1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * xlog.c |
4 | * PostgreSQL write-ahead log manager |
5 | * |
6 | * |
7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
8 | * Portions Copyright (c) 1994, Regents of the University of California |
9 | * |
10 | * src/backend/access/transam/xlog.c |
11 | * |
12 | *------------------------------------------------------------------------- |
13 | */ |
14 | |
15 | #include "postgres.h" |
16 | |
17 | #include <ctype.h> |
18 | #include <math.h> |
19 | #include <time.h> |
20 | #include <fcntl.h> |
21 | #include <sys/stat.h> |
22 | #include <sys/time.h> |
23 | #include <unistd.h> |
24 | |
25 | #include "access/clog.h" |
26 | #include "access/commit_ts.h" |
27 | #include "access/multixact.h" |
28 | #include "access/rewriteheap.h" |
29 | #include "access/subtrans.h" |
30 | #include "access/timeline.h" |
31 | #include "access/transam.h" |
32 | #include "access/tuptoaster.h" |
33 | #include "access/twophase.h" |
34 | #include "access/xact.h" |
35 | #include "access/xlog_internal.h" |
36 | #include "access/xloginsert.h" |
37 | #include "access/xlogreader.h" |
38 | #include "access/xlogutils.h" |
39 | #include "catalog/catversion.h" |
40 | #include "catalog/pg_control.h" |
41 | #include "catalog/pg_database.h" |
42 | #include "commands/tablespace.h" |
43 | #include "common/controldata_utils.h" |
44 | #include "miscadmin.h" |
45 | #include "pgstat.h" |
46 | #include "port/atomics.h" |
47 | #include "postmaster/bgwriter.h" |
48 | #include "postmaster/walwriter.h" |
49 | #include "postmaster/startup.h" |
50 | #include "replication/basebackup.h" |
51 | #include "replication/logical.h" |
52 | #include "replication/slot.h" |
53 | #include "replication/origin.h" |
54 | #include "replication/snapbuild.h" |
55 | #include "replication/walreceiver.h" |
56 | #include "replication/walsender.h" |
57 | #include "storage/bufmgr.h" |
58 | #include "storage/fd.h" |
59 | #include "storage/ipc.h" |
60 | #include "storage/large_object.h" |
61 | #include "storage/latch.h" |
62 | #include "storage/pmsignal.h" |
63 | #include "storage/predicate.h" |
64 | #include "storage/proc.h" |
65 | #include "storage/procarray.h" |
66 | #include "storage/reinit.h" |
67 | #include "storage/smgr.h" |
68 | #include "storage/spin.h" |
69 | #include "storage/sync.h" |
70 | #include "utils/builtins.h" |
71 | #include "utils/guc.h" |
72 | #include "utils/memutils.h" |
73 | #include "utils/ps_status.h" |
74 | #include "utils/relmapper.h" |
75 | #include "utils/snapmgr.h" |
76 | #include "utils/timestamp.h" |
77 | #include "pg_trace.h" |
78 | |
79 | extern uint32 bootstrap_data_checksum_version; |
80 | |
81 | /* Unsupported old recovery command file names (relative to $PGDATA) */ |
82 | #define RECOVERY_COMMAND_FILE "recovery.conf" |
83 | #define RECOVERY_COMMAND_DONE "recovery.done" |
84 | |
85 | /* User-settable parameters */ |
86 | int max_wal_size_mb = 1024; /* 1 GB */ |
87 | int min_wal_size_mb = 80; /* 80 MB */ |
88 | int wal_keep_segments = 0; |
89 | int XLOGbuffers = -1; |
90 | int XLogArchiveTimeout = 0; |
91 | int XLogArchiveMode = ARCHIVE_MODE_OFF; |
92 | char *XLogArchiveCommand = NULL; |
93 | bool EnableHotStandby = false; |
94 | bool fullPageWrites = true; |
95 | bool wal_log_hints = false; |
96 | bool wal_compression = false; |
97 | char *wal_consistency_checking_string = NULL; |
98 | bool *wal_consistency_checking = NULL; |
99 | bool wal_init_zero = true; |
100 | bool wal_recycle = true; |
101 | bool log_checkpoints = false; |
102 | int sync_method = DEFAULT_SYNC_METHOD; |
103 | int wal_level = WAL_LEVEL_MINIMAL; |
104 | int CommitDelay = 0; /* precommit delay in microseconds */ |
105 | int CommitSiblings = 5; /* # concurrent xacts needed to sleep */ |
106 | int wal_retrieve_retry_interval = 5000; |
107 | |
108 | #ifdef WAL_DEBUG |
109 | bool XLOG_DEBUG = false; |
110 | #endif |
111 | |
112 | int wal_segment_size = DEFAULT_XLOG_SEG_SIZE; |
113 | |
114 | /* |
115 | * Number of WAL insertion locks to use. A higher value allows more insertions |
116 | * to happen concurrently, but adds some CPU overhead to flushing the WAL, |
117 | * which needs to iterate all the locks. |
118 | */ |
119 | #define NUM_XLOGINSERT_LOCKS 8 |
120 | |
121 | /* |
122 | * Max distance from last checkpoint, before triggering a new xlog-based |
123 | * checkpoint. |
124 | */ |
125 | int CheckPointSegments; |
126 | |
127 | /* Estimated distance between checkpoints, in bytes */ |
128 | static double CheckPointDistanceEstimate = 0; |
129 | static double PrevCheckPointDistance = 0; |
130 | |
131 | /* |
132 | * GUC support |
133 | */ |
134 | const struct config_enum_entry sync_method_options[] = { |
135 | {"fsync" , SYNC_METHOD_FSYNC, false}, |
136 | #ifdef HAVE_FSYNC_WRITETHROUGH |
137 | {"fsync_writethrough" , SYNC_METHOD_FSYNC_WRITETHROUGH, false}, |
138 | #endif |
139 | #ifdef HAVE_FDATASYNC |
140 | {"fdatasync" , SYNC_METHOD_FDATASYNC, false}, |
141 | #endif |
142 | #ifdef OPEN_SYNC_FLAG |
143 | {"open_sync" , SYNC_METHOD_OPEN, false}, |
144 | #endif |
145 | #ifdef OPEN_DATASYNC_FLAG |
146 | {"open_datasync" , SYNC_METHOD_OPEN_DSYNC, false}, |
147 | #endif |
148 | {NULL, 0, false} |
149 | }; |
150 | |
151 | |
152 | /* |
153 | * Although only "on", "off", and "always" are documented, |
154 | * we accept all the likely variants of "on" and "off". |
155 | */ |
156 | const struct config_enum_entry archive_mode_options[] = { |
157 | {"always" , ARCHIVE_MODE_ALWAYS, false}, |
158 | {"on" , ARCHIVE_MODE_ON, false}, |
159 | {"off" , ARCHIVE_MODE_OFF, false}, |
160 | {"true" , ARCHIVE_MODE_ON, true}, |
161 | {"false" , ARCHIVE_MODE_OFF, true}, |
162 | {"yes" , ARCHIVE_MODE_ON, true}, |
163 | {"no" , ARCHIVE_MODE_OFF, true}, |
164 | {"1" , ARCHIVE_MODE_ON, true}, |
165 | {"0" , ARCHIVE_MODE_OFF, true}, |
166 | {NULL, 0, false} |
167 | }; |
168 | |
169 | const struct config_enum_entry recovery_target_action_options[] = { |
170 | {"pause" , RECOVERY_TARGET_ACTION_PAUSE, false}, |
171 | {"promote" , RECOVERY_TARGET_ACTION_PROMOTE, false}, |
172 | {"shutdown" , RECOVERY_TARGET_ACTION_SHUTDOWN, false}, |
173 | {NULL, 0, false} |
174 | }; |
175 | |
176 | /* |
177 | * Statistics for current checkpoint are collected in this global struct. |
178 | * Because only the checkpointer or a stand-alone backend can perform |
179 | * checkpoints, this will be unused in normal backends. |
180 | */ |
181 | CheckpointStatsData CheckpointStats; |
182 | |
183 | /* |
184 | * ThisTimeLineID will be same in all backends --- it identifies current |
185 | * WAL timeline for the database system. |
186 | */ |
187 | TimeLineID ThisTimeLineID = 0; |
188 | |
189 | /* |
190 | * Are we doing recovery from XLOG? |
191 | * |
192 | * This is only ever true in the startup process; it should be read as meaning |
193 | * "this process is replaying WAL records", rather than "the system is in |
194 | * recovery mode". It should be examined primarily by functions that need |
195 | * to act differently when called from a WAL redo function (e.g., to skip WAL |
196 | * logging). To check whether the system is in recovery regardless of which |
197 | * process you're running in, use RecoveryInProgress() but only after shared |
198 | * memory startup and lock initialization. |
199 | */ |
200 | bool InRecovery = false; |
201 | |
202 | /* Are we in Hot Standby mode? Only valid in startup process, see xlog.h */ |
203 | HotStandbyState standbyState = STANDBY_DISABLED; |
204 | |
205 | static XLogRecPtr LastRec; |
206 | |
207 | /* Local copy of WalRcv->receivedUpto */ |
208 | static XLogRecPtr receivedUpto = 0; |
209 | static TimeLineID receiveTLI = 0; |
210 | |
211 | /* |
212 | * During recovery, lastFullPageWrites keeps track of full_page_writes that |
213 | * the replayed WAL records indicate. It's initialized with full_page_writes |
214 | * that the recovery starting checkpoint record indicates, and then updated |
215 | * each time XLOG_FPW_CHANGE record is replayed. |
216 | */ |
217 | static bool lastFullPageWrites; |
218 | |
219 | /* |
220 | * Local copy of SharedRecoveryInProgress variable. True actually means "not |
221 | * known, need to check the shared state". |
222 | */ |
223 | static bool LocalRecoveryInProgress = true; |
224 | |
225 | /* |
226 | * Local copy of SharedHotStandbyActive variable. False actually means "not |
227 | * known, need to check the shared state". |
228 | */ |
229 | static bool LocalHotStandbyActive = false; |
230 | |
231 | /* |
232 | * Local state for XLogInsertAllowed(): |
233 | * 1: unconditionally allowed to insert XLOG |
234 | * 0: unconditionally not allowed to insert XLOG |
235 | * -1: must check RecoveryInProgress(); disallow until it is false |
236 | * Most processes start with -1 and transition to 1 after seeing that recovery |
237 | * is not in progress. But we can also force the value for special cases. |
238 | * The coding in XLogInsertAllowed() depends on the first two of these states |
239 | * being numerically the same as bool true and false. |
240 | */ |
241 | static int LocalXLogInsertAllowed = -1; |
242 | |
243 | /* |
244 | * When ArchiveRecoveryRequested is set, archive recovery was requested, |
245 | * ie. signal files were present. When InArchiveRecovery is set, we are |
246 | * currently recovering using offline XLOG archives. These variables are only |
247 | * valid in the startup process. |
248 | * |
249 | * When ArchiveRecoveryRequested is true, but InArchiveRecovery is false, we're |
250 | * currently performing crash recovery using only XLOG files in pg_wal, but |
251 | * will switch to using offline XLOG archives as soon as we reach the end of |
252 | * WAL in pg_wal. |
253 | */ |
254 | bool ArchiveRecoveryRequested = false; |
255 | bool InArchiveRecovery = false; |
256 | |
257 | static bool standby_signal_file_found = false; |
258 | static bool recovery_signal_file_found = false; |
259 | |
260 | /* Was the last xlog file restored from archive, or local? */ |
261 | static bool restoredFromArchive = false; |
262 | |
263 | /* Buffers dedicated to consistency checks of size BLCKSZ */ |
264 | static char *replay_image_masked = NULL; |
265 | static char *master_image_masked = NULL; |
266 | |
267 | /* options formerly taken from recovery.conf for archive recovery */ |
268 | char *recoveryRestoreCommand = NULL; |
269 | char *recoveryEndCommand = NULL; |
270 | char *archiveCleanupCommand = NULL; |
271 | RecoveryTargetType recoveryTarget = RECOVERY_TARGET_UNSET; |
272 | bool recoveryTargetInclusive = true; |
273 | int recoveryTargetAction = RECOVERY_TARGET_ACTION_PAUSE; |
274 | TransactionId recoveryTargetXid; |
275 | char *recovery_target_time_string; |
276 | static TimestampTz recoveryTargetTime; |
277 | const char *recoveryTargetName; |
278 | XLogRecPtr recoveryTargetLSN; |
279 | int recovery_min_apply_delay = 0; |
280 | TimestampTz recoveryDelayUntilTime; |
281 | |
282 | /* options formerly taken from recovery.conf for XLOG streaming */ |
283 | bool StandbyModeRequested = false; |
284 | char *PrimaryConnInfo = NULL; |
285 | char *PrimarySlotName = NULL; |
286 | char *PromoteTriggerFile = NULL; |
287 | |
288 | /* are we currently in standby mode? */ |
289 | bool StandbyMode = false; |
290 | |
291 | /* whether request for fast promotion has been made yet */ |
292 | static bool fast_promote = false; |
293 | |
294 | /* |
295 | * if recoveryStopsBefore/After returns true, it saves information of the stop |
296 | * point here |
297 | */ |
298 | static TransactionId recoveryStopXid; |
299 | static TimestampTz recoveryStopTime; |
300 | static XLogRecPtr recoveryStopLSN; |
301 | static char recoveryStopName[MAXFNAMELEN]; |
302 | static bool recoveryStopAfter; |
303 | |
304 | /* |
305 | * During normal operation, the only timeline we care about is ThisTimeLineID. |
306 | * During recovery, however, things are more complicated. To simplify life |
307 | * for rmgr code, we keep ThisTimeLineID set to the "current" timeline as we |
308 | * scan through the WAL history (that is, it is the line that was active when |
309 | * the currently-scanned WAL record was generated). We also need these |
310 | * timeline values: |
311 | * |
312 | * recoveryTargetTimeLineGoal: what the user requested, if any |
313 | * |
314 | * recoveryTargetTLIRequested: numeric value of requested timeline, if constant |
315 | * |
316 | * recoveryTargetTLI: the currently understood target timeline; changes |
317 | * |
318 | * expectedTLEs: a list of TimeLineHistoryEntries for recoveryTargetTLI and the timelines of |
319 | * its known parents, newest first (so recoveryTargetTLI is always the |
320 | * first list member). Only these TLIs are expected to be seen in the WAL |
321 | * segments we read, and indeed only these TLIs will be considered as |
322 | * candidate WAL files to open at all. |
323 | * |
324 | * curFileTLI: the TLI appearing in the name of the current input WAL file. |
325 | * (This is not necessarily the same as ThisTimeLineID, because we could |
326 | * be scanning data that was copied from an ancestor timeline when the current |
327 | * file was created.) During a sequential scan we do not allow this value |
328 | * to decrease. |
329 | */ |
330 | RecoveryTargetTimeLineGoal recoveryTargetTimeLineGoal = RECOVERY_TARGET_TIMELINE_LATEST; |
331 | TimeLineID recoveryTargetTLIRequested = 0; |
332 | TimeLineID recoveryTargetTLI = 0; |
333 | static List *expectedTLEs; |
334 | static TimeLineID curFileTLI; |
335 | |
336 | /* |
337 | * ProcLastRecPtr points to the start of the last XLOG record inserted by the |
338 | * current backend. It is updated for all inserts. XactLastRecEnd points to |
339 | * end+1 of the last record, and is reset when we end a top-level transaction, |
340 | * or start a new one; so it can be used to tell if the current transaction has |
341 | * created any XLOG records. |
342 | * |
343 | * While in parallel mode, this may not be fully up to date. When committing, |
344 | * a transaction can assume this covers all xlog records written either by the |
345 | * user backend or by any parallel worker which was present at any point during |
346 | * the transaction. But when aborting, or when still in parallel mode, other |
347 | * parallel backends may have written WAL records at later LSNs than the value |
348 | * stored here. The parallel leader advances its own copy, when necessary, |
349 | * in WaitForParallelWorkersToFinish. |
350 | */ |
351 | XLogRecPtr ProcLastRecPtr = InvalidXLogRecPtr; |
352 | XLogRecPtr XactLastRecEnd = InvalidXLogRecPtr; |
353 | XLogRecPtr XactLastCommitEnd = InvalidXLogRecPtr; |
354 | |
355 | /* |
356 | * RedoRecPtr is this backend's local copy of the REDO record pointer |
357 | * (which is almost but not quite the same as a pointer to the most recent |
358 | * CHECKPOINT record). We update this from the shared-memory copy, |
359 | * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we |
360 | * hold an insertion lock). See XLogInsertRecord for details. We are also |
361 | * allowed to update from XLogCtl->RedoRecPtr if we hold the info_lck; |
362 | * see GetRedoRecPtr. A freshly spawned backend obtains the value during |
363 | * InitXLOGAccess. |
364 | */ |
365 | static XLogRecPtr RedoRecPtr; |
366 | |
367 | /* |
368 | * doPageWrites is this backend's local copy of (forcePageWrites || |
369 | * fullPageWrites). It is used together with RedoRecPtr to decide whether |
370 | * a full-page image of a page need to be taken. |
371 | */ |
372 | static bool doPageWrites; |
373 | |
374 | /* Has the recovery code requested a walreceiver wakeup? */ |
375 | static bool doRequestWalReceiverReply; |
376 | |
377 | /* |
378 | * RedoStartLSN points to the checkpoint's REDO location which is specified |
379 | * in a backup label file, backup history file or control file. In standby |
380 | * mode, XLOG streaming usually starts from the position where an invalid |
381 | * record was found. But if we fail to read even the initial checkpoint |
382 | * record, we use the REDO location instead of the checkpoint location as |
383 | * the start position of XLOG streaming. Otherwise we would have to jump |
384 | * backwards to the REDO location after reading the checkpoint record, |
385 | * because the REDO record can precede the checkpoint record. |
386 | */ |
387 | static XLogRecPtr RedoStartLSN = InvalidXLogRecPtr; |
388 | |
389 | /*---------- |
390 | * Shared-memory data structures for XLOG control |
391 | * |
392 | * LogwrtRqst indicates a byte position that we need to write and/or fsync |
393 | * the log up to (all records before that point must be written or fsynced). |
394 | * LogwrtResult indicates the byte positions we have already written/fsynced. |
395 | * These structs are identical but are declared separately to indicate their |
396 | * slightly different functions. |
397 | * |
398 | * To read XLogCtl->LogwrtResult, you must hold either info_lck or |
399 | * WALWriteLock. To update it, you need to hold both locks. The point of |
400 | * this arrangement is that the value can be examined by code that already |
401 | * holds WALWriteLock without needing to grab info_lck as well. In addition |
402 | * to the shared variable, each backend has a private copy of LogwrtResult, |
403 | * which is updated when convenient. |
404 | * |
405 | * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst |
406 | * (protected by info_lck), but we don't need to cache any copies of it. |
407 | * |
408 | * info_lck is only held long enough to read/update the protected variables, |
409 | * so it's a plain spinlock. The other locks are held longer (potentially |
410 | * over I/O operations), so we use LWLocks for them. These locks are: |
411 | * |
412 | * WALBufMappingLock: must be held to replace a page in the WAL buffer cache. |
413 | * It is only held while initializing and changing the mapping. If the |
414 | * contents of the buffer being replaced haven't been written yet, the mapping |
415 | * lock is released while the write is done, and reacquired afterwards. |
416 | * |
417 | * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or |
418 | * XLogFlush). |
419 | * |
420 | * ControlFileLock: must be held to read/update control file or create |
421 | * new log file. |
422 | * |
423 | * CheckpointLock: must be held to do a checkpoint or restartpoint (ensures |
424 | * only one checkpointer at a time; currently, with all checkpoints done by |
425 | * the checkpointer, this is just pro forma). |
426 | * |
427 | *---------- |
428 | */ |
429 | |
430 | typedef struct XLogwrtRqst |
431 | { |
432 | XLogRecPtr Write; /* last byte + 1 to write out */ |
433 | XLogRecPtr Flush; /* last byte + 1 to flush */ |
434 | } XLogwrtRqst; |
435 | |
436 | typedef struct XLogwrtResult |
437 | { |
438 | XLogRecPtr Write; /* last byte + 1 written out */ |
439 | XLogRecPtr Flush; /* last byte + 1 flushed */ |
440 | } XLogwrtResult; |
441 | |
442 | /* |
443 | * Inserting to WAL is protected by a small fixed number of WAL insertion |
444 | * locks. To insert to the WAL, you must hold one of the locks - it doesn't |
445 | * matter which one. To lock out other concurrent insertions, you must hold |
446 | * of them. Each WAL insertion lock consists of a lightweight lock, plus an |
447 | * indicator of how far the insertion has progressed (insertingAt). |
448 | * |
449 | * The insertingAt values are read when a process wants to flush WAL from |
450 | * the in-memory buffers to disk, to check that all the insertions to the |
451 | * region the process is about to write out have finished. You could simply |
452 | * wait for all currently in-progress insertions to finish, but the |
453 | * insertingAt indicator allows you to ignore insertions to later in the WAL, |
454 | * so that you only wait for the insertions that are modifying the buffers |
455 | * you're about to write out. |
456 | * |
457 | * This isn't just an optimization. If all the WAL buffers are dirty, an |
458 | * inserter that's holding a WAL insert lock might need to evict an old WAL |
459 | * buffer, which requires flushing the WAL. If it's possible for an inserter |
460 | * to block on another inserter unnecessarily, deadlock can arise when two |
461 | * inserters holding a WAL insert lock wait for each other to finish their |
462 | * insertion. |
463 | * |
464 | * Small WAL records that don't cross a page boundary never update the value, |
465 | * the WAL record is just copied to the page and the lock is released. But |
466 | * to avoid the deadlock-scenario explained above, the indicator is always |
467 | * updated before sleeping while holding an insertion lock. |
468 | * |
469 | * lastImportantAt contains the LSN of the last important WAL record inserted |
470 | * using a given lock. This value is used to detect if there has been |
471 | * important WAL activity since the last time some action, like a checkpoint, |
472 | * was performed - allowing to not repeat the action if not. The LSN is |
473 | * updated for all insertions, unless the XLOG_MARK_UNIMPORTANT flag was |
474 | * set. lastImportantAt is never cleared, only overwritten by the LSN of newer |
475 | * records. Tracking the WAL activity directly in WALInsertLock has the |
476 | * advantage of not needing any additional locks to update the value. |
477 | */ |
478 | typedef struct |
479 | { |
480 | LWLock lock; |
481 | XLogRecPtr insertingAt; |
482 | XLogRecPtr lastImportantAt; |
483 | } WALInsertLock; |
484 | |
485 | /* |
486 | * All the WAL insertion locks are allocated as an array in shared memory. We |
487 | * force the array stride to be a power of 2, which saves a few cycles in |
488 | * indexing, but more importantly also ensures that individual slots don't |
489 | * cross cache line boundaries. (Of course, we have to also ensure that the |
490 | * array start address is suitably aligned.) |
491 | */ |
492 | typedef union WALInsertLockPadded |
493 | { |
494 | WALInsertLock l; |
495 | char pad[PG_CACHE_LINE_SIZE]; |
496 | } WALInsertLockPadded; |
497 | |
498 | /* |
499 | * State of an exclusive backup, necessary to control concurrent activities |
500 | * across sessions when working on exclusive backups. |
501 | * |
502 | * EXCLUSIVE_BACKUP_NONE means that there is no exclusive backup actually |
503 | * running, to be more precise pg_start_backup() is not being executed for |
504 | * an exclusive backup and there is no exclusive backup in progress. |
505 | * EXCLUSIVE_BACKUP_STARTING means that pg_start_backup() is starting an |
506 | * exclusive backup. |
507 | * EXCLUSIVE_BACKUP_IN_PROGRESS means that pg_start_backup() has finished |
508 | * running and an exclusive backup is in progress. pg_stop_backup() is |
509 | * needed to finish it. |
510 | * EXCLUSIVE_BACKUP_STOPPING means that pg_stop_backup() is stopping an |
511 | * exclusive backup. |
512 | */ |
513 | typedef enum ExclusiveBackupState |
514 | { |
515 | EXCLUSIVE_BACKUP_NONE = 0, |
516 | EXCLUSIVE_BACKUP_STARTING, |
517 | EXCLUSIVE_BACKUP_IN_PROGRESS, |
518 | EXCLUSIVE_BACKUP_STOPPING |
519 | } ExclusiveBackupState; |
520 | |
521 | /* |
522 | * Session status of running backup, used for sanity checks in SQL-callable |
523 | * functions to start and stop backups. |
524 | */ |
525 | static SessionBackupState sessionBackupState = SESSION_BACKUP_NONE; |
526 | |
527 | /* |
528 | * Shared state data for WAL insertion. |
529 | */ |
530 | typedef struct XLogCtlInsert |
531 | { |
532 | slock_t insertpos_lck; /* protects CurrBytePos and PrevBytePos */ |
533 | |
534 | /* |
535 | * CurrBytePos is the end of reserved WAL. The next record will be |
536 | * inserted at that position. PrevBytePos is the start position of the |
537 | * previously inserted (or rather, reserved) record - it is copied to the |
538 | * prev-link of the next record. These are stored as "usable byte |
539 | * positions" rather than XLogRecPtrs (see XLogBytePosToRecPtr()). |
540 | */ |
541 | uint64 CurrBytePos; |
542 | uint64 PrevBytePos; |
543 | |
544 | /* |
545 | * Make sure the above heavily-contended spinlock and byte positions are |
546 | * on their own cache line. In particular, the RedoRecPtr and full page |
547 | * write variables below should be on a different cache line. They are |
548 | * read on every WAL insertion, but updated rarely, and we don't want |
549 | * those reads to steal the cache line containing Curr/PrevBytePos. |
550 | */ |
551 | char pad[PG_CACHE_LINE_SIZE]; |
552 | |
553 | /* |
554 | * fullPageWrites is the master copy used by all backends to determine |
555 | * whether to write full-page to WAL, instead of using process-local one. |
556 | * This is required because, when full_page_writes is changed by SIGHUP, |
557 | * we must WAL-log it before it actually affects WAL-logging by backends. |
558 | * Checkpointer sets at startup or after SIGHUP. |
559 | * |
560 | * To read these fields, you must hold an insertion lock. To modify them, |
561 | * you must hold ALL the locks. |
562 | */ |
563 | XLogRecPtr RedoRecPtr; /* current redo point for insertions */ |
564 | bool forcePageWrites; /* forcing full-page writes for PITR? */ |
565 | bool fullPageWrites; |
566 | |
567 | /* |
568 | * exclusiveBackupState indicates the state of an exclusive backup (see |
569 | * comments of ExclusiveBackupState for more details). nonExclusiveBackups |
570 | * is a counter indicating the number of streaming base backups currently |
571 | * in progress. forcePageWrites is set to true when either of these is |
572 | * non-zero. lastBackupStart is the latest checkpoint redo location used |
573 | * as a starting point for an online backup. |
574 | */ |
575 | ExclusiveBackupState exclusiveBackupState; |
576 | int nonExclusiveBackups; |
577 | XLogRecPtr lastBackupStart; |
578 | |
579 | /* |
580 | * WAL insertion locks. |
581 | */ |
582 | WALInsertLockPadded *WALInsertLocks; |
583 | } XLogCtlInsert; |
584 | |
585 | /* |
586 | * Total shared-memory state for XLOG. |
587 | */ |
588 | typedef struct XLogCtlData |
589 | { |
590 | XLogCtlInsert Insert; |
591 | |
592 | /* Protected by info_lck: */ |
593 | XLogwrtRqst LogwrtRqst; |
594 | XLogRecPtr RedoRecPtr; /* a recent copy of Insert->RedoRecPtr */ |
595 | FullTransactionId ckptFullXid; /* nextFullXid of latest checkpoint */ |
596 | XLogRecPtr asyncXactLSN; /* LSN of newest async commit/abort */ |
597 | XLogRecPtr replicationSlotMinLSN; /* oldest LSN needed by any slot */ |
598 | |
599 | XLogSegNo lastRemovedSegNo; /* latest removed/recycled XLOG segment */ |
600 | |
601 | /* Fake LSN counter, for unlogged relations. Protected by ulsn_lck. */ |
602 | XLogRecPtr unloggedLSN; |
603 | slock_t ulsn_lck; |
604 | |
605 | /* Time and LSN of last xlog segment switch. Protected by WALWriteLock. */ |
606 | pg_time_t lastSegSwitchTime; |
607 | XLogRecPtr lastSegSwitchLSN; |
608 | |
609 | /* |
610 | * Protected by info_lck and WALWriteLock (you must hold either lock to |
611 | * read it, but both to update) |
612 | */ |
613 | XLogwrtResult LogwrtResult; |
614 | |
615 | /* |
616 | * Latest initialized page in the cache (last byte position + 1). |
617 | * |
618 | * To change the identity of a buffer (and InitializedUpTo), you need to |
619 | * hold WALBufMappingLock. To change the identity of a buffer that's |
620 | * still dirty, the old page needs to be written out first, and for that |
621 | * you need WALWriteLock, and you need to ensure that there are no |
622 | * in-progress insertions to the page by calling |
623 | * WaitXLogInsertionsToFinish(). |
624 | */ |
625 | XLogRecPtr InitializedUpTo; |
626 | |
627 | /* |
628 | * These values do not change after startup, although the pointed-to pages |
629 | * and xlblocks values certainly do. xlblock values are protected by |
630 | * WALBufMappingLock. |
631 | */ |
632 | char *pages; /* buffers for unwritten XLOG pages */ |
633 | XLogRecPtr *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */ |
634 | int XLogCacheBlck; /* highest allocated xlog buffer index */ |
635 | |
636 | /* |
637 | * Shared copy of ThisTimeLineID. Does not change after end-of-recovery. |
638 | * If we created a new timeline when the system was started up, |
639 | * PrevTimeLineID is the old timeline's ID that we forked off from. |
640 | * Otherwise it's equal to ThisTimeLineID. |
641 | */ |
642 | TimeLineID ThisTimeLineID; |
643 | TimeLineID PrevTimeLineID; |
644 | |
645 | /* |
646 | * SharedRecoveryInProgress indicates if we're still in crash or archive |
647 | * recovery. Protected by info_lck. |
648 | */ |
649 | bool SharedRecoveryInProgress; |
650 | |
651 | /* |
652 | * SharedHotStandbyActive indicates if we're still in crash or archive |
653 | * recovery. Protected by info_lck. |
654 | */ |
655 | bool SharedHotStandbyActive; |
656 | |
657 | /* |
658 | * WalWriterSleeping indicates whether the WAL writer is currently in |
659 | * low-power mode (and hence should be nudged if an async commit occurs). |
660 | * Protected by info_lck. |
661 | */ |
662 | bool WalWriterSleeping; |
663 | |
664 | /* |
665 | * recoveryWakeupLatch is used to wake up the startup process to continue |
666 | * WAL replay, if it is waiting for WAL to arrive or failover trigger file |
667 | * to appear. |
668 | */ |
669 | Latch recoveryWakeupLatch; |
670 | |
671 | /* |
672 | * During recovery, we keep a copy of the latest checkpoint record here. |
673 | * lastCheckPointRecPtr points to start of checkpoint record and |
674 | * lastCheckPointEndPtr points to end+1 of checkpoint record. Used by the |
675 | * checkpointer when it wants to create a restartpoint. |
676 | * |
677 | * Protected by info_lck. |
678 | */ |
679 | XLogRecPtr lastCheckPointRecPtr; |
680 | XLogRecPtr lastCheckPointEndPtr; |
681 | CheckPoint lastCheckPoint; |
682 | |
683 | /* |
684 | * lastReplayedEndRecPtr points to end+1 of the last record successfully |
685 | * replayed. When we're currently replaying a record, ie. in a redo |
686 | * function, replayEndRecPtr points to the end+1 of the record being |
687 | * replayed, otherwise it's equal to lastReplayedEndRecPtr. |
688 | */ |
689 | XLogRecPtr lastReplayedEndRecPtr; |
690 | TimeLineID lastReplayedTLI; |
691 | XLogRecPtr replayEndRecPtr; |
692 | TimeLineID replayEndTLI; |
693 | /* timestamp of last COMMIT/ABORT record replayed (or being replayed) */ |
694 | TimestampTz recoveryLastXTime; |
695 | |
696 | /* |
697 | * timestamp of when we started replaying the current chunk of WAL data, |
698 | * only relevant for replication or archive recovery |
699 | */ |
700 | TimestampTz currentChunkStartTime; |
701 | /* Are we requested to pause recovery? */ |
702 | bool recoveryPause; |
703 | |
704 | /* |
705 | * lastFpwDisableRecPtr points to the start of the last replayed |
706 | * XLOG_FPW_CHANGE record that instructs full_page_writes is disabled. |
707 | */ |
708 | XLogRecPtr lastFpwDisableRecPtr; |
709 | |
710 | slock_t info_lck; /* locks shared variables shown above */ |
711 | } XLogCtlData; |
712 | |
713 | static XLogCtlData *XLogCtl = NULL; |
714 | |
715 | /* a private copy of XLogCtl->Insert.WALInsertLocks, for convenience */ |
716 | static WALInsertLockPadded *WALInsertLocks = NULL; |
717 | |
718 | /* |
719 | * We maintain an image of pg_control in shared memory. |
720 | */ |
721 | static ControlFileData *ControlFile = NULL; |
722 | |
723 | /* |
724 | * Calculate the amount of space left on the page after 'endptr'. Beware |
725 | * multiple evaluation! |
726 | */ |
727 | #define INSERT_FREESPACE(endptr) \ |
728 | (((endptr) % XLOG_BLCKSZ == 0) ? 0 : (XLOG_BLCKSZ - (endptr) % XLOG_BLCKSZ)) |
729 | |
730 | /* Macro to advance to next buffer index. */ |
731 | #define NextBufIdx(idx) \ |
732 | (((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1)) |
733 | |
734 | /* |
735 | * XLogRecPtrToBufIdx returns the index of the WAL buffer that holds, or |
736 | * would hold if it was in cache, the page containing 'recptr'. |
737 | */ |
738 | #define XLogRecPtrToBufIdx(recptr) \ |
739 | (((recptr) / XLOG_BLCKSZ) % (XLogCtl->XLogCacheBlck + 1)) |
740 | |
741 | /* |
742 | * These are the number of bytes in a WAL page usable for WAL data. |
743 | */ |
744 | #define UsableBytesInPage (XLOG_BLCKSZ - SizeOfXLogShortPHD) |
745 | |
746 | /* Convert min_wal_size_mb and max wal_size_mb to equivalent segment count */ |
747 | #define ConvertToXSegs(x, segsize) \ |
748 | (x / ((segsize) / (1024 * 1024))) |
749 | |
750 | /* The number of bytes in a WAL segment usable for WAL data. */ |
751 | static int UsableBytesInSegment; |
752 | |
753 | /* |
754 | * Private, possibly out-of-date copy of shared LogwrtResult. |
755 | * See discussion above. |
756 | */ |
757 | static XLogwrtResult LogwrtResult = {0, 0}; |
758 | |
759 | /* |
760 | * Codes indicating where we got a WAL file from during recovery, or where |
761 | * to attempt to get one. |
762 | */ |
763 | typedef enum |
764 | { |
765 | XLOG_FROM_ANY = 0, /* request to read WAL from any source */ |
766 | XLOG_FROM_ARCHIVE, /* restored using restore_command */ |
767 | XLOG_FROM_PG_WAL, /* existing file in pg_wal */ |
768 | XLOG_FROM_STREAM /* streamed from master */ |
769 | } XLogSource; |
770 | |
771 | /* human-readable names for XLogSources, for debugging output */ |
772 | static const char *xlogSourceNames[] = {"any" , "archive" , "pg_wal" , "stream" }; |
773 | |
774 | /* |
775 | * openLogFile is -1 or a kernel FD for an open log file segment. |
776 | * openLogSegNo identifies the segment. These variables are only used to |
777 | * write the XLOG, and so will normally refer to the active segment. |
778 | */ |
779 | static int openLogFile = -1; |
780 | static XLogSegNo openLogSegNo = 0; |
781 | |
782 | /* |
783 | * These variables are used similarly to the ones above, but for reading |
784 | * the XLOG. Note, however, that readOff generally represents the offset |
785 | * of the page just read, not the seek position of the FD itself, which |
786 | * will be just past that page. readLen indicates how much of the current |
787 | * page has been read into readBuf, and readSource indicates where we got |
788 | * the currently open file from. |
789 | */ |
790 | static int readFile = -1; |
791 | static XLogSegNo readSegNo = 0; |
792 | static uint32 readOff = 0; |
793 | static uint32 readLen = 0; |
794 | static XLogSource readSource = 0; /* XLOG_FROM_* code */ |
795 | |
796 | /* |
797 | * Keeps track of which source we're currently reading from. This is |
798 | * different from readSource in that this is always set, even when we don't |
799 | * currently have a WAL file open. If lastSourceFailed is set, our last |
800 | * attempt to read from currentSource failed, and we should try another source |
801 | * next. |
802 | */ |
803 | static XLogSource currentSource = 0; /* XLOG_FROM_* code */ |
804 | static bool lastSourceFailed = false; |
805 | |
806 | typedef struct |
807 | { |
808 | int ; |
809 | bool ; /* are we fetching a checkpoint record? */ |
810 | bool randAccess; |
811 | } ; |
812 | |
813 | /* |
814 | * These variables track when we last obtained some WAL data to process, |
815 | * and where we got it from. (XLogReceiptSource is initially the same as |
816 | * readSource, but readSource gets reset to zero when we don't have data |
817 | * to process right now. It is also different from currentSource, which |
818 | * also changes when we try to read from a source and fail, while |
819 | * XLogReceiptSource tracks where we last successfully read some WAL.) |
820 | */ |
821 | static TimestampTz XLogReceiptTime = 0; |
822 | static XLogSource XLogReceiptSource = 0; /* XLOG_FROM_* code */ |
823 | |
824 | /* State information for XLOG reading */ |
825 | static XLogRecPtr ReadRecPtr; /* start of last record read */ |
826 | static XLogRecPtr EndRecPtr; /* end+1 of last record read */ |
827 | |
828 | /* |
829 | * Local copies of equivalent fields in the control file. When running |
830 | * crash recovery, minRecoveryPoint is set to InvalidXLogRecPtr as we |
831 | * expect to replay all the WAL available, and updateMinRecoveryPoint is |
832 | * switched to false to prevent any updates while replaying records. |
833 | * Those values are kept consistent as long as crash recovery runs. |
834 | */ |
835 | static XLogRecPtr minRecoveryPoint; |
836 | static TimeLineID minRecoveryPointTLI; |
837 | static bool updateMinRecoveryPoint = true; |
838 | |
839 | /* |
840 | * Have we reached a consistent database state? In crash recovery, we have |
841 | * to replay all the WAL, so reachedConsistency is never set. During archive |
842 | * recovery, the database is consistent once minRecoveryPoint is reached. |
843 | */ |
844 | bool reachedConsistency = false; |
845 | |
846 | static bool InRedo = false; |
847 | |
848 | /* Have we launched bgwriter during recovery? */ |
849 | static bool bgwriterLaunched = false; |
850 | |
851 | /* For WALInsertLockAcquire/Release functions */ |
852 | static int MyLockNo = 0; |
853 | static bool holdingAllLocks = false; |
854 | |
855 | #ifdef WAL_DEBUG |
856 | static MemoryContext walDebugCxt = NULL; |
857 | #endif |
858 | |
859 | static void readRecoverySignalFile(void); |
860 | static void validateRecoveryParameters(void); |
861 | static void exitArchiveRecovery(TimeLineID endTLI, XLogRecPtr endOfLog); |
862 | static bool recoveryStopsBefore(XLogReaderState *record); |
863 | static bool recoveryStopsAfter(XLogReaderState *record); |
864 | static void recoveryPausesHere(void); |
865 | static bool recoveryApplyDelay(XLogReaderState *record); |
866 | static void SetLatestXTime(TimestampTz xtime); |
867 | static void SetCurrentChunkStartTime(TimestampTz xtime); |
868 | static void CheckRequiredParameterValues(void); |
869 | static void XLogReportParameters(void); |
870 | static void checkTimeLineSwitch(XLogRecPtr lsn, TimeLineID newTLI, |
871 | TimeLineID prevTLI); |
872 | static void LocalSetXLogInsertAllowed(void); |
873 | static void CreateEndOfRecoveryRecord(void); |
874 | static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags); |
875 | static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo); |
876 | static XLogRecPtr XLogGetReplicationSlotMinimumLSN(void); |
877 | |
878 | static void AdvanceXLInsertBuffer(XLogRecPtr upto, bool opportunistic); |
879 | static bool XLogCheckpointNeeded(XLogSegNo new_segno); |
880 | static void XLogWrite(XLogwrtRqst WriteRqst, bool flexible); |
881 | static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath, |
882 | bool find_free, XLogSegNo max_segno, |
883 | bool use_lock); |
884 | static int XLogFileRead(XLogSegNo segno, int emode, TimeLineID tli, |
885 | int source, bool notfoundOk); |
886 | static int XLogFileReadAnyTLI(XLogSegNo segno, int emode, int source); |
887 | static int XLogPageRead(XLogReaderState *xlogreader, XLogRecPtr targetPagePtr, |
888 | int reqLen, XLogRecPtr targetRecPtr, char *readBuf, |
889 | TimeLineID *readTLI); |
890 | static bool WaitForWALToBecomeAvailable(XLogRecPtr RecPtr, bool randAccess, |
891 | bool fetching_ckpt, XLogRecPtr tliRecPtr); |
892 | static int emode_for_corrupt_record(int emode, XLogRecPtr RecPtr); |
893 | static void XLogFileClose(void); |
894 | static void PreallocXlogFiles(XLogRecPtr endptr); |
895 | static void RemoveTempXlogFiles(void); |
896 | static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr RedoRecPtr, XLogRecPtr endptr); |
897 | static void RemoveXlogFile(const char *segname, XLogRecPtr RedoRecPtr, XLogRecPtr endptr); |
898 | static void UpdateLastRemovedPtr(char *filename); |
899 | static void ValidateXLOGDirectoryStructure(void); |
900 | static void CleanupBackupHistory(void); |
901 | static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force); |
902 | static XLogRecord *ReadRecord(XLogReaderState *xlogreader, XLogRecPtr RecPtr, |
903 | int emode, bool fetching_ckpt); |
904 | static void CheckRecoveryConsistency(void); |
905 | static XLogRecord *ReadCheckpointRecord(XLogReaderState *xlogreader, |
906 | XLogRecPtr RecPtr, int whichChkpti, bool report); |
907 | static bool rescanLatestTimeLine(void); |
908 | static void WriteControlFile(void); |
909 | static void ReadControlFile(void); |
910 | static char *str_time(pg_time_t tnow); |
911 | static bool CheckForStandbyTrigger(void); |
912 | |
913 | #ifdef WAL_DEBUG |
914 | static void xlog_outrec(StringInfo buf, XLogReaderState *record); |
915 | #endif |
916 | static void xlog_outdesc(StringInfo buf, XLogReaderState *record); |
917 | static void pg_start_backup_callback(int code, Datum arg); |
918 | static void pg_stop_backup_callback(int code, Datum arg); |
919 | static bool read_backup_label(XLogRecPtr *checkPointLoc, |
920 | bool *backupEndRequired, bool *backupFromStandby); |
921 | static bool read_tablespace_map(List **tablespaces); |
922 | |
923 | static void rm_redo_error_callback(void *arg); |
924 | static int get_sync_bit(int method); |
925 | |
926 | static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch, |
927 | XLogRecData *rdata, |
928 | XLogRecPtr StartPos, XLogRecPtr EndPos); |
929 | static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, |
930 | XLogRecPtr *EndPos, XLogRecPtr *PrevPtr); |
931 | static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, |
932 | XLogRecPtr *PrevPtr); |
933 | static XLogRecPtr WaitXLogInsertionsToFinish(XLogRecPtr upto); |
934 | static char *GetXLogBuffer(XLogRecPtr ptr); |
935 | static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos); |
936 | static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos); |
937 | static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr); |
938 | static void checkXLogConsistency(XLogReaderState *record); |
939 | |
940 | static void WALInsertLockAcquire(void); |
941 | static void WALInsertLockAcquireExclusive(void); |
942 | static void WALInsertLockRelease(void); |
943 | static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt); |
944 | |
945 | /* |
946 | * Insert an XLOG record represented by an already-constructed chain of data |
947 | * chunks. This is a low-level routine; to construct the WAL record header |
948 | * and data, use the higher-level routines in xloginsert.c. |
949 | * |
950 | * If 'fpw_lsn' is valid, it is the oldest LSN among the pages that this |
951 | * WAL record applies to, that were not included in the record as full page |
952 | * images. If fpw_lsn <= RedoRecPtr, the function does not perform the |
953 | * insertion and returns InvalidXLogRecPtr. The caller can then recalculate |
954 | * which pages need a full-page image, and retry. If fpw_lsn is invalid, the |
955 | * record is always inserted. |
956 | * |
957 | * 'flags' gives more in-depth control on the record being inserted. See |
958 | * XLogSetRecordFlags() for details. |
959 | * |
960 | * The first XLogRecData in the chain must be for the record header, and its |
961 | * data must be MAXALIGNed. XLogInsertRecord fills in the xl_prev and |
962 | * xl_crc fields in the header, the rest of the header must already be filled |
963 | * by the caller. |
964 | * |
965 | * Returns XLOG pointer to end of record (beginning of next record). |
966 | * This can be used as LSN for data pages affected by the logged action. |
967 | * (LSN is the XLOG point up to which the XLOG must be flushed to disk |
968 | * before the data page can be written out. This implements the basic |
969 | * WAL rule "write the log before the data".) |
970 | */ |
971 | XLogRecPtr |
972 | XLogInsertRecord(XLogRecData *rdata, |
973 | XLogRecPtr fpw_lsn, |
974 | uint8 flags) |
975 | { |
976 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
977 | pg_crc32c rdata_crc; |
978 | bool inserted; |
979 | XLogRecord *rechdr = (XLogRecord *) rdata->data; |
980 | uint8 info = rechdr->xl_info & ~XLR_INFO_MASK; |
981 | bool isLogSwitch = (rechdr->xl_rmid == RM_XLOG_ID && |
982 | info == XLOG_SWITCH); |
983 | XLogRecPtr StartPos; |
984 | XLogRecPtr EndPos; |
985 | bool prevDoPageWrites = doPageWrites; |
986 | |
987 | /* we assume that all of the record header is in the first chunk */ |
988 | Assert(rdata->len >= SizeOfXLogRecord); |
989 | |
990 | /* cross-check on whether we should be here or not */ |
991 | if (!XLogInsertAllowed()) |
992 | elog(ERROR, "cannot make new WAL entries during recovery" ); |
993 | |
994 | /*---------- |
995 | * |
996 | * We have now done all the preparatory work we can without holding a |
997 | * lock or modifying shared state. From here on, inserting the new WAL |
998 | * record to the shared WAL buffer cache is a two-step process: |
999 | * |
1000 | * 1. Reserve the right amount of space from the WAL. The current head of |
1001 | * reserved space is kept in Insert->CurrBytePos, and is protected by |
1002 | * insertpos_lck. |
1003 | * |
1004 | * 2. Copy the record to the reserved WAL space. This involves finding the |
1005 | * correct WAL buffer containing the reserved space, and copying the |
1006 | * record in place. This can be done concurrently in multiple processes. |
1007 | * |
1008 | * To keep track of which insertions are still in-progress, each concurrent |
1009 | * inserter acquires an insertion lock. In addition to just indicating that |
1010 | * an insertion is in progress, the lock tells others how far the inserter |
1011 | * has progressed. There is a small fixed number of insertion locks, |
1012 | * determined by NUM_XLOGINSERT_LOCKS. When an inserter crosses a page |
1013 | * boundary, it updates the value stored in the lock to the how far it has |
1014 | * inserted, to allow the previous buffer to be flushed. |
1015 | * |
1016 | * Holding onto an insertion lock also protects RedoRecPtr and |
1017 | * fullPageWrites from changing until the insertion is finished. |
1018 | * |
1019 | * Step 2 can usually be done completely in parallel. If the required WAL |
1020 | * page is not initialized yet, you have to grab WALBufMappingLock to |
1021 | * initialize it, but the WAL writer tries to do that ahead of insertions |
1022 | * to avoid that from happening in the critical path. |
1023 | * |
1024 | *---------- |
1025 | */ |
1026 | START_CRIT_SECTION(); |
1027 | if (isLogSwitch) |
1028 | WALInsertLockAcquireExclusive(); |
1029 | else |
1030 | WALInsertLockAcquire(); |
1031 | |
1032 | /* |
1033 | * Check to see if my copy of RedoRecPtr is out of date. If so, may have |
1034 | * to go back and have the caller recompute everything. This can only |
1035 | * happen just after a checkpoint, so it's better to be slow in this case |
1036 | * and fast otherwise. |
1037 | * |
1038 | * Also check to see if fullPageWrites or forcePageWrites was just turned |
1039 | * on; if we weren't already doing full-page writes then go back and |
1040 | * recompute. |
1041 | * |
1042 | * If we aren't doing full-page writes then RedoRecPtr doesn't actually |
1043 | * affect the contents of the XLOG record, so we'll update our local copy |
1044 | * but not force a recomputation. (If doPageWrites was just turned off, |
1045 | * we could recompute the record without full pages, but we choose not to |
1046 | * bother.) |
1047 | */ |
1048 | if (RedoRecPtr != Insert->RedoRecPtr) |
1049 | { |
1050 | Assert(RedoRecPtr < Insert->RedoRecPtr); |
1051 | RedoRecPtr = Insert->RedoRecPtr; |
1052 | } |
1053 | doPageWrites = (Insert->fullPageWrites || Insert->forcePageWrites); |
1054 | |
1055 | if (doPageWrites && |
1056 | (!prevDoPageWrites || |
1057 | (fpw_lsn != InvalidXLogRecPtr && fpw_lsn <= RedoRecPtr))) |
1058 | { |
1059 | /* |
1060 | * Oops, some buffer now needs to be backed up that the caller didn't |
1061 | * back up. Start over. |
1062 | */ |
1063 | WALInsertLockRelease(); |
1064 | END_CRIT_SECTION(); |
1065 | return InvalidXLogRecPtr; |
1066 | } |
1067 | |
1068 | /* |
1069 | * Reserve space for the record in the WAL. This also sets the xl_prev |
1070 | * pointer. |
1071 | */ |
1072 | if (isLogSwitch) |
1073 | inserted = ReserveXLogSwitch(&StartPos, &EndPos, &rechdr->xl_prev); |
1074 | else |
1075 | { |
1076 | ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos, |
1077 | &rechdr->xl_prev); |
1078 | inserted = true; |
1079 | } |
1080 | |
1081 | if (inserted) |
1082 | { |
1083 | /* |
1084 | * Now that xl_prev has been filled in, calculate CRC of the record |
1085 | * header. |
1086 | */ |
1087 | rdata_crc = rechdr->xl_crc; |
1088 | COMP_CRC32C(rdata_crc, rechdr, offsetof(XLogRecord, xl_crc)); |
1089 | FIN_CRC32C(rdata_crc); |
1090 | rechdr->xl_crc = rdata_crc; |
1091 | |
1092 | /* |
1093 | * All the record data, including the header, is now ready to be |
1094 | * inserted. Copy the record in the space reserved. |
1095 | */ |
1096 | CopyXLogRecordToWAL(rechdr->xl_tot_len, isLogSwitch, rdata, |
1097 | StartPos, EndPos); |
1098 | |
1099 | /* |
1100 | * Unless record is flagged as not important, update LSN of last |
1101 | * important record in the current slot. When holding all locks, just |
1102 | * update the first one. |
1103 | */ |
1104 | if ((flags & XLOG_MARK_UNIMPORTANT) == 0) |
1105 | { |
1106 | int lockno = holdingAllLocks ? 0 : MyLockNo; |
1107 | |
1108 | WALInsertLocks[lockno].l.lastImportantAt = StartPos; |
1109 | } |
1110 | } |
1111 | else |
1112 | { |
1113 | /* |
1114 | * This was an xlog-switch record, but the current insert location was |
1115 | * already exactly at the beginning of a segment, so there was no need |
1116 | * to do anything. |
1117 | */ |
1118 | } |
1119 | |
1120 | /* |
1121 | * Done! Let others know that we're finished. |
1122 | */ |
1123 | WALInsertLockRelease(); |
1124 | |
1125 | MarkCurrentTransactionIdLoggedIfAny(); |
1126 | |
1127 | END_CRIT_SECTION(); |
1128 | |
1129 | /* |
1130 | * Update shared LogwrtRqst.Write, if we crossed page boundary. |
1131 | */ |
1132 | if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ) |
1133 | { |
1134 | SpinLockAcquire(&XLogCtl->info_lck); |
1135 | /* advance global request to include new block(s) */ |
1136 | if (XLogCtl->LogwrtRqst.Write < EndPos) |
1137 | XLogCtl->LogwrtRqst.Write = EndPos; |
1138 | /* update local result copy while I have the chance */ |
1139 | LogwrtResult = XLogCtl->LogwrtResult; |
1140 | SpinLockRelease(&XLogCtl->info_lck); |
1141 | } |
1142 | |
1143 | /* |
1144 | * If this was an XLOG_SWITCH record, flush the record and the empty |
1145 | * padding space that fills the rest of the segment, and perform |
1146 | * end-of-segment actions (eg, notifying archiver). |
1147 | */ |
1148 | if (isLogSwitch) |
1149 | { |
1150 | TRACE_POSTGRESQL_WAL_SWITCH(); |
1151 | XLogFlush(EndPos); |
1152 | |
1153 | /* |
1154 | * Even though we reserved the rest of the segment for us, which is |
1155 | * reflected in EndPos, we return a pointer to just the end of the |
1156 | * xlog-switch record. |
1157 | */ |
1158 | if (inserted) |
1159 | { |
1160 | EndPos = StartPos + SizeOfXLogRecord; |
1161 | if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ) |
1162 | { |
1163 | uint64 offset = XLogSegmentOffset(EndPos, wal_segment_size); |
1164 | |
1165 | if (offset == EndPos % XLOG_BLCKSZ) |
1166 | EndPos += SizeOfXLogLongPHD; |
1167 | else |
1168 | EndPos += SizeOfXLogShortPHD; |
1169 | } |
1170 | } |
1171 | } |
1172 | |
1173 | #ifdef WAL_DEBUG |
1174 | if (XLOG_DEBUG) |
1175 | { |
1176 | static XLogReaderState *debug_reader = NULL; |
1177 | StringInfoData buf; |
1178 | StringInfoData recordBuf; |
1179 | char *errormsg = NULL; |
1180 | MemoryContext oldCxt; |
1181 | |
1182 | oldCxt = MemoryContextSwitchTo(walDebugCxt); |
1183 | |
1184 | initStringInfo(&buf); |
1185 | appendStringInfo(&buf, "INSERT @ %X/%X: " , |
1186 | (uint32) (EndPos >> 32), (uint32) EndPos); |
1187 | |
1188 | /* |
1189 | * We have to piece together the WAL record data from the XLogRecData |
1190 | * entries, so that we can pass it to the rm_desc function as one |
1191 | * contiguous chunk. |
1192 | */ |
1193 | initStringInfo(&recordBuf); |
1194 | for (; rdata != NULL; rdata = rdata->next) |
1195 | appendBinaryStringInfo(&recordBuf, rdata->data, rdata->len); |
1196 | |
1197 | if (!debug_reader) |
1198 | debug_reader = XLogReaderAllocate(wal_segment_size, NULL, NULL); |
1199 | |
1200 | if (!debug_reader) |
1201 | { |
1202 | appendStringInfoString(&buf, "error decoding record: out of memory" ); |
1203 | } |
1204 | else if (!DecodeXLogRecord(debug_reader, (XLogRecord *) recordBuf.data, |
1205 | &errormsg)) |
1206 | { |
1207 | appendStringInfo(&buf, "error decoding record: %s" , |
1208 | errormsg ? errormsg : "no error message" ); |
1209 | } |
1210 | else |
1211 | { |
1212 | appendStringInfoString(&buf, " - " ); |
1213 | xlog_outdesc(&buf, debug_reader); |
1214 | } |
1215 | elog(LOG, "%s" , buf.data); |
1216 | |
1217 | pfree(buf.data); |
1218 | pfree(recordBuf.data); |
1219 | MemoryContextSwitchTo(oldCxt); |
1220 | } |
1221 | #endif |
1222 | |
1223 | /* |
1224 | * Update our global variables |
1225 | */ |
1226 | ProcLastRecPtr = StartPos; |
1227 | XactLastRecEnd = EndPos; |
1228 | |
1229 | return EndPos; |
1230 | } |
1231 | |
1232 | /* |
1233 | * Reserves the right amount of space for a record of given size from the WAL. |
1234 | * *StartPos is set to the beginning of the reserved section, *EndPos to |
1235 | * its end+1. *PrevPtr is set to the beginning of the previous record; it is |
1236 | * used to set the xl_prev of this record. |
1237 | * |
1238 | * This is the performance critical part of XLogInsert that must be serialized |
1239 | * across backends. The rest can happen mostly in parallel. Try to keep this |
1240 | * section as short as possible, insertpos_lck can be heavily contended on a |
1241 | * busy system. |
1242 | * |
1243 | * NB: The space calculation here must match the code in CopyXLogRecordToWAL, |
1244 | * where we actually copy the record to the reserved space. |
1245 | */ |
1246 | static void |
1247 | ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, XLogRecPtr *EndPos, |
1248 | XLogRecPtr *PrevPtr) |
1249 | { |
1250 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
1251 | uint64 startbytepos; |
1252 | uint64 endbytepos; |
1253 | uint64 prevbytepos; |
1254 | |
1255 | size = MAXALIGN(size); |
1256 | |
1257 | /* All (non xlog-switch) records should contain data. */ |
1258 | Assert(size > SizeOfXLogRecord); |
1259 | |
1260 | /* |
1261 | * The duration the spinlock needs to be held is minimized by minimizing |
1262 | * the calculations that have to be done while holding the lock. The |
1263 | * current tip of reserved WAL is kept in CurrBytePos, as a byte position |
1264 | * that only counts "usable" bytes in WAL, that is, it excludes all WAL |
1265 | * page headers. The mapping between "usable" byte positions and physical |
1266 | * positions (XLogRecPtrs) can be done outside the locked region, and |
1267 | * because the usable byte position doesn't include any headers, reserving |
1268 | * X bytes from WAL is almost as simple as "CurrBytePos += X". |
1269 | */ |
1270 | SpinLockAcquire(&Insert->insertpos_lck); |
1271 | |
1272 | startbytepos = Insert->CurrBytePos; |
1273 | endbytepos = startbytepos + size; |
1274 | prevbytepos = Insert->PrevBytePos; |
1275 | Insert->CurrBytePos = endbytepos; |
1276 | Insert->PrevBytePos = startbytepos; |
1277 | |
1278 | SpinLockRelease(&Insert->insertpos_lck); |
1279 | |
1280 | *StartPos = XLogBytePosToRecPtr(startbytepos); |
1281 | *EndPos = XLogBytePosToEndRecPtr(endbytepos); |
1282 | *PrevPtr = XLogBytePosToRecPtr(prevbytepos); |
1283 | |
1284 | /* |
1285 | * Check that the conversions between "usable byte positions" and |
1286 | * XLogRecPtrs work consistently in both directions. |
1287 | */ |
1288 | Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos); |
1289 | Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos); |
1290 | Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos); |
1291 | } |
1292 | |
1293 | /* |
1294 | * Like ReserveXLogInsertLocation(), but for an xlog-switch record. |
1295 | * |
1296 | * A log-switch record is handled slightly differently. The rest of the |
1297 | * segment will be reserved for this insertion, as indicated by the returned |
1298 | * *EndPos value. However, if we are already at the beginning of the current |
1299 | * segment, *StartPos and *EndPos are set to the current location without |
1300 | * reserving any space, and the function returns false. |
1301 | */ |
1302 | static bool |
1303 | ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr) |
1304 | { |
1305 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
1306 | uint64 startbytepos; |
1307 | uint64 endbytepos; |
1308 | uint64 prevbytepos; |
1309 | uint32 size = MAXALIGN(SizeOfXLogRecord); |
1310 | XLogRecPtr ptr; |
1311 | uint32 segleft; |
1312 | |
1313 | /* |
1314 | * These calculations are a bit heavy-weight to be done while holding a |
1315 | * spinlock, but since we're holding all the WAL insertion locks, there |
1316 | * are no other inserters competing for it. GetXLogInsertRecPtr() does |
1317 | * compete for it, but that's not called very frequently. |
1318 | */ |
1319 | SpinLockAcquire(&Insert->insertpos_lck); |
1320 | |
1321 | startbytepos = Insert->CurrBytePos; |
1322 | |
1323 | ptr = XLogBytePosToEndRecPtr(startbytepos); |
1324 | if (XLogSegmentOffset(ptr, wal_segment_size) == 0) |
1325 | { |
1326 | SpinLockRelease(&Insert->insertpos_lck); |
1327 | *EndPos = *StartPos = ptr; |
1328 | return false; |
1329 | } |
1330 | |
1331 | endbytepos = startbytepos + size; |
1332 | prevbytepos = Insert->PrevBytePos; |
1333 | |
1334 | *StartPos = XLogBytePosToRecPtr(startbytepos); |
1335 | *EndPos = XLogBytePosToEndRecPtr(endbytepos); |
1336 | |
1337 | segleft = wal_segment_size - XLogSegmentOffset(*EndPos, wal_segment_size); |
1338 | if (segleft != wal_segment_size) |
1339 | { |
1340 | /* consume the rest of the segment */ |
1341 | *EndPos += segleft; |
1342 | endbytepos = XLogRecPtrToBytePos(*EndPos); |
1343 | } |
1344 | Insert->CurrBytePos = endbytepos; |
1345 | Insert->PrevBytePos = startbytepos; |
1346 | |
1347 | SpinLockRelease(&Insert->insertpos_lck); |
1348 | |
1349 | *PrevPtr = XLogBytePosToRecPtr(prevbytepos); |
1350 | |
1351 | Assert(XLogSegmentOffset(*EndPos, wal_segment_size) == 0); |
1352 | Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos); |
1353 | Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos); |
1354 | Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos); |
1355 | |
1356 | return true; |
1357 | } |
1358 | |
1359 | /* |
1360 | * Checks whether the current buffer page and backup page stored in the |
1361 | * WAL record are consistent or not. Before comparing the two pages, a |
1362 | * masking can be applied to the pages to ignore certain areas like hint bits, |
1363 | * unused space between pd_lower and pd_upper among other things. This |
1364 | * function should be called once WAL replay has been completed for a |
1365 | * given record. |
1366 | */ |
1367 | static void |
1368 | checkXLogConsistency(XLogReaderState *record) |
1369 | { |
1370 | RmgrId rmid = XLogRecGetRmid(record); |
1371 | RelFileNode rnode; |
1372 | ForkNumber forknum; |
1373 | BlockNumber blkno; |
1374 | int block_id; |
1375 | |
1376 | /* Records with no backup blocks have no need for consistency checks. */ |
1377 | if (!XLogRecHasAnyBlockRefs(record)) |
1378 | return; |
1379 | |
1380 | Assert((XLogRecGetInfo(record) & XLR_CHECK_CONSISTENCY) != 0); |
1381 | |
1382 | for (block_id = 0; block_id <= record->max_block_id; block_id++) |
1383 | { |
1384 | Buffer buf; |
1385 | Page page; |
1386 | |
1387 | if (!XLogRecGetBlockTag(record, block_id, &rnode, &forknum, &blkno)) |
1388 | { |
1389 | /* |
1390 | * WAL record doesn't contain a block reference with the given id. |
1391 | * Do nothing. |
1392 | */ |
1393 | continue; |
1394 | } |
1395 | |
1396 | Assert(XLogRecHasBlockImage(record, block_id)); |
1397 | |
1398 | if (XLogRecBlockImageApply(record, block_id)) |
1399 | { |
1400 | /* |
1401 | * WAL record has already applied the page, so bypass the |
1402 | * consistency check as that would result in comparing the full |
1403 | * page stored in the record with itself. |
1404 | */ |
1405 | continue; |
1406 | } |
1407 | |
1408 | /* |
1409 | * Read the contents from the current buffer and store it in a |
1410 | * temporary page. |
1411 | */ |
1412 | buf = XLogReadBufferExtended(rnode, forknum, blkno, |
1413 | RBM_NORMAL_NO_LOG); |
1414 | if (!BufferIsValid(buf)) |
1415 | continue; |
1416 | |
1417 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
1418 | page = BufferGetPage(buf); |
1419 | |
1420 | /* |
1421 | * Take a copy of the local page where WAL has been applied to have a |
1422 | * comparison base before masking it... |
1423 | */ |
1424 | memcpy(replay_image_masked, page, BLCKSZ); |
1425 | |
1426 | /* No need for this page anymore now that a copy is in. */ |
1427 | UnlockReleaseBuffer(buf); |
1428 | |
1429 | /* |
1430 | * If the block LSN is already ahead of this WAL record, we can't |
1431 | * expect contents to match. This can happen if recovery is |
1432 | * restarted. |
1433 | */ |
1434 | if (PageGetLSN(replay_image_masked) > record->EndRecPtr) |
1435 | continue; |
1436 | |
1437 | /* |
1438 | * Read the contents from the backup copy, stored in WAL record and |
1439 | * store it in a temporary page. There is no need to allocate a new |
1440 | * page here, a local buffer is fine to hold its contents and a mask |
1441 | * can be directly applied on it. |
1442 | */ |
1443 | if (!RestoreBlockImage(record, block_id, master_image_masked)) |
1444 | elog(ERROR, "failed to restore block image" ); |
1445 | |
1446 | /* |
1447 | * If masking function is defined, mask both the master and replay |
1448 | * images |
1449 | */ |
1450 | if (RmgrTable[rmid].rm_mask != NULL) |
1451 | { |
1452 | RmgrTable[rmid].rm_mask(replay_image_masked, blkno); |
1453 | RmgrTable[rmid].rm_mask(master_image_masked, blkno); |
1454 | } |
1455 | |
1456 | /* Time to compare the master and replay images. */ |
1457 | if (memcmp(replay_image_masked, master_image_masked, BLCKSZ) != 0) |
1458 | { |
1459 | elog(FATAL, |
1460 | "inconsistent page found, rel %u/%u/%u, forknum %u, blkno %u" , |
1461 | rnode.spcNode, rnode.dbNode, rnode.relNode, |
1462 | forknum, blkno); |
1463 | } |
1464 | } |
1465 | } |
1466 | |
1467 | /* |
1468 | * Subroutine of XLogInsertRecord. Copies a WAL record to an already-reserved |
1469 | * area in the WAL. |
1470 | */ |
1471 | static void |
1472 | CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata, |
1473 | XLogRecPtr StartPos, XLogRecPtr EndPos) |
1474 | { |
1475 | char *currpos; |
1476 | int freespace; |
1477 | int written; |
1478 | XLogRecPtr CurrPos; |
1479 | XLogPageHeader pagehdr; |
1480 | |
1481 | /* |
1482 | * Get a pointer to the right place in the right WAL buffer to start |
1483 | * inserting to. |
1484 | */ |
1485 | CurrPos = StartPos; |
1486 | currpos = GetXLogBuffer(CurrPos); |
1487 | freespace = INSERT_FREESPACE(CurrPos); |
1488 | |
1489 | /* |
1490 | * there should be enough space for at least the first field (xl_tot_len) |
1491 | * on this page. |
1492 | */ |
1493 | Assert(freespace >= sizeof(uint32)); |
1494 | |
1495 | /* Copy record data */ |
1496 | written = 0; |
1497 | while (rdata != NULL) |
1498 | { |
1499 | char *rdata_data = rdata->data; |
1500 | int rdata_len = rdata->len; |
1501 | |
1502 | while (rdata_len > freespace) |
1503 | { |
1504 | /* |
1505 | * Write what fits on this page, and continue on the next page. |
1506 | */ |
1507 | Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || freespace == 0); |
1508 | memcpy(currpos, rdata_data, freespace); |
1509 | rdata_data += freespace; |
1510 | rdata_len -= freespace; |
1511 | written += freespace; |
1512 | CurrPos += freespace; |
1513 | |
1514 | /* |
1515 | * Get pointer to beginning of next page, and set the xlp_rem_len |
1516 | * in the page header. Set XLP_FIRST_IS_CONTRECORD. |
1517 | * |
1518 | * It's safe to set the contrecord flag and xlp_rem_len without a |
1519 | * lock on the page. All the other flags were already set when the |
1520 | * page was initialized, in AdvanceXLInsertBuffer, and we're the |
1521 | * only backend that needs to set the contrecord flag. |
1522 | */ |
1523 | currpos = GetXLogBuffer(CurrPos); |
1524 | pagehdr = (XLogPageHeader) currpos; |
1525 | pagehdr->xlp_rem_len = write_len - written; |
1526 | pagehdr->xlp_info |= XLP_FIRST_IS_CONTRECORD; |
1527 | |
1528 | /* skip over the page header */ |
1529 | if (XLogSegmentOffset(CurrPos, wal_segment_size) == 0) |
1530 | { |
1531 | CurrPos += SizeOfXLogLongPHD; |
1532 | currpos += SizeOfXLogLongPHD; |
1533 | } |
1534 | else |
1535 | { |
1536 | CurrPos += SizeOfXLogShortPHD; |
1537 | currpos += SizeOfXLogShortPHD; |
1538 | } |
1539 | freespace = INSERT_FREESPACE(CurrPos); |
1540 | } |
1541 | |
1542 | Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || rdata_len == 0); |
1543 | memcpy(currpos, rdata_data, rdata_len); |
1544 | currpos += rdata_len; |
1545 | CurrPos += rdata_len; |
1546 | freespace -= rdata_len; |
1547 | written += rdata_len; |
1548 | |
1549 | rdata = rdata->next; |
1550 | } |
1551 | Assert(written == write_len); |
1552 | |
1553 | /* |
1554 | * If this was an xlog-switch, it's not enough to write the switch record, |
1555 | * we also have to consume all the remaining space in the WAL segment. We |
1556 | * have already reserved that space, but we need to actually fill it. |
1557 | */ |
1558 | if (isLogSwitch && XLogSegmentOffset(CurrPos, wal_segment_size) != 0) |
1559 | { |
1560 | /* An xlog-switch record doesn't contain any data besides the header */ |
1561 | Assert(write_len == SizeOfXLogRecord); |
1562 | |
1563 | /* Assert that we did reserve the right amount of space */ |
1564 | Assert(XLogSegmentOffset(EndPos, wal_segment_size) == 0); |
1565 | |
1566 | /* Use up all the remaining space on the current page */ |
1567 | CurrPos += freespace; |
1568 | |
1569 | /* |
1570 | * Cause all remaining pages in the segment to be flushed, leaving the |
1571 | * XLog position where it should be, at the start of the next segment. |
1572 | * We do this one page at a time, to make sure we don't deadlock |
1573 | * against ourselves if wal_buffers < wal_segment_size. |
1574 | */ |
1575 | while (CurrPos < EndPos) |
1576 | { |
1577 | /* |
1578 | * The minimal action to flush the page would be to call |
1579 | * WALInsertLockUpdateInsertingAt(CurrPos) followed by |
1580 | * AdvanceXLInsertBuffer(...). The page would be left initialized |
1581 | * mostly to zeros, except for the page header (always the short |
1582 | * variant, as this is never a segment's first page). |
1583 | * |
1584 | * The large vistas of zeros are good for compressibility, but the |
1585 | * headers interrupting them every XLOG_BLCKSZ (with values that |
1586 | * differ from page to page) are not. The effect varies with |
1587 | * compression tool, but bzip2 for instance compresses about an |
1588 | * order of magnitude worse if those headers are left in place. |
1589 | * |
1590 | * Rather than complicating AdvanceXLInsertBuffer itself (which is |
1591 | * called in heavily-loaded circumstances as well as this lightly- |
1592 | * loaded one) with variant behavior, we just use GetXLogBuffer |
1593 | * (which itself calls the two methods we need) to get the pointer |
1594 | * and zero most of the page. Then we just zero the page header. |
1595 | */ |
1596 | currpos = GetXLogBuffer(CurrPos); |
1597 | MemSet(currpos, 0, SizeOfXLogShortPHD); |
1598 | |
1599 | CurrPos += XLOG_BLCKSZ; |
1600 | } |
1601 | } |
1602 | else |
1603 | { |
1604 | /* Align the end position, so that the next record starts aligned */ |
1605 | CurrPos = MAXALIGN64(CurrPos); |
1606 | } |
1607 | |
1608 | if (CurrPos != EndPos) |
1609 | elog(PANIC, "space reserved for WAL record does not match what was written" ); |
1610 | } |
1611 | |
1612 | /* |
1613 | * Acquire a WAL insertion lock, for inserting to WAL. |
1614 | */ |
1615 | static void |
1616 | WALInsertLockAcquire(void) |
1617 | { |
1618 | bool immed; |
1619 | |
1620 | /* |
1621 | * It doesn't matter which of the WAL insertion locks we acquire, so try |
1622 | * the one we used last time. If the system isn't particularly busy, it's |
1623 | * a good bet that it's still available, and it's good to have some |
1624 | * affinity to a particular lock so that you don't unnecessarily bounce |
1625 | * cache lines between processes when there's no contention. |
1626 | * |
1627 | * If this is the first time through in this backend, pick a lock |
1628 | * (semi-)randomly. This allows the locks to be used evenly if you have a |
1629 | * lot of very short connections. |
1630 | */ |
1631 | static int lockToTry = -1; |
1632 | |
1633 | if (lockToTry == -1) |
1634 | lockToTry = MyProc->pgprocno % NUM_XLOGINSERT_LOCKS; |
1635 | MyLockNo = lockToTry; |
1636 | |
1637 | /* |
1638 | * The insertingAt value is initially set to 0, as we don't know our |
1639 | * insert location yet. |
1640 | */ |
1641 | immed = LWLockAcquire(&WALInsertLocks[MyLockNo].l.lock, LW_EXCLUSIVE); |
1642 | if (!immed) |
1643 | { |
1644 | /* |
1645 | * If we couldn't get the lock immediately, try another lock next |
1646 | * time. On a system with more insertion locks than concurrent |
1647 | * inserters, this causes all the inserters to eventually migrate to a |
1648 | * lock that no-one else is using. On a system with more inserters |
1649 | * than locks, it still helps to distribute the inserters evenly |
1650 | * across the locks. |
1651 | */ |
1652 | lockToTry = (lockToTry + 1) % NUM_XLOGINSERT_LOCKS; |
1653 | } |
1654 | } |
1655 | |
1656 | /* |
1657 | * Acquire all WAL insertion locks, to prevent other backends from inserting |
1658 | * to WAL. |
1659 | */ |
1660 | static void |
1661 | WALInsertLockAcquireExclusive(void) |
1662 | { |
1663 | int i; |
1664 | |
1665 | /* |
1666 | * When holding all the locks, all but the last lock's insertingAt |
1667 | * indicator is set to 0xFFFFFFFFFFFFFFFF, which is higher than any real |
1668 | * XLogRecPtr value, to make sure that no-one blocks waiting on those. |
1669 | */ |
1670 | for (i = 0; i < NUM_XLOGINSERT_LOCKS - 1; i++) |
1671 | { |
1672 | LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE); |
1673 | LWLockUpdateVar(&WALInsertLocks[i].l.lock, |
1674 | &WALInsertLocks[i].l.insertingAt, |
1675 | PG_UINT64_MAX); |
1676 | } |
1677 | /* Variable value reset to 0 at release */ |
1678 | LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE); |
1679 | |
1680 | holdingAllLocks = true; |
1681 | } |
1682 | |
1683 | /* |
1684 | * Release our insertion lock (or locks, if we're holding them all). |
1685 | * |
1686 | * NB: Reset all variables to 0, so they cause LWLockWaitForVar to block the |
1687 | * next time the lock is acquired. |
1688 | */ |
1689 | static void |
1690 | WALInsertLockRelease(void) |
1691 | { |
1692 | if (holdingAllLocks) |
1693 | { |
1694 | int i; |
1695 | |
1696 | for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++) |
1697 | LWLockReleaseClearVar(&WALInsertLocks[i].l.lock, |
1698 | &WALInsertLocks[i].l.insertingAt, |
1699 | 0); |
1700 | |
1701 | holdingAllLocks = false; |
1702 | } |
1703 | else |
1704 | { |
1705 | LWLockReleaseClearVar(&WALInsertLocks[MyLockNo].l.lock, |
1706 | &WALInsertLocks[MyLockNo].l.insertingAt, |
1707 | 0); |
1708 | } |
1709 | } |
1710 | |
1711 | /* |
1712 | * Update our insertingAt value, to let others know that we've finished |
1713 | * inserting up to that point. |
1714 | */ |
1715 | static void |
1716 | WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt) |
1717 | { |
1718 | if (holdingAllLocks) |
1719 | { |
1720 | /* |
1721 | * We use the last lock to mark our actual position, see comments in |
1722 | * WALInsertLockAcquireExclusive. |
1723 | */ |
1724 | LWLockUpdateVar(&WALInsertLocks[NUM_XLOGINSERT_LOCKS - 1].l.lock, |
1725 | &WALInsertLocks[NUM_XLOGINSERT_LOCKS - 1].l.insertingAt, |
1726 | insertingAt); |
1727 | } |
1728 | else |
1729 | LWLockUpdateVar(&WALInsertLocks[MyLockNo].l.lock, |
1730 | &WALInsertLocks[MyLockNo].l.insertingAt, |
1731 | insertingAt); |
1732 | } |
1733 | |
1734 | /* |
1735 | * Wait for any WAL insertions < upto to finish. |
1736 | * |
1737 | * Returns the location of the oldest insertion that is still in-progress. |
1738 | * Any WAL prior to that point has been fully copied into WAL buffers, and |
1739 | * can be flushed out to disk. Because this waits for any insertions older |
1740 | * than 'upto' to finish, the return value is always >= 'upto'. |
1741 | * |
1742 | * Note: When you are about to write out WAL, you must call this function |
1743 | * *before* acquiring WALWriteLock, to avoid deadlocks. This function might |
1744 | * need to wait for an insertion to finish (or at least advance to next |
1745 | * uninitialized page), and the inserter might need to evict an old WAL buffer |
1746 | * to make room for a new one, which in turn requires WALWriteLock. |
1747 | */ |
1748 | static XLogRecPtr |
1749 | WaitXLogInsertionsToFinish(XLogRecPtr upto) |
1750 | { |
1751 | uint64 bytepos; |
1752 | XLogRecPtr reservedUpto; |
1753 | XLogRecPtr finishedUpto; |
1754 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
1755 | int i; |
1756 | |
1757 | if (MyProc == NULL) |
1758 | elog(PANIC, "cannot wait without a PGPROC structure" ); |
1759 | |
1760 | /* Read the current insert position */ |
1761 | SpinLockAcquire(&Insert->insertpos_lck); |
1762 | bytepos = Insert->CurrBytePos; |
1763 | SpinLockRelease(&Insert->insertpos_lck); |
1764 | reservedUpto = XLogBytePosToEndRecPtr(bytepos); |
1765 | |
1766 | /* |
1767 | * No-one should request to flush a piece of WAL that hasn't even been |
1768 | * reserved yet. However, it can happen if there is a block with a bogus |
1769 | * LSN on disk, for example. XLogFlush checks for that situation and |
1770 | * complains, but only after the flush. Here we just assume that to mean |
1771 | * that all WAL that has been reserved needs to be finished. In this |
1772 | * corner-case, the return value can be smaller than 'upto' argument. |
1773 | */ |
1774 | if (upto > reservedUpto) |
1775 | { |
1776 | elog(LOG, "request to flush past end of generated WAL; request %X/%X, currpos %X/%X" , |
1777 | (uint32) (upto >> 32), (uint32) upto, |
1778 | (uint32) (reservedUpto >> 32), (uint32) reservedUpto); |
1779 | upto = reservedUpto; |
1780 | } |
1781 | |
1782 | /* |
1783 | * Loop through all the locks, sleeping on any in-progress insert older |
1784 | * than 'upto'. |
1785 | * |
1786 | * finishedUpto is our return value, indicating the point upto which all |
1787 | * the WAL insertions have been finished. Initialize it to the head of |
1788 | * reserved WAL, and as we iterate through the insertion locks, back it |
1789 | * out for any insertion that's still in progress. |
1790 | */ |
1791 | finishedUpto = reservedUpto; |
1792 | for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++) |
1793 | { |
1794 | XLogRecPtr insertingat = InvalidXLogRecPtr; |
1795 | |
1796 | do |
1797 | { |
1798 | /* |
1799 | * See if this insertion is in progress. LWLockWait will wait for |
1800 | * the lock to be released, or for the 'value' to be set by a |
1801 | * LWLockUpdateVar call. When a lock is initially acquired, its |
1802 | * value is 0 (InvalidXLogRecPtr), which means that we don't know |
1803 | * where it's inserting yet. We will have to wait for it. If |
1804 | * it's a small insertion, the record will most likely fit on the |
1805 | * same page and the inserter will release the lock without ever |
1806 | * calling LWLockUpdateVar. But if it has to sleep, it will |
1807 | * advertise the insertion point with LWLockUpdateVar before |
1808 | * sleeping. |
1809 | */ |
1810 | if (LWLockWaitForVar(&WALInsertLocks[i].l.lock, |
1811 | &WALInsertLocks[i].l.insertingAt, |
1812 | insertingat, &insertingat)) |
1813 | { |
1814 | /* the lock was free, so no insertion in progress */ |
1815 | insertingat = InvalidXLogRecPtr; |
1816 | break; |
1817 | } |
1818 | |
1819 | /* |
1820 | * This insertion is still in progress. Have to wait, unless the |
1821 | * inserter has proceeded past 'upto'. |
1822 | */ |
1823 | } while (insertingat < upto); |
1824 | |
1825 | if (insertingat != InvalidXLogRecPtr && insertingat < finishedUpto) |
1826 | finishedUpto = insertingat; |
1827 | } |
1828 | return finishedUpto; |
1829 | } |
1830 | |
1831 | /* |
1832 | * Get a pointer to the right location in the WAL buffer containing the |
1833 | * given XLogRecPtr. |
1834 | * |
1835 | * If the page is not initialized yet, it is initialized. That might require |
1836 | * evicting an old dirty buffer from the buffer cache, which means I/O. |
1837 | * |
1838 | * The caller must ensure that the page containing the requested location |
1839 | * isn't evicted yet, and won't be evicted. The way to ensure that is to |
1840 | * hold onto a WAL insertion lock with the insertingAt position set to |
1841 | * something <= ptr. GetXLogBuffer() will update insertingAt if it needs |
1842 | * to evict an old page from the buffer. (This means that once you call |
1843 | * GetXLogBuffer() with a given 'ptr', you must not access anything before |
1844 | * that point anymore, and must not call GetXLogBuffer() with an older 'ptr' |
1845 | * later, because older buffers might be recycled already) |
1846 | */ |
1847 | static char * |
1848 | GetXLogBuffer(XLogRecPtr ptr) |
1849 | { |
1850 | int idx; |
1851 | XLogRecPtr endptr; |
1852 | static uint64 cachedPage = 0; |
1853 | static char *cachedPos = NULL; |
1854 | XLogRecPtr expectedEndPtr; |
1855 | |
1856 | /* |
1857 | * Fast path for the common case that we need to access again the same |
1858 | * page as last time. |
1859 | */ |
1860 | if (ptr / XLOG_BLCKSZ == cachedPage) |
1861 | { |
1862 | Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC); |
1863 | Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ)); |
1864 | return cachedPos + ptr % XLOG_BLCKSZ; |
1865 | } |
1866 | |
1867 | /* |
1868 | * The XLog buffer cache is organized so that a page is always loaded to a |
1869 | * particular buffer. That way we can easily calculate the buffer a given |
1870 | * page must be loaded into, from the XLogRecPtr alone. |
1871 | */ |
1872 | idx = XLogRecPtrToBufIdx(ptr); |
1873 | |
1874 | /* |
1875 | * See what page is loaded in the buffer at the moment. It could be the |
1876 | * page we're looking for, or something older. It can't be anything newer |
1877 | * - that would imply the page we're looking for has already been written |
1878 | * out to disk and evicted, and the caller is responsible for making sure |
1879 | * that doesn't happen. |
1880 | * |
1881 | * However, we don't hold a lock while we read the value. If someone has |
1882 | * just initialized the page, it's possible that we get a "torn read" of |
1883 | * the XLogRecPtr if 64-bit fetches are not atomic on this platform. In |
1884 | * that case we will see a bogus value. That's ok, we'll grab the mapping |
1885 | * lock (in AdvanceXLInsertBuffer) and retry if we see anything else than |
1886 | * the page we're looking for. But it means that when we do this unlocked |
1887 | * read, we might see a value that appears to be ahead of the page we're |
1888 | * looking for. Don't PANIC on that, until we've verified the value while |
1889 | * holding the lock. |
1890 | */ |
1891 | expectedEndPtr = ptr; |
1892 | expectedEndPtr += XLOG_BLCKSZ - ptr % XLOG_BLCKSZ; |
1893 | |
1894 | endptr = XLogCtl->xlblocks[idx]; |
1895 | if (expectedEndPtr != endptr) |
1896 | { |
1897 | XLogRecPtr initializedUpto; |
1898 | |
1899 | /* |
1900 | * Before calling AdvanceXLInsertBuffer(), which can block, let others |
1901 | * know how far we're finished with inserting the record. |
1902 | * |
1903 | * NB: If 'ptr' points to just after the page header, advertise a |
1904 | * position at the beginning of the page rather than 'ptr' itself. If |
1905 | * there are no other insertions running, someone might try to flush |
1906 | * up to our advertised location. If we advertised a position after |
1907 | * the page header, someone might try to flush the page header, even |
1908 | * though page might actually not be initialized yet. As the first |
1909 | * inserter on the page, we are effectively responsible for making |
1910 | * sure that it's initialized, before we let insertingAt to move past |
1911 | * the page header. |
1912 | */ |
1913 | if (ptr % XLOG_BLCKSZ == SizeOfXLogShortPHD && |
1914 | XLogSegmentOffset(ptr, wal_segment_size) > XLOG_BLCKSZ) |
1915 | initializedUpto = ptr - SizeOfXLogShortPHD; |
1916 | else if (ptr % XLOG_BLCKSZ == SizeOfXLogLongPHD && |
1917 | XLogSegmentOffset(ptr, wal_segment_size) < XLOG_BLCKSZ) |
1918 | initializedUpto = ptr - SizeOfXLogLongPHD; |
1919 | else |
1920 | initializedUpto = ptr; |
1921 | |
1922 | WALInsertLockUpdateInsertingAt(initializedUpto); |
1923 | |
1924 | AdvanceXLInsertBuffer(ptr, false); |
1925 | endptr = XLogCtl->xlblocks[idx]; |
1926 | |
1927 | if (expectedEndPtr != endptr) |
1928 | elog(PANIC, "could not find WAL buffer for %X/%X" , |
1929 | (uint32) (ptr >> 32), (uint32) ptr); |
1930 | } |
1931 | else |
1932 | { |
1933 | /* |
1934 | * Make sure the initialization of the page is visible to us, and |
1935 | * won't arrive later to overwrite the WAL data we write on the page. |
1936 | */ |
1937 | pg_memory_barrier(); |
1938 | } |
1939 | |
1940 | /* |
1941 | * Found the buffer holding this page. Return a pointer to the right |
1942 | * offset within the page. |
1943 | */ |
1944 | cachedPage = ptr / XLOG_BLCKSZ; |
1945 | cachedPos = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ; |
1946 | |
1947 | Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC); |
1948 | Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ)); |
1949 | |
1950 | return cachedPos + ptr % XLOG_BLCKSZ; |
1951 | } |
1952 | |
1953 | /* |
1954 | * Converts a "usable byte position" to XLogRecPtr. A usable byte position |
1955 | * is the position starting from the beginning of WAL, excluding all WAL |
1956 | * page headers. |
1957 | */ |
1958 | static XLogRecPtr |
1959 | XLogBytePosToRecPtr(uint64 bytepos) |
1960 | { |
1961 | uint64 fullsegs; |
1962 | uint64 fullpages; |
1963 | uint64 bytesleft; |
1964 | uint32 seg_offset; |
1965 | XLogRecPtr result; |
1966 | |
1967 | fullsegs = bytepos / UsableBytesInSegment; |
1968 | bytesleft = bytepos % UsableBytesInSegment; |
1969 | |
1970 | if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD) |
1971 | { |
1972 | /* fits on first page of segment */ |
1973 | seg_offset = bytesleft + SizeOfXLogLongPHD; |
1974 | } |
1975 | else |
1976 | { |
1977 | /* account for the first page on segment with long header */ |
1978 | seg_offset = XLOG_BLCKSZ; |
1979 | bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD; |
1980 | |
1981 | fullpages = bytesleft / UsableBytesInPage; |
1982 | bytesleft = bytesleft % UsableBytesInPage; |
1983 | |
1984 | seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD; |
1985 | } |
1986 | |
1987 | XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result); |
1988 | |
1989 | return result; |
1990 | } |
1991 | |
1992 | /* |
1993 | * Like XLogBytePosToRecPtr, but if the position is at a page boundary, |
1994 | * returns a pointer to the beginning of the page (ie. before page header), |
1995 | * not to where the first xlog record on that page would go to. This is used |
1996 | * when converting a pointer to the end of a record. |
1997 | */ |
1998 | static XLogRecPtr |
1999 | XLogBytePosToEndRecPtr(uint64 bytepos) |
2000 | { |
2001 | uint64 fullsegs; |
2002 | uint64 fullpages; |
2003 | uint64 bytesleft; |
2004 | uint32 seg_offset; |
2005 | XLogRecPtr result; |
2006 | |
2007 | fullsegs = bytepos / UsableBytesInSegment; |
2008 | bytesleft = bytepos % UsableBytesInSegment; |
2009 | |
2010 | if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD) |
2011 | { |
2012 | /* fits on first page of segment */ |
2013 | if (bytesleft == 0) |
2014 | seg_offset = 0; |
2015 | else |
2016 | seg_offset = bytesleft + SizeOfXLogLongPHD; |
2017 | } |
2018 | else |
2019 | { |
2020 | /* account for the first page on segment with long header */ |
2021 | seg_offset = XLOG_BLCKSZ; |
2022 | bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD; |
2023 | |
2024 | fullpages = bytesleft / UsableBytesInPage; |
2025 | bytesleft = bytesleft % UsableBytesInPage; |
2026 | |
2027 | if (bytesleft == 0) |
2028 | seg_offset += fullpages * XLOG_BLCKSZ + bytesleft; |
2029 | else |
2030 | seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD; |
2031 | } |
2032 | |
2033 | XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result); |
2034 | |
2035 | return result; |
2036 | } |
2037 | |
2038 | /* |
2039 | * Convert an XLogRecPtr to a "usable byte position". |
2040 | */ |
2041 | static uint64 |
2042 | XLogRecPtrToBytePos(XLogRecPtr ptr) |
2043 | { |
2044 | uint64 fullsegs; |
2045 | uint32 fullpages; |
2046 | uint32 offset; |
2047 | uint64 result; |
2048 | |
2049 | XLByteToSeg(ptr, fullsegs, wal_segment_size); |
2050 | |
2051 | fullpages = (XLogSegmentOffset(ptr, wal_segment_size)) / XLOG_BLCKSZ; |
2052 | offset = ptr % XLOG_BLCKSZ; |
2053 | |
2054 | if (fullpages == 0) |
2055 | { |
2056 | result = fullsegs * UsableBytesInSegment; |
2057 | if (offset > 0) |
2058 | { |
2059 | Assert(offset >= SizeOfXLogLongPHD); |
2060 | result += offset - SizeOfXLogLongPHD; |
2061 | } |
2062 | } |
2063 | else |
2064 | { |
2065 | result = fullsegs * UsableBytesInSegment + |
2066 | (XLOG_BLCKSZ - SizeOfXLogLongPHD) + /* account for first page */ |
2067 | (fullpages - 1) * UsableBytesInPage; /* full pages */ |
2068 | if (offset > 0) |
2069 | { |
2070 | Assert(offset >= SizeOfXLogShortPHD); |
2071 | result += offset - SizeOfXLogShortPHD; |
2072 | } |
2073 | } |
2074 | |
2075 | return result; |
2076 | } |
2077 | |
2078 | /* |
2079 | * Initialize XLOG buffers, writing out old buffers if they still contain |
2080 | * unwritten data, upto the page containing 'upto'. Or if 'opportunistic' is |
2081 | * true, initialize as many pages as we can without having to write out |
2082 | * unwritten data. Any new pages are initialized to zeros, with pages headers |
2083 | * initialized properly. |
2084 | */ |
2085 | static void |
2086 | AdvanceXLInsertBuffer(XLogRecPtr upto, bool opportunistic) |
2087 | { |
2088 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
2089 | int nextidx; |
2090 | XLogRecPtr ; |
2091 | XLogwrtRqst WriteRqst; |
2092 | XLogRecPtr NewPageEndPtr = InvalidXLogRecPtr; |
2093 | XLogRecPtr NewPageBeginPtr; |
2094 | XLogPageHeader NewPage; |
2095 | int npages = 0; |
2096 | |
2097 | LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE); |
2098 | |
2099 | /* |
2100 | * Now that we have the lock, check if someone initialized the page |
2101 | * already. |
2102 | */ |
2103 | while (upto >= XLogCtl->InitializedUpTo || opportunistic) |
2104 | { |
2105 | nextidx = XLogRecPtrToBufIdx(XLogCtl->InitializedUpTo); |
2106 | |
2107 | /* |
2108 | * Get ending-offset of the buffer page we need to replace (this may |
2109 | * be zero if the buffer hasn't been used yet). Fall through if it's |
2110 | * already written out. |
2111 | */ |
2112 | OldPageRqstPtr = XLogCtl->xlblocks[nextidx]; |
2113 | if (LogwrtResult.Write < OldPageRqstPtr) |
2114 | { |
2115 | /* |
2116 | * Nope, got work to do. If we just want to pre-initialize as much |
2117 | * as we can without flushing, give up now. |
2118 | */ |
2119 | if (opportunistic) |
2120 | break; |
2121 | |
2122 | /* Before waiting, get info_lck and update LogwrtResult */ |
2123 | SpinLockAcquire(&XLogCtl->info_lck); |
2124 | if (XLogCtl->LogwrtRqst.Write < OldPageRqstPtr) |
2125 | XLogCtl->LogwrtRqst.Write = OldPageRqstPtr; |
2126 | LogwrtResult = XLogCtl->LogwrtResult; |
2127 | SpinLockRelease(&XLogCtl->info_lck); |
2128 | |
2129 | /* |
2130 | * Now that we have an up-to-date LogwrtResult value, see if we |
2131 | * still need to write it or if someone else already did. |
2132 | */ |
2133 | if (LogwrtResult.Write < OldPageRqstPtr) |
2134 | { |
2135 | /* |
2136 | * Must acquire write lock. Release WALBufMappingLock first, |
2137 | * to make sure that all insertions that we need to wait for |
2138 | * can finish (up to this same position). Otherwise we risk |
2139 | * deadlock. |
2140 | */ |
2141 | LWLockRelease(WALBufMappingLock); |
2142 | |
2143 | WaitXLogInsertionsToFinish(OldPageRqstPtr); |
2144 | |
2145 | LWLockAcquire(WALWriteLock, LW_EXCLUSIVE); |
2146 | |
2147 | LogwrtResult = XLogCtl->LogwrtResult; |
2148 | if (LogwrtResult.Write >= OldPageRqstPtr) |
2149 | { |
2150 | /* OK, someone wrote it already */ |
2151 | LWLockRelease(WALWriteLock); |
2152 | } |
2153 | else |
2154 | { |
2155 | /* Have to write it ourselves */ |
2156 | TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START(); |
2157 | WriteRqst.Write = OldPageRqstPtr; |
2158 | WriteRqst.Flush = 0; |
2159 | XLogWrite(WriteRqst, false); |
2160 | LWLockRelease(WALWriteLock); |
2161 | TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE(); |
2162 | } |
2163 | /* Re-acquire WALBufMappingLock and retry */ |
2164 | LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE); |
2165 | continue; |
2166 | } |
2167 | } |
2168 | |
2169 | /* |
2170 | * Now the next buffer slot is free and we can set it up to be the |
2171 | * next output page. |
2172 | */ |
2173 | NewPageBeginPtr = XLogCtl->InitializedUpTo; |
2174 | NewPageEndPtr = NewPageBeginPtr + XLOG_BLCKSZ; |
2175 | |
2176 | Assert(XLogRecPtrToBufIdx(NewPageBeginPtr) == nextidx); |
2177 | |
2178 | NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ); |
2179 | |
2180 | /* |
2181 | * Be sure to re-zero the buffer so that bytes beyond what we've |
2182 | * written will look like zeroes and not valid XLOG records... |
2183 | */ |
2184 | MemSet((char *) NewPage, 0, XLOG_BLCKSZ); |
2185 | |
2186 | /* |
2187 | * Fill the new page's header |
2188 | */ |
2189 | NewPage->xlp_magic = XLOG_PAGE_MAGIC; |
2190 | |
2191 | /* NewPage->xlp_info = 0; */ /* done by memset */ |
2192 | NewPage->xlp_tli = ThisTimeLineID; |
2193 | NewPage->xlp_pageaddr = NewPageBeginPtr; |
2194 | |
2195 | /* NewPage->xlp_rem_len = 0; */ /* done by memset */ |
2196 | |
2197 | /* |
2198 | * If online backup is not in progress, mark the header to indicate |
2199 | * that WAL records beginning in this page have removable backup |
2200 | * blocks. This allows the WAL archiver to know whether it is safe to |
2201 | * compress archived WAL data by transforming full-block records into |
2202 | * the non-full-block format. It is sufficient to record this at the |
2203 | * page level because we force a page switch (in fact a segment |
2204 | * switch) when starting a backup, so the flag will be off before any |
2205 | * records can be written during the backup. At the end of a backup, |
2206 | * the last page will be marked as all unsafe when perhaps only part |
2207 | * is unsafe, but at worst the archiver would miss the opportunity to |
2208 | * compress a few records. |
2209 | */ |
2210 | if (!Insert->forcePageWrites) |
2211 | NewPage->xlp_info |= XLP_BKP_REMOVABLE; |
2212 | |
2213 | /* |
2214 | * If first page of an XLOG segment file, make it a long header. |
2215 | */ |
2216 | if ((XLogSegmentOffset(NewPage->xlp_pageaddr, wal_segment_size)) == 0) |
2217 | { |
2218 | XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage; |
2219 | |
2220 | NewLongPage->xlp_sysid = ControlFile->system_identifier; |
2221 | NewLongPage->xlp_seg_size = wal_segment_size; |
2222 | NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ; |
2223 | NewPage->xlp_info |= XLP_LONG_HEADER; |
2224 | } |
2225 | |
2226 | /* |
2227 | * Make sure the initialization of the page becomes visible to others |
2228 | * before the xlblocks update. GetXLogBuffer() reads xlblocks without |
2229 | * holding a lock. |
2230 | */ |
2231 | pg_write_barrier(); |
2232 | |
2233 | *((volatile XLogRecPtr *) &XLogCtl->xlblocks[nextidx]) = NewPageEndPtr; |
2234 | |
2235 | XLogCtl->InitializedUpTo = NewPageEndPtr; |
2236 | |
2237 | npages++; |
2238 | } |
2239 | LWLockRelease(WALBufMappingLock); |
2240 | |
2241 | #ifdef WAL_DEBUG |
2242 | if (XLOG_DEBUG && npages > 0) |
2243 | { |
2244 | elog(DEBUG1, "initialized %d pages, up to %X/%X" , |
2245 | npages, (uint32) (NewPageEndPtr >> 32), (uint32) NewPageEndPtr); |
2246 | } |
2247 | #endif |
2248 | } |
2249 | |
2250 | /* |
2251 | * Calculate CheckPointSegments based on max_wal_size_mb and |
2252 | * checkpoint_completion_target. |
2253 | */ |
2254 | static void |
2255 | CalculateCheckpointSegments(void) |
2256 | { |
2257 | double target; |
2258 | |
2259 | /*------- |
2260 | * Calculate the distance at which to trigger a checkpoint, to avoid |
2261 | * exceeding max_wal_size_mb. This is based on two assumptions: |
2262 | * |
2263 | * a) we keep WAL for only one checkpoint cycle (prior to PG11 we kept |
2264 | * WAL for two checkpoint cycles to allow us to recover from the |
2265 | * secondary checkpoint if the first checkpoint failed, though we |
2266 | * only did this on the master anyway, not on standby. Keeping just |
2267 | * one checkpoint simplifies processing and reduces disk space in |
2268 | * many smaller databases.) |
2269 | * b) during checkpoint, we consume checkpoint_completion_target * |
2270 | * number of segments consumed between checkpoints. |
2271 | *------- |
2272 | */ |
2273 | target = (double) ConvertToXSegs(max_wal_size_mb, wal_segment_size) / |
2274 | (1.0 + CheckPointCompletionTarget); |
2275 | |
2276 | /* round down */ |
2277 | CheckPointSegments = (int) target; |
2278 | |
2279 | if (CheckPointSegments < 1) |
2280 | CheckPointSegments = 1; |
2281 | } |
2282 | |
2283 | void |
2284 | assign_max_wal_size(int newval, void *) |
2285 | { |
2286 | max_wal_size_mb = newval; |
2287 | CalculateCheckpointSegments(); |
2288 | } |
2289 | |
2290 | void |
2291 | assign_checkpoint_completion_target(double newval, void *) |
2292 | { |
2293 | CheckPointCompletionTarget = newval; |
2294 | CalculateCheckpointSegments(); |
2295 | } |
2296 | |
2297 | /* |
2298 | * At a checkpoint, how many WAL segments to recycle as preallocated future |
2299 | * XLOG segments? Returns the highest segment that should be preallocated. |
2300 | */ |
2301 | static XLogSegNo |
2302 | XLOGfileslop(XLogRecPtr RedoRecPtr) |
2303 | { |
2304 | XLogSegNo minSegNo; |
2305 | XLogSegNo maxSegNo; |
2306 | double distance; |
2307 | XLogSegNo recycleSegNo; |
2308 | |
2309 | /* |
2310 | * Calculate the segment numbers that min_wal_size_mb and max_wal_size_mb |
2311 | * correspond to. Always recycle enough segments to meet the minimum, and |
2312 | * remove enough segments to stay below the maximum. |
2313 | */ |
2314 | minSegNo = RedoRecPtr / wal_segment_size + |
2315 | ConvertToXSegs(min_wal_size_mb, wal_segment_size) - 1; |
2316 | maxSegNo = RedoRecPtr / wal_segment_size + |
2317 | ConvertToXSegs(max_wal_size_mb, wal_segment_size) - 1; |
2318 | |
2319 | /* |
2320 | * Between those limits, recycle enough segments to get us through to the |
2321 | * estimated end of next checkpoint. |
2322 | * |
2323 | * To estimate where the next checkpoint will finish, assume that the |
2324 | * system runs steadily consuming CheckPointDistanceEstimate bytes between |
2325 | * every checkpoint. |
2326 | */ |
2327 | distance = (1.0 + CheckPointCompletionTarget) * CheckPointDistanceEstimate; |
2328 | /* add 10% for good measure. */ |
2329 | distance *= 1.10; |
2330 | |
2331 | recycleSegNo = (XLogSegNo) ceil(((double) RedoRecPtr + distance) / |
2332 | wal_segment_size); |
2333 | |
2334 | if (recycleSegNo < minSegNo) |
2335 | recycleSegNo = minSegNo; |
2336 | if (recycleSegNo > maxSegNo) |
2337 | recycleSegNo = maxSegNo; |
2338 | |
2339 | return recycleSegNo; |
2340 | } |
2341 | |
2342 | /* |
2343 | * Check whether we've consumed enough xlog space that a checkpoint is needed. |
2344 | * |
2345 | * new_segno indicates a log file that has just been filled up (or read |
2346 | * during recovery). We measure the distance from RedoRecPtr to new_segno |
2347 | * and see if that exceeds CheckPointSegments. |
2348 | * |
2349 | * Note: it is caller's responsibility that RedoRecPtr is up-to-date. |
2350 | */ |
2351 | static bool |
2352 | XLogCheckpointNeeded(XLogSegNo new_segno) |
2353 | { |
2354 | XLogSegNo old_segno; |
2355 | |
2356 | XLByteToSeg(RedoRecPtr, old_segno, wal_segment_size); |
2357 | |
2358 | if (new_segno >= old_segno + (uint64) (CheckPointSegments - 1)) |
2359 | return true; |
2360 | return false; |
2361 | } |
2362 | |
2363 | /* |
2364 | * Write and/or fsync the log at least as far as WriteRqst indicates. |
2365 | * |
2366 | * If flexible == true, we don't have to write as far as WriteRqst, but |
2367 | * may stop at any convenient boundary (such as a cache or logfile boundary). |
2368 | * This option allows us to avoid uselessly issuing multiple writes when a |
2369 | * single one would do. |
2370 | * |
2371 | * Must be called with WALWriteLock held. WaitXLogInsertionsToFinish(WriteRqst) |
2372 | * must be called before grabbing the lock, to make sure the data is ready to |
2373 | * write. |
2374 | */ |
2375 | static void |
2376 | XLogWrite(XLogwrtRqst WriteRqst, bool flexible) |
2377 | { |
2378 | bool ispartialpage; |
2379 | bool last_iteration; |
2380 | bool finishing_seg; |
2381 | bool use_existent; |
2382 | int curridx; |
2383 | int npages; |
2384 | int startidx; |
2385 | uint32 startoffset; |
2386 | |
2387 | /* We should always be inside a critical section here */ |
2388 | Assert(CritSectionCount > 0); |
2389 | |
2390 | /* |
2391 | * Update local LogwrtResult (caller probably did this already, but...) |
2392 | */ |
2393 | LogwrtResult = XLogCtl->LogwrtResult; |
2394 | |
2395 | /* |
2396 | * Since successive pages in the xlog cache are consecutively allocated, |
2397 | * we can usually gather multiple pages together and issue just one |
2398 | * write() call. npages is the number of pages we have determined can be |
2399 | * written together; startidx is the cache block index of the first one, |
2400 | * and startoffset is the file offset at which it should go. The latter |
2401 | * two variables are only valid when npages > 0, but we must initialize |
2402 | * all of them to keep the compiler quiet. |
2403 | */ |
2404 | npages = 0; |
2405 | startidx = 0; |
2406 | startoffset = 0; |
2407 | |
2408 | /* |
2409 | * Within the loop, curridx is the cache block index of the page to |
2410 | * consider writing. Begin at the buffer containing the next unwritten |
2411 | * page, or last partially written page. |
2412 | */ |
2413 | curridx = XLogRecPtrToBufIdx(LogwrtResult.Write); |
2414 | |
2415 | while (LogwrtResult.Write < WriteRqst.Write) |
2416 | { |
2417 | /* |
2418 | * Make sure we're not ahead of the insert process. This could happen |
2419 | * if we're passed a bogus WriteRqst.Write that is past the end of the |
2420 | * last page that's been initialized by AdvanceXLInsertBuffer. |
2421 | */ |
2422 | XLogRecPtr EndPtr = XLogCtl->xlblocks[curridx]; |
2423 | |
2424 | if (LogwrtResult.Write >= EndPtr) |
2425 | elog(PANIC, "xlog write request %X/%X is past end of log %X/%X" , |
2426 | (uint32) (LogwrtResult.Write >> 32), |
2427 | (uint32) LogwrtResult.Write, |
2428 | (uint32) (EndPtr >> 32), (uint32) EndPtr); |
2429 | |
2430 | /* Advance LogwrtResult.Write to end of current buffer page */ |
2431 | LogwrtResult.Write = EndPtr; |
2432 | ispartialpage = WriteRqst.Write < LogwrtResult.Write; |
2433 | |
2434 | if (!XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo, |
2435 | wal_segment_size)) |
2436 | { |
2437 | /* |
2438 | * Switch to new logfile segment. We cannot have any pending |
2439 | * pages here (since we dump what we have at segment end). |
2440 | */ |
2441 | Assert(npages == 0); |
2442 | if (openLogFile >= 0) |
2443 | XLogFileClose(); |
2444 | XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo, |
2445 | wal_segment_size); |
2446 | |
2447 | /* create/use new log file */ |
2448 | use_existent = true; |
2449 | openLogFile = XLogFileInit(openLogSegNo, &use_existent, true); |
2450 | } |
2451 | |
2452 | /* Make sure we have the current logfile open */ |
2453 | if (openLogFile < 0) |
2454 | { |
2455 | XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo, |
2456 | wal_segment_size); |
2457 | openLogFile = XLogFileOpen(openLogSegNo); |
2458 | } |
2459 | |
2460 | /* Add current page to the set of pending pages-to-dump */ |
2461 | if (npages == 0) |
2462 | { |
2463 | /* first of group */ |
2464 | startidx = curridx; |
2465 | startoffset = XLogSegmentOffset(LogwrtResult.Write - XLOG_BLCKSZ, |
2466 | wal_segment_size); |
2467 | } |
2468 | npages++; |
2469 | |
2470 | /* |
2471 | * Dump the set if this will be the last loop iteration, or if we are |
2472 | * at the last page of the cache area (since the next page won't be |
2473 | * contiguous in memory), or if we are at the end of the logfile |
2474 | * segment. |
2475 | */ |
2476 | last_iteration = WriteRqst.Write <= LogwrtResult.Write; |
2477 | |
2478 | finishing_seg = !ispartialpage && |
2479 | (startoffset + npages * XLOG_BLCKSZ) >= wal_segment_size; |
2480 | |
2481 | if (last_iteration || |
2482 | curridx == XLogCtl->XLogCacheBlck || |
2483 | finishing_seg) |
2484 | { |
2485 | char *from; |
2486 | Size nbytes; |
2487 | Size nleft; |
2488 | int written; |
2489 | |
2490 | /* OK to write the page(s) */ |
2491 | from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ; |
2492 | nbytes = npages * (Size) XLOG_BLCKSZ; |
2493 | nleft = nbytes; |
2494 | do |
2495 | { |
2496 | errno = 0; |
2497 | pgstat_report_wait_start(WAIT_EVENT_WAL_WRITE); |
2498 | written = pg_pwrite(openLogFile, from, nleft, startoffset); |
2499 | pgstat_report_wait_end(); |
2500 | if (written <= 0) |
2501 | { |
2502 | if (errno == EINTR) |
2503 | continue; |
2504 | ereport(PANIC, |
2505 | (errcode_for_file_access(), |
2506 | errmsg("could not write to log file %s " |
2507 | "at offset %u, length %zu: %m" , |
2508 | XLogFileNameP(ThisTimeLineID, openLogSegNo), |
2509 | startoffset, nleft))); |
2510 | } |
2511 | nleft -= written; |
2512 | from += written; |
2513 | startoffset += written; |
2514 | } while (nleft > 0); |
2515 | |
2516 | npages = 0; |
2517 | |
2518 | /* |
2519 | * If we just wrote the whole last page of a logfile segment, |
2520 | * fsync the segment immediately. This avoids having to go back |
2521 | * and re-open prior segments when an fsync request comes along |
2522 | * later. Doing it here ensures that one and only one backend will |
2523 | * perform this fsync. |
2524 | * |
2525 | * This is also the right place to notify the Archiver that the |
2526 | * segment is ready to copy to archival storage, and to update the |
2527 | * timer for archive_timeout, and to signal for a checkpoint if |
2528 | * too many logfile segments have been used since the last |
2529 | * checkpoint. |
2530 | */ |
2531 | if (finishing_seg) |
2532 | { |
2533 | issue_xlog_fsync(openLogFile, openLogSegNo); |
2534 | |
2535 | /* signal that we need to wakeup walsenders later */ |
2536 | WalSndWakeupRequest(); |
2537 | |
2538 | LogwrtResult.Flush = LogwrtResult.Write; /* end of page */ |
2539 | |
2540 | if (XLogArchivingActive()) |
2541 | XLogArchiveNotifySeg(openLogSegNo); |
2542 | |
2543 | XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL); |
2544 | XLogCtl->lastSegSwitchLSN = LogwrtResult.Flush; |
2545 | |
2546 | /* |
2547 | * Request a checkpoint if we've consumed too much xlog since |
2548 | * the last one. For speed, we first check using the local |
2549 | * copy of RedoRecPtr, which might be out of date; if it looks |
2550 | * like a checkpoint is needed, forcibly update RedoRecPtr and |
2551 | * recheck. |
2552 | */ |
2553 | if (IsUnderPostmaster && XLogCheckpointNeeded(openLogSegNo)) |
2554 | { |
2555 | (void) GetRedoRecPtr(); |
2556 | if (XLogCheckpointNeeded(openLogSegNo)) |
2557 | RequestCheckpoint(CHECKPOINT_CAUSE_XLOG); |
2558 | } |
2559 | } |
2560 | } |
2561 | |
2562 | if (ispartialpage) |
2563 | { |
2564 | /* Only asked to write a partial page */ |
2565 | LogwrtResult.Write = WriteRqst.Write; |
2566 | break; |
2567 | } |
2568 | curridx = NextBufIdx(curridx); |
2569 | |
2570 | /* If flexible, break out of loop as soon as we wrote something */ |
2571 | if (flexible && npages == 0) |
2572 | break; |
2573 | } |
2574 | |
2575 | Assert(npages == 0); |
2576 | |
2577 | /* |
2578 | * If asked to flush, do so |
2579 | */ |
2580 | if (LogwrtResult.Flush < WriteRqst.Flush && |
2581 | LogwrtResult.Flush < LogwrtResult.Write) |
2582 | |
2583 | { |
2584 | /* |
2585 | * Could get here without iterating above loop, in which case we might |
2586 | * have no open file or the wrong one. However, we do not need to |
2587 | * fsync more than one file. |
2588 | */ |
2589 | if (sync_method != SYNC_METHOD_OPEN && |
2590 | sync_method != SYNC_METHOD_OPEN_DSYNC) |
2591 | { |
2592 | if (openLogFile >= 0 && |
2593 | !XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo, |
2594 | wal_segment_size)) |
2595 | XLogFileClose(); |
2596 | if (openLogFile < 0) |
2597 | { |
2598 | XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo, |
2599 | wal_segment_size); |
2600 | openLogFile = XLogFileOpen(openLogSegNo); |
2601 | } |
2602 | |
2603 | issue_xlog_fsync(openLogFile, openLogSegNo); |
2604 | } |
2605 | |
2606 | /* signal that we need to wakeup walsenders later */ |
2607 | WalSndWakeupRequest(); |
2608 | |
2609 | LogwrtResult.Flush = LogwrtResult.Write; |
2610 | } |
2611 | |
2612 | /* |
2613 | * Update shared-memory status |
2614 | * |
2615 | * We make sure that the shared 'request' values do not fall behind the |
2616 | * 'result' values. This is not absolutely essential, but it saves some |
2617 | * code in a couple of places. |
2618 | */ |
2619 | { |
2620 | SpinLockAcquire(&XLogCtl->info_lck); |
2621 | XLogCtl->LogwrtResult = LogwrtResult; |
2622 | if (XLogCtl->LogwrtRqst.Write < LogwrtResult.Write) |
2623 | XLogCtl->LogwrtRqst.Write = LogwrtResult.Write; |
2624 | if (XLogCtl->LogwrtRqst.Flush < LogwrtResult.Flush) |
2625 | XLogCtl->LogwrtRqst.Flush = LogwrtResult.Flush; |
2626 | SpinLockRelease(&XLogCtl->info_lck); |
2627 | } |
2628 | } |
2629 | |
2630 | /* |
2631 | * Record the LSN for an asynchronous transaction commit/abort |
2632 | * and nudge the WALWriter if there is work for it to do. |
2633 | * (This should not be called for synchronous commits.) |
2634 | */ |
2635 | void |
2636 | XLogSetAsyncXactLSN(XLogRecPtr asyncXactLSN) |
2637 | { |
2638 | XLogRecPtr WriteRqstPtr = asyncXactLSN; |
2639 | bool sleeping; |
2640 | |
2641 | SpinLockAcquire(&XLogCtl->info_lck); |
2642 | LogwrtResult = XLogCtl->LogwrtResult; |
2643 | sleeping = XLogCtl->WalWriterSleeping; |
2644 | if (XLogCtl->asyncXactLSN < asyncXactLSN) |
2645 | XLogCtl->asyncXactLSN = asyncXactLSN; |
2646 | SpinLockRelease(&XLogCtl->info_lck); |
2647 | |
2648 | /* |
2649 | * If the WALWriter is sleeping, we should kick it to make it come out of |
2650 | * low-power mode. Otherwise, determine whether there's a full page of |
2651 | * WAL available to write. |
2652 | */ |
2653 | if (!sleeping) |
2654 | { |
2655 | /* back off to last completed page boundary */ |
2656 | WriteRqstPtr -= WriteRqstPtr % XLOG_BLCKSZ; |
2657 | |
2658 | /* if we have already flushed that far, we're done */ |
2659 | if (WriteRqstPtr <= LogwrtResult.Flush) |
2660 | return; |
2661 | } |
2662 | |
2663 | /* |
2664 | * Nudge the WALWriter: it has a full page of WAL to write, or we want it |
2665 | * to come out of low-power mode so that this async commit will reach disk |
2666 | * within the expected amount of time. |
2667 | */ |
2668 | if (ProcGlobal->walwriterLatch) |
2669 | SetLatch(ProcGlobal->walwriterLatch); |
2670 | } |
2671 | |
2672 | /* |
2673 | * Record the LSN up to which we can remove WAL because it's not required by |
2674 | * any replication slot. |
2675 | */ |
2676 | void |
2677 | XLogSetReplicationSlotMinimumLSN(XLogRecPtr lsn) |
2678 | { |
2679 | SpinLockAcquire(&XLogCtl->info_lck); |
2680 | XLogCtl->replicationSlotMinLSN = lsn; |
2681 | SpinLockRelease(&XLogCtl->info_lck); |
2682 | } |
2683 | |
2684 | |
2685 | /* |
2686 | * Return the oldest LSN we must retain to satisfy the needs of some |
2687 | * replication slot. |
2688 | */ |
2689 | static XLogRecPtr |
2690 | XLogGetReplicationSlotMinimumLSN(void) |
2691 | { |
2692 | XLogRecPtr retval; |
2693 | |
2694 | SpinLockAcquire(&XLogCtl->info_lck); |
2695 | retval = XLogCtl->replicationSlotMinLSN; |
2696 | SpinLockRelease(&XLogCtl->info_lck); |
2697 | |
2698 | return retval; |
2699 | } |
2700 | |
2701 | /* |
2702 | * Advance minRecoveryPoint in control file. |
2703 | * |
2704 | * If we crash during recovery, we must reach this point again before the |
2705 | * database is consistent. |
2706 | * |
2707 | * If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint |
2708 | * is only updated if it's not already greater than or equal to 'lsn'. |
2709 | */ |
2710 | static void |
2711 | UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force) |
2712 | { |
2713 | /* Quick check using our local copy of the variable */ |
2714 | if (!updateMinRecoveryPoint || (!force && lsn <= minRecoveryPoint)) |
2715 | return; |
2716 | |
2717 | /* |
2718 | * An invalid minRecoveryPoint means that we need to recover all the WAL, |
2719 | * i.e., we're doing crash recovery. We never modify the control file's |
2720 | * value in that case, so we can short-circuit future checks here too. The |
2721 | * local values of minRecoveryPoint and minRecoveryPointTLI should not be |
2722 | * updated until crash recovery finishes. We only do this for the startup |
2723 | * process as it should not update its own reference of minRecoveryPoint |
2724 | * until it has finished crash recovery to make sure that all WAL |
2725 | * available is replayed in this case. This also saves from extra locks |
2726 | * taken on the control file from the startup process. |
2727 | */ |
2728 | if (XLogRecPtrIsInvalid(minRecoveryPoint) && InRecovery) |
2729 | { |
2730 | updateMinRecoveryPoint = false; |
2731 | return; |
2732 | } |
2733 | |
2734 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
2735 | |
2736 | /* update local copy */ |
2737 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
2738 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
2739 | |
2740 | if (XLogRecPtrIsInvalid(minRecoveryPoint)) |
2741 | updateMinRecoveryPoint = false; |
2742 | else if (force || minRecoveryPoint < lsn) |
2743 | { |
2744 | XLogRecPtr newMinRecoveryPoint; |
2745 | TimeLineID newMinRecoveryPointTLI; |
2746 | |
2747 | /* |
2748 | * To avoid having to update the control file too often, we update it |
2749 | * all the way to the last record being replayed, even though 'lsn' |
2750 | * would suffice for correctness. This also allows the 'force' case |
2751 | * to not need a valid 'lsn' value. |
2752 | * |
2753 | * Another important reason for doing it this way is that the passed |
2754 | * 'lsn' value could be bogus, i.e., past the end of available WAL, if |
2755 | * the caller got it from a corrupted heap page. Accepting such a |
2756 | * value as the min recovery point would prevent us from coming up at |
2757 | * all. Instead, we just log a warning and continue with recovery. |
2758 | * (See also the comments about corrupt LSNs in XLogFlush.) |
2759 | */ |
2760 | SpinLockAcquire(&XLogCtl->info_lck); |
2761 | newMinRecoveryPoint = XLogCtl->replayEndRecPtr; |
2762 | newMinRecoveryPointTLI = XLogCtl->replayEndTLI; |
2763 | SpinLockRelease(&XLogCtl->info_lck); |
2764 | |
2765 | if (!force && newMinRecoveryPoint < lsn) |
2766 | elog(WARNING, |
2767 | "xlog min recovery request %X/%X is past current point %X/%X" , |
2768 | (uint32) (lsn >> 32), (uint32) lsn, |
2769 | (uint32) (newMinRecoveryPoint >> 32), |
2770 | (uint32) newMinRecoveryPoint); |
2771 | |
2772 | /* update control file */ |
2773 | if (ControlFile->minRecoveryPoint < newMinRecoveryPoint) |
2774 | { |
2775 | ControlFile->minRecoveryPoint = newMinRecoveryPoint; |
2776 | ControlFile->minRecoveryPointTLI = newMinRecoveryPointTLI; |
2777 | UpdateControlFile(); |
2778 | minRecoveryPoint = newMinRecoveryPoint; |
2779 | minRecoveryPointTLI = newMinRecoveryPointTLI; |
2780 | |
2781 | ereport(DEBUG2, |
2782 | (errmsg("updated min recovery point to %X/%X on timeline %u" , |
2783 | (uint32) (minRecoveryPoint >> 32), |
2784 | (uint32) minRecoveryPoint, |
2785 | newMinRecoveryPointTLI))); |
2786 | } |
2787 | } |
2788 | LWLockRelease(ControlFileLock); |
2789 | } |
2790 | |
2791 | /* |
2792 | * Ensure that all XLOG data through the given position is flushed to disk. |
2793 | * |
2794 | * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not |
2795 | * already held, and we try to avoid acquiring it if possible. |
2796 | */ |
2797 | void |
2798 | XLogFlush(XLogRecPtr record) |
2799 | { |
2800 | XLogRecPtr WriteRqstPtr; |
2801 | XLogwrtRqst WriteRqst; |
2802 | |
2803 | /* |
2804 | * During REDO, we are reading not writing WAL. Therefore, instead of |
2805 | * trying to flush the WAL, we should update minRecoveryPoint instead. We |
2806 | * test XLogInsertAllowed(), not InRecovery, because we need checkpointer |
2807 | * to act this way too, and because when it tries to write the |
2808 | * end-of-recovery checkpoint, it should indeed flush. |
2809 | */ |
2810 | if (!XLogInsertAllowed()) |
2811 | { |
2812 | UpdateMinRecoveryPoint(record, false); |
2813 | return; |
2814 | } |
2815 | |
2816 | /* Quick exit if already known flushed */ |
2817 | if (record <= LogwrtResult.Flush) |
2818 | return; |
2819 | |
2820 | #ifdef WAL_DEBUG |
2821 | if (XLOG_DEBUG) |
2822 | elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X" , |
2823 | (uint32) (record >> 32), (uint32) record, |
2824 | (uint32) (LogwrtResult.Write >> 32), (uint32) LogwrtResult.Write, |
2825 | (uint32) (LogwrtResult.Flush >> 32), (uint32) LogwrtResult.Flush); |
2826 | #endif |
2827 | |
2828 | START_CRIT_SECTION(); |
2829 | |
2830 | /* |
2831 | * Since fsync is usually a horribly expensive operation, we try to |
2832 | * piggyback as much data as we can on each fsync: if we see any more data |
2833 | * entered into the xlog buffer, we'll write and fsync that too, so that |
2834 | * the final value of LogwrtResult.Flush is as large as possible. This |
2835 | * gives us some chance of avoiding another fsync immediately after. |
2836 | */ |
2837 | |
2838 | /* initialize to given target; may increase below */ |
2839 | WriteRqstPtr = record; |
2840 | |
2841 | /* |
2842 | * Now wait until we get the write lock, or someone else does the flush |
2843 | * for us. |
2844 | */ |
2845 | for (;;) |
2846 | { |
2847 | XLogRecPtr insertpos; |
2848 | |
2849 | /* read LogwrtResult and update local state */ |
2850 | SpinLockAcquire(&XLogCtl->info_lck); |
2851 | if (WriteRqstPtr < XLogCtl->LogwrtRqst.Write) |
2852 | WriteRqstPtr = XLogCtl->LogwrtRqst.Write; |
2853 | LogwrtResult = XLogCtl->LogwrtResult; |
2854 | SpinLockRelease(&XLogCtl->info_lck); |
2855 | |
2856 | /* done already? */ |
2857 | if (record <= LogwrtResult.Flush) |
2858 | break; |
2859 | |
2860 | /* |
2861 | * Before actually performing the write, wait for all in-flight |
2862 | * insertions to the pages we're about to write to finish. |
2863 | */ |
2864 | insertpos = WaitXLogInsertionsToFinish(WriteRqstPtr); |
2865 | |
2866 | /* |
2867 | * Try to get the write lock. If we can't get it immediately, wait |
2868 | * until it's released, and recheck if we still need to do the flush |
2869 | * or if the backend that held the lock did it for us already. This |
2870 | * helps to maintain a good rate of group committing when the system |
2871 | * is bottlenecked by the speed of fsyncing. |
2872 | */ |
2873 | if (!LWLockAcquireOrWait(WALWriteLock, LW_EXCLUSIVE)) |
2874 | { |
2875 | /* |
2876 | * The lock is now free, but we didn't acquire it yet. Before we |
2877 | * do, loop back to check if someone else flushed the record for |
2878 | * us already. |
2879 | */ |
2880 | continue; |
2881 | } |
2882 | |
2883 | /* Got the lock; recheck whether request is satisfied */ |
2884 | LogwrtResult = XLogCtl->LogwrtResult; |
2885 | if (record <= LogwrtResult.Flush) |
2886 | { |
2887 | LWLockRelease(WALWriteLock); |
2888 | break; |
2889 | } |
2890 | |
2891 | /* |
2892 | * Sleep before flush! By adding a delay here, we may give further |
2893 | * backends the opportunity to join the backlog of group commit |
2894 | * followers; this can significantly improve transaction throughput, |
2895 | * at the risk of increasing transaction latency. |
2896 | * |
2897 | * We do not sleep if enableFsync is not turned on, nor if there are |
2898 | * fewer than CommitSiblings other backends with active transactions. |
2899 | */ |
2900 | if (CommitDelay > 0 && enableFsync && |
2901 | MinimumActiveBackends(CommitSiblings)) |
2902 | { |
2903 | pg_usleep(CommitDelay); |
2904 | |
2905 | /* |
2906 | * Re-check how far we can now flush the WAL. It's generally not |
2907 | * safe to call WaitXLogInsertionsToFinish while holding |
2908 | * WALWriteLock, because an in-progress insertion might need to |
2909 | * also grab WALWriteLock to make progress. But we know that all |
2910 | * the insertions up to insertpos have already finished, because |
2911 | * that's what the earlier WaitXLogInsertionsToFinish() returned. |
2912 | * We're only calling it again to allow insertpos to be moved |
2913 | * further forward, not to actually wait for anyone. |
2914 | */ |
2915 | insertpos = WaitXLogInsertionsToFinish(insertpos); |
2916 | } |
2917 | |
2918 | /* try to write/flush later additions to XLOG as well */ |
2919 | WriteRqst.Write = insertpos; |
2920 | WriteRqst.Flush = insertpos; |
2921 | |
2922 | XLogWrite(WriteRqst, false); |
2923 | |
2924 | LWLockRelease(WALWriteLock); |
2925 | /* done */ |
2926 | break; |
2927 | } |
2928 | |
2929 | END_CRIT_SECTION(); |
2930 | |
2931 | /* wake up walsenders now that we've released heavily contended locks */ |
2932 | WalSndWakeupProcessRequests(); |
2933 | |
2934 | /* |
2935 | * If we still haven't flushed to the request point then we have a |
2936 | * problem; most likely, the requested flush point is past end of XLOG. |
2937 | * This has been seen to occur when a disk page has a corrupted LSN. |
2938 | * |
2939 | * Formerly we treated this as a PANIC condition, but that hurts the |
2940 | * system's robustness rather than helping it: we do not want to take down |
2941 | * the whole system due to corruption on one data page. In particular, if |
2942 | * the bad page is encountered again during recovery then we would be |
2943 | * unable to restart the database at all! (This scenario actually |
2944 | * happened in the field several times with 7.1 releases.) As of 8.4, bad |
2945 | * LSNs encountered during recovery are UpdateMinRecoveryPoint's problem; |
2946 | * the only time we can reach here during recovery is while flushing the |
2947 | * end-of-recovery checkpoint record, and we don't expect that to have a |
2948 | * bad LSN. |
2949 | * |
2950 | * Note that for calls from xact.c, the ERROR will be promoted to PANIC |
2951 | * since xact.c calls this routine inside a critical section. However, |
2952 | * calls from bufmgr.c are not within critical sections and so we will not |
2953 | * force a restart for a bad LSN on a data page. |
2954 | */ |
2955 | if (LogwrtResult.Flush < record) |
2956 | elog(ERROR, |
2957 | "xlog flush request %X/%X is not satisfied --- flushed only to %X/%X" , |
2958 | (uint32) (record >> 32), (uint32) record, |
2959 | (uint32) (LogwrtResult.Flush >> 32), (uint32) LogwrtResult.Flush); |
2960 | } |
2961 | |
2962 | /* |
2963 | * Write & flush xlog, but without specifying exactly where to. |
2964 | * |
2965 | * We normally write only completed blocks; but if there is nothing to do on |
2966 | * that basis, we check for unwritten async commits in the current incomplete |
2967 | * block, and write through the latest one of those. Thus, if async commits |
2968 | * are not being used, we will write complete blocks only. |
2969 | * |
2970 | * If, based on the above, there's anything to write we do so immediately. But |
2971 | * to avoid calling fsync, fdatasync et. al. at a rate that'd impact |
2972 | * concurrent IO, we only flush WAL every wal_writer_delay ms, or if there's |
2973 | * more than wal_writer_flush_after unflushed blocks. |
2974 | * |
2975 | * We can guarantee that async commits reach disk after at most three |
2976 | * wal_writer_delay cycles. (When flushing complete blocks, we allow XLogWrite |
2977 | * to write "flexibly", meaning it can stop at the end of the buffer ring; |
2978 | * this makes a difference only with very high load or long wal_writer_delay, |
2979 | * but imposes one extra cycle for the worst case for async commits.) |
2980 | * |
2981 | * This routine is invoked periodically by the background walwriter process. |
2982 | * |
2983 | * Returns true if there was any work to do, even if we skipped flushing due |
2984 | * to wal_writer_delay/wal_writer_flush_after. |
2985 | */ |
2986 | bool |
2987 | XLogBackgroundFlush(void) |
2988 | { |
2989 | XLogwrtRqst WriteRqst; |
2990 | bool flexible = true; |
2991 | static TimestampTz lastflush; |
2992 | TimestampTz now; |
2993 | int flushbytes; |
2994 | |
2995 | /* XLOG doesn't need flushing during recovery */ |
2996 | if (RecoveryInProgress()) |
2997 | return false; |
2998 | |
2999 | /* read LogwrtResult and update local state */ |
3000 | SpinLockAcquire(&XLogCtl->info_lck); |
3001 | LogwrtResult = XLogCtl->LogwrtResult; |
3002 | WriteRqst = XLogCtl->LogwrtRqst; |
3003 | SpinLockRelease(&XLogCtl->info_lck); |
3004 | |
3005 | /* back off to last completed page boundary */ |
3006 | WriteRqst.Write -= WriteRqst.Write % XLOG_BLCKSZ; |
3007 | |
3008 | /* if we have already flushed that far, consider async commit records */ |
3009 | if (WriteRqst.Write <= LogwrtResult.Flush) |
3010 | { |
3011 | SpinLockAcquire(&XLogCtl->info_lck); |
3012 | WriteRqst.Write = XLogCtl->asyncXactLSN; |
3013 | SpinLockRelease(&XLogCtl->info_lck); |
3014 | flexible = false; /* ensure it all gets written */ |
3015 | } |
3016 | |
3017 | /* |
3018 | * If already known flushed, we're done. Just need to check if we are |
3019 | * holding an open file handle to a logfile that's no longer in use, |
3020 | * preventing the file from being deleted. |
3021 | */ |
3022 | if (WriteRqst.Write <= LogwrtResult.Flush) |
3023 | { |
3024 | if (openLogFile >= 0) |
3025 | { |
3026 | if (!XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo, |
3027 | wal_segment_size)) |
3028 | { |
3029 | XLogFileClose(); |
3030 | } |
3031 | } |
3032 | return false; |
3033 | } |
3034 | |
3035 | /* |
3036 | * Determine how far to flush WAL, based on the wal_writer_delay and |
3037 | * wal_writer_flush_after GUCs. |
3038 | */ |
3039 | now = GetCurrentTimestamp(); |
3040 | flushbytes = |
3041 | WriteRqst.Write / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ; |
3042 | |
3043 | if (WalWriterFlushAfter == 0 || lastflush == 0) |
3044 | { |
3045 | /* first call, or block based limits disabled */ |
3046 | WriteRqst.Flush = WriteRqst.Write; |
3047 | lastflush = now; |
3048 | } |
3049 | else if (TimestampDifferenceExceeds(lastflush, now, WalWriterDelay)) |
3050 | { |
3051 | /* |
3052 | * Flush the writes at least every WalWriteDelay ms. This is important |
3053 | * to bound the amount of time it takes for an asynchronous commit to |
3054 | * hit disk. |
3055 | */ |
3056 | WriteRqst.Flush = WriteRqst.Write; |
3057 | lastflush = now; |
3058 | } |
3059 | else if (flushbytes >= WalWriterFlushAfter) |
3060 | { |
3061 | /* exceeded wal_writer_flush_after blocks, flush */ |
3062 | WriteRqst.Flush = WriteRqst.Write; |
3063 | lastflush = now; |
3064 | } |
3065 | else |
3066 | { |
3067 | /* no flushing, this time round */ |
3068 | WriteRqst.Flush = 0; |
3069 | } |
3070 | |
3071 | #ifdef WAL_DEBUG |
3072 | if (XLOG_DEBUG) |
3073 | elog(LOG, "xlog bg flush request write %X/%X; flush: %X/%X, current is write %X/%X; flush %X/%X" , |
3074 | (uint32) (WriteRqst.Write >> 32), (uint32) WriteRqst.Write, |
3075 | (uint32) (WriteRqst.Flush >> 32), (uint32) WriteRqst.Flush, |
3076 | (uint32) (LogwrtResult.Write >> 32), (uint32) LogwrtResult.Write, |
3077 | (uint32) (LogwrtResult.Flush >> 32), (uint32) LogwrtResult.Flush); |
3078 | #endif |
3079 | |
3080 | START_CRIT_SECTION(); |
3081 | |
3082 | /* now wait for any in-progress insertions to finish and get write lock */ |
3083 | WaitXLogInsertionsToFinish(WriteRqst.Write); |
3084 | LWLockAcquire(WALWriteLock, LW_EXCLUSIVE); |
3085 | LogwrtResult = XLogCtl->LogwrtResult; |
3086 | if (WriteRqst.Write > LogwrtResult.Write || |
3087 | WriteRqst.Flush > LogwrtResult.Flush) |
3088 | { |
3089 | XLogWrite(WriteRqst, flexible); |
3090 | } |
3091 | LWLockRelease(WALWriteLock); |
3092 | |
3093 | END_CRIT_SECTION(); |
3094 | |
3095 | /* wake up walsenders now that we've released heavily contended locks */ |
3096 | WalSndWakeupProcessRequests(); |
3097 | |
3098 | /* |
3099 | * Great, done. To take some work off the critical path, try to initialize |
3100 | * as many of the no-longer-needed WAL buffers for future use as we can. |
3101 | */ |
3102 | AdvanceXLInsertBuffer(InvalidXLogRecPtr, true); |
3103 | |
3104 | /* |
3105 | * If we determined that we need to write data, but somebody else |
3106 | * wrote/flushed already, it should be considered as being active, to |
3107 | * avoid hibernating too early. |
3108 | */ |
3109 | return true; |
3110 | } |
3111 | |
3112 | /* |
3113 | * Test whether XLOG data has been flushed up to (at least) the given position. |
3114 | * |
3115 | * Returns true if a flush is still needed. (It may be that someone else |
3116 | * is already in process of flushing that far, however.) |
3117 | */ |
3118 | bool |
3119 | XLogNeedsFlush(XLogRecPtr record) |
3120 | { |
3121 | /* |
3122 | * During recovery, we don't flush WAL but update minRecoveryPoint |
3123 | * instead. So "needs flush" is taken to mean whether minRecoveryPoint |
3124 | * would need to be updated. |
3125 | */ |
3126 | if (RecoveryInProgress()) |
3127 | { |
3128 | /* |
3129 | * An invalid minRecoveryPoint means that we need to recover all the |
3130 | * WAL, i.e., we're doing crash recovery. We never modify the control |
3131 | * file's value in that case, so we can short-circuit future checks |
3132 | * here too. This triggers a quick exit path for the startup process, |
3133 | * which cannot update its local copy of minRecoveryPoint as long as |
3134 | * it has not replayed all WAL available when doing crash recovery. |
3135 | */ |
3136 | if (XLogRecPtrIsInvalid(minRecoveryPoint) && InRecovery) |
3137 | updateMinRecoveryPoint = false; |
3138 | |
3139 | /* Quick exit if already known to be updated or cannot be updated */ |
3140 | if (record <= minRecoveryPoint || !updateMinRecoveryPoint) |
3141 | return false; |
3142 | |
3143 | /* |
3144 | * Update local copy of minRecoveryPoint. But if the lock is busy, |
3145 | * just return a conservative guess. |
3146 | */ |
3147 | if (!LWLockConditionalAcquire(ControlFileLock, LW_SHARED)) |
3148 | return true; |
3149 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
3150 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
3151 | LWLockRelease(ControlFileLock); |
3152 | |
3153 | /* |
3154 | * Check minRecoveryPoint for any other process than the startup |
3155 | * process doing crash recovery, which should not update the control |
3156 | * file value if crash recovery is still running. |
3157 | */ |
3158 | if (XLogRecPtrIsInvalid(minRecoveryPoint)) |
3159 | updateMinRecoveryPoint = false; |
3160 | |
3161 | /* check again */ |
3162 | if (record <= minRecoveryPoint || !updateMinRecoveryPoint) |
3163 | return false; |
3164 | else |
3165 | return true; |
3166 | } |
3167 | |
3168 | /* Quick exit if already known flushed */ |
3169 | if (record <= LogwrtResult.Flush) |
3170 | return false; |
3171 | |
3172 | /* read LogwrtResult and update local state */ |
3173 | SpinLockAcquire(&XLogCtl->info_lck); |
3174 | LogwrtResult = XLogCtl->LogwrtResult; |
3175 | SpinLockRelease(&XLogCtl->info_lck); |
3176 | |
3177 | /* check again */ |
3178 | if (record <= LogwrtResult.Flush) |
3179 | return false; |
3180 | |
3181 | return true; |
3182 | } |
3183 | |
3184 | /* |
3185 | * Create a new XLOG file segment, or open a pre-existing one. |
3186 | * |
3187 | * log, seg: identify segment to be created/opened. |
3188 | * |
3189 | * *use_existent: if true, OK to use a pre-existing file (else, any |
3190 | * pre-existing file will be deleted). On return, true if a pre-existing |
3191 | * file was used. |
3192 | * |
3193 | * use_lock: if true, acquire ControlFileLock while moving file into |
3194 | * place. This should be true except during bootstrap log creation. The |
3195 | * caller must *not* hold the lock at call. |
3196 | * |
3197 | * Returns FD of opened file. |
3198 | * |
3199 | * Note: errors here are ERROR not PANIC because we might or might not be |
3200 | * inside a critical section (eg, during checkpoint there is no reason to |
3201 | * take down the system on failure). They will promote to PANIC if we are |
3202 | * in a critical section. |
3203 | */ |
3204 | int |
3205 | XLogFileInit(XLogSegNo logsegno, bool *use_existent, bool use_lock) |
3206 | { |
3207 | char path[MAXPGPATH]; |
3208 | char tmppath[MAXPGPATH]; |
3209 | PGAlignedXLogBlock zbuffer; |
3210 | XLogSegNo installed_segno; |
3211 | XLogSegNo max_segno; |
3212 | int fd; |
3213 | int nbytes; |
3214 | int save_errno; |
3215 | |
3216 | XLogFilePath(path, ThisTimeLineID, logsegno, wal_segment_size); |
3217 | |
3218 | /* |
3219 | * Try to use existent file (checkpoint maker may have created it already) |
3220 | */ |
3221 | if (*use_existent) |
3222 | { |
3223 | fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method)); |
3224 | if (fd < 0) |
3225 | { |
3226 | if (errno != ENOENT) |
3227 | ereport(ERROR, |
3228 | (errcode_for_file_access(), |
3229 | errmsg("could not open file \"%s\": %m" , path))); |
3230 | } |
3231 | else |
3232 | return fd; |
3233 | } |
3234 | |
3235 | /* |
3236 | * Initialize an empty (all zeroes) segment. NOTE: it is possible that |
3237 | * another process is doing the same thing. If so, we will end up |
3238 | * pre-creating an extra log segment. That seems OK, and better than |
3239 | * holding the lock throughout this lengthy process. |
3240 | */ |
3241 | elog(DEBUG2, "creating and filling new WAL file" ); |
3242 | |
3243 | snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d" , (int) getpid()); |
3244 | |
3245 | unlink(tmppath); |
3246 | |
3247 | /* do not use get_sync_bit() here --- want to fsync only at end of fill */ |
3248 | fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY); |
3249 | if (fd < 0) |
3250 | ereport(ERROR, |
3251 | (errcode_for_file_access(), |
3252 | errmsg("could not create file \"%s\": %m" , tmppath))); |
3253 | |
3254 | memset(zbuffer.data, 0, XLOG_BLCKSZ); |
3255 | |
3256 | pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_WRITE); |
3257 | save_errno = 0; |
3258 | if (wal_init_zero) |
3259 | { |
3260 | /* |
3261 | * Zero-fill the file. With this setting, we do this the hard way to |
3262 | * ensure that all the file space has really been allocated. On |
3263 | * platforms that allow "holes" in files, just seeking to the end |
3264 | * doesn't allocate intermediate space. This way, we know that we |
3265 | * have all the space and (after the fsync below) that all the |
3266 | * indirect blocks are down on disk. Therefore, fdatasync(2) or |
3267 | * O_DSYNC will be sufficient to sync future writes to the log file. |
3268 | */ |
3269 | for (nbytes = 0; nbytes < wal_segment_size; nbytes += XLOG_BLCKSZ) |
3270 | { |
3271 | errno = 0; |
3272 | if (write(fd, zbuffer.data, XLOG_BLCKSZ) != XLOG_BLCKSZ) |
3273 | { |
3274 | /* if write didn't set errno, assume no disk space */ |
3275 | save_errno = errno ? errno : ENOSPC; |
3276 | break; |
3277 | } |
3278 | } |
3279 | } |
3280 | else |
3281 | { |
3282 | /* |
3283 | * Otherwise, seeking to the end and writing a solitary byte is |
3284 | * enough. |
3285 | */ |
3286 | errno = 0; |
3287 | if (pg_pwrite(fd, zbuffer.data, 1, wal_segment_size - 1) != 1) |
3288 | { |
3289 | /* if write didn't set errno, assume no disk space */ |
3290 | save_errno = errno ? errno : ENOSPC; |
3291 | } |
3292 | } |
3293 | pgstat_report_wait_end(); |
3294 | |
3295 | if (save_errno) |
3296 | { |
3297 | /* |
3298 | * If we fail to make the file, delete it to release disk space |
3299 | */ |
3300 | unlink(tmppath); |
3301 | |
3302 | close(fd); |
3303 | |
3304 | errno = save_errno; |
3305 | |
3306 | ereport(ERROR, |
3307 | (errcode_for_file_access(), |
3308 | errmsg("could not write to file \"%s\": %m" , tmppath))); |
3309 | } |
3310 | |
3311 | pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_SYNC); |
3312 | if (pg_fsync(fd) != 0) |
3313 | { |
3314 | int save_errno = errno; |
3315 | |
3316 | close(fd); |
3317 | errno = save_errno; |
3318 | ereport(ERROR, |
3319 | (errcode_for_file_access(), |
3320 | errmsg("could not fsync file \"%s\": %m" , tmppath))); |
3321 | } |
3322 | pgstat_report_wait_end(); |
3323 | |
3324 | if (close(fd)) |
3325 | ereport(ERROR, |
3326 | (errcode_for_file_access(), |
3327 | errmsg("could not close file \"%s\": %m" , tmppath))); |
3328 | |
3329 | /* |
3330 | * Now move the segment into place with its final name. |
3331 | * |
3332 | * If caller didn't want to use a pre-existing file, get rid of any |
3333 | * pre-existing file. Otherwise, cope with possibility that someone else |
3334 | * has created the file while we were filling ours: if so, use ours to |
3335 | * pre-create a future log segment. |
3336 | */ |
3337 | installed_segno = logsegno; |
3338 | |
3339 | /* |
3340 | * XXX: What should we use as max_segno? We used to use XLOGfileslop when |
3341 | * that was a constant, but that was always a bit dubious: normally, at a |
3342 | * checkpoint, XLOGfileslop was the offset from the checkpoint record, but |
3343 | * here, it was the offset from the insert location. We can't do the |
3344 | * normal XLOGfileslop calculation here because we don't have access to |
3345 | * the prior checkpoint's redo location. So somewhat arbitrarily, just use |
3346 | * CheckPointSegments. |
3347 | */ |
3348 | max_segno = logsegno + CheckPointSegments; |
3349 | if (!InstallXLogFileSegment(&installed_segno, tmppath, |
3350 | *use_existent, max_segno, |
3351 | use_lock)) |
3352 | { |
3353 | /* |
3354 | * No need for any more future segments, or InstallXLogFileSegment() |
3355 | * failed to rename the file into place. If the rename failed, opening |
3356 | * the file below will fail. |
3357 | */ |
3358 | unlink(tmppath); |
3359 | } |
3360 | |
3361 | /* Set flag to tell caller there was no existent file */ |
3362 | *use_existent = false; |
3363 | |
3364 | /* Now open original target segment (might not be file I just made) */ |
3365 | fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method)); |
3366 | if (fd < 0) |
3367 | ereport(ERROR, |
3368 | (errcode_for_file_access(), |
3369 | errmsg("could not open file \"%s\": %m" , path))); |
3370 | |
3371 | elog(DEBUG2, "done creating and filling new WAL file" ); |
3372 | |
3373 | return fd; |
3374 | } |
3375 | |
3376 | /* |
3377 | * Create a new XLOG file segment by copying a pre-existing one. |
3378 | * |
3379 | * destsegno: identify segment to be created. |
3380 | * |
3381 | * srcTLI, srcsegno: identify segment to be copied (could be from |
3382 | * a different timeline) |
3383 | * |
3384 | * upto: how much of the source file to copy (the rest is filled with |
3385 | * zeros) |
3386 | * |
3387 | * Currently this is only used during recovery, and so there are no locking |
3388 | * considerations. But we should be just as tense as XLogFileInit to avoid |
3389 | * emplacing a bogus file. |
3390 | */ |
3391 | static void |
3392 | XLogFileCopy(XLogSegNo destsegno, TimeLineID srcTLI, XLogSegNo srcsegno, |
3393 | int upto) |
3394 | { |
3395 | char path[MAXPGPATH]; |
3396 | char tmppath[MAXPGPATH]; |
3397 | PGAlignedXLogBlock buffer; |
3398 | int srcfd; |
3399 | int fd; |
3400 | int nbytes; |
3401 | |
3402 | /* |
3403 | * Open the source file |
3404 | */ |
3405 | XLogFilePath(path, srcTLI, srcsegno, wal_segment_size); |
3406 | srcfd = OpenTransientFile(path, O_RDONLY | PG_BINARY); |
3407 | if (srcfd < 0) |
3408 | ereport(ERROR, |
3409 | (errcode_for_file_access(), |
3410 | errmsg("could not open file \"%s\": %m" , path))); |
3411 | |
3412 | /* |
3413 | * Copy into a temp file name. |
3414 | */ |
3415 | snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d" , (int) getpid()); |
3416 | |
3417 | unlink(tmppath); |
3418 | |
3419 | /* do not use get_sync_bit() here --- want to fsync only at end of fill */ |
3420 | fd = OpenTransientFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY); |
3421 | if (fd < 0) |
3422 | ereport(ERROR, |
3423 | (errcode_for_file_access(), |
3424 | errmsg("could not create file \"%s\": %m" , tmppath))); |
3425 | |
3426 | /* |
3427 | * Do the data copying. |
3428 | */ |
3429 | for (nbytes = 0; nbytes < wal_segment_size; nbytes += sizeof(buffer)) |
3430 | { |
3431 | int nread; |
3432 | |
3433 | nread = upto - nbytes; |
3434 | |
3435 | /* |
3436 | * The part that is not read from the source file is filled with |
3437 | * zeros. |
3438 | */ |
3439 | if (nread < sizeof(buffer)) |
3440 | memset(buffer.data, 0, sizeof(buffer)); |
3441 | |
3442 | if (nread > 0) |
3443 | { |
3444 | int r; |
3445 | |
3446 | if (nread > sizeof(buffer)) |
3447 | nread = sizeof(buffer); |
3448 | pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_READ); |
3449 | r = read(srcfd, buffer.data, nread); |
3450 | if (r != nread) |
3451 | { |
3452 | if (r < 0) |
3453 | ereport(ERROR, |
3454 | (errcode_for_file_access(), |
3455 | errmsg("could not read file \"%s\": %m" , |
3456 | path))); |
3457 | else |
3458 | ereport(ERROR, |
3459 | (errcode(ERRCODE_DATA_CORRUPTED), |
3460 | errmsg("could not read file \"%s\": read %d of %zu" , |
3461 | path, r, (Size) nread))); |
3462 | } |
3463 | pgstat_report_wait_end(); |
3464 | } |
3465 | errno = 0; |
3466 | pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_WRITE); |
3467 | if ((int) write(fd, buffer.data, sizeof(buffer)) != (int) sizeof(buffer)) |
3468 | { |
3469 | int save_errno = errno; |
3470 | |
3471 | /* |
3472 | * If we fail to make the file, delete it to release disk space |
3473 | */ |
3474 | unlink(tmppath); |
3475 | /* if write didn't set errno, assume problem is no disk space */ |
3476 | errno = save_errno ? save_errno : ENOSPC; |
3477 | |
3478 | ereport(ERROR, |
3479 | (errcode_for_file_access(), |
3480 | errmsg("could not write to file \"%s\": %m" , tmppath))); |
3481 | } |
3482 | pgstat_report_wait_end(); |
3483 | } |
3484 | |
3485 | pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_SYNC); |
3486 | if (pg_fsync(fd) != 0) |
3487 | ereport(data_sync_elevel(ERROR), |
3488 | (errcode_for_file_access(), |
3489 | errmsg("could not fsync file \"%s\": %m" , tmppath))); |
3490 | pgstat_report_wait_end(); |
3491 | |
3492 | if (CloseTransientFile(fd)) |
3493 | ereport(ERROR, |
3494 | (errcode_for_file_access(), |
3495 | errmsg("could not close file \"%s\": %m" , tmppath))); |
3496 | |
3497 | if (CloseTransientFile(srcfd)) |
3498 | ereport(ERROR, |
3499 | (errcode_for_file_access(), |
3500 | errmsg("could not close file \"%s\": %m" , path))); |
3501 | |
3502 | /* |
3503 | * Now move the segment into place with its final name. |
3504 | */ |
3505 | if (!InstallXLogFileSegment(&destsegno, tmppath, false, 0, false)) |
3506 | elog(ERROR, "InstallXLogFileSegment should not have failed" ); |
3507 | } |
3508 | |
3509 | /* |
3510 | * Install a new XLOG segment file as a current or future log segment. |
3511 | * |
3512 | * This is used both to install a newly-created segment (which has a temp |
3513 | * filename while it's being created) and to recycle an old segment. |
3514 | * |
3515 | * *segno: identify segment to install as (or first possible target). |
3516 | * When find_free is true, this is modified on return to indicate the |
3517 | * actual installation location or last segment searched. |
3518 | * |
3519 | * tmppath: initial name of file to install. It will be renamed into place. |
3520 | * |
3521 | * find_free: if true, install the new segment at the first empty segno |
3522 | * number at or after the passed numbers. If false, install the new segment |
3523 | * exactly where specified, deleting any existing segment file there. |
3524 | * |
3525 | * max_segno: maximum segment number to install the new file as. Fail if no |
3526 | * free slot is found between *segno and max_segno. (Ignored when find_free |
3527 | * is false.) |
3528 | * |
3529 | * use_lock: if true, acquire ControlFileLock while moving file into |
3530 | * place. This should be true except during bootstrap log creation. The |
3531 | * caller must *not* hold the lock at call. |
3532 | * |
3533 | * Returns true if the file was installed successfully. false indicates that |
3534 | * max_segno limit was exceeded, or an error occurred while renaming the |
3535 | * file into place. |
3536 | */ |
3537 | static bool |
3538 | InstallXLogFileSegment(XLogSegNo *segno, char *tmppath, |
3539 | bool find_free, XLogSegNo max_segno, |
3540 | bool use_lock) |
3541 | { |
3542 | char path[MAXPGPATH]; |
3543 | struct stat stat_buf; |
3544 | |
3545 | XLogFilePath(path, ThisTimeLineID, *segno, wal_segment_size); |
3546 | |
3547 | /* |
3548 | * We want to be sure that only one process does this at a time. |
3549 | */ |
3550 | if (use_lock) |
3551 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
3552 | |
3553 | if (!find_free) |
3554 | { |
3555 | /* Force installation: get rid of any pre-existing segment file */ |
3556 | durable_unlink(path, DEBUG1); |
3557 | } |
3558 | else |
3559 | { |
3560 | /* Find a free slot to put it in */ |
3561 | while (stat(path, &stat_buf) == 0) |
3562 | { |
3563 | if ((*segno) >= max_segno) |
3564 | { |
3565 | /* Failed to find a free slot within specified range */ |
3566 | if (use_lock) |
3567 | LWLockRelease(ControlFileLock); |
3568 | return false; |
3569 | } |
3570 | (*segno)++; |
3571 | XLogFilePath(path, ThisTimeLineID, *segno, wal_segment_size); |
3572 | } |
3573 | } |
3574 | |
3575 | /* |
3576 | * Perform the rename using link if available, paranoidly trying to avoid |
3577 | * overwriting an existing file (there shouldn't be one). |
3578 | */ |
3579 | if (durable_link_or_rename(tmppath, path, LOG) != 0) |
3580 | { |
3581 | if (use_lock) |
3582 | LWLockRelease(ControlFileLock); |
3583 | /* durable_link_or_rename already emitted log message */ |
3584 | return false; |
3585 | } |
3586 | |
3587 | if (use_lock) |
3588 | LWLockRelease(ControlFileLock); |
3589 | |
3590 | return true; |
3591 | } |
3592 | |
3593 | /* |
3594 | * Open a pre-existing logfile segment for writing. |
3595 | */ |
3596 | int |
3597 | XLogFileOpen(XLogSegNo segno) |
3598 | { |
3599 | char path[MAXPGPATH]; |
3600 | int fd; |
3601 | |
3602 | XLogFilePath(path, ThisTimeLineID, segno, wal_segment_size); |
3603 | |
3604 | fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method)); |
3605 | if (fd < 0) |
3606 | ereport(PANIC, |
3607 | (errcode_for_file_access(), |
3608 | errmsg("could not open file \"%s\": %m" , path))); |
3609 | |
3610 | return fd; |
3611 | } |
3612 | |
3613 | /* |
3614 | * Open a logfile segment for reading (during recovery). |
3615 | * |
3616 | * If source == XLOG_FROM_ARCHIVE, the segment is retrieved from archive. |
3617 | * Otherwise, it's assumed to be already available in pg_wal. |
3618 | */ |
3619 | static int |
3620 | XLogFileRead(XLogSegNo segno, int emode, TimeLineID tli, |
3621 | int source, bool notfoundOk) |
3622 | { |
3623 | char xlogfname[MAXFNAMELEN]; |
3624 | char activitymsg[MAXFNAMELEN + 16]; |
3625 | char path[MAXPGPATH]; |
3626 | int fd; |
3627 | |
3628 | XLogFileName(xlogfname, tli, segno, wal_segment_size); |
3629 | |
3630 | switch (source) |
3631 | { |
3632 | case XLOG_FROM_ARCHIVE: |
3633 | /* Report recovery progress in PS display */ |
3634 | snprintf(activitymsg, sizeof(activitymsg), "waiting for %s" , |
3635 | xlogfname); |
3636 | set_ps_display(activitymsg, false); |
3637 | |
3638 | restoredFromArchive = RestoreArchivedFile(path, xlogfname, |
3639 | "RECOVERYXLOG" , |
3640 | wal_segment_size, |
3641 | InRedo); |
3642 | if (!restoredFromArchive) |
3643 | return -1; |
3644 | break; |
3645 | |
3646 | case XLOG_FROM_PG_WAL: |
3647 | case XLOG_FROM_STREAM: |
3648 | XLogFilePath(path, tli, segno, wal_segment_size); |
3649 | restoredFromArchive = false; |
3650 | break; |
3651 | |
3652 | default: |
3653 | elog(ERROR, "invalid XLogFileRead source %d" , source); |
3654 | } |
3655 | |
3656 | /* |
3657 | * If the segment was fetched from archival storage, replace the existing |
3658 | * xlog segment (if any) with the archival version. |
3659 | */ |
3660 | if (source == XLOG_FROM_ARCHIVE) |
3661 | { |
3662 | KeepFileRestoredFromArchive(path, xlogfname); |
3663 | |
3664 | /* |
3665 | * Set path to point at the new file in pg_wal. |
3666 | */ |
3667 | snprintf(path, MAXPGPATH, XLOGDIR "/%s" , xlogfname); |
3668 | } |
3669 | |
3670 | fd = BasicOpenFile(path, O_RDONLY | PG_BINARY); |
3671 | if (fd >= 0) |
3672 | { |
3673 | /* Success! */ |
3674 | curFileTLI = tli; |
3675 | |
3676 | /* Report recovery progress in PS display */ |
3677 | snprintf(activitymsg, sizeof(activitymsg), "recovering %s" , |
3678 | xlogfname); |
3679 | set_ps_display(activitymsg, false); |
3680 | |
3681 | /* Track source of data in assorted state variables */ |
3682 | readSource = source; |
3683 | XLogReceiptSource = source; |
3684 | /* In FROM_STREAM case, caller tracks receipt time, not me */ |
3685 | if (source != XLOG_FROM_STREAM) |
3686 | XLogReceiptTime = GetCurrentTimestamp(); |
3687 | |
3688 | return fd; |
3689 | } |
3690 | if (errno != ENOENT || !notfoundOk) /* unexpected failure? */ |
3691 | ereport(PANIC, |
3692 | (errcode_for_file_access(), |
3693 | errmsg("could not open file \"%s\": %m" , path))); |
3694 | return -1; |
3695 | } |
3696 | |
3697 | /* |
3698 | * Open a logfile segment for reading (during recovery). |
3699 | * |
3700 | * This version searches for the segment with any TLI listed in expectedTLEs. |
3701 | */ |
3702 | static int |
3703 | XLogFileReadAnyTLI(XLogSegNo segno, int emode, int source) |
3704 | { |
3705 | char path[MAXPGPATH]; |
3706 | ListCell *cell; |
3707 | int fd; |
3708 | List *tles; |
3709 | |
3710 | /* |
3711 | * Loop looking for a suitable timeline ID: we might need to read any of |
3712 | * the timelines listed in expectedTLEs. |
3713 | * |
3714 | * We expect curFileTLI on entry to be the TLI of the preceding file in |
3715 | * sequence, or 0 if there was no predecessor. We do not allow curFileTLI |
3716 | * to go backwards; this prevents us from picking up the wrong file when a |
3717 | * parent timeline extends to higher segment numbers than the child we |
3718 | * want to read. |
3719 | * |
3720 | * If we haven't read the timeline history file yet, read it now, so that |
3721 | * we know which TLIs to scan. We don't save the list in expectedTLEs, |
3722 | * however, unless we actually find a valid segment. That way if there is |
3723 | * neither a timeline history file nor a WAL segment in the archive, and |
3724 | * streaming replication is set up, we'll read the timeline history file |
3725 | * streamed from the master when we start streaming, instead of recovering |
3726 | * with a dummy history generated here. |
3727 | */ |
3728 | if (expectedTLEs) |
3729 | tles = expectedTLEs; |
3730 | else |
3731 | tles = readTimeLineHistory(recoveryTargetTLI); |
3732 | |
3733 | foreach(cell, tles) |
3734 | { |
3735 | TimeLineID tli = ((TimeLineHistoryEntry *) lfirst(cell))->tli; |
3736 | |
3737 | if (tli < curFileTLI) |
3738 | break; /* don't bother looking at too-old TLIs */ |
3739 | |
3740 | if (source == XLOG_FROM_ANY || source == XLOG_FROM_ARCHIVE) |
3741 | { |
3742 | fd = XLogFileRead(segno, emode, tli, |
3743 | XLOG_FROM_ARCHIVE, true); |
3744 | if (fd != -1) |
3745 | { |
3746 | elog(DEBUG1, "got WAL segment from archive" ); |
3747 | if (!expectedTLEs) |
3748 | expectedTLEs = tles; |
3749 | return fd; |
3750 | } |
3751 | } |
3752 | |
3753 | if (source == XLOG_FROM_ANY || source == XLOG_FROM_PG_WAL) |
3754 | { |
3755 | fd = XLogFileRead(segno, emode, tli, |
3756 | XLOG_FROM_PG_WAL, true); |
3757 | if (fd != -1) |
3758 | { |
3759 | if (!expectedTLEs) |
3760 | expectedTLEs = tles; |
3761 | return fd; |
3762 | } |
3763 | } |
3764 | } |
3765 | |
3766 | /* Couldn't find it. For simplicity, complain about front timeline */ |
3767 | XLogFilePath(path, recoveryTargetTLI, segno, wal_segment_size); |
3768 | errno = ENOENT; |
3769 | ereport(emode, |
3770 | (errcode_for_file_access(), |
3771 | errmsg("could not open file \"%s\": %m" , path))); |
3772 | return -1; |
3773 | } |
3774 | |
3775 | /* |
3776 | * Close the current logfile segment for writing. |
3777 | */ |
3778 | static void |
3779 | XLogFileClose(void) |
3780 | { |
3781 | Assert(openLogFile >= 0); |
3782 | |
3783 | /* |
3784 | * WAL segment files will not be re-read in normal operation, so we advise |
3785 | * the OS to release any cached pages. But do not do so if WAL archiving |
3786 | * or streaming is active, because archiver and walsender process could |
3787 | * use the cache to read the WAL segment. |
3788 | */ |
3789 | #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED) |
3790 | if (!XLogIsNeeded()) |
3791 | (void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED); |
3792 | #endif |
3793 | |
3794 | if (close(openLogFile)) |
3795 | ereport(PANIC, |
3796 | (errcode_for_file_access(), |
3797 | errmsg("could not close file \"%s\": %m" , |
3798 | XLogFileNameP(ThisTimeLineID, openLogSegNo)))); |
3799 | openLogFile = -1; |
3800 | } |
3801 | |
3802 | /* |
3803 | * Preallocate log files beyond the specified log endpoint. |
3804 | * |
3805 | * XXX this is currently extremely conservative, since it forces only one |
3806 | * future log segment to exist, and even that only if we are 75% done with |
3807 | * the current one. This is only appropriate for very low-WAL-volume systems. |
3808 | * High-volume systems will be OK once they've built up a sufficient set of |
3809 | * recycled log segments, but the startup transient is likely to include |
3810 | * a lot of segment creations by foreground processes, which is not so good. |
3811 | */ |
3812 | static void |
3813 | PreallocXlogFiles(XLogRecPtr endptr) |
3814 | { |
3815 | XLogSegNo _logSegNo; |
3816 | int lf; |
3817 | bool use_existent; |
3818 | uint64 offset; |
3819 | |
3820 | XLByteToPrevSeg(endptr, _logSegNo, wal_segment_size); |
3821 | offset = XLogSegmentOffset(endptr - 1, wal_segment_size); |
3822 | if (offset >= (uint32) (0.75 * wal_segment_size)) |
3823 | { |
3824 | _logSegNo++; |
3825 | use_existent = true; |
3826 | lf = XLogFileInit(_logSegNo, &use_existent, true); |
3827 | close(lf); |
3828 | if (!use_existent) |
3829 | CheckpointStats.ckpt_segs_added++; |
3830 | } |
3831 | } |
3832 | |
3833 | /* |
3834 | * Throws an error if the given log segment has already been removed or |
3835 | * recycled. The caller should only pass a segment that it knows to have |
3836 | * existed while the server has been running, as this function always |
3837 | * succeeds if no WAL segments have been removed since startup. |
3838 | * 'tli' is only used in the error message. |
3839 | * |
3840 | * Note: this function guarantees to keep errno unchanged on return. |
3841 | * This supports callers that use this to possibly deliver a better |
3842 | * error message about a missing file, while still being able to throw |
3843 | * a normal file-access error afterwards, if this does return. |
3844 | */ |
3845 | void |
3846 | CheckXLogRemoved(XLogSegNo segno, TimeLineID tli) |
3847 | { |
3848 | int save_errno = errno; |
3849 | XLogSegNo lastRemovedSegNo; |
3850 | |
3851 | SpinLockAcquire(&XLogCtl->info_lck); |
3852 | lastRemovedSegNo = XLogCtl->lastRemovedSegNo; |
3853 | SpinLockRelease(&XLogCtl->info_lck); |
3854 | |
3855 | if (segno <= lastRemovedSegNo) |
3856 | { |
3857 | char filename[MAXFNAMELEN]; |
3858 | |
3859 | XLogFileName(filename, tli, segno, wal_segment_size); |
3860 | errno = save_errno; |
3861 | ereport(ERROR, |
3862 | (errcode_for_file_access(), |
3863 | errmsg("requested WAL segment %s has already been removed" , |
3864 | filename))); |
3865 | } |
3866 | errno = save_errno; |
3867 | } |
3868 | |
3869 | /* |
3870 | * Return the last WAL segment removed, or 0 if no segment has been removed |
3871 | * since startup. |
3872 | * |
3873 | * NB: the result can be out of date arbitrarily fast, the caller has to deal |
3874 | * with that. |
3875 | */ |
3876 | XLogSegNo |
3877 | XLogGetLastRemovedSegno(void) |
3878 | { |
3879 | XLogSegNo lastRemovedSegNo; |
3880 | |
3881 | SpinLockAcquire(&XLogCtl->info_lck); |
3882 | lastRemovedSegNo = XLogCtl->lastRemovedSegNo; |
3883 | SpinLockRelease(&XLogCtl->info_lck); |
3884 | |
3885 | return lastRemovedSegNo; |
3886 | } |
3887 | |
3888 | /* |
3889 | * Update the last removed segno pointer in shared memory, to reflect |
3890 | * that the given XLOG file has been removed. |
3891 | */ |
3892 | static void |
3893 | UpdateLastRemovedPtr(char *filename) |
3894 | { |
3895 | uint32 tli; |
3896 | XLogSegNo segno; |
3897 | |
3898 | XLogFromFileName(filename, &tli, &segno, wal_segment_size); |
3899 | |
3900 | SpinLockAcquire(&XLogCtl->info_lck); |
3901 | if (segno > XLogCtl->lastRemovedSegNo) |
3902 | XLogCtl->lastRemovedSegNo = segno; |
3903 | SpinLockRelease(&XLogCtl->info_lck); |
3904 | } |
3905 | |
3906 | /* |
3907 | * Remove all temporary log files in pg_wal |
3908 | * |
3909 | * This is called at the beginning of recovery after a previous crash, |
3910 | * at a point where no other processes write fresh WAL data. |
3911 | */ |
3912 | static void |
3913 | RemoveTempXlogFiles(void) |
3914 | { |
3915 | DIR *xldir; |
3916 | struct dirent *xlde; |
3917 | |
3918 | elog(DEBUG2, "removing all temporary WAL segments" ); |
3919 | |
3920 | xldir = AllocateDir(XLOGDIR); |
3921 | while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) |
3922 | { |
3923 | char path[MAXPGPATH]; |
3924 | |
3925 | if (strncmp(xlde->d_name, "xlogtemp." , 9) != 0) |
3926 | continue; |
3927 | |
3928 | snprintf(path, MAXPGPATH, XLOGDIR "/%s" , xlde->d_name); |
3929 | unlink(path); |
3930 | elog(DEBUG2, "removed temporary WAL segment \"%s\"" , path); |
3931 | } |
3932 | FreeDir(xldir); |
3933 | } |
3934 | |
3935 | /* |
3936 | * Recycle or remove all log files older or equal to passed segno. |
3937 | * |
3938 | * endptr is current (or recent) end of xlog, and RedoRecPtr is the |
3939 | * redo pointer of the last checkpoint. These are used to determine |
3940 | * whether we want to recycle rather than delete no-longer-wanted log files. |
3941 | */ |
3942 | static void |
3943 | RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr RedoRecPtr, XLogRecPtr endptr) |
3944 | { |
3945 | DIR *xldir; |
3946 | struct dirent *xlde; |
3947 | char lastoff[MAXFNAMELEN]; |
3948 | |
3949 | /* |
3950 | * Construct a filename of the last segment to be kept. The timeline ID |
3951 | * doesn't matter, we ignore that in the comparison. (During recovery, |
3952 | * ThisTimeLineID isn't set, so we can't use that.) |
3953 | */ |
3954 | XLogFileName(lastoff, 0, segno, wal_segment_size); |
3955 | |
3956 | elog(DEBUG2, "attempting to remove WAL segments older than log file %s" , |
3957 | lastoff); |
3958 | |
3959 | xldir = AllocateDir(XLOGDIR); |
3960 | |
3961 | while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) |
3962 | { |
3963 | /* Ignore files that are not XLOG segments */ |
3964 | if (!IsXLogFileName(xlde->d_name) && |
3965 | !IsPartialXLogFileName(xlde->d_name)) |
3966 | continue; |
3967 | |
3968 | /* |
3969 | * We ignore the timeline part of the XLOG segment identifiers in |
3970 | * deciding whether a segment is still needed. This ensures that we |
3971 | * won't prematurely remove a segment from a parent timeline. We could |
3972 | * probably be a little more proactive about removing segments of |
3973 | * non-parent timelines, but that would be a whole lot more |
3974 | * complicated. |
3975 | * |
3976 | * We use the alphanumeric sorting property of the filenames to decide |
3977 | * which ones are earlier than the lastoff segment. |
3978 | */ |
3979 | if (strcmp(xlde->d_name + 8, lastoff + 8) <= 0) |
3980 | { |
3981 | if (XLogArchiveCheckDone(xlde->d_name)) |
3982 | { |
3983 | /* Update the last removed location in shared memory first */ |
3984 | UpdateLastRemovedPtr(xlde->d_name); |
3985 | |
3986 | RemoveXlogFile(xlde->d_name, RedoRecPtr, endptr); |
3987 | } |
3988 | } |
3989 | } |
3990 | |
3991 | FreeDir(xldir); |
3992 | } |
3993 | |
3994 | /* |
3995 | * Remove WAL files that are not part of the given timeline's history. |
3996 | * |
3997 | * This is called during recovery, whenever we switch to follow a new |
3998 | * timeline, and at the end of recovery when we create a new timeline. We |
3999 | * wouldn't otherwise care about extra WAL files lying in pg_wal, but they |
4000 | * might be leftover pre-allocated or recycled WAL segments on the old timeline |
4001 | * that we haven't used yet, and contain garbage. If we just leave them in |
4002 | * pg_wal, they will eventually be archived, and we can't let that happen. |
4003 | * Files that belong to our timeline history are valid, because we have |
4004 | * successfully replayed them, but from others we can't be sure. |
4005 | * |
4006 | * 'switchpoint' is the current point in WAL where we switch to new timeline, |
4007 | * and 'newTLI' is the new timeline we switch to. |
4008 | */ |
4009 | static void |
4010 | RemoveNonParentXlogFiles(XLogRecPtr switchpoint, TimeLineID newTLI) |
4011 | { |
4012 | DIR *xldir; |
4013 | struct dirent *xlde; |
4014 | char switchseg[MAXFNAMELEN]; |
4015 | XLogSegNo endLogSegNo; |
4016 | |
4017 | XLByteToPrevSeg(switchpoint, endLogSegNo, wal_segment_size); |
4018 | |
4019 | /* |
4020 | * Construct a filename of the last segment to be kept. |
4021 | */ |
4022 | XLogFileName(switchseg, newTLI, endLogSegNo, wal_segment_size); |
4023 | |
4024 | elog(DEBUG2, "attempting to remove WAL segments newer than log file %s" , |
4025 | switchseg); |
4026 | |
4027 | xldir = AllocateDir(XLOGDIR); |
4028 | |
4029 | while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) |
4030 | { |
4031 | /* Ignore files that are not XLOG segments */ |
4032 | if (!IsXLogFileName(xlde->d_name)) |
4033 | continue; |
4034 | |
4035 | /* |
4036 | * Remove files that are on a timeline older than the new one we're |
4037 | * switching to, but with a segment number >= the first segment on the |
4038 | * new timeline. |
4039 | */ |
4040 | if (strncmp(xlde->d_name, switchseg, 8) < 0 && |
4041 | strcmp(xlde->d_name + 8, switchseg + 8) > 0) |
4042 | { |
4043 | /* |
4044 | * If the file has already been marked as .ready, however, don't |
4045 | * remove it yet. It should be OK to remove it - files that are |
4046 | * not part of our timeline history are not required for recovery |
4047 | * - but seems safer to let them be archived and removed later. |
4048 | */ |
4049 | if (!XLogArchiveIsReady(xlde->d_name)) |
4050 | RemoveXlogFile(xlde->d_name, InvalidXLogRecPtr, switchpoint); |
4051 | } |
4052 | } |
4053 | |
4054 | FreeDir(xldir); |
4055 | } |
4056 | |
4057 | /* |
4058 | * Recycle or remove a log file that's no longer needed. |
4059 | * |
4060 | * endptr is current (or recent) end of xlog, and RedoRecPtr is the |
4061 | * redo pointer of the last checkpoint. These are used to determine |
4062 | * whether we want to recycle rather than delete no-longer-wanted log files. |
4063 | * If RedoRecPtr is not known, pass invalid, and the function will recycle, |
4064 | * somewhat arbitrarily, 10 future segments. |
4065 | */ |
4066 | static void |
4067 | RemoveXlogFile(const char *segname, XLogRecPtr RedoRecPtr, XLogRecPtr endptr) |
4068 | { |
4069 | char path[MAXPGPATH]; |
4070 | #ifdef WIN32 |
4071 | char newpath[MAXPGPATH]; |
4072 | #endif |
4073 | struct stat statbuf; |
4074 | XLogSegNo endlogSegNo; |
4075 | XLogSegNo recycleSegNo; |
4076 | |
4077 | if (wal_recycle) |
4078 | { |
4079 | /* |
4080 | * Initialize info about where to try to recycle to. |
4081 | */ |
4082 | XLByteToSeg(endptr, endlogSegNo, wal_segment_size); |
4083 | if (RedoRecPtr == InvalidXLogRecPtr) |
4084 | recycleSegNo = endlogSegNo + 10; |
4085 | else |
4086 | recycleSegNo = XLOGfileslop(RedoRecPtr); |
4087 | } |
4088 | else |
4089 | recycleSegNo = 0; /* keep compiler quiet */ |
4090 | |
4091 | snprintf(path, MAXPGPATH, XLOGDIR "/%s" , segname); |
4092 | |
4093 | /* |
4094 | * Before deleting the file, see if it can be recycled as a future log |
4095 | * segment. Only recycle normal files, pg_standby for example can create |
4096 | * symbolic links pointing to a separate archive directory. |
4097 | */ |
4098 | if (wal_recycle && |
4099 | endlogSegNo <= recycleSegNo && |
4100 | lstat(path, &statbuf) == 0 && S_ISREG(statbuf.st_mode) && |
4101 | InstallXLogFileSegment(&endlogSegNo, path, |
4102 | true, recycleSegNo, true)) |
4103 | { |
4104 | ereport(DEBUG2, |
4105 | (errmsg("recycled write-ahead log file \"%s\"" , |
4106 | segname))); |
4107 | CheckpointStats.ckpt_segs_recycled++; |
4108 | /* Needn't recheck that slot on future iterations */ |
4109 | endlogSegNo++; |
4110 | } |
4111 | else |
4112 | { |
4113 | /* No need for any more future segments... */ |
4114 | int rc; |
4115 | |
4116 | ereport(DEBUG2, |
4117 | (errmsg("removing write-ahead log file \"%s\"" , |
4118 | segname))); |
4119 | |
4120 | #ifdef WIN32 |
4121 | |
4122 | /* |
4123 | * On Windows, if another process (e.g another backend) holds the file |
4124 | * open in FILE_SHARE_DELETE mode, unlink will succeed, but the file |
4125 | * will still show up in directory listing until the last handle is |
4126 | * closed. To avoid confusing the lingering deleted file for a live |
4127 | * WAL file that needs to be archived, rename it before deleting it. |
4128 | * |
4129 | * If another process holds the file open without FILE_SHARE_DELETE |
4130 | * flag, rename will fail. We'll try again at the next checkpoint. |
4131 | */ |
4132 | snprintf(newpath, MAXPGPATH, "%s.deleted" , path); |
4133 | if (rename(path, newpath) != 0) |
4134 | { |
4135 | ereport(LOG, |
4136 | (errcode_for_file_access(), |
4137 | errmsg("could not rename file \"%s\": %m" , |
4138 | path))); |
4139 | return; |
4140 | } |
4141 | rc = durable_unlink(newpath, LOG); |
4142 | #else |
4143 | rc = durable_unlink(path, LOG); |
4144 | #endif |
4145 | if (rc != 0) |
4146 | { |
4147 | /* Message already logged by durable_unlink() */ |
4148 | return; |
4149 | } |
4150 | CheckpointStats.ckpt_segs_removed++; |
4151 | } |
4152 | |
4153 | XLogArchiveCleanup(segname); |
4154 | } |
4155 | |
4156 | /* |
4157 | * Verify whether pg_wal and pg_wal/archive_status exist. |
4158 | * If the latter does not exist, recreate it. |
4159 | * |
4160 | * It is not the goal of this function to verify the contents of these |
4161 | * directories, but to help in cases where someone has performed a cluster |
4162 | * copy for PITR purposes but omitted pg_wal from the copy. |
4163 | * |
4164 | * We could also recreate pg_wal if it doesn't exist, but a deliberate |
4165 | * policy decision was made not to. It is fairly common for pg_wal to be |
4166 | * a symlink, and if that was the DBA's intent then automatically making a |
4167 | * plain directory would result in degraded performance with no notice. |
4168 | */ |
4169 | static void |
4170 | ValidateXLOGDirectoryStructure(void) |
4171 | { |
4172 | char path[MAXPGPATH]; |
4173 | struct stat stat_buf; |
4174 | |
4175 | /* Check for pg_wal; if it doesn't exist, error out */ |
4176 | if (stat(XLOGDIR, &stat_buf) != 0 || |
4177 | !S_ISDIR(stat_buf.st_mode)) |
4178 | ereport(FATAL, |
4179 | (errmsg("required WAL directory \"%s\" does not exist" , |
4180 | XLOGDIR))); |
4181 | |
4182 | /* Check for archive_status */ |
4183 | snprintf(path, MAXPGPATH, XLOGDIR "/archive_status" ); |
4184 | if (stat(path, &stat_buf) == 0) |
4185 | { |
4186 | /* Check for weird cases where it exists but isn't a directory */ |
4187 | if (!S_ISDIR(stat_buf.st_mode)) |
4188 | ereport(FATAL, |
4189 | (errmsg("required WAL directory \"%s\" does not exist" , |
4190 | path))); |
4191 | } |
4192 | else |
4193 | { |
4194 | ereport(LOG, |
4195 | (errmsg("creating missing WAL directory \"%s\"" , path))); |
4196 | if (MakePGDirectory(path) < 0) |
4197 | ereport(FATAL, |
4198 | (errmsg("could not create missing directory \"%s\": %m" , |
4199 | path))); |
4200 | } |
4201 | } |
4202 | |
4203 | /* |
4204 | * Remove previous backup history files. This also retries creation of |
4205 | * .ready files for any backup history files for which XLogArchiveNotify |
4206 | * failed earlier. |
4207 | */ |
4208 | static void |
4209 | CleanupBackupHistory(void) |
4210 | { |
4211 | DIR *xldir; |
4212 | struct dirent *xlde; |
4213 | char path[MAXPGPATH + sizeof(XLOGDIR)]; |
4214 | |
4215 | xldir = AllocateDir(XLOGDIR); |
4216 | |
4217 | while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) |
4218 | { |
4219 | if (IsBackupHistoryFileName(xlde->d_name)) |
4220 | { |
4221 | if (XLogArchiveCheckDone(xlde->d_name)) |
4222 | { |
4223 | elog(DEBUG2, "removing WAL backup history file \"%s\"" , |
4224 | xlde->d_name); |
4225 | snprintf(path, sizeof(path), XLOGDIR "/%s" , xlde->d_name); |
4226 | unlink(path); |
4227 | XLogArchiveCleanup(xlde->d_name); |
4228 | } |
4229 | } |
4230 | } |
4231 | |
4232 | FreeDir(xldir); |
4233 | } |
4234 | |
4235 | /* |
4236 | * Attempt to read an XLOG record. |
4237 | * |
4238 | * If RecPtr is valid, try to read a record at that position. Otherwise |
4239 | * try to read a record just after the last one previously read. |
4240 | * |
4241 | * If no valid record is available, returns NULL, or fails if emode is PANIC. |
4242 | * (emode must be either PANIC, LOG). In standby mode, retries until a valid |
4243 | * record is available. |
4244 | */ |
4245 | static XLogRecord * |
4246 | ReadRecord(XLogReaderState *xlogreader, XLogRecPtr RecPtr, int emode, |
4247 | bool fetching_ckpt) |
4248 | { |
4249 | XLogRecord *record; |
4250 | XLogPageReadPrivate *private = (XLogPageReadPrivate *) xlogreader->private_data; |
4251 | |
4252 | /* Pass through parameters to XLogPageRead */ |
4253 | private->fetching_ckpt = fetching_ckpt; |
4254 | private->emode = emode; |
4255 | private->randAccess = (RecPtr != InvalidXLogRecPtr); |
4256 | |
4257 | /* This is the first attempt to read this page. */ |
4258 | lastSourceFailed = false; |
4259 | |
4260 | for (;;) |
4261 | { |
4262 | char *errormsg; |
4263 | |
4264 | record = XLogReadRecord(xlogreader, RecPtr, &errormsg); |
4265 | ReadRecPtr = xlogreader->ReadRecPtr; |
4266 | EndRecPtr = xlogreader->EndRecPtr; |
4267 | if (record == NULL) |
4268 | { |
4269 | if (readFile >= 0) |
4270 | { |
4271 | close(readFile); |
4272 | readFile = -1; |
4273 | } |
4274 | |
4275 | /* |
4276 | * We only end up here without a message when XLogPageRead() |
4277 | * failed - in that case we already logged something. In |
4278 | * StandbyMode that only happens if we have been triggered, so we |
4279 | * shouldn't loop anymore in that case. |
4280 | */ |
4281 | if (errormsg) |
4282 | ereport(emode_for_corrupt_record(emode, |
4283 | RecPtr ? RecPtr : EndRecPtr), |
4284 | (errmsg_internal("%s" , errormsg) /* already translated */ )); |
4285 | } |
4286 | |
4287 | /* |
4288 | * Check page TLI is one of the expected values. |
4289 | */ |
4290 | else if (!tliInHistory(xlogreader->latestPageTLI, expectedTLEs)) |
4291 | { |
4292 | char fname[MAXFNAMELEN]; |
4293 | XLogSegNo segno; |
4294 | int32 offset; |
4295 | |
4296 | XLByteToSeg(xlogreader->latestPagePtr, segno, wal_segment_size); |
4297 | offset = XLogSegmentOffset(xlogreader->latestPagePtr, |
4298 | wal_segment_size); |
4299 | XLogFileName(fname, xlogreader->readPageTLI, segno, |
4300 | wal_segment_size); |
4301 | ereport(emode_for_corrupt_record(emode, |
4302 | RecPtr ? RecPtr : EndRecPtr), |
4303 | (errmsg("unexpected timeline ID %u in log segment %s, offset %u" , |
4304 | xlogreader->latestPageTLI, |
4305 | fname, |
4306 | offset))); |
4307 | record = NULL; |
4308 | } |
4309 | |
4310 | if (record) |
4311 | { |
4312 | /* Great, got a record */ |
4313 | return record; |
4314 | } |
4315 | else |
4316 | { |
4317 | /* No valid record available from this source */ |
4318 | lastSourceFailed = true; |
4319 | |
4320 | /* |
4321 | * If archive recovery was requested, but we were still doing |
4322 | * crash recovery, switch to archive recovery and retry using the |
4323 | * offline archive. We have now replayed all the valid WAL in |
4324 | * pg_wal, so we are presumably now consistent. |
4325 | * |
4326 | * We require that there's at least some valid WAL present in |
4327 | * pg_wal, however (!fetching_ckpt). We could recover using the |
4328 | * WAL from the archive, even if pg_wal is completely empty, but |
4329 | * we'd have no idea how far we'd have to replay to reach |
4330 | * consistency. So err on the safe side and give up. |
4331 | */ |
4332 | if (!InArchiveRecovery && ArchiveRecoveryRequested && |
4333 | !fetching_ckpt) |
4334 | { |
4335 | ereport(DEBUG1, |
4336 | (errmsg_internal("reached end of WAL in pg_wal, entering archive recovery" ))); |
4337 | InArchiveRecovery = true; |
4338 | if (StandbyModeRequested) |
4339 | StandbyMode = true; |
4340 | |
4341 | /* initialize minRecoveryPoint to this record */ |
4342 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
4343 | ControlFile->state = DB_IN_ARCHIVE_RECOVERY; |
4344 | if (ControlFile->minRecoveryPoint < EndRecPtr) |
4345 | { |
4346 | ControlFile->minRecoveryPoint = EndRecPtr; |
4347 | ControlFile->minRecoveryPointTLI = ThisTimeLineID; |
4348 | } |
4349 | /* update local copy */ |
4350 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
4351 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
4352 | |
4353 | /* |
4354 | * The startup process can update its local copy of |
4355 | * minRecoveryPoint from this point. |
4356 | */ |
4357 | updateMinRecoveryPoint = true; |
4358 | |
4359 | UpdateControlFile(); |
4360 | LWLockRelease(ControlFileLock); |
4361 | |
4362 | CheckRecoveryConsistency(); |
4363 | |
4364 | /* |
4365 | * Before we retry, reset lastSourceFailed and currentSource |
4366 | * so that we will check the archive next. |
4367 | */ |
4368 | lastSourceFailed = false; |
4369 | currentSource = 0; |
4370 | |
4371 | continue; |
4372 | } |
4373 | |
4374 | /* In standby mode, loop back to retry. Otherwise, give up. */ |
4375 | if (StandbyMode && !CheckForStandbyTrigger()) |
4376 | continue; |
4377 | else |
4378 | return NULL; |
4379 | } |
4380 | } |
4381 | } |
4382 | |
4383 | /* |
4384 | * Scan for new timelines that might have appeared in the archive since we |
4385 | * started recovery. |
4386 | * |
4387 | * If there are any, the function changes recovery target TLI to the latest |
4388 | * one and returns 'true'. |
4389 | */ |
4390 | static bool |
4391 | rescanLatestTimeLine(void) |
4392 | { |
4393 | List *newExpectedTLEs; |
4394 | bool found; |
4395 | ListCell *cell; |
4396 | TimeLineID newtarget; |
4397 | TimeLineID oldtarget = recoveryTargetTLI; |
4398 | TimeLineHistoryEntry *currentTle = NULL; |
4399 | |
4400 | newtarget = findNewestTimeLine(recoveryTargetTLI); |
4401 | if (newtarget == recoveryTargetTLI) |
4402 | { |
4403 | /* No new timelines found */ |
4404 | return false; |
4405 | } |
4406 | |
4407 | /* |
4408 | * Determine the list of expected TLIs for the new TLI |
4409 | */ |
4410 | |
4411 | newExpectedTLEs = readTimeLineHistory(newtarget); |
4412 | |
4413 | /* |
4414 | * If the current timeline is not part of the history of the new timeline, |
4415 | * we cannot proceed to it. |
4416 | */ |
4417 | found = false; |
4418 | foreach(cell, newExpectedTLEs) |
4419 | { |
4420 | currentTle = (TimeLineHistoryEntry *) lfirst(cell); |
4421 | |
4422 | if (currentTle->tli == recoveryTargetTLI) |
4423 | { |
4424 | found = true; |
4425 | break; |
4426 | } |
4427 | } |
4428 | if (!found) |
4429 | { |
4430 | ereport(LOG, |
4431 | (errmsg("new timeline %u is not a child of database system timeline %u" , |
4432 | newtarget, |
4433 | ThisTimeLineID))); |
4434 | return false; |
4435 | } |
4436 | |
4437 | /* |
4438 | * The current timeline was found in the history file, but check that the |
4439 | * next timeline was forked off from it *after* the current recovery |
4440 | * location. |
4441 | */ |
4442 | if (currentTle->end < EndRecPtr) |
4443 | { |
4444 | ereport(LOG, |
4445 | (errmsg("new timeline %u forked off current database system timeline %u before current recovery point %X/%X" , |
4446 | newtarget, |
4447 | ThisTimeLineID, |
4448 | (uint32) (EndRecPtr >> 32), (uint32) EndRecPtr))); |
4449 | return false; |
4450 | } |
4451 | |
4452 | /* The new timeline history seems valid. Switch target */ |
4453 | recoveryTargetTLI = newtarget; |
4454 | list_free_deep(expectedTLEs); |
4455 | expectedTLEs = newExpectedTLEs; |
4456 | |
4457 | /* |
4458 | * As in StartupXLOG(), try to ensure we have all the history files |
4459 | * between the old target and new target in pg_wal. |
4460 | */ |
4461 | restoreTimeLineHistoryFiles(oldtarget + 1, newtarget); |
4462 | |
4463 | ereport(LOG, |
4464 | (errmsg("new target timeline is %u" , |
4465 | recoveryTargetTLI))); |
4466 | |
4467 | return true; |
4468 | } |
4469 | |
4470 | /* |
4471 | * I/O routines for pg_control |
4472 | * |
4473 | * *ControlFile is a buffer in shared memory that holds an image of the |
4474 | * contents of pg_control. WriteControlFile() initializes pg_control |
4475 | * given a preloaded buffer, ReadControlFile() loads the buffer from |
4476 | * the pg_control file (during postmaster or standalone-backend startup), |
4477 | * and UpdateControlFile() rewrites pg_control after we modify xlog state. |
4478 | * |
4479 | * For simplicity, WriteControlFile() initializes the fields of pg_control |
4480 | * that are related to checking backend/database compatibility, and |
4481 | * ReadControlFile() verifies they are correct. We could split out the |
4482 | * I/O and compatibility-check functions, but there seems no need currently. |
4483 | */ |
4484 | static void |
4485 | WriteControlFile(void) |
4486 | { |
4487 | int fd; |
4488 | char buffer[PG_CONTROL_FILE_SIZE]; /* need not be aligned */ |
4489 | |
4490 | /* |
4491 | * Ensure that the size of the pg_control data structure is sane. See the |
4492 | * comments for these symbols in pg_control.h. |
4493 | */ |
4494 | StaticAssertStmt(sizeof(ControlFileData) <= PG_CONTROL_MAX_SAFE_SIZE, |
4495 | "pg_control is too large for atomic disk writes" ); |
4496 | StaticAssertStmt(sizeof(ControlFileData) <= PG_CONTROL_FILE_SIZE, |
4497 | "sizeof(ControlFileData) exceeds PG_CONTROL_FILE_SIZE" ); |
4498 | |
4499 | /* |
4500 | * Initialize version and compatibility-check fields |
4501 | */ |
4502 | ControlFile->pg_control_version = PG_CONTROL_VERSION; |
4503 | ControlFile->catalog_version_no = CATALOG_VERSION_NO; |
4504 | |
4505 | ControlFile->maxAlign = MAXIMUM_ALIGNOF; |
4506 | ControlFile->floatFormat = FLOATFORMAT_VALUE; |
4507 | |
4508 | ControlFile->blcksz = BLCKSZ; |
4509 | ControlFile->relseg_size = RELSEG_SIZE; |
4510 | ControlFile->xlog_blcksz = XLOG_BLCKSZ; |
4511 | ControlFile->xlog_seg_size = wal_segment_size; |
4512 | |
4513 | ControlFile->nameDataLen = NAMEDATALEN; |
4514 | ControlFile->indexMaxKeys = INDEX_MAX_KEYS; |
4515 | |
4516 | ControlFile->toast_max_chunk_size = TOAST_MAX_CHUNK_SIZE; |
4517 | ControlFile->loblksize = LOBLKSIZE; |
4518 | |
4519 | ControlFile->float4ByVal = FLOAT4PASSBYVAL; |
4520 | ControlFile->float8ByVal = FLOAT8PASSBYVAL; |
4521 | |
4522 | /* Contents are protected with a CRC */ |
4523 | INIT_CRC32C(ControlFile->crc); |
4524 | COMP_CRC32C(ControlFile->crc, |
4525 | (char *) ControlFile, |
4526 | offsetof(ControlFileData, crc)); |
4527 | FIN_CRC32C(ControlFile->crc); |
4528 | |
4529 | /* |
4530 | * We write out PG_CONTROL_FILE_SIZE bytes into pg_control, zero-padding |
4531 | * the excess over sizeof(ControlFileData). This reduces the odds of |
4532 | * premature-EOF errors when reading pg_control. We'll still fail when we |
4533 | * check the contents of the file, but hopefully with a more specific |
4534 | * error than "couldn't read pg_control". |
4535 | */ |
4536 | memset(buffer, 0, PG_CONTROL_FILE_SIZE); |
4537 | memcpy(buffer, ControlFile, sizeof(ControlFileData)); |
4538 | |
4539 | fd = BasicOpenFile(XLOG_CONTROL_FILE, |
4540 | O_RDWR | O_CREAT | O_EXCL | PG_BINARY); |
4541 | if (fd < 0) |
4542 | ereport(PANIC, |
4543 | (errcode_for_file_access(), |
4544 | errmsg("could not create file \"%s\": %m" , |
4545 | XLOG_CONTROL_FILE))); |
4546 | |
4547 | errno = 0; |
4548 | pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_WRITE); |
4549 | if (write(fd, buffer, PG_CONTROL_FILE_SIZE) != PG_CONTROL_FILE_SIZE) |
4550 | { |
4551 | /* if write didn't set errno, assume problem is no disk space */ |
4552 | if (errno == 0) |
4553 | errno = ENOSPC; |
4554 | ereport(PANIC, |
4555 | (errcode_for_file_access(), |
4556 | errmsg("could not write to file \"%s\": %m" , |
4557 | XLOG_CONTROL_FILE))); |
4558 | } |
4559 | pgstat_report_wait_end(); |
4560 | |
4561 | pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_SYNC); |
4562 | if (pg_fsync(fd) != 0) |
4563 | ereport(PANIC, |
4564 | (errcode_for_file_access(), |
4565 | errmsg("could not fsync file \"%s\": %m" , |
4566 | XLOG_CONTROL_FILE))); |
4567 | pgstat_report_wait_end(); |
4568 | |
4569 | if (close(fd)) |
4570 | ereport(PANIC, |
4571 | (errcode_for_file_access(), |
4572 | errmsg("could not close file \"%s\": %m" , |
4573 | XLOG_CONTROL_FILE))); |
4574 | } |
4575 | |
4576 | static void |
4577 | ReadControlFile(void) |
4578 | { |
4579 | pg_crc32c crc; |
4580 | int fd; |
4581 | static char wal_segsz_str[20]; |
4582 | int r; |
4583 | |
4584 | /* |
4585 | * Read data... |
4586 | */ |
4587 | fd = BasicOpenFile(XLOG_CONTROL_FILE, |
4588 | O_RDWR | PG_BINARY); |
4589 | if (fd < 0) |
4590 | ereport(PANIC, |
4591 | (errcode_for_file_access(), |
4592 | errmsg("could not open file \"%s\": %m" , |
4593 | XLOG_CONTROL_FILE))); |
4594 | |
4595 | pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_READ); |
4596 | r = read(fd, ControlFile, sizeof(ControlFileData)); |
4597 | if (r != sizeof(ControlFileData)) |
4598 | { |
4599 | if (r < 0) |
4600 | ereport(PANIC, |
4601 | (errcode_for_file_access(), |
4602 | errmsg("could not read file \"%s\": %m" , |
4603 | XLOG_CONTROL_FILE))); |
4604 | else |
4605 | ereport(PANIC, |
4606 | (errcode(ERRCODE_DATA_CORRUPTED), |
4607 | errmsg("could not read file \"%s\": read %d of %zu" , |
4608 | XLOG_CONTROL_FILE, r, sizeof(ControlFileData)))); |
4609 | } |
4610 | pgstat_report_wait_end(); |
4611 | |
4612 | close(fd); |
4613 | |
4614 | /* |
4615 | * Check for expected pg_control format version. If this is wrong, the |
4616 | * CRC check will likely fail because we'll be checking the wrong number |
4617 | * of bytes. Complaining about wrong version will probably be more |
4618 | * enlightening than complaining about wrong CRC. |
4619 | */ |
4620 | |
4621 | if (ControlFile->pg_control_version != PG_CONTROL_VERSION && ControlFile->pg_control_version % 65536 == 0 && ControlFile->pg_control_version / 65536 != 0) |
4622 | ereport(FATAL, |
4623 | (errmsg("database files are incompatible with server" ), |
4624 | errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x)," |
4625 | " but the server was compiled with PG_CONTROL_VERSION %d (0x%08x)." , |
4626 | ControlFile->pg_control_version, ControlFile->pg_control_version, |
4627 | PG_CONTROL_VERSION, PG_CONTROL_VERSION), |
4628 | errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb." ))); |
4629 | |
4630 | if (ControlFile->pg_control_version != PG_CONTROL_VERSION) |
4631 | ereport(FATAL, |
4632 | (errmsg("database files are incompatible with server" ), |
4633 | errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d," |
4634 | " but the server was compiled with PG_CONTROL_VERSION %d." , |
4635 | ControlFile->pg_control_version, PG_CONTROL_VERSION), |
4636 | errhint("It looks like you need to initdb." ))); |
4637 | |
4638 | /* Now check the CRC. */ |
4639 | INIT_CRC32C(crc); |
4640 | COMP_CRC32C(crc, |
4641 | (char *) ControlFile, |
4642 | offsetof(ControlFileData, crc)); |
4643 | FIN_CRC32C(crc); |
4644 | |
4645 | if (!EQ_CRC32C(crc, ControlFile->crc)) |
4646 | ereport(FATAL, |
4647 | (errmsg("incorrect checksum in control file" ))); |
4648 | |
4649 | /* |
4650 | * Do compatibility checking immediately. If the database isn't |
4651 | * compatible with the backend executable, we want to abort before we can |
4652 | * possibly do any damage. |
4653 | */ |
4654 | if (ControlFile->catalog_version_no != CATALOG_VERSION_NO) |
4655 | ereport(FATAL, |
4656 | (errmsg("database files are incompatible with server" ), |
4657 | errdetail("The database cluster was initialized with CATALOG_VERSION_NO %d," |
4658 | " but the server was compiled with CATALOG_VERSION_NO %d." , |
4659 | ControlFile->catalog_version_no, CATALOG_VERSION_NO), |
4660 | errhint("It looks like you need to initdb." ))); |
4661 | if (ControlFile->maxAlign != MAXIMUM_ALIGNOF) |
4662 | ereport(FATAL, |
4663 | (errmsg("database files are incompatible with server" ), |
4664 | errdetail("The database cluster was initialized with MAXALIGN %d," |
4665 | " but the server was compiled with MAXALIGN %d." , |
4666 | ControlFile->maxAlign, MAXIMUM_ALIGNOF), |
4667 | errhint("It looks like you need to initdb." ))); |
4668 | if (ControlFile->floatFormat != FLOATFORMAT_VALUE) |
4669 | ereport(FATAL, |
4670 | (errmsg("database files are incompatible with server" ), |
4671 | errdetail("The database cluster appears to use a different floating-point number format than the server executable." ), |
4672 | errhint("It looks like you need to initdb." ))); |
4673 | if (ControlFile->blcksz != BLCKSZ) |
4674 | ereport(FATAL, |
4675 | (errmsg("database files are incompatible with server" ), |
4676 | errdetail("The database cluster was initialized with BLCKSZ %d," |
4677 | " but the server was compiled with BLCKSZ %d." , |
4678 | ControlFile->blcksz, BLCKSZ), |
4679 | errhint("It looks like you need to recompile or initdb." ))); |
4680 | if (ControlFile->relseg_size != RELSEG_SIZE) |
4681 | ereport(FATAL, |
4682 | (errmsg("database files are incompatible with server" ), |
4683 | errdetail("The database cluster was initialized with RELSEG_SIZE %d," |
4684 | " but the server was compiled with RELSEG_SIZE %d." , |
4685 | ControlFile->relseg_size, RELSEG_SIZE), |
4686 | errhint("It looks like you need to recompile or initdb." ))); |
4687 | if (ControlFile->xlog_blcksz != XLOG_BLCKSZ) |
4688 | ereport(FATAL, |
4689 | (errmsg("database files are incompatible with server" ), |
4690 | errdetail("The database cluster was initialized with XLOG_BLCKSZ %d," |
4691 | " but the server was compiled with XLOG_BLCKSZ %d." , |
4692 | ControlFile->xlog_blcksz, XLOG_BLCKSZ), |
4693 | errhint("It looks like you need to recompile or initdb." ))); |
4694 | if (ControlFile->nameDataLen != NAMEDATALEN) |
4695 | ereport(FATAL, |
4696 | (errmsg("database files are incompatible with server" ), |
4697 | errdetail("The database cluster was initialized with NAMEDATALEN %d," |
4698 | " but the server was compiled with NAMEDATALEN %d." , |
4699 | ControlFile->nameDataLen, NAMEDATALEN), |
4700 | errhint("It looks like you need to recompile or initdb." ))); |
4701 | if (ControlFile->indexMaxKeys != INDEX_MAX_KEYS) |
4702 | ereport(FATAL, |
4703 | (errmsg("database files are incompatible with server" ), |
4704 | errdetail("The database cluster was initialized with INDEX_MAX_KEYS %d," |
4705 | " but the server was compiled with INDEX_MAX_KEYS %d." , |
4706 | ControlFile->indexMaxKeys, INDEX_MAX_KEYS), |
4707 | errhint("It looks like you need to recompile or initdb." ))); |
4708 | if (ControlFile->toast_max_chunk_size != TOAST_MAX_CHUNK_SIZE) |
4709 | ereport(FATAL, |
4710 | (errmsg("database files are incompatible with server" ), |
4711 | errdetail("The database cluster was initialized with TOAST_MAX_CHUNK_SIZE %d," |
4712 | " but the server was compiled with TOAST_MAX_CHUNK_SIZE %d." , |
4713 | ControlFile->toast_max_chunk_size, (int) TOAST_MAX_CHUNK_SIZE), |
4714 | errhint("It looks like you need to recompile or initdb." ))); |
4715 | if (ControlFile->loblksize != LOBLKSIZE) |
4716 | ereport(FATAL, |
4717 | (errmsg("database files are incompatible with server" ), |
4718 | errdetail("The database cluster was initialized with LOBLKSIZE %d," |
4719 | " but the server was compiled with LOBLKSIZE %d." , |
4720 | ControlFile->loblksize, (int) LOBLKSIZE), |
4721 | errhint("It looks like you need to recompile or initdb." ))); |
4722 | |
4723 | #ifdef USE_FLOAT4_BYVAL |
4724 | if (ControlFile->float4ByVal != true) |
4725 | ereport(FATAL, |
4726 | (errmsg("database files are incompatible with server" ), |
4727 | errdetail("The database cluster was initialized without USE_FLOAT4_BYVAL" |
4728 | " but the server was compiled with USE_FLOAT4_BYVAL." ), |
4729 | errhint("It looks like you need to recompile or initdb." ))); |
4730 | #else |
4731 | if (ControlFile->float4ByVal != false) |
4732 | ereport(FATAL, |
4733 | (errmsg("database files are incompatible with server" ), |
4734 | errdetail("The database cluster was initialized with USE_FLOAT4_BYVAL" |
4735 | " but the server was compiled without USE_FLOAT4_BYVAL." ), |
4736 | errhint("It looks like you need to recompile or initdb." ))); |
4737 | #endif |
4738 | |
4739 | #ifdef USE_FLOAT8_BYVAL |
4740 | if (ControlFile->float8ByVal != true) |
4741 | ereport(FATAL, |
4742 | (errmsg("database files are incompatible with server" ), |
4743 | errdetail("The database cluster was initialized without USE_FLOAT8_BYVAL" |
4744 | " but the server was compiled with USE_FLOAT8_BYVAL." ), |
4745 | errhint("It looks like you need to recompile or initdb." ))); |
4746 | #else |
4747 | if (ControlFile->float8ByVal != false) |
4748 | ereport(FATAL, |
4749 | (errmsg("database files are incompatible with server" ), |
4750 | errdetail("The database cluster was initialized with USE_FLOAT8_BYVAL" |
4751 | " but the server was compiled without USE_FLOAT8_BYVAL." ), |
4752 | errhint("It looks like you need to recompile or initdb." ))); |
4753 | #endif |
4754 | |
4755 | wal_segment_size = ControlFile->xlog_seg_size; |
4756 | |
4757 | if (!IsValidWalSegSize(wal_segment_size)) |
4758 | ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
4759 | errmsg_plural("WAL segment size must be a power of two between 1 MB and 1 GB, but the control file specifies %d byte" , |
4760 | "WAL segment size must be a power of two between 1 MB and 1 GB, but the control file specifies %d bytes" , |
4761 | wal_segment_size, |
4762 | wal_segment_size))); |
4763 | |
4764 | snprintf(wal_segsz_str, sizeof(wal_segsz_str), "%d" , wal_segment_size); |
4765 | SetConfigOption("wal_segment_size" , wal_segsz_str, PGC_INTERNAL, |
4766 | PGC_S_OVERRIDE); |
4767 | |
4768 | /* check and update variables dependent on wal_segment_size */ |
4769 | if (ConvertToXSegs(min_wal_size_mb, wal_segment_size) < 2) |
4770 | ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
4771 | errmsg("\"min_wal_size\" must be at least twice \"wal_segment_size\"" ))); |
4772 | |
4773 | if (ConvertToXSegs(max_wal_size_mb, wal_segment_size) < 2) |
4774 | ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
4775 | errmsg("\"max_wal_size\" must be at least twice \"wal_segment_size\"" ))); |
4776 | |
4777 | UsableBytesInSegment = |
4778 | (wal_segment_size / XLOG_BLCKSZ * UsableBytesInPage) - |
4779 | (SizeOfXLogLongPHD - SizeOfXLogShortPHD); |
4780 | |
4781 | CalculateCheckpointSegments(); |
4782 | |
4783 | /* Make the initdb settings visible as GUC variables, too */ |
4784 | SetConfigOption("data_checksums" , DataChecksumsEnabled() ? "yes" : "no" , |
4785 | PGC_INTERNAL, PGC_S_OVERRIDE); |
4786 | } |
4787 | |
4788 | /* |
4789 | * Utility wrapper to update the control file. Note that the control |
4790 | * file gets flushed. |
4791 | */ |
4792 | void |
4793 | UpdateControlFile(void) |
4794 | { |
4795 | update_controlfile(DataDir, ControlFile, true); |
4796 | } |
4797 | |
4798 | /* |
4799 | * Returns the unique system identifier from control file. |
4800 | */ |
4801 | uint64 |
4802 | GetSystemIdentifier(void) |
4803 | { |
4804 | Assert(ControlFile != NULL); |
4805 | return ControlFile->system_identifier; |
4806 | } |
4807 | |
4808 | /* |
4809 | * Returns the random nonce from control file. |
4810 | */ |
4811 | char * |
4812 | GetMockAuthenticationNonce(void) |
4813 | { |
4814 | Assert(ControlFile != NULL); |
4815 | return ControlFile->mock_authentication_nonce; |
4816 | } |
4817 | |
4818 | /* |
4819 | * Are checksums enabled for data pages? |
4820 | */ |
4821 | bool |
4822 | DataChecksumsEnabled(void) |
4823 | { |
4824 | Assert(ControlFile != NULL); |
4825 | return (ControlFile->data_checksum_version > 0); |
4826 | } |
4827 | |
4828 | /* |
4829 | * Returns a fake LSN for unlogged relations. |
4830 | * |
4831 | * Each call generates an LSN that is greater than any previous value |
4832 | * returned. The current counter value is saved and restored across clean |
4833 | * shutdowns, but like unlogged relations, does not survive a crash. This can |
4834 | * be used in lieu of real LSN values returned by XLogInsert, if you need an |
4835 | * LSN-like increasing sequence of numbers without writing any WAL. |
4836 | */ |
4837 | XLogRecPtr |
4838 | GetFakeLSNForUnloggedRel(void) |
4839 | { |
4840 | XLogRecPtr nextUnloggedLSN; |
4841 | |
4842 | /* increment the unloggedLSN counter, need SpinLock */ |
4843 | SpinLockAcquire(&XLogCtl->ulsn_lck); |
4844 | nextUnloggedLSN = XLogCtl->unloggedLSN++; |
4845 | SpinLockRelease(&XLogCtl->ulsn_lck); |
4846 | |
4847 | return nextUnloggedLSN; |
4848 | } |
4849 | |
4850 | /* |
4851 | * Auto-tune the number of XLOG buffers. |
4852 | * |
4853 | * The preferred setting for wal_buffers is about 3% of shared_buffers, with |
4854 | * a maximum of one XLOG segment (there is little reason to think that more |
4855 | * is helpful, at least so long as we force an fsync when switching log files) |
4856 | * and a minimum of 8 blocks (which was the default value prior to PostgreSQL |
4857 | * 9.1, when auto-tuning was added). |
4858 | * |
4859 | * This should not be called until NBuffers has received its final value. |
4860 | */ |
4861 | static int |
4862 | XLOGChooseNumBuffers(void) |
4863 | { |
4864 | int xbuffers; |
4865 | |
4866 | xbuffers = NBuffers / 32; |
4867 | if (xbuffers > (wal_segment_size / XLOG_BLCKSZ)) |
4868 | xbuffers = (wal_segment_size / XLOG_BLCKSZ); |
4869 | if (xbuffers < 8) |
4870 | xbuffers = 8; |
4871 | return xbuffers; |
4872 | } |
4873 | |
4874 | /* |
4875 | * GUC check_hook for wal_buffers |
4876 | */ |
4877 | bool |
4878 | check_wal_buffers(int *newval, void **, GucSource source) |
4879 | { |
4880 | /* |
4881 | * -1 indicates a request for auto-tune. |
4882 | */ |
4883 | if (*newval == -1) |
4884 | { |
4885 | /* |
4886 | * If we haven't yet changed the boot_val default of -1, just let it |
4887 | * be. We'll fix it when XLOGShmemSize is called. |
4888 | */ |
4889 | if (XLOGbuffers == -1) |
4890 | return true; |
4891 | |
4892 | /* Otherwise, substitute the auto-tune value */ |
4893 | *newval = XLOGChooseNumBuffers(); |
4894 | } |
4895 | |
4896 | /* |
4897 | * We clamp manually-set values to at least 4 blocks. Prior to PostgreSQL |
4898 | * 9.1, a minimum of 4 was enforced by guc.c, but since that is no longer |
4899 | * the case, we just silently treat such values as a request for the |
4900 | * minimum. (We could throw an error instead, but that doesn't seem very |
4901 | * helpful.) |
4902 | */ |
4903 | if (*newval < 4) |
4904 | *newval = 4; |
4905 | |
4906 | return true; |
4907 | } |
4908 | |
4909 | /* |
4910 | * Read the control file, set respective GUCs. |
4911 | * |
4912 | * This is to be called during startup, including a crash recovery cycle, |
4913 | * unless in bootstrap mode, where no control file yet exists. As there's no |
4914 | * usable shared memory yet (its sizing can depend on the contents of the |
4915 | * control file!), first store the contents in local memory. XLOGShmemInit() |
4916 | * will then copy it to shared memory later. |
4917 | * |
4918 | * reset just controls whether previous contents are to be expected (in the |
4919 | * reset case, there's a dangling pointer into old shared memory), or not. |
4920 | */ |
4921 | void |
4922 | LocalProcessControlFile(bool reset) |
4923 | { |
4924 | Assert(reset || ControlFile == NULL); |
4925 | ControlFile = palloc(sizeof(ControlFileData)); |
4926 | ReadControlFile(); |
4927 | } |
4928 | |
4929 | /* |
4930 | * Initialization of shared memory for XLOG |
4931 | */ |
4932 | Size |
4933 | XLOGShmemSize(void) |
4934 | { |
4935 | Size size; |
4936 | |
4937 | /* |
4938 | * If the value of wal_buffers is -1, use the preferred auto-tune value. |
4939 | * This isn't an amazingly clean place to do this, but we must wait till |
4940 | * NBuffers has received its final value, and must do it before using the |
4941 | * value of XLOGbuffers to do anything important. |
4942 | */ |
4943 | if (XLOGbuffers == -1) |
4944 | { |
4945 | char buf[32]; |
4946 | |
4947 | snprintf(buf, sizeof(buf), "%d" , XLOGChooseNumBuffers()); |
4948 | SetConfigOption("wal_buffers" , buf, PGC_POSTMASTER, PGC_S_OVERRIDE); |
4949 | } |
4950 | Assert(XLOGbuffers > 0); |
4951 | |
4952 | /* XLogCtl */ |
4953 | size = sizeof(XLogCtlData); |
4954 | |
4955 | /* WAL insertion locks, plus alignment */ |
4956 | size = add_size(size, mul_size(sizeof(WALInsertLockPadded), NUM_XLOGINSERT_LOCKS + 1)); |
4957 | /* xlblocks array */ |
4958 | size = add_size(size, mul_size(sizeof(XLogRecPtr), XLOGbuffers)); |
4959 | /* extra alignment padding for XLOG I/O buffers */ |
4960 | size = add_size(size, XLOG_BLCKSZ); |
4961 | /* and the buffers themselves */ |
4962 | size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers)); |
4963 | |
4964 | /* |
4965 | * Note: we don't count ControlFileData, it comes out of the "slop factor" |
4966 | * added by CreateSharedMemoryAndSemaphores. This lets us use this |
4967 | * routine again below to compute the actual allocation size. |
4968 | */ |
4969 | |
4970 | return size; |
4971 | } |
4972 | |
4973 | void |
4974 | XLOGShmemInit(void) |
4975 | { |
4976 | bool foundCFile, |
4977 | foundXLog; |
4978 | char *allocptr; |
4979 | int i; |
4980 | ControlFileData *localControlFile; |
4981 | |
4982 | #ifdef WAL_DEBUG |
4983 | |
4984 | /* |
4985 | * Create a memory context for WAL debugging that's exempt from the normal |
4986 | * "no pallocs in critical section" rule. Yes, that can lead to a PANIC if |
4987 | * an allocation fails, but wal_debug is not for production use anyway. |
4988 | */ |
4989 | if (walDebugCxt == NULL) |
4990 | { |
4991 | walDebugCxt = AllocSetContextCreate(TopMemoryContext, |
4992 | "WAL Debug" , |
4993 | ALLOCSET_DEFAULT_SIZES); |
4994 | MemoryContextAllowInCriticalSection(walDebugCxt, true); |
4995 | } |
4996 | #endif |
4997 | |
4998 | |
4999 | XLogCtl = (XLogCtlData *) |
5000 | ShmemInitStruct("XLOG Ctl" , XLOGShmemSize(), &foundXLog); |
5001 | |
5002 | localControlFile = ControlFile; |
5003 | ControlFile = (ControlFileData *) |
5004 | ShmemInitStruct("Control File" , sizeof(ControlFileData), &foundCFile); |
5005 | |
5006 | if (foundCFile || foundXLog) |
5007 | { |
5008 | /* both should be present or neither */ |
5009 | Assert(foundCFile && foundXLog); |
5010 | |
5011 | /* Initialize local copy of WALInsertLocks and register the tranche */ |
5012 | WALInsertLocks = XLogCtl->Insert.WALInsertLocks; |
5013 | LWLockRegisterTranche(LWTRANCHE_WAL_INSERT, |
5014 | "wal_insert" ); |
5015 | |
5016 | if (localControlFile) |
5017 | pfree(localControlFile); |
5018 | return; |
5019 | } |
5020 | memset(XLogCtl, 0, sizeof(XLogCtlData)); |
5021 | |
5022 | /* |
5023 | * Already have read control file locally, unless in bootstrap mode. Move |
5024 | * contents into shared memory. |
5025 | */ |
5026 | if (localControlFile) |
5027 | { |
5028 | memcpy(ControlFile, localControlFile, sizeof(ControlFileData)); |
5029 | pfree(localControlFile); |
5030 | } |
5031 | |
5032 | /* |
5033 | * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a |
5034 | * multiple of the alignment for same, so no extra alignment padding is |
5035 | * needed here. |
5036 | */ |
5037 | allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData); |
5038 | XLogCtl->xlblocks = (XLogRecPtr *) allocptr; |
5039 | memset(XLogCtl->xlblocks, 0, sizeof(XLogRecPtr) * XLOGbuffers); |
5040 | allocptr += sizeof(XLogRecPtr) * XLOGbuffers; |
5041 | |
5042 | |
5043 | /* WAL insertion locks. Ensure they're aligned to the full padded size */ |
5044 | allocptr += sizeof(WALInsertLockPadded) - |
5045 | ((uintptr_t) allocptr) % sizeof(WALInsertLockPadded); |
5046 | WALInsertLocks = XLogCtl->Insert.WALInsertLocks = |
5047 | (WALInsertLockPadded *) allocptr; |
5048 | allocptr += sizeof(WALInsertLockPadded) * NUM_XLOGINSERT_LOCKS; |
5049 | |
5050 | LWLockRegisterTranche(LWTRANCHE_WAL_INSERT, "wal_insert" ); |
5051 | for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++) |
5052 | { |
5053 | LWLockInitialize(&WALInsertLocks[i].l.lock, LWTRANCHE_WAL_INSERT); |
5054 | WALInsertLocks[i].l.insertingAt = InvalidXLogRecPtr; |
5055 | WALInsertLocks[i].l.lastImportantAt = InvalidXLogRecPtr; |
5056 | } |
5057 | |
5058 | /* |
5059 | * Align the start of the page buffers to a full xlog block size boundary. |
5060 | * This simplifies some calculations in XLOG insertion. It is also |
5061 | * required for O_DIRECT. |
5062 | */ |
5063 | allocptr = (char *) TYPEALIGN(XLOG_BLCKSZ, allocptr); |
5064 | XLogCtl->pages = allocptr; |
5065 | memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers); |
5066 | |
5067 | /* |
5068 | * Do basic initialization of XLogCtl shared data. (StartupXLOG will fill |
5069 | * in additional info.) |
5070 | */ |
5071 | XLogCtl->XLogCacheBlck = XLOGbuffers - 1; |
5072 | XLogCtl->SharedRecoveryInProgress = true; |
5073 | XLogCtl->SharedHotStandbyActive = false; |
5074 | XLogCtl->WalWriterSleeping = false; |
5075 | |
5076 | SpinLockInit(&XLogCtl->Insert.insertpos_lck); |
5077 | SpinLockInit(&XLogCtl->info_lck); |
5078 | SpinLockInit(&XLogCtl->ulsn_lck); |
5079 | InitSharedLatch(&XLogCtl->recoveryWakeupLatch); |
5080 | } |
5081 | |
5082 | /* |
5083 | * This func must be called ONCE on system install. It creates pg_control |
5084 | * and the initial XLOG segment. |
5085 | */ |
5086 | void |
5087 | BootStrapXLOG(void) |
5088 | { |
5089 | CheckPoint checkPoint; |
5090 | char *buffer; |
5091 | XLogPageHeader page; |
5092 | XLogLongPageHeader longpage; |
5093 | XLogRecord *record; |
5094 | char *recptr; |
5095 | bool use_existent; |
5096 | uint64 sysidentifier; |
5097 | char mock_auth_nonce[MOCK_AUTH_NONCE_LEN]; |
5098 | struct timeval tv; |
5099 | pg_crc32c crc; |
5100 | |
5101 | /* |
5102 | * Select a hopefully-unique system identifier code for this installation. |
5103 | * We use the result of gettimeofday(), including the fractional seconds |
5104 | * field, as being about as unique as we can easily get. (Think not to |
5105 | * use random(), since it hasn't been seeded and there's no portable way |
5106 | * to seed it other than the system clock value...) The upper half of the |
5107 | * uint64 value is just the tv_sec part, while the lower half contains the |
5108 | * tv_usec part (which must fit in 20 bits), plus 12 bits from our current |
5109 | * PID for a little extra uniqueness. A person knowing this encoding can |
5110 | * determine the initialization time of the installation, which could |
5111 | * perhaps be useful sometimes. |
5112 | */ |
5113 | gettimeofday(&tv, NULL); |
5114 | sysidentifier = ((uint64) tv.tv_sec) << 32; |
5115 | sysidentifier |= ((uint64) tv.tv_usec) << 12; |
5116 | sysidentifier |= getpid() & 0xFFF; |
5117 | |
5118 | /* |
5119 | * Generate a random nonce. This is used for authentication requests that |
5120 | * will fail because the user does not exist. The nonce is used to create |
5121 | * a genuine-looking password challenge for the non-existent user, in lieu |
5122 | * of an actual stored password. |
5123 | */ |
5124 | if (!pg_strong_random(mock_auth_nonce, MOCK_AUTH_NONCE_LEN)) |
5125 | ereport(PANIC, |
5126 | (errcode(ERRCODE_INTERNAL_ERROR), |
5127 | errmsg("could not generate secret authorization token" ))); |
5128 | |
5129 | /* First timeline ID is always 1 */ |
5130 | ThisTimeLineID = 1; |
5131 | |
5132 | /* page buffer must be aligned suitably for O_DIRECT */ |
5133 | buffer = (char *) palloc(XLOG_BLCKSZ + XLOG_BLCKSZ); |
5134 | page = (XLogPageHeader) TYPEALIGN(XLOG_BLCKSZ, buffer); |
5135 | memset(page, 0, XLOG_BLCKSZ); |
5136 | |
5137 | /* |
5138 | * Set up information for the initial checkpoint record |
5139 | * |
5140 | * The initial checkpoint record is written to the beginning of the WAL |
5141 | * segment with logid=0 logseg=1. The very first WAL segment, 0/0, is not |
5142 | * used, so that we can use 0/0 to mean "before any valid WAL segment". |
5143 | */ |
5144 | checkPoint.redo = wal_segment_size + SizeOfXLogLongPHD; |
5145 | checkPoint.ThisTimeLineID = ThisTimeLineID; |
5146 | checkPoint.PrevTimeLineID = ThisTimeLineID; |
5147 | checkPoint.fullPageWrites = fullPageWrites; |
5148 | checkPoint.nextFullXid = |
5149 | FullTransactionIdFromEpochAndXid(0, FirstNormalTransactionId); |
5150 | checkPoint.nextOid = FirstBootstrapObjectId; |
5151 | checkPoint.nextMulti = FirstMultiXactId; |
5152 | checkPoint.nextMultiOffset = 0; |
5153 | checkPoint.oldestXid = FirstNormalTransactionId; |
5154 | checkPoint.oldestXidDB = TemplateDbOid; |
5155 | checkPoint.oldestMulti = FirstMultiXactId; |
5156 | checkPoint.oldestMultiDB = TemplateDbOid; |
5157 | checkPoint.oldestCommitTsXid = InvalidTransactionId; |
5158 | checkPoint.newestCommitTsXid = InvalidTransactionId; |
5159 | checkPoint.time = (pg_time_t) time(NULL); |
5160 | checkPoint.oldestActiveXid = InvalidTransactionId; |
5161 | |
5162 | ShmemVariableCache->nextFullXid = checkPoint.nextFullXid; |
5163 | ShmemVariableCache->nextOid = checkPoint.nextOid; |
5164 | ShmemVariableCache->oidCount = 0; |
5165 | MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset); |
5166 | AdvanceOldestClogXid(checkPoint.oldestXid); |
5167 | SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB); |
5168 | SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true); |
5169 | SetCommitTsLimit(InvalidTransactionId, InvalidTransactionId); |
5170 | |
5171 | /* Set up the XLOG page header */ |
5172 | page->xlp_magic = XLOG_PAGE_MAGIC; |
5173 | page->xlp_info = XLP_LONG_HEADER; |
5174 | page->xlp_tli = ThisTimeLineID; |
5175 | page->xlp_pageaddr = wal_segment_size; |
5176 | longpage = (XLogLongPageHeader) page; |
5177 | longpage->xlp_sysid = sysidentifier; |
5178 | longpage->xlp_seg_size = wal_segment_size; |
5179 | longpage->xlp_xlog_blcksz = XLOG_BLCKSZ; |
5180 | |
5181 | /* Insert the initial checkpoint record */ |
5182 | recptr = ((char *) page + SizeOfXLogLongPHD); |
5183 | record = (XLogRecord *) recptr; |
5184 | record->xl_prev = 0; |
5185 | record->xl_xid = InvalidTransactionId; |
5186 | record->xl_tot_len = SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(checkPoint); |
5187 | record->xl_info = XLOG_CHECKPOINT_SHUTDOWN; |
5188 | record->xl_rmid = RM_XLOG_ID; |
5189 | recptr += SizeOfXLogRecord; |
5190 | /* fill the XLogRecordDataHeaderShort struct */ |
5191 | *(recptr++) = (char) XLR_BLOCK_ID_DATA_SHORT; |
5192 | *(recptr++) = sizeof(checkPoint); |
5193 | memcpy(recptr, &checkPoint, sizeof(checkPoint)); |
5194 | recptr += sizeof(checkPoint); |
5195 | Assert(recptr - (char *) record == record->xl_tot_len); |
5196 | |
5197 | INIT_CRC32C(crc); |
5198 | COMP_CRC32C(crc, ((char *) record) + SizeOfXLogRecord, record->xl_tot_len - SizeOfXLogRecord); |
5199 | COMP_CRC32C(crc, (char *) record, offsetof(XLogRecord, xl_crc)); |
5200 | FIN_CRC32C(crc); |
5201 | record->xl_crc = crc; |
5202 | |
5203 | /* Create first XLOG segment file */ |
5204 | use_existent = false; |
5205 | openLogFile = XLogFileInit(1, &use_existent, false); |
5206 | |
5207 | /* Write the first page with the initial record */ |
5208 | errno = 0; |
5209 | pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_WRITE); |
5210 | if (write(openLogFile, page, XLOG_BLCKSZ) != XLOG_BLCKSZ) |
5211 | { |
5212 | /* if write didn't set errno, assume problem is no disk space */ |
5213 | if (errno == 0) |
5214 | errno = ENOSPC; |
5215 | ereport(PANIC, |
5216 | (errcode_for_file_access(), |
5217 | errmsg("could not write bootstrap write-ahead log file: %m" ))); |
5218 | } |
5219 | pgstat_report_wait_end(); |
5220 | |
5221 | pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_SYNC); |
5222 | if (pg_fsync(openLogFile) != 0) |
5223 | ereport(PANIC, |
5224 | (errcode_for_file_access(), |
5225 | errmsg("could not fsync bootstrap write-ahead log file: %m" ))); |
5226 | pgstat_report_wait_end(); |
5227 | |
5228 | if (close(openLogFile)) |
5229 | ereport(PANIC, |
5230 | (errcode_for_file_access(), |
5231 | errmsg("could not close bootstrap write-ahead log file: %m" ))); |
5232 | |
5233 | openLogFile = -1; |
5234 | |
5235 | /* Now create pg_control */ |
5236 | |
5237 | memset(ControlFile, 0, sizeof(ControlFileData)); |
5238 | /* Initialize pg_control status fields */ |
5239 | ControlFile->system_identifier = sysidentifier; |
5240 | memcpy(ControlFile->mock_authentication_nonce, mock_auth_nonce, MOCK_AUTH_NONCE_LEN); |
5241 | ControlFile->state = DB_SHUTDOWNED; |
5242 | ControlFile->time = checkPoint.time; |
5243 | ControlFile->checkPoint = checkPoint.redo; |
5244 | ControlFile->checkPointCopy = checkPoint; |
5245 | ControlFile->unloggedLSN = FirstNormalUnloggedLSN; |
5246 | |
5247 | /* Set important parameter values for use when replaying WAL */ |
5248 | ControlFile->MaxConnections = MaxConnections; |
5249 | ControlFile->max_worker_processes = max_worker_processes; |
5250 | ControlFile->max_wal_senders = max_wal_senders; |
5251 | ControlFile->max_prepared_xacts = max_prepared_xacts; |
5252 | ControlFile->max_locks_per_xact = max_locks_per_xact; |
5253 | ControlFile->wal_level = wal_level; |
5254 | ControlFile->wal_log_hints = wal_log_hints; |
5255 | ControlFile->track_commit_timestamp = track_commit_timestamp; |
5256 | ControlFile->data_checksum_version = bootstrap_data_checksum_version; |
5257 | |
5258 | /* some additional ControlFile fields are set in WriteControlFile() */ |
5259 | |
5260 | WriteControlFile(); |
5261 | |
5262 | /* Bootstrap the commit log, too */ |
5263 | BootStrapCLOG(); |
5264 | BootStrapCommitTs(); |
5265 | BootStrapSUBTRANS(); |
5266 | BootStrapMultiXact(); |
5267 | |
5268 | pfree(buffer); |
5269 | |
5270 | /* |
5271 | * Force control file to be read - in contrast to normal processing we'd |
5272 | * otherwise never run the checks and GUC related initializations therein. |
5273 | */ |
5274 | ReadControlFile(); |
5275 | } |
5276 | |
5277 | static char * |
5278 | str_time(pg_time_t tnow) |
5279 | { |
5280 | static char buf[128]; |
5281 | |
5282 | pg_strftime(buf, sizeof(buf), |
5283 | "%Y-%m-%d %H:%M:%S %Z" , |
5284 | pg_localtime(&tnow, log_timezone)); |
5285 | |
5286 | return buf; |
5287 | } |
5288 | |
5289 | /* |
5290 | * See if there are any recovery signal files and if so, set state for |
5291 | * recovery. |
5292 | * |
5293 | * See if there is a recovery command file (recovery.conf), and if so |
5294 | * throw an ERROR since as of PG12 we no longer recognize that. |
5295 | */ |
5296 | static void |
5297 | readRecoverySignalFile(void) |
5298 | { |
5299 | struct stat stat_buf; |
5300 | |
5301 | if (IsBootstrapProcessingMode()) |
5302 | return; |
5303 | |
5304 | /* |
5305 | * Check for old recovery API file: recovery.conf |
5306 | */ |
5307 | if (stat(RECOVERY_COMMAND_FILE, &stat_buf) == 0) |
5308 | ereport(FATAL, |
5309 | (errcode_for_file_access(), |
5310 | errmsg("using recovery command file \"%s\" is not supported" , |
5311 | RECOVERY_COMMAND_FILE))); |
5312 | |
5313 | /* |
5314 | * Remove unused .done file, if present. Ignore if absent. |
5315 | */ |
5316 | unlink(RECOVERY_COMMAND_DONE); |
5317 | |
5318 | /* |
5319 | * Check for recovery signal files and if found, fsync them since they |
5320 | * represent server state information. We don't sweat too much about the |
5321 | * possibility of fsync failure, however. |
5322 | * |
5323 | * If present, standby signal file takes precedence. If neither is present |
5324 | * then we won't enter archive recovery. |
5325 | */ |
5326 | if (stat(STANDBY_SIGNAL_FILE, &stat_buf) == 0) |
5327 | { |
5328 | int fd; |
5329 | |
5330 | fd = BasicOpenFilePerm(STANDBY_SIGNAL_FILE, O_RDWR | PG_BINARY | get_sync_bit(sync_method), |
5331 | S_IRUSR | S_IWUSR); |
5332 | if (fd >= 0) |
5333 | { |
5334 | (void) pg_fsync(fd); |
5335 | close(fd); |
5336 | } |
5337 | standby_signal_file_found = true; |
5338 | } |
5339 | else if (stat(RECOVERY_SIGNAL_FILE, &stat_buf) == 0) |
5340 | { |
5341 | int fd; |
5342 | |
5343 | fd = BasicOpenFilePerm(RECOVERY_SIGNAL_FILE, O_RDWR | PG_BINARY | get_sync_bit(sync_method), |
5344 | S_IRUSR | S_IWUSR); |
5345 | if (fd >= 0) |
5346 | { |
5347 | (void) pg_fsync(fd); |
5348 | close(fd); |
5349 | } |
5350 | recovery_signal_file_found = true; |
5351 | } |
5352 | |
5353 | StandbyModeRequested = false; |
5354 | ArchiveRecoveryRequested = false; |
5355 | if (standby_signal_file_found) |
5356 | { |
5357 | StandbyModeRequested = true; |
5358 | ArchiveRecoveryRequested = true; |
5359 | } |
5360 | else if (recovery_signal_file_found) |
5361 | { |
5362 | StandbyModeRequested = false; |
5363 | ArchiveRecoveryRequested = true; |
5364 | } |
5365 | else |
5366 | return; |
5367 | |
5368 | /* |
5369 | * We don't support standby mode in standalone backends; that requires |
5370 | * other processes such as the WAL receiver to be alive. |
5371 | */ |
5372 | if (StandbyModeRequested && !IsUnderPostmaster) |
5373 | ereport(FATAL, |
5374 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
5375 | errmsg("standby mode is not supported by single-user servers" ))); |
5376 | } |
5377 | |
5378 | static void |
5379 | validateRecoveryParameters(void) |
5380 | { |
5381 | if (!ArchiveRecoveryRequested) |
5382 | return; |
5383 | |
5384 | /* |
5385 | * Check for compulsory parameters |
5386 | */ |
5387 | if (StandbyModeRequested) |
5388 | { |
5389 | if ((PrimaryConnInfo == NULL || strcmp(PrimaryConnInfo, "" ) == 0) && |
5390 | (recoveryRestoreCommand == NULL || strcmp(recoveryRestoreCommand, "" ) == 0)) |
5391 | ereport(WARNING, |
5392 | (errmsg("specified neither primary_conninfo nor restore_command" ), |
5393 | errhint("The database server will regularly poll the pg_wal subdirectory to check for files placed there." ))); |
5394 | } |
5395 | else |
5396 | { |
5397 | if (recoveryRestoreCommand == NULL || |
5398 | strcmp(recoveryRestoreCommand, "" ) == 0) |
5399 | ereport(FATAL, |
5400 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
5401 | errmsg("must specify restore_command when standby mode is not enabled" ))); |
5402 | } |
5403 | |
5404 | /* |
5405 | * Override any inconsistent requests. Note that this is a change of |
5406 | * behaviour in 9.5; prior to this we simply ignored a request to pause if |
5407 | * hot_standby = off, which was surprising behaviour. |
5408 | */ |
5409 | if (recoveryTargetAction == RECOVERY_TARGET_ACTION_PAUSE && |
5410 | !EnableHotStandby) |
5411 | recoveryTargetAction = RECOVERY_TARGET_ACTION_SHUTDOWN; |
5412 | |
5413 | /* |
5414 | * Final parsing of recovery_target_time string; see also |
5415 | * check_recovery_target_time(). |
5416 | */ |
5417 | if (recoveryTarget == RECOVERY_TARGET_TIME) |
5418 | { |
5419 | recoveryTargetTime = DatumGetTimestampTz(DirectFunctionCall3(timestamptz_in, |
5420 | CStringGetDatum(recovery_target_time_string), |
5421 | ObjectIdGetDatum(InvalidOid), |
5422 | Int32GetDatum(-1))); |
5423 | } |
5424 | |
5425 | /* |
5426 | * If user specified recovery_target_timeline, validate it or compute the |
5427 | * "latest" value. We can't do this until after we've gotten the restore |
5428 | * command and set InArchiveRecovery, because we need to fetch timeline |
5429 | * history files from the archive. |
5430 | */ |
5431 | if (recoveryTargetTimeLineGoal == RECOVERY_TARGET_TIMELINE_NUMERIC) |
5432 | { |
5433 | TimeLineID rtli = recoveryTargetTLIRequested; |
5434 | |
5435 | /* Timeline 1 does not have a history file, all else should */ |
5436 | if (rtli != 1 && !existsTimeLineHistory(rtli)) |
5437 | ereport(FATAL, |
5438 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
5439 | errmsg("recovery target timeline %u does not exist" , |
5440 | rtli))); |
5441 | recoveryTargetTLI = rtli; |
5442 | } |
5443 | else if (recoveryTargetTimeLineGoal == RECOVERY_TARGET_TIMELINE_LATEST) |
5444 | { |
5445 | /* We start the "latest" search from pg_control's timeline */ |
5446 | recoveryTargetTLI = findNewestTimeLine(recoveryTargetTLI); |
5447 | } |
5448 | else |
5449 | { |
5450 | /* |
5451 | * else we just use the recoveryTargetTLI as already read from |
5452 | * ControlFile |
5453 | */ |
5454 | Assert(recoveryTargetTimeLineGoal == RECOVERY_TARGET_TIMELINE_CONTROLFILE); |
5455 | } |
5456 | } |
5457 | |
5458 | /* |
5459 | * Exit archive-recovery state |
5460 | */ |
5461 | static void |
5462 | exitArchiveRecovery(TimeLineID endTLI, XLogRecPtr endOfLog) |
5463 | { |
5464 | char recoveryPath[MAXPGPATH]; |
5465 | char xlogfname[MAXFNAMELEN]; |
5466 | XLogSegNo endLogSegNo; |
5467 | XLogSegNo startLogSegNo; |
5468 | |
5469 | /* we always switch to a new timeline after archive recovery */ |
5470 | Assert(endTLI != ThisTimeLineID); |
5471 | |
5472 | /* |
5473 | * We are no longer in archive recovery state. |
5474 | */ |
5475 | InArchiveRecovery = false; |
5476 | |
5477 | /* |
5478 | * Update min recovery point one last time. |
5479 | */ |
5480 | UpdateMinRecoveryPoint(InvalidXLogRecPtr, true); |
5481 | |
5482 | /* |
5483 | * If the ending log segment is still open, close it (to avoid problems on |
5484 | * Windows with trying to rename or delete an open file). |
5485 | */ |
5486 | if (readFile >= 0) |
5487 | { |
5488 | close(readFile); |
5489 | readFile = -1; |
5490 | } |
5491 | |
5492 | /* |
5493 | * Calculate the last segment on the old timeline, and the first segment |
5494 | * on the new timeline. If the switch happens in the middle of a segment, |
5495 | * they are the same, but if the switch happens exactly at a segment |
5496 | * boundary, startLogSegNo will be endLogSegNo + 1. |
5497 | */ |
5498 | XLByteToPrevSeg(endOfLog, endLogSegNo, wal_segment_size); |
5499 | XLByteToSeg(endOfLog, startLogSegNo, wal_segment_size); |
5500 | |
5501 | /* |
5502 | * Initialize the starting WAL segment for the new timeline. If the switch |
5503 | * happens in the middle of a segment, copy data from the last WAL segment |
5504 | * of the old timeline up to the switch point, to the starting WAL segment |
5505 | * on the new timeline. |
5506 | */ |
5507 | if (endLogSegNo == startLogSegNo) |
5508 | { |
5509 | /* |
5510 | * Make a copy of the file on the new timeline. |
5511 | * |
5512 | * Writing WAL isn't allowed yet, so there are no locking |
5513 | * considerations. But we should be just as tense as XLogFileInit to |
5514 | * avoid emplacing a bogus file. |
5515 | */ |
5516 | XLogFileCopy(endLogSegNo, endTLI, endLogSegNo, |
5517 | XLogSegmentOffset(endOfLog, wal_segment_size)); |
5518 | } |
5519 | else |
5520 | { |
5521 | /* |
5522 | * The switch happened at a segment boundary, so just create the next |
5523 | * segment on the new timeline. |
5524 | */ |
5525 | bool use_existent = true; |
5526 | int fd; |
5527 | |
5528 | fd = XLogFileInit(startLogSegNo, &use_existent, true); |
5529 | |
5530 | if (close(fd)) |
5531 | ereport(ERROR, |
5532 | (errcode_for_file_access(), |
5533 | errmsg("could not close file \"%s\": %m" , |
5534 | XLogFileNameP(ThisTimeLineID, startLogSegNo)))); |
5535 | } |
5536 | |
5537 | /* |
5538 | * Let's just make real sure there are not .ready or .done flags posted |
5539 | * for the new segment. |
5540 | */ |
5541 | XLogFileName(xlogfname, ThisTimeLineID, startLogSegNo, wal_segment_size); |
5542 | XLogArchiveCleanup(xlogfname); |
5543 | |
5544 | /* |
5545 | * Since there might be a partial WAL segment named RECOVERYXLOG, get rid |
5546 | * of it. |
5547 | */ |
5548 | snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYXLOG" ); |
5549 | unlink(recoveryPath); /* ignore any error */ |
5550 | |
5551 | /* Get rid of any remaining recovered timeline-history file, too */ |
5552 | snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYHISTORY" ); |
5553 | unlink(recoveryPath); /* ignore any error */ |
5554 | |
5555 | /* |
5556 | * Remove the signal files out of the way, so that we don't accidentally |
5557 | * re-enter archive recovery mode in a subsequent crash. |
5558 | */ |
5559 | if (standby_signal_file_found) |
5560 | durable_unlink(STANDBY_SIGNAL_FILE, FATAL); |
5561 | |
5562 | if (recovery_signal_file_found) |
5563 | durable_unlink(RECOVERY_SIGNAL_FILE, FATAL); |
5564 | |
5565 | ereport(LOG, |
5566 | (errmsg("archive recovery complete" ))); |
5567 | } |
5568 | |
5569 | /* |
5570 | * Extract timestamp from WAL record. |
5571 | * |
5572 | * If the record contains a timestamp, returns true, and saves the timestamp |
5573 | * in *recordXtime. If the record type has no timestamp, returns false. |
5574 | * Currently, only transaction commit/abort records and restore points contain |
5575 | * timestamps. |
5576 | */ |
5577 | static bool |
5578 | getRecordTimestamp(XLogReaderState *record, TimestampTz *recordXtime) |
5579 | { |
5580 | uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
5581 | uint8 xact_info = info & XLOG_XACT_OPMASK; |
5582 | uint8 rmid = XLogRecGetRmid(record); |
5583 | |
5584 | if (rmid == RM_XLOG_ID && info == XLOG_RESTORE_POINT) |
5585 | { |
5586 | *recordXtime = ((xl_restore_point *) XLogRecGetData(record))->rp_time; |
5587 | return true; |
5588 | } |
5589 | if (rmid == RM_XACT_ID && (xact_info == XLOG_XACT_COMMIT || |
5590 | xact_info == XLOG_XACT_COMMIT_PREPARED)) |
5591 | { |
5592 | *recordXtime = ((xl_xact_commit *) XLogRecGetData(record))->xact_time; |
5593 | return true; |
5594 | } |
5595 | if (rmid == RM_XACT_ID && (xact_info == XLOG_XACT_ABORT || |
5596 | xact_info == XLOG_XACT_ABORT_PREPARED)) |
5597 | { |
5598 | *recordXtime = ((xl_xact_abort *) XLogRecGetData(record))->xact_time; |
5599 | return true; |
5600 | } |
5601 | return false; |
5602 | } |
5603 | |
5604 | /* |
5605 | * For point-in-time recovery, this function decides whether we want to |
5606 | * stop applying the XLOG before the current record. |
5607 | * |
5608 | * Returns true if we are stopping, false otherwise. If stopping, some |
5609 | * information is saved in recoveryStopXid et al for use in annotating the |
5610 | * new timeline's history file. |
5611 | */ |
5612 | static bool |
5613 | recoveryStopsBefore(XLogReaderState *record) |
5614 | { |
5615 | bool stopsHere = false; |
5616 | uint8 xact_info; |
5617 | bool isCommit; |
5618 | TimestampTz recordXtime = 0; |
5619 | TransactionId recordXid; |
5620 | |
5621 | /* |
5622 | * Ignore recovery target settings when not in archive recovery (meaning |
5623 | * we are in crash recovery). |
5624 | */ |
5625 | if (!ArchiveRecoveryRequested) |
5626 | return false; |
5627 | |
5628 | /* Check if we should stop as soon as reaching consistency */ |
5629 | if (recoveryTarget == RECOVERY_TARGET_IMMEDIATE && reachedConsistency) |
5630 | { |
5631 | ereport(LOG, |
5632 | (errmsg("recovery stopping after reaching consistency" ))); |
5633 | |
5634 | recoveryStopAfter = false; |
5635 | recoveryStopXid = InvalidTransactionId; |
5636 | recoveryStopLSN = InvalidXLogRecPtr; |
5637 | recoveryStopTime = 0; |
5638 | recoveryStopName[0] = '\0'; |
5639 | return true; |
5640 | } |
5641 | |
5642 | /* Check if target LSN has been reached */ |
5643 | if (recoveryTarget == RECOVERY_TARGET_LSN && |
5644 | !recoveryTargetInclusive && |
5645 | record->ReadRecPtr >= recoveryTargetLSN) |
5646 | { |
5647 | recoveryStopAfter = false; |
5648 | recoveryStopXid = InvalidTransactionId; |
5649 | recoveryStopLSN = record->ReadRecPtr; |
5650 | recoveryStopTime = 0; |
5651 | recoveryStopName[0] = '\0'; |
5652 | ereport(LOG, |
5653 | (errmsg("recovery stopping before WAL location (LSN) \"%X/%X\"" , |
5654 | (uint32) (recoveryStopLSN >> 32), |
5655 | (uint32) recoveryStopLSN))); |
5656 | return true; |
5657 | } |
5658 | |
5659 | /* Otherwise we only consider stopping before COMMIT or ABORT records. */ |
5660 | if (XLogRecGetRmid(record) != RM_XACT_ID) |
5661 | return false; |
5662 | |
5663 | xact_info = XLogRecGetInfo(record) & XLOG_XACT_OPMASK; |
5664 | |
5665 | if (xact_info == XLOG_XACT_COMMIT) |
5666 | { |
5667 | isCommit = true; |
5668 | recordXid = XLogRecGetXid(record); |
5669 | } |
5670 | else if (xact_info == XLOG_XACT_COMMIT_PREPARED) |
5671 | { |
5672 | xl_xact_commit *xlrec = (xl_xact_commit *) XLogRecGetData(record); |
5673 | xl_xact_parsed_commit parsed; |
5674 | |
5675 | isCommit = true; |
5676 | ParseCommitRecord(XLogRecGetInfo(record), |
5677 | xlrec, |
5678 | &parsed); |
5679 | recordXid = parsed.twophase_xid; |
5680 | } |
5681 | else if (xact_info == XLOG_XACT_ABORT) |
5682 | { |
5683 | isCommit = false; |
5684 | recordXid = XLogRecGetXid(record); |
5685 | } |
5686 | else if (xact_info == XLOG_XACT_ABORT_PREPARED) |
5687 | { |
5688 | xl_xact_abort *xlrec = (xl_xact_abort *) XLogRecGetData(record); |
5689 | xl_xact_parsed_abort parsed; |
5690 | |
5691 | isCommit = true; |
5692 | ParseAbortRecord(XLogRecGetInfo(record), |
5693 | xlrec, |
5694 | &parsed); |
5695 | recordXid = parsed.twophase_xid; |
5696 | } |
5697 | else |
5698 | return false; |
5699 | |
5700 | if (recoveryTarget == RECOVERY_TARGET_XID && !recoveryTargetInclusive) |
5701 | { |
5702 | /* |
5703 | * There can be only one transaction end record with this exact |
5704 | * transactionid |
5705 | * |
5706 | * when testing for an xid, we MUST test for equality only, since |
5707 | * transactions are numbered in the order they start, not the order |
5708 | * they complete. A higher numbered xid will complete before you about |
5709 | * 50% of the time... |
5710 | */ |
5711 | stopsHere = (recordXid == recoveryTargetXid); |
5712 | } |
5713 | |
5714 | if (recoveryTarget == RECOVERY_TARGET_TIME && |
5715 | getRecordTimestamp(record, &recordXtime)) |
5716 | { |
5717 | /* |
5718 | * There can be many transactions that share the same commit time, so |
5719 | * we stop after the last one, if we are inclusive, or stop at the |
5720 | * first one if we are exclusive |
5721 | */ |
5722 | if (recoveryTargetInclusive) |
5723 | stopsHere = (recordXtime > recoveryTargetTime); |
5724 | else |
5725 | stopsHere = (recordXtime >= recoveryTargetTime); |
5726 | } |
5727 | |
5728 | if (stopsHere) |
5729 | { |
5730 | recoveryStopAfter = false; |
5731 | recoveryStopXid = recordXid; |
5732 | recoveryStopTime = recordXtime; |
5733 | recoveryStopLSN = InvalidXLogRecPtr; |
5734 | recoveryStopName[0] = '\0'; |
5735 | |
5736 | if (isCommit) |
5737 | { |
5738 | ereport(LOG, |
5739 | (errmsg("recovery stopping before commit of transaction %u, time %s" , |
5740 | recoveryStopXid, |
5741 | timestamptz_to_str(recoveryStopTime)))); |
5742 | } |
5743 | else |
5744 | { |
5745 | ereport(LOG, |
5746 | (errmsg("recovery stopping before abort of transaction %u, time %s" , |
5747 | recoveryStopXid, |
5748 | timestamptz_to_str(recoveryStopTime)))); |
5749 | } |
5750 | } |
5751 | |
5752 | return stopsHere; |
5753 | } |
5754 | |
5755 | /* |
5756 | * Same as recoveryStopsBefore, but called after applying the record. |
5757 | * |
5758 | * We also track the timestamp of the latest applied COMMIT/ABORT |
5759 | * record in XLogCtl->recoveryLastXTime. |
5760 | */ |
5761 | static bool |
5762 | recoveryStopsAfter(XLogReaderState *record) |
5763 | { |
5764 | uint8 info; |
5765 | uint8 xact_info; |
5766 | uint8 rmid; |
5767 | TimestampTz recordXtime; |
5768 | |
5769 | /* |
5770 | * Ignore recovery target settings when not in archive recovery (meaning |
5771 | * we are in crash recovery). |
5772 | */ |
5773 | if (!ArchiveRecoveryRequested) |
5774 | return false; |
5775 | |
5776 | info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
5777 | rmid = XLogRecGetRmid(record); |
5778 | |
5779 | /* |
5780 | * There can be many restore points that share the same name; we stop at |
5781 | * the first one. |
5782 | */ |
5783 | if (recoveryTarget == RECOVERY_TARGET_NAME && |
5784 | rmid == RM_XLOG_ID && info == XLOG_RESTORE_POINT) |
5785 | { |
5786 | xl_restore_point *recordRestorePointData; |
5787 | |
5788 | recordRestorePointData = (xl_restore_point *) XLogRecGetData(record); |
5789 | |
5790 | if (strcmp(recordRestorePointData->rp_name, recoveryTargetName) == 0) |
5791 | { |
5792 | recoveryStopAfter = true; |
5793 | recoveryStopXid = InvalidTransactionId; |
5794 | recoveryStopLSN = InvalidXLogRecPtr; |
5795 | (void) getRecordTimestamp(record, &recoveryStopTime); |
5796 | strlcpy(recoveryStopName, recordRestorePointData->rp_name, MAXFNAMELEN); |
5797 | |
5798 | ereport(LOG, |
5799 | (errmsg("recovery stopping at restore point \"%s\", time %s" , |
5800 | recoveryStopName, |
5801 | timestamptz_to_str(recoveryStopTime)))); |
5802 | return true; |
5803 | } |
5804 | } |
5805 | |
5806 | /* Check if the target LSN has been reached */ |
5807 | if (recoveryTarget == RECOVERY_TARGET_LSN && |
5808 | recoveryTargetInclusive && |
5809 | record->ReadRecPtr >= recoveryTargetLSN) |
5810 | { |
5811 | recoveryStopAfter = true; |
5812 | recoveryStopXid = InvalidTransactionId; |
5813 | recoveryStopLSN = record->ReadRecPtr; |
5814 | recoveryStopTime = 0; |
5815 | recoveryStopName[0] = '\0'; |
5816 | ereport(LOG, |
5817 | (errmsg("recovery stopping after WAL location (LSN) \"%X/%X\"" , |
5818 | (uint32) (recoveryStopLSN >> 32), |
5819 | (uint32) recoveryStopLSN))); |
5820 | return true; |
5821 | } |
5822 | |
5823 | if (rmid != RM_XACT_ID) |
5824 | return false; |
5825 | |
5826 | xact_info = info & XLOG_XACT_OPMASK; |
5827 | |
5828 | if (xact_info == XLOG_XACT_COMMIT || |
5829 | xact_info == XLOG_XACT_COMMIT_PREPARED || |
5830 | xact_info == XLOG_XACT_ABORT || |
5831 | xact_info == XLOG_XACT_ABORT_PREPARED) |
5832 | { |
5833 | TransactionId recordXid; |
5834 | |
5835 | /* Update the last applied transaction timestamp */ |
5836 | if (getRecordTimestamp(record, &recordXtime)) |
5837 | SetLatestXTime(recordXtime); |
5838 | |
5839 | /* Extract the XID of the committed/aborted transaction */ |
5840 | if (xact_info == XLOG_XACT_COMMIT_PREPARED) |
5841 | { |
5842 | xl_xact_commit *xlrec = (xl_xact_commit *) XLogRecGetData(record); |
5843 | xl_xact_parsed_commit parsed; |
5844 | |
5845 | ParseCommitRecord(XLogRecGetInfo(record), |
5846 | xlrec, |
5847 | &parsed); |
5848 | recordXid = parsed.twophase_xid; |
5849 | } |
5850 | else if (xact_info == XLOG_XACT_ABORT_PREPARED) |
5851 | { |
5852 | xl_xact_abort *xlrec = (xl_xact_abort *) XLogRecGetData(record); |
5853 | xl_xact_parsed_abort parsed; |
5854 | |
5855 | ParseAbortRecord(XLogRecGetInfo(record), |
5856 | xlrec, |
5857 | &parsed); |
5858 | recordXid = parsed.twophase_xid; |
5859 | } |
5860 | else |
5861 | recordXid = XLogRecGetXid(record); |
5862 | |
5863 | /* |
5864 | * There can be only one transaction end record with this exact |
5865 | * transactionid |
5866 | * |
5867 | * when testing for an xid, we MUST test for equality only, since |
5868 | * transactions are numbered in the order they start, not the order |
5869 | * they complete. A higher numbered xid will complete before you about |
5870 | * 50% of the time... |
5871 | */ |
5872 | if (recoveryTarget == RECOVERY_TARGET_XID && recoveryTargetInclusive && |
5873 | recordXid == recoveryTargetXid) |
5874 | { |
5875 | recoveryStopAfter = true; |
5876 | recoveryStopXid = recordXid; |
5877 | recoveryStopTime = recordXtime; |
5878 | recoveryStopLSN = InvalidXLogRecPtr; |
5879 | recoveryStopName[0] = '\0'; |
5880 | |
5881 | if (xact_info == XLOG_XACT_COMMIT || |
5882 | xact_info == XLOG_XACT_COMMIT_PREPARED) |
5883 | { |
5884 | ereport(LOG, |
5885 | (errmsg("recovery stopping after commit of transaction %u, time %s" , |
5886 | recoveryStopXid, |
5887 | timestamptz_to_str(recoveryStopTime)))); |
5888 | } |
5889 | else if (xact_info == XLOG_XACT_ABORT || |
5890 | xact_info == XLOG_XACT_ABORT_PREPARED) |
5891 | { |
5892 | ereport(LOG, |
5893 | (errmsg("recovery stopping after abort of transaction %u, time %s" , |
5894 | recoveryStopXid, |
5895 | timestamptz_to_str(recoveryStopTime)))); |
5896 | } |
5897 | return true; |
5898 | } |
5899 | } |
5900 | |
5901 | /* Check if we should stop as soon as reaching consistency */ |
5902 | if (recoveryTarget == RECOVERY_TARGET_IMMEDIATE && reachedConsistency) |
5903 | { |
5904 | ereport(LOG, |
5905 | (errmsg("recovery stopping after reaching consistency" ))); |
5906 | |
5907 | recoveryStopAfter = true; |
5908 | recoveryStopXid = InvalidTransactionId; |
5909 | recoveryStopTime = 0; |
5910 | recoveryStopLSN = InvalidXLogRecPtr; |
5911 | recoveryStopName[0] = '\0'; |
5912 | return true; |
5913 | } |
5914 | |
5915 | return false; |
5916 | } |
5917 | |
5918 | /* |
5919 | * Wait until shared recoveryPause flag is cleared. |
5920 | * |
5921 | * XXX Could also be done with shared latch, avoiding the pg_usleep loop. |
5922 | * Probably not worth the trouble though. This state shouldn't be one that |
5923 | * anyone cares about server power consumption in. |
5924 | */ |
5925 | static void |
5926 | recoveryPausesHere(void) |
5927 | { |
5928 | /* Don't pause unless users can connect! */ |
5929 | if (!LocalHotStandbyActive) |
5930 | return; |
5931 | |
5932 | ereport(LOG, |
5933 | (errmsg("recovery has paused" ), |
5934 | errhint("Execute pg_wal_replay_resume() to continue." ))); |
5935 | |
5936 | while (RecoveryIsPaused()) |
5937 | { |
5938 | pg_usleep(1000000L); /* 1000 ms */ |
5939 | HandleStartupProcInterrupts(); |
5940 | } |
5941 | } |
5942 | |
5943 | bool |
5944 | RecoveryIsPaused(void) |
5945 | { |
5946 | bool recoveryPause; |
5947 | |
5948 | SpinLockAcquire(&XLogCtl->info_lck); |
5949 | recoveryPause = XLogCtl->recoveryPause; |
5950 | SpinLockRelease(&XLogCtl->info_lck); |
5951 | |
5952 | return recoveryPause; |
5953 | } |
5954 | |
5955 | void |
5956 | SetRecoveryPause(bool recoveryPause) |
5957 | { |
5958 | SpinLockAcquire(&XLogCtl->info_lck); |
5959 | XLogCtl->recoveryPause = recoveryPause; |
5960 | SpinLockRelease(&XLogCtl->info_lck); |
5961 | } |
5962 | |
5963 | /* |
5964 | * When recovery_min_apply_delay is set, we wait long enough to make sure |
5965 | * certain record types are applied at least that interval behind the master. |
5966 | * |
5967 | * Returns true if we waited. |
5968 | * |
5969 | * Note that the delay is calculated between the WAL record log time and |
5970 | * the current time on standby. We would prefer to keep track of when this |
5971 | * standby received each WAL record, which would allow a more consistent |
5972 | * approach and one not affected by time synchronisation issues, but that |
5973 | * is significantly more effort and complexity for little actual gain in |
5974 | * usability. |
5975 | */ |
5976 | static bool |
5977 | recoveryApplyDelay(XLogReaderState *record) |
5978 | { |
5979 | uint8 xact_info; |
5980 | TimestampTz xtime; |
5981 | long secs; |
5982 | int microsecs; |
5983 | |
5984 | /* nothing to do if no delay configured */ |
5985 | if (recovery_min_apply_delay <= 0) |
5986 | return false; |
5987 | |
5988 | /* no delay is applied on a database not yet consistent */ |
5989 | if (!reachedConsistency) |
5990 | return false; |
5991 | |
5992 | /* |
5993 | * Is it a COMMIT record? |
5994 | * |
5995 | * We deliberately choose not to delay aborts since they have no effect on |
5996 | * MVCC. We already allow replay of records that don't have a timestamp, |
5997 | * so there is already opportunity for issues caused by early conflicts on |
5998 | * standbys. |
5999 | */ |
6000 | if (XLogRecGetRmid(record) != RM_XACT_ID) |
6001 | return false; |
6002 | |
6003 | xact_info = XLogRecGetInfo(record) & XLOG_XACT_OPMASK; |
6004 | |
6005 | if (xact_info != XLOG_XACT_COMMIT && |
6006 | xact_info != XLOG_XACT_COMMIT_PREPARED) |
6007 | return false; |
6008 | |
6009 | if (!getRecordTimestamp(record, &xtime)) |
6010 | return false; |
6011 | |
6012 | recoveryDelayUntilTime = |
6013 | TimestampTzPlusMilliseconds(xtime, recovery_min_apply_delay); |
6014 | |
6015 | /* |
6016 | * Exit without arming the latch if it's already past time to apply this |
6017 | * record |
6018 | */ |
6019 | TimestampDifference(GetCurrentTimestamp(), recoveryDelayUntilTime, |
6020 | &secs, µsecs); |
6021 | if (secs <= 0 && microsecs <= 0) |
6022 | return false; |
6023 | |
6024 | while (true) |
6025 | { |
6026 | ResetLatch(&XLogCtl->recoveryWakeupLatch); |
6027 | |
6028 | /* might change the trigger file's location */ |
6029 | HandleStartupProcInterrupts(); |
6030 | |
6031 | if (CheckForStandbyTrigger()) |
6032 | break; |
6033 | |
6034 | /* |
6035 | * Wait for difference between GetCurrentTimestamp() and |
6036 | * recoveryDelayUntilTime |
6037 | */ |
6038 | TimestampDifference(GetCurrentTimestamp(), recoveryDelayUntilTime, |
6039 | &secs, µsecs); |
6040 | |
6041 | /* NB: We're ignoring waits below min_apply_delay's resolution. */ |
6042 | if (secs <= 0 && microsecs / 1000 <= 0) |
6043 | break; |
6044 | |
6045 | elog(DEBUG2, "recovery apply delay %ld seconds, %d milliseconds" , |
6046 | secs, microsecs / 1000); |
6047 | |
6048 | (void) WaitLatch(&XLogCtl->recoveryWakeupLatch, |
6049 | WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH, |
6050 | secs * 1000L + microsecs / 1000, |
6051 | WAIT_EVENT_RECOVERY_APPLY_DELAY); |
6052 | } |
6053 | return true; |
6054 | } |
6055 | |
6056 | /* |
6057 | * Save timestamp of latest processed commit/abort record. |
6058 | * |
6059 | * We keep this in XLogCtl, not a simple static variable, so that it can be |
6060 | * seen by processes other than the startup process. Note in particular |
6061 | * that CreateRestartPoint is executed in the checkpointer. |
6062 | */ |
6063 | static void |
6064 | SetLatestXTime(TimestampTz xtime) |
6065 | { |
6066 | SpinLockAcquire(&XLogCtl->info_lck); |
6067 | XLogCtl->recoveryLastXTime = xtime; |
6068 | SpinLockRelease(&XLogCtl->info_lck); |
6069 | } |
6070 | |
6071 | /* |
6072 | * Fetch timestamp of latest processed commit/abort record. |
6073 | */ |
6074 | TimestampTz |
6075 | GetLatestXTime(void) |
6076 | { |
6077 | TimestampTz xtime; |
6078 | |
6079 | SpinLockAcquire(&XLogCtl->info_lck); |
6080 | xtime = XLogCtl->recoveryLastXTime; |
6081 | SpinLockRelease(&XLogCtl->info_lck); |
6082 | |
6083 | return xtime; |
6084 | } |
6085 | |
6086 | /* |
6087 | * Save timestamp of the next chunk of WAL records to apply. |
6088 | * |
6089 | * We keep this in XLogCtl, not a simple static variable, so that it can be |
6090 | * seen by all backends. |
6091 | */ |
6092 | static void |
6093 | SetCurrentChunkStartTime(TimestampTz xtime) |
6094 | { |
6095 | SpinLockAcquire(&XLogCtl->info_lck); |
6096 | XLogCtl->currentChunkStartTime = xtime; |
6097 | SpinLockRelease(&XLogCtl->info_lck); |
6098 | } |
6099 | |
6100 | /* |
6101 | * Fetch timestamp of latest processed commit/abort record. |
6102 | * Startup process maintains an accurate local copy in XLogReceiptTime |
6103 | */ |
6104 | TimestampTz |
6105 | GetCurrentChunkReplayStartTime(void) |
6106 | { |
6107 | TimestampTz xtime; |
6108 | |
6109 | SpinLockAcquire(&XLogCtl->info_lck); |
6110 | xtime = XLogCtl->currentChunkStartTime; |
6111 | SpinLockRelease(&XLogCtl->info_lck); |
6112 | |
6113 | return xtime; |
6114 | } |
6115 | |
6116 | /* |
6117 | * Returns time of receipt of current chunk of XLOG data, as well as |
6118 | * whether it was received from streaming replication or from archives. |
6119 | */ |
6120 | void |
6121 | GetXLogReceiptTime(TimestampTz *rtime, bool *fromStream) |
6122 | { |
6123 | /* |
6124 | * This must be executed in the startup process, since we don't export the |
6125 | * relevant state to shared memory. |
6126 | */ |
6127 | Assert(InRecovery); |
6128 | |
6129 | *rtime = XLogReceiptTime; |
6130 | *fromStream = (XLogReceiptSource == XLOG_FROM_STREAM); |
6131 | } |
6132 | |
6133 | /* |
6134 | * Note that text field supplied is a parameter name and does not require |
6135 | * translation |
6136 | */ |
6137 | #define RecoveryRequiresIntParameter(param_name, currValue, minValue) \ |
6138 | do { \ |
6139 | if ((currValue) < (minValue)) \ |
6140 | ereport(ERROR, \ |
6141 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), \ |
6142 | errmsg("hot standby is not possible because " \ |
6143 | "%s = %d is a lower setting than on the master server " \ |
6144 | "(its value was %d)", \ |
6145 | param_name, \ |
6146 | currValue, \ |
6147 | minValue))); \ |
6148 | } while(0) |
6149 | |
6150 | /* |
6151 | * Check to see if required parameters are set high enough on this server |
6152 | * for various aspects of recovery operation. |
6153 | * |
6154 | * Note that all the parameters which this function tests need to be |
6155 | * listed in Administrator's Overview section in high-availability.sgml. |
6156 | * If you change them, don't forget to update the list. |
6157 | */ |
6158 | static void |
6159 | CheckRequiredParameterValues(void) |
6160 | { |
6161 | /* |
6162 | * For archive recovery, the WAL must be generated with at least 'replica' |
6163 | * wal_level. |
6164 | */ |
6165 | if (ArchiveRecoveryRequested && ControlFile->wal_level == WAL_LEVEL_MINIMAL) |
6166 | { |
6167 | ereport(WARNING, |
6168 | (errmsg("WAL was generated with wal_level=minimal, data may be missing" ), |
6169 | errhint("This happens if you temporarily set wal_level=minimal without taking a new base backup." ))); |
6170 | } |
6171 | |
6172 | /* |
6173 | * For Hot Standby, the WAL must be generated with 'replica' mode, and we |
6174 | * must have at least as many backend slots as the primary. |
6175 | */ |
6176 | if (ArchiveRecoveryRequested && EnableHotStandby) |
6177 | { |
6178 | if (ControlFile->wal_level < WAL_LEVEL_REPLICA) |
6179 | ereport(ERROR, |
6180 | (errmsg("hot standby is not possible because wal_level was not set to \"replica\" or higher on the master server" ), |
6181 | errhint("Either set wal_level to \"replica\" on the master, or turn off hot_standby here." ))); |
6182 | |
6183 | /* We ignore autovacuum_max_workers when we make this test. */ |
6184 | RecoveryRequiresIntParameter("max_connections" , |
6185 | MaxConnections, |
6186 | ControlFile->MaxConnections); |
6187 | RecoveryRequiresIntParameter("max_worker_processes" , |
6188 | max_worker_processes, |
6189 | ControlFile->max_worker_processes); |
6190 | RecoveryRequiresIntParameter("max_wal_senders" , |
6191 | max_wal_senders, |
6192 | ControlFile->max_wal_senders); |
6193 | RecoveryRequiresIntParameter("max_prepared_transactions" , |
6194 | max_prepared_xacts, |
6195 | ControlFile->max_prepared_xacts); |
6196 | RecoveryRequiresIntParameter("max_locks_per_transaction" , |
6197 | max_locks_per_xact, |
6198 | ControlFile->max_locks_per_xact); |
6199 | } |
6200 | } |
6201 | |
6202 | /* |
6203 | * This must be called ONCE during postmaster or standalone-backend startup |
6204 | */ |
6205 | void |
6206 | StartupXLOG(void) |
6207 | { |
6208 | XLogCtlInsert *Insert; |
6209 | CheckPoint checkPoint; |
6210 | bool wasShutdown; |
6211 | bool reachedStopPoint = false; |
6212 | bool haveBackupLabel = false; |
6213 | bool haveTblspcMap = false; |
6214 | XLogRecPtr RecPtr, |
6215 | checkPointLoc, |
6216 | EndOfLog; |
6217 | TimeLineID EndOfLogTLI; |
6218 | TimeLineID PrevTimeLineID; |
6219 | XLogRecord *record; |
6220 | TransactionId oldestActiveXID; |
6221 | bool backupEndRequired = false; |
6222 | bool backupFromStandby = false; |
6223 | DBState dbstate_at_startup; |
6224 | XLogReaderState *xlogreader; |
6225 | XLogPageReadPrivate private; |
6226 | bool fast_promoted = false; |
6227 | struct stat st; |
6228 | |
6229 | /* |
6230 | * We should have an aux process resource owner to use, and we should not |
6231 | * be in a transaction that's installed some other resowner. |
6232 | */ |
6233 | Assert(AuxProcessResourceOwner != NULL); |
6234 | Assert(CurrentResourceOwner == NULL || |
6235 | CurrentResourceOwner == AuxProcessResourceOwner); |
6236 | CurrentResourceOwner = AuxProcessResourceOwner; |
6237 | |
6238 | /* |
6239 | * Verify XLOG status looks valid. |
6240 | */ |
6241 | if (ControlFile->state < DB_SHUTDOWNED || |
6242 | ControlFile->state > DB_IN_PRODUCTION || |
6243 | !XRecOffIsValid(ControlFile->checkPoint)) |
6244 | ereport(FATAL, |
6245 | (errmsg("control file contains invalid data" ))); |
6246 | |
6247 | if (ControlFile->state == DB_SHUTDOWNED) |
6248 | { |
6249 | /* This is the expected case, so don't be chatty in standalone mode */ |
6250 | ereport(IsPostmasterEnvironment ? LOG : NOTICE, |
6251 | (errmsg("database system was shut down at %s" , |
6252 | str_time(ControlFile->time)))); |
6253 | } |
6254 | else if (ControlFile->state == DB_SHUTDOWNED_IN_RECOVERY) |
6255 | ereport(LOG, |
6256 | (errmsg("database system was shut down in recovery at %s" , |
6257 | str_time(ControlFile->time)))); |
6258 | else if (ControlFile->state == DB_SHUTDOWNING) |
6259 | ereport(LOG, |
6260 | (errmsg("database system shutdown was interrupted; last known up at %s" , |
6261 | str_time(ControlFile->time)))); |
6262 | else if (ControlFile->state == DB_IN_CRASH_RECOVERY) |
6263 | ereport(LOG, |
6264 | (errmsg("database system was interrupted while in recovery at %s" , |
6265 | str_time(ControlFile->time)), |
6266 | errhint("This probably means that some data is corrupted and" |
6267 | " you will have to use the last backup for recovery." ))); |
6268 | else if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY) |
6269 | ereport(LOG, |
6270 | (errmsg("database system was interrupted while in recovery at log time %s" , |
6271 | str_time(ControlFile->checkPointCopy.time)), |
6272 | errhint("If this has occurred more than once some data might be corrupted" |
6273 | " and you might need to choose an earlier recovery target." ))); |
6274 | else if (ControlFile->state == DB_IN_PRODUCTION) |
6275 | ereport(LOG, |
6276 | (errmsg("database system was interrupted; last known up at %s" , |
6277 | str_time(ControlFile->time)))); |
6278 | |
6279 | /* This is just to allow attaching to startup process with a debugger */ |
6280 | #ifdef XLOG_REPLAY_DELAY |
6281 | if (ControlFile->state != DB_SHUTDOWNED) |
6282 | pg_usleep(60000000L); |
6283 | #endif |
6284 | |
6285 | /* |
6286 | * Verify that pg_wal and pg_wal/archive_status exist. In cases where |
6287 | * someone has performed a copy for PITR, these directories may have been |
6288 | * excluded and need to be re-created. |
6289 | */ |
6290 | ValidateXLOGDirectoryStructure(); |
6291 | |
6292 | /*---------- |
6293 | * If we previously crashed, perform a couple of actions: |
6294 | * - The pg_wal directory may still include some temporary WAL segments |
6295 | * used when creating a new segment, so perform some clean up to not |
6296 | * bloat this path. This is done first as there is no point to sync this |
6297 | * temporary data. |
6298 | * - There might be data which we had written, intending to fsync it, |
6299 | * but which we had not actually fsync'd yet. Therefore, a power failure |
6300 | * in the near future might cause earlier unflushed writes to be lost, |
6301 | * even though more recent data written to disk from here on would be |
6302 | * persisted. To avoid that, fsync the entire data directory. |
6303 | *--------- |
6304 | */ |
6305 | if (ControlFile->state != DB_SHUTDOWNED && |
6306 | ControlFile->state != DB_SHUTDOWNED_IN_RECOVERY) |
6307 | { |
6308 | RemoveTempXlogFiles(); |
6309 | SyncDataDirectory(); |
6310 | } |
6311 | |
6312 | /* |
6313 | * Initialize on the assumption we want to recover to the latest timeline |
6314 | * that's active according to pg_control. |
6315 | */ |
6316 | if (ControlFile->minRecoveryPointTLI > |
6317 | ControlFile->checkPointCopy.ThisTimeLineID) |
6318 | recoveryTargetTLI = ControlFile->minRecoveryPointTLI; |
6319 | else |
6320 | recoveryTargetTLI = ControlFile->checkPointCopy.ThisTimeLineID; |
6321 | |
6322 | /* |
6323 | * Check for signal files, and if so set up state for offline recovery |
6324 | */ |
6325 | readRecoverySignalFile(); |
6326 | validateRecoveryParameters(); |
6327 | |
6328 | if (ArchiveRecoveryRequested) |
6329 | { |
6330 | if (StandbyModeRequested) |
6331 | ereport(LOG, |
6332 | (errmsg("entering standby mode" ))); |
6333 | else if (recoveryTarget == RECOVERY_TARGET_XID) |
6334 | ereport(LOG, |
6335 | (errmsg("starting point-in-time recovery to XID %u" , |
6336 | recoveryTargetXid))); |
6337 | else if (recoveryTarget == RECOVERY_TARGET_TIME) |
6338 | ereport(LOG, |
6339 | (errmsg("starting point-in-time recovery to %s" , |
6340 | timestamptz_to_str(recoveryTargetTime)))); |
6341 | else if (recoveryTarget == RECOVERY_TARGET_NAME) |
6342 | ereport(LOG, |
6343 | (errmsg("starting point-in-time recovery to \"%s\"" , |
6344 | recoveryTargetName))); |
6345 | else if (recoveryTarget == RECOVERY_TARGET_LSN) |
6346 | ereport(LOG, |
6347 | (errmsg("starting point-in-time recovery to WAL location (LSN) \"%X/%X\"" , |
6348 | (uint32) (recoveryTargetLSN >> 32), |
6349 | (uint32) recoveryTargetLSN))); |
6350 | else if (recoveryTarget == RECOVERY_TARGET_IMMEDIATE) |
6351 | ereport(LOG, |
6352 | (errmsg("starting point-in-time recovery to earliest consistent point" ))); |
6353 | else |
6354 | ereport(LOG, |
6355 | (errmsg("starting archive recovery" ))); |
6356 | } |
6357 | |
6358 | /* |
6359 | * Take ownership of the wakeup latch if we're going to sleep during |
6360 | * recovery. |
6361 | */ |
6362 | if (StandbyModeRequested) |
6363 | OwnLatch(&XLogCtl->recoveryWakeupLatch); |
6364 | |
6365 | /* Set up XLOG reader facility */ |
6366 | MemSet(&private, 0, sizeof(XLogPageReadPrivate)); |
6367 | xlogreader = XLogReaderAllocate(wal_segment_size, &XLogPageRead, &private); |
6368 | if (!xlogreader) |
6369 | ereport(ERROR, |
6370 | (errcode(ERRCODE_OUT_OF_MEMORY), |
6371 | errmsg("out of memory" ), |
6372 | errdetail("Failed while allocating a WAL reading processor." ))); |
6373 | xlogreader->system_identifier = ControlFile->system_identifier; |
6374 | |
6375 | /* |
6376 | * Allocate two page buffers dedicated to WAL consistency checks. We do |
6377 | * it this way, rather than just making static arrays, for two reasons: |
6378 | * (1) no need to waste the storage in most instantiations of the backend; |
6379 | * (2) a static char array isn't guaranteed to have any particular |
6380 | * alignment, whereas palloc() will provide MAXALIGN'd storage. |
6381 | */ |
6382 | replay_image_masked = (char *) palloc(BLCKSZ); |
6383 | master_image_masked = (char *) palloc(BLCKSZ); |
6384 | |
6385 | if (read_backup_label(&checkPointLoc, &backupEndRequired, |
6386 | &backupFromStandby)) |
6387 | { |
6388 | List *tablespaces = NIL; |
6389 | |
6390 | /* |
6391 | * Archive recovery was requested, and thanks to the backup label |
6392 | * file, we know how far we need to replay to reach consistency. Enter |
6393 | * archive recovery directly. |
6394 | */ |
6395 | InArchiveRecovery = true; |
6396 | if (StandbyModeRequested) |
6397 | StandbyMode = true; |
6398 | |
6399 | /* |
6400 | * When a backup_label file is present, we want to roll forward from |
6401 | * the checkpoint it identifies, rather than using pg_control. |
6402 | */ |
6403 | record = ReadCheckpointRecord(xlogreader, checkPointLoc, 0, true); |
6404 | if (record != NULL) |
6405 | { |
6406 | memcpy(&checkPoint, XLogRecGetData(xlogreader), sizeof(CheckPoint)); |
6407 | wasShutdown = ((record->xl_info & ~XLR_INFO_MASK) == XLOG_CHECKPOINT_SHUTDOWN); |
6408 | ereport(DEBUG1, |
6409 | (errmsg("checkpoint record is at %X/%X" , |
6410 | (uint32) (checkPointLoc >> 32), (uint32) checkPointLoc))); |
6411 | InRecovery = true; /* force recovery even if SHUTDOWNED */ |
6412 | |
6413 | /* |
6414 | * Make sure that REDO location exists. This may not be the case |
6415 | * if there was a crash during an online backup, which left a |
6416 | * backup_label around that references a WAL segment that's |
6417 | * already been archived. |
6418 | */ |
6419 | if (checkPoint.redo < checkPointLoc) |
6420 | { |
6421 | if (!ReadRecord(xlogreader, checkPoint.redo, LOG, false)) |
6422 | ereport(FATAL, |
6423 | (errmsg("could not find redo location referenced by checkpoint record" ), |
6424 | errhint("If you are restoring from a backup, touch \"%s/recovery.signal\" and add required recovery options.\n" |
6425 | "If you are not restoring from a backup, try removing the file \"%s/backup_label\".\n" |
6426 | "Be careful: removing \"%s/backup_label\" will result in a corrupt cluster if restoring from a backup." , |
6427 | DataDir, DataDir, DataDir))); |
6428 | } |
6429 | } |
6430 | else |
6431 | { |
6432 | ereport(FATAL, |
6433 | (errmsg("could not locate required checkpoint record" ), |
6434 | errhint("If you are restoring from a backup, touch \"%s/recovery.signal\" and add required recovery options.\n" |
6435 | "If you are not restoring from a backup, try removing the file \"%s/backup_label\".\n" |
6436 | "Be careful: removing \"%s/backup_label\" will result in a corrupt cluster if restoring from a backup." , |
6437 | DataDir, DataDir, DataDir))); |
6438 | wasShutdown = false; /* keep compiler quiet */ |
6439 | } |
6440 | |
6441 | /* read the tablespace_map file if present and create symlinks. */ |
6442 | if (read_tablespace_map(&tablespaces)) |
6443 | { |
6444 | ListCell *lc; |
6445 | |
6446 | foreach(lc, tablespaces) |
6447 | { |
6448 | tablespaceinfo *ti = lfirst(lc); |
6449 | char *linkloc; |
6450 | |
6451 | linkloc = psprintf("pg_tblspc/%s" , ti->oid); |
6452 | |
6453 | /* |
6454 | * Remove the existing symlink if any and Create the symlink |
6455 | * under PGDATA. |
6456 | */ |
6457 | remove_tablespace_symlink(linkloc); |
6458 | |
6459 | if (symlink(ti->path, linkloc) < 0) |
6460 | ereport(ERROR, |
6461 | (errcode_for_file_access(), |
6462 | errmsg("could not create symbolic link \"%s\": %m" , |
6463 | linkloc))); |
6464 | |
6465 | pfree(ti->oid); |
6466 | pfree(ti->path); |
6467 | pfree(ti); |
6468 | } |
6469 | |
6470 | /* set flag to delete it later */ |
6471 | haveTblspcMap = true; |
6472 | } |
6473 | |
6474 | /* set flag to delete it later */ |
6475 | haveBackupLabel = true; |
6476 | } |
6477 | else |
6478 | { |
6479 | /* |
6480 | * If tablespace_map file is present without backup_label file, there |
6481 | * is no use of such file. There is no harm in retaining it, but it |
6482 | * is better to get rid of the map file so that we don't have any |
6483 | * redundant file in data directory and it will avoid any sort of |
6484 | * confusion. It seems prudent though to just rename the file out of |
6485 | * the way rather than delete it completely, also we ignore any error |
6486 | * that occurs in rename operation as even if map file is present |
6487 | * without backup_label file, it is harmless. |
6488 | */ |
6489 | if (stat(TABLESPACE_MAP, &st) == 0) |
6490 | { |
6491 | unlink(TABLESPACE_MAP_OLD); |
6492 | if (durable_rename(TABLESPACE_MAP, TABLESPACE_MAP_OLD, DEBUG1) == 0) |
6493 | ereport(LOG, |
6494 | (errmsg("ignoring file \"%s\" because no file \"%s\" exists" , |
6495 | TABLESPACE_MAP, BACKUP_LABEL_FILE), |
6496 | errdetail("File \"%s\" was renamed to \"%s\"." , |
6497 | TABLESPACE_MAP, TABLESPACE_MAP_OLD))); |
6498 | else |
6499 | ereport(LOG, |
6500 | (errmsg("ignoring file \"%s\" because no file \"%s\" exists" , |
6501 | TABLESPACE_MAP, BACKUP_LABEL_FILE), |
6502 | errdetail("Could not rename file \"%s\" to \"%s\": %m." , |
6503 | TABLESPACE_MAP, TABLESPACE_MAP_OLD))); |
6504 | } |
6505 | |
6506 | /* |
6507 | * It's possible that archive recovery was requested, but we don't |
6508 | * know how far we need to replay the WAL before we reach consistency. |
6509 | * This can happen for example if a base backup is taken from a |
6510 | * running server using an atomic filesystem snapshot, without calling |
6511 | * pg_start/stop_backup. Or if you just kill a running master server |
6512 | * and put it into archive recovery by creating a recovery signal |
6513 | * file. |
6514 | * |
6515 | * Our strategy in that case is to perform crash recovery first, |
6516 | * replaying all the WAL present in pg_wal, and only enter archive |
6517 | * recovery after that. |
6518 | * |
6519 | * But usually we already know how far we need to replay the WAL (up |
6520 | * to minRecoveryPoint, up to backupEndPoint, or until we see an |
6521 | * end-of-backup record), and we can enter archive recovery directly. |
6522 | */ |
6523 | if (ArchiveRecoveryRequested && |
6524 | (ControlFile->minRecoveryPoint != InvalidXLogRecPtr || |
6525 | ControlFile->backupEndRequired || |
6526 | ControlFile->backupEndPoint != InvalidXLogRecPtr || |
6527 | ControlFile->state == DB_SHUTDOWNED)) |
6528 | { |
6529 | InArchiveRecovery = true; |
6530 | if (StandbyModeRequested) |
6531 | StandbyMode = true; |
6532 | } |
6533 | |
6534 | /* Get the last valid checkpoint record. */ |
6535 | checkPointLoc = ControlFile->checkPoint; |
6536 | RedoStartLSN = ControlFile->checkPointCopy.redo; |
6537 | record = ReadCheckpointRecord(xlogreader, checkPointLoc, 1, true); |
6538 | if (record != NULL) |
6539 | { |
6540 | ereport(DEBUG1, |
6541 | (errmsg("checkpoint record is at %X/%X" , |
6542 | (uint32) (checkPointLoc >> 32), (uint32) checkPointLoc))); |
6543 | } |
6544 | else |
6545 | { |
6546 | /* |
6547 | * We used to attempt to go back to a secondary checkpoint record |
6548 | * here, but only when not in standby mode. We now just fail if we |
6549 | * can't read the last checkpoint because this allows us to |
6550 | * simplify processing around checkpoints. |
6551 | */ |
6552 | ereport(PANIC, |
6553 | (errmsg("could not locate a valid checkpoint record" ))); |
6554 | } |
6555 | memcpy(&checkPoint, XLogRecGetData(xlogreader), sizeof(CheckPoint)); |
6556 | wasShutdown = ((record->xl_info & ~XLR_INFO_MASK) == XLOG_CHECKPOINT_SHUTDOWN); |
6557 | } |
6558 | |
6559 | /* |
6560 | * Clear out any old relcache cache files. This is *necessary* if we do |
6561 | * any WAL replay, since that would probably result in the cache files |
6562 | * being out of sync with database reality. In theory we could leave them |
6563 | * in place if the database had been cleanly shut down, but it seems |
6564 | * safest to just remove them always and let them be rebuilt during the |
6565 | * first backend startup. These files needs to be removed from all |
6566 | * directories including pg_tblspc, however the symlinks are created only |
6567 | * after reading tablespace_map file in case of archive recovery from |
6568 | * backup, so needs to clear old relcache files here after creating |
6569 | * symlinks. |
6570 | */ |
6571 | RelationCacheInitFileRemove(); |
6572 | |
6573 | /* |
6574 | * If the location of the checkpoint record is not on the expected |
6575 | * timeline in the history of the requested timeline, we cannot proceed: |
6576 | * the backup is not part of the history of the requested timeline. |
6577 | */ |
6578 | Assert(expectedTLEs); /* was initialized by reading checkpoint |
6579 | * record */ |
6580 | if (tliOfPointInHistory(checkPointLoc, expectedTLEs) != |
6581 | checkPoint.ThisTimeLineID) |
6582 | { |
6583 | XLogRecPtr switchpoint; |
6584 | |
6585 | /* |
6586 | * tliSwitchPoint will throw an error if the checkpoint's timeline is |
6587 | * not in expectedTLEs at all. |
6588 | */ |
6589 | switchpoint = tliSwitchPoint(ControlFile->checkPointCopy.ThisTimeLineID, expectedTLEs, NULL); |
6590 | ereport(FATAL, |
6591 | (errmsg("requested timeline %u is not a child of this server's history" , |
6592 | recoveryTargetTLI), |
6593 | errdetail("Latest checkpoint is at %X/%X on timeline %u, but in the history of the requested timeline, the server forked off from that timeline at %X/%X." , |
6594 | (uint32) (ControlFile->checkPoint >> 32), |
6595 | (uint32) ControlFile->checkPoint, |
6596 | ControlFile->checkPointCopy.ThisTimeLineID, |
6597 | (uint32) (switchpoint >> 32), |
6598 | (uint32) switchpoint))); |
6599 | } |
6600 | |
6601 | /* |
6602 | * The min recovery point should be part of the requested timeline's |
6603 | * history, too. |
6604 | */ |
6605 | if (!XLogRecPtrIsInvalid(ControlFile->minRecoveryPoint) && |
6606 | tliOfPointInHistory(ControlFile->minRecoveryPoint - 1, expectedTLEs) != |
6607 | ControlFile->minRecoveryPointTLI) |
6608 | ereport(FATAL, |
6609 | (errmsg("requested timeline %u does not contain minimum recovery point %X/%X on timeline %u" , |
6610 | recoveryTargetTLI, |
6611 | (uint32) (ControlFile->minRecoveryPoint >> 32), |
6612 | (uint32) ControlFile->minRecoveryPoint, |
6613 | ControlFile->minRecoveryPointTLI))); |
6614 | |
6615 | LastRec = RecPtr = checkPointLoc; |
6616 | |
6617 | ereport(DEBUG1, |
6618 | (errmsg_internal("redo record is at %X/%X; shutdown %s" , |
6619 | (uint32) (checkPoint.redo >> 32), (uint32) checkPoint.redo, |
6620 | wasShutdown ? "true" : "false" ))); |
6621 | ereport(DEBUG1, |
6622 | (errmsg_internal("next transaction ID: " UINT64_FORMAT "; next OID: %u" , |
6623 | U64FromFullTransactionId(checkPoint.nextFullXid), |
6624 | checkPoint.nextOid))); |
6625 | ereport(DEBUG1, |
6626 | (errmsg_internal("next MultiXactId: %u; next MultiXactOffset: %u" , |
6627 | checkPoint.nextMulti, checkPoint.nextMultiOffset))); |
6628 | ereport(DEBUG1, |
6629 | (errmsg_internal("oldest unfrozen transaction ID: %u, in database %u" , |
6630 | checkPoint.oldestXid, checkPoint.oldestXidDB))); |
6631 | ereport(DEBUG1, |
6632 | (errmsg_internal("oldest MultiXactId: %u, in database %u" , |
6633 | checkPoint.oldestMulti, checkPoint.oldestMultiDB))); |
6634 | ereport(DEBUG1, |
6635 | (errmsg_internal("commit timestamp Xid oldest/newest: %u/%u" , |
6636 | checkPoint.oldestCommitTsXid, |
6637 | checkPoint.newestCommitTsXid))); |
6638 | if (!TransactionIdIsNormal(XidFromFullTransactionId(checkPoint.nextFullXid))) |
6639 | ereport(PANIC, |
6640 | (errmsg("invalid next transaction ID" ))); |
6641 | |
6642 | /* initialize shared memory variables from the checkpoint record */ |
6643 | ShmemVariableCache->nextFullXid = checkPoint.nextFullXid; |
6644 | ShmemVariableCache->nextOid = checkPoint.nextOid; |
6645 | ShmemVariableCache->oidCount = 0; |
6646 | MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset); |
6647 | AdvanceOldestClogXid(checkPoint.oldestXid); |
6648 | SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB); |
6649 | SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true); |
6650 | SetCommitTsLimit(checkPoint.oldestCommitTsXid, |
6651 | checkPoint.newestCommitTsXid); |
6652 | XLogCtl->ckptFullXid = checkPoint.nextFullXid; |
6653 | |
6654 | /* |
6655 | * Initialize replication slots, before there's a chance to remove |
6656 | * required resources. |
6657 | */ |
6658 | StartupReplicationSlots(); |
6659 | |
6660 | /* |
6661 | * Startup logical state, needs to be setup now so we have proper data |
6662 | * during crash recovery. |
6663 | */ |
6664 | StartupReorderBuffer(); |
6665 | |
6666 | /* |
6667 | * Startup MultiXact. We need to do this early to be able to replay |
6668 | * truncations. |
6669 | */ |
6670 | StartupMultiXact(); |
6671 | |
6672 | /* |
6673 | * Ditto for commit timestamps. Activate the facility if the setting is |
6674 | * enabled in the control file, as there should be no tracking of commit |
6675 | * timestamps done when the setting was disabled. This facility can be |
6676 | * started or stopped when replaying a XLOG_PARAMETER_CHANGE record. |
6677 | */ |
6678 | if (ControlFile->track_commit_timestamp) |
6679 | StartupCommitTs(); |
6680 | |
6681 | /* |
6682 | * Recover knowledge about replay progress of known replication partners. |
6683 | */ |
6684 | StartupReplicationOrigin(); |
6685 | |
6686 | /* |
6687 | * Initialize unlogged LSN. On a clean shutdown, it's restored from the |
6688 | * control file. On recovery, all unlogged relations are blown away, so |
6689 | * the unlogged LSN counter can be reset too. |
6690 | */ |
6691 | if (ControlFile->state == DB_SHUTDOWNED) |
6692 | XLogCtl->unloggedLSN = ControlFile->unloggedLSN; |
6693 | else |
6694 | XLogCtl->unloggedLSN = 1; |
6695 | |
6696 | /* |
6697 | * We must replay WAL entries using the same TimeLineID they were created |
6698 | * under, so temporarily adopt the TLI indicated by the checkpoint (see |
6699 | * also xlog_redo()). |
6700 | */ |
6701 | ThisTimeLineID = checkPoint.ThisTimeLineID; |
6702 | |
6703 | /* |
6704 | * Copy any missing timeline history files between 'now' and the recovery |
6705 | * target timeline from archive to pg_wal. While we don't need those files |
6706 | * ourselves - the history file of the recovery target timeline covers all |
6707 | * the previous timelines in the history too - a cascading standby server |
6708 | * might be interested in them. Or, if you archive the WAL from this |
6709 | * server to a different archive than the master, it'd be good for all the |
6710 | * history files to get archived there after failover, so that you can use |
6711 | * one of the old timelines as a PITR target. Timeline history files are |
6712 | * small, so it's better to copy them unnecessarily than not copy them and |
6713 | * regret later. |
6714 | */ |
6715 | restoreTimeLineHistoryFiles(ThisTimeLineID, recoveryTargetTLI); |
6716 | |
6717 | /* |
6718 | * Before running in recovery, scan pg_twophase and fill in its status to |
6719 | * be able to work on entries generated by redo. Doing a scan before |
6720 | * taking any recovery action has the merit to discard any 2PC files that |
6721 | * are newer than the first record to replay, saving from any conflicts at |
6722 | * replay. This avoids as well any subsequent scans when doing recovery |
6723 | * of the on-disk two-phase data. |
6724 | */ |
6725 | restoreTwoPhaseData(); |
6726 | |
6727 | lastFullPageWrites = checkPoint.fullPageWrites; |
6728 | |
6729 | RedoRecPtr = XLogCtl->RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo; |
6730 | doPageWrites = lastFullPageWrites; |
6731 | |
6732 | if (RecPtr < checkPoint.redo) |
6733 | ereport(PANIC, |
6734 | (errmsg("invalid redo in checkpoint record" ))); |
6735 | |
6736 | /* |
6737 | * Check whether we need to force recovery from WAL. If it appears to |
6738 | * have been a clean shutdown and we did not have a recovery signal file, |
6739 | * then assume no recovery needed. |
6740 | */ |
6741 | if (checkPoint.redo < RecPtr) |
6742 | { |
6743 | if (wasShutdown) |
6744 | ereport(PANIC, |
6745 | (errmsg("invalid redo record in shutdown checkpoint" ))); |
6746 | InRecovery = true; |
6747 | } |
6748 | else if (ControlFile->state != DB_SHUTDOWNED) |
6749 | InRecovery = true; |
6750 | else if (ArchiveRecoveryRequested) |
6751 | { |
6752 | /* force recovery due to presence of recovery signal file */ |
6753 | InRecovery = true; |
6754 | } |
6755 | |
6756 | /* REDO */ |
6757 | if (InRecovery) |
6758 | { |
6759 | int rmid; |
6760 | |
6761 | /* |
6762 | * Update pg_control to show that we are recovering and to show the |
6763 | * selected checkpoint as the place we are starting from. We also mark |
6764 | * pg_control with any minimum recovery stop point obtained from a |
6765 | * backup history file. |
6766 | */ |
6767 | dbstate_at_startup = ControlFile->state; |
6768 | if (InArchiveRecovery) |
6769 | ControlFile->state = DB_IN_ARCHIVE_RECOVERY; |
6770 | else |
6771 | { |
6772 | ereport(LOG, |
6773 | (errmsg("database system was not properly shut down; " |
6774 | "automatic recovery in progress" ))); |
6775 | if (recoveryTargetTLI > ControlFile->checkPointCopy.ThisTimeLineID) |
6776 | ereport(LOG, |
6777 | (errmsg("crash recovery starts in timeline %u " |
6778 | "and has target timeline %u" , |
6779 | ControlFile->checkPointCopy.ThisTimeLineID, |
6780 | recoveryTargetTLI))); |
6781 | ControlFile->state = DB_IN_CRASH_RECOVERY; |
6782 | } |
6783 | ControlFile->checkPoint = checkPointLoc; |
6784 | ControlFile->checkPointCopy = checkPoint; |
6785 | if (InArchiveRecovery) |
6786 | { |
6787 | /* initialize minRecoveryPoint if not set yet */ |
6788 | if (ControlFile->minRecoveryPoint < checkPoint.redo) |
6789 | { |
6790 | ControlFile->minRecoveryPoint = checkPoint.redo; |
6791 | ControlFile->minRecoveryPointTLI = checkPoint.ThisTimeLineID; |
6792 | } |
6793 | } |
6794 | |
6795 | /* |
6796 | * Set backupStartPoint if we're starting recovery from a base backup. |
6797 | * |
6798 | * Also set backupEndPoint and use minRecoveryPoint as the backup end |
6799 | * location if we're starting recovery from a base backup which was |
6800 | * taken from a standby. In this case, the database system status in |
6801 | * pg_control must indicate that the database was already in recovery. |
6802 | * Usually that will be DB_IN_ARCHIVE_RECOVERY but also can be |
6803 | * DB_SHUTDOWNED_IN_RECOVERY if recovery previously was interrupted |
6804 | * before reaching this point; e.g. because restore_command or |
6805 | * primary_conninfo were faulty. |
6806 | * |
6807 | * Any other state indicates that the backup somehow became corrupted |
6808 | * and we can't sensibly continue with recovery. |
6809 | */ |
6810 | if (haveBackupLabel) |
6811 | { |
6812 | ControlFile->backupStartPoint = checkPoint.redo; |
6813 | ControlFile->backupEndRequired = backupEndRequired; |
6814 | |
6815 | if (backupFromStandby) |
6816 | { |
6817 | if (dbstate_at_startup != DB_IN_ARCHIVE_RECOVERY && |
6818 | dbstate_at_startup != DB_SHUTDOWNED_IN_RECOVERY) |
6819 | ereport(FATAL, |
6820 | (errmsg("backup_label contains data inconsistent with control file" ), |
6821 | errhint("This means that the backup is corrupted and you will " |
6822 | "have to use another backup for recovery." ))); |
6823 | ControlFile->backupEndPoint = ControlFile->minRecoveryPoint; |
6824 | } |
6825 | } |
6826 | ControlFile->time = (pg_time_t) time(NULL); |
6827 | /* No need to hold ControlFileLock yet, we aren't up far enough */ |
6828 | UpdateControlFile(); |
6829 | |
6830 | /* |
6831 | * Initialize our local copy of minRecoveryPoint. When doing crash |
6832 | * recovery we want to replay up to the end of WAL. Particularly, in |
6833 | * the case of a promoted standby minRecoveryPoint value in the |
6834 | * control file is only updated after the first checkpoint. However, |
6835 | * if the instance crashes before the first post-recovery checkpoint |
6836 | * is completed then recovery will use a stale location causing the |
6837 | * startup process to think that there are still invalid page |
6838 | * references when checking for data consistency. |
6839 | */ |
6840 | if (InArchiveRecovery) |
6841 | { |
6842 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
6843 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
6844 | } |
6845 | else |
6846 | { |
6847 | minRecoveryPoint = InvalidXLogRecPtr; |
6848 | minRecoveryPointTLI = 0; |
6849 | } |
6850 | |
6851 | /* |
6852 | * Reset pgstat data, because it may be invalid after recovery. |
6853 | */ |
6854 | pgstat_reset_all(); |
6855 | |
6856 | /* |
6857 | * If there was a backup label file, it's done its job and the info |
6858 | * has now been propagated into pg_control. We must get rid of the |
6859 | * label file so that if we crash during recovery, we'll pick up at |
6860 | * the latest recovery restartpoint instead of going all the way back |
6861 | * to the backup start point. It seems prudent though to just rename |
6862 | * the file out of the way rather than delete it completely. |
6863 | */ |
6864 | if (haveBackupLabel) |
6865 | { |
6866 | unlink(BACKUP_LABEL_OLD); |
6867 | durable_rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD, FATAL); |
6868 | } |
6869 | |
6870 | /* |
6871 | * If there was a tablespace_map file, it's done its job and the |
6872 | * symlinks have been created. We must get rid of the map file so |
6873 | * that if we crash during recovery, we don't create symlinks again. |
6874 | * It seems prudent though to just rename the file out of the way |
6875 | * rather than delete it completely. |
6876 | */ |
6877 | if (haveTblspcMap) |
6878 | { |
6879 | unlink(TABLESPACE_MAP_OLD); |
6880 | durable_rename(TABLESPACE_MAP, TABLESPACE_MAP_OLD, FATAL); |
6881 | } |
6882 | |
6883 | /* Check that the GUCs used to generate the WAL allow recovery */ |
6884 | CheckRequiredParameterValues(); |
6885 | |
6886 | /* |
6887 | * We're in recovery, so unlogged relations may be trashed and must be |
6888 | * reset. This should be done BEFORE allowing Hot Standby |
6889 | * connections, so that read-only backends don't try to read whatever |
6890 | * garbage is left over from before. |
6891 | */ |
6892 | ResetUnloggedRelations(UNLOGGED_RELATION_CLEANUP); |
6893 | |
6894 | /* |
6895 | * Likewise, delete any saved transaction snapshot files that got left |
6896 | * behind by crashed backends. |
6897 | */ |
6898 | DeleteAllExportedSnapshotFiles(); |
6899 | |
6900 | /* |
6901 | * Initialize for Hot Standby, if enabled. We won't let backends in |
6902 | * yet, not until we've reached the min recovery point specified in |
6903 | * control file and we've established a recovery snapshot from a |
6904 | * running-xacts WAL record. |
6905 | */ |
6906 | if (ArchiveRecoveryRequested && EnableHotStandby) |
6907 | { |
6908 | TransactionId *xids; |
6909 | int nxids; |
6910 | |
6911 | ereport(DEBUG1, |
6912 | (errmsg("initializing for hot standby" ))); |
6913 | |
6914 | InitRecoveryTransactionEnvironment(); |
6915 | |
6916 | if (wasShutdown) |
6917 | oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids); |
6918 | else |
6919 | oldestActiveXID = checkPoint.oldestActiveXid; |
6920 | Assert(TransactionIdIsValid(oldestActiveXID)); |
6921 | |
6922 | /* Tell procarray about the range of xids it has to deal with */ |
6923 | ProcArrayInitRecovery(XidFromFullTransactionId(ShmemVariableCache->nextFullXid)); |
6924 | |
6925 | /* |
6926 | * Startup commit log and subtrans only. MultiXact and commit |
6927 | * timestamp have already been started up and other SLRUs are not |
6928 | * maintained during recovery and need not be started yet. |
6929 | */ |
6930 | StartupCLOG(); |
6931 | StartupSUBTRANS(oldestActiveXID); |
6932 | |
6933 | /* |
6934 | * If we're beginning at a shutdown checkpoint, we know that |
6935 | * nothing was running on the master at this point. So fake-up an |
6936 | * empty running-xacts record and use that here and now. Recover |
6937 | * additional standby state for prepared transactions. |
6938 | */ |
6939 | if (wasShutdown) |
6940 | { |
6941 | RunningTransactionsData running; |
6942 | TransactionId latestCompletedXid; |
6943 | |
6944 | /* |
6945 | * Construct a RunningTransactions snapshot representing a |
6946 | * shut down server, with only prepared transactions still |
6947 | * alive. We're never overflowed at this point because all |
6948 | * subxids are listed with their parent prepared transactions. |
6949 | */ |
6950 | running.xcnt = nxids; |
6951 | running.subxcnt = 0; |
6952 | running.subxid_overflow = false; |
6953 | running.nextXid = XidFromFullTransactionId(checkPoint.nextFullXid); |
6954 | running.oldestRunningXid = oldestActiveXID; |
6955 | latestCompletedXid = XidFromFullTransactionId(checkPoint.nextFullXid); |
6956 | TransactionIdRetreat(latestCompletedXid); |
6957 | Assert(TransactionIdIsNormal(latestCompletedXid)); |
6958 | running.latestCompletedXid = latestCompletedXid; |
6959 | running.xids = xids; |
6960 | |
6961 | ProcArrayApplyRecoveryInfo(&running); |
6962 | |
6963 | StandbyRecoverPreparedTransactions(); |
6964 | } |
6965 | } |
6966 | |
6967 | /* Initialize resource managers */ |
6968 | for (rmid = 0; rmid <= RM_MAX_ID; rmid++) |
6969 | { |
6970 | if (RmgrTable[rmid].rm_startup != NULL) |
6971 | RmgrTable[rmid].rm_startup(); |
6972 | } |
6973 | |
6974 | /* |
6975 | * Initialize shared variables for tracking progress of WAL replay, as |
6976 | * if we had just replayed the record before the REDO location (or the |
6977 | * checkpoint record itself, if it's a shutdown checkpoint). |
6978 | */ |
6979 | SpinLockAcquire(&XLogCtl->info_lck); |
6980 | if (checkPoint.redo < RecPtr) |
6981 | XLogCtl->replayEndRecPtr = checkPoint.redo; |
6982 | else |
6983 | XLogCtl->replayEndRecPtr = EndRecPtr; |
6984 | XLogCtl->replayEndTLI = ThisTimeLineID; |
6985 | XLogCtl->lastReplayedEndRecPtr = XLogCtl->replayEndRecPtr; |
6986 | XLogCtl->lastReplayedTLI = XLogCtl->replayEndTLI; |
6987 | XLogCtl->recoveryLastXTime = 0; |
6988 | XLogCtl->currentChunkStartTime = 0; |
6989 | XLogCtl->recoveryPause = false; |
6990 | SpinLockRelease(&XLogCtl->info_lck); |
6991 | |
6992 | /* Also ensure XLogReceiptTime has a sane value */ |
6993 | XLogReceiptTime = GetCurrentTimestamp(); |
6994 | |
6995 | /* |
6996 | * Let postmaster know we've started redo now, so that it can launch |
6997 | * checkpointer to perform restartpoints. We don't bother during |
6998 | * crash recovery as restartpoints can only be performed during |
6999 | * archive recovery. And we'd like to keep crash recovery simple, to |
7000 | * avoid introducing bugs that could affect you when recovering after |
7001 | * crash. |
7002 | * |
7003 | * After this point, we can no longer assume that we're the only |
7004 | * process in addition to postmaster! Also, fsync requests are |
7005 | * subsequently to be handled by the checkpointer, not locally. |
7006 | */ |
7007 | if (ArchiveRecoveryRequested && IsUnderPostmaster) |
7008 | { |
7009 | PublishStartupProcessInformation(); |
7010 | EnableSyncRequestForwarding(); |
7011 | SendPostmasterSignal(PMSIGNAL_RECOVERY_STARTED); |
7012 | bgwriterLaunched = true; |
7013 | } |
7014 | |
7015 | /* |
7016 | * Allow read-only connections immediately if we're consistent |
7017 | * already. |
7018 | */ |
7019 | CheckRecoveryConsistency(); |
7020 | |
7021 | /* |
7022 | * Find the first record that logically follows the checkpoint --- it |
7023 | * might physically precede it, though. |
7024 | */ |
7025 | if (checkPoint.redo < RecPtr) |
7026 | { |
7027 | /* back up to find the record */ |
7028 | record = ReadRecord(xlogreader, checkPoint.redo, PANIC, false); |
7029 | } |
7030 | else |
7031 | { |
7032 | /* just have to read next record after CheckPoint */ |
7033 | record = ReadRecord(xlogreader, InvalidXLogRecPtr, LOG, false); |
7034 | } |
7035 | |
7036 | if (record != NULL) |
7037 | { |
7038 | ErrorContextCallback errcallback; |
7039 | TimestampTz xtime; |
7040 | |
7041 | InRedo = true; |
7042 | |
7043 | ereport(LOG, |
7044 | (errmsg("redo starts at %X/%X" , |
7045 | (uint32) (ReadRecPtr >> 32), (uint32) ReadRecPtr))); |
7046 | |
7047 | /* |
7048 | * main redo apply loop |
7049 | */ |
7050 | do |
7051 | { |
7052 | bool switchedTLI = false; |
7053 | |
7054 | #ifdef WAL_DEBUG |
7055 | if (XLOG_DEBUG || |
7056 | (rmid == RM_XACT_ID && trace_recovery_messages <= DEBUG2) || |
7057 | (rmid != RM_XACT_ID && trace_recovery_messages <= DEBUG3)) |
7058 | { |
7059 | StringInfoData buf; |
7060 | |
7061 | initStringInfo(&buf); |
7062 | appendStringInfo(&buf, "REDO @ %X/%X; LSN %X/%X: " , |
7063 | (uint32) (ReadRecPtr >> 32), (uint32) ReadRecPtr, |
7064 | (uint32) (EndRecPtr >> 32), (uint32) EndRecPtr); |
7065 | xlog_outrec(&buf, xlogreader); |
7066 | appendStringInfoString(&buf, " - " ); |
7067 | xlog_outdesc(&buf, xlogreader); |
7068 | elog(LOG, "%s" , buf.data); |
7069 | pfree(buf.data); |
7070 | } |
7071 | #endif |
7072 | |
7073 | /* Handle interrupt signals of startup process */ |
7074 | HandleStartupProcInterrupts(); |
7075 | |
7076 | /* |
7077 | * Pause WAL replay, if requested by a hot-standby session via |
7078 | * SetRecoveryPause(). |
7079 | * |
7080 | * Note that we intentionally don't take the info_lck spinlock |
7081 | * here. We might therefore read a slightly stale value of |
7082 | * the recoveryPause flag, but it can't be very stale (no |
7083 | * worse than the last spinlock we did acquire). Since a |
7084 | * pause request is a pretty asynchronous thing anyway, |
7085 | * possibly responding to it one WAL record later than we |
7086 | * otherwise would is a minor issue, so it doesn't seem worth |
7087 | * adding another spinlock cycle to prevent that. |
7088 | */ |
7089 | if (((volatile XLogCtlData *) XLogCtl)->recoveryPause) |
7090 | recoveryPausesHere(); |
7091 | |
7092 | /* |
7093 | * Have we reached our recovery target? |
7094 | */ |
7095 | if (recoveryStopsBefore(xlogreader)) |
7096 | { |
7097 | reachedStopPoint = true; /* see below */ |
7098 | break; |
7099 | } |
7100 | |
7101 | /* |
7102 | * If we've been asked to lag the master, wait on latch until |
7103 | * enough time has passed. |
7104 | */ |
7105 | if (recoveryApplyDelay(xlogreader)) |
7106 | { |
7107 | /* |
7108 | * We test for paused recovery again here. If user sets |
7109 | * delayed apply, it may be because they expect to pause |
7110 | * recovery in case of problems, so we must test again |
7111 | * here otherwise pausing during the delay-wait wouldn't |
7112 | * work. |
7113 | */ |
7114 | if (((volatile XLogCtlData *) XLogCtl)->recoveryPause) |
7115 | recoveryPausesHere(); |
7116 | } |
7117 | |
7118 | /* Setup error traceback support for ereport() */ |
7119 | errcallback.callback = rm_redo_error_callback; |
7120 | errcallback.arg = (void *) xlogreader; |
7121 | errcallback.previous = error_context_stack; |
7122 | error_context_stack = &errcallback; |
7123 | |
7124 | /* |
7125 | * ShmemVariableCache->nextFullXid must be beyond record's |
7126 | * xid. |
7127 | */ |
7128 | AdvanceNextFullTransactionIdPastXid(record->xl_xid); |
7129 | |
7130 | /* |
7131 | * Before replaying this record, check if this record causes |
7132 | * the current timeline to change. The record is already |
7133 | * considered to be part of the new timeline, so we update |
7134 | * ThisTimeLineID before replaying it. That's important so |
7135 | * that replayEndTLI, which is recorded as the minimum |
7136 | * recovery point's TLI if recovery stops after this record, |
7137 | * is set correctly. |
7138 | */ |
7139 | if (record->xl_rmid == RM_XLOG_ID) |
7140 | { |
7141 | TimeLineID newTLI = ThisTimeLineID; |
7142 | TimeLineID prevTLI = ThisTimeLineID; |
7143 | uint8 info = record->xl_info & ~XLR_INFO_MASK; |
7144 | |
7145 | if (info == XLOG_CHECKPOINT_SHUTDOWN) |
7146 | { |
7147 | CheckPoint checkPoint; |
7148 | |
7149 | memcpy(&checkPoint, XLogRecGetData(xlogreader), sizeof(CheckPoint)); |
7150 | newTLI = checkPoint.ThisTimeLineID; |
7151 | prevTLI = checkPoint.PrevTimeLineID; |
7152 | } |
7153 | else if (info == XLOG_END_OF_RECOVERY) |
7154 | { |
7155 | xl_end_of_recovery xlrec; |
7156 | |
7157 | memcpy(&xlrec, XLogRecGetData(xlogreader), sizeof(xl_end_of_recovery)); |
7158 | newTLI = xlrec.ThisTimeLineID; |
7159 | prevTLI = xlrec.PrevTimeLineID; |
7160 | } |
7161 | |
7162 | if (newTLI != ThisTimeLineID) |
7163 | { |
7164 | /* Check that it's OK to switch to this TLI */ |
7165 | checkTimeLineSwitch(EndRecPtr, newTLI, prevTLI); |
7166 | |
7167 | /* Following WAL records should be run with new TLI */ |
7168 | ThisTimeLineID = newTLI; |
7169 | switchedTLI = true; |
7170 | } |
7171 | } |
7172 | |
7173 | /* |
7174 | * Update shared replayEndRecPtr before replaying this record, |
7175 | * so that XLogFlush will update minRecoveryPoint correctly. |
7176 | */ |
7177 | SpinLockAcquire(&XLogCtl->info_lck); |
7178 | XLogCtl->replayEndRecPtr = EndRecPtr; |
7179 | XLogCtl->replayEndTLI = ThisTimeLineID; |
7180 | SpinLockRelease(&XLogCtl->info_lck); |
7181 | |
7182 | /* |
7183 | * If we are attempting to enter Hot Standby mode, process |
7184 | * XIDs we see |
7185 | */ |
7186 | if (standbyState >= STANDBY_INITIALIZED && |
7187 | TransactionIdIsValid(record->xl_xid)) |
7188 | RecordKnownAssignedTransactionIds(record->xl_xid); |
7189 | |
7190 | /* Now apply the WAL record itself */ |
7191 | RmgrTable[record->xl_rmid].rm_redo(xlogreader); |
7192 | |
7193 | /* |
7194 | * After redo, check whether the backup pages associated with |
7195 | * the WAL record are consistent with the existing pages. This |
7196 | * check is done only if consistency check is enabled for this |
7197 | * record. |
7198 | */ |
7199 | if ((record->xl_info & XLR_CHECK_CONSISTENCY) != 0) |
7200 | checkXLogConsistency(xlogreader); |
7201 | |
7202 | /* Pop the error context stack */ |
7203 | error_context_stack = errcallback.previous; |
7204 | |
7205 | /* |
7206 | * Update lastReplayedEndRecPtr after this record has been |
7207 | * successfully replayed. |
7208 | */ |
7209 | SpinLockAcquire(&XLogCtl->info_lck); |
7210 | XLogCtl->lastReplayedEndRecPtr = EndRecPtr; |
7211 | XLogCtl->lastReplayedTLI = ThisTimeLineID; |
7212 | SpinLockRelease(&XLogCtl->info_lck); |
7213 | |
7214 | /* |
7215 | * If rm_redo called XLogRequestWalReceiverReply, then we wake |
7216 | * up the receiver so that it notices the updated |
7217 | * lastReplayedEndRecPtr and sends a reply to the master. |
7218 | */ |
7219 | if (doRequestWalReceiverReply) |
7220 | { |
7221 | doRequestWalReceiverReply = false; |
7222 | WalRcvForceReply(); |
7223 | } |
7224 | |
7225 | /* Remember this record as the last-applied one */ |
7226 | LastRec = ReadRecPtr; |
7227 | |
7228 | /* Allow read-only connections if we're consistent now */ |
7229 | CheckRecoveryConsistency(); |
7230 | |
7231 | /* Is this a timeline switch? */ |
7232 | if (switchedTLI) |
7233 | { |
7234 | /* |
7235 | * Before we continue on the new timeline, clean up any |
7236 | * (possibly bogus) future WAL segments on the old |
7237 | * timeline. |
7238 | */ |
7239 | RemoveNonParentXlogFiles(EndRecPtr, ThisTimeLineID); |
7240 | |
7241 | /* |
7242 | * Wake up any walsenders to notice that we are on a new |
7243 | * timeline. |
7244 | */ |
7245 | if (switchedTLI && AllowCascadeReplication()) |
7246 | WalSndWakeup(); |
7247 | } |
7248 | |
7249 | /* Exit loop if we reached inclusive recovery target */ |
7250 | if (recoveryStopsAfter(xlogreader)) |
7251 | { |
7252 | reachedStopPoint = true; |
7253 | break; |
7254 | } |
7255 | |
7256 | /* Else, try to fetch the next WAL record */ |
7257 | record = ReadRecord(xlogreader, InvalidXLogRecPtr, LOG, false); |
7258 | } while (record != NULL); |
7259 | |
7260 | /* |
7261 | * end of main redo apply loop |
7262 | */ |
7263 | |
7264 | if (reachedStopPoint) |
7265 | { |
7266 | if (!reachedConsistency) |
7267 | ereport(FATAL, |
7268 | (errmsg("requested recovery stop point is before consistent recovery point" ))); |
7269 | |
7270 | /* |
7271 | * This is the last point where we can restart recovery with a |
7272 | * new recovery target, if we shutdown and begin again. After |
7273 | * this, Resource Managers may choose to do permanent |
7274 | * corrective actions at end of recovery. |
7275 | */ |
7276 | switch (recoveryTargetAction) |
7277 | { |
7278 | case RECOVERY_TARGET_ACTION_SHUTDOWN: |
7279 | |
7280 | /* |
7281 | * exit with special return code to request shutdown |
7282 | * of postmaster. Log messages issued from |
7283 | * postmaster. |
7284 | */ |
7285 | proc_exit(3); |
7286 | |
7287 | case RECOVERY_TARGET_ACTION_PAUSE: |
7288 | SetRecoveryPause(true); |
7289 | recoveryPausesHere(); |
7290 | |
7291 | /* drop into promote */ |
7292 | |
7293 | case RECOVERY_TARGET_ACTION_PROMOTE: |
7294 | break; |
7295 | } |
7296 | } |
7297 | |
7298 | /* Allow resource managers to do any required cleanup. */ |
7299 | for (rmid = 0; rmid <= RM_MAX_ID; rmid++) |
7300 | { |
7301 | if (RmgrTable[rmid].rm_cleanup != NULL) |
7302 | RmgrTable[rmid].rm_cleanup(); |
7303 | } |
7304 | |
7305 | ereport(LOG, |
7306 | (errmsg("redo done at %X/%X" , |
7307 | (uint32) (ReadRecPtr >> 32), (uint32) ReadRecPtr))); |
7308 | xtime = GetLatestXTime(); |
7309 | if (xtime) |
7310 | ereport(LOG, |
7311 | (errmsg("last completed transaction was at log time %s" , |
7312 | timestamptz_to_str(xtime)))); |
7313 | |
7314 | InRedo = false; |
7315 | } |
7316 | else |
7317 | { |
7318 | /* there are no WAL records following the checkpoint */ |
7319 | ereport(LOG, |
7320 | (errmsg("redo is not required" ))); |
7321 | } |
7322 | } |
7323 | |
7324 | /* |
7325 | * Kill WAL receiver, if it's still running, before we continue to write |
7326 | * the startup checkpoint record. It will trump over the checkpoint and |
7327 | * subsequent records if it's still alive when we start writing WAL. |
7328 | */ |
7329 | ShutdownWalRcv(); |
7330 | |
7331 | /* |
7332 | * Reset unlogged relations to the contents of their INIT fork. This is |
7333 | * done AFTER recovery is complete so as to include any unlogged relations |
7334 | * created during recovery, but BEFORE recovery is marked as having |
7335 | * completed successfully. Otherwise we'd not retry if any of the post |
7336 | * end-of-recovery steps fail. |
7337 | */ |
7338 | if (InRecovery) |
7339 | ResetUnloggedRelations(UNLOGGED_RELATION_INIT); |
7340 | |
7341 | /* |
7342 | * We don't need the latch anymore. It's not strictly necessary to disown |
7343 | * it, but let's do it for the sake of tidiness. |
7344 | */ |
7345 | if (StandbyModeRequested) |
7346 | DisownLatch(&XLogCtl->recoveryWakeupLatch); |
7347 | |
7348 | /* |
7349 | * We are now done reading the xlog from stream. Turn off streaming |
7350 | * recovery to force fetching the files (which would be required at end of |
7351 | * recovery, e.g., timeline history file) from archive or pg_wal. |
7352 | */ |
7353 | StandbyMode = false; |
7354 | |
7355 | /* |
7356 | * Re-fetch the last valid or last applied record, so we can identify the |
7357 | * exact endpoint of what we consider the valid portion of WAL. |
7358 | */ |
7359 | record = ReadRecord(xlogreader, LastRec, PANIC, false); |
7360 | EndOfLog = EndRecPtr; |
7361 | |
7362 | /* |
7363 | * EndOfLogTLI is the TLI in the filename of the XLOG segment containing |
7364 | * the end-of-log. It could be different from the timeline that EndOfLog |
7365 | * nominally belongs to, if there was a timeline switch in that segment, |
7366 | * and we were reading the old WAL from a segment belonging to a higher |
7367 | * timeline. |
7368 | */ |
7369 | EndOfLogTLI = xlogreader->readPageTLI; |
7370 | |
7371 | /* |
7372 | * Complain if we did not roll forward far enough to render the backup |
7373 | * dump consistent. Note: it is indeed okay to look at the local variable |
7374 | * minRecoveryPoint here, even though ControlFile->minRecoveryPoint might |
7375 | * be further ahead --- ControlFile->minRecoveryPoint cannot have been |
7376 | * advanced beyond the WAL we processed. |
7377 | */ |
7378 | if (InRecovery && |
7379 | (EndOfLog < minRecoveryPoint || |
7380 | !XLogRecPtrIsInvalid(ControlFile->backupStartPoint))) |
7381 | { |
7382 | /* |
7383 | * Ran off end of WAL before reaching end-of-backup WAL record, or |
7384 | * minRecoveryPoint. That's usually a bad sign, indicating that you |
7385 | * tried to recover from an online backup but never called |
7386 | * pg_stop_backup(), or you didn't archive all the WAL up to that |
7387 | * point. However, this also happens in crash recovery, if the system |
7388 | * crashes while an online backup is in progress. We must not treat |
7389 | * that as an error, or the database will refuse to start up. |
7390 | */ |
7391 | if (ArchiveRecoveryRequested || ControlFile->backupEndRequired) |
7392 | { |
7393 | if (ControlFile->backupEndRequired) |
7394 | ereport(FATAL, |
7395 | (errmsg("WAL ends before end of online backup" ), |
7396 | errhint("All WAL generated while online backup was taken must be available at recovery." ))); |
7397 | else if (!XLogRecPtrIsInvalid(ControlFile->backupStartPoint)) |
7398 | ereport(FATAL, |
7399 | (errmsg("WAL ends before end of online backup" ), |
7400 | errhint("Online backup started with pg_start_backup() must be ended with pg_stop_backup(), and all WAL up to that point must be available at recovery." ))); |
7401 | else |
7402 | ereport(FATAL, |
7403 | (errmsg("WAL ends before consistent recovery point" ))); |
7404 | } |
7405 | } |
7406 | |
7407 | /* |
7408 | * Pre-scan prepared transactions to find out the range of XIDs present. |
7409 | * This information is not quite needed yet, but it is positioned here so |
7410 | * as potential problems are detected before any on-disk change is done. |
7411 | */ |
7412 | oldestActiveXID = PrescanPreparedTransactions(NULL, NULL); |
7413 | |
7414 | /* |
7415 | * Consider whether we need to assign a new timeline ID. |
7416 | * |
7417 | * If we are doing an archive recovery, we always assign a new ID. This |
7418 | * handles a couple of issues. If we stopped short of the end of WAL |
7419 | * during recovery, then we are clearly generating a new timeline and must |
7420 | * assign it a unique new ID. Even if we ran to the end, modifying the |
7421 | * current last segment is problematic because it may result in trying to |
7422 | * overwrite an already-archived copy of that segment, and we encourage |
7423 | * DBAs to make their archive_commands reject that. We can dodge the |
7424 | * problem by making the new active segment have a new timeline ID. |
7425 | * |
7426 | * In a normal crash recovery, we can just extend the timeline we were in. |
7427 | */ |
7428 | PrevTimeLineID = ThisTimeLineID; |
7429 | if (ArchiveRecoveryRequested) |
7430 | { |
7431 | char reason[200]; |
7432 | |
7433 | Assert(InArchiveRecovery); |
7434 | |
7435 | ThisTimeLineID = findNewestTimeLine(recoveryTargetTLI) + 1; |
7436 | ereport(LOG, |
7437 | (errmsg("selected new timeline ID: %u" , ThisTimeLineID))); |
7438 | |
7439 | /* |
7440 | * Create a comment for the history file to explain why and where |
7441 | * timeline changed. |
7442 | */ |
7443 | if (recoveryTarget == RECOVERY_TARGET_XID) |
7444 | snprintf(reason, sizeof(reason), |
7445 | "%s transaction %u" , |
7446 | recoveryStopAfter ? "after" : "before" , |
7447 | recoveryStopXid); |
7448 | else if (recoveryTarget == RECOVERY_TARGET_TIME) |
7449 | snprintf(reason, sizeof(reason), |
7450 | "%s %s\n" , |
7451 | recoveryStopAfter ? "after" : "before" , |
7452 | timestamptz_to_str(recoveryStopTime)); |
7453 | else if (recoveryTarget == RECOVERY_TARGET_LSN) |
7454 | snprintf(reason, sizeof(reason), |
7455 | "%s LSN %X/%X\n" , |
7456 | recoveryStopAfter ? "after" : "before" , |
7457 | (uint32) (recoveryStopLSN >> 32), |
7458 | (uint32) recoveryStopLSN); |
7459 | else if (recoveryTarget == RECOVERY_TARGET_NAME) |
7460 | snprintf(reason, sizeof(reason), |
7461 | "at restore point \"%s\"" , |
7462 | recoveryStopName); |
7463 | else if (recoveryTarget == RECOVERY_TARGET_IMMEDIATE) |
7464 | snprintf(reason, sizeof(reason), "reached consistency" ); |
7465 | else |
7466 | snprintf(reason, sizeof(reason), "no recovery target specified" ); |
7467 | |
7468 | /* |
7469 | * We are now done reading the old WAL. Turn off archive fetching if |
7470 | * it was active, and make a writable copy of the last WAL segment. |
7471 | * (Note that we also have a copy of the last block of the old WAL in |
7472 | * readBuf; we will use that below.) |
7473 | */ |
7474 | exitArchiveRecovery(EndOfLogTLI, EndOfLog); |
7475 | |
7476 | /* |
7477 | * Write the timeline history file, and have it archived. After this |
7478 | * point (or rather, as soon as the file is archived), the timeline |
7479 | * will appear as "taken" in the WAL archive and to any standby |
7480 | * servers. If we crash before actually switching to the new |
7481 | * timeline, standby servers will nevertheless think that we switched |
7482 | * to the new timeline, and will try to connect to the new timeline. |
7483 | * To minimize the window for that, try to do as little as possible |
7484 | * between here and writing the end-of-recovery record. |
7485 | */ |
7486 | writeTimeLineHistory(ThisTimeLineID, recoveryTargetTLI, |
7487 | EndRecPtr, reason); |
7488 | } |
7489 | |
7490 | /* Save the selected TimeLineID in shared memory, too */ |
7491 | XLogCtl->ThisTimeLineID = ThisTimeLineID; |
7492 | XLogCtl->PrevTimeLineID = PrevTimeLineID; |
7493 | |
7494 | /* |
7495 | * Prepare to write WAL starting at EndOfLog location, and init xlog |
7496 | * buffer cache using the block containing the last record from the |
7497 | * previous incarnation. |
7498 | */ |
7499 | Insert = &XLogCtl->Insert; |
7500 | Insert->PrevBytePos = XLogRecPtrToBytePos(LastRec); |
7501 | Insert->CurrBytePos = XLogRecPtrToBytePos(EndOfLog); |
7502 | |
7503 | /* |
7504 | * Tricky point here: readBuf contains the *last* block that the LastRec |
7505 | * record spans, not the one it starts in. The last block is indeed the |
7506 | * one we want to use. |
7507 | */ |
7508 | if (EndOfLog % XLOG_BLCKSZ != 0) |
7509 | { |
7510 | char *page; |
7511 | int len; |
7512 | int firstIdx; |
7513 | XLogRecPtr pageBeginPtr; |
7514 | |
7515 | pageBeginPtr = EndOfLog - (EndOfLog % XLOG_BLCKSZ); |
7516 | Assert(readOff == XLogSegmentOffset(pageBeginPtr, wal_segment_size)); |
7517 | |
7518 | firstIdx = XLogRecPtrToBufIdx(EndOfLog); |
7519 | |
7520 | /* Copy the valid part of the last block, and zero the rest */ |
7521 | page = &XLogCtl->pages[firstIdx * XLOG_BLCKSZ]; |
7522 | len = EndOfLog % XLOG_BLCKSZ; |
7523 | memcpy(page, xlogreader->readBuf, len); |
7524 | memset(page + len, 0, XLOG_BLCKSZ - len); |
7525 | |
7526 | XLogCtl->xlblocks[firstIdx] = pageBeginPtr + XLOG_BLCKSZ; |
7527 | XLogCtl->InitializedUpTo = pageBeginPtr + XLOG_BLCKSZ; |
7528 | } |
7529 | else |
7530 | { |
7531 | /* |
7532 | * There is no partial block to copy. Just set InitializedUpTo, and |
7533 | * let the first attempt to insert a log record to initialize the next |
7534 | * buffer. |
7535 | */ |
7536 | XLogCtl->InitializedUpTo = EndOfLog; |
7537 | } |
7538 | |
7539 | LogwrtResult.Write = LogwrtResult.Flush = EndOfLog; |
7540 | |
7541 | XLogCtl->LogwrtResult = LogwrtResult; |
7542 | |
7543 | XLogCtl->LogwrtRqst.Write = EndOfLog; |
7544 | XLogCtl->LogwrtRqst.Flush = EndOfLog; |
7545 | |
7546 | /* |
7547 | * Update full_page_writes in shared memory and write an XLOG_FPW_CHANGE |
7548 | * record before resource manager writes cleanup WAL records or checkpoint |
7549 | * record is written. |
7550 | */ |
7551 | Insert->fullPageWrites = lastFullPageWrites; |
7552 | LocalSetXLogInsertAllowed(); |
7553 | UpdateFullPageWrites(); |
7554 | LocalXLogInsertAllowed = -1; |
7555 | |
7556 | if (InRecovery) |
7557 | { |
7558 | /* |
7559 | * Perform a checkpoint to update all our recovery activity to disk. |
7560 | * |
7561 | * Note that we write a shutdown checkpoint rather than an on-line |
7562 | * one. This is not particularly critical, but since we may be |
7563 | * assigning a new TLI, using a shutdown checkpoint allows us to have |
7564 | * the rule that TLI only changes in shutdown checkpoints, which |
7565 | * allows some extra error checking in xlog_redo. |
7566 | * |
7567 | * In fast promotion, only create a lightweight end-of-recovery record |
7568 | * instead of a full checkpoint. A checkpoint is requested later, |
7569 | * after we're fully out of recovery mode and already accepting |
7570 | * queries. |
7571 | */ |
7572 | if (bgwriterLaunched) |
7573 | { |
7574 | if (fast_promote) |
7575 | { |
7576 | checkPointLoc = ControlFile->checkPoint; |
7577 | |
7578 | /* |
7579 | * Confirm the last checkpoint is available for us to recover |
7580 | * from if we fail. |
7581 | */ |
7582 | record = ReadCheckpointRecord(xlogreader, checkPointLoc, 1, false); |
7583 | if (record != NULL) |
7584 | { |
7585 | fast_promoted = true; |
7586 | |
7587 | /* |
7588 | * Insert a special WAL record to mark the end of |
7589 | * recovery, since we aren't doing a checkpoint. That |
7590 | * means that the checkpointer process may likely be in |
7591 | * the middle of a time-smoothed restartpoint and could |
7592 | * continue to be for minutes after this. That sounds |
7593 | * strange, but the effect is roughly the same and it |
7594 | * would be stranger to try to come out of the |
7595 | * restartpoint and then checkpoint. We request a |
7596 | * checkpoint later anyway, just for safety. |
7597 | */ |
7598 | CreateEndOfRecoveryRecord(); |
7599 | } |
7600 | } |
7601 | |
7602 | if (!fast_promoted) |
7603 | RequestCheckpoint(CHECKPOINT_END_OF_RECOVERY | |
7604 | CHECKPOINT_IMMEDIATE | |
7605 | CHECKPOINT_WAIT); |
7606 | } |
7607 | else |
7608 | CreateCheckPoint(CHECKPOINT_END_OF_RECOVERY | CHECKPOINT_IMMEDIATE); |
7609 | |
7610 | /* |
7611 | * And finally, execute the recovery_end_command, if any. |
7612 | */ |
7613 | if (recoveryEndCommand && strcmp(recoveryEndCommand, "" ) != 0) |
7614 | ExecuteRecoveryCommand(recoveryEndCommand, |
7615 | "recovery_end_command" , |
7616 | true); |
7617 | } |
7618 | |
7619 | if (ArchiveRecoveryRequested) |
7620 | { |
7621 | /* |
7622 | * We switched to a new timeline. Clean up segments on the old |
7623 | * timeline. |
7624 | * |
7625 | * If there are any higher-numbered segments on the old timeline, |
7626 | * remove them. They might contain valid WAL, but they might also be |
7627 | * pre-allocated files containing garbage. In any case, they are not |
7628 | * part of the new timeline's history so we don't need them. |
7629 | */ |
7630 | RemoveNonParentXlogFiles(EndOfLog, ThisTimeLineID); |
7631 | |
7632 | /* |
7633 | * If the switch happened in the middle of a segment, what to do with |
7634 | * the last, partial segment on the old timeline? If we don't archive |
7635 | * it, and the server that created the WAL never archives it either |
7636 | * (e.g. because it was hit by a meteor), it will never make it to the |
7637 | * archive. That's OK from our point of view, because the new segment |
7638 | * that we created with the new TLI contains all the WAL from the old |
7639 | * timeline up to the switch point. But if you later try to do PITR to |
7640 | * the "missing" WAL on the old timeline, recovery won't find it in |
7641 | * the archive. It's physically present in the new file with new TLI, |
7642 | * but recovery won't look there when it's recovering to the older |
7643 | * timeline. On the other hand, if we archive the partial segment, and |
7644 | * the original server on that timeline is still running and archives |
7645 | * the completed version of the same segment later, it will fail. (We |
7646 | * used to do that in 9.4 and below, and it caused such problems). |
7647 | * |
7648 | * As a compromise, we rename the last segment with the .partial |
7649 | * suffix, and archive it. Archive recovery will never try to read |
7650 | * .partial segments, so they will normally go unused. But in the odd |
7651 | * PITR case, the administrator can copy them manually to the pg_wal |
7652 | * directory (removing the suffix). They can be useful in debugging, |
7653 | * too. |
7654 | * |
7655 | * If a .done or .ready file already exists for the old timeline, |
7656 | * however, we had already determined that the segment is complete, so |
7657 | * we can let it be archived normally. (In particular, if it was |
7658 | * restored from the archive to begin with, it's expected to have a |
7659 | * .done file). |
7660 | */ |
7661 | if (XLogSegmentOffset(EndOfLog, wal_segment_size) != 0 && |
7662 | XLogArchivingActive()) |
7663 | { |
7664 | char origfname[MAXFNAMELEN]; |
7665 | XLogSegNo endLogSegNo; |
7666 | |
7667 | XLByteToPrevSeg(EndOfLog, endLogSegNo, wal_segment_size); |
7668 | XLogFileName(origfname, EndOfLogTLI, endLogSegNo, wal_segment_size); |
7669 | |
7670 | if (!XLogArchiveIsReadyOrDone(origfname)) |
7671 | { |
7672 | char origpath[MAXPGPATH]; |
7673 | char partialfname[MAXFNAMELEN]; |
7674 | char partialpath[MAXPGPATH]; |
7675 | |
7676 | XLogFilePath(origpath, EndOfLogTLI, endLogSegNo, wal_segment_size); |
7677 | snprintf(partialfname, MAXFNAMELEN, "%s.partial" , origfname); |
7678 | snprintf(partialpath, MAXPGPATH, "%s.partial" , origpath); |
7679 | |
7680 | /* |
7681 | * Make sure there's no .done or .ready file for the .partial |
7682 | * file. |
7683 | */ |
7684 | XLogArchiveCleanup(partialfname); |
7685 | |
7686 | durable_rename(origpath, partialpath, ERROR); |
7687 | XLogArchiveNotify(partialfname); |
7688 | } |
7689 | } |
7690 | } |
7691 | |
7692 | /* |
7693 | * Preallocate additional log files, if wanted. |
7694 | */ |
7695 | PreallocXlogFiles(EndOfLog); |
7696 | |
7697 | /* |
7698 | * Okay, we're officially UP. |
7699 | */ |
7700 | InRecovery = false; |
7701 | |
7702 | /* start the archive_timeout timer and LSN running */ |
7703 | XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL); |
7704 | XLogCtl->lastSegSwitchLSN = EndOfLog; |
7705 | |
7706 | /* also initialize latestCompletedXid, to nextXid - 1 */ |
7707 | LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); |
7708 | ShmemVariableCache->latestCompletedXid = XidFromFullTransactionId(ShmemVariableCache->nextFullXid); |
7709 | TransactionIdRetreat(ShmemVariableCache->latestCompletedXid); |
7710 | LWLockRelease(ProcArrayLock); |
7711 | |
7712 | /* |
7713 | * Start up the commit log and subtrans, if not already done for hot |
7714 | * standby. (commit timestamps are started below, if necessary.) |
7715 | */ |
7716 | if (standbyState == STANDBY_DISABLED) |
7717 | { |
7718 | StartupCLOG(); |
7719 | StartupSUBTRANS(oldestActiveXID); |
7720 | } |
7721 | |
7722 | /* |
7723 | * Perform end of recovery actions for any SLRUs that need it. |
7724 | */ |
7725 | TrimCLOG(); |
7726 | TrimMultiXact(); |
7727 | |
7728 | /* Reload shared-memory state for prepared transactions */ |
7729 | RecoverPreparedTransactions(); |
7730 | |
7731 | /* |
7732 | * Shutdown the recovery environment. This must occur after |
7733 | * RecoverPreparedTransactions(), see notes for lock_twophase_recover() |
7734 | */ |
7735 | if (standbyState != STANDBY_DISABLED) |
7736 | ShutdownRecoveryTransactionEnvironment(); |
7737 | |
7738 | /* Shut down xlogreader */ |
7739 | if (readFile >= 0) |
7740 | { |
7741 | close(readFile); |
7742 | readFile = -1; |
7743 | } |
7744 | XLogReaderFree(xlogreader); |
7745 | |
7746 | /* |
7747 | * If any of the critical GUCs have changed, log them before we allow |
7748 | * backends to write WAL. |
7749 | */ |
7750 | LocalSetXLogInsertAllowed(); |
7751 | XLogReportParameters(); |
7752 | |
7753 | /* |
7754 | * Local WAL inserts enabled, so it's time to finish initialization of |
7755 | * commit timestamp. |
7756 | */ |
7757 | CompleteCommitTsInitialization(); |
7758 | |
7759 | /* |
7760 | * All done with end-of-recovery actions. |
7761 | * |
7762 | * Now allow backends to write WAL and update the control file status in |
7763 | * consequence. The boolean flag allowing backends to write WAL is |
7764 | * updated while holding ControlFileLock to prevent other backends to look |
7765 | * at an inconsistent state of the control file in shared memory. There |
7766 | * is still a small window during which backends can write WAL and the |
7767 | * control file is still referring to a system not in DB_IN_PRODUCTION |
7768 | * state while looking at the on-disk control file. |
7769 | * |
7770 | * Also, although the boolean flag to allow WAL is probably atomic in |
7771 | * itself, we use the info_lck here to ensure that there are no race |
7772 | * conditions concerning visibility of other recent updates to shared |
7773 | * memory. |
7774 | */ |
7775 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
7776 | ControlFile->state = DB_IN_PRODUCTION; |
7777 | ControlFile->time = (pg_time_t) time(NULL); |
7778 | |
7779 | SpinLockAcquire(&XLogCtl->info_lck); |
7780 | XLogCtl->SharedRecoveryInProgress = false; |
7781 | SpinLockRelease(&XLogCtl->info_lck); |
7782 | |
7783 | UpdateControlFile(); |
7784 | LWLockRelease(ControlFileLock); |
7785 | |
7786 | /* |
7787 | * If there were cascading standby servers connected to us, nudge any wal |
7788 | * sender processes to notice that we've been promoted. |
7789 | */ |
7790 | WalSndWakeup(); |
7791 | |
7792 | /* |
7793 | * If this was a fast promotion, request an (online) checkpoint now. This |
7794 | * isn't required for consistency, but the last restartpoint might be far |
7795 | * back, and in case of a crash, recovering from it might take a longer |
7796 | * than is appropriate now that we're not in standby mode anymore. |
7797 | */ |
7798 | if (fast_promoted) |
7799 | RequestCheckpoint(CHECKPOINT_FORCE); |
7800 | } |
7801 | |
7802 | /* |
7803 | * Checks if recovery has reached a consistent state. When consistency is |
7804 | * reached and we have a valid starting standby snapshot, tell postmaster |
7805 | * that it can start accepting read-only connections. |
7806 | */ |
7807 | static void |
7808 | CheckRecoveryConsistency(void) |
7809 | { |
7810 | XLogRecPtr lastReplayedEndRecPtr; |
7811 | |
7812 | /* |
7813 | * During crash recovery, we don't reach a consistent state until we've |
7814 | * replayed all the WAL. |
7815 | */ |
7816 | if (XLogRecPtrIsInvalid(minRecoveryPoint)) |
7817 | return; |
7818 | |
7819 | Assert(InArchiveRecovery); |
7820 | |
7821 | /* |
7822 | * assume that we are called in the startup process, and hence don't need |
7823 | * a lock to read lastReplayedEndRecPtr |
7824 | */ |
7825 | lastReplayedEndRecPtr = XLogCtl->lastReplayedEndRecPtr; |
7826 | |
7827 | /* |
7828 | * Have we reached the point where our base backup was completed? |
7829 | */ |
7830 | if (!XLogRecPtrIsInvalid(ControlFile->backupEndPoint) && |
7831 | ControlFile->backupEndPoint <= lastReplayedEndRecPtr) |
7832 | { |
7833 | /* |
7834 | * We have reached the end of base backup, as indicated by pg_control. |
7835 | * The data on disk is now consistent. Reset backupStartPoint and |
7836 | * backupEndPoint, and update minRecoveryPoint to make sure we don't |
7837 | * allow starting up at an earlier point even if recovery is stopped |
7838 | * and restarted soon after this. |
7839 | */ |
7840 | elog(DEBUG1, "end of backup reached" ); |
7841 | |
7842 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
7843 | |
7844 | if (ControlFile->minRecoveryPoint < lastReplayedEndRecPtr) |
7845 | ControlFile->minRecoveryPoint = lastReplayedEndRecPtr; |
7846 | |
7847 | ControlFile->backupStartPoint = InvalidXLogRecPtr; |
7848 | ControlFile->backupEndPoint = InvalidXLogRecPtr; |
7849 | ControlFile->backupEndRequired = false; |
7850 | UpdateControlFile(); |
7851 | |
7852 | LWLockRelease(ControlFileLock); |
7853 | } |
7854 | |
7855 | /* |
7856 | * Have we passed our safe starting point? Note that minRecoveryPoint is |
7857 | * known to be incorrectly set if ControlFile->backupEndRequired, until |
7858 | * the XLOG_BACKUP_END arrives to advise us of the correct |
7859 | * minRecoveryPoint. All we know prior to that is that we're not |
7860 | * consistent yet. |
7861 | */ |
7862 | if (!reachedConsistency && !ControlFile->backupEndRequired && |
7863 | minRecoveryPoint <= lastReplayedEndRecPtr && |
7864 | XLogRecPtrIsInvalid(ControlFile->backupStartPoint)) |
7865 | { |
7866 | /* |
7867 | * Check to see if the XLOG sequence contained any unresolved |
7868 | * references to uninitialized pages. |
7869 | */ |
7870 | XLogCheckInvalidPages(); |
7871 | |
7872 | reachedConsistency = true; |
7873 | ereport(LOG, |
7874 | (errmsg("consistent recovery state reached at %X/%X" , |
7875 | (uint32) (lastReplayedEndRecPtr >> 32), |
7876 | (uint32) lastReplayedEndRecPtr))); |
7877 | } |
7878 | |
7879 | /* |
7880 | * Have we got a valid starting snapshot that will allow queries to be |
7881 | * run? If so, we can tell postmaster that the database is consistent now, |
7882 | * enabling connections. |
7883 | */ |
7884 | if (standbyState == STANDBY_SNAPSHOT_READY && |
7885 | !LocalHotStandbyActive && |
7886 | reachedConsistency && |
7887 | IsUnderPostmaster) |
7888 | { |
7889 | SpinLockAcquire(&XLogCtl->info_lck); |
7890 | XLogCtl->SharedHotStandbyActive = true; |
7891 | SpinLockRelease(&XLogCtl->info_lck); |
7892 | |
7893 | LocalHotStandbyActive = true; |
7894 | |
7895 | SendPostmasterSignal(PMSIGNAL_BEGIN_HOT_STANDBY); |
7896 | } |
7897 | } |
7898 | |
7899 | /* |
7900 | * Is the system still in recovery? |
7901 | * |
7902 | * Unlike testing InRecovery, this works in any process that's connected to |
7903 | * shared memory. |
7904 | * |
7905 | * As a side-effect, we initialize the local TimeLineID and RedoRecPtr |
7906 | * variables the first time we see that recovery is finished. |
7907 | */ |
7908 | bool |
7909 | RecoveryInProgress(void) |
7910 | { |
7911 | /* |
7912 | * We check shared state each time only until we leave recovery mode. We |
7913 | * can't re-enter recovery, so there's no need to keep checking after the |
7914 | * shared variable has once been seen false. |
7915 | */ |
7916 | if (!LocalRecoveryInProgress) |
7917 | return false; |
7918 | else |
7919 | { |
7920 | /* |
7921 | * use volatile pointer to make sure we make a fresh read of the |
7922 | * shared variable. |
7923 | */ |
7924 | volatile XLogCtlData *xlogctl = XLogCtl; |
7925 | |
7926 | LocalRecoveryInProgress = xlogctl->SharedRecoveryInProgress; |
7927 | |
7928 | /* |
7929 | * Initialize TimeLineID and RedoRecPtr when we discover that recovery |
7930 | * is finished. InitPostgres() relies upon this behaviour to ensure |
7931 | * that InitXLOGAccess() is called at backend startup. (If you change |
7932 | * this, see also LocalSetXLogInsertAllowed.) |
7933 | */ |
7934 | if (!LocalRecoveryInProgress) |
7935 | { |
7936 | /* |
7937 | * If we just exited recovery, make sure we read TimeLineID and |
7938 | * RedoRecPtr after SharedRecoveryInProgress (for machines with |
7939 | * weak memory ordering). |
7940 | */ |
7941 | pg_memory_barrier(); |
7942 | InitXLOGAccess(); |
7943 | } |
7944 | |
7945 | /* |
7946 | * Note: We don't need a memory barrier when we're still in recovery. |
7947 | * We might exit recovery immediately after return, so the caller |
7948 | * can't rely on 'true' meaning that we're still in recovery anyway. |
7949 | */ |
7950 | |
7951 | return LocalRecoveryInProgress; |
7952 | } |
7953 | } |
7954 | |
7955 | /* |
7956 | * Is HotStandby active yet? This is only important in special backends |
7957 | * since normal backends won't ever be able to connect until this returns |
7958 | * true. Postmaster knows this by way of signal, not via shared memory. |
7959 | * |
7960 | * Unlike testing standbyState, this works in any process that's connected to |
7961 | * shared memory. (And note that standbyState alone doesn't tell the truth |
7962 | * anyway.) |
7963 | */ |
7964 | bool |
7965 | HotStandbyActive(void) |
7966 | { |
7967 | /* |
7968 | * We check shared state each time only until Hot Standby is active. We |
7969 | * can't de-activate Hot Standby, so there's no need to keep checking |
7970 | * after the shared variable has once been seen true. |
7971 | */ |
7972 | if (LocalHotStandbyActive) |
7973 | return true; |
7974 | else |
7975 | { |
7976 | /* spinlock is essential on machines with weak memory ordering! */ |
7977 | SpinLockAcquire(&XLogCtl->info_lck); |
7978 | LocalHotStandbyActive = XLogCtl->SharedHotStandbyActive; |
7979 | SpinLockRelease(&XLogCtl->info_lck); |
7980 | |
7981 | return LocalHotStandbyActive; |
7982 | } |
7983 | } |
7984 | |
7985 | /* |
7986 | * Like HotStandbyActive(), but to be used only in WAL replay code, |
7987 | * where we don't need to ask any other process what the state is. |
7988 | */ |
7989 | bool |
7990 | HotStandbyActiveInReplay(void) |
7991 | { |
7992 | Assert(AmStartupProcess() || !IsPostmasterEnvironment); |
7993 | return LocalHotStandbyActive; |
7994 | } |
7995 | |
7996 | /* |
7997 | * Is this process allowed to insert new WAL records? |
7998 | * |
7999 | * Ordinarily this is essentially equivalent to !RecoveryInProgress(). |
8000 | * But we also have provisions for forcing the result "true" or "false" |
8001 | * within specific processes regardless of the global state. |
8002 | */ |
8003 | bool |
8004 | XLogInsertAllowed(void) |
8005 | { |
8006 | /* |
8007 | * If value is "unconditionally true" or "unconditionally false", just |
8008 | * return it. This provides the normal fast path once recovery is known |
8009 | * done. |
8010 | */ |
8011 | if (LocalXLogInsertAllowed >= 0) |
8012 | return (bool) LocalXLogInsertAllowed; |
8013 | |
8014 | /* |
8015 | * Else, must check to see if we're still in recovery. |
8016 | */ |
8017 | if (RecoveryInProgress()) |
8018 | return false; |
8019 | |
8020 | /* |
8021 | * On exit from recovery, reset to "unconditionally true", since there is |
8022 | * no need to keep checking. |
8023 | */ |
8024 | LocalXLogInsertAllowed = 1; |
8025 | return true; |
8026 | } |
8027 | |
8028 | /* |
8029 | * Make XLogInsertAllowed() return true in the current process only. |
8030 | * |
8031 | * Note: it is allowed to switch LocalXLogInsertAllowed back to -1 later, |
8032 | * and even call LocalSetXLogInsertAllowed() again after that. |
8033 | */ |
8034 | static void |
8035 | LocalSetXLogInsertAllowed(void) |
8036 | { |
8037 | Assert(LocalXLogInsertAllowed == -1); |
8038 | LocalXLogInsertAllowed = 1; |
8039 | |
8040 | /* Initialize as RecoveryInProgress() would do when switching state */ |
8041 | InitXLOGAccess(); |
8042 | } |
8043 | |
8044 | /* |
8045 | * Subroutine to try to fetch and validate a prior checkpoint record. |
8046 | * |
8047 | * whichChkpt identifies the checkpoint (merely for reporting purposes). |
8048 | * 1 for "primary", 0 for "other" (backup_label) |
8049 | */ |
8050 | static XLogRecord * |
8051 | ReadCheckpointRecord(XLogReaderState *xlogreader, XLogRecPtr RecPtr, |
8052 | int whichChkpt, bool report) |
8053 | { |
8054 | XLogRecord *record; |
8055 | uint8 info; |
8056 | |
8057 | if (!XRecOffIsValid(RecPtr)) |
8058 | { |
8059 | if (!report) |
8060 | return NULL; |
8061 | |
8062 | switch (whichChkpt) |
8063 | { |
8064 | case 1: |
8065 | ereport(LOG, |
8066 | (errmsg("invalid primary checkpoint link in control file" ))); |
8067 | break; |
8068 | default: |
8069 | ereport(LOG, |
8070 | (errmsg("invalid checkpoint link in backup_label file" ))); |
8071 | break; |
8072 | } |
8073 | return NULL; |
8074 | } |
8075 | |
8076 | record = ReadRecord(xlogreader, RecPtr, LOG, true); |
8077 | |
8078 | if (record == NULL) |
8079 | { |
8080 | if (!report) |
8081 | return NULL; |
8082 | |
8083 | switch (whichChkpt) |
8084 | { |
8085 | case 1: |
8086 | ereport(LOG, |
8087 | (errmsg("invalid primary checkpoint record" ))); |
8088 | break; |
8089 | default: |
8090 | ereport(LOG, |
8091 | (errmsg("invalid checkpoint record" ))); |
8092 | break; |
8093 | } |
8094 | return NULL; |
8095 | } |
8096 | if (record->xl_rmid != RM_XLOG_ID) |
8097 | { |
8098 | switch (whichChkpt) |
8099 | { |
8100 | case 1: |
8101 | ereport(LOG, |
8102 | (errmsg("invalid resource manager ID in primary checkpoint record" ))); |
8103 | break; |
8104 | default: |
8105 | ereport(LOG, |
8106 | (errmsg("invalid resource manager ID in checkpoint record" ))); |
8107 | break; |
8108 | } |
8109 | return NULL; |
8110 | } |
8111 | info = record->xl_info & ~XLR_INFO_MASK; |
8112 | if (info != XLOG_CHECKPOINT_SHUTDOWN && |
8113 | info != XLOG_CHECKPOINT_ONLINE) |
8114 | { |
8115 | switch (whichChkpt) |
8116 | { |
8117 | case 1: |
8118 | ereport(LOG, |
8119 | (errmsg("invalid xl_info in primary checkpoint record" ))); |
8120 | break; |
8121 | default: |
8122 | ereport(LOG, |
8123 | (errmsg("invalid xl_info in checkpoint record" ))); |
8124 | break; |
8125 | } |
8126 | return NULL; |
8127 | } |
8128 | if (record->xl_tot_len != SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(CheckPoint)) |
8129 | { |
8130 | switch (whichChkpt) |
8131 | { |
8132 | case 1: |
8133 | ereport(LOG, |
8134 | (errmsg("invalid length of primary checkpoint record" ))); |
8135 | break; |
8136 | default: |
8137 | ereport(LOG, |
8138 | (errmsg("invalid length of checkpoint record" ))); |
8139 | break; |
8140 | } |
8141 | return NULL; |
8142 | } |
8143 | return record; |
8144 | } |
8145 | |
8146 | /* |
8147 | * This must be called in a backend process before creating WAL records |
8148 | * (except in a standalone backend, which does StartupXLOG instead). We need |
8149 | * to initialize the local copies of ThisTimeLineID and RedoRecPtr. |
8150 | * |
8151 | * Note: before Postgres 8.0, we went to some effort to keep the postmaster |
8152 | * process's copies of ThisTimeLineID and RedoRecPtr valid too. This was |
8153 | * unnecessary however, since the postmaster itself never touches XLOG anyway. |
8154 | */ |
8155 | void |
8156 | InitXLOGAccess(void) |
8157 | { |
8158 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
8159 | |
8160 | /* ThisTimeLineID doesn't change so we need no lock to copy it */ |
8161 | ThisTimeLineID = XLogCtl->ThisTimeLineID; |
8162 | Assert(ThisTimeLineID != 0 || IsBootstrapProcessingMode()); |
8163 | |
8164 | /* set wal_segment_size */ |
8165 | wal_segment_size = ControlFile->xlog_seg_size; |
8166 | |
8167 | /* Use GetRedoRecPtr to copy the RedoRecPtr safely */ |
8168 | (void) GetRedoRecPtr(); |
8169 | /* Also update our copy of doPageWrites. */ |
8170 | doPageWrites = (Insert->fullPageWrites || Insert->forcePageWrites); |
8171 | |
8172 | /* Also initialize the working areas for constructing WAL records */ |
8173 | InitXLogInsert(); |
8174 | } |
8175 | |
8176 | /* |
8177 | * Return the current Redo pointer from shared memory. |
8178 | * |
8179 | * As a side-effect, the local RedoRecPtr copy is updated. |
8180 | */ |
8181 | XLogRecPtr |
8182 | GetRedoRecPtr(void) |
8183 | { |
8184 | XLogRecPtr ptr; |
8185 | |
8186 | /* |
8187 | * The possibly not up-to-date copy in XlogCtl is enough. Even if we |
8188 | * grabbed a WAL insertion lock to read the master copy, someone might |
8189 | * update it just after we've released the lock. |
8190 | */ |
8191 | SpinLockAcquire(&XLogCtl->info_lck); |
8192 | ptr = XLogCtl->RedoRecPtr; |
8193 | SpinLockRelease(&XLogCtl->info_lck); |
8194 | |
8195 | if (RedoRecPtr < ptr) |
8196 | RedoRecPtr = ptr; |
8197 | |
8198 | return RedoRecPtr; |
8199 | } |
8200 | |
8201 | /* |
8202 | * Return information needed to decide whether a modified block needs a |
8203 | * full-page image to be included in the WAL record. |
8204 | * |
8205 | * The returned values are cached copies from backend-private memory, and |
8206 | * possibly out-of-date. XLogInsertRecord will re-check them against |
8207 | * up-to-date values, while holding the WAL insert lock. |
8208 | */ |
8209 | void |
8210 | GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p) |
8211 | { |
8212 | *RedoRecPtr_p = RedoRecPtr; |
8213 | *doPageWrites_p = doPageWrites; |
8214 | } |
8215 | |
8216 | /* |
8217 | * GetInsertRecPtr -- Returns the current insert position. |
8218 | * |
8219 | * NOTE: The value *actually* returned is the position of the last full |
8220 | * xlog page. It lags behind the real insert position by at most 1 page. |
8221 | * For that, we don't need to scan through WAL insertion locks, and an |
8222 | * approximation is enough for the current usage of this function. |
8223 | */ |
8224 | XLogRecPtr |
8225 | GetInsertRecPtr(void) |
8226 | { |
8227 | XLogRecPtr recptr; |
8228 | |
8229 | SpinLockAcquire(&XLogCtl->info_lck); |
8230 | recptr = XLogCtl->LogwrtRqst.Write; |
8231 | SpinLockRelease(&XLogCtl->info_lck); |
8232 | |
8233 | return recptr; |
8234 | } |
8235 | |
8236 | /* |
8237 | * GetFlushRecPtr -- Returns the current flush position, ie, the last WAL |
8238 | * position known to be fsync'd to disk. |
8239 | */ |
8240 | XLogRecPtr |
8241 | GetFlushRecPtr(void) |
8242 | { |
8243 | SpinLockAcquire(&XLogCtl->info_lck); |
8244 | LogwrtResult = XLogCtl->LogwrtResult; |
8245 | SpinLockRelease(&XLogCtl->info_lck); |
8246 | |
8247 | return LogwrtResult.Flush; |
8248 | } |
8249 | |
8250 | /* |
8251 | * GetLastImportantRecPtr -- Returns the LSN of the last important record |
8252 | * inserted. All records not explicitly marked as unimportant are considered |
8253 | * important. |
8254 | * |
8255 | * The LSN is determined by computing the maximum of |
8256 | * WALInsertLocks[i].lastImportantAt. |
8257 | */ |
8258 | XLogRecPtr |
8259 | GetLastImportantRecPtr(void) |
8260 | { |
8261 | XLogRecPtr res = InvalidXLogRecPtr; |
8262 | int i; |
8263 | |
8264 | for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++) |
8265 | { |
8266 | XLogRecPtr last_important; |
8267 | |
8268 | /* |
8269 | * Need to take a lock to prevent torn reads of the LSN, which are |
8270 | * possible on some of the supported platforms. WAL insert locks only |
8271 | * support exclusive mode, so we have to use that. |
8272 | */ |
8273 | LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE); |
8274 | last_important = WALInsertLocks[i].l.lastImportantAt; |
8275 | LWLockRelease(&WALInsertLocks[i].l.lock); |
8276 | |
8277 | if (res < last_important) |
8278 | res = last_important; |
8279 | } |
8280 | |
8281 | return res; |
8282 | } |
8283 | |
8284 | /* |
8285 | * Get the time and LSN of the last xlog segment switch |
8286 | */ |
8287 | pg_time_t |
8288 | GetLastSegSwitchData(XLogRecPtr *lastSwitchLSN) |
8289 | { |
8290 | pg_time_t result; |
8291 | |
8292 | /* Need WALWriteLock, but shared lock is sufficient */ |
8293 | LWLockAcquire(WALWriteLock, LW_SHARED); |
8294 | result = XLogCtl->lastSegSwitchTime; |
8295 | *lastSwitchLSN = XLogCtl->lastSegSwitchLSN; |
8296 | LWLockRelease(WALWriteLock); |
8297 | |
8298 | return result; |
8299 | } |
8300 | |
8301 | /* |
8302 | * This must be called ONCE during postmaster or standalone-backend shutdown |
8303 | */ |
8304 | void |
8305 | ShutdownXLOG(int code, Datum arg) |
8306 | { |
8307 | /* |
8308 | * We should have an aux process resource owner to use, and we should not |
8309 | * be in a transaction that's installed some other resowner. |
8310 | */ |
8311 | Assert(AuxProcessResourceOwner != NULL); |
8312 | Assert(CurrentResourceOwner == NULL || |
8313 | CurrentResourceOwner == AuxProcessResourceOwner); |
8314 | CurrentResourceOwner = AuxProcessResourceOwner; |
8315 | |
8316 | /* Don't be chatty in standalone mode */ |
8317 | ereport(IsPostmasterEnvironment ? LOG : NOTICE, |
8318 | (errmsg("shutting down" ))); |
8319 | |
8320 | /* |
8321 | * Signal walsenders to move to stopping state. |
8322 | */ |
8323 | WalSndInitStopping(); |
8324 | |
8325 | /* |
8326 | * Wait for WAL senders to be in stopping state. This prevents commands |
8327 | * from writing new WAL. |
8328 | */ |
8329 | WalSndWaitStopping(); |
8330 | |
8331 | if (RecoveryInProgress()) |
8332 | CreateRestartPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE); |
8333 | else |
8334 | { |
8335 | /* |
8336 | * If archiving is enabled, rotate the last XLOG file so that all the |
8337 | * remaining records are archived (postmaster wakes up the archiver |
8338 | * process one more time at the end of shutdown). The checkpoint |
8339 | * record will go to the next XLOG file and won't be archived (yet). |
8340 | */ |
8341 | if (XLogArchivingActive() && XLogArchiveCommandSet()) |
8342 | RequestXLogSwitch(false); |
8343 | |
8344 | CreateCheckPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE); |
8345 | } |
8346 | ShutdownCLOG(); |
8347 | ShutdownCommitTs(); |
8348 | ShutdownSUBTRANS(); |
8349 | ShutdownMultiXact(); |
8350 | } |
8351 | |
8352 | /* |
8353 | * Log start of a checkpoint. |
8354 | */ |
8355 | static void |
8356 | LogCheckpointStart(int flags, bool restartpoint) |
8357 | { |
8358 | elog(LOG, "%s starting:%s%s%s%s%s%s%s%s" , |
8359 | restartpoint ? "restartpoint" : "checkpoint" , |
8360 | (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "" , |
8361 | (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "" , |
8362 | (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "" , |
8363 | (flags & CHECKPOINT_FORCE) ? " force" : "" , |
8364 | (flags & CHECKPOINT_WAIT) ? " wait" : "" , |
8365 | (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "" , |
8366 | (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "" , |
8367 | (flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "" ); |
8368 | } |
8369 | |
8370 | /* |
8371 | * Log end of a checkpoint. |
8372 | */ |
8373 | static void |
8374 | LogCheckpointEnd(bool restartpoint) |
8375 | { |
8376 | long write_secs, |
8377 | sync_secs, |
8378 | total_secs, |
8379 | longest_secs, |
8380 | average_secs; |
8381 | int write_usecs, |
8382 | sync_usecs, |
8383 | total_usecs, |
8384 | longest_usecs, |
8385 | average_usecs; |
8386 | uint64 average_sync_time; |
8387 | |
8388 | CheckpointStats.ckpt_end_t = GetCurrentTimestamp(); |
8389 | |
8390 | TimestampDifference(CheckpointStats.ckpt_write_t, |
8391 | CheckpointStats.ckpt_sync_t, |
8392 | &write_secs, &write_usecs); |
8393 | |
8394 | TimestampDifference(CheckpointStats.ckpt_sync_t, |
8395 | CheckpointStats.ckpt_sync_end_t, |
8396 | &sync_secs, &sync_usecs); |
8397 | |
8398 | /* Accumulate checkpoint timing summary data, in milliseconds. */ |
8399 | BgWriterStats.m_checkpoint_write_time += |
8400 | write_secs * 1000 + write_usecs / 1000; |
8401 | BgWriterStats.m_checkpoint_sync_time += |
8402 | sync_secs * 1000 + sync_usecs / 1000; |
8403 | |
8404 | /* |
8405 | * All of the published timing statistics are accounted for. Only |
8406 | * continue if a log message is to be written. |
8407 | */ |
8408 | if (!log_checkpoints) |
8409 | return; |
8410 | |
8411 | TimestampDifference(CheckpointStats.ckpt_start_t, |
8412 | CheckpointStats.ckpt_end_t, |
8413 | &total_secs, &total_usecs); |
8414 | |
8415 | /* |
8416 | * Timing values returned from CheckpointStats are in microseconds. |
8417 | * Convert to the second plus microsecond form that TimestampDifference |
8418 | * returns for homogeneous printing. |
8419 | */ |
8420 | longest_secs = (long) (CheckpointStats.ckpt_longest_sync / 1000000); |
8421 | longest_usecs = CheckpointStats.ckpt_longest_sync - |
8422 | (uint64) longest_secs * 1000000; |
8423 | |
8424 | average_sync_time = 0; |
8425 | if (CheckpointStats.ckpt_sync_rels > 0) |
8426 | average_sync_time = CheckpointStats.ckpt_agg_sync_time / |
8427 | CheckpointStats.ckpt_sync_rels; |
8428 | average_secs = (long) (average_sync_time / 1000000); |
8429 | average_usecs = average_sync_time - (uint64) average_secs * 1000000; |
8430 | |
8431 | elog(LOG, "%s complete: wrote %d buffers (%.1f%%); " |
8432 | "%d WAL file(s) added, %d removed, %d recycled; " |
8433 | "write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; " |
8434 | "sync files=%d, longest=%ld.%03d s, average=%ld.%03d s; " |
8435 | "distance=%d kB, estimate=%d kB" , |
8436 | restartpoint ? "restartpoint" : "checkpoint" , |
8437 | CheckpointStats.ckpt_bufs_written, |
8438 | (double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers, |
8439 | CheckpointStats.ckpt_segs_added, |
8440 | CheckpointStats.ckpt_segs_removed, |
8441 | CheckpointStats.ckpt_segs_recycled, |
8442 | write_secs, write_usecs / 1000, |
8443 | sync_secs, sync_usecs / 1000, |
8444 | total_secs, total_usecs / 1000, |
8445 | CheckpointStats.ckpt_sync_rels, |
8446 | longest_secs, longest_usecs / 1000, |
8447 | average_secs, average_usecs / 1000, |
8448 | (int) (PrevCheckPointDistance / 1024.0), |
8449 | (int) (CheckPointDistanceEstimate / 1024.0)); |
8450 | } |
8451 | |
8452 | /* |
8453 | * Update the estimate of distance between checkpoints. |
8454 | * |
8455 | * The estimate is used to calculate the number of WAL segments to keep |
8456 | * preallocated, see XLOGFileSlop(). |
8457 | */ |
8458 | static void |
8459 | UpdateCheckPointDistanceEstimate(uint64 nbytes) |
8460 | { |
8461 | /* |
8462 | * To estimate the number of segments consumed between checkpoints, keep a |
8463 | * moving average of the amount of WAL generated in previous checkpoint |
8464 | * cycles. However, if the load is bursty, with quiet periods and busy |
8465 | * periods, we want to cater for the peak load. So instead of a plain |
8466 | * moving average, let the average decline slowly if the previous cycle |
8467 | * used less WAL than estimated, but bump it up immediately if it used |
8468 | * more. |
8469 | * |
8470 | * When checkpoints are triggered by max_wal_size, this should converge to |
8471 | * CheckpointSegments * wal_segment_size, |
8472 | * |
8473 | * Note: This doesn't pay any attention to what caused the checkpoint. |
8474 | * Checkpoints triggered manually with CHECKPOINT command, or by e.g. |
8475 | * starting a base backup, are counted the same as those created |
8476 | * automatically. The slow-decline will largely mask them out, if they are |
8477 | * not frequent. If they are frequent, it seems reasonable to count them |
8478 | * in as any others; if you issue a manual checkpoint every 5 minutes and |
8479 | * never let a timed checkpoint happen, it makes sense to base the |
8480 | * preallocation on that 5 minute interval rather than whatever |
8481 | * checkpoint_timeout is set to. |
8482 | */ |
8483 | PrevCheckPointDistance = nbytes; |
8484 | if (CheckPointDistanceEstimate < nbytes) |
8485 | CheckPointDistanceEstimate = nbytes; |
8486 | else |
8487 | CheckPointDistanceEstimate = |
8488 | (0.90 * CheckPointDistanceEstimate + 0.10 * (double) nbytes); |
8489 | } |
8490 | |
8491 | /* |
8492 | * Perform a checkpoint --- either during shutdown, or on-the-fly |
8493 | * |
8494 | * flags is a bitwise OR of the following: |
8495 | * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown. |
8496 | * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery. |
8497 | * CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP, |
8498 | * ignoring checkpoint_completion_target parameter. |
8499 | * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred |
8500 | * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or |
8501 | * CHECKPOINT_END_OF_RECOVERY). |
8502 | * CHECKPOINT_FLUSH_ALL: also flush buffers of unlogged tables. |
8503 | * |
8504 | * Note: flags contains other bits, of interest here only for logging purposes. |
8505 | * In particular note that this routine is synchronous and does not pay |
8506 | * attention to CHECKPOINT_WAIT. |
8507 | * |
8508 | * If !shutdown then we are writing an online checkpoint. This is a very special |
8509 | * kind of operation and WAL record because the checkpoint action occurs over |
8510 | * a period of time yet logically occurs at just a single LSN. The logical |
8511 | * position of the WAL record (redo ptr) is the same or earlier than the |
8512 | * physical position. When we replay WAL we locate the checkpoint via its |
8513 | * physical position then read the redo ptr and actually start replay at the |
8514 | * earlier logical position. Note that we don't write *anything* to WAL at |
8515 | * the logical position, so that location could be any other kind of WAL record. |
8516 | * All of this mechanism allows us to continue working while we checkpoint. |
8517 | * As a result, timing of actions is critical here and be careful to note that |
8518 | * this function will likely take minutes to execute on a busy system. |
8519 | */ |
8520 | void |
8521 | CreateCheckPoint(int flags) |
8522 | { |
8523 | bool shutdown; |
8524 | CheckPoint checkPoint; |
8525 | XLogRecPtr recptr; |
8526 | XLogSegNo _logSegNo; |
8527 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
8528 | uint32 freespace; |
8529 | XLogRecPtr PriorRedoPtr; |
8530 | XLogRecPtr curInsert; |
8531 | XLogRecPtr last_important_lsn; |
8532 | VirtualTransactionId *vxids; |
8533 | int nvxids; |
8534 | |
8535 | /* |
8536 | * An end-of-recovery checkpoint is really a shutdown checkpoint, just |
8537 | * issued at a different time. |
8538 | */ |
8539 | if (flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY)) |
8540 | shutdown = true; |
8541 | else |
8542 | shutdown = false; |
8543 | |
8544 | /* sanity check */ |
8545 | if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0) |
8546 | elog(ERROR, "can't create a checkpoint during recovery" ); |
8547 | |
8548 | /* |
8549 | * Initialize InitXLogInsert working areas before entering the critical |
8550 | * section. Normally, this is done by the first call to |
8551 | * RecoveryInProgress() or LocalSetXLogInsertAllowed(), but when creating |
8552 | * an end-of-recovery checkpoint, the LocalSetXLogInsertAllowed call is |
8553 | * done below in a critical section, and InitXLogInsert cannot be called |
8554 | * in a critical section. |
8555 | */ |
8556 | InitXLogInsert(); |
8557 | |
8558 | /* |
8559 | * Acquire CheckpointLock to ensure only one checkpoint happens at a time. |
8560 | * (This is just pro forma, since in the present system structure there is |
8561 | * only one process that is allowed to issue checkpoints at any given |
8562 | * time.) |
8563 | */ |
8564 | LWLockAcquire(CheckpointLock, LW_EXCLUSIVE); |
8565 | |
8566 | /* |
8567 | * Prepare to accumulate statistics. |
8568 | * |
8569 | * Note: because it is possible for log_checkpoints to change while a |
8570 | * checkpoint proceeds, we always accumulate stats, even if |
8571 | * log_checkpoints is currently off. |
8572 | */ |
8573 | MemSet(&CheckpointStats, 0, sizeof(CheckpointStats)); |
8574 | CheckpointStats.ckpt_start_t = GetCurrentTimestamp(); |
8575 | |
8576 | /* |
8577 | * Use a critical section to force system panic if we have trouble. |
8578 | */ |
8579 | START_CRIT_SECTION(); |
8580 | |
8581 | if (shutdown) |
8582 | { |
8583 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
8584 | ControlFile->state = DB_SHUTDOWNING; |
8585 | ControlFile->time = (pg_time_t) time(NULL); |
8586 | UpdateControlFile(); |
8587 | LWLockRelease(ControlFileLock); |
8588 | } |
8589 | |
8590 | /* |
8591 | * Let smgr prepare for checkpoint; this has to happen before we determine |
8592 | * the REDO pointer. Note that smgr must not do anything that'd have to |
8593 | * be undone if we decide no checkpoint is needed. |
8594 | */ |
8595 | SyncPreCheckpoint(); |
8596 | |
8597 | /* Begin filling in the checkpoint WAL record */ |
8598 | MemSet(&checkPoint, 0, sizeof(checkPoint)); |
8599 | checkPoint.time = (pg_time_t) time(NULL); |
8600 | |
8601 | /* |
8602 | * For Hot Standby, derive the oldestActiveXid before we fix the redo |
8603 | * pointer. This allows us to begin accumulating changes to assemble our |
8604 | * starting snapshot of locks and transactions. |
8605 | */ |
8606 | if (!shutdown && XLogStandbyInfoActive()) |
8607 | checkPoint.oldestActiveXid = GetOldestActiveTransactionId(); |
8608 | else |
8609 | checkPoint.oldestActiveXid = InvalidTransactionId; |
8610 | |
8611 | /* |
8612 | * Get location of last important record before acquiring insert locks (as |
8613 | * GetLastImportantRecPtr() also locks WAL locks). |
8614 | */ |
8615 | last_important_lsn = GetLastImportantRecPtr(); |
8616 | |
8617 | /* |
8618 | * We must block concurrent insertions while examining insert state to |
8619 | * determine the checkpoint REDO pointer. |
8620 | */ |
8621 | WALInsertLockAcquireExclusive(); |
8622 | curInsert = XLogBytePosToRecPtr(Insert->CurrBytePos); |
8623 | |
8624 | /* |
8625 | * If this isn't a shutdown or forced checkpoint, and if there has been no |
8626 | * WAL activity requiring a checkpoint, skip it. The idea here is to |
8627 | * avoid inserting duplicate checkpoints when the system is idle. |
8628 | */ |
8629 | if ((flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY | |
8630 | CHECKPOINT_FORCE)) == 0) |
8631 | { |
8632 | if (last_important_lsn == ControlFile->checkPoint) |
8633 | { |
8634 | WALInsertLockRelease(); |
8635 | LWLockRelease(CheckpointLock); |
8636 | END_CRIT_SECTION(); |
8637 | ereport(DEBUG1, |
8638 | (errmsg("checkpoint skipped because system is idle" ))); |
8639 | return; |
8640 | } |
8641 | } |
8642 | |
8643 | /* |
8644 | * An end-of-recovery checkpoint is created before anyone is allowed to |
8645 | * write WAL. To allow us to write the checkpoint record, temporarily |
8646 | * enable XLogInsertAllowed. (This also ensures ThisTimeLineID is |
8647 | * initialized, which we need here and in AdvanceXLInsertBuffer.) |
8648 | */ |
8649 | if (flags & CHECKPOINT_END_OF_RECOVERY) |
8650 | LocalSetXLogInsertAllowed(); |
8651 | |
8652 | checkPoint.ThisTimeLineID = ThisTimeLineID; |
8653 | if (flags & CHECKPOINT_END_OF_RECOVERY) |
8654 | checkPoint.PrevTimeLineID = XLogCtl->PrevTimeLineID; |
8655 | else |
8656 | checkPoint.PrevTimeLineID = ThisTimeLineID; |
8657 | |
8658 | checkPoint.fullPageWrites = Insert->fullPageWrites; |
8659 | |
8660 | /* |
8661 | * Compute new REDO record ptr = location of next XLOG record. |
8662 | * |
8663 | * NB: this is NOT necessarily where the checkpoint record itself will be, |
8664 | * since other backends may insert more XLOG records while we're off doing |
8665 | * the buffer flush work. Those XLOG records are logically after the |
8666 | * checkpoint, even though physically before it. Got that? |
8667 | */ |
8668 | freespace = INSERT_FREESPACE(curInsert); |
8669 | if (freespace == 0) |
8670 | { |
8671 | if (XLogSegmentOffset(curInsert, wal_segment_size) == 0) |
8672 | curInsert += SizeOfXLogLongPHD; |
8673 | else |
8674 | curInsert += SizeOfXLogShortPHD; |
8675 | } |
8676 | checkPoint.redo = curInsert; |
8677 | |
8678 | /* |
8679 | * Here we update the shared RedoRecPtr for future XLogInsert calls; this |
8680 | * must be done while holding all the insertion locks. |
8681 | * |
8682 | * Note: if we fail to complete the checkpoint, RedoRecPtr will be left |
8683 | * pointing past where it really needs to point. This is okay; the only |
8684 | * consequence is that XLogInsert might back up whole buffers that it |
8685 | * didn't really need to. We can't postpone advancing RedoRecPtr because |
8686 | * XLogInserts that happen while we are dumping buffers must assume that |
8687 | * their buffer changes are not included in the checkpoint. |
8688 | */ |
8689 | RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo; |
8690 | |
8691 | /* |
8692 | * Now we can release the WAL insertion locks, allowing other xacts to |
8693 | * proceed while we are flushing disk buffers. |
8694 | */ |
8695 | WALInsertLockRelease(); |
8696 | |
8697 | /* Update the info_lck-protected copy of RedoRecPtr as well */ |
8698 | SpinLockAcquire(&XLogCtl->info_lck); |
8699 | XLogCtl->RedoRecPtr = checkPoint.redo; |
8700 | SpinLockRelease(&XLogCtl->info_lck); |
8701 | |
8702 | /* |
8703 | * If enabled, log checkpoint start. We postpone this until now so as not |
8704 | * to log anything if we decided to skip the checkpoint. |
8705 | */ |
8706 | if (log_checkpoints) |
8707 | LogCheckpointStart(flags, false); |
8708 | |
8709 | TRACE_POSTGRESQL_CHECKPOINT_START(flags); |
8710 | |
8711 | /* |
8712 | * Get the other info we need for the checkpoint record. |
8713 | * |
8714 | * We don't need to save oldestClogXid in the checkpoint, it only matters |
8715 | * for the short period in which clog is being truncated, and if we crash |
8716 | * during that we'll redo the clog truncation and fix up oldestClogXid |
8717 | * there. |
8718 | */ |
8719 | LWLockAcquire(XidGenLock, LW_SHARED); |
8720 | checkPoint.nextFullXid = ShmemVariableCache->nextFullXid; |
8721 | checkPoint.oldestXid = ShmemVariableCache->oldestXid; |
8722 | checkPoint.oldestXidDB = ShmemVariableCache->oldestXidDB; |
8723 | LWLockRelease(XidGenLock); |
8724 | |
8725 | LWLockAcquire(CommitTsLock, LW_SHARED); |
8726 | checkPoint.oldestCommitTsXid = ShmemVariableCache->oldestCommitTsXid; |
8727 | checkPoint.newestCommitTsXid = ShmemVariableCache->newestCommitTsXid; |
8728 | LWLockRelease(CommitTsLock); |
8729 | |
8730 | LWLockAcquire(OidGenLock, LW_SHARED); |
8731 | checkPoint.nextOid = ShmemVariableCache->nextOid; |
8732 | if (!shutdown) |
8733 | checkPoint.nextOid += ShmemVariableCache->oidCount; |
8734 | LWLockRelease(OidGenLock); |
8735 | |
8736 | MultiXactGetCheckptMulti(shutdown, |
8737 | &checkPoint.nextMulti, |
8738 | &checkPoint.nextMultiOffset, |
8739 | &checkPoint.oldestMulti, |
8740 | &checkPoint.oldestMultiDB); |
8741 | |
8742 | /* |
8743 | * Having constructed the checkpoint record, ensure all shmem disk buffers |
8744 | * and commit-log buffers are flushed to disk. |
8745 | * |
8746 | * This I/O could fail for various reasons. If so, we will fail to |
8747 | * complete the checkpoint, but there is no reason to force a system |
8748 | * panic. Accordingly, exit critical section while doing it. |
8749 | */ |
8750 | END_CRIT_SECTION(); |
8751 | |
8752 | /* |
8753 | * In some cases there are groups of actions that must all occur on one |
8754 | * side or the other of a checkpoint record. Before flushing the |
8755 | * checkpoint record we must explicitly wait for any backend currently |
8756 | * performing those groups of actions. |
8757 | * |
8758 | * One example is end of transaction, so we must wait for any transactions |
8759 | * that are currently in commit critical sections. If an xact inserted |
8760 | * its commit record into XLOG just before the REDO point, then a crash |
8761 | * restart from the REDO point would not replay that record, which means |
8762 | * that our flushing had better include the xact's update of pg_xact. So |
8763 | * we wait till he's out of his commit critical section before proceeding. |
8764 | * See notes in RecordTransactionCommit(). |
8765 | * |
8766 | * Because we've already released the insertion locks, this test is a bit |
8767 | * fuzzy: it is possible that we will wait for xacts we didn't really need |
8768 | * to wait for. But the delay should be short and it seems better to make |
8769 | * checkpoint take a bit longer than to hold off insertions longer than |
8770 | * necessary. (In fact, the whole reason we have this issue is that xact.c |
8771 | * does commit record XLOG insertion and clog update as two separate steps |
8772 | * protected by different locks, but again that seems best on grounds of |
8773 | * minimizing lock contention.) |
8774 | * |
8775 | * A transaction that has not yet set delayChkpt when we look cannot be at |
8776 | * risk, since he's not inserted his commit record yet; and one that's |
8777 | * already cleared it is not at risk either, since he's done fixing clog |
8778 | * and we will correctly flush the update below. So we cannot miss any |
8779 | * xacts we need to wait for. |
8780 | */ |
8781 | vxids = GetVirtualXIDsDelayingChkpt(&nvxids); |
8782 | if (nvxids > 0) |
8783 | { |
8784 | do |
8785 | { |
8786 | pg_usleep(10000L); /* wait for 10 msec */ |
8787 | } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids)); |
8788 | } |
8789 | pfree(vxids); |
8790 | |
8791 | CheckPointGuts(checkPoint.redo, flags); |
8792 | |
8793 | /* |
8794 | * Take a snapshot of running transactions and write this to WAL. This |
8795 | * allows us to reconstruct the state of running transactions during |
8796 | * archive recovery, if required. Skip, if this info disabled. |
8797 | * |
8798 | * If we are shutting down, or Startup process is completing crash |
8799 | * recovery we don't need to write running xact data. |
8800 | */ |
8801 | if (!shutdown && XLogStandbyInfoActive()) |
8802 | LogStandbySnapshot(); |
8803 | |
8804 | START_CRIT_SECTION(); |
8805 | |
8806 | /* |
8807 | * Now insert the checkpoint record into XLOG. |
8808 | */ |
8809 | XLogBeginInsert(); |
8810 | XLogRegisterData((char *) (&checkPoint), sizeof(checkPoint)); |
8811 | recptr = XLogInsert(RM_XLOG_ID, |
8812 | shutdown ? XLOG_CHECKPOINT_SHUTDOWN : |
8813 | XLOG_CHECKPOINT_ONLINE); |
8814 | |
8815 | XLogFlush(recptr); |
8816 | |
8817 | /* |
8818 | * We mustn't write any new WAL after a shutdown checkpoint, or it will be |
8819 | * overwritten at next startup. No-one should even try, this just allows |
8820 | * sanity-checking. In the case of an end-of-recovery checkpoint, we want |
8821 | * to just temporarily disable writing until the system has exited |
8822 | * recovery. |
8823 | */ |
8824 | if (shutdown) |
8825 | { |
8826 | if (flags & CHECKPOINT_END_OF_RECOVERY) |
8827 | LocalXLogInsertAllowed = -1; /* return to "check" state */ |
8828 | else |
8829 | LocalXLogInsertAllowed = 0; /* never again write WAL */ |
8830 | } |
8831 | |
8832 | /* |
8833 | * We now have ProcLastRecPtr = start of actual checkpoint record, recptr |
8834 | * = end of actual checkpoint record. |
8835 | */ |
8836 | if (shutdown && checkPoint.redo != ProcLastRecPtr) |
8837 | ereport(PANIC, |
8838 | (errmsg("concurrent write-ahead log activity while database system is shutting down" ))); |
8839 | |
8840 | /* |
8841 | * Remember the prior checkpoint's redo ptr for |
8842 | * UpdateCheckPointDistanceEstimate() |
8843 | */ |
8844 | PriorRedoPtr = ControlFile->checkPointCopy.redo; |
8845 | |
8846 | /* |
8847 | * Update the control file. |
8848 | */ |
8849 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
8850 | if (shutdown) |
8851 | ControlFile->state = DB_SHUTDOWNED; |
8852 | ControlFile->checkPoint = ProcLastRecPtr; |
8853 | ControlFile->checkPointCopy = checkPoint; |
8854 | ControlFile->time = (pg_time_t) time(NULL); |
8855 | /* crash recovery should always recover to the end of WAL */ |
8856 | ControlFile->minRecoveryPoint = InvalidXLogRecPtr; |
8857 | ControlFile->minRecoveryPointTLI = 0; |
8858 | |
8859 | /* |
8860 | * Persist unloggedLSN value. It's reset on crash recovery, so this goes |
8861 | * unused on non-shutdown checkpoints, but seems useful to store it always |
8862 | * for debugging purposes. |
8863 | */ |
8864 | SpinLockAcquire(&XLogCtl->ulsn_lck); |
8865 | ControlFile->unloggedLSN = XLogCtl->unloggedLSN; |
8866 | SpinLockRelease(&XLogCtl->ulsn_lck); |
8867 | |
8868 | UpdateControlFile(); |
8869 | LWLockRelease(ControlFileLock); |
8870 | |
8871 | /* Update shared-memory copy of checkpoint XID/epoch */ |
8872 | SpinLockAcquire(&XLogCtl->info_lck); |
8873 | XLogCtl->ckptFullXid = checkPoint.nextFullXid; |
8874 | SpinLockRelease(&XLogCtl->info_lck); |
8875 | |
8876 | /* |
8877 | * We are now done with critical updates; no need for system panic if we |
8878 | * have trouble while fooling with old log segments. |
8879 | */ |
8880 | END_CRIT_SECTION(); |
8881 | |
8882 | /* |
8883 | * Let smgr do post-checkpoint cleanup (eg, deleting old files). |
8884 | */ |
8885 | SyncPostCheckpoint(); |
8886 | |
8887 | /* |
8888 | * Update the average distance between checkpoints if the prior checkpoint |
8889 | * exists. |
8890 | */ |
8891 | if (PriorRedoPtr != InvalidXLogRecPtr) |
8892 | UpdateCheckPointDistanceEstimate(RedoRecPtr - PriorRedoPtr); |
8893 | |
8894 | /* |
8895 | * Delete old log files, those no longer needed for last checkpoint to |
8896 | * prevent the disk holding the xlog from growing full. |
8897 | */ |
8898 | XLByteToSeg(RedoRecPtr, _logSegNo, wal_segment_size); |
8899 | KeepLogSeg(recptr, &_logSegNo); |
8900 | _logSegNo--; |
8901 | RemoveOldXlogFiles(_logSegNo, RedoRecPtr, recptr); |
8902 | |
8903 | /* |
8904 | * Make more log segments if needed. (Do this after recycling old log |
8905 | * segments, since that may supply some of the needed files.) |
8906 | */ |
8907 | if (!shutdown) |
8908 | PreallocXlogFiles(recptr); |
8909 | |
8910 | /* |
8911 | * Truncate pg_subtrans if possible. We can throw away all data before |
8912 | * the oldest XMIN of any running transaction. No future transaction will |
8913 | * attempt to reference any pg_subtrans entry older than that (see Asserts |
8914 | * in subtrans.c). During recovery, though, we mustn't do this because |
8915 | * StartupSUBTRANS hasn't been called yet. |
8916 | */ |
8917 | if (!RecoveryInProgress()) |
8918 | TruncateSUBTRANS(GetOldestXmin(NULL, PROCARRAY_FLAGS_DEFAULT)); |
8919 | |
8920 | /* Real work is done, but log and update stats before releasing lock. */ |
8921 | LogCheckpointEnd(false); |
8922 | |
8923 | TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written, |
8924 | NBuffers, |
8925 | CheckpointStats.ckpt_segs_added, |
8926 | CheckpointStats.ckpt_segs_removed, |
8927 | CheckpointStats.ckpt_segs_recycled); |
8928 | |
8929 | LWLockRelease(CheckpointLock); |
8930 | } |
8931 | |
8932 | /* |
8933 | * Mark the end of recovery in WAL though without running a full checkpoint. |
8934 | * We can expect that a restartpoint is likely to be in progress as we |
8935 | * do this, though we are unwilling to wait for it to complete. So be |
8936 | * careful to avoid taking the CheckpointLock anywhere here. |
8937 | * |
8938 | * CreateRestartPoint() allows for the case where recovery may end before |
8939 | * the restartpoint completes so there is no concern of concurrent behaviour. |
8940 | */ |
8941 | static void |
8942 | CreateEndOfRecoveryRecord(void) |
8943 | { |
8944 | xl_end_of_recovery xlrec; |
8945 | XLogRecPtr recptr; |
8946 | |
8947 | /* sanity check */ |
8948 | if (!RecoveryInProgress()) |
8949 | elog(ERROR, "can only be used to end recovery" ); |
8950 | |
8951 | xlrec.end_time = GetCurrentTimestamp(); |
8952 | |
8953 | WALInsertLockAcquireExclusive(); |
8954 | xlrec.ThisTimeLineID = ThisTimeLineID; |
8955 | xlrec.PrevTimeLineID = XLogCtl->PrevTimeLineID; |
8956 | WALInsertLockRelease(); |
8957 | |
8958 | LocalSetXLogInsertAllowed(); |
8959 | |
8960 | START_CRIT_SECTION(); |
8961 | |
8962 | XLogBeginInsert(); |
8963 | XLogRegisterData((char *) &xlrec, sizeof(xl_end_of_recovery)); |
8964 | recptr = XLogInsert(RM_XLOG_ID, XLOG_END_OF_RECOVERY); |
8965 | |
8966 | XLogFlush(recptr); |
8967 | |
8968 | /* |
8969 | * Update the control file so that crash recovery can follow the timeline |
8970 | * changes to this point. |
8971 | */ |
8972 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
8973 | ControlFile->time = (pg_time_t) time(NULL); |
8974 | ControlFile->minRecoveryPoint = recptr; |
8975 | ControlFile->minRecoveryPointTLI = ThisTimeLineID; |
8976 | UpdateControlFile(); |
8977 | LWLockRelease(ControlFileLock); |
8978 | |
8979 | END_CRIT_SECTION(); |
8980 | |
8981 | LocalXLogInsertAllowed = -1; /* return to "check" state */ |
8982 | } |
8983 | |
8984 | /* |
8985 | * Flush all data in shared memory to disk, and fsync |
8986 | * |
8987 | * This is the common code shared between regular checkpoints and |
8988 | * recovery restartpoints. |
8989 | */ |
8990 | static void |
8991 | CheckPointGuts(XLogRecPtr checkPointRedo, int flags) |
8992 | { |
8993 | CheckPointCLOG(); |
8994 | CheckPointCommitTs(); |
8995 | CheckPointSUBTRANS(); |
8996 | CheckPointMultiXact(); |
8997 | CheckPointPredicate(); |
8998 | CheckPointRelationMap(); |
8999 | CheckPointReplicationSlots(); |
9000 | CheckPointSnapBuild(); |
9001 | CheckPointLogicalRewriteHeap(); |
9002 | CheckPointBuffers(flags); /* performs all required fsyncs */ |
9003 | CheckPointReplicationOrigin(); |
9004 | /* We deliberately delay 2PC checkpointing as long as possible */ |
9005 | CheckPointTwoPhase(checkPointRedo); |
9006 | } |
9007 | |
9008 | /* |
9009 | * Save a checkpoint for recovery restart if appropriate |
9010 | * |
9011 | * This function is called each time a checkpoint record is read from XLOG. |
9012 | * It must determine whether the checkpoint represents a safe restartpoint or |
9013 | * not. If so, the checkpoint record is stashed in shared memory so that |
9014 | * CreateRestartPoint can consult it. (Note that the latter function is |
9015 | * executed by the checkpointer, while this one will be executed by the |
9016 | * startup process.) |
9017 | */ |
9018 | static void |
9019 | RecoveryRestartPoint(const CheckPoint *checkPoint) |
9020 | { |
9021 | /* |
9022 | * Also refrain from creating a restartpoint if we have seen any |
9023 | * references to non-existent pages. Restarting recovery from the |
9024 | * restartpoint would not see the references, so we would lose the |
9025 | * cross-check that the pages belonged to a relation that was dropped |
9026 | * later. |
9027 | */ |
9028 | if (XLogHaveInvalidPages()) |
9029 | { |
9030 | elog(trace_recovery(DEBUG2), |
9031 | "could not record restart point at %X/%X because there " |
9032 | "are unresolved references to invalid pages" , |
9033 | (uint32) (checkPoint->redo >> 32), |
9034 | (uint32) checkPoint->redo); |
9035 | return; |
9036 | } |
9037 | |
9038 | /* |
9039 | * Copy the checkpoint record to shared memory, so that checkpointer can |
9040 | * work out the next time it wants to perform a restartpoint. |
9041 | */ |
9042 | SpinLockAcquire(&XLogCtl->info_lck); |
9043 | XLogCtl->lastCheckPointRecPtr = ReadRecPtr; |
9044 | XLogCtl->lastCheckPointEndPtr = EndRecPtr; |
9045 | XLogCtl->lastCheckPoint = *checkPoint; |
9046 | SpinLockRelease(&XLogCtl->info_lck); |
9047 | } |
9048 | |
9049 | /* |
9050 | * Establish a restartpoint if possible. |
9051 | * |
9052 | * This is similar to CreateCheckPoint, but is used during WAL recovery |
9053 | * to establish a point from which recovery can roll forward without |
9054 | * replaying the entire recovery log. |
9055 | * |
9056 | * Returns true if a new restartpoint was established. We can only establish |
9057 | * a restartpoint if we have replayed a safe checkpoint record since last |
9058 | * restartpoint. |
9059 | */ |
9060 | bool |
9061 | CreateRestartPoint(int flags) |
9062 | { |
9063 | XLogRecPtr lastCheckPointRecPtr; |
9064 | XLogRecPtr lastCheckPointEndPtr; |
9065 | CheckPoint lastCheckPoint; |
9066 | XLogRecPtr PriorRedoPtr; |
9067 | XLogRecPtr receivePtr; |
9068 | XLogRecPtr replayPtr; |
9069 | TimeLineID replayTLI; |
9070 | XLogRecPtr endptr; |
9071 | XLogSegNo _logSegNo; |
9072 | TimestampTz xtime; |
9073 | |
9074 | /* |
9075 | * Acquire CheckpointLock to ensure only one restartpoint or checkpoint |
9076 | * happens at a time. |
9077 | */ |
9078 | LWLockAcquire(CheckpointLock, LW_EXCLUSIVE); |
9079 | |
9080 | /* Get a local copy of the last safe checkpoint record. */ |
9081 | SpinLockAcquire(&XLogCtl->info_lck); |
9082 | lastCheckPointRecPtr = XLogCtl->lastCheckPointRecPtr; |
9083 | lastCheckPointEndPtr = XLogCtl->lastCheckPointEndPtr; |
9084 | lastCheckPoint = XLogCtl->lastCheckPoint; |
9085 | SpinLockRelease(&XLogCtl->info_lck); |
9086 | |
9087 | /* |
9088 | * Check that we're still in recovery mode. It's ok if we exit recovery |
9089 | * mode after this check, the restart point is valid anyway. |
9090 | */ |
9091 | if (!RecoveryInProgress()) |
9092 | { |
9093 | ereport(DEBUG2, |
9094 | (errmsg("skipping restartpoint, recovery has already ended" ))); |
9095 | LWLockRelease(CheckpointLock); |
9096 | return false; |
9097 | } |
9098 | |
9099 | /* |
9100 | * If the last checkpoint record we've replayed is already our last |
9101 | * restartpoint, we can't perform a new restart point. We still update |
9102 | * minRecoveryPoint in that case, so that if this is a shutdown restart |
9103 | * point, we won't start up earlier than before. That's not strictly |
9104 | * necessary, but when hot standby is enabled, it would be rather weird if |
9105 | * the database opened up for read-only connections at a point-in-time |
9106 | * before the last shutdown. Such time travel is still possible in case of |
9107 | * immediate shutdown, though. |
9108 | * |
9109 | * We don't explicitly advance minRecoveryPoint when we do create a |
9110 | * restartpoint. It's assumed that flushing the buffers will do that as a |
9111 | * side-effect. |
9112 | */ |
9113 | if (XLogRecPtrIsInvalid(lastCheckPointRecPtr) || |
9114 | lastCheckPoint.redo <= ControlFile->checkPointCopy.redo) |
9115 | { |
9116 | ereport(DEBUG2, |
9117 | (errmsg("skipping restartpoint, already performed at %X/%X" , |
9118 | (uint32) (lastCheckPoint.redo >> 32), |
9119 | (uint32) lastCheckPoint.redo))); |
9120 | |
9121 | UpdateMinRecoveryPoint(InvalidXLogRecPtr, true); |
9122 | if (flags & CHECKPOINT_IS_SHUTDOWN) |
9123 | { |
9124 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
9125 | ControlFile->state = DB_SHUTDOWNED_IN_RECOVERY; |
9126 | ControlFile->time = (pg_time_t) time(NULL); |
9127 | UpdateControlFile(); |
9128 | LWLockRelease(ControlFileLock); |
9129 | } |
9130 | LWLockRelease(CheckpointLock); |
9131 | return false; |
9132 | } |
9133 | |
9134 | /* |
9135 | * Update the shared RedoRecPtr so that the startup process can calculate |
9136 | * the number of segments replayed since last restartpoint, and request a |
9137 | * restartpoint if it exceeds CheckPointSegments. |
9138 | * |
9139 | * Like in CreateCheckPoint(), hold off insertions to update it, although |
9140 | * during recovery this is just pro forma, because no WAL insertions are |
9141 | * happening. |
9142 | */ |
9143 | WALInsertLockAcquireExclusive(); |
9144 | RedoRecPtr = XLogCtl->Insert.RedoRecPtr = lastCheckPoint.redo; |
9145 | WALInsertLockRelease(); |
9146 | |
9147 | /* Also update the info_lck-protected copy */ |
9148 | SpinLockAcquire(&XLogCtl->info_lck); |
9149 | XLogCtl->RedoRecPtr = lastCheckPoint.redo; |
9150 | SpinLockRelease(&XLogCtl->info_lck); |
9151 | |
9152 | /* |
9153 | * Prepare to accumulate statistics. |
9154 | * |
9155 | * Note: because it is possible for log_checkpoints to change while a |
9156 | * checkpoint proceeds, we always accumulate stats, even if |
9157 | * log_checkpoints is currently off. |
9158 | */ |
9159 | MemSet(&CheckpointStats, 0, sizeof(CheckpointStats)); |
9160 | CheckpointStats.ckpt_start_t = GetCurrentTimestamp(); |
9161 | |
9162 | if (log_checkpoints) |
9163 | LogCheckpointStart(flags, true); |
9164 | |
9165 | CheckPointGuts(lastCheckPoint.redo, flags); |
9166 | |
9167 | /* |
9168 | * Remember the prior checkpoint's redo ptr for |
9169 | * UpdateCheckPointDistanceEstimate() |
9170 | */ |
9171 | PriorRedoPtr = ControlFile->checkPointCopy.redo; |
9172 | |
9173 | /* |
9174 | * Update pg_control, using current time. Check that it still shows |
9175 | * IN_ARCHIVE_RECOVERY state and an older checkpoint, else do nothing; |
9176 | * this is a quick hack to make sure nothing really bad happens if somehow |
9177 | * we get here after the end-of-recovery checkpoint. |
9178 | */ |
9179 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
9180 | if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY && |
9181 | ControlFile->checkPointCopy.redo < lastCheckPoint.redo) |
9182 | { |
9183 | ControlFile->checkPoint = lastCheckPointRecPtr; |
9184 | ControlFile->checkPointCopy = lastCheckPoint; |
9185 | ControlFile->time = (pg_time_t) time(NULL); |
9186 | |
9187 | /* |
9188 | * Ensure minRecoveryPoint is past the checkpoint record. Normally, |
9189 | * this will have happened already while writing out dirty buffers, |
9190 | * but not necessarily - e.g. because no buffers were dirtied. We do |
9191 | * this because a non-exclusive base backup uses minRecoveryPoint to |
9192 | * determine which WAL files must be included in the backup, and the |
9193 | * file (or files) containing the checkpoint record must be included, |
9194 | * at a minimum. Note that for an ordinary restart of recovery there's |
9195 | * no value in having the minimum recovery point any earlier than this |
9196 | * anyway, because redo will begin just after the checkpoint record. |
9197 | */ |
9198 | if (ControlFile->minRecoveryPoint < lastCheckPointEndPtr) |
9199 | { |
9200 | ControlFile->minRecoveryPoint = lastCheckPointEndPtr; |
9201 | ControlFile->minRecoveryPointTLI = lastCheckPoint.ThisTimeLineID; |
9202 | |
9203 | /* update local copy */ |
9204 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
9205 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
9206 | } |
9207 | if (flags & CHECKPOINT_IS_SHUTDOWN) |
9208 | ControlFile->state = DB_SHUTDOWNED_IN_RECOVERY; |
9209 | UpdateControlFile(); |
9210 | } |
9211 | LWLockRelease(ControlFileLock); |
9212 | |
9213 | /* |
9214 | * Update the average distance between checkpoints/restartpoints if the |
9215 | * prior checkpoint exists. |
9216 | */ |
9217 | if (PriorRedoPtr != InvalidXLogRecPtr) |
9218 | UpdateCheckPointDistanceEstimate(RedoRecPtr - PriorRedoPtr); |
9219 | |
9220 | /* |
9221 | * Delete old log files, those no longer needed for last restartpoint to |
9222 | * prevent the disk holding the xlog from growing full. |
9223 | */ |
9224 | XLByteToSeg(RedoRecPtr, _logSegNo, wal_segment_size); |
9225 | |
9226 | /* |
9227 | * Retreat _logSegNo using the current end of xlog replayed or received, |
9228 | * whichever is later. |
9229 | */ |
9230 | receivePtr = GetWalRcvWriteRecPtr(NULL, NULL); |
9231 | replayPtr = GetXLogReplayRecPtr(&replayTLI); |
9232 | endptr = (receivePtr < replayPtr) ? replayPtr : receivePtr; |
9233 | KeepLogSeg(endptr, &_logSegNo); |
9234 | _logSegNo--; |
9235 | |
9236 | /* |
9237 | * Try to recycle segments on a useful timeline. If we've been promoted |
9238 | * since the beginning of this restartpoint, use the new timeline chosen |
9239 | * at end of recovery (RecoveryInProgress() sets ThisTimeLineID in that |
9240 | * case). If we're still in recovery, use the timeline we're currently |
9241 | * replaying. |
9242 | * |
9243 | * There is no guarantee that the WAL segments will be useful on the |
9244 | * current timeline; if recovery proceeds to a new timeline right after |
9245 | * this, the pre-allocated WAL segments on this timeline will not be used, |
9246 | * and will go wasted until recycled on the next restartpoint. We'll live |
9247 | * with that. |
9248 | */ |
9249 | if (RecoveryInProgress()) |
9250 | ThisTimeLineID = replayTLI; |
9251 | |
9252 | RemoveOldXlogFiles(_logSegNo, RedoRecPtr, endptr); |
9253 | |
9254 | /* |
9255 | * Make more log segments if needed. (Do this after recycling old log |
9256 | * segments, since that may supply some of the needed files.) |
9257 | */ |
9258 | PreallocXlogFiles(endptr); |
9259 | |
9260 | /* |
9261 | * ThisTimeLineID is normally not set when we're still in recovery. |
9262 | * However, recycling/preallocating segments above needed ThisTimeLineID |
9263 | * to determine which timeline to install the segments on. Reset it now, |
9264 | * to restore the normal state of affairs for debugging purposes. |
9265 | */ |
9266 | if (RecoveryInProgress()) |
9267 | ThisTimeLineID = 0; |
9268 | |
9269 | /* |
9270 | * Truncate pg_subtrans if possible. We can throw away all data before |
9271 | * the oldest XMIN of any running transaction. No future transaction will |
9272 | * attempt to reference any pg_subtrans entry older than that (see Asserts |
9273 | * in subtrans.c). When hot standby is disabled, though, we mustn't do |
9274 | * this because StartupSUBTRANS hasn't been called yet. |
9275 | */ |
9276 | if (EnableHotStandby) |
9277 | TruncateSUBTRANS(GetOldestXmin(NULL, PROCARRAY_FLAGS_DEFAULT)); |
9278 | |
9279 | /* Real work is done, but log and update before releasing lock. */ |
9280 | LogCheckpointEnd(true); |
9281 | |
9282 | xtime = GetLatestXTime(); |
9283 | ereport((log_checkpoints ? LOG : DEBUG2), |
9284 | (errmsg("recovery restart point at %X/%X" , |
9285 | (uint32) (lastCheckPoint.redo >> 32), (uint32) lastCheckPoint.redo), |
9286 | xtime ? errdetail("Last completed transaction was at log time %s." , |
9287 | timestamptz_to_str(xtime)) : 0)); |
9288 | |
9289 | LWLockRelease(CheckpointLock); |
9290 | |
9291 | /* |
9292 | * Finally, execute archive_cleanup_command, if any. |
9293 | */ |
9294 | if (archiveCleanupCommand && strcmp(archiveCleanupCommand, "" ) != 0) |
9295 | ExecuteRecoveryCommand(archiveCleanupCommand, |
9296 | "archive_cleanup_command" , |
9297 | false); |
9298 | |
9299 | return true; |
9300 | } |
9301 | |
9302 | /* |
9303 | * Retreat *logSegNo to the last segment that we need to retain because of |
9304 | * either wal_keep_segments or replication slots. |
9305 | * |
9306 | * This is calculated by subtracting wal_keep_segments from the given xlog |
9307 | * location, recptr and by making sure that that result is below the |
9308 | * requirement of replication slots. |
9309 | */ |
9310 | static void |
9311 | KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo) |
9312 | { |
9313 | XLogSegNo segno; |
9314 | XLogRecPtr keep; |
9315 | |
9316 | XLByteToSeg(recptr, segno, wal_segment_size); |
9317 | keep = XLogGetReplicationSlotMinimumLSN(); |
9318 | |
9319 | /* compute limit for wal_keep_segments first */ |
9320 | if (wal_keep_segments > 0) |
9321 | { |
9322 | /* avoid underflow, don't go below 1 */ |
9323 | if (segno <= wal_keep_segments) |
9324 | segno = 1; |
9325 | else |
9326 | segno = segno - wal_keep_segments; |
9327 | } |
9328 | |
9329 | /* then check whether slots limit removal further */ |
9330 | if (max_replication_slots > 0 && keep != InvalidXLogRecPtr) |
9331 | { |
9332 | XLogSegNo slotSegNo; |
9333 | |
9334 | XLByteToSeg(keep, slotSegNo, wal_segment_size); |
9335 | |
9336 | if (slotSegNo <= 0) |
9337 | segno = 1; |
9338 | else if (slotSegNo < segno) |
9339 | segno = slotSegNo; |
9340 | } |
9341 | |
9342 | /* don't delete WAL segments newer than the calculated segment */ |
9343 | if (segno < *logSegNo) |
9344 | *logSegNo = segno; |
9345 | } |
9346 | |
9347 | /* |
9348 | * Write a NEXTOID log record |
9349 | */ |
9350 | void |
9351 | XLogPutNextOid(Oid nextOid) |
9352 | { |
9353 | XLogBeginInsert(); |
9354 | XLogRegisterData((char *) (&nextOid), sizeof(Oid)); |
9355 | (void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID); |
9356 | |
9357 | /* |
9358 | * We need not flush the NEXTOID record immediately, because any of the |
9359 | * just-allocated OIDs could only reach disk as part of a tuple insert or |
9360 | * update that would have its own XLOG record that must follow the NEXTOID |
9361 | * record. Therefore, the standard buffer LSN interlock applied to those |
9362 | * records will ensure no such OID reaches disk before the NEXTOID record |
9363 | * does. |
9364 | * |
9365 | * Note, however, that the above statement only covers state "within" the |
9366 | * database. When we use a generated OID as a file or directory name, we |
9367 | * are in a sense violating the basic WAL rule, because that filesystem |
9368 | * change may reach disk before the NEXTOID WAL record does. The impact |
9369 | * of this is that if a database crash occurs immediately afterward, we |
9370 | * might after restart re-generate the same OID and find that it conflicts |
9371 | * with the leftover file or directory. But since for safety's sake we |
9372 | * always loop until finding a nonconflicting filename, this poses no real |
9373 | * problem in practice. See pgsql-hackers discussion 27-Sep-2006. |
9374 | */ |
9375 | } |
9376 | |
9377 | /* |
9378 | * Write an XLOG SWITCH record. |
9379 | * |
9380 | * Here we just blindly issue an XLogInsert request for the record. |
9381 | * All the magic happens inside XLogInsert. |
9382 | * |
9383 | * The return value is either the end+1 address of the switch record, |
9384 | * or the end+1 address of the prior segment if we did not need to |
9385 | * write a switch record because we are already at segment start. |
9386 | */ |
9387 | XLogRecPtr |
9388 | RequestXLogSwitch(bool mark_unimportant) |
9389 | { |
9390 | XLogRecPtr RecPtr; |
9391 | |
9392 | /* XLOG SWITCH has no data */ |
9393 | XLogBeginInsert(); |
9394 | |
9395 | if (mark_unimportant) |
9396 | XLogSetRecordFlags(XLOG_MARK_UNIMPORTANT); |
9397 | RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH); |
9398 | |
9399 | return RecPtr; |
9400 | } |
9401 | |
9402 | /* |
9403 | * Write a RESTORE POINT record |
9404 | */ |
9405 | XLogRecPtr |
9406 | XLogRestorePoint(const char *rpName) |
9407 | { |
9408 | XLogRecPtr RecPtr; |
9409 | xl_restore_point xlrec; |
9410 | |
9411 | xlrec.rp_time = GetCurrentTimestamp(); |
9412 | strlcpy(xlrec.rp_name, rpName, MAXFNAMELEN); |
9413 | |
9414 | XLogBeginInsert(); |
9415 | XLogRegisterData((char *) &xlrec, sizeof(xl_restore_point)); |
9416 | |
9417 | RecPtr = XLogInsert(RM_XLOG_ID, XLOG_RESTORE_POINT); |
9418 | |
9419 | ereport(LOG, |
9420 | (errmsg("restore point \"%s\" created at %X/%X" , |
9421 | rpName, (uint32) (RecPtr >> 32), (uint32) RecPtr))); |
9422 | |
9423 | return RecPtr; |
9424 | } |
9425 | |
9426 | /* |
9427 | * Check if any of the GUC parameters that are critical for hot standby |
9428 | * have changed, and update the value in pg_control file if necessary. |
9429 | */ |
9430 | static void |
9431 | XLogReportParameters(void) |
9432 | { |
9433 | if (wal_level != ControlFile->wal_level || |
9434 | wal_log_hints != ControlFile->wal_log_hints || |
9435 | MaxConnections != ControlFile->MaxConnections || |
9436 | max_worker_processes != ControlFile->max_worker_processes || |
9437 | max_wal_senders != ControlFile->max_wal_senders || |
9438 | max_prepared_xacts != ControlFile->max_prepared_xacts || |
9439 | max_locks_per_xact != ControlFile->max_locks_per_xact || |
9440 | track_commit_timestamp != ControlFile->track_commit_timestamp) |
9441 | { |
9442 | /* |
9443 | * The change in number of backend slots doesn't need to be WAL-logged |
9444 | * if archiving is not enabled, as you can't start archive recovery |
9445 | * with wal_level=minimal anyway. We don't really care about the |
9446 | * values in pg_control either if wal_level=minimal, but seems better |
9447 | * to keep them up-to-date to avoid confusion. |
9448 | */ |
9449 | if (wal_level != ControlFile->wal_level || XLogIsNeeded()) |
9450 | { |
9451 | xl_parameter_change xlrec; |
9452 | XLogRecPtr recptr; |
9453 | |
9454 | xlrec.MaxConnections = MaxConnections; |
9455 | xlrec.max_worker_processes = max_worker_processes; |
9456 | xlrec.max_wal_senders = max_wal_senders; |
9457 | xlrec.max_prepared_xacts = max_prepared_xacts; |
9458 | xlrec.max_locks_per_xact = max_locks_per_xact; |
9459 | xlrec.wal_level = wal_level; |
9460 | xlrec.wal_log_hints = wal_log_hints; |
9461 | xlrec.track_commit_timestamp = track_commit_timestamp; |
9462 | |
9463 | XLogBeginInsert(); |
9464 | XLogRegisterData((char *) &xlrec, sizeof(xlrec)); |
9465 | |
9466 | recptr = XLogInsert(RM_XLOG_ID, XLOG_PARAMETER_CHANGE); |
9467 | XLogFlush(recptr); |
9468 | } |
9469 | |
9470 | ControlFile->MaxConnections = MaxConnections; |
9471 | ControlFile->max_worker_processes = max_worker_processes; |
9472 | ControlFile->max_wal_senders = max_wal_senders; |
9473 | ControlFile->max_prepared_xacts = max_prepared_xacts; |
9474 | ControlFile->max_locks_per_xact = max_locks_per_xact; |
9475 | ControlFile->wal_level = wal_level; |
9476 | ControlFile->wal_log_hints = wal_log_hints; |
9477 | ControlFile->track_commit_timestamp = track_commit_timestamp; |
9478 | UpdateControlFile(); |
9479 | } |
9480 | } |
9481 | |
9482 | /* |
9483 | * Update full_page_writes in shared memory, and write an |
9484 | * XLOG_FPW_CHANGE record if necessary. |
9485 | * |
9486 | * Note: this function assumes there is no other process running |
9487 | * concurrently that could update it. |
9488 | */ |
9489 | void |
9490 | UpdateFullPageWrites(void) |
9491 | { |
9492 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
9493 | bool recoveryInProgress; |
9494 | |
9495 | /* |
9496 | * Do nothing if full_page_writes has not been changed. |
9497 | * |
9498 | * It's safe to check the shared full_page_writes without the lock, |
9499 | * because we assume that there is no concurrently running process which |
9500 | * can update it. |
9501 | */ |
9502 | if (fullPageWrites == Insert->fullPageWrites) |
9503 | return; |
9504 | |
9505 | /* |
9506 | * Perform this outside critical section so that the WAL insert |
9507 | * initialization done by RecoveryInProgress() doesn't trigger an |
9508 | * assertion failure. |
9509 | */ |
9510 | recoveryInProgress = RecoveryInProgress(); |
9511 | |
9512 | START_CRIT_SECTION(); |
9513 | |
9514 | /* |
9515 | * It's always safe to take full page images, even when not strictly |
9516 | * required, but not the other round. So if we're setting full_page_writes |
9517 | * to true, first set it true and then write the WAL record. If we're |
9518 | * setting it to false, first write the WAL record and then set the global |
9519 | * flag. |
9520 | */ |
9521 | if (fullPageWrites) |
9522 | { |
9523 | WALInsertLockAcquireExclusive(); |
9524 | Insert->fullPageWrites = true; |
9525 | WALInsertLockRelease(); |
9526 | } |
9527 | |
9528 | /* |
9529 | * Write an XLOG_FPW_CHANGE record. This allows us to keep track of |
9530 | * full_page_writes during archive recovery, if required. |
9531 | */ |
9532 | if (XLogStandbyInfoActive() && !recoveryInProgress) |
9533 | { |
9534 | XLogBeginInsert(); |
9535 | XLogRegisterData((char *) (&fullPageWrites), sizeof(bool)); |
9536 | |
9537 | XLogInsert(RM_XLOG_ID, XLOG_FPW_CHANGE); |
9538 | } |
9539 | |
9540 | if (!fullPageWrites) |
9541 | { |
9542 | WALInsertLockAcquireExclusive(); |
9543 | Insert->fullPageWrites = false; |
9544 | WALInsertLockRelease(); |
9545 | } |
9546 | END_CRIT_SECTION(); |
9547 | } |
9548 | |
9549 | /* |
9550 | * Check that it's OK to switch to new timeline during recovery. |
9551 | * |
9552 | * 'lsn' is the address of the shutdown checkpoint record we're about to |
9553 | * replay. (Currently, timeline can only change at a shutdown checkpoint). |
9554 | */ |
9555 | static void |
9556 | checkTimeLineSwitch(XLogRecPtr lsn, TimeLineID newTLI, TimeLineID prevTLI) |
9557 | { |
9558 | /* Check that the record agrees on what the current (old) timeline is */ |
9559 | if (prevTLI != ThisTimeLineID) |
9560 | ereport(PANIC, |
9561 | (errmsg("unexpected previous timeline ID %u (current timeline ID %u) in checkpoint record" , |
9562 | prevTLI, ThisTimeLineID))); |
9563 | |
9564 | /* |
9565 | * The new timeline better be in the list of timelines we expect to see, |
9566 | * according to the timeline history. It should also not decrease. |
9567 | */ |
9568 | if (newTLI < ThisTimeLineID || !tliInHistory(newTLI, expectedTLEs)) |
9569 | ereport(PANIC, |
9570 | (errmsg("unexpected timeline ID %u (after %u) in checkpoint record" , |
9571 | newTLI, ThisTimeLineID))); |
9572 | |
9573 | /* |
9574 | * If we have not yet reached min recovery point, and we're about to |
9575 | * switch to a timeline greater than the timeline of the min recovery |
9576 | * point: trouble. After switching to the new timeline, we could not |
9577 | * possibly visit the min recovery point on the correct timeline anymore. |
9578 | * This can happen if there is a newer timeline in the archive that |
9579 | * branched before the timeline the min recovery point is on, and you |
9580 | * attempt to do PITR to the new timeline. |
9581 | */ |
9582 | if (!XLogRecPtrIsInvalid(minRecoveryPoint) && |
9583 | lsn < minRecoveryPoint && |
9584 | newTLI > minRecoveryPointTLI) |
9585 | ereport(PANIC, |
9586 | (errmsg("unexpected timeline ID %u in checkpoint record, before reaching minimum recovery point %X/%X on timeline %u" , |
9587 | newTLI, |
9588 | (uint32) (minRecoveryPoint >> 32), |
9589 | (uint32) minRecoveryPoint, |
9590 | minRecoveryPointTLI))); |
9591 | |
9592 | /* Looks good */ |
9593 | } |
9594 | |
9595 | /* |
9596 | * XLOG resource manager's routines |
9597 | * |
9598 | * Definitions of info values are in include/catalog/pg_control.h, though |
9599 | * not all record types are related to control file updates. |
9600 | */ |
9601 | void |
9602 | xlog_redo(XLogReaderState *record) |
9603 | { |
9604 | uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK; |
9605 | XLogRecPtr lsn = record->EndRecPtr; |
9606 | |
9607 | /* in XLOG rmgr, backup blocks are only used by XLOG_FPI records */ |
9608 | Assert(info == XLOG_FPI || info == XLOG_FPI_FOR_HINT || |
9609 | !XLogRecHasAnyBlockRefs(record)); |
9610 | |
9611 | if (info == XLOG_NEXTOID) |
9612 | { |
9613 | Oid nextOid; |
9614 | |
9615 | /* |
9616 | * We used to try to take the maximum of ShmemVariableCache->nextOid |
9617 | * and the recorded nextOid, but that fails if the OID counter wraps |
9618 | * around. Since no OID allocation should be happening during replay |
9619 | * anyway, better to just believe the record exactly. We still take |
9620 | * OidGenLock while setting the variable, just in case. |
9621 | */ |
9622 | memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid)); |
9623 | LWLockAcquire(OidGenLock, LW_EXCLUSIVE); |
9624 | ShmemVariableCache->nextOid = nextOid; |
9625 | ShmemVariableCache->oidCount = 0; |
9626 | LWLockRelease(OidGenLock); |
9627 | } |
9628 | else if (info == XLOG_CHECKPOINT_SHUTDOWN) |
9629 | { |
9630 | CheckPoint checkPoint; |
9631 | |
9632 | memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint)); |
9633 | /* In a SHUTDOWN checkpoint, believe the counters exactly */ |
9634 | LWLockAcquire(XidGenLock, LW_EXCLUSIVE); |
9635 | ShmemVariableCache->nextFullXid = checkPoint.nextFullXid; |
9636 | LWLockRelease(XidGenLock); |
9637 | LWLockAcquire(OidGenLock, LW_EXCLUSIVE); |
9638 | ShmemVariableCache->nextOid = checkPoint.nextOid; |
9639 | ShmemVariableCache->oidCount = 0; |
9640 | LWLockRelease(OidGenLock); |
9641 | MultiXactSetNextMXact(checkPoint.nextMulti, |
9642 | checkPoint.nextMultiOffset); |
9643 | |
9644 | MultiXactAdvanceOldest(checkPoint.oldestMulti, |
9645 | checkPoint.oldestMultiDB); |
9646 | |
9647 | /* |
9648 | * No need to set oldestClogXid here as well; it'll be set when we |
9649 | * redo an xl_clog_truncate if it changed since initialization. |
9650 | */ |
9651 | SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB); |
9652 | |
9653 | /* |
9654 | * If we see a shutdown checkpoint while waiting for an end-of-backup |
9655 | * record, the backup was canceled and the end-of-backup record will |
9656 | * never arrive. |
9657 | */ |
9658 | if (ArchiveRecoveryRequested && |
9659 | !XLogRecPtrIsInvalid(ControlFile->backupStartPoint) && |
9660 | XLogRecPtrIsInvalid(ControlFile->backupEndPoint)) |
9661 | ereport(PANIC, |
9662 | (errmsg("online backup was canceled, recovery cannot continue" ))); |
9663 | |
9664 | /* |
9665 | * If we see a shutdown checkpoint, we know that nothing was running |
9666 | * on the master at this point. So fake-up an empty running-xacts |
9667 | * record and use that here and now. Recover additional standby state |
9668 | * for prepared transactions. |
9669 | */ |
9670 | if (standbyState >= STANDBY_INITIALIZED) |
9671 | { |
9672 | TransactionId *xids; |
9673 | int nxids; |
9674 | TransactionId oldestActiveXID; |
9675 | TransactionId latestCompletedXid; |
9676 | RunningTransactionsData running; |
9677 | |
9678 | oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids); |
9679 | |
9680 | /* |
9681 | * Construct a RunningTransactions snapshot representing a shut |
9682 | * down server, with only prepared transactions still alive. We're |
9683 | * never overflowed at this point because all subxids are listed |
9684 | * with their parent prepared transactions. |
9685 | */ |
9686 | running.xcnt = nxids; |
9687 | running.subxcnt = 0; |
9688 | running.subxid_overflow = false; |
9689 | running.nextXid = XidFromFullTransactionId(checkPoint.nextFullXid); |
9690 | running.oldestRunningXid = oldestActiveXID; |
9691 | latestCompletedXid = XidFromFullTransactionId(checkPoint.nextFullXid); |
9692 | TransactionIdRetreat(latestCompletedXid); |
9693 | Assert(TransactionIdIsNormal(latestCompletedXid)); |
9694 | running.latestCompletedXid = latestCompletedXid; |
9695 | running.xids = xids; |
9696 | |
9697 | ProcArrayApplyRecoveryInfo(&running); |
9698 | |
9699 | StandbyRecoverPreparedTransactions(); |
9700 | } |
9701 | |
9702 | /* ControlFile->checkPointCopy always tracks the latest ckpt XID */ |
9703 | ControlFile->checkPointCopy.nextFullXid = checkPoint.nextFullXid; |
9704 | |
9705 | /* Update shared-memory copy of checkpoint XID/epoch */ |
9706 | SpinLockAcquire(&XLogCtl->info_lck); |
9707 | XLogCtl->ckptFullXid = checkPoint.nextFullXid; |
9708 | SpinLockRelease(&XLogCtl->info_lck); |
9709 | |
9710 | /* |
9711 | * We should've already switched to the new TLI before replaying this |
9712 | * record. |
9713 | */ |
9714 | if (checkPoint.ThisTimeLineID != ThisTimeLineID) |
9715 | ereport(PANIC, |
9716 | (errmsg("unexpected timeline ID %u (should be %u) in checkpoint record" , |
9717 | checkPoint.ThisTimeLineID, ThisTimeLineID))); |
9718 | |
9719 | RecoveryRestartPoint(&checkPoint); |
9720 | } |
9721 | else if (info == XLOG_CHECKPOINT_ONLINE) |
9722 | { |
9723 | CheckPoint checkPoint; |
9724 | |
9725 | memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint)); |
9726 | /* In an ONLINE checkpoint, treat the XID counter as a minimum */ |
9727 | LWLockAcquire(XidGenLock, LW_EXCLUSIVE); |
9728 | if (FullTransactionIdPrecedes(ShmemVariableCache->nextFullXid, |
9729 | checkPoint.nextFullXid)) |
9730 | ShmemVariableCache->nextFullXid = checkPoint.nextFullXid; |
9731 | LWLockRelease(XidGenLock); |
9732 | |
9733 | /* |
9734 | * We ignore the nextOid counter in an ONLINE checkpoint, preferring |
9735 | * to track OID assignment through XLOG_NEXTOID records. The nextOid |
9736 | * counter is from the start of the checkpoint and might well be stale |
9737 | * compared to later XLOG_NEXTOID records. We could try to take the |
9738 | * maximum of the nextOid counter and our latest value, but since |
9739 | * there's no particular guarantee about the speed with which the OID |
9740 | * counter wraps around, that's a risky thing to do. In any case, |
9741 | * users of the nextOid counter are required to avoid assignment of |
9742 | * duplicates, so that a somewhat out-of-date value should be safe. |
9743 | */ |
9744 | |
9745 | /* Handle multixact */ |
9746 | MultiXactAdvanceNextMXact(checkPoint.nextMulti, |
9747 | checkPoint.nextMultiOffset); |
9748 | |
9749 | /* |
9750 | * NB: This may perform multixact truncation when replaying WAL |
9751 | * generated by an older primary. |
9752 | */ |
9753 | MultiXactAdvanceOldest(checkPoint.oldestMulti, |
9754 | checkPoint.oldestMultiDB); |
9755 | if (TransactionIdPrecedes(ShmemVariableCache->oldestXid, |
9756 | checkPoint.oldestXid)) |
9757 | SetTransactionIdLimit(checkPoint.oldestXid, |
9758 | checkPoint.oldestXidDB); |
9759 | /* ControlFile->checkPointCopy always tracks the latest ckpt XID */ |
9760 | ControlFile->checkPointCopy.nextFullXid = checkPoint.nextFullXid; |
9761 | |
9762 | /* Update shared-memory copy of checkpoint XID/epoch */ |
9763 | SpinLockAcquire(&XLogCtl->info_lck); |
9764 | XLogCtl->ckptFullXid = checkPoint.nextFullXid; |
9765 | SpinLockRelease(&XLogCtl->info_lck); |
9766 | |
9767 | /* TLI should not change in an on-line checkpoint */ |
9768 | if (checkPoint.ThisTimeLineID != ThisTimeLineID) |
9769 | ereport(PANIC, |
9770 | (errmsg("unexpected timeline ID %u (should be %u) in checkpoint record" , |
9771 | checkPoint.ThisTimeLineID, ThisTimeLineID))); |
9772 | |
9773 | RecoveryRestartPoint(&checkPoint); |
9774 | } |
9775 | else if (info == XLOG_END_OF_RECOVERY) |
9776 | { |
9777 | xl_end_of_recovery xlrec; |
9778 | |
9779 | memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_end_of_recovery)); |
9780 | |
9781 | /* |
9782 | * For Hot Standby, we could treat this like a Shutdown Checkpoint, |
9783 | * but this case is rarer and harder to test, so the benefit doesn't |
9784 | * outweigh the potential extra cost of maintenance. |
9785 | */ |
9786 | |
9787 | /* |
9788 | * We should've already switched to the new TLI before replaying this |
9789 | * record. |
9790 | */ |
9791 | if (xlrec.ThisTimeLineID != ThisTimeLineID) |
9792 | ereport(PANIC, |
9793 | (errmsg("unexpected timeline ID %u (should be %u) in checkpoint record" , |
9794 | xlrec.ThisTimeLineID, ThisTimeLineID))); |
9795 | } |
9796 | else if (info == XLOG_NOOP) |
9797 | { |
9798 | /* nothing to do here */ |
9799 | } |
9800 | else if (info == XLOG_SWITCH) |
9801 | { |
9802 | /* nothing to do here */ |
9803 | } |
9804 | else if (info == XLOG_RESTORE_POINT) |
9805 | { |
9806 | /* nothing to do here */ |
9807 | } |
9808 | else if (info == XLOG_FPI || info == XLOG_FPI_FOR_HINT) |
9809 | { |
9810 | /* |
9811 | * Full-page image (FPI) records contain nothing else but a backup |
9812 | * block (or multiple backup blocks). Every block reference must |
9813 | * include a full-page image - otherwise there would be no point in |
9814 | * this record. |
9815 | * |
9816 | * No recovery conflicts are generated by these generic records - if a |
9817 | * resource manager needs to generate conflicts, it has to define a |
9818 | * separate WAL record type and redo routine. |
9819 | * |
9820 | * XLOG_FPI_FOR_HINT records are generated when a page needs to be |
9821 | * WAL- logged because of a hint bit update. They are only generated |
9822 | * when checksums are enabled. There is no difference in handling |
9823 | * XLOG_FPI and XLOG_FPI_FOR_HINT records, they use a different info |
9824 | * code just to distinguish them for statistics purposes. |
9825 | */ |
9826 | for (uint8 block_id = 0; block_id <= record->max_block_id; block_id++) |
9827 | { |
9828 | Buffer buffer; |
9829 | |
9830 | if (XLogReadBufferForRedo(record, block_id, &buffer) != BLK_RESTORED) |
9831 | elog(ERROR, "unexpected XLogReadBufferForRedo result when restoring backup block" ); |
9832 | UnlockReleaseBuffer(buffer); |
9833 | } |
9834 | } |
9835 | else if (info == XLOG_BACKUP_END) |
9836 | { |
9837 | XLogRecPtr startpoint; |
9838 | |
9839 | memcpy(&startpoint, XLogRecGetData(record), sizeof(startpoint)); |
9840 | |
9841 | if (ControlFile->backupStartPoint == startpoint) |
9842 | { |
9843 | /* |
9844 | * We have reached the end of base backup, the point where |
9845 | * pg_stop_backup() was done. The data on disk is now consistent. |
9846 | * Reset backupStartPoint, and update minRecoveryPoint to make |
9847 | * sure we don't allow starting up at an earlier point even if |
9848 | * recovery is stopped and restarted soon after this. |
9849 | */ |
9850 | elog(DEBUG1, "end of backup reached" ); |
9851 | |
9852 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
9853 | |
9854 | if (ControlFile->minRecoveryPoint < lsn) |
9855 | { |
9856 | ControlFile->minRecoveryPoint = lsn; |
9857 | ControlFile->minRecoveryPointTLI = ThisTimeLineID; |
9858 | } |
9859 | ControlFile->backupStartPoint = InvalidXLogRecPtr; |
9860 | ControlFile->backupEndRequired = false; |
9861 | UpdateControlFile(); |
9862 | |
9863 | LWLockRelease(ControlFileLock); |
9864 | } |
9865 | } |
9866 | else if (info == XLOG_PARAMETER_CHANGE) |
9867 | { |
9868 | xl_parameter_change xlrec; |
9869 | |
9870 | /* Update our copy of the parameters in pg_control */ |
9871 | memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_parameter_change)); |
9872 | |
9873 | LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); |
9874 | ControlFile->MaxConnections = xlrec.MaxConnections; |
9875 | ControlFile->max_worker_processes = xlrec.max_worker_processes; |
9876 | ControlFile->max_wal_senders = xlrec.max_wal_senders; |
9877 | ControlFile->max_prepared_xacts = xlrec.max_prepared_xacts; |
9878 | ControlFile->max_locks_per_xact = xlrec.max_locks_per_xact; |
9879 | ControlFile->wal_level = xlrec.wal_level; |
9880 | ControlFile->wal_log_hints = xlrec.wal_log_hints; |
9881 | |
9882 | /* |
9883 | * Update minRecoveryPoint to ensure that if recovery is aborted, we |
9884 | * recover back up to this point before allowing hot standby again. |
9885 | * This is important if the max_* settings are decreased, to ensure |
9886 | * you don't run queries against the WAL preceding the change. The |
9887 | * local copies cannot be updated as long as crash recovery is |
9888 | * happening and we expect all the WAL to be replayed. |
9889 | */ |
9890 | if (InArchiveRecovery) |
9891 | { |
9892 | minRecoveryPoint = ControlFile->minRecoveryPoint; |
9893 | minRecoveryPointTLI = ControlFile->minRecoveryPointTLI; |
9894 | } |
9895 | if (minRecoveryPoint != InvalidXLogRecPtr && minRecoveryPoint < lsn) |
9896 | { |
9897 | ControlFile->minRecoveryPoint = lsn; |
9898 | ControlFile->minRecoveryPointTLI = ThisTimeLineID; |
9899 | } |
9900 | |
9901 | CommitTsParameterChange(xlrec.track_commit_timestamp, |
9902 | ControlFile->track_commit_timestamp); |
9903 | ControlFile->track_commit_timestamp = xlrec.track_commit_timestamp; |
9904 | |
9905 | UpdateControlFile(); |
9906 | LWLockRelease(ControlFileLock); |
9907 | |
9908 | /* Check to see if any parameter change gives a problem on recovery */ |
9909 | CheckRequiredParameterValues(); |
9910 | } |
9911 | else if (info == XLOG_FPW_CHANGE) |
9912 | { |
9913 | bool fpw; |
9914 | |
9915 | memcpy(&fpw, XLogRecGetData(record), sizeof(bool)); |
9916 | |
9917 | /* |
9918 | * Update the LSN of the last replayed XLOG_FPW_CHANGE record so that |
9919 | * do_pg_start_backup() and do_pg_stop_backup() can check whether |
9920 | * full_page_writes has been disabled during online backup. |
9921 | */ |
9922 | if (!fpw) |
9923 | { |
9924 | SpinLockAcquire(&XLogCtl->info_lck); |
9925 | if (XLogCtl->lastFpwDisableRecPtr < ReadRecPtr) |
9926 | XLogCtl->lastFpwDisableRecPtr = ReadRecPtr; |
9927 | SpinLockRelease(&XLogCtl->info_lck); |
9928 | } |
9929 | |
9930 | /* Keep track of full_page_writes */ |
9931 | lastFullPageWrites = fpw; |
9932 | } |
9933 | } |
9934 | |
9935 | #ifdef WAL_DEBUG |
9936 | |
9937 | static void |
9938 | xlog_outrec(StringInfo buf, XLogReaderState *record) |
9939 | { |
9940 | int block_id; |
9941 | |
9942 | appendStringInfo(buf, "prev %X/%X; xid %u" , |
9943 | (uint32) (XLogRecGetPrev(record) >> 32), |
9944 | (uint32) XLogRecGetPrev(record), |
9945 | XLogRecGetXid(record)); |
9946 | |
9947 | appendStringInfo(buf, "; len %u" , |
9948 | XLogRecGetDataLen(record)); |
9949 | |
9950 | /* decode block references */ |
9951 | for (block_id = 0; block_id <= record->max_block_id; block_id++) |
9952 | { |
9953 | RelFileNode rnode; |
9954 | ForkNumber forknum; |
9955 | BlockNumber blk; |
9956 | |
9957 | if (!XLogRecHasBlockRef(record, block_id)) |
9958 | continue; |
9959 | |
9960 | XLogRecGetBlockTag(record, block_id, &rnode, &forknum, &blk); |
9961 | if (forknum != MAIN_FORKNUM) |
9962 | appendStringInfo(buf, "; blkref #%u: rel %u/%u/%u, fork %u, blk %u" , |
9963 | block_id, |
9964 | rnode.spcNode, rnode.dbNode, rnode.relNode, |
9965 | forknum, |
9966 | blk); |
9967 | else |
9968 | appendStringInfo(buf, "; blkref #%u: rel %u/%u/%u, blk %u" , |
9969 | block_id, |
9970 | rnode.spcNode, rnode.dbNode, rnode.relNode, |
9971 | blk); |
9972 | if (XLogRecHasBlockImage(record, block_id)) |
9973 | appendStringInfoString(buf, " FPW" ); |
9974 | } |
9975 | } |
9976 | #endif /* WAL_DEBUG */ |
9977 | |
9978 | /* |
9979 | * Returns a string describing an XLogRecord, consisting of its identity |
9980 | * optionally followed by a colon, a space, and a further description. |
9981 | */ |
9982 | static void |
9983 | xlog_outdesc(StringInfo buf, XLogReaderState *record) |
9984 | { |
9985 | RmgrId rmid = XLogRecGetRmid(record); |
9986 | uint8 info = XLogRecGetInfo(record); |
9987 | const char *id; |
9988 | |
9989 | appendStringInfoString(buf, RmgrTable[rmid].rm_name); |
9990 | appendStringInfoChar(buf, '/'); |
9991 | |
9992 | id = RmgrTable[rmid].rm_identify(info); |
9993 | if (id == NULL) |
9994 | appendStringInfo(buf, "UNKNOWN (%X): " , info & ~XLR_INFO_MASK); |
9995 | else |
9996 | appendStringInfo(buf, "%s: " , id); |
9997 | |
9998 | RmgrTable[rmid].rm_desc(buf, record); |
9999 | } |
10000 | |
10001 | |
10002 | /* |
10003 | * Return the (possible) sync flag used for opening a file, depending on the |
10004 | * value of the GUC wal_sync_method. |
10005 | */ |
10006 | static int |
10007 | get_sync_bit(int method) |
10008 | { |
10009 | int o_direct_flag = 0; |
10010 | |
10011 | /* If fsync is disabled, never open in sync mode */ |
10012 | if (!enableFsync) |
10013 | return 0; |
10014 | |
10015 | /* |
10016 | * Optimize writes by bypassing kernel cache with O_DIRECT when using |
10017 | * O_SYNC/O_FSYNC and O_DSYNC. But only if archiving and streaming are |
10018 | * disabled, otherwise the archive command or walsender process will read |
10019 | * the WAL soon after writing it, which is guaranteed to cause a physical |
10020 | * read if we bypassed the kernel cache. We also skip the |
10021 | * posix_fadvise(POSIX_FADV_DONTNEED) call in XLogFileClose() for the same |
10022 | * reason. |
10023 | * |
10024 | * Never use O_DIRECT in walreceiver process for similar reasons; the WAL |
10025 | * written by walreceiver is normally read by the startup process soon |
10026 | * after its written. Also, walreceiver performs unaligned writes, which |
10027 | * don't work with O_DIRECT, so it is required for correctness too. |
10028 | */ |
10029 | if (!XLogIsNeeded() && !AmWalReceiverProcess()) |
10030 | o_direct_flag = PG_O_DIRECT; |
10031 | |
10032 | switch (method) |
10033 | { |
10034 | /* |
10035 | * enum values for all sync options are defined even if they are |
10036 | * not supported on the current platform. But if not, they are |
10037 | * not included in the enum option array, and therefore will never |
10038 | * be seen here. |
10039 | */ |
10040 | case SYNC_METHOD_FSYNC: |
10041 | case SYNC_METHOD_FSYNC_WRITETHROUGH: |
10042 | case SYNC_METHOD_FDATASYNC: |
10043 | return 0; |
10044 | #ifdef OPEN_SYNC_FLAG |
10045 | case SYNC_METHOD_OPEN: |
10046 | return OPEN_SYNC_FLAG | o_direct_flag; |
10047 | #endif |
10048 | #ifdef OPEN_DATASYNC_FLAG |
10049 | case SYNC_METHOD_OPEN_DSYNC: |
10050 | return OPEN_DATASYNC_FLAG | o_direct_flag; |
10051 | #endif |
10052 | default: |
10053 | /* can't happen (unless we are out of sync with option array) */ |
10054 | elog(ERROR, "unrecognized wal_sync_method: %d" , method); |
10055 | return 0; /* silence warning */ |
10056 | } |
10057 | } |
10058 | |
10059 | /* |
10060 | * GUC support |
10061 | */ |
10062 | void |
10063 | assign_xlog_sync_method(int new_sync_method, void *) |
10064 | { |
10065 | if (sync_method != new_sync_method) |
10066 | { |
10067 | /* |
10068 | * To ensure that no blocks escape unsynced, force an fsync on the |
10069 | * currently open log segment (if any). Also, if the open flag is |
10070 | * changing, close the log file so it will be reopened (with new flag |
10071 | * bit) at next use. |
10072 | */ |
10073 | if (openLogFile >= 0) |
10074 | { |
10075 | pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC_METHOD_ASSIGN); |
10076 | if (pg_fsync(openLogFile) != 0) |
10077 | ereport(PANIC, |
10078 | (errcode_for_file_access(), |
10079 | errmsg("could not fsync file \"%s\": %m" , |
10080 | XLogFileNameP(ThisTimeLineID, openLogSegNo)))); |
10081 | pgstat_report_wait_end(); |
10082 | if (get_sync_bit(sync_method) != get_sync_bit(new_sync_method)) |
10083 | XLogFileClose(); |
10084 | } |
10085 | } |
10086 | } |
10087 | |
10088 | |
10089 | /* |
10090 | * Issue appropriate kind of fsync (if any) for an XLOG output file. |
10091 | * |
10092 | * 'fd' is a file descriptor for the XLOG file to be fsync'd. |
10093 | * 'segno' is for error reporting purposes. |
10094 | */ |
10095 | void |
10096 | issue_xlog_fsync(int fd, XLogSegNo segno) |
10097 | { |
10098 | pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC); |
10099 | switch (sync_method) |
10100 | { |
10101 | case SYNC_METHOD_FSYNC: |
10102 | if (pg_fsync_no_writethrough(fd) != 0) |
10103 | ereport(PANIC, |
10104 | (errcode_for_file_access(), |
10105 | errmsg("could not fsync file \"%s\": %m" , |
10106 | XLogFileNameP(ThisTimeLineID, segno)))); |
10107 | break; |
10108 | #ifdef HAVE_FSYNC_WRITETHROUGH |
10109 | case SYNC_METHOD_FSYNC_WRITETHROUGH: |
10110 | if (pg_fsync_writethrough(fd) != 0) |
10111 | ereport(PANIC, |
10112 | (errcode_for_file_access(), |
10113 | errmsg("could not fsync write-through file \"%s\": %m" , |
10114 | XLogFileNameP(ThisTimeLineID, segno)))); |
10115 | break; |
10116 | #endif |
10117 | #ifdef HAVE_FDATASYNC |
10118 | case SYNC_METHOD_FDATASYNC: |
10119 | if (pg_fdatasync(fd) != 0) |
10120 | ereport(PANIC, |
10121 | (errcode_for_file_access(), |
10122 | errmsg("could not fdatasync file \"%s\": %m" , |
10123 | XLogFileNameP(ThisTimeLineID, segno)))); |
10124 | break; |
10125 | #endif |
10126 | case SYNC_METHOD_OPEN: |
10127 | case SYNC_METHOD_OPEN_DSYNC: |
10128 | /* write synced it already */ |
10129 | break; |
10130 | default: |
10131 | elog(PANIC, "unrecognized wal_sync_method: %d" , sync_method); |
10132 | break; |
10133 | } |
10134 | pgstat_report_wait_end(); |
10135 | } |
10136 | |
10137 | /* |
10138 | * Return the filename of given log segment, as a palloc'd string. |
10139 | */ |
10140 | char * |
10141 | XLogFileNameP(TimeLineID tli, XLogSegNo segno) |
10142 | { |
10143 | char *result = palloc(MAXFNAMELEN); |
10144 | |
10145 | XLogFileName(result, tli, segno, wal_segment_size); |
10146 | return result; |
10147 | } |
10148 | |
10149 | /* |
10150 | * do_pg_start_backup |
10151 | * |
10152 | * Utility function called at the start of an online backup. It creates the |
10153 | * necessary starting checkpoint and constructs the backup label file. |
10154 | * |
10155 | * There are two kind of backups: exclusive and non-exclusive. An exclusive |
10156 | * backup is started with pg_start_backup(), and there can be only one active |
10157 | * at a time. The backup and tablespace map files of an exclusive backup are |
10158 | * written to $PGDATA/backup_label and $PGDATA/tablespace_map, and they are |
10159 | * removed by pg_stop_backup(). |
10160 | * |
10161 | * A non-exclusive backup is used for the streaming base backups (see |
10162 | * src/backend/replication/basebackup.c). The difference to exclusive backups |
10163 | * is that the backup label and tablespace map files are not written to disk. |
10164 | * Instead, their would-be contents are returned in *labelfile and *tblspcmapfile, |
10165 | * and the caller is responsible for including them in the backup archive as |
10166 | * 'backup_label' and 'tablespace_map'. There can be many non-exclusive backups |
10167 | * active at the same time, and they don't conflict with an exclusive backup |
10168 | * either. |
10169 | * |
10170 | * tblspcmapfile is required mainly for tar format in windows as native windows |
10171 | * utilities are not able to create symlinks while extracting files from tar. |
10172 | * However for consistency, the same is used for all platforms. |
10173 | * |
10174 | * needtblspcmapfile is true for the cases (exclusive backup and for |
10175 | * non-exclusive backup only when tar format is used for taking backup) |
10176 | * when backup needs to generate tablespace_map file, it is used to |
10177 | * embed escape character before newline character in tablespace path. |
10178 | * |
10179 | * Returns the minimum WAL location that must be present to restore from this |
10180 | * backup, and the corresponding timeline ID in *starttli_p. |
10181 | * |
10182 | * Every successfully started non-exclusive backup must be stopped by calling |
10183 | * do_pg_stop_backup() or do_pg_abort_backup(). |
10184 | * |
10185 | * It is the responsibility of the caller of this function to verify the |
10186 | * permissions of the calling user! |
10187 | */ |
10188 | XLogRecPtr |
10189 | do_pg_start_backup(const char *backupidstr, bool fast, TimeLineID *starttli_p, |
10190 | StringInfo labelfile, List **tablespaces, |
10191 | StringInfo tblspcmapfile, bool infotbssize, |
10192 | bool needtblspcmapfile) |
10193 | { |
10194 | bool exclusive = (labelfile == NULL); |
10195 | bool backup_started_in_recovery = false; |
10196 | XLogRecPtr checkpointloc; |
10197 | XLogRecPtr startpoint; |
10198 | TimeLineID starttli; |
10199 | pg_time_t stamp_time; |
10200 | char strfbuf[128]; |
10201 | char xlogfilename[MAXFNAMELEN]; |
10202 | XLogSegNo _logSegNo; |
10203 | struct stat stat_buf; |
10204 | FILE *fp; |
10205 | |
10206 | backup_started_in_recovery = RecoveryInProgress(); |
10207 | |
10208 | /* |
10209 | * Currently only non-exclusive backup can be taken during recovery. |
10210 | */ |
10211 | if (backup_started_in_recovery && exclusive) |
10212 | ereport(ERROR, |
10213 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10214 | errmsg("recovery is in progress" ), |
10215 | errhint("WAL control functions cannot be executed during recovery." ))); |
10216 | |
10217 | /* |
10218 | * During recovery, we don't need to check WAL level. Because, if WAL |
10219 | * level is not sufficient, it's impossible to get here during recovery. |
10220 | */ |
10221 | if (!backup_started_in_recovery && !XLogIsNeeded()) |
10222 | ereport(ERROR, |
10223 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10224 | errmsg("WAL level not sufficient for making an online backup" ), |
10225 | errhint("wal_level must be set to \"replica\" or \"logical\" at server start." ))); |
10226 | |
10227 | if (strlen(backupidstr) > MAXPGPATH) |
10228 | ereport(ERROR, |
10229 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
10230 | errmsg("backup label too long (max %d bytes)" , |
10231 | MAXPGPATH))); |
10232 | |
10233 | /* |
10234 | * Mark backup active in shared memory. We must do full-page WAL writes |
10235 | * during an on-line backup even if not doing so at other times, because |
10236 | * it's quite possible for the backup dump to obtain a "torn" (partially |
10237 | * written) copy of a database page if it reads the page concurrently with |
10238 | * our write to the same page. This can be fixed as long as the first |
10239 | * write to the page in the WAL sequence is a full-page write. Hence, we |
10240 | * turn on forcePageWrites and then force a CHECKPOINT, to ensure there |
10241 | * are no dirty pages in shared memory that might get dumped while the |
10242 | * backup is in progress without having a corresponding WAL record. (Once |
10243 | * the backup is complete, we need not force full-page writes anymore, |
10244 | * since we expect that any pages not modified during the backup interval |
10245 | * must have been correctly captured by the backup.) |
10246 | * |
10247 | * Note that forcePageWrites has no effect during an online backup from |
10248 | * the standby. |
10249 | * |
10250 | * We must hold all the insertion locks to change the value of |
10251 | * forcePageWrites, to ensure adequate interlocking against |
10252 | * XLogInsertRecord(). |
10253 | */ |
10254 | WALInsertLockAcquireExclusive(); |
10255 | if (exclusive) |
10256 | { |
10257 | /* |
10258 | * At first, mark that we're now starting an exclusive backup, to |
10259 | * ensure that there are no other sessions currently running |
10260 | * pg_start_backup() or pg_stop_backup(). |
10261 | */ |
10262 | if (XLogCtl->Insert.exclusiveBackupState != EXCLUSIVE_BACKUP_NONE) |
10263 | { |
10264 | WALInsertLockRelease(); |
10265 | ereport(ERROR, |
10266 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10267 | errmsg("a backup is already in progress" ), |
10268 | errhint("Run pg_stop_backup() and try again." ))); |
10269 | } |
10270 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_STARTING; |
10271 | } |
10272 | else |
10273 | XLogCtl->Insert.nonExclusiveBackups++; |
10274 | XLogCtl->Insert.forcePageWrites = true; |
10275 | WALInsertLockRelease(); |
10276 | |
10277 | /* Ensure we release forcePageWrites if fail below */ |
10278 | PG_ENSURE_ERROR_CLEANUP(pg_start_backup_callback, (Datum) BoolGetDatum(exclusive)); |
10279 | { |
10280 | bool gotUniqueStartpoint = false; |
10281 | DIR *tblspcdir; |
10282 | struct dirent *de; |
10283 | tablespaceinfo *ti; |
10284 | int datadirpathlen; |
10285 | |
10286 | /* |
10287 | * Force an XLOG file switch before the checkpoint, to ensure that the |
10288 | * WAL segment the checkpoint is written to doesn't contain pages with |
10289 | * old timeline IDs. That would otherwise happen if you called |
10290 | * pg_start_backup() right after restoring from a PITR archive: the |
10291 | * first WAL segment containing the startup checkpoint has pages in |
10292 | * the beginning with the old timeline ID. That can cause trouble at |
10293 | * recovery: we won't have a history file covering the old timeline if |
10294 | * pg_wal directory was not included in the base backup and the WAL |
10295 | * archive was cleared too before starting the backup. |
10296 | * |
10297 | * This also ensures that we have emitted a WAL page header that has |
10298 | * XLP_BKP_REMOVABLE off before we emit the checkpoint record. |
10299 | * Therefore, if a WAL archiver (such as pglesslog) is trying to |
10300 | * compress out removable backup blocks, it won't remove any that |
10301 | * occur after this point. |
10302 | * |
10303 | * During recovery, we skip forcing XLOG file switch, which means that |
10304 | * the backup taken during recovery is not available for the special |
10305 | * recovery case described above. |
10306 | */ |
10307 | if (!backup_started_in_recovery) |
10308 | RequestXLogSwitch(false); |
10309 | |
10310 | do |
10311 | { |
10312 | bool checkpointfpw; |
10313 | |
10314 | /* |
10315 | * Force a CHECKPOINT. Aside from being necessary to prevent torn |
10316 | * page problems, this guarantees that two successive backup runs |
10317 | * will have different checkpoint positions and hence different |
10318 | * history file names, even if nothing happened in between. |
10319 | * |
10320 | * During recovery, establish a restartpoint if possible. We use |
10321 | * the last restartpoint as the backup starting checkpoint. This |
10322 | * means that two successive backup runs can have same checkpoint |
10323 | * positions. |
10324 | * |
10325 | * Since the fact that we are executing do_pg_start_backup() |
10326 | * during recovery means that checkpointer is running, we can use |
10327 | * RequestCheckpoint() to establish a restartpoint. |
10328 | * |
10329 | * We use CHECKPOINT_IMMEDIATE only if requested by user (via |
10330 | * passing fast = true). Otherwise this can take awhile. |
10331 | */ |
10332 | RequestCheckpoint(CHECKPOINT_FORCE | CHECKPOINT_WAIT | |
10333 | (fast ? CHECKPOINT_IMMEDIATE : 0)); |
10334 | |
10335 | /* |
10336 | * Now we need to fetch the checkpoint record location, and also |
10337 | * its REDO pointer. The oldest point in WAL that would be needed |
10338 | * to restore starting from the checkpoint is precisely the REDO |
10339 | * pointer. |
10340 | */ |
10341 | LWLockAcquire(ControlFileLock, LW_SHARED); |
10342 | checkpointloc = ControlFile->checkPoint; |
10343 | startpoint = ControlFile->checkPointCopy.redo; |
10344 | starttli = ControlFile->checkPointCopy.ThisTimeLineID; |
10345 | checkpointfpw = ControlFile->checkPointCopy.fullPageWrites; |
10346 | LWLockRelease(ControlFileLock); |
10347 | |
10348 | if (backup_started_in_recovery) |
10349 | { |
10350 | XLogRecPtr recptr; |
10351 | |
10352 | /* |
10353 | * Check to see if all WAL replayed during online backup |
10354 | * (i.e., since last restartpoint used as backup starting |
10355 | * checkpoint) contain full-page writes. |
10356 | */ |
10357 | SpinLockAcquire(&XLogCtl->info_lck); |
10358 | recptr = XLogCtl->lastFpwDisableRecPtr; |
10359 | SpinLockRelease(&XLogCtl->info_lck); |
10360 | |
10361 | if (!checkpointfpw || startpoint <= recptr) |
10362 | ereport(ERROR, |
10363 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10364 | errmsg("WAL generated with full_page_writes=off was replayed " |
10365 | "since last restartpoint" ), |
10366 | errhint("This means that the backup being taken on the standby " |
10367 | "is corrupt and should not be used. " |
10368 | "Enable full_page_writes and run CHECKPOINT on the master, " |
10369 | "and then try an online backup again." ))); |
10370 | |
10371 | /* |
10372 | * During recovery, since we don't use the end-of-backup WAL |
10373 | * record and don't write the backup history file, the |
10374 | * starting WAL location doesn't need to be unique. This means |
10375 | * that two base backups started at the same time might use |
10376 | * the same checkpoint as starting locations. |
10377 | */ |
10378 | gotUniqueStartpoint = true; |
10379 | } |
10380 | |
10381 | /* |
10382 | * If two base backups are started at the same time (in WAL sender |
10383 | * processes), we need to make sure that they use different |
10384 | * checkpoints as starting locations, because we use the starting |
10385 | * WAL location as a unique identifier for the base backup in the |
10386 | * end-of-backup WAL record and when we write the backup history |
10387 | * file. Perhaps it would be better generate a separate unique ID |
10388 | * for each backup instead of forcing another checkpoint, but |
10389 | * taking a checkpoint right after another is not that expensive |
10390 | * either because only few buffers have been dirtied yet. |
10391 | */ |
10392 | WALInsertLockAcquireExclusive(); |
10393 | if (XLogCtl->Insert.lastBackupStart < startpoint) |
10394 | { |
10395 | XLogCtl->Insert.lastBackupStart = startpoint; |
10396 | gotUniqueStartpoint = true; |
10397 | } |
10398 | WALInsertLockRelease(); |
10399 | } while (!gotUniqueStartpoint); |
10400 | |
10401 | XLByteToSeg(startpoint, _logSegNo, wal_segment_size); |
10402 | XLogFileName(xlogfilename, starttli, _logSegNo, wal_segment_size); |
10403 | |
10404 | /* |
10405 | * Construct tablespace_map file |
10406 | */ |
10407 | if (exclusive) |
10408 | tblspcmapfile = makeStringInfo(); |
10409 | |
10410 | datadirpathlen = strlen(DataDir); |
10411 | |
10412 | /* Collect information about all tablespaces */ |
10413 | tblspcdir = AllocateDir("pg_tblspc" ); |
10414 | while ((de = ReadDir(tblspcdir, "pg_tblspc" )) != NULL) |
10415 | { |
10416 | char fullpath[MAXPGPATH + 10]; |
10417 | char linkpath[MAXPGPATH]; |
10418 | char *relpath = NULL; |
10419 | int rllen; |
10420 | StringInfoData buflinkpath; |
10421 | char *s = linkpath; |
10422 | |
10423 | /* Skip special stuff */ |
10424 | if (strcmp(de->d_name, "." ) == 0 || strcmp(de->d_name, ".." ) == 0) |
10425 | continue; |
10426 | |
10427 | snprintf(fullpath, sizeof(fullpath), "pg_tblspc/%s" , de->d_name); |
10428 | |
10429 | #if defined(HAVE_READLINK) || defined(WIN32) |
10430 | rllen = readlink(fullpath, linkpath, sizeof(linkpath)); |
10431 | if (rllen < 0) |
10432 | { |
10433 | ereport(WARNING, |
10434 | (errmsg("could not read symbolic link \"%s\": %m" , |
10435 | fullpath))); |
10436 | continue; |
10437 | } |
10438 | else if (rllen >= sizeof(linkpath)) |
10439 | { |
10440 | ereport(WARNING, |
10441 | (errmsg("symbolic link \"%s\" target is too long" , |
10442 | fullpath))); |
10443 | continue; |
10444 | } |
10445 | linkpath[rllen] = '\0'; |
10446 | |
10447 | /* |
10448 | * Add the escape character '\\' before newline in a string to |
10449 | * ensure that we can distinguish between the newline in the |
10450 | * tablespace path and end of line while reading tablespace_map |
10451 | * file during archive recovery. |
10452 | */ |
10453 | initStringInfo(&buflinkpath); |
10454 | |
10455 | while (*s) |
10456 | { |
10457 | if ((*s == '\n' || *s == '\r') && needtblspcmapfile) |
10458 | appendStringInfoChar(&buflinkpath, '\\'); |
10459 | appendStringInfoChar(&buflinkpath, *s++); |
10460 | } |
10461 | |
10462 | /* |
10463 | * Relpath holds the relative path of the tablespace directory |
10464 | * when it's located within PGDATA, or NULL if it's located |
10465 | * elsewhere. |
10466 | */ |
10467 | if (rllen > datadirpathlen && |
10468 | strncmp(linkpath, DataDir, datadirpathlen) == 0 && |
10469 | IS_DIR_SEP(linkpath[datadirpathlen])) |
10470 | relpath = linkpath + datadirpathlen + 1; |
10471 | |
10472 | ti = palloc(sizeof(tablespaceinfo)); |
10473 | ti->oid = pstrdup(de->d_name); |
10474 | ti->path = pstrdup(buflinkpath.data); |
10475 | ti->rpath = relpath ? pstrdup(relpath) : NULL; |
10476 | ti->size = infotbssize ? sendTablespace(fullpath, true) : -1; |
10477 | |
10478 | if (tablespaces) |
10479 | *tablespaces = lappend(*tablespaces, ti); |
10480 | |
10481 | appendStringInfo(tblspcmapfile, "%s %s\n" , ti->oid, ti->path); |
10482 | |
10483 | pfree(buflinkpath.data); |
10484 | #else |
10485 | |
10486 | /* |
10487 | * If the platform does not have symbolic links, it should not be |
10488 | * possible to have tablespaces - clearly somebody else created |
10489 | * them. Warn about it and ignore. |
10490 | */ |
10491 | ereport(WARNING, |
10492 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
10493 | errmsg("tablespaces are not supported on this platform" ))); |
10494 | #endif |
10495 | } |
10496 | FreeDir(tblspcdir); |
10497 | |
10498 | /* |
10499 | * Construct backup label file |
10500 | */ |
10501 | if (exclusive) |
10502 | labelfile = makeStringInfo(); |
10503 | |
10504 | /* Use the log timezone here, not the session timezone */ |
10505 | stamp_time = (pg_time_t) time(NULL); |
10506 | pg_strftime(strfbuf, sizeof(strfbuf), |
10507 | "%Y-%m-%d %H:%M:%S %Z" , |
10508 | pg_localtime(&stamp_time, log_timezone)); |
10509 | appendStringInfo(labelfile, "START WAL LOCATION: %X/%X (file %s)\n" , |
10510 | (uint32) (startpoint >> 32), (uint32) startpoint, xlogfilename); |
10511 | appendStringInfo(labelfile, "CHECKPOINT LOCATION: %X/%X\n" , |
10512 | (uint32) (checkpointloc >> 32), (uint32) checkpointloc); |
10513 | appendStringInfo(labelfile, "BACKUP METHOD: %s\n" , |
10514 | exclusive ? "pg_start_backup" : "streamed" ); |
10515 | appendStringInfo(labelfile, "BACKUP FROM: %s\n" , |
10516 | backup_started_in_recovery ? "standby" : "master" ); |
10517 | appendStringInfo(labelfile, "START TIME: %s\n" , strfbuf); |
10518 | appendStringInfo(labelfile, "LABEL: %s\n" , backupidstr); |
10519 | appendStringInfo(labelfile, "START TIMELINE: %u\n" , starttli); |
10520 | |
10521 | /* |
10522 | * Okay, write the file, or return its contents to caller. |
10523 | */ |
10524 | if (exclusive) |
10525 | { |
10526 | /* |
10527 | * Check for existing backup label --- implies a backup is already |
10528 | * running. (XXX given that we checked exclusiveBackupState |
10529 | * above, maybe it would be OK to just unlink any such label |
10530 | * file?) |
10531 | */ |
10532 | if (stat(BACKUP_LABEL_FILE, &stat_buf) != 0) |
10533 | { |
10534 | if (errno != ENOENT) |
10535 | ereport(ERROR, |
10536 | (errcode_for_file_access(), |
10537 | errmsg("could not stat file \"%s\": %m" , |
10538 | BACKUP_LABEL_FILE))); |
10539 | } |
10540 | else |
10541 | ereport(ERROR, |
10542 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10543 | errmsg("a backup is already in progress" ), |
10544 | errhint("If you're sure there is no backup in progress, remove file \"%s\" and try again." , |
10545 | BACKUP_LABEL_FILE))); |
10546 | |
10547 | fp = AllocateFile(BACKUP_LABEL_FILE, "w" ); |
10548 | |
10549 | if (!fp) |
10550 | ereport(ERROR, |
10551 | (errcode_for_file_access(), |
10552 | errmsg("could not create file \"%s\": %m" , |
10553 | BACKUP_LABEL_FILE))); |
10554 | if (fwrite(labelfile->data, labelfile->len, 1, fp) != 1 || |
10555 | fflush(fp) != 0 || |
10556 | pg_fsync(fileno(fp)) != 0 || |
10557 | ferror(fp) || |
10558 | FreeFile(fp)) |
10559 | ereport(ERROR, |
10560 | (errcode_for_file_access(), |
10561 | errmsg("could not write file \"%s\": %m" , |
10562 | BACKUP_LABEL_FILE))); |
10563 | /* Allocated locally for exclusive backups, so free separately */ |
10564 | pfree(labelfile->data); |
10565 | pfree(labelfile); |
10566 | |
10567 | /* Write backup tablespace_map file. */ |
10568 | if (tblspcmapfile->len > 0) |
10569 | { |
10570 | if (stat(TABLESPACE_MAP, &stat_buf) != 0) |
10571 | { |
10572 | if (errno != ENOENT) |
10573 | ereport(ERROR, |
10574 | (errcode_for_file_access(), |
10575 | errmsg("could not stat file \"%s\": %m" , |
10576 | TABLESPACE_MAP))); |
10577 | } |
10578 | else |
10579 | ereport(ERROR, |
10580 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10581 | errmsg("a backup is already in progress" ), |
10582 | errhint("If you're sure there is no backup in progress, remove file \"%s\" and try again." , |
10583 | TABLESPACE_MAP))); |
10584 | |
10585 | fp = AllocateFile(TABLESPACE_MAP, "w" ); |
10586 | |
10587 | if (!fp) |
10588 | ereport(ERROR, |
10589 | (errcode_for_file_access(), |
10590 | errmsg("could not create file \"%s\": %m" , |
10591 | TABLESPACE_MAP))); |
10592 | if (fwrite(tblspcmapfile->data, tblspcmapfile->len, 1, fp) != 1 || |
10593 | fflush(fp) != 0 || |
10594 | pg_fsync(fileno(fp)) != 0 || |
10595 | ferror(fp) || |
10596 | FreeFile(fp)) |
10597 | ereport(ERROR, |
10598 | (errcode_for_file_access(), |
10599 | errmsg("could not write file \"%s\": %m" , |
10600 | TABLESPACE_MAP))); |
10601 | } |
10602 | |
10603 | /* Allocated locally for exclusive backups, so free separately */ |
10604 | pfree(tblspcmapfile->data); |
10605 | pfree(tblspcmapfile); |
10606 | } |
10607 | } |
10608 | PG_END_ENSURE_ERROR_CLEANUP(pg_start_backup_callback, (Datum) BoolGetDatum(exclusive)); |
10609 | |
10610 | /* |
10611 | * Mark that start phase has correctly finished for an exclusive backup. |
10612 | * Session-level locks are updated as well to reflect that state. |
10613 | * |
10614 | * Note that CHECK_FOR_INTERRUPTS() must not occur while updating backup |
10615 | * counters and session-level lock. Otherwise they can be updated |
10616 | * inconsistently, and which might cause do_pg_abort_backup() to fail. |
10617 | */ |
10618 | if (exclusive) |
10619 | { |
10620 | WALInsertLockAcquireExclusive(); |
10621 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_IN_PROGRESS; |
10622 | |
10623 | /* Set session-level lock */ |
10624 | sessionBackupState = SESSION_BACKUP_EXCLUSIVE; |
10625 | WALInsertLockRelease(); |
10626 | } |
10627 | else |
10628 | sessionBackupState = SESSION_BACKUP_NON_EXCLUSIVE; |
10629 | |
10630 | /* |
10631 | * We're done. As a convenience, return the starting WAL location. |
10632 | */ |
10633 | if (starttli_p) |
10634 | *starttli_p = starttli; |
10635 | return startpoint; |
10636 | } |
10637 | |
10638 | /* Error cleanup callback for pg_start_backup */ |
10639 | static void |
10640 | pg_start_backup_callback(int code, Datum arg) |
10641 | { |
10642 | bool exclusive = DatumGetBool(arg); |
10643 | |
10644 | /* Update backup counters and forcePageWrites on failure */ |
10645 | WALInsertLockAcquireExclusive(); |
10646 | if (exclusive) |
10647 | { |
10648 | Assert(XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_STARTING); |
10649 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_NONE; |
10650 | } |
10651 | else |
10652 | { |
10653 | Assert(XLogCtl->Insert.nonExclusiveBackups > 0); |
10654 | XLogCtl->Insert.nonExclusiveBackups--; |
10655 | } |
10656 | |
10657 | if (XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_NONE && |
10658 | XLogCtl->Insert.nonExclusiveBackups == 0) |
10659 | { |
10660 | XLogCtl->Insert.forcePageWrites = false; |
10661 | } |
10662 | WALInsertLockRelease(); |
10663 | } |
10664 | |
10665 | /* |
10666 | * Error cleanup callback for pg_stop_backup |
10667 | */ |
10668 | static void |
10669 | pg_stop_backup_callback(int code, Datum arg) |
10670 | { |
10671 | bool exclusive = DatumGetBool(arg); |
10672 | |
10673 | /* Update backup status on failure */ |
10674 | WALInsertLockAcquireExclusive(); |
10675 | if (exclusive) |
10676 | { |
10677 | Assert(XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_STOPPING); |
10678 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_IN_PROGRESS; |
10679 | } |
10680 | WALInsertLockRelease(); |
10681 | } |
10682 | |
10683 | /* |
10684 | * Utility routine to fetch the session-level status of a backup running. |
10685 | */ |
10686 | SessionBackupState |
10687 | get_backup_status(void) |
10688 | { |
10689 | return sessionBackupState; |
10690 | } |
10691 | |
10692 | /* |
10693 | * do_pg_stop_backup |
10694 | * |
10695 | * Utility function called at the end of an online backup. It cleans up the |
10696 | * backup state and can optionally wait for WAL segments to be archived. |
10697 | * |
10698 | * If labelfile is NULL, this stops an exclusive backup. Otherwise this stops |
10699 | * the non-exclusive backup specified by 'labelfile'. |
10700 | * |
10701 | * Returns the last WAL location that must be present to restore from this |
10702 | * backup, and the corresponding timeline ID in *stoptli_p. |
10703 | * |
10704 | * It is the responsibility of the caller of this function to verify the |
10705 | * permissions of the calling user! |
10706 | */ |
10707 | XLogRecPtr |
10708 | do_pg_stop_backup(char *labelfile, bool waitforarchive, TimeLineID *stoptli_p) |
10709 | { |
10710 | bool exclusive = (labelfile == NULL); |
10711 | bool backup_started_in_recovery = false; |
10712 | XLogRecPtr startpoint; |
10713 | XLogRecPtr stoppoint; |
10714 | TimeLineID stoptli; |
10715 | pg_time_t stamp_time; |
10716 | char strfbuf[128]; |
10717 | char histfilepath[MAXPGPATH]; |
10718 | char startxlogfilename[MAXFNAMELEN]; |
10719 | char stopxlogfilename[MAXFNAMELEN]; |
10720 | char lastxlogfilename[MAXFNAMELEN]; |
10721 | char histfilename[MAXFNAMELEN]; |
10722 | char backupfrom[20]; |
10723 | XLogSegNo _logSegNo; |
10724 | FILE *lfp; |
10725 | FILE *fp; |
10726 | char ch; |
10727 | int seconds_before_warning; |
10728 | int waits = 0; |
10729 | bool reported_waiting = false; |
10730 | char *remaining; |
10731 | char *ptr; |
10732 | uint32 hi, |
10733 | lo; |
10734 | |
10735 | backup_started_in_recovery = RecoveryInProgress(); |
10736 | |
10737 | /* |
10738 | * Currently only non-exclusive backup can be taken during recovery. |
10739 | */ |
10740 | if (backup_started_in_recovery && exclusive) |
10741 | ereport(ERROR, |
10742 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10743 | errmsg("recovery is in progress" ), |
10744 | errhint("WAL control functions cannot be executed during recovery." ))); |
10745 | |
10746 | /* |
10747 | * During recovery, we don't need to check WAL level. Because, if WAL |
10748 | * level is not sufficient, it's impossible to get here during recovery. |
10749 | */ |
10750 | if (!backup_started_in_recovery && !XLogIsNeeded()) |
10751 | ereport(ERROR, |
10752 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10753 | errmsg("WAL level not sufficient for making an online backup" ), |
10754 | errhint("wal_level must be set to \"replica\" or \"logical\" at server start." ))); |
10755 | |
10756 | if (exclusive) |
10757 | { |
10758 | /* |
10759 | * At first, mark that we're now stopping an exclusive backup, to |
10760 | * ensure that there are no other sessions currently running |
10761 | * pg_start_backup() or pg_stop_backup(). |
10762 | */ |
10763 | WALInsertLockAcquireExclusive(); |
10764 | if (XLogCtl->Insert.exclusiveBackupState != EXCLUSIVE_BACKUP_IN_PROGRESS) |
10765 | { |
10766 | WALInsertLockRelease(); |
10767 | ereport(ERROR, |
10768 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10769 | errmsg("exclusive backup not in progress" ))); |
10770 | } |
10771 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_STOPPING; |
10772 | WALInsertLockRelease(); |
10773 | |
10774 | /* |
10775 | * Remove backup_label. In case of failure, the state for an exclusive |
10776 | * backup is switched back to in-progress. |
10777 | */ |
10778 | PG_ENSURE_ERROR_CLEANUP(pg_stop_backup_callback, (Datum) BoolGetDatum(exclusive)); |
10779 | { |
10780 | /* |
10781 | * Read the existing label file into memory. |
10782 | */ |
10783 | struct stat statbuf; |
10784 | int r; |
10785 | |
10786 | if (stat(BACKUP_LABEL_FILE, &statbuf)) |
10787 | { |
10788 | /* should not happen per the upper checks */ |
10789 | if (errno != ENOENT) |
10790 | ereport(ERROR, |
10791 | (errcode_for_file_access(), |
10792 | errmsg("could not stat file \"%s\": %m" , |
10793 | BACKUP_LABEL_FILE))); |
10794 | ereport(ERROR, |
10795 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10796 | errmsg("a backup is not in progress" ))); |
10797 | } |
10798 | |
10799 | lfp = AllocateFile(BACKUP_LABEL_FILE, "r" ); |
10800 | if (!lfp) |
10801 | { |
10802 | ereport(ERROR, |
10803 | (errcode_for_file_access(), |
10804 | errmsg("could not read file \"%s\": %m" , |
10805 | BACKUP_LABEL_FILE))); |
10806 | } |
10807 | labelfile = palloc(statbuf.st_size + 1); |
10808 | r = fread(labelfile, statbuf.st_size, 1, lfp); |
10809 | labelfile[statbuf.st_size] = '\0'; |
10810 | |
10811 | /* |
10812 | * Close and remove the backup label file |
10813 | */ |
10814 | if (r != 1 || ferror(lfp) || FreeFile(lfp)) |
10815 | ereport(ERROR, |
10816 | (errcode_for_file_access(), |
10817 | errmsg("could not read file \"%s\": %m" , |
10818 | BACKUP_LABEL_FILE))); |
10819 | durable_unlink(BACKUP_LABEL_FILE, ERROR); |
10820 | |
10821 | /* |
10822 | * Remove tablespace_map file if present, it is created only if |
10823 | * there are tablespaces. |
10824 | */ |
10825 | durable_unlink(TABLESPACE_MAP, DEBUG1); |
10826 | } |
10827 | PG_END_ENSURE_ERROR_CLEANUP(pg_stop_backup_callback, (Datum) BoolGetDatum(exclusive)); |
10828 | } |
10829 | |
10830 | /* |
10831 | * OK to update backup counters, forcePageWrites and session-level lock. |
10832 | * |
10833 | * Note that CHECK_FOR_INTERRUPTS() must not occur while updating them. |
10834 | * Otherwise they can be updated inconsistently, and which might cause |
10835 | * do_pg_abort_backup() to fail. |
10836 | */ |
10837 | WALInsertLockAcquireExclusive(); |
10838 | if (exclusive) |
10839 | { |
10840 | XLogCtl->Insert.exclusiveBackupState = EXCLUSIVE_BACKUP_NONE; |
10841 | } |
10842 | else |
10843 | { |
10844 | /* |
10845 | * The user-visible pg_start/stop_backup() functions that operate on |
10846 | * exclusive backups can be called at any time, but for non-exclusive |
10847 | * backups, it is expected that each do_pg_start_backup() call is |
10848 | * matched by exactly one do_pg_stop_backup() call. |
10849 | */ |
10850 | Assert(XLogCtl->Insert.nonExclusiveBackups > 0); |
10851 | XLogCtl->Insert.nonExclusiveBackups--; |
10852 | } |
10853 | |
10854 | if (XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_NONE && |
10855 | XLogCtl->Insert.nonExclusiveBackups == 0) |
10856 | { |
10857 | XLogCtl->Insert.forcePageWrites = false; |
10858 | } |
10859 | |
10860 | /* |
10861 | * Clean up session-level lock. |
10862 | * |
10863 | * You might think that WALInsertLockRelease() can be called before |
10864 | * cleaning up session-level lock because session-level lock doesn't need |
10865 | * to be protected with WAL insertion lock. But since |
10866 | * CHECK_FOR_INTERRUPTS() can occur in it, session-level lock must be |
10867 | * cleaned up before it. |
10868 | */ |
10869 | sessionBackupState = SESSION_BACKUP_NONE; |
10870 | |
10871 | WALInsertLockRelease(); |
10872 | |
10873 | /* |
10874 | * Read and parse the START WAL LOCATION line (this code is pretty crude, |
10875 | * but we are not expecting any variability in the file format). |
10876 | */ |
10877 | if (sscanf(labelfile, "START WAL LOCATION: %X/%X (file %24s)%c" , |
10878 | &hi, &lo, startxlogfilename, |
10879 | &ch) != 4 || ch != '\n') |
10880 | ereport(ERROR, |
10881 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10882 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE))); |
10883 | startpoint = ((uint64) hi) << 32 | lo; |
10884 | remaining = strchr(labelfile, '\n') + 1; /* %n is not portable enough */ |
10885 | |
10886 | /* |
10887 | * Parse the BACKUP FROM line. If we are taking an online backup from the |
10888 | * standby, we confirm that the standby has not been promoted during the |
10889 | * backup. |
10890 | */ |
10891 | ptr = strstr(remaining, "BACKUP FROM:" ); |
10892 | if (!ptr || sscanf(ptr, "BACKUP FROM: %19s\n" , backupfrom) != 1) |
10893 | ereport(ERROR, |
10894 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10895 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE))); |
10896 | if (strcmp(backupfrom, "standby" ) == 0 && !backup_started_in_recovery) |
10897 | ereport(ERROR, |
10898 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10899 | errmsg("the standby was promoted during online backup" ), |
10900 | errhint("This means that the backup being taken is corrupt " |
10901 | "and should not be used. " |
10902 | "Try taking another online backup." ))); |
10903 | |
10904 | /* |
10905 | * During recovery, we don't write an end-of-backup record. We assume that |
10906 | * pg_control was backed up last and its minimum recovery point can be |
10907 | * available as the backup end location. Since we don't have an |
10908 | * end-of-backup record, we use the pg_control value to check whether |
10909 | * we've reached the end of backup when starting recovery from this |
10910 | * backup. We have no way of checking if pg_control wasn't backed up last |
10911 | * however. |
10912 | * |
10913 | * We don't force a switch to new WAL file but it is still possible to |
10914 | * wait for all the required files to be archived if waitforarchive is |
10915 | * true. This is okay if we use the backup to start a standby and fetch |
10916 | * the missing WAL using streaming replication. But in the case of an |
10917 | * archive recovery, a user should set waitforarchive to true and wait for |
10918 | * them to be archived to ensure that all the required files are |
10919 | * available. |
10920 | * |
10921 | * We return the current minimum recovery point as the backup end |
10922 | * location. Note that it can be greater than the exact backup end |
10923 | * location if the minimum recovery point is updated after the backup of |
10924 | * pg_control. This is harmless for current uses. |
10925 | * |
10926 | * XXX currently a backup history file is for informational and debug |
10927 | * purposes only. It's not essential for an online backup. Furthermore, |
10928 | * even if it's created, it will not be archived during recovery because |
10929 | * an archiver is not invoked. So it doesn't seem worthwhile to write a |
10930 | * backup history file during recovery. |
10931 | */ |
10932 | if (backup_started_in_recovery) |
10933 | { |
10934 | XLogRecPtr recptr; |
10935 | |
10936 | /* |
10937 | * Check to see if all WAL replayed during online backup contain |
10938 | * full-page writes. |
10939 | */ |
10940 | SpinLockAcquire(&XLogCtl->info_lck); |
10941 | recptr = XLogCtl->lastFpwDisableRecPtr; |
10942 | SpinLockRelease(&XLogCtl->info_lck); |
10943 | |
10944 | if (startpoint <= recptr) |
10945 | ereport(ERROR, |
10946 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
10947 | errmsg("WAL generated with full_page_writes=off was replayed " |
10948 | "during online backup" ), |
10949 | errhint("This means that the backup being taken on the standby " |
10950 | "is corrupt and should not be used. " |
10951 | "Enable full_page_writes and run CHECKPOINT on the master, " |
10952 | "and then try an online backup again." ))); |
10953 | |
10954 | |
10955 | LWLockAcquire(ControlFileLock, LW_SHARED); |
10956 | stoppoint = ControlFile->minRecoveryPoint; |
10957 | stoptli = ControlFile->minRecoveryPointTLI; |
10958 | LWLockRelease(ControlFileLock); |
10959 | } |
10960 | else |
10961 | { |
10962 | /* |
10963 | * Write the backup-end xlog record |
10964 | */ |
10965 | XLogBeginInsert(); |
10966 | XLogRegisterData((char *) (&startpoint), sizeof(startpoint)); |
10967 | stoppoint = XLogInsert(RM_XLOG_ID, XLOG_BACKUP_END); |
10968 | stoptli = ThisTimeLineID; |
10969 | |
10970 | /* |
10971 | * Force a switch to a new xlog segment file, so that the backup is |
10972 | * valid as soon as archiver moves out the current segment file. |
10973 | */ |
10974 | RequestXLogSwitch(false); |
10975 | |
10976 | XLByteToPrevSeg(stoppoint, _logSegNo, wal_segment_size); |
10977 | XLogFileName(stopxlogfilename, stoptli, _logSegNo, wal_segment_size); |
10978 | |
10979 | /* Use the log timezone here, not the session timezone */ |
10980 | stamp_time = (pg_time_t) time(NULL); |
10981 | pg_strftime(strfbuf, sizeof(strfbuf), |
10982 | "%Y-%m-%d %H:%M:%S %Z" , |
10983 | pg_localtime(&stamp_time, log_timezone)); |
10984 | |
10985 | /* |
10986 | * Write the backup history file |
10987 | */ |
10988 | XLByteToSeg(startpoint, _logSegNo, wal_segment_size); |
10989 | BackupHistoryFilePath(histfilepath, stoptli, _logSegNo, |
10990 | startpoint, wal_segment_size); |
10991 | fp = AllocateFile(histfilepath, "w" ); |
10992 | if (!fp) |
10993 | ereport(ERROR, |
10994 | (errcode_for_file_access(), |
10995 | errmsg("could not create file \"%s\": %m" , |
10996 | histfilepath))); |
10997 | fprintf(fp, "START WAL LOCATION: %X/%X (file %s)\n" , |
10998 | (uint32) (startpoint >> 32), (uint32) startpoint, startxlogfilename); |
10999 | fprintf(fp, "STOP WAL LOCATION: %X/%X (file %s)\n" , |
11000 | (uint32) (stoppoint >> 32), (uint32) stoppoint, stopxlogfilename); |
11001 | |
11002 | /* |
11003 | * Transfer remaining lines including label and start timeline to |
11004 | * history file. |
11005 | */ |
11006 | fprintf(fp, "%s" , remaining); |
11007 | fprintf(fp, "STOP TIME: %s\n" , strfbuf); |
11008 | fprintf(fp, "STOP TIMELINE: %u\n" , stoptli); |
11009 | if (fflush(fp) || ferror(fp) || FreeFile(fp)) |
11010 | ereport(ERROR, |
11011 | (errcode_for_file_access(), |
11012 | errmsg("could not write file \"%s\": %m" , |
11013 | histfilepath))); |
11014 | |
11015 | /* |
11016 | * Clean out any no-longer-needed history files. As a side effect, |
11017 | * this will post a .ready file for the newly created history file, |
11018 | * notifying the archiver that history file may be archived |
11019 | * immediately. |
11020 | */ |
11021 | CleanupBackupHistory(); |
11022 | } |
11023 | |
11024 | /* |
11025 | * If archiving is enabled, wait for all the required WAL files to be |
11026 | * archived before returning. If archiving isn't enabled, the required WAL |
11027 | * needs to be transported via streaming replication (hopefully with |
11028 | * wal_keep_segments set high enough), or some more exotic mechanism like |
11029 | * polling and copying files from pg_wal with script. We have no knowledge |
11030 | * of those mechanisms, so it's up to the user to ensure that he gets all |
11031 | * the required WAL. |
11032 | * |
11033 | * We wait until both the last WAL file filled during backup and the |
11034 | * history file have been archived, and assume that the alphabetic sorting |
11035 | * property of the WAL files ensures any earlier WAL files are safely |
11036 | * archived as well. |
11037 | * |
11038 | * We wait forever, since archive_command is supposed to work and we |
11039 | * assume the admin wanted his backup to work completely. If you don't |
11040 | * wish to wait, then either waitforarchive should be passed in as false, |
11041 | * or you can set statement_timeout. Also, some notices are issued to |
11042 | * clue in anyone who might be doing this interactively. |
11043 | */ |
11044 | |
11045 | if (waitforarchive && |
11046 | ((!backup_started_in_recovery && XLogArchivingActive()) || |
11047 | (backup_started_in_recovery && XLogArchivingAlways()))) |
11048 | { |
11049 | XLByteToPrevSeg(stoppoint, _logSegNo, wal_segment_size); |
11050 | XLogFileName(lastxlogfilename, stoptli, _logSegNo, wal_segment_size); |
11051 | |
11052 | XLByteToSeg(startpoint, _logSegNo, wal_segment_size); |
11053 | BackupHistoryFileName(histfilename, stoptli, _logSegNo, |
11054 | startpoint, wal_segment_size); |
11055 | |
11056 | seconds_before_warning = 60; |
11057 | waits = 0; |
11058 | |
11059 | while (XLogArchiveIsBusy(lastxlogfilename) || |
11060 | XLogArchiveIsBusy(histfilename)) |
11061 | { |
11062 | CHECK_FOR_INTERRUPTS(); |
11063 | |
11064 | if (!reported_waiting && waits > 5) |
11065 | { |
11066 | ereport(NOTICE, |
11067 | (errmsg("base backup done, waiting for required WAL segments to be archived" ))); |
11068 | reported_waiting = true; |
11069 | } |
11070 | |
11071 | pg_usleep(1000000L); |
11072 | |
11073 | if (++waits >= seconds_before_warning) |
11074 | { |
11075 | seconds_before_warning *= 2; /* This wraps in >10 years... */ |
11076 | ereport(WARNING, |
11077 | (errmsg("still waiting for all required WAL segments to be archived (%d seconds elapsed)" , |
11078 | waits), |
11079 | errhint("Check that your archive_command is executing properly. " |
11080 | "You can safely cancel this backup, " |
11081 | "but the database backup will not be usable without all the WAL segments." ))); |
11082 | } |
11083 | } |
11084 | |
11085 | ereport(NOTICE, |
11086 | (errmsg("all required WAL segments have been archived" ))); |
11087 | } |
11088 | else if (waitforarchive) |
11089 | ereport(NOTICE, |
11090 | (errmsg("WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup" ))); |
11091 | |
11092 | /* |
11093 | * We're done. As a convenience, return the ending WAL location. |
11094 | */ |
11095 | if (stoptli_p) |
11096 | *stoptli_p = stoptli; |
11097 | return stoppoint; |
11098 | } |
11099 | |
11100 | |
11101 | /* |
11102 | * do_pg_abort_backup: abort a running backup |
11103 | * |
11104 | * This does just the most basic steps of do_pg_stop_backup(), by taking the |
11105 | * system out of backup mode, thus making it a lot more safe to call from |
11106 | * an error handler. |
11107 | * |
11108 | * NB: This is only for aborting a non-exclusive backup that doesn't write |
11109 | * backup_label. A backup started with pg_start_backup() needs to be finished |
11110 | * with pg_stop_backup(). |
11111 | */ |
11112 | void |
11113 | do_pg_abort_backup(void) |
11114 | { |
11115 | /* |
11116 | * Quick exit if session is not keeping around a non-exclusive backup |
11117 | * already started. |
11118 | */ |
11119 | if (sessionBackupState == SESSION_BACKUP_NONE) |
11120 | return; |
11121 | |
11122 | WALInsertLockAcquireExclusive(); |
11123 | Assert(XLogCtl->Insert.nonExclusiveBackups > 0); |
11124 | Assert(sessionBackupState == SESSION_BACKUP_NON_EXCLUSIVE); |
11125 | XLogCtl->Insert.nonExclusiveBackups--; |
11126 | |
11127 | if (XLogCtl->Insert.exclusiveBackupState == EXCLUSIVE_BACKUP_NONE && |
11128 | XLogCtl->Insert.nonExclusiveBackups == 0) |
11129 | { |
11130 | XLogCtl->Insert.forcePageWrites = false; |
11131 | } |
11132 | WALInsertLockRelease(); |
11133 | } |
11134 | |
11135 | /* |
11136 | * Get latest redo apply position. |
11137 | * |
11138 | * Exported to allow WALReceiver to read the pointer directly. |
11139 | */ |
11140 | XLogRecPtr |
11141 | GetXLogReplayRecPtr(TimeLineID *replayTLI) |
11142 | { |
11143 | XLogRecPtr recptr; |
11144 | TimeLineID tli; |
11145 | |
11146 | SpinLockAcquire(&XLogCtl->info_lck); |
11147 | recptr = XLogCtl->lastReplayedEndRecPtr; |
11148 | tli = XLogCtl->lastReplayedTLI; |
11149 | SpinLockRelease(&XLogCtl->info_lck); |
11150 | |
11151 | if (replayTLI) |
11152 | *replayTLI = tli; |
11153 | return recptr; |
11154 | } |
11155 | |
11156 | /* |
11157 | * Get latest WAL insert pointer |
11158 | */ |
11159 | XLogRecPtr |
11160 | GetXLogInsertRecPtr(void) |
11161 | { |
11162 | XLogCtlInsert *Insert = &XLogCtl->Insert; |
11163 | uint64 current_bytepos; |
11164 | |
11165 | SpinLockAcquire(&Insert->insertpos_lck); |
11166 | current_bytepos = Insert->CurrBytePos; |
11167 | SpinLockRelease(&Insert->insertpos_lck); |
11168 | |
11169 | return XLogBytePosToRecPtr(current_bytepos); |
11170 | } |
11171 | |
11172 | /* |
11173 | * Get latest WAL write pointer |
11174 | */ |
11175 | XLogRecPtr |
11176 | GetXLogWriteRecPtr(void) |
11177 | { |
11178 | SpinLockAcquire(&XLogCtl->info_lck); |
11179 | LogwrtResult = XLogCtl->LogwrtResult; |
11180 | SpinLockRelease(&XLogCtl->info_lck); |
11181 | |
11182 | return LogwrtResult.Write; |
11183 | } |
11184 | |
11185 | /* |
11186 | * Returns the redo pointer of the last checkpoint or restartpoint. This is |
11187 | * the oldest point in WAL that we still need, if we have to restart recovery. |
11188 | */ |
11189 | void |
11190 | GetOldestRestartPoint(XLogRecPtr *oldrecptr, TimeLineID *oldtli) |
11191 | { |
11192 | LWLockAcquire(ControlFileLock, LW_SHARED); |
11193 | *oldrecptr = ControlFile->checkPointCopy.redo; |
11194 | *oldtli = ControlFile->checkPointCopy.ThisTimeLineID; |
11195 | LWLockRelease(ControlFileLock); |
11196 | } |
11197 | |
11198 | /* |
11199 | * read_backup_label: check to see if a backup_label file is present |
11200 | * |
11201 | * If we see a backup_label during recovery, we assume that we are recovering |
11202 | * from a backup dump file, and we therefore roll forward from the checkpoint |
11203 | * identified by the label file, NOT what pg_control says. This avoids the |
11204 | * problem that pg_control might have been archived one or more checkpoints |
11205 | * later than the start of the dump, and so if we rely on it as the start |
11206 | * point, we will fail to restore a consistent database state. |
11207 | * |
11208 | * Returns true if a backup_label was found (and fills the checkpoint |
11209 | * location and its REDO location into *checkPointLoc and RedoStartLSN, |
11210 | * respectively); returns false if not. If this backup_label came from a |
11211 | * streamed backup, *backupEndRequired is set to true. If this backup_label |
11212 | * was created during recovery, *backupFromStandby is set to true. |
11213 | */ |
11214 | static bool |
11215 | read_backup_label(XLogRecPtr *checkPointLoc, bool *backupEndRequired, |
11216 | bool *backupFromStandby) |
11217 | { |
11218 | char startxlogfilename[MAXFNAMELEN]; |
11219 | TimeLineID tli_from_walseg, |
11220 | tli_from_file; |
11221 | FILE *lfp; |
11222 | char ch; |
11223 | char backuptype[20]; |
11224 | char backupfrom[20]; |
11225 | char backuplabel[MAXPGPATH]; |
11226 | char backuptime[128]; |
11227 | uint32 hi, |
11228 | lo; |
11229 | |
11230 | *backupEndRequired = false; |
11231 | *backupFromStandby = false; |
11232 | |
11233 | /* |
11234 | * See if label file is present |
11235 | */ |
11236 | lfp = AllocateFile(BACKUP_LABEL_FILE, "r" ); |
11237 | if (!lfp) |
11238 | { |
11239 | if (errno != ENOENT) |
11240 | ereport(FATAL, |
11241 | (errcode_for_file_access(), |
11242 | errmsg("could not read file \"%s\": %m" , |
11243 | BACKUP_LABEL_FILE))); |
11244 | return false; /* it's not there, all is fine */ |
11245 | } |
11246 | |
11247 | /* |
11248 | * Read and parse the START WAL LOCATION and CHECKPOINT lines (this code |
11249 | * is pretty crude, but we are not expecting any variability in the file |
11250 | * format). |
11251 | */ |
11252 | if (fscanf(lfp, "START WAL LOCATION: %X/%X (file %08X%16s)%c" , |
11253 | &hi, &lo, &tli_from_walseg, startxlogfilename, &ch) != 5 || ch != '\n') |
11254 | ereport(FATAL, |
11255 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
11256 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE))); |
11257 | RedoStartLSN = ((uint64) hi) << 32 | lo; |
11258 | if (fscanf(lfp, "CHECKPOINT LOCATION: %X/%X%c" , |
11259 | &hi, &lo, &ch) != 3 || ch != '\n') |
11260 | ereport(FATAL, |
11261 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
11262 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE))); |
11263 | *checkPointLoc = ((uint64) hi) << 32 | lo; |
11264 | |
11265 | /* |
11266 | * BACKUP METHOD and BACKUP FROM lines are new in 9.2. We can't restore |
11267 | * from an older backup anyway, but since the information on it is not |
11268 | * strictly required, don't error out if it's missing for some reason. |
11269 | */ |
11270 | if (fscanf(lfp, "BACKUP METHOD: %19s\n" , backuptype) == 1) |
11271 | { |
11272 | if (strcmp(backuptype, "streamed" ) == 0) |
11273 | *backupEndRequired = true; |
11274 | } |
11275 | |
11276 | if (fscanf(lfp, "BACKUP FROM: %19s\n" , backupfrom) == 1) |
11277 | { |
11278 | if (strcmp(backupfrom, "standby" ) == 0) |
11279 | *backupFromStandby = true; |
11280 | } |
11281 | |
11282 | /* |
11283 | * Parse START TIME and LABEL. Those are not mandatory fields for recovery |
11284 | * but checking for their presence is useful for debugging and the next |
11285 | * sanity checks. Cope also with the fact that the result buffers have a |
11286 | * pre-allocated size, hence if the backup_label file has been generated |
11287 | * with strings longer than the maximum assumed here an incorrect parsing |
11288 | * happens. That's fine as only minor consistency checks are done |
11289 | * afterwards. |
11290 | */ |
11291 | if (fscanf(lfp, "START TIME: %127[^\n]\n" , backuptime) == 1) |
11292 | ereport(DEBUG1, |
11293 | (errmsg("backup time %s in file \"%s\"" , |
11294 | backuptime, BACKUP_LABEL_FILE))); |
11295 | |
11296 | if (fscanf(lfp, "LABEL: %1023[^\n]\n" , backuplabel) == 1) |
11297 | ereport(DEBUG1, |
11298 | (errmsg("backup label %s in file \"%s\"" , |
11299 | backuplabel, BACKUP_LABEL_FILE))); |
11300 | |
11301 | /* |
11302 | * START TIMELINE is new as of 11. Its parsing is not mandatory, still use |
11303 | * it as a sanity check if present. |
11304 | */ |
11305 | if (fscanf(lfp, "START TIMELINE: %u\n" , &tli_from_file) == 1) |
11306 | { |
11307 | if (tli_from_walseg != tli_from_file) |
11308 | ereport(FATAL, |
11309 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
11310 | errmsg("invalid data in file \"%s\"" , BACKUP_LABEL_FILE), |
11311 | errdetail("Timeline ID parsed is %u, but expected %u." , |
11312 | tli_from_file, tli_from_walseg))); |
11313 | |
11314 | ereport(DEBUG1, |
11315 | (errmsg("backup timeline %u in file \"%s\"" , |
11316 | tli_from_file, BACKUP_LABEL_FILE))); |
11317 | } |
11318 | |
11319 | if (ferror(lfp) || FreeFile(lfp)) |
11320 | ereport(FATAL, |
11321 | (errcode_for_file_access(), |
11322 | errmsg("could not read file \"%s\": %m" , |
11323 | BACKUP_LABEL_FILE))); |
11324 | |
11325 | return true; |
11326 | } |
11327 | |
11328 | /* |
11329 | * read_tablespace_map: check to see if a tablespace_map file is present |
11330 | * |
11331 | * If we see a tablespace_map file during recovery, we assume that we are |
11332 | * recovering from a backup dump file, and we therefore need to create symlinks |
11333 | * as per the information present in tablespace_map file. |
11334 | * |
11335 | * Returns true if a tablespace_map file was found (and fills the link |
11336 | * information for all the tablespace links present in file); returns false |
11337 | * if not. |
11338 | */ |
11339 | static bool |
11340 | read_tablespace_map(List **tablespaces) |
11341 | { |
11342 | tablespaceinfo *ti; |
11343 | FILE *lfp; |
11344 | char tbsoid[MAXPGPATH]; |
11345 | char *tbslinkpath; |
11346 | char str[MAXPGPATH]; |
11347 | int ch, |
11348 | prev_ch = -1, |
11349 | i = 0, |
11350 | n; |
11351 | |
11352 | /* |
11353 | * See if tablespace_map file is present |
11354 | */ |
11355 | lfp = AllocateFile(TABLESPACE_MAP, "r" ); |
11356 | if (!lfp) |
11357 | { |
11358 | if (errno != ENOENT) |
11359 | ereport(FATAL, |
11360 | (errcode_for_file_access(), |
11361 | errmsg("could not read file \"%s\": %m" , |
11362 | TABLESPACE_MAP))); |
11363 | return false; /* it's not there, all is fine */ |
11364 | } |
11365 | |
11366 | /* |
11367 | * Read and parse the link name and path lines from tablespace_map file |
11368 | * (this code is pretty crude, but we are not expecting any variability in |
11369 | * the file format). While taking backup we embed escape character '\\' |
11370 | * before newline in tablespace path, so that during reading of |
11371 | * tablespace_map file, we could distinguish newline in tablespace path |
11372 | * and end of line. Now while reading tablespace_map file, remove the |
11373 | * escape character that has been added in tablespace path during backup. |
11374 | */ |
11375 | while ((ch = fgetc(lfp)) != EOF) |
11376 | { |
11377 | if ((ch == '\n' || ch == '\r') && prev_ch != '\\') |
11378 | { |
11379 | str[i] = '\0'; |
11380 | if (sscanf(str, "%s %n" , tbsoid, &n) != 1) |
11381 | ereport(FATAL, |
11382 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
11383 | errmsg("invalid data in file \"%s\"" , TABLESPACE_MAP))); |
11384 | tbslinkpath = str + n; |
11385 | i = 0; |
11386 | |
11387 | ti = palloc(sizeof(tablespaceinfo)); |
11388 | ti->oid = pstrdup(tbsoid); |
11389 | ti->path = pstrdup(tbslinkpath); |
11390 | |
11391 | *tablespaces = lappend(*tablespaces, ti); |
11392 | continue; |
11393 | } |
11394 | else if ((ch == '\n' || ch == '\r') && prev_ch == '\\') |
11395 | str[i - 1] = ch; |
11396 | else |
11397 | str[i++] = ch; |
11398 | prev_ch = ch; |
11399 | } |
11400 | |
11401 | if (ferror(lfp) || FreeFile(lfp)) |
11402 | ereport(FATAL, |
11403 | (errcode_for_file_access(), |
11404 | errmsg("could not read file \"%s\": %m" , |
11405 | TABLESPACE_MAP))); |
11406 | |
11407 | return true; |
11408 | } |
11409 | |
11410 | /* |
11411 | * Error context callback for errors occurring during rm_redo(). |
11412 | */ |
11413 | static void |
11414 | rm_redo_error_callback(void *arg) |
11415 | { |
11416 | XLogReaderState *record = (XLogReaderState *) arg; |
11417 | StringInfoData buf; |
11418 | |
11419 | initStringInfo(&buf); |
11420 | xlog_outdesc(&buf, record); |
11421 | |
11422 | /* translator: %s is a WAL record description */ |
11423 | errcontext("WAL redo at %X/%X for %s" , |
11424 | (uint32) (record->ReadRecPtr >> 32), |
11425 | (uint32) record->ReadRecPtr, |
11426 | buf.data); |
11427 | |
11428 | pfree(buf.data); |
11429 | } |
11430 | |
11431 | /* |
11432 | * BackupInProgress: check if online backup mode is active |
11433 | * |
11434 | * This is done by checking for existence of the "backup_label" file. |
11435 | */ |
11436 | bool |
11437 | BackupInProgress(void) |
11438 | { |
11439 | struct stat stat_buf; |
11440 | |
11441 | return (stat(BACKUP_LABEL_FILE, &stat_buf) == 0); |
11442 | } |
11443 | |
11444 | /* |
11445 | * CancelBackup: rename the "backup_label" and "tablespace_map" |
11446 | * files to cancel backup mode |
11447 | * |
11448 | * If the "backup_label" file exists, it will be renamed to "backup_label.old". |
11449 | * Similarly, if the "tablespace_map" file exists, it will be renamed to |
11450 | * "tablespace_map.old". |
11451 | * |
11452 | * Note that this will render an online backup in progress |
11453 | * useless. To correctly finish an online backup, pg_stop_backup must be |
11454 | * called. |
11455 | */ |
11456 | void |
11457 | CancelBackup(void) |
11458 | { |
11459 | struct stat stat_buf; |
11460 | |
11461 | /* if the backup_label file is not there, return */ |
11462 | if (stat(BACKUP_LABEL_FILE, &stat_buf) < 0) |
11463 | return; |
11464 | |
11465 | /* remove leftover file from previously canceled backup if it exists */ |
11466 | unlink(BACKUP_LABEL_OLD); |
11467 | |
11468 | if (durable_rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD, DEBUG1) != 0) |
11469 | { |
11470 | ereport(WARNING, |
11471 | (errcode_for_file_access(), |
11472 | errmsg("online backup mode was not canceled" ), |
11473 | errdetail("File \"%s\" could not be renamed to \"%s\": %m." , |
11474 | BACKUP_LABEL_FILE, BACKUP_LABEL_OLD))); |
11475 | return; |
11476 | } |
11477 | |
11478 | /* if the tablespace_map file is not there, return */ |
11479 | if (stat(TABLESPACE_MAP, &stat_buf) < 0) |
11480 | { |
11481 | ereport(LOG, |
11482 | (errmsg("online backup mode canceled" ), |
11483 | errdetail("File \"%s\" was renamed to \"%s\"." , |
11484 | BACKUP_LABEL_FILE, BACKUP_LABEL_OLD))); |
11485 | return; |
11486 | } |
11487 | |
11488 | /* remove leftover file from previously canceled backup if it exists */ |
11489 | unlink(TABLESPACE_MAP_OLD); |
11490 | |
11491 | if (durable_rename(TABLESPACE_MAP, TABLESPACE_MAP_OLD, DEBUG1) == 0) |
11492 | { |
11493 | ereport(LOG, |
11494 | (errmsg("online backup mode canceled" ), |
11495 | errdetail("Files \"%s\" and \"%s\" were renamed to " |
11496 | "\"%s\" and \"%s\", respectively." , |
11497 | BACKUP_LABEL_FILE, TABLESPACE_MAP, |
11498 | BACKUP_LABEL_OLD, TABLESPACE_MAP_OLD))); |
11499 | } |
11500 | else |
11501 | { |
11502 | ereport(WARNING, |
11503 | (errcode_for_file_access(), |
11504 | errmsg("online backup mode canceled" ), |
11505 | errdetail("File \"%s\" was renamed to \"%s\", but " |
11506 | "file \"%s\" could not be renamed to \"%s\": %m." , |
11507 | BACKUP_LABEL_FILE, BACKUP_LABEL_OLD, |
11508 | TABLESPACE_MAP, TABLESPACE_MAP_OLD))); |
11509 | } |
11510 | } |
11511 | |
11512 | /* |
11513 | * Read the XLOG page containing RecPtr into readBuf (if not read already). |
11514 | * Returns number of bytes read, if the page is read successfully, or -1 |
11515 | * in case of errors. When errors occur, they are ereport'ed, but only |
11516 | * if they have not been previously reported. |
11517 | * |
11518 | * This is responsible for restoring files from archive as needed, as well |
11519 | * as for waiting for the requested WAL record to arrive in standby mode. |
11520 | * |
11521 | * 'emode' specifies the log level used for reporting "file not found" or |
11522 | * "end of WAL" situations in archive recovery, or in standby mode when a |
11523 | * trigger file is found. If set to WARNING or below, XLogPageRead() returns |
11524 | * false in those situations, on higher log levels the ereport() won't |
11525 | * return. |
11526 | * |
11527 | * In standby mode, if after a successful return of XLogPageRead() the |
11528 | * caller finds the record it's interested in to be broken, it should |
11529 | * ereport the error with the level determined by |
11530 | * emode_for_corrupt_record(), and then set lastSourceFailed |
11531 | * and call XLogPageRead() again with the same arguments. This lets |
11532 | * XLogPageRead() to try fetching the record from another source, or to |
11533 | * sleep and retry. |
11534 | */ |
11535 | static int |
11536 | (XLogReaderState *xlogreader, XLogRecPtr targetPagePtr, int reqLen, |
11537 | XLogRecPtr targetRecPtr, char *readBuf, TimeLineID *readTLI) |
11538 | { |
11539 | XLogPageReadPrivate *private = |
11540 | (XLogPageReadPrivate *) xlogreader->private_data; |
11541 | int emode = private->emode; |
11542 | uint32 targetPageOff; |
11543 | XLogSegNo targetSegNo PG_USED_FOR_ASSERTS_ONLY; |
11544 | int r; |
11545 | |
11546 | XLByteToSeg(targetPagePtr, targetSegNo, wal_segment_size); |
11547 | targetPageOff = XLogSegmentOffset(targetPagePtr, wal_segment_size); |
11548 | |
11549 | /* |
11550 | * See if we need to switch to a new segment because the requested record |
11551 | * is not in the currently open one. |
11552 | */ |
11553 | if (readFile >= 0 && |
11554 | !XLByteInSeg(targetPagePtr, readSegNo, wal_segment_size)) |
11555 | { |
11556 | /* |
11557 | * Request a restartpoint if we've replayed too much xlog since the |
11558 | * last one. |
11559 | */ |
11560 | if (bgwriterLaunched) |
11561 | { |
11562 | if (XLogCheckpointNeeded(readSegNo)) |
11563 | { |
11564 | (void) GetRedoRecPtr(); |
11565 | if (XLogCheckpointNeeded(readSegNo)) |
11566 | RequestCheckpoint(CHECKPOINT_CAUSE_XLOG); |
11567 | } |
11568 | } |
11569 | |
11570 | close(readFile); |
11571 | readFile = -1; |
11572 | readSource = 0; |
11573 | } |
11574 | |
11575 | XLByteToSeg(targetPagePtr, readSegNo, wal_segment_size); |
11576 | |
11577 | retry: |
11578 | /* See if we need to retrieve more data */ |
11579 | if (readFile < 0 || |
11580 | (readSource == XLOG_FROM_STREAM && |
11581 | receivedUpto < targetPagePtr + reqLen)) |
11582 | { |
11583 | if (!WaitForWALToBecomeAvailable(targetPagePtr + reqLen, |
11584 | private->randAccess, |
11585 | private->fetching_ckpt, |
11586 | targetRecPtr)) |
11587 | { |
11588 | if (readFile >= 0) |
11589 | close(readFile); |
11590 | readFile = -1; |
11591 | readLen = 0; |
11592 | readSource = 0; |
11593 | |
11594 | return -1; |
11595 | } |
11596 | } |
11597 | |
11598 | /* |
11599 | * At this point, we have the right segment open and if we're streaming we |
11600 | * know the requested record is in it. |
11601 | */ |
11602 | Assert(readFile != -1); |
11603 | |
11604 | /* |
11605 | * If the current segment is being streamed from master, calculate how |
11606 | * much of the current page we have received already. We know the |
11607 | * requested record has been received, but this is for the benefit of |
11608 | * future calls, to allow quick exit at the top of this function. |
11609 | */ |
11610 | if (readSource == XLOG_FROM_STREAM) |
11611 | { |
11612 | if (((targetPagePtr) / XLOG_BLCKSZ) != (receivedUpto / XLOG_BLCKSZ)) |
11613 | readLen = XLOG_BLCKSZ; |
11614 | else |
11615 | readLen = XLogSegmentOffset(receivedUpto, wal_segment_size) - |
11616 | targetPageOff; |
11617 | } |
11618 | else |
11619 | readLen = XLOG_BLCKSZ; |
11620 | |
11621 | /* Read the requested page */ |
11622 | readOff = targetPageOff; |
11623 | |
11624 | pgstat_report_wait_start(WAIT_EVENT_WAL_READ); |
11625 | r = pg_pread(readFile, readBuf, XLOG_BLCKSZ, (off_t) readOff); |
11626 | if (r != XLOG_BLCKSZ) |
11627 | { |
11628 | char fname[MAXFNAMELEN]; |
11629 | int save_errno = errno; |
11630 | |
11631 | pgstat_report_wait_end(); |
11632 | XLogFileName(fname, curFileTLI, readSegNo, wal_segment_size); |
11633 | if (r < 0) |
11634 | { |
11635 | errno = save_errno; |
11636 | ereport(emode_for_corrupt_record(emode, targetPagePtr + reqLen), |
11637 | (errcode_for_file_access(), |
11638 | errmsg("could not read from log segment %s, offset %u: %m" , |
11639 | fname, readOff))); |
11640 | } |
11641 | else |
11642 | ereport(emode_for_corrupt_record(emode, targetPagePtr + reqLen), |
11643 | (errcode(ERRCODE_DATA_CORRUPTED), |
11644 | errmsg("could not read from log segment %s, offset %u: read %d of %zu" , |
11645 | fname, readOff, r, (Size) XLOG_BLCKSZ))); |
11646 | goto next_record_is_invalid; |
11647 | } |
11648 | pgstat_report_wait_end(); |
11649 | |
11650 | Assert(targetSegNo == readSegNo); |
11651 | Assert(targetPageOff == readOff); |
11652 | Assert(reqLen <= readLen); |
11653 | |
11654 | *readTLI = curFileTLI; |
11655 | |
11656 | /* |
11657 | * Check the page header immediately, so that we can retry immediately if |
11658 | * it's not valid. This may seem unnecessary, because XLogReadRecord() |
11659 | * validates the page header anyway, and would propagate the failure up to |
11660 | * ReadRecord(), which would retry. However, there's a corner case with |
11661 | * continuation records, if a record is split across two pages such that |
11662 | * we would need to read the two pages from different sources. For |
11663 | * example, imagine a scenario where a streaming replica is started up, |
11664 | * and replay reaches a record that's split across two WAL segments. The |
11665 | * first page is only available locally, in pg_wal, because it's already |
11666 | * been recycled in the master. The second page, however, is not present |
11667 | * in pg_wal, and we should stream it from the master. There is a recycled |
11668 | * WAL segment present in pg_wal, with garbage contents, however. We would |
11669 | * read the first page from the local WAL segment, but when reading the |
11670 | * second page, we would read the bogus, recycled, WAL segment. If we |
11671 | * didn't catch that case here, we would never recover, because |
11672 | * ReadRecord() would retry reading the whole record from the beginning. |
11673 | * |
11674 | * Of course, this only catches errors in the page header, which is what |
11675 | * happens in the case of a recycled WAL segment. Other kinds of errors or |
11676 | * corruption still has the same problem. But this at least fixes the |
11677 | * common case, which can happen as part of normal operation. |
11678 | * |
11679 | * Validating the page header is cheap enough that doing it twice |
11680 | * shouldn't be a big deal from a performance point of view. |
11681 | */ |
11682 | if (!XLogReaderValidatePageHeader(xlogreader, targetPagePtr, readBuf)) |
11683 | { |
11684 | /* reset any error XLogReaderValidatePageHeader() might have set */ |
11685 | xlogreader->errormsg_buf[0] = '\0'; |
11686 | goto next_record_is_invalid; |
11687 | } |
11688 | |
11689 | return readLen; |
11690 | |
11691 | next_record_is_invalid: |
11692 | lastSourceFailed = true; |
11693 | |
11694 | if (readFile >= 0) |
11695 | close(readFile); |
11696 | readFile = -1; |
11697 | readLen = 0; |
11698 | readSource = 0; |
11699 | |
11700 | /* In standby-mode, keep trying */ |
11701 | if (StandbyMode) |
11702 | goto retry; |
11703 | else |
11704 | return -1; |
11705 | } |
11706 | |
11707 | /* |
11708 | * Open the WAL segment containing WAL location 'RecPtr'. |
11709 | * |
11710 | * The segment can be fetched via restore_command, or via walreceiver having |
11711 | * streamed the record, or it can already be present in pg_wal. Checking |
11712 | * pg_wal is mainly for crash recovery, but it will be polled in standby mode |
11713 | * too, in case someone copies a new segment directly to pg_wal. That is not |
11714 | * documented or recommended, though. |
11715 | * |
11716 | * If 'fetching_ckpt' is true, we're fetching a checkpoint record, and should |
11717 | * prepare to read WAL starting from RedoStartLSN after this. |
11718 | * |
11719 | * 'RecPtr' might not point to the beginning of the record we're interested |
11720 | * in, it might also point to the page or segment header. In that case, |
11721 | * 'tliRecPtr' is the position of the WAL record we're interested in. It is |
11722 | * used to decide which timeline to stream the requested WAL from. |
11723 | * |
11724 | * If the record is not immediately available, the function returns false |
11725 | * if we're not in standby mode. In standby mode, waits for it to become |
11726 | * available. |
11727 | * |
11728 | * When the requested record becomes available, the function opens the file |
11729 | * containing it (if not open already), and returns true. When end of standby |
11730 | * mode is triggered by the user, and there is no more WAL available, returns |
11731 | * false. |
11732 | */ |
11733 | static bool |
11734 | WaitForWALToBecomeAvailable(XLogRecPtr RecPtr, bool randAccess, |
11735 | bool fetching_ckpt, XLogRecPtr tliRecPtr) |
11736 | { |
11737 | static TimestampTz last_fail_time = 0; |
11738 | TimestampTz now; |
11739 | bool streaming_reply_sent = false; |
11740 | |
11741 | /*------- |
11742 | * Standby mode is implemented by a state machine: |
11743 | * |
11744 | * 1. Read from either archive or pg_wal (XLOG_FROM_ARCHIVE), or just |
11745 | * pg_wal (XLOG_FROM_PG_WAL) |
11746 | * 2. Check trigger file |
11747 | * 3. Read from primary server via walreceiver (XLOG_FROM_STREAM) |
11748 | * 4. Rescan timelines |
11749 | * 5. Sleep wal_retrieve_retry_interval milliseconds, and loop back to 1. |
11750 | * |
11751 | * Failure to read from the current source advances the state machine to |
11752 | * the next state. |
11753 | * |
11754 | * 'currentSource' indicates the current state. There are no currentSource |
11755 | * values for "check trigger", "rescan timelines", and "sleep" states, |
11756 | * those actions are taken when reading from the previous source fails, as |
11757 | * part of advancing to the next state. |
11758 | *------- |
11759 | */ |
11760 | if (!InArchiveRecovery) |
11761 | currentSource = XLOG_FROM_PG_WAL; |
11762 | else if (currentSource == 0) |
11763 | currentSource = XLOG_FROM_ARCHIVE; |
11764 | |
11765 | for (;;) |
11766 | { |
11767 | int oldSource = currentSource; |
11768 | |
11769 | /* |
11770 | * First check if we failed to read from the current source, and |
11771 | * advance the state machine if so. The failure to read might've |
11772 | * happened outside this function, e.g when a CRC check fails on a |
11773 | * record, or within this loop. |
11774 | */ |
11775 | if (lastSourceFailed) |
11776 | { |
11777 | switch (currentSource) |
11778 | { |
11779 | case XLOG_FROM_ARCHIVE: |
11780 | case XLOG_FROM_PG_WAL: |
11781 | |
11782 | /* |
11783 | * Check to see if the trigger file exists. Note that we |
11784 | * do this only after failure, so when you create the |
11785 | * trigger file, we still finish replaying as much as we |
11786 | * can from archive and pg_wal before failover. |
11787 | */ |
11788 | if (StandbyMode && CheckForStandbyTrigger()) |
11789 | { |
11790 | ShutdownWalRcv(); |
11791 | return false; |
11792 | } |
11793 | |
11794 | /* |
11795 | * Not in standby mode, and we've now tried the archive |
11796 | * and pg_wal. |
11797 | */ |
11798 | if (!StandbyMode) |
11799 | return false; |
11800 | |
11801 | /* |
11802 | * If primary_conninfo is set, launch walreceiver to try |
11803 | * to stream the missing WAL. |
11804 | * |
11805 | * If fetching_ckpt is true, RecPtr points to the initial |
11806 | * checkpoint location. In that case, we use RedoStartLSN |
11807 | * as the streaming start position instead of RecPtr, so |
11808 | * that when we later jump backwards to start redo at |
11809 | * RedoStartLSN, we will have the logs streamed already. |
11810 | */ |
11811 | if (PrimaryConnInfo && strcmp(PrimaryConnInfo, "" ) != 0) |
11812 | { |
11813 | XLogRecPtr ptr; |
11814 | TimeLineID tli; |
11815 | |
11816 | if (fetching_ckpt) |
11817 | { |
11818 | ptr = RedoStartLSN; |
11819 | tli = ControlFile->checkPointCopy.ThisTimeLineID; |
11820 | } |
11821 | else |
11822 | { |
11823 | ptr = RecPtr; |
11824 | |
11825 | /* |
11826 | * Use the record begin position to determine the |
11827 | * TLI, rather than the position we're reading. |
11828 | */ |
11829 | tli = tliOfPointInHistory(tliRecPtr, expectedTLEs); |
11830 | |
11831 | if (curFileTLI > 0 && tli < curFileTLI) |
11832 | elog(ERROR, "according to history file, WAL location %X/%X belongs to timeline %u, but previous recovered WAL file came from timeline %u" , |
11833 | (uint32) (tliRecPtr >> 32), |
11834 | (uint32) tliRecPtr, |
11835 | tli, curFileTLI); |
11836 | } |
11837 | curFileTLI = tli; |
11838 | RequestXLogStreaming(tli, ptr, PrimaryConnInfo, |
11839 | PrimarySlotName); |
11840 | receivedUpto = 0; |
11841 | } |
11842 | |
11843 | /* |
11844 | * Move to XLOG_FROM_STREAM state in either case. We'll |
11845 | * get immediate failure if we didn't launch walreceiver, |
11846 | * and move on to the next state. |
11847 | */ |
11848 | currentSource = XLOG_FROM_STREAM; |
11849 | break; |
11850 | |
11851 | case XLOG_FROM_STREAM: |
11852 | |
11853 | /* |
11854 | * Failure while streaming. Most likely, we got here |
11855 | * because streaming replication was terminated, or |
11856 | * promotion was triggered. But we also get here if we |
11857 | * find an invalid record in the WAL streamed from master, |
11858 | * in which case something is seriously wrong. There's |
11859 | * little chance that the problem will just go away, but |
11860 | * PANIC is not good for availability either, especially |
11861 | * in hot standby mode. So, we treat that the same as |
11862 | * disconnection, and retry from archive/pg_wal again. The |
11863 | * WAL in the archive should be identical to what was |
11864 | * streamed, so it's unlikely that it helps, but one can |
11865 | * hope... |
11866 | */ |
11867 | |
11868 | /* |
11869 | * Before we leave XLOG_FROM_STREAM state, make sure that |
11870 | * walreceiver is not active, so that it won't overwrite |
11871 | * WAL that we restore from archive. |
11872 | */ |
11873 | if (WalRcvStreaming()) |
11874 | ShutdownWalRcv(); |
11875 | |
11876 | /* |
11877 | * Before we sleep, re-scan for possible new timelines if |
11878 | * we were requested to recover to the latest timeline. |
11879 | */ |
11880 | if (recoveryTargetTimeLineGoal == RECOVERY_TARGET_TIMELINE_LATEST) |
11881 | { |
11882 | if (rescanLatestTimeLine()) |
11883 | { |
11884 | currentSource = XLOG_FROM_ARCHIVE; |
11885 | break; |
11886 | } |
11887 | } |
11888 | |
11889 | /* |
11890 | * XLOG_FROM_STREAM is the last state in our state |
11891 | * machine, so we've exhausted all the options for |
11892 | * obtaining the requested WAL. We're going to loop back |
11893 | * and retry from the archive, but if it hasn't been long |
11894 | * since last attempt, sleep wal_retrieve_retry_interval |
11895 | * milliseconds to avoid busy-waiting. |
11896 | */ |
11897 | now = GetCurrentTimestamp(); |
11898 | if (!TimestampDifferenceExceeds(last_fail_time, now, |
11899 | wal_retrieve_retry_interval)) |
11900 | { |
11901 | long secs, |
11902 | wait_time; |
11903 | int usecs; |
11904 | |
11905 | TimestampDifference(last_fail_time, now, &secs, &usecs); |
11906 | wait_time = wal_retrieve_retry_interval - |
11907 | (secs * 1000 + usecs / 1000); |
11908 | |
11909 | (void) WaitLatch(&XLogCtl->recoveryWakeupLatch, |
11910 | WL_LATCH_SET | WL_TIMEOUT | |
11911 | WL_EXIT_ON_PM_DEATH, |
11912 | wait_time, |
11913 | WAIT_EVENT_RECOVERY_WAL_STREAM); |
11914 | ResetLatch(&XLogCtl->recoveryWakeupLatch); |
11915 | now = GetCurrentTimestamp(); |
11916 | } |
11917 | last_fail_time = now; |
11918 | currentSource = XLOG_FROM_ARCHIVE; |
11919 | break; |
11920 | |
11921 | default: |
11922 | elog(ERROR, "unexpected WAL source %d" , currentSource); |
11923 | } |
11924 | } |
11925 | else if (currentSource == XLOG_FROM_PG_WAL) |
11926 | { |
11927 | /* |
11928 | * We just successfully read a file in pg_wal. We prefer files in |
11929 | * the archive over ones in pg_wal, so try the next file again |
11930 | * from the archive first. |
11931 | */ |
11932 | if (InArchiveRecovery) |
11933 | currentSource = XLOG_FROM_ARCHIVE; |
11934 | } |
11935 | |
11936 | if (currentSource != oldSource) |
11937 | elog(DEBUG2, "switched WAL source from %s to %s after %s" , |
11938 | xlogSourceNames[oldSource], xlogSourceNames[currentSource], |
11939 | lastSourceFailed ? "failure" : "success" ); |
11940 | |
11941 | /* |
11942 | * We've now handled possible failure. Try to read from the chosen |
11943 | * source. |
11944 | */ |
11945 | lastSourceFailed = false; |
11946 | |
11947 | switch (currentSource) |
11948 | { |
11949 | case XLOG_FROM_ARCHIVE: |
11950 | case XLOG_FROM_PG_WAL: |
11951 | /* Close any old file we might have open. */ |
11952 | if (readFile >= 0) |
11953 | { |
11954 | close(readFile); |
11955 | readFile = -1; |
11956 | } |
11957 | /* Reset curFileTLI if random fetch. */ |
11958 | if (randAccess) |
11959 | curFileTLI = 0; |
11960 | |
11961 | /* |
11962 | * Try to restore the file from archive, or read an existing |
11963 | * file from pg_wal. |
11964 | */ |
11965 | readFile = XLogFileReadAnyTLI(readSegNo, DEBUG2, |
11966 | currentSource == XLOG_FROM_ARCHIVE ? XLOG_FROM_ANY : |
11967 | currentSource); |
11968 | if (readFile >= 0) |
11969 | return true; /* success! */ |
11970 | |
11971 | /* |
11972 | * Nope, not found in archive or pg_wal. |
11973 | */ |
11974 | lastSourceFailed = true; |
11975 | break; |
11976 | |
11977 | case XLOG_FROM_STREAM: |
11978 | { |
11979 | bool havedata; |
11980 | |
11981 | /* |
11982 | * Check if WAL receiver is still active. |
11983 | */ |
11984 | if (!WalRcvStreaming()) |
11985 | { |
11986 | lastSourceFailed = true; |
11987 | break; |
11988 | } |
11989 | |
11990 | /* |
11991 | * Walreceiver is active, so see if new data has arrived. |
11992 | * |
11993 | * We only advance XLogReceiptTime when we obtain fresh |
11994 | * WAL from walreceiver and observe that we had already |
11995 | * processed everything before the most recent "chunk" |
11996 | * that it flushed to disk. In steady state where we are |
11997 | * keeping up with the incoming data, XLogReceiptTime will |
11998 | * be updated on each cycle. When we are behind, |
11999 | * XLogReceiptTime will not advance, so the grace time |
12000 | * allotted to conflicting queries will decrease. |
12001 | */ |
12002 | if (RecPtr < receivedUpto) |
12003 | havedata = true; |
12004 | else |
12005 | { |
12006 | XLogRecPtr latestChunkStart; |
12007 | |
12008 | receivedUpto = GetWalRcvWriteRecPtr(&latestChunkStart, &receiveTLI); |
12009 | if (RecPtr < receivedUpto && receiveTLI == curFileTLI) |
12010 | { |
12011 | havedata = true; |
12012 | if (latestChunkStart <= RecPtr) |
12013 | { |
12014 | XLogReceiptTime = GetCurrentTimestamp(); |
12015 | SetCurrentChunkStartTime(XLogReceiptTime); |
12016 | } |
12017 | } |
12018 | else |
12019 | havedata = false; |
12020 | } |
12021 | if (havedata) |
12022 | { |
12023 | /* |
12024 | * Great, streamed far enough. Open the file if it's |
12025 | * not open already. Also read the timeline history |
12026 | * file if we haven't initialized timeline history |
12027 | * yet; it should be streamed over and present in |
12028 | * pg_wal by now. Use XLOG_FROM_STREAM so that source |
12029 | * info is set correctly and XLogReceiptTime isn't |
12030 | * changed. |
12031 | */ |
12032 | if (readFile < 0) |
12033 | { |
12034 | if (!expectedTLEs) |
12035 | expectedTLEs = readTimeLineHistory(receiveTLI); |
12036 | readFile = XLogFileRead(readSegNo, PANIC, |
12037 | receiveTLI, |
12038 | XLOG_FROM_STREAM, false); |
12039 | Assert(readFile >= 0); |
12040 | } |
12041 | else |
12042 | { |
12043 | /* just make sure source info is correct... */ |
12044 | readSource = XLOG_FROM_STREAM; |
12045 | XLogReceiptSource = XLOG_FROM_STREAM; |
12046 | return true; |
12047 | } |
12048 | break; |
12049 | } |
12050 | |
12051 | /* |
12052 | * Data not here yet. Check for trigger, then wait for |
12053 | * walreceiver to wake us up when new WAL arrives. |
12054 | */ |
12055 | if (CheckForStandbyTrigger()) |
12056 | { |
12057 | /* |
12058 | * Note that we don't "return false" immediately here. |
12059 | * After being triggered, we still want to replay all |
12060 | * the WAL that was already streamed. It's in pg_wal |
12061 | * now, so we just treat this as a failure, and the |
12062 | * state machine will move on to replay the streamed |
12063 | * WAL from pg_wal, and then recheck the trigger and |
12064 | * exit replay. |
12065 | */ |
12066 | lastSourceFailed = true; |
12067 | break; |
12068 | } |
12069 | |
12070 | /* |
12071 | * Since we have replayed everything we have received so |
12072 | * far and are about to start waiting for more WAL, let's |
12073 | * tell the upstream server our replay location now so |
12074 | * that pg_stat_replication doesn't show stale |
12075 | * information. |
12076 | */ |
12077 | if (!streaming_reply_sent) |
12078 | { |
12079 | WalRcvForceReply(); |
12080 | streaming_reply_sent = true; |
12081 | } |
12082 | |
12083 | /* |
12084 | * Wait for more WAL to arrive. Time out after 5 seconds |
12085 | * to react to a trigger file promptly and to check if the |
12086 | * WAL receiver is still active. |
12087 | */ |
12088 | (void) WaitLatch(&XLogCtl->recoveryWakeupLatch, |
12089 | WL_LATCH_SET | WL_TIMEOUT | |
12090 | WL_EXIT_ON_PM_DEATH, |
12091 | 5000L, WAIT_EVENT_RECOVERY_WAL_ALL); |
12092 | ResetLatch(&XLogCtl->recoveryWakeupLatch); |
12093 | break; |
12094 | } |
12095 | |
12096 | default: |
12097 | elog(ERROR, "unexpected WAL source %d" , currentSource); |
12098 | } |
12099 | |
12100 | /* |
12101 | * This possibly-long loop needs to handle interrupts of startup |
12102 | * process. |
12103 | */ |
12104 | HandleStartupProcInterrupts(); |
12105 | } |
12106 | |
12107 | return false; /* not reached */ |
12108 | } |
12109 | |
12110 | /* |
12111 | * Determine what log level should be used to report a corrupt WAL record |
12112 | * in the current WAL page, previously read by XLogPageRead(). |
12113 | * |
12114 | * 'emode' is the error mode that would be used to report a file-not-found |
12115 | * or legitimate end-of-WAL situation. Generally, we use it as-is, but if |
12116 | * we're retrying the exact same record that we've tried previously, only |
12117 | * complain the first time to keep the noise down. However, we only do when |
12118 | * reading from pg_wal, because we don't expect any invalid records in archive |
12119 | * or in records streamed from master. Files in the archive should be complete, |
12120 | * and we should never hit the end of WAL because we stop and wait for more WAL |
12121 | * to arrive before replaying it. |
12122 | * |
12123 | * NOTE: This function remembers the RecPtr value it was last called with, |
12124 | * to suppress repeated messages about the same record. Only call this when |
12125 | * you are about to ereport(), or you might cause a later message to be |
12126 | * erroneously suppressed. |
12127 | */ |
12128 | static int |
12129 | emode_for_corrupt_record(int emode, XLogRecPtr RecPtr) |
12130 | { |
12131 | static XLogRecPtr lastComplaint = 0; |
12132 | |
12133 | if (readSource == XLOG_FROM_PG_WAL && emode == LOG) |
12134 | { |
12135 | if (RecPtr == lastComplaint) |
12136 | emode = DEBUG1; |
12137 | else |
12138 | lastComplaint = RecPtr; |
12139 | } |
12140 | return emode; |
12141 | } |
12142 | |
12143 | /* |
12144 | * Check to see whether the user-specified trigger file exists and whether a |
12145 | * promote request has arrived. If either condition holds, return true. |
12146 | */ |
12147 | static bool |
12148 | CheckForStandbyTrigger(void) |
12149 | { |
12150 | struct stat stat_buf; |
12151 | static bool triggered = false; |
12152 | |
12153 | if (triggered) |
12154 | return true; |
12155 | |
12156 | if (IsPromoteTriggered()) |
12157 | { |
12158 | /* |
12159 | * In 9.1 and 9.2 the postmaster unlinked the promote file inside the |
12160 | * signal handler. It now leaves the file in place and lets the |
12161 | * Startup process do the unlink. This allows Startup to know whether |
12162 | * it should create a full checkpoint before starting up (fallback |
12163 | * mode). Fast promotion takes precedence. |
12164 | */ |
12165 | if (stat(PROMOTE_SIGNAL_FILE, &stat_buf) == 0) |
12166 | { |
12167 | unlink(PROMOTE_SIGNAL_FILE); |
12168 | unlink(FALLBACK_PROMOTE_SIGNAL_FILE); |
12169 | fast_promote = true; |
12170 | } |
12171 | else if (stat(FALLBACK_PROMOTE_SIGNAL_FILE, &stat_buf) == 0) |
12172 | { |
12173 | unlink(FALLBACK_PROMOTE_SIGNAL_FILE); |
12174 | fast_promote = false; |
12175 | } |
12176 | |
12177 | ereport(LOG, (errmsg("received promote request" ))); |
12178 | |
12179 | ResetPromoteTriggered(); |
12180 | triggered = true; |
12181 | return true; |
12182 | } |
12183 | |
12184 | if (PromoteTriggerFile == NULL || strcmp(PromoteTriggerFile, "" ) == 0) |
12185 | return false; |
12186 | |
12187 | if (stat(PromoteTriggerFile, &stat_buf) == 0) |
12188 | { |
12189 | ereport(LOG, |
12190 | (errmsg("promote trigger file found: %s" , PromoteTriggerFile))); |
12191 | unlink(PromoteTriggerFile); |
12192 | triggered = true; |
12193 | fast_promote = true; |
12194 | return true; |
12195 | } |
12196 | else if (errno != ENOENT) |
12197 | ereport(ERROR, |
12198 | (errcode_for_file_access(), |
12199 | errmsg("could not stat promote trigger file \"%s\": %m" , |
12200 | PromoteTriggerFile))); |
12201 | |
12202 | return false; |
12203 | } |
12204 | |
12205 | /* |
12206 | * Remove the files signaling a standby promotion request. |
12207 | */ |
12208 | void |
12209 | RemovePromoteSignalFiles(void) |
12210 | { |
12211 | unlink(PROMOTE_SIGNAL_FILE); |
12212 | unlink(FALLBACK_PROMOTE_SIGNAL_FILE); |
12213 | } |
12214 | |
12215 | /* |
12216 | * Check to see if a promote request has arrived. Should be |
12217 | * called by postmaster after receiving SIGUSR1. |
12218 | */ |
12219 | bool |
12220 | CheckPromoteSignal(void) |
12221 | { |
12222 | struct stat stat_buf; |
12223 | |
12224 | if (stat(PROMOTE_SIGNAL_FILE, &stat_buf) == 0 || |
12225 | stat(FALLBACK_PROMOTE_SIGNAL_FILE, &stat_buf) == 0) |
12226 | return true; |
12227 | |
12228 | return false; |
12229 | } |
12230 | |
12231 | /* |
12232 | * Wake up startup process to replay newly arrived WAL, or to notice that |
12233 | * failover has been requested. |
12234 | */ |
12235 | void |
12236 | WakeupRecovery(void) |
12237 | { |
12238 | SetLatch(&XLogCtl->recoveryWakeupLatch); |
12239 | } |
12240 | |
12241 | /* |
12242 | * Update the WalWriterSleeping flag. |
12243 | */ |
12244 | void |
12245 | SetWalWriterSleeping(bool sleeping) |
12246 | { |
12247 | SpinLockAcquire(&XLogCtl->info_lck); |
12248 | XLogCtl->WalWriterSleeping = sleeping; |
12249 | SpinLockRelease(&XLogCtl->info_lck); |
12250 | } |
12251 | |
12252 | /* |
12253 | * Schedule a walreceiver wakeup in the main recovery loop. |
12254 | */ |
12255 | void |
12256 | XLogRequestWalReceiverReply(void) |
12257 | { |
12258 | doRequestWalReceiverReply = true; |
12259 | } |
12260 | |