not expecting any variability in the file |
| 11250 | * format). |
| 11251 | */ |
| 11252 | if (fscanf(lfp, "START WAL LOCATION: %X/%X (file %08X%16s)%c" , |
| 11253 | &hi, &lo, &tli_from_walseg, startxlogfilename, &ch) != 5 || ch != '\n') |
| 11254 | ereport(FATAL, |
| 11255 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 11256 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE))); |
| 11257 | RedoStartLSN = ((uint64) hi) << 32 | lo; |
| 11258 | if (fscanf(lfp, "CHECKPOINT LOCATION: %X/%X%c" , |
| 11259 | &hi, &lo, &ch) != 3 || ch != '\n') |
| 11260 | ereport(FATAL, |
| 11261 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 11262 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE))); |
| 11263 | *checkPointLoc = ((uint64) hi) << 32 | lo; |
| 11264 | |
| 11265 | /* |
| 11266 | * BACKUP METHOD and BACKUP FROM lines are new in 9.2. We can't restore |
| 11267 | * from an older backup anyway, but since the information on it is not |
| 11268 | * strictly required, don't error out if it's missing for some reason. |
| 11269 | */ |
| 11270 | if (fscanf(lfp, "BACKUP METHOD: %19s\n" , backuptype) == 1) |
| 11271 | { |
| 11272 | if (strcmp(backuptype, "streamed" ) == 0) |
| 11273 | *backupEndRequired = true; |
| 11274 | } |
| 11275 | |
| 11276 | if (fscanf(lfp, "BACKUP FROM: %19s\n" , backupfrom) == 1) |
| 11277 | { |
| 11278 | if (strcmp(backupfrom, "standby" ) == 0) |
| 11279 | *backupFromStandby = true; |
| 11280 | } |
| 11281 | |
| 11282 | /* |
| 11283 | * Parse START TIME and LABEL. Those are not mandatory fields for recovery |
| 11284 | * but checking for their presence is useful for debugging and the next |
| 11285 | * sanity checks. Cope also with the fact that the result buffers have a |
| 11286 | * pre-allocated size, hence if the backup_label file has been generated |
| 11287 | * with strings longer than the maximum assumed here an incorrect parsing |
| 11288 | * happens. That's fine as only minor consistency checks are done |
| 11289 | * afterwards. |
| 11290 | */ |
| 11291 | if (fscanf(lfp, "START TIME: %127[^\n]\n" , backuptime) == 1) |
| 11292 | ereport(DEBUG1, |
| 11293 | (errmsg("backup time %s in file \"%s\"" , |
| 11294 | backuptime, BACKUP_LABEL_FILE))); |
| 11295 | |
| 11296 | if (fscanf(lfp, "LABEL: %1023[^\n]\n" , backuplabel) == 1) |
| 11297 | ereport(DEBUG1, |
| 11298 | (errmsg("backup label %s in file \"%s\"" , |
| 11299 | backuplabel, BACKUP_LABEL_FILE))); |
| 11300 | |
| 11301 | /* |
| 11302 | * START TIMELINE is new as of 11. Its parsing is not mandatory, still use |
| 11303 | * it as a sanity check if present. |
| 11304 | */ |
| 11305 | if (fscanf(lfp, "START TIMELINE: %u\n" , &tli_from_file) == 1) |
| 11306 | { |
| 11307 | if (tli_from_walseg != tli_from_file) |
| 11308 | ereport(FATAL, |
| 11309 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 11310 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE), |
| 11311 | errdetail("Timeline ID parsed is %u, but expected %u." , |
| 11312 | tli_from_file, tli_from_walseg))); |
| 11313 | |
| 11314 | ereport(DEBUG1, |
| 11315 | (errmsg("backup timeline %u in file \"%s\"" , |
| 11316 | tli_from_file, BACKUP_LABEL_FILE))); |
| 11317 | } |
| 11318 | |
| 11319 | if (ferror(lfp) || FreeFile(lfp)) |
| 11320 | ereport(FATAL, |
| 11321 | (errcode_for_file_access(), |
| 11322 | errmsg("could not read file \"%s\": %m" , |
| 11323 | BACKUP_LABEL_FILE))); |
| 11324 | |
| 11325 | return true; |
| 11326 | } |
| 11327 | |
| 11328 | /* |
| 11329 | * read_tablespace_map: check to see if a tablespace_map file is present |
| 11330 | * |
| 11331 | * If we see a tablespace_map file during recovery, we assume that we are |
| 11332 | * recovering from a backup dump file, and we therefore need to create symlinks |
| 11333 | * as per the information present in tablespace_map file. |
| 11334 | * |
| 11335 | * Returns true if a tablespace_map file was found (and fills the link |
| 11336 | * information for all the tablespace links present in file); returns false |
| 11337 | * if not. |
| 11338 | */ |
| 11339 | static bool |
| 11340 | read_tablespace_map(List **tablespaces) |
| 11341 | { |
| 11342 | tablespaceinfo *ti; |
| 11343 | FILE *lfp; |
| 11344 | char tbsoid[MAXPGPATH]; |
| 11345 | char *tbslinkpath; |
| 11346 | char str[MAXPGPATH]; |
| 11347 | int ch, |
| 11348 | prev_ch = -1, |
| 11349 | i = 0, |
| 11350 | n; |
| 11351 | |
| 11352 | /* |
| 11353 | * See if tablespace_map file is present |
| 11354 | */ |
| 11355 | lfp = AllocateFile(TABLESPACE_MAP, "r" ); |
| 11356 | if (!lfp) |
| 11357 | { |
| 11358 | if (errno != ENOENT) |
| 11359 | ereport(FATAL, |
| 11360 | (errcode_for_file_access(), |
| 11361 | errmsg("could not read file \"%s\": %m" , |
| 11362 | TABLESPACE_MAP))); |
| 11363 | return false; /* it's not there, all is fine */ |
| 11364 | } |
| 11365 | |
| 11366 | /* |
| 11367 | * Read and parse the link name and path lines from tablespace_map file |
| 11368 | * (this code is pretty crude, but we are not expecting any variability in |
| 11369 | * the file format). While taking backup we embed escape character '\\' |
| 11370 | * before newline in tablespace path, so that during reading of |
| 11371 | * tablespace_map file, we could distinguish newline in tablespace path |
| 11372 | * and end of line. Now while reading tablespace_map file, remove the |
| 11373 | * escape character that has been added in tablespace path during backup. |
| 11374 | */ |
| 11375 | while ((ch = fgetc(lfp)) != EOF) |
| 11376 | { |
| 11377 | if ((ch == '\n' || ch == '\r') && prev_ch != '\\') |
| 11378 | { |
| 11379 | str[i] = '\0'; |
| 11380 | if (sscanf(str, "%s %n" , tbsoid, &n) != 1) |
| 11381 | ereport(FATAL, |
| 11382 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 11383 | errmsg("invalid data in file \"%s\"" , TABLESPACE_MAP))); |
| 11384 | tbslinkpath = str + n; |
| 11385 | i = 0; |
| 11386 | |
| 11387 | ti = palloc(sizeof(tablespaceinfo)); |
| 11388 | ti->oid = pstrdup(tbsoid); |
| 11389 | ti->path = pstrdup(tbslinkpath); |
| 11390 | |
| 11391 | *tablespaces = lappend(*tablespaces, ti); |
| 11392 | continue; |
| 11393 | } |
| 11394 | else if ((ch == '\n' || ch == '\r') && prev_ch == '\\') |
| 11395 | str[i - 1] = ch; |
| 11396 | else |
| 11397 | str[i++] = ch; |
| 11398 | prev_ch = ch; |
| 11399 | } |
| 11400 | |
| 11401 | if (ferror(lfp) || FreeFile(lfp)) |
| 11402 | ereport(FATAL, |
| 11403 | (errcode_for_file_access(), |
| 11404 | errmsg("could not read file \"%s\": %m" , |
| 11405 | TABLESPACE_MAP))); |
| 11406 | |
| 11407 | return true; |
| 11408 | } |
| 11409 | |
| 11410 | /* |
| 11411 | * Error context callback for errors occurring during rm_redo(). |
| 11412 | */ |
| 11413 | static void |
| 11414 | rm_redo_error_callback(void *arg) |
| 11415 | { |
| 11416 | XLogReaderState *record = (XLogReaderState *) arg; |
| 11417 | StringInfoData buf; |
| 11418 | |
| 11419 | initStringInfo(&buf); |
| 11420 | xlog_outdesc(&buf, record); |
| 11421 | |
| 11422 | /* translator: %s is a WAL record description */ |
| 11423 | errcontext("WAL redo at %X/%X for %s" , |
| 11424 | (uint32) (record->ReadRecPtr >> 32), |
| 11425 | (uint32) record->ReadRecPtr, |
| 11426 | buf.data); |
| 11427 | |
| 11428 | pfree(buf.data); |
| 11429 | } |
| 11430 | |
| 11431 | /* |
| 11432 | * BackupInProgress: check if online backup mode is active |
| 11433 | * |
| 11434 | * This is done by checking for existence of the "backup_label" file. |
| 11435 | */ |
| 11436 | bool |
| 11437 | BackupInProgress(void) |
| 11438 | { |
| 11439 | struct stat stat_buf; |
| 11440 | |
| 11441 | return (stat(BACKUP_LABEL_FILE, &stat_buf) == 0); |
| 11442 | } |
| 11443 | |
| 11444 | /* |
| 11445 | * CancelBackup: rename the "backup_label" and "tablespace_map" |
| 11446 | * files to cancel backup mode |
| 11447 | * |
| 11448 | * If the "backup_label" file exists, it will be renamed to "backup_label.old". |
| 11449 | * Similarly, if the "tablespace_map" file exists, it will be renamed to |
| 11450 | * "tablespace_map.old". |
| 11451 | * |
| 11452 | * Note that this will render an online backup in progress |
| 11453 | * useless. To correctly finish an online backup, pg_stop_backup must be |
| 11454 | * called. |
| 11455 | */ |
| 11456 | void |
| 11457 | CancelBackup(void) |
| 11458 | { |
| 11459 | struct stat stat_buf; |
| 11460 | |
| 11461 | /* if the backup_label file is not there, return */ |
| 11462 | if (stat(BACKUP_LABEL_FILE, &stat_buf) < 0) |
| 11463 | return; |
| 11464 | |
| 11465 | /* remove leftover file from previously canceled backup if it exists */ |
| 11466 | unlink(BACKUP_LABEL_OLD); |
| 11467 | |
| 11468 | if (durable_rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD, DEBUG1) != 0) |
| 11469 | { |
| 11470 | ereport(WARNING, |
| 11471 | (errcode_for_file_access(), |
| 11472 | errmsg("online backup mode was not canceled" ), |
| 11473 | errdetail("File \"%s\" could not be renamed to \"%s\": %m." , |
| 11474 | BACKUP_LABEL_FILE, BACKUP_LABEL_OLD))); |
| 11475 | return; |
| 11476 | } |
| 11477 | |
| 11478 | /* if the tablespace_map file is not there, return */ |
| 11479 | if (stat(TABLESPACE_MAP, &stat_buf) < 0) |
| 11480 | { |
| 11481 | ereport(LOG, |
| 11482 | (errmsg("online backup mode canceled" ), |
| 11483 | errdetail("File \"%s\" was renamed to \"%s\"." , |
| 11484 | BACKUP_LABEL_FILE, BACKUP_LABEL_OLD))); |
| 11485 | return; |
| 11486 | } |
| 11487 | |
| 11488 | /* remove leftover file from previously canceled backup if it exists */ |
| 11489 | unlink(TABLESPACE_MAP_OLD); |
| 11490 | |
| 11491 | if (durable_rename(TABLESPACE_MAP, TABLESPACE_MAP_OLD, DEBUG1) == 0) |
| 11492 | { |
| 11493 | ereport(LOG, |
| 11494 | (errmsg("online backup mode canceled" ), |
| 11495 | errdetail("Files \"%s\" and \"%s\" were renamed to " |
| 11496 | "\"%s\" and \"%s\", respectively." , |
| 11497 | BACKUP_LABEL_FILE, TABLESPACE_MAP, |
| 11498 | BACKUP_LABEL_OLD, TABLESPACE_MAP_OLD))); |
| 11499 | } |
| 11500 | else |
| 11501 | { |
| 11502 | ereport(WARNING, |
| 11503 | (errcode_for_file_access(), |
| 11504 | errmsg("online backup mode canceled" ), |
| 11505 | errdetail("File \"%s\" was renamed to \"%s\", but " |
| 11506 | "file \"%s\" could not be renamed to \"%s\": %m." , |
| 11507 | BACKUP_LABEL_FILE, BACKUP_LABEL_OLD, |
| 11508 | TABLESPACE_MAP, TABLESPACE_MAP_OLD))); |
| 11509 | } |
| 11510 | } |
| 11511 | |
| 11512 | /* |
| 11513 | * Read the XLOG page containing RecPtr into readBuf (if not read already). |
| 11514 | * Returns number of bytes read, if the page is read successfully, or -1 |
| 11515 | * in case of errors. When errors occur, they are ereport'ed, but only |
| 11516 | * if they have not been previously reported. |
| 11517 | * |
| 11518 | * This is responsible for restoring files from archive as needed, as well |
| 11519 | * as for waiting for the requested WAL record to arrive in standby mode. |
| 11520 | * |
| 11521 | * 'emode' specifies the log level used for reporting "file not found" or |
| 11522 | * "end of WAL" situations in archive recovery, or in standby mode when a |
| 11523 | * trigger file is found. If set to WARNING or below, XLogPageRead() returns |
| 11524 | * false in those situations, on higher log levels the ereport() won't |
| 11525 | * return. |
| 11526 | * |
| 11527 | * In standby mode, if after a successful return of XLogPageRead() the |
| 11528 | * caller finds the record it's interested in to be broken, it should |
| 11529 | * ereport the error with the level determined by |
| 11530 | * emode_for_corrupt_record(), and then set lastSourceFailed |
| 11531 | * and call XLogPageRead() again with the same arguments. This lets |
| 11532 | * XLogPageRead() to try fetching the record from another source, or to |
| 11533 | * sleep and retry. |
| 11534 | */ |
| 11535 | static int |
| 11536 | (XLogReaderState *xlogreader, XLogRecPtr targetPagePtr, int reqLen, |
| 11537 | XLogRecPtr targetRecPtr, char *readBuf, TimeLineID *readTLI) |
| 11538 | { |
| 11539 | XLogPageReadPrivate *private = |
| 11540 | (XLogPageReadPrivate *) xlogreader->private_data; |
| 11541 | int emode = private->emode; |
| 11542 | uint32 targetPageOff; |
| 11543 | XLogSegNo targetSegNo PG_USED_FOR_ASSERTS_ONLY; |
| 11544 | int r; |
| 11545 | |
| 11546 | XLByteToSeg(targetPagePtr, targetSegNo, wal_segment_size); |
| 11547 | targetPageOff = XLogSegmentOffset(targetPagePtr, wal_segment_size); |
| 11548 | |
| 11549 | /* |
| 11550 | * See if we need to switch to a new segment because the requested record |
| 11551 | * is not in the currently open one. |
| 11552 | */ |
| 11553 | if (readFile >= 0 && |
| 11554 | !XLByteInSeg(targetPagePtr, readSegNo, wal_segment_size)) |
| 11555 | { |
| 11556 | /* |
| 11557 | * Request a restartpoint if we've replayed too much xlog since the |
| 11558 | * last one. |
| 11559 | */ |
| 11560 | if (bgwriterLaunched) |
| 11561 | { |
| 11562 | if (XLogCheckpointNeeded(readSegNo)) |
| 11563 | { |
| 11564 | (void) GetRedoRecPtr(); |
| 11565 | if (XLogCheckpointNeeded(readSegNo)) |
| 11566 | RequestCheckpoint(CHECKPOINT_CAUSE_XLOG); |
| 11567 | } |
| 11568 | } |
| 11569 | |
| 11570 | close(readFile); |
| 11571 | readFile = -1; |
| 11572 | readSource = 0; |
| 11573 | } |
| 11574 | |
| 11575 | XLByteToSeg(targetPagePtr, readSegNo, wal_segment_size); |
| 11576 | |
| 11577 | retry: |
| 11578 | /* See if we need to retrieve more data */ |
| 11579 | if (readFile < 0 || |
| 11580 | (readSource == XLOG_FROM_STREAM && |
| 11581 | receivedUpto < targetPagePtr + reqLen)) |
| 11582 | { |
| 11583 | if (!WaitForWALToBecomeAvailable(targetPagePtr + reqLen, |
| 11584 | private->randAccess, |
| 11585 | private->fetching_ckpt, |
| 11586 | targetRecPtr)) |
| 11587 | { |
| 11588 | if (readFile >= 0) |
| 11589 | close(readFile); |
| 11590 | readFile = -1; |
| 11591 | readLen = 0; |
| 11592 | readSource = 0; |
| 11593 | |
| 11594 | return -1; |
| 11595 | } |
| 11596 | } |
| 11597 | |
| 11598 | /* |
| 11599 | * At this point, we have the right segment open and if we're streaming we |
| 11600 | * know the requested record is in it. |
| 11601 | */ |
| 11602 | Assert(readFile != -1); |
| 11603 | |
| 11604 | /* |
| 11605 | * If the current segment is being streamed from master, calculate how |
| 11606 | * much of the current page we have received already. We know the |
| 11607 | * requested record has been received, but this is for the benefit of |
| 11608 | * future calls, to allow quick exit at the top of this function. |
| 11609 | */ |
| 11610 | if (readSource == XLOG_FROM_STREAM) |
| 11611 | { |
| 11612 | if (((targetPagePtr) / XLOG_BLCKSZ) != (receivedUpto / XLOG_BLCKSZ)) |
| 11613 | readLen = XLOG_BLCKSZ; |
| 11614 | else |
| 11615 | readLen = XLogSegmentOffset(receivedUpto, wal_segment_size) - |
| 11616 | targetPageOff; |
| 11617 | } |
| 11618 | else |
| 11619 | readLen = XLOG_BLCKSZ; |
| 11620 | |
| 11621 | /* Read the requested page */ |
| 11622 | readOff = targetPageOff; |
| 11623 | |
| 11624 | pgstat_report_wait_start(WAIT_EVENT_WAL_READ); |
| 11625 | r = pg_pread(readFile, readBuf, XLOG_BLCKSZ, (off_t) readOff); |
| 11626 | if (r != XLOG_BLCKSZ) |
| 11627 | { |
| 11628 | char fname[MAXFNAMELEN]; |
| 11629 | int save_errno = errno; |
| 11630 | |
| 11631 | pgstat_report_wait_end(); |
| 11632 | XLogFileName(fname, curFileTLI, readSegNo, wal_segment_size); |
| 11633 | if (r < 0) |
| 11634 | { |
| 11635 | errno = save_errno; |
| 11636 | ereport(emode_for_corrupt_record(emode, targetPagePtr + reqLen), |
| 11637 | (errcode_for_file_access(), |
| 11638 | errmsg("could not read from log segment %s, offset %u: %m" , |
| 11639 | fname, readOff))); |
| 11640 | } |
| 11641 | else |
| 11642 | ereport(emode_for_corrupt_record(emode, targetPagePtr + reqLen), |
| 11643 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 11644 | errmsg("could not read from log segment %s, offset %u: read %d of %zu" , |
| 11645 | fname, readOff, r, (Size) XLOG_BLCKSZ))); |
| 11646 | goto next_record_is_invalid; |
| 11647 | } |
| 11648 | pgstat_report_wait_end(); |
| 11649 | |
| 11650 | Assert(targetSegNo == readSegNo); |
| 11651 | Assert(targetPageOff == readOff); |
| 11652 | Assert(reqLen <= readLen); |
| 11653 | |
| 11654 | *readTLI = curFileTLI; |
| 11655 | |
| 11656 | /* |
| 11657 | * Check the page header immediately, so that we can retry immediately if |
| 11658 | * it's not valid. This may seem unnecessary, because XLogReadRecord() |
| 11659 | * validates the page header anyway, and would propagate the failure up to |
| 11660 | * ReadRecord(), which would retry. However, there's a corner case with |
| 11661 | * continuation records, if a record is split across two pages such that |
| 11662 | * we would need to read the two pages from different sources. For |
| 11663 | * example, imagine a scenario where a streaming replica is started up, |
| 11664 | * and replay reaches a record that's split across two WAL segments. The |
| 11665 | * first page is only available locally, in pg_wal, because it's already |
| 11666 | * been recycled in the master. The second page, however, is not present |
| 11667 | * in pg_wal, and we should stream it from the master. There is a recycled |
| 11668 | * WAL segment present in pg_wal, with garbage contents, however. We would |
| 11669 | * read the first page from the local WAL segment, but when reading the |
| 11670 | * second page, we would read the bogus, recycled, WAL segment. If we |
| 11671 | * didn't catch that case here, we would never recover, because |
| 11672 | * ReadRecord() would retry reading the whole record from the beginning. |
| 11673 | * |
| 11674 | * Of course, this only catches errors in the page header, which is what |
| 11675 | * happens in the case of a recycled WAL segment. Other kinds of errors or |
| 11676 | * corruption still has the same problem. But this at least fixes the |
| 11677 | * common case, which can happen as part of normal operation. |
| 11678 | * |
| 11679 | * Validating the page header is cheap enough that doing it twice |
| 11680 | * shouldn't be a big deal from a performance point of view. |
| 11681 | */ |
| 11682 | if (!XLogReaderValidatePageHeader(xlogreader, targetPagePtr, readBuf)) |
| 11683 | { |
| 11684 | /* reset any error XLogReaderValidatePageHeader() might have set */ |
| 11685 | xlogreader->errormsg_buf[0] = '\0'; |
| 11686 | goto next_record_is_invalid; |
| 11687 | } |
| 11688 | |
| 11689 | return readLen; |
| 11690 | |
| 11691 | next_record_is_invalid: |
| 11692 | lastSourceFailed = true; |
| 11693 | |
| 11694 | if (readFile >= 0) |
| 11695 | close(readFile); |
| 11696 | readFile = -1; |
| 11697 | readLen = 0; |
| 11698 | readSource = 0; |
| 11699 | |
| 11700 | /* In standby-mode, keep trying */ |
| 11701 | if (StandbyMode) |
| 11702 | goto retry; |
| 11703 | else |
| 11704 | return -1; |
| 11705 | } |
| 11706 | |
| 11707 | /* |
| 11708 | * Open the WAL segment containing WAL location 'RecPtr'. |
| 11709 | * |
| 11710 | * The segment can be fetched via restore_command, or via walreceiver having |
| 11711 | * streamed the record, or it can already be present in pg_wal. Checking |
| 11712 | * pg_wal is mainly for crash recovery, but it will be polled in standby mode |
| 11713 | * too, in case someone copies a new segment directly to pg_wal. That is not |
| 11714 | * documented or recommended, though. |
| 11715 | * |
| 11716 | * If 'fetching_ckpt' is true, we're fetching a checkpoint record, and should |
| 11717 | * prepare to read WAL starting from RedoStartLSN after this. |
| 11718 | * |
| 11719 | * 'RecPtr' might not point to the beginning of the record we're interested |
| 11720 | * in, it might also point to the page or segment header. In that case, |
| 11721 | * 'tliRecPtr' is the position of the WAL record we're interested in. It is |
| 11722 | * used to decide which timeline to stream the requested WAL from. |
| 11723 | * |
| 11724 | * If the record is not immediately available, the function returns false |
| 11725 | * if we're not in standby mode. In standby mode, waits for it to become |
| 11726 | * available. |
| 11727 | * |
| 11728 | * When the requested record becomes available, the function opens the file |
| 11729 | * containing it (if not open already), and returns true. When end of standby |
| 11730 | * mode is triggered by the user, and there is no more WAL available, returns |
| 11731 | * false. |
| 11732 | */ |
| 11733 | static bool |
| 11734 | WaitForWALToBecomeAvailable(XLogRecPtr RecPtr, bool randAccess, |
| 11735 | bool fetching_ckpt, XLogRecPtr tliRecPtr) |
| 11736 | { |
| 11737 | static TimestampTz last_fail_time = 0; |
| 11738 | TimestampTz now; |
| 11739 | bool streaming_reply_sent = false; |
| 11740 | |
| 11741 | /*------- |
| 11742 | * Standby mode is implemented by a state machine: |
| 11743 | * |
| 11744 | * 1. Read from either archive or pg_wal (XLOG_FROM_ARCHIVE), or just |
| 11745 | * pg_wal (XLOG_FROM_PG_WAL) |
| 11746 | * 2. Check trigger file |
| 11747 | * 3. Read from primary server via walreceiver (XLOG_FROM_STREAM) |
| 11748 | * 4. Rescan timelines |
| 11749 | * 5. Sleep wal_retrieve_retry_interval milliseconds, and loop back to 1. |
| 11750 | * |
| 11751 | * Failure to read from the current source advances the state machine to |
| 11752 | * the next state. |
| 11753 | * |
| 11754 | * 'currentSource' indicates the current state. There are no currentSource |
| 11755 | * values for "check trigger", "rescan timelines", and "sleep" states, |
| 11756 | * those actions are taken when reading from the previous source fails, as |
| 11757 | * part of advancing to the next state. |
| 11758 | *------- |
| 11759 | */ |
| 11760 | if (!InArchiveRecovery) |
| 11761 | currentSource = XLOG_FROM_PG_WAL; |
| 11762 | else if (currentSource == 0) |
| 11763 | currentSource = XLOG_FROM_ARCHIVE; |
| 11764 | |
| 11765 | for (;;) |
| 11766 | { |
| 11767 | int oldSource = currentSource; |
| 11768 | |
| 11769 | /* |
| 11770 | * First check if we failed to read from the current source, and |
| 11771 | * advance the state machine if so. The failure to read might've |
| 11772 | * happened outside this function, e.g when a CRC check fails on a |
| 11773 | * record, or within this loop. |
| 11774 | */ |
| 11775 | if (lastSourceFailed) |
| 11776 | { |
| 11777 | switch (currentSource) |
| 11778 | { |
| 11779 | case XLOG_FROM_ARCHIVE: |
| 11780 | case XLOG_FROM_PG_WAL: |
| 11781 | |
| 11782 | /* |
| 11783 | * Check to see if the trigger file exists. Note that we |
| 11784 | * do this only after failure, so when you create the |
| 11785 | * trigger file, we still finish replaying as much as we |
| 11786 | * can from archive and pg_wal before failover. |
| 11787 | */ |
| 11788 | if (StandbyMode && CheckForStandbyTrigger()) |
| 11789 | { |
| 11790 | ShutdownWalRcv(); |
| 11791 | return false; |
| 11792 | } |
| 11793 | |
| 11794 | /* |
| 11795 | * Not in standby mode, and we've now tried the archive |
| 11796 | * and pg_wal. |
| 11797 | */ |
| 11798 | if (!StandbyMode) |
| 11799 | return false; |
| 11800 | |
| 11801 | /* |
| 11802 | * If primary_conninfo is set, launch walreceiver to try |
| 11803 | * to stream the missing WAL. |
| 11804 | * |
| 11805 | * If fetching_ckpt is true, RecPtr points to the initial |
| 11806 | * checkpoint location. In that case, we use RedoStartLSN |
| 11807 | * as the streaming start position instead of RecPtr, so |
| 11808 | * that when we later jump backwards to start redo at |
| 11809 | * RedoStartLSN, we will have the logs streamed already. |
| 11810 | */ |
| 11811 | if (PrimaryConnInfo && strcmp(PrimaryConnInfo, "" ) != 0) |
| 11812 | { |
| 11813 | XLogRecPtr ptr; |
| 11814 | TimeLineID tli; |
| 11815 | |
| 11816 | if (fetching_ckpt) |
| 11817 | { |
| 11818 | ptr = RedoStartLSN; |
| 11819 | tli = ControlFile->checkPointCopy.ThisTimeLineID; |
| 11820 | } |
| 11821 | else |
| 11822 | { |
| 11823 | ptr = RecPtr; |
| 11824 | |
| 11825 | /* |
| 11826 | * Use the record begin position to determine the |
| 11827 | * TLI, rather than the position we're reading. |
| 11828 | */ |
| 11829 | tli = tliOfPointInHistory(tliRecPtr, expectedTLEs); |
| 11830 | |
| 11831 | if (curFileTLI > 0 && tli < curFileTLI) |
| 11832 | elog(ERROR, "according to history file, WAL location %X/%X belongs to timeline %u, but previous recovered WAL file came from timeline %u" , |
| 11833 | (uint32) (tliRecPtr >> 32), |
| 11834 | (uint32) tliRecPtr, |
| 11835 | tli, curFileTLI); |
| 11836 | } |
| 11837 | curFileTLI = tli; |
| 11838 | RequestXLogStreaming(tli, ptr, PrimaryConnInfo, |
| 11839 | PrimarySlotName); |
| 11840 | receivedUpto = 0; |
| 11841 | } |
| 11842 | |
| 11843 | /* |
| 11844 | * Move to XLOG_FROM_STREAM state in either case. We'll |
| 11845 | * get immediate failure if we didn't launch walreceiver, |
| 11846 | * and move on to the next state. |
| 11847 | */ |
| 11848 | currentSource = XLOG_FROM_STREAM; |
| 11849 | break; |
| 11850 | |
| 11851 | case XLOG_FROM_STREAM: |
| 11852 | |
| 11853 | /* |
| 11854 | * Failure while streaming. Most likely, we got here |
| 11855 | * because streaming replication was terminated, or |
| 11856 | * promotion was triggered. But we also get here if we |
| 11857 | * find an invalid record in the WAL streamed from master, |
| 11858 | * in which case something is seriously wrong. There's |
| 11859 | * little chance that the problem will just go away, but |
| 11860 | * PANIC is not good for availability either, especially |
| 11861 | * in hot standby mode. So, we treat that the same as |
| 11862 | * disconnection, and retry from archive/pg_wal again. The |
| 11863 | * WAL in the archive should be identical to what was |
| 11864 | * streamed, so it's unlikely that it helps, but one can |
| 11865 | * hope... |
| 11866 | */ |
| 11867 | |
| 11868 | /* |
| 11869 | * Before we leave XLOG_FROM_STREAM state, make sure that |
| 11870 | * walreceiver is not active, so that it won't overwrite |
| 11871 | * WAL that we restore from archive. |
| 11872 | */ |
| 11873 | if (WalRcvStreaming()) |
| 11874 | ShutdownWalRcv(); |
| 11875 | |
| 11876 | /* |
| 11877 | * Before we sleep, re-scan for possible new timelines if |
| 11878 | * we were requested to recover to the latest timeline. |
| 11879 | */ |
| 11880 | if (recoveryTargetTimeLineGoal == RECOVERY_TARGET_TIMELINE_LATEST) |
| 11881 | { |
| 11882 | if (rescanLatestTimeLine()) |
| 11883 | { |
| 11884 | currentSource = XLOG_FROM_ARCHIVE; |
| 11885 | break; |
| 11886 | } |
| 11887 | } |
| 11888 | |
| 11889 | /* |
| 11890 | * XLOG_FROM_STREAM is the last state in our state |
| 11891 | * machine, so we've exhausted all the options for |
| 11892 | * obtaining the requested WAL. We're going to loop back |
| 11893 | * and retry from the archive, but if it hasn't been long |
| 11894 | * since last attempt, sleep wal_retrieve_retry_interval |
| 11895 | * milliseconds to avoid busy-waiting. |
| 11896 | */ |
| 11897 | now = GetCurrentTimestamp(); |
| 11898 | if (!TimestampDifferenceExceeds(last_fail_time, now, |
| 11899 | wal_retrieve_retry_interval)) |
| 11900 | { |
| 11901 | long secs, |
| 11902 | wait_time; |
| 11903 | int usecs; |
| 11904 | |
| 11905 | TimestampDifference(last_fail_time, now, &secs, &usecs); |
| 11906 | wait_time = wal_retrieve_retry_interval - |
| 11907 | (secs * 1000 + usecs / 1000); |
| 11908 | |
| 11909 | (void) WaitLatch(&XLogCtl->recoveryWakeupLatch, |
| 11910 | WL_LATCH_SET | WL_TIMEOUT | |
| 11911 | WL_EXIT_ON_PM_DEATH, |
| 11912 | wait_time, |
| 11913 | WAIT_EVENT_RECOVERY_WAL_STREAM); |
| 11914 | ResetLatch(&XLogCtl->recoveryWakeupLatch); |
| 11915 | now = GetCurrentTimestamp(); |
| 11916 | } |
| 11917 | last_fail_time = now; |
| 11918 | currentSource = XLOG_FROM_ARCHIVE; |
| 11919 | break; |
| 11920 | |
| 11921 | default: |
| 11922 | elog(ERROR, "unexpected WAL source %d" , currentSource); |
| 11923 | } |
| 11924 | } |
| 11925 | else if (currentSource == XLOG_FROM_PG_WAL) |
| 11926 | { |
| 11927 | /* |
| 11928 | * We just successfully read a file in pg_wal. We prefer files in |
| 11929 | * the archive over ones in pg_wal, so try the next file again |
| 11930 | * from the archive first. |
| 11931 | */ |
| 11932 | if (InArchiveRecovery) |
| 11933 | currentSource = XLOG_FROM_ARCHIVE; |
| 11934 | } |
| 11935 | |
| 11936 | if (currentSource != oldSource) |
| 11937 | elog(DEBUG2, "switched WAL source from %s to %s after %s" , |
| 11938 | xlogSourceNames[oldSource], xlogSourceNames[currentSource], |
| 11939 | lastSourceFailed ? "failure" : "success" ); |
| 11940 | |
| 11941 | /* |
| 11942 | * We've now handled possible failure. Try to read from the chosen |
| 11943 | * source. |
| 11944 | */ |
| 11945 | lastSourceFailed = false; |
| 11946 | |
| 11947 | switch (currentSource) |
| 11948 | { |
| 11949 | case XLOG_FROM_ARCHIVE: |
| 11950 | case XLOG_FROM_PG_WAL: |
| 11951 | /* Close any old file we might have open. */ |
| 11952 | if (readFile >= 0) |
| 11953 | { |
| 11954 | close(readFile); |
| 11955 | readFile = -1; |
| 11956 | } |
| 11957 | /* Reset curFileTLI if random fetch. */ |
| 11958 | if (randAccess) |
| 11959 | curFileTLI = 0; |
| 11960 | |
| 11961 | /* |
| 11962 | * Try to restore the file from archive, or read an existing |
| 11963 | * file from pg_wal. |
| 11964 | */ |
| 11965 | readFile = XLogFileReadAnyTLI(readSegNo, DEBUG2, |
| 11966 | currentSource == XLOG_FROM_ARCHIVE ? XLOG_FROM_ANY : |
| 11967 | currentSource); |
| 11968 | if (readFile >= 0) |
| 11969 | return true; /* success! */ |
| 11970 | |
| 11971 | /* |
| 11972 | * Nope, not found in archive or pg_wal. |
| 11973 | */ |
| 11974 | lastSourceFailed = true; |
| 11975 | break; |
| 11976 | |
| 11977 | case XLOG_FROM_STREAM: |
| 11978 | { |
| 11979 | bool havedata; |
| 11980 | |
| 11981 | /* |
| 11982 | * Check if WAL receiver is still active. |
| 11983 | */ |
| 11984 | if (!WalRcvStreaming()) |
| 11985 | { |
| 11986 | lastSourceFailed = true; |
| 11987 | break; |
| 11988 | } |
| 11989 | |
| 11990 | /* |
| 11991 | * Walreceiver is active, so see if new data has arrived. |
| 11992 | * |
| 11993 | * We only advance XLogReceiptTime when we obtain fresh |
| 11994 | * WAL from walreceiver and observe that we had already |
| 11995 | * processed everything before the most recent "chunk" |
| 11996 | * that it flushed to disk. In steady state where we are |
| 11997 | * keeping up with the incoming data, XLogReceiptTime will |
| 11998 | * be updated on each cycle. When we are behind, |
| 11999 | * XLogReceiptTime will not advance, so the grace time |
| 12000 | * allotted to conflicting queries will decrease. |
| 12001 | */ |
| 12002 | if (RecPtr < receivedUpto) |
| 12003 | havedata = true; |
| 12004 | else |
| 12005 | { |
| 12006 | XLogRecPtr latestChunkStart; |
| 12007 | |
| 12008 | receivedUpto = GetWalRcvWriteRecPtr(&latestChunkStart, &receiveTLI); |
| 12009 | if (RecPtr < receivedUpto && receiveTLI == curFileTLI) |
| 12010 | { |
| 12011 | havedata = true; |
| 12012 | if (latestChunkStart <= RecPtr) |
| 12013 | { |
| 12014 | XLogReceiptTime = GetCurrentTimestamp(); |
| 12015 | SetCurrentChunkStartTime(XLogReceiptTime); |
| 12016 | } |
| 12017 | } |
| 12018 | else |
| 12019 | havedata = false; |
| 12020 | } |
| 12021 | if (havedata) |
| 12022 | { |
| 12023 | /* |
| 12024 | * Great, streamed far enough. Open the file if it's |
| 12025 | * not open already. Also read the timeline history |
| 12026 | * file if we haven't initialized timeline history |
| 12027 | * yet; it should be streamed over and present in |
| 12028 | * pg_wal by now. Use XLOG_FROM_STREAM so that source |
| 12029 | * info is set correctly and XLogReceiptTime isn't |
| 12030 | * changed. |
| 12031 | */ |
| 12032 | if (readFile < 0) |
| 12033 | { |
| 12034 | if (!expectedTLEs) |
| 12035 | expectedTLEs = readTimeLineHistory(receiveTLI); |
| 12036 | readFile = XLogFileRead(readSegNo, PANIC, |
| 12037 | receiveTLI, |
| 12038 | XLOG_FROM_STREAM, false); |
| 12039 | Assert(readFile >= 0); |
| 12040 | } |
| 12041 | else |
| 12042 | { |
| 12043 | /* just make sure source info is correct... */ |
| 12044 | readSource = XLOG_FROM_STREAM; |
| 12045 | XLogReceiptSource = XLOG_FROM_STREAM; |
| 12046 | return true; |
| 12047 | } |
| 12048 | break; |
| 12049 | } |
| 12050 | |
| 12051 | /* |
| 12052 | * Data not here yet. Check for trigger, then wait for |
| 12053 | * walreceiver to wake us up when new WAL arrives. |
| 12054 | */ |
| 12055 | if (CheckForStandbyTrigger()) |
| 12056 | { |
| 12057 | /* |
| 12058 | * Note that we don't "return false" immediately here. |
| 12059 | * After being triggered, we still want to replay all |
| 12060 | * the WAL that was already streamed. It's in pg_wal |
| 12061 | * now, so we just treat this as a failure, and the |
| 12062 | * state machine will move on to replay the streamed |
| 12063 | * WAL from pg_wal, and then recheck the trigger and |
| 12064 | * exit replay. |
| 12065 | */ |
| 12066 | lastSourceFailed = true; |
| 12067 | break; |
| 12068 | } |
| 12069 | |
| 12070 | /* |
| 12071 | * Since we have replayed everything we have received so |
| 12072 | * far and are about to start waiting for more WAL, let's |
| 12073 | * tell the upstream server our replay location now so |
| 12074 | * that pg_stat_replication doesn't show stale |
| 12075 | * information. |
| 12076 | */ |
| 12077 | if (!streaming_reply_sent) |
| 12078 | { |
| 12079 | WalRcvForceReply(); |
| 12080 | streaming_reply_sent = true; |
| 12081 | } |
| 12082 | |
| 12083 | /* |
| 12084 | * Wait for more WAL to arrive. Time out after 5 seconds |
| 12085 | * to react to a trigger file promptly and to check if the |
| 12086 | * WAL receiver is still active. |
| 12087 | */ |
| 12088 | (void) WaitLatch(&XLogCtl->recoveryWakeupLatch, |
| 12089 | WL_LATCH_SET | WL_TIMEOUT | |
| 12090 | WL_EXIT_ON_PM_DEATH, |
| 12091 | 5000L, WAIT_EVENT_RECOVERY_WAL_ALL); |
| 12092 | ResetLatch(&XLogCtl->recoveryWakeupLatch); |
| 12093 | break; |
| 12094 | } |
| 12095 | |
| 12096 | default: |
| 12097 | elog(ERROR, "unexpected WAL source %d" , currentSource); |
| 12098 | } |
| 12099 | |
| 12100 | /* |
| 12101 | * This possibly-long loop needs to handle interrupts of startup |
| 12102 | * process. |
| 12103 | */ |
| 12104 | HandleStartupProcInterrupts(); |
| 12105 | } |
| 12106 | |
| 12107 | return false; /* not reached */ |
| 12108 | } |
| 12109 | |
| 12110 | /* |
| 12111 | * Determine what log level should be used to report a corrupt WAL record |
| 12112 | * in the current WAL page, previously read by XLogPageRead(). |
| 12113 | * |
| 12114 | * 'emode' is the error mode that would be used to report a file-not-found |
| 12115 | * or legitimate end-of-WAL situation. Generally, we use it as-is, but if |
| 12116 | * we're retrying the exact same record that we've tried previously, only |
| 12117 | * complain the first time to keep the noise down. However, we only do when |
| 12118 | * reading from pg_wal, because we don't expect any invalid records in archive |
| 12119 | * or in records streamed from master. Files in the archive should be complete, |
| 12120 | * and we should never hit the end of WAL because we stop and wait for more WAL |
| 12121 | * to arrive before replaying it. |
| 12122 | * |
| 12123 | * NOTE: This function remembers the RecPtr value it was last called with, |
| 12124 | * to suppress repeated messages about the same record. Only call this when |
| 12125 | * you are about to ereport(), or you might cause a later message to be |
| 12126 | * erroneously suppressed. |
| 12127 | */ |
| 12128 | static int |
| 12129 | emode_for_corrupt_record(int emode, XLogRecPtr RecPtr) |
| 12130 | { |
| 12131 | static XLogRecPtr lastComplaint = 0; |
| 12132 | |
| 12133 | if (readSource == XLOG_FROM_PG_WAL && emode == LOG) |
| 12134 | { |
| 12135 | if (RecPtr == lastComplaint) |
| 12136 | emode = DEBUG1; |
| 12137 | else |
| 12138 | lastComplaint = RecPtr; |
| 12139 | } |
| 12140 | return emode; |
| 12141 | } |
| 12142 | |
| 12143 | /* |
| 12144 | * Check to see whether the user-specified trigger file exists and whether a |
| 12145 | * promote request has arrived. If either condition holds, return true. |
| 12146 | */ |
| 12147 | static bool |
| 12148 | CheckForStandbyTrigger(void) |
| 12149 | { |
| 12150 | struct stat stat_buf; |
| 12151 | static bool triggered = false; |
| 12152 | |
| 12153 | if (triggered) |
| 12154 | return true; |
| 12155 | |
| 12156 | if (IsPromoteTriggered()) |
| 12157 | { |
| 12158 | /* |
| 12159 | * In 9.1 and 9.2 the postmaster unlinked the promote file inside the |
| 12160 | * signal handler. It now leaves the file in place and lets the |
| 12161 | * Startup process do the unlink. This allows Startup to know whether |
| 12162 | * it should create a full checkpoint before starting up (fallback |
| 12163 | * mode). Fast promotion takes precedence. |
| 12164 | */ |
| 12165 | if (stat(PROMOTE_SIGNAL_FILE, &stat_buf) == 0) |
| 12166 | { |
| 12167 | unlink(PROMOTE_SIGNAL_FILE); |
| 12168 | unlink(FALLBACK_PROMOTE_SIGNAL_FILE); |
| 12169 | fast_promote = true; |
| 12170 | } |
| 12171 | else if (stat(FALLBACK_PROMOTE_SIGNAL_FILE, &stat_buf) == 0) |
| 12172 | { |
| 12173 | unlink(FALLBACK_PROMOTE_SIGNAL_FILE); |
| 12174 | fast_promote = false; |
| 12175 | } |
| 12176 | |
| 12177 | ereport(LOG, (errmsg("received promote request" ))); |
| 12178 | |
| 12179 | ResetPromoteTriggered(); |
| 12180 | triggered = true; |
| 12181 | return true; |
| 12182 | } |
| 12183 | |
| 12184 | if (PromoteTriggerFile == NULL || strcmp(PromoteTriggerFile, "" ) == 0) |
| 12185 | return false; |
| 12186 | |
| 12187 | if (stat(PromoteTriggerFile, &stat_buf) == 0) |
| 12188 | { |
| 12189 | ereport(LOG, |
| 12190 | (errmsg("promote trigger file found: %s" , PromoteTriggerFile))); |
| 12191 | unlink(PromoteTriggerFile); |
| 12192 | triggered = true; |
| 12193 | fast_promote = true; |
| 12194 | return true; |
| 12195 | } |
| 12196 | else if (errno != ENOENT) |
| 12197 | ereport(ERROR, |
| 12198 | (errcode_for_file_access(), |
| 12199 | errmsg("could not stat promote trigger file \"%s\": %m" , |
| 12200 | PromoteTriggerFile))); |
| 12201 | |
| 12202 | return false; |
| 12203 | } |
| 12204 | |
| 12205 | /* |
| 12206 | * Remove the files signaling a standby promotion request. |
| 12207 | */ |
| 12208 | void |
| 12209 | RemovePromoteSignalFiles(void) |
| 12210 | { |
| 12211 | unlink(PROMOTE_SIGNAL_FILE); |
| 12212 | unlink(FALLBACK_PROMOTE_SIGNAL_FILE); |
| 12213 | } |
| 12214 | |
| 12215 | /* |
| 12216 | * Check to see if a promote request has arrived. Should be |
| 12217 | * called by postmaster after receiving SIGUSR1. |
| 12218 | */ |
| 12219 | bool |
| 12220 | CheckPromoteSignal(void) |
| 12221 | { |
| 12222 | struct stat stat_buf; |
| 12223 | |
| 12224 | if (stat(PROMOTE_SIGNAL_FILE, &stat_buf) == 0 || |
| 12225 | stat(FALLBACK_PROMOTE_SIGNAL_FILE, &stat_buf) == 0) |
| 12226 | return true; |
| 12227 | |
| 12228 | return false; |
| 12229 | } |
| 12230 | |
| 12231 | /* |
| 12232 | * Wake up startup process to replay newly arrived WAL, or to notice that |
| 12233 | * failover has been requested. |
| 12234 | */ |
| 12235 | void |
| 12236 | WakeupRecovery(void) |
| 12237 | { |
| 12238 | SetLatch(&XLogCtl->recoveryWakeupLatch); |
| 12239 | } |
| 12240 | |
| 12241 | /* |
| 12242 | * Update the WalWriterSleeping flag. |
| 12243 | */ |
| 12244 | void |
| 12245 | SetWalWriterSleeping(bool sleeping) |
| 12246 | { |
| 12247 | SpinLockAcquire(&XLogCtl->info_lck); |
| 12248 | XLogCtl->WalWriterSleeping = sleeping; |
| 12249 | SpinLockRelease(&XLogCtl->info_lck); |
| 12250 | } |
| 12251 | |
| 12252 | /* |
| 12253 | * Schedule a walreceiver wakeup in the main recovery loop. |
| 12254 | */ |
| 12255 | void |
| 12256 | XLogRequestWalReceiverReply(void) |
| 12257 | { |
| 12258 | doRequestWalReceiverReply = true; |
| 12259 | } |
| 12260 | |