| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * autovacuum.c |
| 4 | * |
| 5 | * PostgreSQL Integrated Autovacuum Daemon |
| 6 | * |
| 7 | * The autovacuum system is structured in two different kinds of processes: the |
| 8 | * autovacuum launcher and the autovacuum worker. The launcher is an |
| 9 | * always-running process, started by the postmaster when the autovacuum GUC |
| 10 | * parameter is set. The launcher schedules autovacuum workers to be started |
| 11 | * when appropriate. The workers are the processes which execute the actual |
| 12 | * vacuuming; they connect to a database as determined in the launcher, and |
| 13 | * once connected they examine the catalogs to select the tables to vacuum. |
| 14 | * |
| 15 | * The autovacuum launcher cannot start the worker processes by itself, |
| 16 | * because doing so would cause robustness issues (namely, failure to shut |
| 17 | * them down on exceptional conditions, and also, since the launcher is |
| 18 | * connected to shared memory and is thus subject to corruption there, it is |
| 19 | * not as robust as the postmaster). So it leaves that task to the postmaster. |
| 20 | * |
| 21 | * There is an autovacuum shared memory area, where the launcher stores |
| 22 | * information about the database it wants vacuumed. When it wants a new |
| 23 | * worker to start, it sets a flag in shared memory and sends a signal to the |
| 24 | * postmaster. Then postmaster knows nothing more than it must start a worker; |
| 25 | * so it forks a new child, which turns into a worker. This new process |
| 26 | * connects to shared memory, and there it can inspect the information that the |
| 27 | * launcher has set up. |
| 28 | * |
| 29 | * If the fork() call fails in the postmaster, it sets a flag in the shared |
| 30 | * memory area, and sends a signal to the launcher. The launcher, upon |
| 31 | * noticing the flag, can try starting the worker again by resending the |
| 32 | * signal. Note that the failure can only be transient (fork failure due to |
| 33 | * high load, memory pressure, too many processes, etc); more permanent |
| 34 | * problems, like failure to connect to a database, are detected later in the |
| 35 | * worker and dealt with just by having the worker exit normally. The launcher |
| 36 | * will launch a new worker again later, per schedule. |
| 37 | * |
| 38 | * When the worker is done vacuuming it sends SIGUSR2 to the launcher. The |
| 39 | * launcher then wakes up and is able to launch another worker, if the schedule |
| 40 | * is so tight that a new worker is needed immediately. At this time the |
| 41 | * launcher can also balance the settings for the various remaining workers' |
| 42 | * cost-based vacuum delay feature. |
| 43 | * |
| 44 | * Note that there can be more than one worker in a database concurrently. |
| 45 | * They will store the table they are currently vacuuming in shared memory, so |
| 46 | * that other workers avoid being blocked waiting for the vacuum lock for that |
| 47 | * table. They will also reload the pgstats data just before vacuuming each |
| 48 | * table, to avoid vacuuming a table that was just finished being vacuumed by |
| 49 | * another worker and thus is no longer noted in shared memory. However, |
| 50 | * there is a window (caused by pgstat delay) on which a worker may choose a |
| 51 | * table that was already vacuumed; this is a bug in the current design. |
| 52 | * |
| 53 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 54 | * Portions Copyright (c) 1994, Regents of the University of California |
| 55 | * |
| 56 | * |
| 57 | * IDENTIFICATION |
| 58 | * src/backend/postmaster/autovacuum.c |
| 59 | * |
| 60 | *------------------------------------------------------------------------- |
| 61 | */ |
| 62 | #include "postgres.h" |
| 63 | |
| 64 | #include <signal.h> |
| 65 | #include <sys/time.h> |
| 66 | #include <unistd.h> |
| 67 | |
| 68 | #include "access/heapam.h" |
| 69 | #include "access/htup_details.h" |
| 70 | #include "access/multixact.h" |
| 71 | #include "access/reloptions.h" |
| 72 | #include "access/tableam.h" |
| 73 | #include "access/transam.h" |
| 74 | #include "access/xact.h" |
| 75 | #include "catalog/dependency.h" |
| 76 | #include "catalog/namespace.h" |
| 77 | #include "catalog/pg_database.h" |
| 78 | #include "commands/dbcommands.h" |
| 79 | #include "commands/vacuum.h" |
| 80 | #include "lib/ilist.h" |
| 81 | #include "libpq/pqsignal.h" |
| 82 | #include "miscadmin.h" |
| 83 | #include "nodes/makefuncs.h" |
| 84 | #include "pgstat.h" |
| 85 | #include "postmaster/autovacuum.h" |
| 86 | #include "postmaster/fork_process.h" |
| 87 | #include "postmaster/postmaster.h" |
| 88 | #include "storage/bufmgr.h" |
| 89 | #include "storage/ipc.h" |
| 90 | #include "storage/latch.h" |
| 91 | #include "storage/lmgr.h" |
| 92 | #include "storage/pmsignal.h" |
| 93 | #include "storage/proc.h" |
| 94 | #include "storage/procsignal.h" |
| 95 | #include "storage/sinvaladt.h" |
| 96 | #include "storage/smgr.h" |
| 97 | #include "tcop/tcopprot.h" |
| 98 | #include "utils/fmgroids.h" |
| 99 | #include "utils/fmgrprotos.h" |
| 100 | #include "utils/lsyscache.h" |
| 101 | #include "utils/memutils.h" |
| 102 | #include "utils/ps_status.h" |
| 103 | #include "utils/rel.h" |
| 104 | #include "utils/snapmgr.h" |
| 105 | #include "utils/syscache.h" |
| 106 | #include "utils/timeout.h" |
| 107 | #include "utils/timestamp.h" |
| 108 | |
| 109 | |
| 110 | /* |
| 111 | * GUC parameters |
| 112 | */ |
| 113 | bool autovacuum_start_daemon = false; |
| 114 | int autovacuum_max_workers; |
| 115 | int autovacuum_work_mem = -1; |
| 116 | int autovacuum_naptime; |
| 117 | int autovacuum_vac_thresh; |
| 118 | double autovacuum_vac_scale; |
| 119 | int autovacuum_anl_thresh; |
| 120 | double autovacuum_anl_scale; |
| 121 | int autovacuum_freeze_max_age; |
| 122 | int autovacuum_multixact_freeze_max_age; |
| 123 | |
| 124 | double autovacuum_vac_cost_delay; |
| 125 | int autovacuum_vac_cost_limit; |
| 126 | |
| 127 | int Log_autovacuum_min_duration = -1; |
| 128 | |
| 129 | /* how long to keep pgstat data in the launcher, in milliseconds */ |
| 130 | #define STATS_READ_DELAY 1000 |
| 131 | |
| 132 | /* the minimum allowed time between two awakenings of the launcher */ |
| 133 | #define MIN_AUTOVAC_SLEEPTIME 100.0 /* milliseconds */ |
| 134 | #define MAX_AUTOVAC_SLEEPTIME 300 /* seconds */ |
| 135 | |
| 136 | /* Flags to tell if we are in an autovacuum process */ |
| 137 | static bool am_autovacuum_launcher = false; |
| 138 | static bool am_autovacuum_worker = false; |
| 139 | |
| 140 | /* Flags set by signal handlers */ |
| 141 | static volatile sig_atomic_t got_SIGHUP = false; |
| 142 | static volatile sig_atomic_t got_SIGUSR2 = false; |
| 143 | static volatile sig_atomic_t got_SIGTERM = false; |
| 144 | |
| 145 | /* Comparison points for determining whether freeze_max_age is exceeded */ |
| 146 | static TransactionId recentXid; |
| 147 | static MultiXactId recentMulti; |
| 148 | |
| 149 | /* Default freeze ages to use for autovacuum (varies by database) */ |
| 150 | static int default_freeze_min_age; |
| 151 | static int default_freeze_table_age; |
| 152 | static int default_multixact_freeze_min_age; |
| 153 | static int default_multixact_freeze_table_age; |
| 154 | |
| 155 | /* Memory context for long-lived data */ |
| 156 | static MemoryContext AutovacMemCxt; |
| 157 | |
| 158 | /* struct to keep track of databases in launcher */ |
| 159 | typedef struct avl_dbase |
| 160 | { |
| 161 | Oid adl_datid; /* hash key -- must be first */ |
| 162 | TimestampTz adl_next_worker; |
| 163 | int adl_score; |
| 164 | dlist_node adl_node; |
| 165 | } avl_dbase; |
| 166 | |
| 167 | /* struct to keep track of databases in worker */ |
| 168 | typedef struct avw_dbase |
| 169 | { |
| 170 | Oid adw_datid; |
| 171 | char *adw_name; |
| 172 | TransactionId adw_frozenxid; |
| 173 | MultiXactId adw_minmulti; |
| 174 | PgStat_StatDBEntry *adw_entry; |
| 175 | } avw_dbase; |
| 176 | |
| 177 | /* struct to keep track of tables to vacuum and/or analyze, in 1st pass */ |
| 178 | typedef struct av_relation |
| 179 | { |
| 180 | Oid ar_toastrelid; /* hash key - must be first */ |
| 181 | Oid ar_relid; |
| 182 | bool ar_hasrelopts; |
| 183 | AutoVacOpts ar_reloptions; /* copy of AutoVacOpts from the main table's |
| 184 | * reloptions, or NULL if none */ |
| 185 | } av_relation; |
| 186 | |
| 187 | /* struct to keep track of tables to vacuum and/or analyze, after rechecking */ |
| 188 | typedef struct autovac_table |
| 189 | { |
| 190 | Oid at_relid; |
| 191 | VacuumParams at_params; |
| 192 | double at_vacuum_cost_delay; |
| 193 | int at_vacuum_cost_limit; |
| 194 | bool at_dobalance; |
| 195 | bool at_sharedrel; |
| 196 | char *at_relname; |
| 197 | char *at_nspname; |
| 198 | char *at_datname; |
| 199 | } autovac_table; |
| 200 | |
| 201 | /*------------- |
| 202 | * This struct holds information about a single worker's whereabouts. We keep |
| 203 | * an array of these in shared memory, sized according to |
| 204 | * autovacuum_max_workers. |
| 205 | * |
| 206 | * wi_links entry into free list or running list |
| 207 | * wi_dboid OID of the database this worker is supposed to work on |
| 208 | * wi_tableoid OID of the table currently being vacuumed, if any |
| 209 | * wi_sharedrel flag indicating whether table is marked relisshared |
| 210 | * wi_proc pointer to PGPROC of the running worker, NULL if not started |
| 211 | * wi_launchtime Time at which this worker was launched |
| 212 | * wi_cost_* Vacuum cost-based delay parameters current in this worker |
| 213 | * |
| 214 | * All fields are protected by AutovacuumLock, except for wi_tableoid and |
| 215 | * wi_sharedrel which are protected by AutovacuumScheduleLock (note these |
| 216 | * two fields are read-only for everyone except that worker itself). |
| 217 | *------------- |
| 218 | */ |
| 219 | typedef struct WorkerInfoData |
| 220 | { |
| 221 | dlist_node wi_links; |
| 222 | Oid wi_dboid; |
| 223 | Oid wi_tableoid; |
| 224 | PGPROC *wi_proc; |
| 225 | TimestampTz wi_launchtime; |
| 226 | bool wi_dobalance; |
| 227 | bool wi_sharedrel; |
| 228 | double wi_cost_delay; |
| 229 | int wi_cost_limit; |
| 230 | int wi_cost_limit_base; |
| 231 | } WorkerInfoData; |
| 232 | |
| 233 | typedef struct WorkerInfoData *WorkerInfo; |
| 234 | |
| 235 | /* |
| 236 | * Possible signals received by the launcher from remote processes. These are |
| 237 | * stored atomically in shared memory so that other processes can set them |
| 238 | * without locking. |
| 239 | */ |
| 240 | typedef enum |
| 241 | { |
| 242 | AutoVacForkFailed, /* failed trying to start a worker */ |
| 243 | AutoVacRebalance, /* rebalance the cost limits */ |
| 244 | AutoVacNumSignals /* must be last */ |
| 245 | } AutoVacuumSignal; |
| 246 | |
| 247 | /* |
| 248 | * Autovacuum workitem array, stored in AutoVacuumShmem->av_workItems. This |
| 249 | * list is mostly protected by AutovacuumLock, except that if an item is |
| 250 | * marked 'active' other processes must not modify the work-identifying |
| 251 | * members. |
| 252 | */ |
| 253 | typedef struct AutoVacuumWorkItem |
| 254 | { |
| 255 | AutoVacuumWorkItemType avw_type; |
| 256 | bool avw_used; /* below data is valid */ |
| 257 | bool avw_active; /* being processed */ |
| 258 | Oid avw_database; |
| 259 | Oid avw_relation; |
| 260 | BlockNumber avw_blockNumber; |
| 261 | } AutoVacuumWorkItem; |
| 262 | |
| 263 | #define NUM_WORKITEMS 256 |
| 264 | |
| 265 | /*------------- |
| 266 | * The main autovacuum shmem struct. On shared memory we store this main |
| 267 | * struct and the array of WorkerInfo structs. This struct keeps: |
| 268 | * |
| 269 | * av_signal set by other processes to indicate various conditions |
| 270 | * av_launcherpid the PID of the autovacuum launcher |
| 271 | * av_freeWorkers the WorkerInfo freelist |
| 272 | * av_runningWorkers the WorkerInfo non-free queue |
| 273 | * av_startingWorker pointer to WorkerInfo currently being started (cleared by |
| 274 | * the worker itself as soon as it's up and running) |
| 275 | * av_workItems work item array |
| 276 | * |
| 277 | * This struct is protected by AutovacuumLock, except for av_signal and parts |
| 278 | * of the worker list (see above). |
| 279 | *------------- |
| 280 | */ |
| 281 | typedef struct |
| 282 | { |
| 283 | sig_atomic_t av_signal[AutoVacNumSignals]; |
| 284 | pid_t av_launcherpid; |
| 285 | dlist_head av_freeWorkers; |
| 286 | dlist_head av_runningWorkers; |
| 287 | WorkerInfo av_startingWorker; |
| 288 | AutoVacuumWorkItem av_workItems[NUM_WORKITEMS]; |
| 289 | } AutoVacuumShmemStruct; |
| 290 | |
| 291 | static AutoVacuumShmemStruct *AutoVacuumShmem; |
| 292 | |
| 293 | /* |
| 294 | * the database list (of avl_dbase elements) in the launcher, and the context |
| 295 | * that contains it |
| 296 | */ |
| 297 | static dlist_head DatabaseList = DLIST_STATIC_INIT(DatabaseList); |
| 298 | static MemoryContext DatabaseListCxt = NULL; |
| 299 | |
| 300 | /* Pointer to my own WorkerInfo, valid on each worker */ |
| 301 | static WorkerInfo MyWorkerInfo = NULL; |
| 302 | |
| 303 | /* PID of launcher, valid only in worker while shutting down */ |
| 304 | int AutovacuumLauncherPid = 0; |
| 305 | |
| 306 | #ifdef EXEC_BACKEND |
| 307 | static pid_t avlauncher_forkexec(void); |
| 308 | static pid_t avworker_forkexec(void); |
| 309 | #endif |
| 310 | NON_EXEC_STATIC void AutoVacWorkerMain(int argc, char *argv[]) pg_attribute_noreturn(); |
| 311 | NON_EXEC_STATIC void AutoVacLauncherMain(int argc, char *argv[]) pg_attribute_noreturn(); |
| 312 | |
| 313 | static Oid do_start_worker(void); |
| 314 | static void launcher_determine_sleep(bool canlaunch, bool recursing, |
| 315 | struct timeval *nap); |
| 316 | static void launch_worker(TimestampTz now); |
| 317 | static List *get_database_list(void); |
| 318 | static void rebuild_database_list(Oid newdb); |
| 319 | static int db_comparator(const void *a, const void *b); |
| 320 | static void autovac_balance_cost(void); |
| 321 | |
| 322 | static void do_autovacuum(void); |
| 323 | static void FreeWorkerInfo(int code, Datum arg); |
| 324 | |
| 325 | static autovac_table *table_recheck_autovac(Oid relid, HTAB *table_toast_map, |
| 326 | TupleDesc pg_class_desc, |
| 327 | int effective_multixact_freeze_max_age); |
| 328 | static void relation_needs_vacanalyze(Oid relid, AutoVacOpts *relopts, |
| 329 | Form_pg_class classForm, |
| 330 | PgStat_StatTabEntry *tabentry, |
| 331 | int effective_multixact_freeze_max_age, |
| 332 | bool *dovacuum, bool *doanalyze, bool *wraparound); |
| 333 | |
| 334 | static void autovacuum_do_vac_analyze(autovac_table *tab, |
| 335 | BufferAccessStrategy bstrategy); |
| 336 | static AutoVacOpts *extract_autovac_opts(HeapTuple tup, |
| 337 | TupleDesc pg_class_desc); |
| 338 | static PgStat_StatTabEntry *get_pgstat_tabentry_relid(Oid relid, bool isshared, |
| 339 | PgStat_StatDBEntry *shared, |
| 340 | PgStat_StatDBEntry *dbentry); |
| 341 | static void perform_work_item(AutoVacuumWorkItem *workitem); |
| 342 | static void autovac_report_activity(autovac_table *tab); |
| 343 | static void autovac_report_workitem(AutoVacuumWorkItem *workitem, |
| 344 | const char *nspname, const char *relname); |
| 345 | static void av_sighup_handler(SIGNAL_ARGS); |
| 346 | static void avl_sigusr2_handler(SIGNAL_ARGS); |
| 347 | static void avl_sigterm_handler(SIGNAL_ARGS); |
| 348 | static void autovac_refresh_stats(void); |
| 349 | |
| 350 | |
| 351 | |
| 352 | /******************************************************************** |
| 353 | * AUTOVACUUM LAUNCHER CODE |
| 354 | ********************************************************************/ |
| 355 | |
| 356 | #ifdef EXEC_BACKEND |
| 357 | /* |
| 358 | * forkexec routine for the autovacuum launcher process. |
| 359 | * |
| 360 | * Format up the arglist, then fork and exec. |
| 361 | */ |
| 362 | static pid_t |
| 363 | avlauncher_forkexec(void) |
| 364 | { |
| 365 | char *av[10]; |
| 366 | int ac = 0; |
| 367 | |
| 368 | av[ac++] = "postgres" ; |
| 369 | av[ac++] = "--forkavlauncher" ; |
| 370 | av[ac++] = NULL; /* filled in by postmaster_forkexec */ |
| 371 | av[ac] = NULL; |
| 372 | |
| 373 | Assert(ac < lengthof(av)); |
| 374 | |
| 375 | return postmaster_forkexec(ac, av); |
| 376 | } |
| 377 | |
| 378 | /* |
| 379 | * We need this set from the outside, before InitProcess is called |
| 380 | */ |
| 381 | void |
| 382 | AutovacuumLauncherIAm(void) |
| 383 | { |
| 384 | am_autovacuum_launcher = true; |
| 385 | } |
| 386 | #endif |
| 387 | |
| 388 | /* |
| 389 | * Main entry point for autovacuum launcher process, to be called from the |
| 390 | * postmaster. |
| 391 | */ |
| 392 | int |
| 393 | StartAutoVacLauncher(void) |
| 394 | { |
| 395 | pid_t AutoVacPID; |
| 396 | |
| 397 | #ifdef EXEC_BACKEND |
| 398 | switch ((AutoVacPID = avlauncher_forkexec())) |
| 399 | #else |
| 400 | switch ((AutoVacPID = fork_process())) |
| 401 | #endif |
| 402 | { |
| 403 | case -1: |
| 404 | ereport(LOG, |
| 405 | (errmsg("could not fork autovacuum launcher process: %m" ))); |
| 406 | return 0; |
| 407 | |
| 408 | #ifndef EXEC_BACKEND |
| 409 | case 0: |
| 410 | /* in postmaster child ... */ |
| 411 | InitPostmasterChild(); |
| 412 | |
| 413 | /* Close the postmaster's sockets */ |
| 414 | ClosePostmasterPorts(false); |
| 415 | |
| 416 | AutoVacLauncherMain(0, NULL); |
| 417 | break; |
| 418 | #endif |
| 419 | default: |
| 420 | return (int) AutoVacPID; |
| 421 | } |
| 422 | |
| 423 | /* shouldn't get here */ |
| 424 | return 0; |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * Main loop for the autovacuum launcher process. |
| 429 | */ |
| 430 | NON_EXEC_STATIC void |
| 431 | AutoVacLauncherMain(int argc, char *argv[]) |
| 432 | { |
| 433 | sigjmp_buf local_sigjmp_buf; |
| 434 | |
| 435 | am_autovacuum_launcher = true; |
| 436 | |
| 437 | /* Identify myself via ps */ |
| 438 | init_ps_display(pgstat_get_backend_desc(B_AUTOVAC_LAUNCHER), "" , "" , "" ); |
| 439 | |
| 440 | ereport(DEBUG1, |
| 441 | (errmsg("autovacuum launcher started" ))); |
| 442 | |
| 443 | if (PostAuthDelay) |
| 444 | pg_usleep(PostAuthDelay * 1000000L); |
| 445 | |
| 446 | SetProcessingMode(InitProcessing); |
| 447 | |
| 448 | /* |
| 449 | * Set up signal handlers. We operate on databases much like a regular |
| 450 | * backend, so we use the same signal handling. See equivalent code in |
| 451 | * tcop/postgres.c. |
| 452 | */ |
| 453 | pqsignal(SIGHUP, av_sighup_handler); |
| 454 | pqsignal(SIGINT, StatementCancelHandler); |
| 455 | pqsignal(SIGTERM, avl_sigterm_handler); |
| 456 | |
| 457 | pqsignal(SIGQUIT, quickdie); |
| 458 | InitializeTimeouts(); /* establishes SIGALRM handler */ |
| 459 | |
| 460 | pqsignal(SIGPIPE, SIG_IGN); |
| 461 | pqsignal(SIGUSR1, procsignal_sigusr1_handler); |
| 462 | pqsignal(SIGUSR2, avl_sigusr2_handler); |
| 463 | pqsignal(SIGFPE, FloatExceptionHandler); |
| 464 | pqsignal(SIGCHLD, SIG_DFL); |
| 465 | |
| 466 | /* Early initialization */ |
| 467 | BaseInit(); |
| 468 | |
| 469 | /* |
| 470 | * Create a per-backend PGPROC struct in shared memory, except in the |
| 471 | * EXEC_BACKEND case where this was done in SubPostmasterMain. We must do |
| 472 | * this before we can use LWLocks (and in the EXEC_BACKEND case we already |
| 473 | * had to do some stuff with LWLocks). |
| 474 | */ |
| 475 | #ifndef EXEC_BACKEND |
| 476 | InitProcess(); |
| 477 | #endif |
| 478 | |
| 479 | InitPostgres(NULL, InvalidOid, NULL, InvalidOid, NULL, false); |
| 480 | |
| 481 | SetProcessingMode(NormalProcessing); |
| 482 | |
| 483 | /* |
| 484 | * Create a memory context that we will do all our work in. We do this so |
| 485 | * that we can reset the context during error recovery and thereby avoid |
| 486 | * possible memory leaks. |
| 487 | */ |
| 488 | AutovacMemCxt = AllocSetContextCreate(TopMemoryContext, |
| 489 | "Autovacuum Launcher" , |
| 490 | ALLOCSET_DEFAULT_SIZES); |
| 491 | MemoryContextSwitchTo(AutovacMemCxt); |
| 492 | |
| 493 | /* |
| 494 | * If an exception is encountered, processing resumes here. |
| 495 | * |
| 496 | * This code is a stripped down version of PostgresMain error recovery. |
| 497 | */ |
| 498 | if (sigsetjmp(local_sigjmp_buf, 1) != 0) |
| 499 | { |
| 500 | /* since not using PG_TRY, must reset error stack by hand */ |
| 501 | error_context_stack = NULL; |
| 502 | |
| 503 | /* Prevents interrupts while cleaning up */ |
| 504 | HOLD_INTERRUPTS(); |
| 505 | |
| 506 | /* Forget any pending QueryCancel or timeout request */ |
| 507 | disable_all_timeouts(false); |
| 508 | QueryCancelPending = false; /* second to avoid race condition */ |
| 509 | |
| 510 | /* Report the error to the server log */ |
| 511 | EmitErrorReport(); |
| 512 | |
| 513 | /* Abort the current transaction in order to recover */ |
| 514 | AbortCurrentTransaction(); |
| 515 | |
| 516 | /* |
| 517 | * Release any other resources, for the case where we were not in a |
| 518 | * transaction. |
| 519 | */ |
| 520 | LWLockReleaseAll(); |
| 521 | pgstat_report_wait_end(); |
| 522 | AbortBufferIO(); |
| 523 | UnlockBuffers(); |
| 524 | /* this is probably dead code, but let's be safe: */ |
| 525 | if (AuxProcessResourceOwner) |
| 526 | ReleaseAuxProcessResources(false); |
| 527 | AtEOXact_Buffers(false); |
| 528 | AtEOXact_SMgr(); |
| 529 | AtEOXact_Files(false); |
| 530 | AtEOXact_HashTables(false); |
| 531 | |
| 532 | /* |
| 533 | * Now return to normal top-level context and clear ErrorContext for |
| 534 | * next time. |
| 535 | */ |
| 536 | MemoryContextSwitchTo(AutovacMemCxt); |
| 537 | FlushErrorState(); |
| 538 | |
| 539 | /* Flush any leaked data in the top-level context */ |
| 540 | MemoryContextResetAndDeleteChildren(AutovacMemCxt); |
| 541 | |
| 542 | /* don't leave dangling pointers to freed memory */ |
| 543 | DatabaseListCxt = NULL; |
| 544 | dlist_init(&DatabaseList); |
| 545 | |
| 546 | /* |
| 547 | * Make sure pgstat also considers our stat data as gone. Note: we |
| 548 | * mustn't use autovac_refresh_stats here. |
| 549 | */ |
| 550 | pgstat_clear_snapshot(); |
| 551 | |
| 552 | /* Now we can allow interrupts again */ |
| 553 | RESUME_INTERRUPTS(); |
| 554 | |
| 555 | /* if in shutdown mode, no need for anything further; just go away */ |
| 556 | if (got_SIGTERM) |
| 557 | goto shutdown; |
| 558 | |
| 559 | /* |
| 560 | * Sleep at least 1 second after any error. We don't want to be |
| 561 | * filling the error logs as fast as we can. |
| 562 | */ |
| 563 | pg_usleep(1000000L); |
| 564 | } |
| 565 | |
| 566 | /* We can now handle ereport(ERROR) */ |
| 567 | PG_exception_stack = &local_sigjmp_buf; |
| 568 | |
| 569 | /* must unblock signals before calling rebuild_database_list */ |
| 570 | PG_SETMASK(&UnBlockSig); |
| 571 | |
| 572 | /* |
| 573 | * Set always-secure search path. Launcher doesn't connect to a database, |
| 574 | * so this has no effect. |
| 575 | */ |
| 576 | SetConfigOption("search_path" , "" , PGC_SUSET, PGC_S_OVERRIDE); |
| 577 | |
| 578 | /* |
| 579 | * Force zero_damaged_pages OFF in the autovac process, even if it is set |
| 580 | * in postgresql.conf. We don't really want such a dangerous option being |
| 581 | * applied non-interactively. |
| 582 | */ |
| 583 | SetConfigOption("zero_damaged_pages" , "false" , PGC_SUSET, PGC_S_OVERRIDE); |
| 584 | |
| 585 | /* |
| 586 | * Force settable timeouts off to avoid letting these settings prevent |
| 587 | * regular maintenance from being executed. |
| 588 | */ |
| 589 | SetConfigOption("statement_timeout" , "0" , PGC_SUSET, PGC_S_OVERRIDE); |
| 590 | SetConfigOption("lock_timeout" , "0" , PGC_SUSET, PGC_S_OVERRIDE); |
| 591 | SetConfigOption("idle_in_transaction_session_timeout" , "0" , |
| 592 | PGC_SUSET, PGC_S_OVERRIDE); |
| 593 | |
| 594 | /* |
| 595 | * Force default_transaction_isolation to READ COMMITTED. We don't want |
| 596 | * to pay the overhead of serializable mode, nor add any risk of causing |
| 597 | * deadlocks or delaying other transactions. |
| 598 | */ |
| 599 | SetConfigOption("default_transaction_isolation" , "read committed" , |
| 600 | PGC_SUSET, PGC_S_OVERRIDE); |
| 601 | |
| 602 | /* |
| 603 | * In emergency mode, just start a worker (unless shutdown was requested) |
| 604 | * and go away. |
| 605 | */ |
| 606 | if (!AutoVacuumingActive()) |
| 607 | { |
| 608 | if (!got_SIGTERM) |
| 609 | do_start_worker(); |
| 610 | proc_exit(0); /* done */ |
| 611 | } |
| 612 | |
| 613 | AutoVacuumShmem->av_launcherpid = MyProcPid; |
| 614 | |
| 615 | /* |
| 616 | * Create the initial database list. The invariant we want this list to |
| 617 | * keep is that it's ordered by decreasing next_time. As soon as an entry |
| 618 | * is updated to a higher time, it will be moved to the front (which is |
| 619 | * correct because the only operation is to add autovacuum_naptime to the |
| 620 | * entry, and time always increases). |
| 621 | */ |
| 622 | rebuild_database_list(InvalidOid); |
| 623 | |
| 624 | /* loop until shutdown request */ |
| 625 | while (!got_SIGTERM) |
| 626 | { |
| 627 | struct timeval nap; |
| 628 | TimestampTz current_time = 0; |
| 629 | bool can_launch; |
| 630 | |
| 631 | /* |
| 632 | * This loop is a bit different from the normal use of WaitLatch, |
| 633 | * because we'd like to sleep before the first launch of a child |
| 634 | * process. So it's WaitLatch, then ResetLatch, then check for |
| 635 | * wakening conditions. |
| 636 | */ |
| 637 | |
| 638 | launcher_determine_sleep(!dlist_is_empty(&AutoVacuumShmem->av_freeWorkers), |
| 639 | false, &nap); |
| 640 | |
| 641 | /* |
| 642 | * Wait until naptime expires or we get some type of signal (all the |
| 643 | * signal handlers will wake us by calling SetLatch). |
| 644 | */ |
| 645 | (void) WaitLatch(MyLatch, |
| 646 | WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH, |
| 647 | (nap.tv_sec * 1000L) + (nap.tv_usec / 1000L), |
| 648 | WAIT_EVENT_AUTOVACUUM_MAIN); |
| 649 | |
| 650 | ResetLatch(MyLatch); |
| 651 | |
| 652 | /* Process sinval catchup interrupts that happened while sleeping */ |
| 653 | ProcessCatchupInterrupt(); |
| 654 | |
| 655 | /* the normal shutdown case */ |
| 656 | if (got_SIGTERM) |
| 657 | break; |
| 658 | |
| 659 | if (got_SIGHUP) |
| 660 | { |
| 661 | got_SIGHUP = false; |
| 662 | ProcessConfigFile(PGC_SIGHUP); |
| 663 | |
| 664 | /* shutdown requested in config file? */ |
| 665 | if (!AutoVacuumingActive()) |
| 666 | break; |
| 667 | |
| 668 | /* rebalance in case the default cost parameters changed */ |
| 669 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 670 | autovac_balance_cost(); |
| 671 | LWLockRelease(AutovacuumLock); |
| 672 | |
| 673 | /* rebuild the list in case the naptime changed */ |
| 674 | rebuild_database_list(InvalidOid); |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * a worker finished, or postmaster signalled failure to start a |
| 679 | * worker |
| 680 | */ |
| 681 | if (got_SIGUSR2) |
| 682 | { |
| 683 | got_SIGUSR2 = false; |
| 684 | |
| 685 | /* rebalance cost limits, if needed */ |
| 686 | if (AutoVacuumShmem->av_signal[AutoVacRebalance]) |
| 687 | { |
| 688 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 689 | AutoVacuumShmem->av_signal[AutoVacRebalance] = false; |
| 690 | autovac_balance_cost(); |
| 691 | LWLockRelease(AutovacuumLock); |
| 692 | } |
| 693 | |
| 694 | if (AutoVacuumShmem->av_signal[AutoVacForkFailed]) |
| 695 | { |
| 696 | /* |
| 697 | * If the postmaster failed to start a new worker, we sleep |
| 698 | * for a little while and resend the signal. The new worker's |
| 699 | * state is still in memory, so this is sufficient. After |
| 700 | * that, we restart the main loop. |
| 701 | * |
| 702 | * XXX should we put a limit to the number of times we retry? |
| 703 | * I don't think it makes much sense, because a future start |
| 704 | * of a worker will continue to fail in the same way. |
| 705 | */ |
| 706 | AutoVacuumShmem->av_signal[AutoVacForkFailed] = false; |
| 707 | pg_usleep(1000000L); /* 1s */ |
| 708 | SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_WORKER); |
| 709 | continue; |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | /* |
| 714 | * There are some conditions that we need to check before trying to |
| 715 | * start a worker. First, we need to make sure that there is a worker |
| 716 | * slot available. Second, we need to make sure that no other worker |
| 717 | * failed while starting up. |
| 718 | */ |
| 719 | |
| 720 | current_time = GetCurrentTimestamp(); |
| 721 | LWLockAcquire(AutovacuumLock, LW_SHARED); |
| 722 | |
| 723 | can_launch = !dlist_is_empty(&AutoVacuumShmem->av_freeWorkers); |
| 724 | |
| 725 | if (AutoVacuumShmem->av_startingWorker != NULL) |
| 726 | { |
| 727 | int waittime; |
| 728 | WorkerInfo worker = AutoVacuumShmem->av_startingWorker; |
| 729 | |
| 730 | /* |
| 731 | * We can't launch another worker when another one is still |
| 732 | * starting up (or failed while doing so), so just sleep for a bit |
| 733 | * more; that worker will wake us up again as soon as it's ready. |
| 734 | * We will only wait autovacuum_naptime seconds (up to a maximum |
| 735 | * of 60 seconds) for this to happen however. Note that failure |
| 736 | * to connect to a particular database is not a problem here, |
| 737 | * because the worker removes itself from the startingWorker |
| 738 | * pointer before trying to connect. Problems detected by the |
| 739 | * postmaster (like fork() failure) are also reported and handled |
| 740 | * differently. The only problems that may cause this code to |
| 741 | * fire are errors in the earlier sections of AutoVacWorkerMain, |
| 742 | * before the worker removes the WorkerInfo from the |
| 743 | * startingWorker pointer. |
| 744 | */ |
| 745 | waittime = Min(autovacuum_naptime, 60) * 1000; |
| 746 | if (TimestampDifferenceExceeds(worker->wi_launchtime, current_time, |
| 747 | waittime)) |
| 748 | { |
| 749 | LWLockRelease(AutovacuumLock); |
| 750 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 751 | |
| 752 | /* |
| 753 | * No other process can put a worker in starting mode, so if |
| 754 | * startingWorker is still INVALID after exchanging our lock, |
| 755 | * we assume it's the same one we saw above (so we don't |
| 756 | * recheck the launch time). |
| 757 | */ |
| 758 | if (AutoVacuumShmem->av_startingWorker != NULL) |
| 759 | { |
| 760 | worker = AutoVacuumShmem->av_startingWorker; |
| 761 | worker->wi_dboid = InvalidOid; |
| 762 | worker->wi_tableoid = InvalidOid; |
| 763 | worker->wi_sharedrel = false; |
| 764 | worker->wi_proc = NULL; |
| 765 | worker->wi_launchtime = 0; |
| 766 | dlist_push_head(&AutoVacuumShmem->av_freeWorkers, |
| 767 | &worker->wi_links); |
| 768 | AutoVacuumShmem->av_startingWorker = NULL; |
| 769 | elog(WARNING, "worker took too long to start; canceled" ); |
| 770 | } |
| 771 | } |
| 772 | else |
| 773 | can_launch = false; |
| 774 | } |
| 775 | LWLockRelease(AutovacuumLock); /* either shared or exclusive */ |
| 776 | |
| 777 | /* if we can't do anything, just go back to sleep */ |
| 778 | if (!can_launch) |
| 779 | continue; |
| 780 | |
| 781 | /* We're OK to start a new worker */ |
| 782 | |
| 783 | if (dlist_is_empty(&DatabaseList)) |
| 784 | { |
| 785 | /* |
| 786 | * Special case when the list is empty: start a worker right away. |
| 787 | * This covers the initial case, when no database is in pgstats |
| 788 | * (thus the list is empty). Note that the constraints in |
| 789 | * launcher_determine_sleep keep us from starting workers too |
| 790 | * quickly (at most once every autovacuum_naptime when the list is |
| 791 | * empty). |
| 792 | */ |
| 793 | launch_worker(current_time); |
| 794 | } |
| 795 | else |
| 796 | { |
| 797 | /* |
| 798 | * because rebuild_database_list constructs a list with most |
| 799 | * distant adl_next_worker first, we obtain our database from the |
| 800 | * tail of the list. |
| 801 | */ |
| 802 | avl_dbase *avdb; |
| 803 | |
| 804 | avdb = dlist_tail_element(avl_dbase, adl_node, &DatabaseList); |
| 805 | |
| 806 | /* |
| 807 | * launch a worker if next_worker is right now or it is in the |
| 808 | * past |
| 809 | */ |
| 810 | if (TimestampDifferenceExceeds(avdb->adl_next_worker, |
| 811 | current_time, 0)) |
| 812 | launch_worker(current_time); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | /* Normal exit from the autovac launcher is here */ |
| 817 | shutdown: |
| 818 | ereport(DEBUG1, |
| 819 | (errmsg("autovacuum launcher shutting down" ))); |
| 820 | AutoVacuumShmem->av_launcherpid = 0; |
| 821 | |
| 822 | proc_exit(0); /* done */ |
| 823 | } |
| 824 | |
| 825 | /* |
| 826 | * Determine the time to sleep, based on the database list. |
| 827 | * |
| 828 | * The "canlaunch" parameter indicates whether we can start a worker right now, |
| 829 | * for example due to the workers being all busy. If this is false, we will |
| 830 | * cause a long sleep, which will be interrupted when a worker exits. |
| 831 | */ |
| 832 | static void |
| 833 | launcher_determine_sleep(bool canlaunch, bool recursing, struct timeval *nap) |
| 834 | { |
| 835 | /* |
| 836 | * We sleep until the next scheduled vacuum. We trust that when the |
| 837 | * database list was built, care was taken so that no entries have times |
| 838 | * in the past; if the first entry has too close a next_worker value, or a |
| 839 | * time in the past, we will sleep a small nominal time. |
| 840 | */ |
| 841 | if (!canlaunch) |
| 842 | { |
| 843 | nap->tv_sec = autovacuum_naptime; |
| 844 | nap->tv_usec = 0; |
| 845 | } |
| 846 | else if (!dlist_is_empty(&DatabaseList)) |
| 847 | { |
| 848 | TimestampTz current_time = GetCurrentTimestamp(); |
| 849 | TimestampTz next_wakeup; |
| 850 | avl_dbase *avdb; |
| 851 | long secs; |
| 852 | int usecs; |
| 853 | |
| 854 | avdb = dlist_tail_element(avl_dbase, adl_node, &DatabaseList); |
| 855 | |
| 856 | next_wakeup = avdb->adl_next_worker; |
| 857 | TimestampDifference(current_time, next_wakeup, &secs, &usecs); |
| 858 | |
| 859 | nap->tv_sec = secs; |
| 860 | nap->tv_usec = usecs; |
| 861 | } |
| 862 | else |
| 863 | { |
| 864 | /* list is empty, sleep for whole autovacuum_naptime seconds */ |
| 865 | nap->tv_sec = autovacuum_naptime; |
| 866 | nap->tv_usec = 0; |
| 867 | } |
| 868 | |
| 869 | /* |
| 870 | * If the result is exactly zero, it means a database had an entry with |
| 871 | * time in the past. Rebuild the list so that the databases are evenly |
| 872 | * distributed again, and recalculate the time to sleep. This can happen |
| 873 | * if there are more tables needing vacuum than workers, and they all take |
| 874 | * longer to vacuum than autovacuum_naptime. |
| 875 | * |
| 876 | * We only recurse once. rebuild_database_list should always return times |
| 877 | * in the future, but it seems best not to trust too much on that. |
| 878 | */ |
| 879 | if (nap->tv_sec == 0 && nap->tv_usec == 0 && !recursing) |
| 880 | { |
| 881 | rebuild_database_list(InvalidOid); |
| 882 | launcher_determine_sleep(canlaunch, true, nap); |
| 883 | return; |
| 884 | } |
| 885 | |
| 886 | /* The smallest time we'll allow the launcher to sleep. */ |
| 887 | if (nap->tv_sec <= 0 && nap->tv_usec <= MIN_AUTOVAC_SLEEPTIME * 1000) |
| 888 | { |
| 889 | nap->tv_sec = 0; |
| 890 | nap->tv_usec = MIN_AUTOVAC_SLEEPTIME * 1000; |
| 891 | } |
| 892 | |
| 893 | /* |
| 894 | * If the sleep time is too large, clamp it to an arbitrary maximum (plus |
| 895 | * any fractional seconds, for simplicity). This avoids an essentially |
| 896 | * infinite sleep in strange cases like the system clock going backwards a |
| 897 | * few years. |
| 898 | */ |
| 899 | if (nap->tv_sec > MAX_AUTOVAC_SLEEPTIME) |
| 900 | nap->tv_sec = MAX_AUTOVAC_SLEEPTIME; |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | * Build an updated DatabaseList. It must only contain databases that appear |
| 905 | * in pgstats, and must be sorted by next_worker from highest to lowest, |
| 906 | * distributed regularly across the next autovacuum_naptime interval. |
| 907 | * |
| 908 | * Receives the Oid of the database that made this list be generated (we call |
| 909 | * this the "new" database, because when the database was already present on |
| 910 | * the list, we expect that this function is not called at all). The |
| 911 | * preexisting list, if any, will be used to preserve the order of the |
| 912 | * databases in the autovacuum_naptime period. The new database is put at the |
| 913 | * end of the interval. The actual values are not saved, which should not be |
| 914 | * much of a problem. |
| 915 | */ |
| 916 | static void |
| 917 | rebuild_database_list(Oid newdb) |
| 918 | { |
| 919 | List *dblist; |
| 920 | ListCell *cell; |
| 921 | MemoryContext newcxt; |
| 922 | MemoryContext oldcxt; |
| 923 | MemoryContext tmpcxt; |
| 924 | HASHCTL hctl; |
| 925 | int score; |
| 926 | int nelems; |
| 927 | HTAB *dbhash; |
| 928 | dlist_iter iter; |
| 929 | |
| 930 | /* use fresh stats */ |
| 931 | autovac_refresh_stats(); |
| 932 | |
| 933 | newcxt = AllocSetContextCreate(AutovacMemCxt, |
| 934 | "AV dblist" , |
| 935 | ALLOCSET_DEFAULT_SIZES); |
| 936 | tmpcxt = AllocSetContextCreate(newcxt, |
| 937 | "tmp AV dblist" , |
| 938 | ALLOCSET_DEFAULT_SIZES); |
| 939 | oldcxt = MemoryContextSwitchTo(tmpcxt); |
| 940 | |
| 941 | /* |
| 942 | * Implementing this is not as simple as it sounds, because we need to put |
| 943 | * the new database at the end of the list; next the databases that were |
| 944 | * already on the list, and finally (at the tail of the list) all the |
| 945 | * other databases that are not on the existing list. |
| 946 | * |
| 947 | * To do this, we build an empty hash table of scored databases. We will |
| 948 | * start with the lowest score (zero) for the new database, then |
| 949 | * increasing scores for the databases in the existing list, in order, and |
| 950 | * lastly increasing scores for all databases gotten via |
| 951 | * get_database_list() that are not already on the hash. |
| 952 | * |
| 953 | * Then we will put all the hash elements into an array, sort the array by |
| 954 | * score, and finally put the array elements into the new doubly linked |
| 955 | * list. |
| 956 | */ |
| 957 | hctl.keysize = sizeof(Oid); |
| 958 | hctl.entrysize = sizeof(avl_dbase); |
| 959 | hctl.hcxt = tmpcxt; |
| 960 | dbhash = hash_create("db hash" , 20, &hctl, /* magic number here FIXME */ |
| 961 | HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); |
| 962 | |
| 963 | /* start by inserting the new database */ |
| 964 | score = 0; |
| 965 | if (OidIsValid(newdb)) |
| 966 | { |
| 967 | avl_dbase *db; |
| 968 | PgStat_StatDBEntry *entry; |
| 969 | |
| 970 | /* only consider this database if it has a pgstat entry */ |
| 971 | entry = pgstat_fetch_stat_dbentry(newdb); |
| 972 | if (entry != NULL) |
| 973 | { |
| 974 | /* we assume it isn't found because the hash was just created */ |
| 975 | db = hash_search(dbhash, &newdb, HASH_ENTER, NULL); |
| 976 | |
| 977 | /* hash_search already filled in the key */ |
| 978 | db->adl_score = score++; |
| 979 | /* next_worker is filled in later */ |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | /* Now insert the databases from the existing list */ |
| 984 | dlist_foreach(iter, &DatabaseList) |
| 985 | { |
| 986 | avl_dbase *avdb = dlist_container(avl_dbase, adl_node, iter.cur); |
| 987 | avl_dbase *db; |
| 988 | bool found; |
| 989 | PgStat_StatDBEntry *entry; |
| 990 | |
| 991 | /* |
| 992 | * skip databases with no stat entries -- in particular, this gets rid |
| 993 | * of dropped databases |
| 994 | */ |
| 995 | entry = pgstat_fetch_stat_dbentry(avdb->adl_datid); |
| 996 | if (entry == NULL) |
| 997 | continue; |
| 998 | |
| 999 | db = hash_search(dbhash, &(avdb->adl_datid), HASH_ENTER, &found); |
| 1000 | |
| 1001 | if (!found) |
| 1002 | { |
| 1003 | /* hash_search already filled in the key */ |
| 1004 | db->adl_score = score++; |
| 1005 | /* next_worker is filled in later */ |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | /* finally, insert all qualifying databases not previously inserted */ |
| 1010 | dblist = get_database_list(); |
| 1011 | foreach(cell, dblist) |
| 1012 | { |
| 1013 | avw_dbase *avdb = lfirst(cell); |
| 1014 | avl_dbase *db; |
| 1015 | bool found; |
| 1016 | PgStat_StatDBEntry *entry; |
| 1017 | |
| 1018 | /* only consider databases with a pgstat entry */ |
| 1019 | entry = pgstat_fetch_stat_dbentry(avdb->adw_datid); |
| 1020 | if (entry == NULL) |
| 1021 | continue; |
| 1022 | |
| 1023 | db = hash_search(dbhash, &(avdb->adw_datid), HASH_ENTER, &found); |
| 1024 | /* only update the score if the database was not already on the hash */ |
| 1025 | if (!found) |
| 1026 | { |
| 1027 | /* hash_search already filled in the key */ |
| 1028 | db->adl_score = score++; |
| 1029 | /* next_worker is filled in later */ |
| 1030 | } |
| 1031 | } |
| 1032 | nelems = score; |
| 1033 | |
| 1034 | /* from here on, the allocated memory belongs to the new list */ |
| 1035 | MemoryContextSwitchTo(newcxt); |
| 1036 | dlist_init(&DatabaseList); |
| 1037 | |
| 1038 | if (nelems > 0) |
| 1039 | { |
| 1040 | TimestampTz current_time; |
| 1041 | int millis_increment; |
| 1042 | avl_dbase *dbary; |
| 1043 | avl_dbase *db; |
| 1044 | HASH_SEQ_STATUS seq; |
| 1045 | int i; |
| 1046 | |
| 1047 | /* put all the hash elements into an array */ |
| 1048 | dbary = palloc(nelems * sizeof(avl_dbase)); |
| 1049 | |
| 1050 | i = 0; |
| 1051 | hash_seq_init(&seq, dbhash); |
| 1052 | while ((db = hash_seq_search(&seq)) != NULL) |
| 1053 | memcpy(&(dbary[i++]), db, sizeof(avl_dbase)); |
| 1054 | |
| 1055 | /* sort the array */ |
| 1056 | qsort(dbary, nelems, sizeof(avl_dbase), db_comparator); |
| 1057 | |
| 1058 | /* |
| 1059 | * Determine the time interval between databases in the schedule. If |
| 1060 | * we see that the configured naptime would take us to sleep times |
| 1061 | * lower than our min sleep time (which launcher_determine_sleep is |
| 1062 | * coded not to allow), silently use a larger naptime (but don't touch |
| 1063 | * the GUC variable). |
| 1064 | */ |
| 1065 | millis_increment = 1000.0 * autovacuum_naptime / nelems; |
| 1066 | if (millis_increment <= MIN_AUTOVAC_SLEEPTIME) |
| 1067 | millis_increment = MIN_AUTOVAC_SLEEPTIME * 1.1; |
| 1068 | |
| 1069 | current_time = GetCurrentTimestamp(); |
| 1070 | |
| 1071 | /* |
| 1072 | * move the elements from the array into the dllist, setting the |
| 1073 | * next_worker while walking the array |
| 1074 | */ |
| 1075 | for (i = 0; i < nelems; i++) |
| 1076 | { |
| 1077 | avl_dbase *db = &(dbary[i]); |
| 1078 | |
| 1079 | current_time = TimestampTzPlusMilliseconds(current_time, |
| 1080 | millis_increment); |
| 1081 | db->adl_next_worker = current_time; |
| 1082 | |
| 1083 | /* later elements should go closer to the head of the list */ |
| 1084 | dlist_push_head(&DatabaseList, &db->adl_node); |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | /* all done, clean up memory */ |
| 1089 | if (DatabaseListCxt != NULL) |
| 1090 | MemoryContextDelete(DatabaseListCxt); |
| 1091 | MemoryContextDelete(tmpcxt); |
| 1092 | DatabaseListCxt = newcxt; |
| 1093 | MemoryContextSwitchTo(oldcxt); |
| 1094 | } |
| 1095 | |
| 1096 | /* qsort comparator for avl_dbase, using adl_score */ |
| 1097 | static int |
| 1098 | db_comparator(const void *a, const void *b) |
| 1099 | { |
| 1100 | if (((const avl_dbase *) a)->adl_score == ((const avl_dbase *) b)->adl_score) |
| 1101 | return 0; |
| 1102 | else |
| 1103 | return (((const avl_dbase *) a)->adl_score < ((const avl_dbase *) b)->adl_score) ? 1 : -1; |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * do_start_worker |
| 1108 | * |
| 1109 | * Bare-bones procedure for starting an autovacuum worker from the launcher. |
| 1110 | * It determines what database to work on, sets up shared memory stuff and |
| 1111 | * signals postmaster to start the worker. It fails gracefully if invoked when |
| 1112 | * autovacuum_workers are already active. |
| 1113 | * |
| 1114 | * Return value is the OID of the database that the worker is going to process, |
| 1115 | * or InvalidOid if no worker was actually started. |
| 1116 | */ |
| 1117 | static Oid |
| 1118 | do_start_worker(void) |
| 1119 | { |
| 1120 | List *dblist; |
| 1121 | ListCell *cell; |
| 1122 | TransactionId xidForceLimit; |
| 1123 | MultiXactId multiForceLimit; |
| 1124 | bool for_xid_wrap; |
| 1125 | bool for_multi_wrap; |
| 1126 | avw_dbase *avdb; |
| 1127 | TimestampTz current_time; |
| 1128 | bool skipit = false; |
| 1129 | Oid retval = InvalidOid; |
| 1130 | MemoryContext tmpcxt, |
| 1131 | oldcxt; |
| 1132 | |
| 1133 | /* return quickly when there are no free workers */ |
| 1134 | LWLockAcquire(AutovacuumLock, LW_SHARED); |
| 1135 | if (dlist_is_empty(&AutoVacuumShmem->av_freeWorkers)) |
| 1136 | { |
| 1137 | LWLockRelease(AutovacuumLock); |
| 1138 | return InvalidOid; |
| 1139 | } |
| 1140 | LWLockRelease(AutovacuumLock); |
| 1141 | |
| 1142 | /* |
| 1143 | * Create and switch to a temporary context to avoid leaking the memory |
| 1144 | * allocated for the database list. |
| 1145 | */ |
| 1146 | tmpcxt = AllocSetContextCreate(CurrentMemoryContext, |
| 1147 | "Start worker tmp cxt" , |
| 1148 | ALLOCSET_DEFAULT_SIZES); |
| 1149 | oldcxt = MemoryContextSwitchTo(tmpcxt); |
| 1150 | |
| 1151 | /* use fresh stats */ |
| 1152 | autovac_refresh_stats(); |
| 1153 | |
| 1154 | /* Get a list of databases */ |
| 1155 | dblist = get_database_list(); |
| 1156 | |
| 1157 | /* |
| 1158 | * Determine the oldest datfrozenxid/relfrozenxid that we will allow to |
| 1159 | * pass without forcing a vacuum. (This limit can be tightened for |
| 1160 | * particular tables, but not loosened.) |
| 1161 | */ |
| 1162 | recentXid = ReadNewTransactionId(); |
| 1163 | xidForceLimit = recentXid - autovacuum_freeze_max_age; |
| 1164 | /* ensure it's a "normal" XID, else TransactionIdPrecedes misbehaves */ |
| 1165 | /* this can cause the limit to go backwards by 3, but that's OK */ |
| 1166 | if (xidForceLimit < FirstNormalTransactionId) |
| 1167 | xidForceLimit -= FirstNormalTransactionId; |
| 1168 | |
| 1169 | /* Also determine the oldest datminmxid we will consider. */ |
| 1170 | recentMulti = ReadNextMultiXactId(); |
| 1171 | multiForceLimit = recentMulti - MultiXactMemberFreezeThreshold(); |
| 1172 | if (multiForceLimit < FirstMultiXactId) |
| 1173 | multiForceLimit -= FirstMultiXactId; |
| 1174 | |
| 1175 | /* |
| 1176 | * Choose a database to connect to. We pick the database that was least |
| 1177 | * recently auto-vacuumed, or one that needs vacuuming to prevent Xid |
| 1178 | * wraparound-related data loss. If any db at risk of Xid wraparound is |
| 1179 | * found, we pick the one with oldest datfrozenxid, independently of |
| 1180 | * autovacuum times; similarly we pick the one with the oldest datminmxid |
| 1181 | * if any is in MultiXactId wraparound. Note that those in Xid wraparound |
| 1182 | * danger are given more priority than those in multi wraparound danger. |
| 1183 | * |
| 1184 | * Note that a database with no stats entry is not considered, except for |
| 1185 | * Xid wraparound purposes. The theory is that if no one has ever |
| 1186 | * connected to it since the stats were last initialized, it doesn't need |
| 1187 | * vacuuming. |
| 1188 | * |
| 1189 | * XXX This could be improved if we had more info about whether it needs |
| 1190 | * vacuuming before connecting to it. Perhaps look through the pgstats |
| 1191 | * data for the database's tables? One idea is to keep track of the |
| 1192 | * number of new and dead tuples per database in pgstats. However it |
| 1193 | * isn't clear how to construct a metric that measures that and not cause |
| 1194 | * starvation for less busy databases. |
| 1195 | */ |
| 1196 | avdb = NULL; |
| 1197 | for_xid_wrap = false; |
| 1198 | for_multi_wrap = false; |
| 1199 | current_time = GetCurrentTimestamp(); |
| 1200 | foreach(cell, dblist) |
| 1201 | { |
| 1202 | avw_dbase *tmp = lfirst(cell); |
| 1203 | dlist_iter iter; |
| 1204 | |
| 1205 | /* Check to see if this one is at risk of wraparound */ |
| 1206 | if (TransactionIdPrecedes(tmp->adw_frozenxid, xidForceLimit)) |
| 1207 | { |
| 1208 | if (avdb == NULL || |
| 1209 | TransactionIdPrecedes(tmp->adw_frozenxid, |
| 1210 | avdb->adw_frozenxid)) |
| 1211 | avdb = tmp; |
| 1212 | for_xid_wrap = true; |
| 1213 | continue; |
| 1214 | } |
| 1215 | else if (for_xid_wrap) |
| 1216 | continue; /* ignore not-at-risk DBs */ |
| 1217 | else if (MultiXactIdPrecedes(tmp->adw_minmulti, multiForceLimit)) |
| 1218 | { |
| 1219 | if (avdb == NULL || |
| 1220 | MultiXactIdPrecedes(tmp->adw_minmulti, avdb->adw_minmulti)) |
| 1221 | avdb = tmp; |
| 1222 | for_multi_wrap = true; |
| 1223 | continue; |
| 1224 | } |
| 1225 | else if (for_multi_wrap) |
| 1226 | continue; /* ignore not-at-risk DBs */ |
| 1227 | |
| 1228 | /* Find pgstat entry if any */ |
| 1229 | tmp->adw_entry = pgstat_fetch_stat_dbentry(tmp->adw_datid); |
| 1230 | |
| 1231 | /* |
| 1232 | * Skip a database with no pgstat entry; it means it hasn't seen any |
| 1233 | * activity. |
| 1234 | */ |
| 1235 | if (!tmp->adw_entry) |
| 1236 | continue; |
| 1237 | |
| 1238 | /* |
| 1239 | * Also, skip a database that appears on the database list as having |
| 1240 | * been processed recently (less than autovacuum_naptime seconds ago). |
| 1241 | * We do this so that we don't select a database which we just |
| 1242 | * selected, but that pgstat hasn't gotten around to updating the last |
| 1243 | * autovacuum time yet. |
| 1244 | */ |
| 1245 | skipit = false; |
| 1246 | |
| 1247 | dlist_reverse_foreach(iter, &DatabaseList) |
| 1248 | { |
| 1249 | avl_dbase *dbp = dlist_container(avl_dbase, adl_node, iter.cur); |
| 1250 | |
| 1251 | if (dbp->adl_datid == tmp->adw_datid) |
| 1252 | { |
| 1253 | /* |
| 1254 | * Skip this database if its next_worker value falls between |
| 1255 | * the current time and the current time plus naptime. |
| 1256 | */ |
| 1257 | if (!TimestampDifferenceExceeds(dbp->adl_next_worker, |
| 1258 | current_time, 0) && |
| 1259 | !TimestampDifferenceExceeds(current_time, |
| 1260 | dbp->adl_next_worker, |
| 1261 | autovacuum_naptime * 1000)) |
| 1262 | skipit = true; |
| 1263 | |
| 1264 | break; |
| 1265 | } |
| 1266 | } |
| 1267 | if (skipit) |
| 1268 | continue; |
| 1269 | |
| 1270 | /* |
| 1271 | * Remember the db with oldest autovac time. (If we are here, both |
| 1272 | * tmp->entry and db->entry must be non-null.) |
| 1273 | */ |
| 1274 | if (avdb == NULL || |
| 1275 | tmp->adw_entry->last_autovac_time < avdb->adw_entry->last_autovac_time) |
| 1276 | avdb = tmp; |
| 1277 | } |
| 1278 | |
| 1279 | /* Found a database -- process it */ |
| 1280 | if (avdb != NULL) |
| 1281 | { |
| 1282 | WorkerInfo worker; |
| 1283 | dlist_node *wptr; |
| 1284 | |
| 1285 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 1286 | |
| 1287 | /* |
| 1288 | * Get a worker entry from the freelist. We checked above, so there |
| 1289 | * really should be a free slot. |
| 1290 | */ |
| 1291 | wptr = dlist_pop_head_node(&AutoVacuumShmem->av_freeWorkers); |
| 1292 | |
| 1293 | worker = dlist_container(WorkerInfoData, wi_links, wptr); |
| 1294 | worker->wi_dboid = avdb->adw_datid; |
| 1295 | worker->wi_proc = NULL; |
| 1296 | worker->wi_launchtime = GetCurrentTimestamp(); |
| 1297 | |
| 1298 | AutoVacuumShmem->av_startingWorker = worker; |
| 1299 | |
| 1300 | LWLockRelease(AutovacuumLock); |
| 1301 | |
| 1302 | SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_WORKER); |
| 1303 | |
| 1304 | retval = avdb->adw_datid; |
| 1305 | } |
| 1306 | else if (skipit) |
| 1307 | { |
| 1308 | /* |
| 1309 | * If we skipped all databases on the list, rebuild it, because it |
| 1310 | * probably contains a dropped database. |
| 1311 | */ |
| 1312 | rebuild_database_list(InvalidOid); |
| 1313 | } |
| 1314 | |
| 1315 | MemoryContextSwitchTo(oldcxt); |
| 1316 | MemoryContextDelete(tmpcxt); |
| 1317 | |
| 1318 | return retval; |
| 1319 | } |
| 1320 | |
| 1321 | /* |
| 1322 | * launch_worker |
| 1323 | * |
| 1324 | * Wrapper for starting a worker from the launcher. Besides actually starting |
| 1325 | * it, update the database list to reflect the next time that another one will |
| 1326 | * need to be started on the selected database. The actual database choice is |
| 1327 | * left to do_start_worker. |
| 1328 | * |
| 1329 | * This routine is also expected to insert an entry into the database list if |
| 1330 | * the selected database was previously absent from the list. |
| 1331 | */ |
| 1332 | static void |
| 1333 | launch_worker(TimestampTz now) |
| 1334 | { |
| 1335 | Oid dbid; |
| 1336 | dlist_iter iter; |
| 1337 | |
| 1338 | dbid = do_start_worker(); |
| 1339 | if (OidIsValid(dbid)) |
| 1340 | { |
| 1341 | bool found = false; |
| 1342 | |
| 1343 | /* |
| 1344 | * Walk the database list and update the corresponding entry. If the |
| 1345 | * database is not on the list, we'll recreate the list. |
| 1346 | */ |
| 1347 | dlist_foreach(iter, &DatabaseList) |
| 1348 | { |
| 1349 | avl_dbase *avdb = dlist_container(avl_dbase, adl_node, iter.cur); |
| 1350 | |
| 1351 | if (avdb->adl_datid == dbid) |
| 1352 | { |
| 1353 | found = true; |
| 1354 | |
| 1355 | /* |
| 1356 | * add autovacuum_naptime seconds to the current time, and use |
| 1357 | * that as the new "next_worker" field for this database. |
| 1358 | */ |
| 1359 | avdb->adl_next_worker = |
| 1360 | TimestampTzPlusMilliseconds(now, autovacuum_naptime * 1000); |
| 1361 | |
| 1362 | dlist_move_head(&DatabaseList, iter.cur); |
| 1363 | break; |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | /* |
| 1368 | * If the database was not present in the database list, we rebuild |
| 1369 | * the list. It's possible that the database does not get into the |
| 1370 | * list anyway, for example if it's a database that doesn't have a |
| 1371 | * pgstat entry, but this is not a problem because we don't want to |
| 1372 | * schedule workers regularly into those in any case. |
| 1373 | */ |
| 1374 | if (!found) |
| 1375 | rebuild_database_list(dbid); |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | /* |
| 1380 | * Called from postmaster to signal a failure to fork a process to become |
| 1381 | * worker. The postmaster should kill(SIGUSR2) the launcher shortly |
| 1382 | * after calling this function. |
| 1383 | */ |
| 1384 | void |
| 1385 | AutoVacWorkerFailed(void) |
| 1386 | { |
| 1387 | AutoVacuumShmem->av_signal[AutoVacForkFailed] = true; |
| 1388 | } |
| 1389 | |
| 1390 | /* SIGHUP: set flag to re-read config file at next convenient time */ |
| 1391 | static void |
| 1392 | av_sighup_handler(SIGNAL_ARGS) |
| 1393 | { |
| 1394 | int save_errno = errno; |
| 1395 | |
| 1396 | got_SIGHUP = true; |
| 1397 | SetLatch(MyLatch); |
| 1398 | |
| 1399 | errno = save_errno; |
| 1400 | } |
| 1401 | |
| 1402 | /* SIGUSR2: a worker is up and running, or just finished, or failed to fork */ |
| 1403 | static void |
| 1404 | avl_sigusr2_handler(SIGNAL_ARGS) |
| 1405 | { |
| 1406 | int save_errno = errno; |
| 1407 | |
| 1408 | got_SIGUSR2 = true; |
| 1409 | SetLatch(MyLatch); |
| 1410 | |
| 1411 | errno = save_errno; |
| 1412 | } |
| 1413 | |
| 1414 | /* SIGTERM: time to die */ |
| 1415 | static void |
| 1416 | avl_sigterm_handler(SIGNAL_ARGS) |
| 1417 | { |
| 1418 | int save_errno = errno; |
| 1419 | |
| 1420 | got_SIGTERM = true; |
| 1421 | SetLatch(MyLatch); |
| 1422 | |
| 1423 | errno = save_errno; |
| 1424 | } |
| 1425 | |
| 1426 | |
| 1427 | /******************************************************************** |
| 1428 | * AUTOVACUUM WORKER CODE |
| 1429 | ********************************************************************/ |
| 1430 | |
| 1431 | #ifdef EXEC_BACKEND |
| 1432 | /* |
| 1433 | * forkexec routines for the autovacuum worker. |
| 1434 | * |
| 1435 | * Format up the arglist, then fork and exec. |
| 1436 | */ |
| 1437 | static pid_t |
| 1438 | avworker_forkexec(void) |
| 1439 | { |
| 1440 | char *av[10]; |
| 1441 | int ac = 0; |
| 1442 | |
| 1443 | av[ac++] = "postgres" ; |
| 1444 | av[ac++] = "--forkavworker" ; |
| 1445 | av[ac++] = NULL; /* filled in by postmaster_forkexec */ |
| 1446 | av[ac] = NULL; |
| 1447 | |
| 1448 | Assert(ac < lengthof(av)); |
| 1449 | |
| 1450 | return postmaster_forkexec(ac, av); |
| 1451 | } |
| 1452 | |
| 1453 | /* |
| 1454 | * We need this set from the outside, before InitProcess is called |
| 1455 | */ |
| 1456 | void |
| 1457 | AutovacuumWorkerIAm(void) |
| 1458 | { |
| 1459 | am_autovacuum_worker = true; |
| 1460 | } |
| 1461 | #endif |
| 1462 | |
| 1463 | /* |
| 1464 | * Main entry point for autovacuum worker process. |
| 1465 | * |
| 1466 | * This code is heavily based on pgarch.c, q.v. |
| 1467 | */ |
| 1468 | int |
| 1469 | StartAutoVacWorker(void) |
| 1470 | { |
| 1471 | pid_t worker_pid; |
| 1472 | |
| 1473 | #ifdef EXEC_BACKEND |
| 1474 | switch ((worker_pid = avworker_forkexec())) |
| 1475 | #else |
| 1476 | switch ((worker_pid = fork_process())) |
| 1477 | #endif |
| 1478 | { |
| 1479 | case -1: |
| 1480 | ereport(LOG, |
| 1481 | (errmsg("could not fork autovacuum worker process: %m" ))); |
| 1482 | return 0; |
| 1483 | |
| 1484 | #ifndef EXEC_BACKEND |
| 1485 | case 0: |
| 1486 | /* in postmaster child ... */ |
| 1487 | InitPostmasterChild(); |
| 1488 | |
| 1489 | /* Close the postmaster's sockets */ |
| 1490 | ClosePostmasterPorts(false); |
| 1491 | |
| 1492 | AutoVacWorkerMain(0, NULL); |
| 1493 | break; |
| 1494 | #endif |
| 1495 | default: |
| 1496 | return (int) worker_pid; |
| 1497 | } |
| 1498 | |
| 1499 | /* shouldn't get here */ |
| 1500 | return 0; |
| 1501 | } |
| 1502 | |
| 1503 | /* |
| 1504 | * AutoVacWorkerMain |
| 1505 | */ |
| 1506 | NON_EXEC_STATIC void |
| 1507 | AutoVacWorkerMain(int argc, char *argv[]) |
| 1508 | { |
| 1509 | sigjmp_buf local_sigjmp_buf; |
| 1510 | Oid dbid; |
| 1511 | |
| 1512 | am_autovacuum_worker = true; |
| 1513 | |
| 1514 | /* Identify myself via ps */ |
| 1515 | init_ps_display(pgstat_get_backend_desc(B_AUTOVAC_WORKER), "" , "" , "" ); |
| 1516 | |
| 1517 | SetProcessingMode(InitProcessing); |
| 1518 | |
| 1519 | /* |
| 1520 | * Set up signal handlers. We operate on databases much like a regular |
| 1521 | * backend, so we use the same signal handling. See equivalent code in |
| 1522 | * tcop/postgres.c. |
| 1523 | */ |
| 1524 | pqsignal(SIGHUP, av_sighup_handler); |
| 1525 | |
| 1526 | /* |
| 1527 | * SIGINT is used to signal canceling the current table's vacuum; SIGTERM |
| 1528 | * means abort and exit cleanly, and SIGQUIT means abandon ship. |
| 1529 | */ |
| 1530 | pqsignal(SIGINT, StatementCancelHandler); |
| 1531 | pqsignal(SIGTERM, die); |
| 1532 | pqsignal(SIGQUIT, quickdie); |
| 1533 | InitializeTimeouts(); /* establishes SIGALRM handler */ |
| 1534 | |
| 1535 | pqsignal(SIGPIPE, SIG_IGN); |
| 1536 | pqsignal(SIGUSR1, procsignal_sigusr1_handler); |
| 1537 | pqsignal(SIGUSR2, SIG_IGN); |
| 1538 | pqsignal(SIGFPE, FloatExceptionHandler); |
| 1539 | pqsignal(SIGCHLD, SIG_DFL); |
| 1540 | |
| 1541 | /* Early initialization */ |
| 1542 | BaseInit(); |
| 1543 | |
| 1544 | /* |
| 1545 | * Create a per-backend PGPROC struct in shared memory, except in the |
| 1546 | * EXEC_BACKEND case where this was done in SubPostmasterMain. We must do |
| 1547 | * this before we can use LWLocks (and in the EXEC_BACKEND case we already |
| 1548 | * had to do some stuff with LWLocks). |
| 1549 | */ |
| 1550 | #ifndef EXEC_BACKEND |
| 1551 | InitProcess(); |
| 1552 | #endif |
| 1553 | |
| 1554 | /* |
| 1555 | * If an exception is encountered, processing resumes here. |
| 1556 | * |
| 1557 | * See notes in postgres.c about the design of this coding. |
| 1558 | */ |
| 1559 | if (sigsetjmp(local_sigjmp_buf, 1) != 0) |
| 1560 | { |
| 1561 | /* Prevents interrupts while cleaning up */ |
| 1562 | HOLD_INTERRUPTS(); |
| 1563 | |
| 1564 | /* Report the error to the server log */ |
| 1565 | EmitErrorReport(); |
| 1566 | |
| 1567 | /* |
| 1568 | * We can now go away. Note that because we called InitProcess, a |
| 1569 | * callback was registered to do ProcKill, which will clean up |
| 1570 | * necessary state. |
| 1571 | */ |
| 1572 | proc_exit(0); |
| 1573 | } |
| 1574 | |
| 1575 | /* We can now handle ereport(ERROR) */ |
| 1576 | PG_exception_stack = &local_sigjmp_buf; |
| 1577 | |
| 1578 | PG_SETMASK(&UnBlockSig); |
| 1579 | |
| 1580 | /* |
| 1581 | * Set always-secure search path, so malicious users can't redirect user |
| 1582 | * code (e.g. pg_index.indexprs). (That code runs in a |
| 1583 | * SECURITY_RESTRICTED_OPERATION sandbox, so malicious users could not |
| 1584 | * take control of the entire autovacuum worker in any case.) |
| 1585 | */ |
| 1586 | SetConfigOption("search_path" , "" , PGC_SUSET, PGC_S_OVERRIDE); |
| 1587 | |
| 1588 | /* |
| 1589 | * Force zero_damaged_pages OFF in the autovac process, even if it is set |
| 1590 | * in postgresql.conf. We don't really want such a dangerous option being |
| 1591 | * applied non-interactively. |
| 1592 | */ |
| 1593 | SetConfigOption("zero_damaged_pages" , "false" , PGC_SUSET, PGC_S_OVERRIDE); |
| 1594 | |
| 1595 | /* |
| 1596 | * Force settable timeouts off to avoid letting these settings prevent |
| 1597 | * regular maintenance from being executed. |
| 1598 | */ |
| 1599 | SetConfigOption("statement_timeout" , "0" , PGC_SUSET, PGC_S_OVERRIDE); |
| 1600 | SetConfigOption("lock_timeout" , "0" , PGC_SUSET, PGC_S_OVERRIDE); |
| 1601 | SetConfigOption("idle_in_transaction_session_timeout" , "0" , |
| 1602 | PGC_SUSET, PGC_S_OVERRIDE); |
| 1603 | |
| 1604 | /* |
| 1605 | * Force default_transaction_isolation to READ COMMITTED. We don't want |
| 1606 | * to pay the overhead of serializable mode, nor add any risk of causing |
| 1607 | * deadlocks or delaying other transactions. |
| 1608 | */ |
| 1609 | SetConfigOption("default_transaction_isolation" , "read committed" , |
| 1610 | PGC_SUSET, PGC_S_OVERRIDE); |
| 1611 | |
| 1612 | /* |
| 1613 | * Force synchronous replication off to allow regular maintenance even if |
| 1614 | * we are waiting for standbys to connect. This is important to ensure we |
| 1615 | * aren't blocked from performing anti-wraparound tasks. |
| 1616 | */ |
| 1617 | if (synchronous_commit > SYNCHRONOUS_COMMIT_LOCAL_FLUSH) |
| 1618 | SetConfigOption("synchronous_commit" , "local" , |
| 1619 | PGC_SUSET, PGC_S_OVERRIDE); |
| 1620 | |
| 1621 | /* |
| 1622 | * Get the info about the database we're going to work on. |
| 1623 | */ |
| 1624 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 1625 | |
| 1626 | /* |
| 1627 | * beware of startingWorker being INVALID; this should normally not |
| 1628 | * happen, but if a worker fails after forking and before this, the |
| 1629 | * launcher might have decided to remove it from the queue and start |
| 1630 | * again. |
| 1631 | */ |
| 1632 | if (AutoVacuumShmem->av_startingWorker != NULL) |
| 1633 | { |
| 1634 | MyWorkerInfo = AutoVacuumShmem->av_startingWorker; |
| 1635 | dbid = MyWorkerInfo->wi_dboid; |
| 1636 | MyWorkerInfo->wi_proc = MyProc; |
| 1637 | |
| 1638 | /* insert into the running list */ |
| 1639 | dlist_push_head(&AutoVacuumShmem->av_runningWorkers, |
| 1640 | &MyWorkerInfo->wi_links); |
| 1641 | |
| 1642 | /* |
| 1643 | * remove from the "starting" pointer, so that the launcher can start |
| 1644 | * a new worker if required |
| 1645 | */ |
| 1646 | AutoVacuumShmem->av_startingWorker = NULL; |
| 1647 | LWLockRelease(AutovacuumLock); |
| 1648 | |
| 1649 | on_shmem_exit(FreeWorkerInfo, 0); |
| 1650 | |
| 1651 | /* wake up the launcher */ |
| 1652 | if (AutoVacuumShmem->av_launcherpid != 0) |
| 1653 | kill(AutoVacuumShmem->av_launcherpid, SIGUSR2); |
| 1654 | } |
| 1655 | else |
| 1656 | { |
| 1657 | /* no worker entry for me, go away */ |
| 1658 | elog(WARNING, "autovacuum worker started without a worker entry" ); |
| 1659 | dbid = InvalidOid; |
| 1660 | LWLockRelease(AutovacuumLock); |
| 1661 | } |
| 1662 | |
| 1663 | if (OidIsValid(dbid)) |
| 1664 | { |
| 1665 | char dbname[NAMEDATALEN]; |
| 1666 | |
| 1667 | /* |
| 1668 | * Report autovac startup to the stats collector. We deliberately do |
| 1669 | * this before InitPostgres, so that the last_autovac_time will get |
| 1670 | * updated even if the connection attempt fails. This is to prevent |
| 1671 | * autovac from getting "stuck" repeatedly selecting an unopenable |
| 1672 | * database, rather than making any progress on stuff it can connect |
| 1673 | * to. |
| 1674 | */ |
| 1675 | pgstat_report_autovac(dbid); |
| 1676 | |
| 1677 | /* |
| 1678 | * Connect to the selected database |
| 1679 | * |
| 1680 | * Note: if we have selected a just-deleted database (due to using |
| 1681 | * stale stats info), we'll fail and exit here. |
| 1682 | */ |
| 1683 | InitPostgres(NULL, dbid, NULL, InvalidOid, dbname, false); |
| 1684 | SetProcessingMode(NormalProcessing); |
| 1685 | set_ps_display(dbname, false); |
| 1686 | ereport(DEBUG1, |
| 1687 | (errmsg("autovacuum: processing database \"%s\"" , dbname))); |
| 1688 | |
| 1689 | if (PostAuthDelay) |
| 1690 | pg_usleep(PostAuthDelay * 1000000L); |
| 1691 | |
| 1692 | /* And do an appropriate amount of work */ |
| 1693 | recentXid = ReadNewTransactionId(); |
| 1694 | recentMulti = ReadNextMultiXactId(); |
| 1695 | do_autovacuum(); |
| 1696 | } |
| 1697 | |
| 1698 | /* |
| 1699 | * The launcher will be notified of my death in ProcKill, *if* we managed |
| 1700 | * to get a worker slot at all |
| 1701 | */ |
| 1702 | |
| 1703 | /* All done, go away */ |
| 1704 | proc_exit(0); |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * Return a WorkerInfo to the free list |
| 1709 | */ |
| 1710 | static void |
| 1711 | FreeWorkerInfo(int code, Datum arg) |
| 1712 | { |
| 1713 | if (MyWorkerInfo != NULL) |
| 1714 | { |
| 1715 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 1716 | |
| 1717 | /* |
| 1718 | * Wake the launcher up so that he can launch a new worker immediately |
| 1719 | * if required. We only save the launcher's PID in local memory here; |
| 1720 | * the actual signal will be sent when the PGPROC is recycled. Note |
| 1721 | * that we always do this, so that the launcher can rebalance the cost |
| 1722 | * limit setting of the remaining workers. |
| 1723 | * |
| 1724 | * We somewhat ignore the risk that the launcher changes its PID |
| 1725 | * between us reading it and the actual kill; we expect ProcKill to be |
| 1726 | * called shortly after us, and we assume that PIDs are not reused too |
| 1727 | * quickly after a process exits. |
| 1728 | */ |
| 1729 | AutovacuumLauncherPid = AutoVacuumShmem->av_launcherpid; |
| 1730 | |
| 1731 | dlist_delete(&MyWorkerInfo->wi_links); |
| 1732 | MyWorkerInfo->wi_dboid = InvalidOid; |
| 1733 | MyWorkerInfo->wi_tableoid = InvalidOid; |
| 1734 | MyWorkerInfo->wi_sharedrel = false; |
| 1735 | MyWorkerInfo->wi_proc = NULL; |
| 1736 | MyWorkerInfo->wi_launchtime = 0; |
| 1737 | MyWorkerInfo->wi_dobalance = false; |
| 1738 | MyWorkerInfo->wi_cost_delay = 0; |
| 1739 | MyWorkerInfo->wi_cost_limit = 0; |
| 1740 | MyWorkerInfo->wi_cost_limit_base = 0; |
| 1741 | dlist_push_head(&AutoVacuumShmem->av_freeWorkers, |
| 1742 | &MyWorkerInfo->wi_links); |
| 1743 | /* not mine anymore */ |
| 1744 | MyWorkerInfo = NULL; |
| 1745 | |
| 1746 | /* |
| 1747 | * now that we're inactive, cause a rebalancing of the surviving |
| 1748 | * workers |
| 1749 | */ |
| 1750 | AutoVacuumShmem->av_signal[AutoVacRebalance] = true; |
| 1751 | LWLockRelease(AutovacuumLock); |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | /* |
| 1756 | * Update the cost-based delay parameters, so that multiple workers consume |
| 1757 | * each a fraction of the total available I/O. |
| 1758 | */ |
| 1759 | void |
| 1760 | AutoVacuumUpdateDelay(void) |
| 1761 | { |
| 1762 | if (MyWorkerInfo) |
| 1763 | { |
| 1764 | VacuumCostDelay = MyWorkerInfo->wi_cost_delay; |
| 1765 | VacuumCostLimit = MyWorkerInfo->wi_cost_limit; |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | /* |
| 1770 | * autovac_balance_cost |
| 1771 | * Recalculate the cost limit setting for each active worker. |
| 1772 | * |
| 1773 | * Caller must hold the AutovacuumLock in exclusive mode. |
| 1774 | */ |
| 1775 | static void |
| 1776 | autovac_balance_cost(void) |
| 1777 | { |
| 1778 | /* |
| 1779 | * The idea here is that we ration out I/O equally. The amount of I/O |
| 1780 | * that a worker can consume is determined by cost_limit/cost_delay, so we |
| 1781 | * try to equalize those ratios rather than the raw limit settings. |
| 1782 | * |
| 1783 | * note: in cost_limit, zero also means use value from elsewhere, because |
| 1784 | * zero is not a valid value. |
| 1785 | */ |
| 1786 | int vac_cost_limit = (autovacuum_vac_cost_limit > 0 ? |
| 1787 | autovacuum_vac_cost_limit : VacuumCostLimit); |
| 1788 | double vac_cost_delay = (autovacuum_vac_cost_delay >= 0 ? |
| 1789 | autovacuum_vac_cost_delay : VacuumCostDelay); |
| 1790 | double cost_total; |
| 1791 | double cost_avail; |
| 1792 | dlist_iter iter; |
| 1793 | |
| 1794 | /* not set? nothing to do */ |
| 1795 | if (vac_cost_limit <= 0 || vac_cost_delay <= 0) |
| 1796 | return; |
| 1797 | |
| 1798 | /* calculate the total base cost limit of participating active workers */ |
| 1799 | cost_total = 0.0; |
| 1800 | dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers) |
| 1801 | { |
| 1802 | WorkerInfo worker = dlist_container(WorkerInfoData, wi_links, iter.cur); |
| 1803 | |
| 1804 | if (worker->wi_proc != NULL && |
| 1805 | worker->wi_dobalance && |
| 1806 | worker->wi_cost_limit_base > 0 && worker->wi_cost_delay > 0) |
| 1807 | cost_total += |
| 1808 | (double) worker->wi_cost_limit_base / worker->wi_cost_delay; |
| 1809 | } |
| 1810 | |
| 1811 | /* there are no cost limits -- nothing to do */ |
| 1812 | if (cost_total <= 0) |
| 1813 | return; |
| 1814 | |
| 1815 | /* |
| 1816 | * Adjust cost limit of each active worker to balance the total of cost |
| 1817 | * limit to autovacuum_vacuum_cost_limit. |
| 1818 | */ |
| 1819 | cost_avail = (double) vac_cost_limit / vac_cost_delay; |
| 1820 | dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers) |
| 1821 | { |
| 1822 | WorkerInfo worker = dlist_container(WorkerInfoData, wi_links, iter.cur); |
| 1823 | |
| 1824 | if (worker->wi_proc != NULL && |
| 1825 | worker->wi_dobalance && |
| 1826 | worker->wi_cost_limit_base > 0 && worker->wi_cost_delay > 0) |
| 1827 | { |
| 1828 | int limit = (int) |
| 1829 | (cost_avail * worker->wi_cost_limit_base / cost_total); |
| 1830 | |
| 1831 | /* |
| 1832 | * We put a lower bound of 1 on the cost_limit, to avoid division- |
| 1833 | * by-zero in the vacuum code. Also, in case of roundoff trouble |
| 1834 | * in these calculations, let's be sure we don't ever set |
| 1835 | * cost_limit to more than the base value. |
| 1836 | */ |
| 1837 | worker->wi_cost_limit = Max(Min(limit, |
| 1838 | worker->wi_cost_limit_base), |
| 1839 | 1); |
| 1840 | } |
| 1841 | |
| 1842 | if (worker->wi_proc != NULL) |
| 1843 | elog(DEBUG2, "autovac_balance_cost(pid=%u db=%u, rel=%u, dobalance=%s cost_limit=%d, cost_limit_base=%d, cost_delay=%g)" , |
| 1844 | worker->wi_proc->pid, worker->wi_dboid, worker->wi_tableoid, |
| 1845 | worker->wi_dobalance ? "yes" : "no" , |
| 1846 | worker->wi_cost_limit, worker->wi_cost_limit_base, |
| 1847 | worker->wi_cost_delay); |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | /* |
| 1852 | * get_database_list |
| 1853 | * Return a list of all databases found in pg_database. |
| 1854 | * |
| 1855 | * The list and associated data is allocated in the caller's memory context, |
| 1856 | * which is in charge of ensuring that it's properly cleaned up afterwards. |
| 1857 | * |
| 1858 | * Note: this is the only function in which the autovacuum launcher uses a |
| 1859 | * transaction. Although we aren't attached to any particular database and |
| 1860 | * therefore can't access most catalogs, we do have enough infrastructure |
| 1861 | * to do a seqscan on pg_database. |
| 1862 | */ |
| 1863 | static List * |
| 1864 | get_database_list(void) |
| 1865 | { |
| 1866 | List *dblist = NIL; |
| 1867 | Relation rel; |
| 1868 | TableScanDesc scan; |
| 1869 | HeapTuple tup; |
| 1870 | MemoryContext resultcxt; |
| 1871 | |
| 1872 | /* This is the context that we will allocate our output data in */ |
| 1873 | resultcxt = CurrentMemoryContext; |
| 1874 | |
| 1875 | /* |
| 1876 | * Start a transaction so we can access pg_database, and get a snapshot. |
| 1877 | * We don't have a use for the snapshot itself, but we're interested in |
| 1878 | * the secondary effect that it sets RecentGlobalXmin. (This is critical |
| 1879 | * for anything that reads heap pages, because HOT may decide to prune |
| 1880 | * them even if the process doesn't attempt to modify any tuples.) |
| 1881 | */ |
| 1882 | StartTransactionCommand(); |
| 1883 | (void) GetTransactionSnapshot(); |
| 1884 | |
| 1885 | rel = table_open(DatabaseRelationId, AccessShareLock); |
| 1886 | scan = table_beginscan_catalog(rel, 0, NULL); |
| 1887 | |
| 1888 | while (HeapTupleIsValid(tup = heap_getnext(scan, ForwardScanDirection))) |
| 1889 | { |
| 1890 | Form_pg_database pgdatabase = (Form_pg_database) GETSTRUCT(tup); |
| 1891 | avw_dbase *avdb; |
| 1892 | MemoryContext oldcxt; |
| 1893 | |
| 1894 | /* |
| 1895 | * Allocate our results in the caller's context, not the |
| 1896 | * transaction's. We do this inside the loop, and restore the original |
| 1897 | * context at the end, so that leaky things like heap_getnext() are |
| 1898 | * not called in a potentially long-lived context. |
| 1899 | */ |
| 1900 | oldcxt = MemoryContextSwitchTo(resultcxt); |
| 1901 | |
| 1902 | avdb = (avw_dbase *) palloc(sizeof(avw_dbase)); |
| 1903 | |
| 1904 | avdb->adw_datid = pgdatabase->oid; |
| 1905 | avdb->adw_name = pstrdup(NameStr(pgdatabase->datname)); |
| 1906 | avdb->adw_frozenxid = pgdatabase->datfrozenxid; |
| 1907 | avdb->adw_minmulti = pgdatabase->datminmxid; |
| 1908 | /* this gets set later: */ |
| 1909 | avdb->adw_entry = NULL; |
| 1910 | |
| 1911 | dblist = lappend(dblist, avdb); |
| 1912 | MemoryContextSwitchTo(oldcxt); |
| 1913 | } |
| 1914 | |
| 1915 | table_endscan(scan); |
| 1916 | table_close(rel, AccessShareLock); |
| 1917 | |
| 1918 | CommitTransactionCommand(); |
| 1919 | |
| 1920 | return dblist; |
| 1921 | } |
| 1922 | |
| 1923 | /* |
| 1924 | * Process a database table-by-table |
| 1925 | * |
| 1926 | * Note that CHECK_FOR_INTERRUPTS is supposed to be used in certain spots in |
| 1927 | * order not to ignore shutdown commands for too long. |
| 1928 | */ |
| 1929 | static void |
| 1930 | do_autovacuum(void) |
| 1931 | { |
| 1932 | Relation classRel; |
| 1933 | HeapTuple tuple; |
| 1934 | TableScanDesc relScan; |
| 1935 | Form_pg_database dbForm; |
| 1936 | List *table_oids = NIL; |
| 1937 | List *orphan_oids = NIL; |
| 1938 | HASHCTL ctl; |
| 1939 | HTAB *table_toast_map; |
| 1940 | ListCell *volatile cell; |
| 1941 | PgStat_StatDBEntry *shared; |
| 1942 | PgStat_StatDBEntry *dbentry; |
| 1943 | BufferAccessStrategy bstrategy; |
| 1944 | ScanKeyData key; |
| 1945 | TupleDesc pg_class_desc; |
| 1946 | int effective_multixact_freeze_max_age; |
| 1947 | bool did_vacuum = false; |
| 1948 | bool found_concurrent_worker = false; |
| 1949 | int i; |
| 1950 | |
| 1951 | /* |
| 1952 | * StartTransactionCommand and CommitTransactionCommand will automatically |
| 1953 | * switch to other contexts. We need this one to keep the list of |
| 1954 | * relations to vacuum/analyze across transactions. |
| 1955 | */ |
| 1956 | AutovacMemCxt = AllocSetContextCreate(TopMemoryContext, |
| 1957 | "AV worker" , |
| 1958 | ALLOCSET_DEFAULT_SIZES); |
| 1959 | MemoryContextSwitchTo(AutovacMemCxt); |
| 1960 | |
| 1961 | /* |
| 1962 | * may be NULL if we couldn't find an entry (only happens if we are |
| 1963 | * forcing a vacuum for anti-wrap purposes). |
| 1964 | */ |
| 1965 | dbentry = pgstat_fetch_stat_dbentry(MyDatabaseId); |
| 1966 | |
| 1967 | /* Start a transaction so our commands have one to play into. */ |
| 1968 | StartTransactionCommand(); |
| 1969 | |
| 1970 | /* |
| 1971 | * Clean up any dead statistics collector entries for this DB. We always |
| 1972 | * want to do this exactly once per DB-processing cycle, even if we find |
| 1973 | * nothing worth vacuuming in the database. |
| 1974 | */ |
| 1975 | pgstat_vacuum_stat(); |
| 1976 | |
| 1977 | /* |
| 1978 | * Compute the multixact age for which freezing is urgent. This is |
| 1979 | * normally autovacuum_multixact_freeze_max_age, but may be less if we are |
| 1980 | * short of multixact member space. |
| 1981 | */ |
| 1982 | effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold(); |
| 1983 | |
| 1984 | /* |
| 1985 | * Find the pg_database entry and select the default freeze ages. We use |
| 1986 | * zero in template and nonconnectable databases, else the system-wide |
| 1987 | * default. |
| 1988 | */ |
| 1989 | tuple = SearchSysCache1(DATABASEOID, ObjectIdGetDatum(MyDatabaseId)); |
| 1990 | if (!HeapTupleIsValid(tuple)) |
| 1991 | elog(ERROR, "cache lookup failed for database %u" , MyDatabaseId); |
| 1992 | dbForm = (Form_pg_database) GETSTRUCT(tuple); |
| 1993 | |
| 1994 | if (dbForm->datistemplate || !dbForm->datallowconn) |
| 1995 | { |
| 1996 | default_freeze_min_age = 0; |
| 1997 | default_freeze_table_age = 0; |
| 1998 | default_multixact_freeze_min_age = 0; |
| 1999 | default_multixact_freeze_table_age = 0; |
| 2000 | } |
| 2001 | else |
| 2002 | { |
| 2003 | default_freeze_min_age = vacuum_freeze_min_age; |
| 2004 | default_freeze_table_age = vacuum_freeze_table_age; |
| 2005 | default_multixact_freeze_min_age = vacuum_multixact_freeze_min_age; |
| 2006 | default_multixact_freeze_table_age = vacuum_multixact_freeze_table_age; |
| 2007 | } |
| 2008 | |
| 2009 | ReleaseSysCache(tuple); |
| 2010 | |
| 2011 | /* StartTransactionCommand changed elsewhere */ |
| 2012 | MemoryContextSwitchTo(AutovacMemCxt); |
| 2013 | |
| 2014 | /* The database hash where pgstat keeps shared relations */ |
| 2015 | shared = pgstat_fetch_stat_dbentry(InvalidOid); |
| 2016 | |
| 2017 | classRel = table_open(RelationRelationId, AccessShareLock); |
| 2018 | |
| 2019 | /* create a copy so we can use it after closing pg_class */ |
| 2020 | pg_class_desc = CreateTupleDescCopy(RelationGetDescr(classRel)); |
| 2021 | |
| 2022 | /* create hash table for toast <-> main relid mapping */ |
| 2023 | MemSet(&ctl, 0, sizeof(ctl)); |
| 2024 | ctl.keysize = sizeof(Oid); |
| 2025 | ctl.entrysize = sizeof(av_relation); |
| 2026 | |
| 2027 | table_toast_map = hash_create("TOAST to main relid map" , |
| 2028 | 100, |
| 2029 | &ctl, |
| 2030 | HASH_ELEM | HASH_BLOBS); |
| 2031 | |
| 2032 | /* |
| 2033 | * Scan pg_class to determine which tables to vacuum. |
| 2034 | * |
| 2035 | * We do this in two passes: on the first one we collect the list of plain |
| 2036 | * relations and materialized views, and on the second one we collect |
| 2037 | * TOAST tables. The reason for doing the second pass is that during it we |
| 2038 | * want to use the main relation's pg_class.reloptions entry if the TOAST |
| 2039 | * table does not have any, and we cannot obtain it unless we know |
| 2040 | * beforehand what's the main table OID. |
| 2041 | * |
| 2042 | * We need to check TOAST tables separately because in cases with short, |
| 2043 | * wide tables there might be proportionally much more activity in the |
| 2044 | * TOAST table than in its parent. |
| 2045 | */ |
| 2046 | relScan = table_beginscan_catalog(classRel, 0, NULL); |
| 2047 | |
| 2048 | /* |
| 2049 | * On the first pass, we collect main tables to vacuum, and also the main |
| 2050 | * table relid to TOAST relid mapping. |
| 2051 | */ |
| 2052 | while ((tuple = heap_getnext(relScan, ForwardScanDirection)) != NULL) |
| 2053 | { |
| 2054 | Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple); |
| 2055 | PgStat_StatTabEntry *tabentry; |
| 2056 | AutoVacOpts *relopts; |
| 2057 | Oid relid; |
| 2058 | bool dovacuum; |
| 2059 | bool doanalyze; |
| 2060 | bool wraparound; |
| 2061 | |
| 2062 | if (classForm->relkind != RELKIND_RELATION && |
| 2063 | classForm->relkind != RELKIND_MATVIEW) |
| 2064 | continue; |
| 2065 | |
| 2066 | relid = classForm->oid; |
| 2067 | |
| 2068 | /* |
| 2069 | * Check if it is a temp table (presumably, of some other backend's). |
| 2070 | * We cannot safely process other backends' temp tables. |
| 2071 | */ |
| 2072 | if (classForm->relpersistence == RELPERSISTENCE_TEMP) |
| 2073 | { |
| 2074 | /* |
| 2075 | * We just ignore it if the owning backend is still active and |
| 2076 | * using the temporary schema. |
| 2077 | */ |
| 2078 | if (!isTempNamespaceInUse(classForm->relnamespace)) |
| 2079 | { |
| 2080 | /* |
| 2081 | * The table seems to be orphaned -- although it might be that |
| 2082 | * the owning backend has already deleted it and exited; our |
| 2083 | * pg_class scan snapshot is not necessarily up-to-date |
| 2084 | * anymore, so we could be looking at a committed-dead entry. |
| 2085 | * Remember it so we can try to delete it later. |
| 2086 | */ |
| 2087 | orphan_oids = lappend_oid(orphan_oids, relid); |
| 2088 | } |
| 2089 | continue; |
| 2090 | } |
| 2091 | |
| 2092 | /* Fetch reloptions and the pgstat entry for this table */ |
| 2093 | relopts = extract_autovac_opts(tuple, pg_class_desc); |
| 2094 | tabentry = get_pgstat_tabentry_relid(relid, classForm->relisshared, |
| 2095 | shared, dbentry); |
| 2096 | |
| 2097 | /* Check if it needs vacuum or analyze */ |
| 2098 | relation_needs_vacanalyze(relid, relopts, classForm, tabentry, |
| 2099 | effective_multixact_freeze_max_age, |
| 2100 | &dovacuum, &doanalyze, &wraparound); |
| 2101 | |
| 2102 | /* Relations that need work are added to table_oids */ |
| 2103 | if (dovacuum || doanalyze) |
| 2104 | table_oids = lappend_oid(table_oids, relid); |
| 2105 | |
| 2106 | /* |
| 2107 | * Remember TOAST associations for the second pass. Note: we must do |
| 2108 | * this whether or not the table is going to be vacuumed, because we |
| 2109 | * don't automatically vacuum toast tables along the parent table. |
| 2110 | */ |
| 2111 | if (OidIsValid(classForm->reltoastrelid)) |
| 2112 | { |
| 2113 | av_relation *hentry; |
| 2114 | bool found; |
| 2115 | |
| 2116 | hentry = hash_search(table_toast_map, |
| 2117 | &classForm->reltoastrelid, |
| 2118 | HASH_ENTER, &found); |
| 2119 | |
| 2120 | if (!found) |
| 2121 | { |
| 2122 | /* hash_search already filled in the key */ |
| 2123 | hentry->ar_relid = relid; |
| 2124 | hentry->ar_hasrelopts = false; |
| 2125 | if (relopts != NULL) |
| 2126 | { |
| 2127 | hentry->ar_hasrelopts = true; |
| 2128 | memcpy(&hentry->ar_reloptions, relopts, |
| 2129 | sizeof(AutoVacOpts)); |
| 2130 | } |
| 2131 | } |
| 2132 | } |
| 2133 | } |
| 2134 | |
| 2135 | table_endscan(relScan); |
| 2136 | |
| 2137 | /* second pass: check TOAST tables */ |
| 2138 | ScanKeyInit(&key, |
| 2139 | Anum_pg_class_relkind, |
| 2140 | BTEqualStrategyNumber, F_CHAREQ, |
| 2141 | CharGetDatum(RELKIND_TOASTVALUE)); |
| 2142 | |
| 2143 | relScan = table_beginscan_catalog(classRel, 1, &key); |
| 2144 | while ((tuple = heap_getnext(relScan, ForwardScanDirection)) != NULL) |
| 2145 | { |
| 2146 | Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple); |
| 2147 | PgStat_StatTabEntry *tabentry; |
| 2148 | Oid relid; |
| 2149 | AutoVacOpts *relopts = NULL; |
| 2150 | bool dovacuum; |
| 2151 | bool doanalyze; |
| 2152 | bool wraparound; |
| 2153 | |
| 2154 | /* |
| 2155 | * We cannot safely process other backends' temp tables, so skip 'em. |
| 2156 | */ |
| 2157 | if (classForm->relpersistence == RELPERSISTENCE_TEMP) |
| 2158 | continue; |
| 2159 | |
| 2160 | relid = classForm->oid; |
| 2161 | |
| 2162 | /* |
| 2163 | * fetch reloptions -- if this toast table does not have them, try the |
| 2164 | * main rel |
| 2165 | */ |
| 2166 | relopts = extract_autovac_opts(tuple, pg_class_desc); |
| 2167 | if (relopts == NULL) |
| 2168 | { |
| 2169 | av_relation *hentry; |
| 2170 | bool found; |
| 2171 | |
| 2172 | hentry = hash_search(table_toast_map, &relid, HASH_FIND, &found); |
| 2173 | if (found && hentry->ar_hasrelopts) |
| 2174 | relopts = &hentry->ar_reloptions; |
| 2175 | } |
| 2176 | |
| 2177 | /* Fetch the pgstat entry for this table */ |
| 2178 | tabentry = get_pgstat_tabentry_relid(relid, classForm->relisshared, |
| 2179 | shared, dbentry); |
| 2180 | |
| 2181 | relation_needs_vacanalyze(relid, relopts, classForm, tabentry, |
| 2182 | effective_multixact_freeze_max_age, |
| 2183 | &dovacuum, &doanalyze, &wraparound); |
| 2184 | |
| 2185 | /* ignore analyze for toast tables */ |
| 2186 | if (dovacuum) |
| 2187 | table_oids = lappend_oid(table_oids, relid); |
| 2188 | } |
| 2189 | |
| 2190 | table_endscan(relScan); |
| 2191 | table_close(classRel, AccessShareLock); |
| 2192 | |
| 2193 | /* |
| 2194 | * Recheck orphan temporary tables, and if they still seem orphaned, drop |
| 2195 | * them. We'll eat a transaction per dropped table, which might seem |
| 2196 | * excessive, but we should only need to do anything as a result of a |
| 2197 | * previous backend crash, so this should not happen often enough to |
| 2198 | * justify "optimizing". Using separate transactions ensures that we |
| 2199 | * don't bloat the lock table if there are many temp tables to be dropped, |
| 2200 | * and it ensures that we don't lose work if a deletion attempt fails. |
| 2201 | */ |
| 2202 | foreach(cell, orphan_oids) |
| 2203 | { |
| 2204 | Oid relid = lfirst_oid(cell); |
| 2205 | Form_pg_class classForm; |
| 2206 | ObjectAddress object; |
| 2207 | |
| 2208 | /* |
| 2209 | * Check for user-requested abort. |
| 2210 | */ |
| 2211 | CHECK_FOR_INTERRUPTS(); |
| 2212 | |
| 2213 | /* |
| 2214 | * Try to lock the table. If we can't get the lock immediately, |
| 2215 | * somebody else is using (or dropping) the table, so it's not our |
| 2216 | * concern anymore. Having the lock prevents race conditions below. |
| 2217 | */ |
| 2218 | if (!ConditionalLockRelationOid(relid, AccessExclusiveLock)) |
| 2219 | continue; |
| 2220 | |
| 2221 | /* |
| 2222 | * Re-fetch the pg_class tuple and re-check whether it still seems to |
| 2223 | * be an orphaned temp table. If it's not there or no longer the same |
| 2224 | * relation, ignore it. |
| 2225 | */ |
| 2226 | tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid)); |
| 2227 | if (!HeapTupleIsValid(tuple)) |
| 2228 | { |
| 2229 | /* be sure to drop useless lock so we don't bloat lock table */ |
| 2230 | UnlockRelationOid(relid, AccessExclusiveLock); |
| 2231 | continue; |
| 2232 | } |
| 2233 | classForm = (Form_pg_class) GETSTRUCT(tuple); |
| 2234 | |
| 2235 | /* |
| 2236 | * Make all the same tests made in the loop above. In event of OID |
| 2237 | * counter wraparound, the pg_class entry we have now might be |
| 2238 | * completely unrelated to the one we saw before. |
| 2239 | */ |
| 2240 | if (!((classForm->relkind == RELKIND_RELATION || |
| 2241 | classForm->relkind == RELKIND_MATVIEW) && |
| 2242 | classForm->relpersistence == RELPERSISTENCE_TEMP)) |
| 2243 | { |
| 2244 | UnlockRelationOid(relid, AccessExclusiveLock); |
| 2245 | continue; |
| 2246 | } |
| 2247 | |
| 2248 | if (isTempNamespaceInUse(classForm->relnamespace)) |
| 2249 | { |
| 2250 | UnlockRelationOid(relid, AccessExclusiveLock); |
| 2251 | continue; |
| 2252 | } |
| 2253 | |
| 2254 | /* OK, let's delete it */ |
| 2255 | ereport(LOG, |
| 2256 | (errmsg("autovacuum: dropping orphan temp table \"%s.%s.%s\"" , |
| 2257 | get_database_name(MyDatabaseId), |
| 2258 | get_namespace_name(classForm->relnamespace), |
| 2259 | NameStr(classForm->relname)))); |
| 2260 | |
| 2261 | object.classId = RelationRelationId; |
| 2262 | object.objectId = relid; |
| 2263 | object.objectSubId = 0; |
| 2264 | performDeletion(&object, DROP_CASCADE, |
| 2265 | PERFORM_DELETION_INTERNAL | |
| 2266 | PERFORM_DELETION_QUIETLY | |
| 2267 | PERFORM_DELETION_SKIP_EXTENSIONS); |
| 2268 | |
| 2269 | /* |
| 2270 | * To commit the deletion, end current transaction and start a new |
| 2271 | * one. Note this also releases the lock we took. |
| 2272 | */ |
| 2273 | CommitTransactionCommand(); |
| 2274 | StartTransactionCommand(); |
| 2275 | |
| 2276 | /* StartTransactionCommand changed current memory context */ |
| 2277 | MemoryContextSwitchTo(AutovacMemCxt); |
| 2278 | } |
| 2279 | |
| 2280 | /* |
| 2281 | * Create a buffer access strategy object for VACUUM to use. We want to |
| 2282 | * use the same one across all the vacuum operations we perform, since the |
| 2283 | * point is for VACUUM not to blow out the shared cache. |
| 2284 | */ |
| 2285 | bstrategy = GetAccessStrategy(BAS_VACUUM); |
| 2286 | |
| 2287 | /* |
| 2288 | * create a memory context to act as fake PortalContext, so that the |
| 2289 | * contexts created in the vacuum code are cleaned up for each table. |
| 2290 | */ |
| 2291 | PortalContext = AllocSetContextCreate(AutovacMemCxt, |
| 2292 | "Autovacuum Portal" , |
| 2293 | ALLOCSET_DEFAULT_SIZES); |
| 2294 | |
| 2295 | /* |
| 2296 | * Perform operations on collected tables. |
| 2297 | */ |
| 2298 | foreach(cell, table_oids) |
| 2299 | { |
| 2300 | Oid relid = lfirst_oid(cell); |
| 2301 | HeapTuple classTup; |
| 2302 | autovac_table *tab; |
| 2303 | bool isshared; |
| 2304 | bool skipit; |
| 2305 | double stdVacuumCostDelay; |
| 2306 | int stdVacuumCostLimit; |
| 2307 | dlist_iter iter; |
| 2308 | |
| 2309 | CHECK_FOR_INTERRUPTS(); |
| 2310 | |
| 2311 | /* |
| 2312 | * Check for config changes before processing each collected table. |
| 2313 | */ |
| 2314 | if (got_SIGHUP) |
| 2315 | { |
| 2316 | got_SIGHUP = false; |
| 2317 | ProcessConfigFile(PGC_SIGHUP); |
| 2318 | |
| 2319 | /* |
| 2320 | * You might be tempted to bail out if we see autovacuum is now |
| 2321 | * disabled. Must resist that temptation -- this might be a |
| 2322 | * for-wraparound emergency worker, in which case that would be |
| 2323 | * entirely inappropriate. |
| 2324 | */ |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * Find out whether the table is shared or not. (It's slightly |
| 2329 | * annoying to fetch the syscache entry just for this, but in typical |
| 2330 | * cases it adds little cost because table_recheck_autovac would |
| 2331 | * refetch the entry anyway. We could buy that back by copying the |
| 2332 | * tuple here and passing it to table_recheck_autovac, but that |
| 2333 | * increases the odds of that function working with stale data.) |
| 2334 | */ |
| 2335 | classTup = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
| 2336 | if (!HeapTupleIsValid(classTup)) |
| 2337 | continue; /* somebody deleted the rel, forget it */ |
| 2338 | isshared = ((Form_pg_class) GETSTRUCT(classTup))->relisshared; |
| 2339 | ReleaseSysCache(classTup); |
| 2340 | |
| 2341 | /* |
| 2342 | * Hold schedule lock from here until we've claimed the table. We |
| 2343 | * also need the AutovacuumLock to walk the worker array, but that one |
| 2344 | * can just be a shared lock. |
| 2345 | */ |
| 2346 | LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE); |
| 2347 | LWLockAcquire(AutovacuumLock, LW_SHARED); |
| 2348 | |
| 2349 | /* |
| 2350 | * Check whether the table is being vacuumed concurrently by another |
| 2351 | * worker. |
| 2352 | */ |
| 2353 | skipit = false; |
| 2354 | dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers) |
| 2355 | { |
| 2356 | WorkerInfo worker = dlist_container(WorkerInfoData, wi_links, iter.cur); |
| 2357 | |
| 2358 | /* ignore myself */ |
| 2359 | if (worker == MyWorkerInfo) |
| 2360 | continue; |
| 2361 | |
| 2362 | /* ignore workers in other databases (unless table is shared) */ |
| 2363 | if (!worker->wi_sharedrel && worker->wi_dboid != MyDatabaseId) |
| 2364 | continue; |
| 2365 | |
| 2366 | if (worker->wi_tableoid == relid) |
| 2367 | { |
| 2368 | skipit = true; |
| 2369 | found_concurrent_worker = true; |
| 2370 | break; |
| 2371 | } |
| 2372 | } |
| 2373 | LWLockRelease(AutovacuumLock); |
| 2374 | if (skipit) |
| 2375 | { |
| 2376 | LWLockRelease(AutovacuumScheduleLock); |
| 2377 | continue; |
| 2378 | } |
| 2379 | |
| 2380 | /* |
| 2381 | * Store the table's OID in shared memory before releasing the |
| 2382 | * schedule lock, so that other workers don't try to vacuum it |
| 2383 | * concurrently. (We claim it here so as not to hold |
| 2384 | * AutovacuumScheduleLock while rechecking the stats.) |
| 2385 | */ |
| 2386 | MyWorkerInfo->wi_tableoid = relid; |
| 2387 | MyWorkerInfo->wi_sharedrel = isshared; |
| 2388 | LWLockRelease(AutovacuumScheduleLock); |
| 2389 | |
| 2390 | /* |
| 2391 | * Check whether pgstat data still says we need to vacuum this table. |
| 2392 | * It could have changed if something else processed the table while |
| 2393 | * we weren't looking. |
| 2394 | * |
| 2395 | * Note: we have a special case in pgstat code to ensure that the |
| 2396 | * stats we read are as up-to-date as possible, to avoid the problem |
| 2397 | * that somebody just finished vacuuming this table. The window to |
| 2398 | * the race condition is not closed but it is very small. |
| 2399 | */ |
| 2400 | MemoryContextSwitchTo(AutovacMemCxt); |
| 2401 | tab = table_recheck_autovac(relid, table_toast_map, pg_class_desc, |
| 2402 | effective_multixact_freeze_max_age); |
| 2403 | if (tab == NULL) |
| 2404 | { |
| 2405 | /* someone else vacuumed the table, or it went away */ |
| 2406 | LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE); |
| 2407 | MyWorkerInfo->wi_tableoid = InvalidOid; |
| 2408 | MyWorkerInfo->wi_sharedrel = false; |
| 2409 | LWLockRelease(AutovacuumScheduleLock); |
| 2410 | continue; |
| 2411 | } |
| 2412 | |
| 2413 | /* |
| 2414 | * Remember the prevailing values of the vacuum cost GUCs. We have to |
| 2415 | * restore these at the bottom of the loop, else we'll compute wrong |
| 2416 | * values in the next iteration of autovac_balance_cost(). |
| 2417 | */ |
| 2418 | stdVacuumCostDelay = VacuumCostDelay; |
| 2419 | stdVacuumCostLimit = VacuumCostLimit; |
| 2420 | |
| 2421 | /* Must hold AutovacuumLock while mucking with cost balance info */ |
| 2422 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 2423 | |
| 2424 | /* advertise my cost delay parameters for the balancing algorithm */ |
| 2425 | MyWorkerInfo->wi_dobalance = tab->at_dobalance; |
| 2426 | MyWorkerInfo->wi_cost_delay = tab->at_vacuum_cost_delay; |
| 2427 | MyWorkerInfo->wi_cost_limit = tab->at_vacuum_cost_limit; |
| 2428 | MyWorkerInfo->wi_cost_limit_base = tab->at_vacuum_cost_limit; |
| 2429 | |
| 2430 | /* do a balance */ |
| 2431 | autovac_balance_cost(); |
| 2432 | |
| 2433 | /* set the active cost parameters from the result of that */ |
| 2434 | AutoVacuumUpdateDelay(); |
| 2435 | |
| 2436 | /* done */ |
| 2437 | LWLockRelease(AutovacuumLock); |
| 2438 | |
| 2439 | /* clean up memory before each iteration */ |
| 2440 | MemoryContextResetAndDeleteChildren(PortalContext); |
| 2441 | |
| 2442 | /* |
| 2443 | * Save the relation name for a possible error message, to avoid a |
| 2444 | * catalog lookup in case of an error. If any of these return NULL, |
| 2445 | * then the relation has been dropped since last we checked; skip it. |
| 2446 | * Note: they must live in a long-lived memory context because we call |
| 2447 | * vacuum and analyze in different transactions. |
| 2448 | */ |
| 2449 | |
| 2450 | tab->at_relname = get_rel_name(tab->at_relid); |
| 2451 | tab->at_nspname = get_namespace_name(get_rel_namespace(tab->at_relid)); |
| 2452 | tab->at_datname = get_database_name(MyDatabaseId); |
| 2453 | if (!tab->at_relname || !tab->at_nspname || !tab->at_datname) |
| 2454 | goto deleted; |
| 2455 | |
| 2456 | /* |
| 2457 | * We will abort vacuuming the current table if something errors out, |
| 2458 | * and continue with the next one in schedule; in particular, this |
| 2459 | * happens if we are interrupted with SIGINT. |
| 2460 | */ |
| 2461 | PG_TRY(); |
| 2462 | { |
| 2463 | /* Use PortalContext for any per-table allocations */ |
| 2464 | MemoryContextSwitchTo(PortalContext); |
| 2465 | |
| 2466 | /* have at it */ |
| 2467 | autovacuum_do_vac_analyze(tab, bstrategy); |
| 2468 | |
| 2469 | /* |
| 2470 | * Clear a possible query-cancel signal, to avoid a late reaction |
| 2471 | * to an automatically-sent signal because of vacuuming the |
| 2472 | * current table (we're done with it, so it would make no sense to |
| 2473 | * cancel at this point.) |
| 2474 | */ |
| 2475 | QueryCancelPending = false; |
| 2476 | } |
| 2477 | PG_CATCH(); |
| 2478 | { |
| 2479 | /* |
| 2480 | * Abort the transaction, start a new one, and proceed with the |
| 2481 | * next table in our list. |
| 2482 | */ |
| 2483 | HOLD_INTERRUPTS(); |
| 2484 | if (tab->at_params.options & VACOPT_VACUUM) |
| 2485 | errcontext("automatic vacuum of table \"%s.%s.%s\"" , |
| 2486 | tab->at_datname, tab->at_nspname, tab->at_relname); |
| 2487 | else |
| 2488 | errcontext("automatic analyze of table \"%s.%s.%s\"" , |
| 2489 | tab->at_datname, tab->at_nspname, tab->at_relname); |
| 2490 | EmitErrorReport(); |
| 2491 | |
| 2492 | /* this resets the PGXACT flags too */ |
| 2493 | AbortOutOfAnyTransaction(); |
| 2494 | FlushErrorState(); |
| 2495 | MemoryContextResetAndDeleteChildren(PortalContext); |
| 2496 | |
| 2497 | /* restart our transaction for the following operations */ |
| 2498 | StartTransactionCommand(); |
| 2499 | RESUME_INTERRUPTS(); |
| 2500 | } |
| 2501 | PG_END_TRY(); |
| 2502 | |
| 2503 | /* Make sure we're back in AutovacMemCxt */ |
| 2504 | MemoryContextSwitchTo(AutovacMemCxt); |
| 2505 | |
| 2506 | did_vacuum = true; |
| 2507 | |
| 2508 | /* the PGXACT flags are reset at the next end of transaction */ |
| 2509 | |
| 2510 | /* be tidy */ |
| 2511 | deleted: |
| 2512 | if (tab->at_datname != NULL) |
| 2513 | pfree(tab->at_datname); |
| 2514 | if (tab->at_nspname != NULL) |
| 2515 | pfree(tab->at_nspname); |
| 2516 | if (tab->at_relname != NULL) |
| 2517 | pfree(tab->at_relname); |
| 2518 | pfree(tab); |
| 2519 | |
| 2520 | /* |
| 2521 | * Remove my info from shared memory. We could, but intentionally |
| 2522 | * don't, clear wi_cost_limit and friends --- this is on the |
| 2523 | * assumption that we probably have more to do with similar cost |
| 2524 | * settings, so we don't want to give up our share of I/O for a very |
| 2525 | * short interval and thereby thrash the global balance. |
| 2526 | */ |
| 2527 | LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE); |
| 2528 | MyWorkerInfo->wi_tableoid = InvalidOid; |
| 2529 | MyWorkerInfo->wi_sharedrel = false; |
| 2530 | LWLockRelease(AutovacuumScheduleLock); |
| 2531 | |
| 2532 | /* restore vacuum cost GUCs for the next iteration */ |
| 2533 | VacuumCostDelay = stdVacuumCostDelay; |
| 2534 | VacuumCostLimit = stdVacuumCostLimit; |
| 2535 | } |
| 2536 | |
| 2537 | /* |
| 2538 | * Perform additional work items, as requested by backends. |
| 2539 | */ |
| 2540 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 2541 | for (i = 0; i < NUM_WORKITEMS; i++) |
| 2542 | { |
| 2543 | AutoVacuumWorkItem *workitem = &AutoVacuumShmem->av_workItems[i]; |
| 2544 | |
| 2545 | if (!workitem->avw_used) |
| 2546 | continue; |
| 2547 | if (workitem->avw_active) |
| 2548 | continue; |
| 2549 | if (workitem->avw_database != MyDatabaseId) |
| 2550 | continue; |
| 2551 | |
| 2552 | /* claim this one, and release lock while performing it */ |
| 2553 | workitem->avw_active = true; |
| 2554 | LWLockRelease(AutovacuumLock); |
| 2555 | |
| 2556 | perform_work_item(workitem); |
| 2557 | |
| 2558 | /* |
| 2559 | * Check for config changes before acquiring lock for further jobs. |
| 2560 | */ |
| 2561 | CHECK_FOR_INTERRUPTS(); |
| 2562 | if (got_SIGHUP) |
| 2563 | { |
| 2564 | got_SIGHUP = false; |
| 2565 | ProcessConfigFile(PGC_SIGHUP); |
| 2566 | } |
| 2567 | |
| 2568 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 2569 | |
| 2570 | /* and mark it done */ |
| 2571 | workitem->avw_active = false; |
| 2572 | workitem->avw_used = false; |
| 2573 | } |
| 2574 | LWLockRelease(AutovacuumLock); |
| 2575 | |
| 2576 | /* |
| 2577 | * We leak table_toast_map here (among other things), but since we're |
| 2578 | * going away soon, it's not a problem. |
| 2579 | */ |
| 2580 | |
| 2581 | /* |
| 2582 | * Update pg_database.datfrozenxid, and truncate pg_xact if possible. We |
| 2583 | * only need to do this once, not after each table. |
| 2584 | * |
| 2585 | * Even if we didn't vacuum anything, it may still be important to do |
| 2586 | * this, because one indirect effect of vac_update_datfrozenxid() is to |
| 2587 | * update ShmemVariableCache->xidVacLimit. That might need to be done |
| 2588 | * even if we haven't vacuumed anything, because relations with older |
| 2589 | * relfrozenxid values or other databases with older datfrozenxid values |
| 2590 | * might have been dropped, allowing xidVacLimit to advance. |
| 2591 | * |
| 2592 | * However, it's also important not to do this blindly in all cases, |
| 2593 | * because when autovacuum=off this will restart the autovacuum launcher. |
| 2594 | * If we're not careful, an infinite loop can result, where workers find |
| 2595 | * no work to do and restart the launcher, which starts another worker in |
| 2596 | * the same database that finds no work to do. To prevent that, we skip |
| 2597 | * this if (1) we found no work to do and (2) we skipped at least one |
| 2598 | * table due to concurrent autovacuum activity. In that case, the other |
| 2599 | * worker has already done it, or will do so when it finishes. |
| 2600 | */ |
| 2601 | if (did_vacuum || !found_concurrent_worker) |
| 2602 | vac_update_datfrozenxid(); |
| 2603 | |
| 2604 | /* Finally close out the last transaction. */ |
| 2605 | CommitTransactionCommand(); |
| 2606 | } |
| 2607 | |
| 2608 | /* |
| 2609 | * Execute a previously registered work item. |
| 2610 | */ |
| 2611 | static void |
| 2612 | perform_work_item(AutoVacuumWorkItem *workitem) |
| 2613 | { |
| 2614 | char *cur_datname = NULL; |
| 2615 | char *cur_nspname = NULL; |
| 2616 | char *cur_relname = NULL; |
| 2617 | |
| 2618 | /* |
| 2619 | * Note we do not store table info in MyWorkerInfo, since this is not |
| 2620 | * vacuuming proper. |
| 2621 | */ |
| 2622 | |
| 2623 | /* |
| 2624 | * Save the relation name for a possible error message, to avoid a catalog |
| 2625 | * lookup in case of an error. If any of these return NULL, then the |
| 2626 | * relation has been dropped since last we checked; skip it. |
| 2627 | */ |
| 2628 | Assert(CurrentMemoryContext == AutovacMemCxt); |
| 2629 | |
| 2630 | cur_relname = get_rel_name(workitem->avw_relation); |
| 2631 | cur_nspname = get_namespace_name(get_rel_namespace(workitem->avw_relation)); |
| 2632 | cur_datname = get_database_name(MyDatabaseId); |
| 2633 | if (!cur_relname || !cur_nspname || !cur_datname) |
| 2634 | goto deleted2; |
| 2635 | |
| 2636 | autovac_report_workitem(workitem, cur_nspname, cur_relname); |
| 2637 | |
| 2638 | /* clean up memory before each work item */ |
| 2639 | MemoryContextResetAndDeleteChildren(PortalContext); |
| 2640 | |
| 2641 | /* |
| 2642 | * We will abort the current work item if something errors out, and |
| 2643 | * continue with the next one; in particular, this happens if we are |
| 2644 | * interrupted with SIGINT. Note that this means that the work item list |
| 2645 | * can be lossy. |
| 2646 | */ |
| 2647 | PG_TRY(); |
| 2648 | { |
| 2649 | /* Use PortalContext for any per-work-item allocations */ |
| 2650 | MemoryContextSwitchTo(PortalContext); |
| 2651 | |
| 2652 | /* have at it */ |
| 2653 | switch (workitem->avw_type) |
| 2654 | { |
| 2655 | case AVW_BRINSummarizeRange: |
| 2656 | DirectFunctionCall2(brin_summarize_range, |
| 2657 | ObjectIdGetDatum(workitem->avw_relation), |
| 2658 | Int64GetDatum((int64) workitem->avw_blockNumber)); |
| 2659 | break; |
| 2660 | default: |
| 2661 | elog(WARNING, "unrecognized work item found: type %d" , |
| 2662 | workitem->avw_type); |
| 2663 | break; |
| 2664 | } |
| 2665 | |
| 2666 | /* |
| 2667 | * Clear a possible query-cancel signal, to avoid a late reaction to |
| 2668 | * an automatically-sent signal because of vacuuming the current table |
| 2669 | * (we're done with it, so it would make no sense to cancel at this |
| 2670 | * point.) |
| 2671 | */ |
| 2672 | QueryCancelPending = false; |
| 2673 | } |
| 2674 | PG_CATCH(); |
| 2675 | { |
| 2676 | /* |
| 2677 | * Abort the transaction, start a new one, and proceed with the next |
| 2678 | * table in our list. |
| 2679 | */ |
| 2680 | HOLD_INTERRUPTS(); |
| 2681 | errcontext("processing work entry for relation \"%s.%s.%s\"" , |
| 2682 | cur_datname, cur_nspname, cur_relname); |
| 2683 | EmitErrorReport(); |
| 2684 | |
| 2685 | /* this resets the PGXACT flags too */ |
| 2686 | AbortOutOfAnyTransaction(); |
| 2687 | FlushErrorState(); |
| 2688 | MemoryContextResetAndDeleteChildren(PortalContext); |
| 2689 | |
| 2690 | /* restart our transaction for the following operations */ |
| 2691 | StartTransactionCommand(); |
| 2692 | RESUME_INTERRUPTS(); |
| 2693 | } |
| 2694 | PG_END_TRY(); |
| 2695 | |
| 2696 | /* Make sure we're back in AutovacMemCxt */ |
| 2697 | MemoryContextSwitchTo(AutovacMemCxt); |
| 2698 | |
| 2699 | /* We intentionally do not set did_vacuum here */ |
| 2700 | |
| 2701 | /* be tidy */ |
| 2702 | deleted2: |
| 2703 | if (cur_datname) |
| 2704 | pfree(cur_datname); |
| 2705 | if (cur_nspname) |
| 2706 | pfree(cur_nspname); |
| 2707 | if (cur_relname) |
| 2708 | pfree(cur_relname); |
| 2709 | } |
| 2710 | |
| 2711 | /* |
| 2712 | * extract_autovac_opts |
| 2713 | * |
| 2714 | * Given a relation's pg_class tuple, return the AutoVacOpts portion of |
| 2715 | * reloptions, if set; otherwise, return NULL. |
| 2716 | */ |
| 2717 | static AutoVacOpts * |
| 2718 | (HeapTuple tup, TupleDesc pg_class_desc) |
| 2719 | { |
| 2720 | bytea *relopts; |
| 2721 | AutoVacOpts *av; |
| 2722 | |
| 2723 | Assert(((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_RELATION || |
| 2724 | ((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_MATVIEW || |
| 2725 | ((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_TOASTVALUE); |
| 2726 | |
| 2727 | relopts = extractRelOptions(tup, pg_class_desc, NULL); |
| 2728 | if (relopts == NULL) |
| 2729 | return NULL; |
| 2730 | |
| 2731 | av = palloc(sizeof(AutoVacOpts)); |
| 2732 | memcpy(av, &(((StdRdOptions *) relopts)->autovacuum), sizeof(AutoVacOpts)); |
| 2733 | pfree(relopts); |
| 2734 | |
| 2735 | return av; |
| 2736 | } |
| 2737 | |
| 2738 | /* |
| 2739 | * get_pgstat_tabentry_relid |
| 2740 | * |
| 2741 | * Fetch the pgstat entry of a table, either local to a database or shared. |
| 2742 | */ |
| 2743 | static PgStat_StatTabEntry * |
| 2744 | get_pgstat_tabentry_relid(Oid relid, bool isshared, PgStat_StatDBEntry *shared, |
| 2745 | PgStat_StatDBEntry *dbentry) |
| 2746 | { |
| 2747 | PgStat_StatTabEntry *tabentry = NULL; |
| 2748 | |
| 2749 | if (isshared) |
| 2750 | { |
| 2751 | if (PointerIsValid(shared)) |
| 2752 | tabentry = hash_search(shared->tables, &relid, |
| 2753 | HASH_FIND, NULL); |
| 2754 | } |
| 2755 | else if (PointerIsValid(dbentry)) |
| 2756 | tabentry = hash_search(dbentry->tables, &relid, |
| 2757 | HASH_FIND, NULL); |
| 2758 | |
| 2759 | return tabentry; |
| 2760 | } |
| 2761 | |
| 2762 | /* |
| 2763 | * table_recheck_autovac |
| 2764 | * |
| 2765 | * Recheck whether a table still needs vacuum or analyze. Return value is a |
| 2766 | * valid autovac_table pointer if it does, NULL otherwise. |
| 2767 | * |
| 2768 | * Note that the returned autovac_table does not have the name fields set. |
| 2769 | */ |
| 2770 | static autovac_table * |
| 2771 | table_recheck_autovac(Oid relid, HTAB *table_toast_map, |
| 2772 | TupleDesc pg_class_desc, |
| 2773 | int effective_multixact_freeze_max_age) |
| 2774 | { |
| 2775 | Form_pg_class classForm; |
| 2776 | HeapTuple classTup; |
| 2777 | bool dovacuum; |
| 2778 | bool doanalyze; |
| 2779 | autovac_table *tab = NULL; |
| 2780 | PgStat_StatTabEntry *tabentry; |
| 2781 | PgStat_StatDBEntry *shared; |
| 2782 | PgStat_StatDBEntry *dbentry; |
| 2783 | bool wraparound; |
| 2784 | AutoVacOpts *avopts; |
| 2785 | |
| 2786 | /* use fresh stats */ |
| 2787 | autovac_refresh_stats(); |
| 2788 | |
| 2789 | shared = pgstat_fetch_stat_dbentry(InvalidOid); |
| 2790 | dbentry = pgstat_fetch_stat_dbentry(MyDatabaseId); |
| 2791 | |
| 2792 | /* fetch the relation's relcache entry */ |
| 2793 | classTup = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid)); |
| 2794 | if (!HeapTupleIsValid(classTup)) |
| 2795 | return NULL; |
| 2796 | classForm = (Form_pg_class) GETSTRUCT(classTup); |
| 2797 | |
| 2798 | /* |
| 2799 | * Get the applicable reloptions. If it is a TOAST table, try to get the |
| 2800 | * main table reloptions if the toast table itself doesn't have. |
| 2801 | */ |
| 2802 | avopts = extract_autovac_opts(classTup, pg_class_desc); |
| 2803 | if (classForm->relkind == RELKIND_TOASTVALUE && |
| 2804 | avopts == NULL && table_toast_map != NULL) |
| 2805 | { |
| 2806 | av_relation *hentry; |
| 2807 | bool found; |
| 2808 | |
| 2809 | hentry = hash_search(table_toast_map, &relid, HASH_FIND, &found); |
| 2810 | if (found && hentry->ar_hasrelopts) |
| 2811 | avopts = &hentry->ar_reloptions; |
| 2812 | } |
| 2813 | |
| 2814 | /* fetch the pgstat table entry */ |
| 2815 | tabentry = get_pgstat_tabentry_relid(relid, classForm->relisshared, |
| 2816 | shared, dbentry); |
| 2817 | |
| 2818 | relation_needs_vacanalyze(relid, avopts, classForm, tabentry, |
| 2819 | effective_multixact_freeze_max_age, |
| 2820 | &dovacuum, &doanalyze, &wraparound); |
| 2821 | |
| 2822 | /* ignore ANALYZE for toast tables */ |
| 2823 | if (classForm->relkind == RELKIND_TOASTVALUE) |
| 2824 | doanalyze = false; |
| 2825 | |
| 2826 | /* OK, it needs something done */ |
| 2827 | if (doanalyze || dovacuum) |
| 2828 | { |
| 2829 | int freeze_min_age; |
| 2830 | int freeze_table_age; |
| 2831 | int multixact_freeze_min_age; |
| 2832 | int multixact_freeze_table_age; |
| 2833 | int vac_cost_limit; |
| 2834 | double vac_cost_delay; |
| 2835 | int log_min_duration; |
| 2836 | |
| 2837 | /* |
| 2838 | * Calculate the vacuum cost parameters and the freeze ages. If there |
| 2839 | * are options set in pg_class.reloptions, use them; in the case of a |
| 2840 | * toast table, try the main table too. Otherwise use the GUC |
| 2841 | * defaults, autovacuum's own first and plain vacuum second. |
| 2842 | */ |
| 2843 | |
| 2844 | /* -1 in autovac setting means use plain vacuum_cost_delay */ |
| 2845 | vac_cost_delay = (avopts && avopts->vacuum_cost_delay >= 0) |
| 2846 | ? avopts->vacuum_cost_delay |
| 2847 | : (autovacuum_vac_cost_delay >= 0) |
| 2848 | ? autovacuum_vac_cost_delay |
| 2849 | : VacuumCostDelay; |
| 2850 | |
| 2851 | /* 0 or -1 in autovac setting means use plain vacuum_cost_limit */ |
| 2852 | vac_cost_limit = (avopts && avopts->vacuum_cost_limit > 0) |
| 2853 | ? avopts->vacuum_cost_limit |
| 2854 | : (autovacuum_vac_cost_limit > 0) |
| 2855 | ? autovacuum_vac_cost_limit |
| 2856 | : VacuumCostLimit; |
| 2857 | |
| 2858 | /* -1 in autovac setting means use log_autovacuum_min_duration */ |
| 2859 | log_min_duration = (avopts && avopts->log_min_duration >= 0) |
| 2860 | ? avopts->log_min_duration |
| 2861 | : Log_autovacuum_min_duration; |
| 2862 | |
| 2863 | /* these do not have autovacuum-specific settings */ |
| 2864 | freeze_min_age = (avopts && avopts->freeze_min_age >= 0) |
| 2865 | ? avopts->freeze_min_age |
| 2866 | : default_freeze_min_age; |
| 2867 | |
| 2868 | freeze_table_age = (avopts && avopts->freeze_table_age >= 0) |
| 2869 | ? avopts->freeze_table_age |
| 2870 | : default_freeze_table_age; |
| 2871 | |
| 2872 | multixact_freeze_min_age = (avopts && |
| 2873 | avopts->multixact_freeze_min_age >= 0) |
| 2874 | ? avopts->multixact_freeze_min_age |
| 2875 | : default_multixact_freeze_min_age; |
| 2876 | |
| 2877 | multixact_freeze_table_age = (avopts && |
| 2878 | avopts->multixact_freeze_table_age >= 0) |
| 2879 | ? avopts->multixact_freeze_table_age |
| 2880 | : default_multixact_freeze_table_age; |
| 2881 | |
| 2882 | tab = palloc(sizeof(autovac_table)); |
| 2883 | tab->at_relid = relid; |
| 2884 | tab->at_sharedrel = classForm->relisshared; |
| 2885 | tab->at_params.options = VACOPT_SKIPTOAST | |
| 2886 | (dovacuum ? VACOPT_VACUUM : 0) | |
| 2887 | (doanalyze ? VACOPT_ANALYZE : 0) | |
| 2888 | (!wraparound ? VACOPT_SKIP_LOCKED : 0); |
| 2889 | tab->at_params.index_cleanup = VACOPT_TERNARY_DEFAULT; |
| 2890 | tab->at_params.truncate = VACOPT_TERNARY_DEFAULT; |
| 2891 | tab->at_params.freeze_min_age = freeze_min_age; |
| 2892 | tab->at_params.freeze_table_age = freeze_table_age; |
| 2893 | tab->at_params.multixact_freeze_min_age = multixact_freeze_min_age; |
| 2894 | tab->at_params.multixact_freeze_table_age = multixact_freeze_table_age; |
| 2895 | tab->at_params.is_wraparound = wraparound; |
| 2896 | tab->at_params.log_min_duration = log_min_duration; |
| 2897 | tab->at_vacuum_cost_limit = vac_cost_limit; |
| 2898 | tab->at_vacuum_cost_delay = vac_cost_delay; |
| 2899 | tab->at_relname = NULL; |
| 2900 | tab->at_nspname = NULL; |
| 2901 | tab->at_datname = NULL; |
| 2902 | |
| 2903 | /* |
| 2904 | * If any of the cost delay parameters has been set individually for |
| 2905 | * this table, disable the balancing algorithm. |
| 2906 | */ |
| 2907 | tab->at_dobalance = |
| 2908 | !(avopts && (avopts->vacuum_cost_limit > 0 || |
| 2909 | avopts->vacuum_cost_delay > 0)); |
| 2910 | } |
| 2911 | |
| 2912 | heap_freetuple(classTup); |
| 2913 | |
| 2914 | return tab; |
| 2915 | } |
| 2916 | |
| 2917 | /* |
| 2918 | * relation_needs_vacanalyze |
| 2919 | * |
| 2920 | * Check whether a relation needs to be vacuumed or analyzed; return each into |
| 2921 | * "dovacuum" and "doanalyze", respectively. Also return whether the vacuum is |
| 2922 | * being forced because of Xid or multixact wraparound. |
| 2923 | * |
| 2924 | * relopts is a pointer to the AutoVacOpts options (either for itself in the |
| 2925 | * case of a plain table, or for either itself or its parent table in the case |
| 2926 | * of a TOAST table), NULL if none; tabentry is the pgstats entry, which can be |
| 2927 | * NULL. |
| 2928 | * |
| 2929 | * A table needs to be vacuumed if the number of dead tuples exceeds a |
| 2930 | * threshold. This threshold is calculated as |
| 2931 | * |
| 2932 | * threshold = vac_base_thresh + vac_scale_factor * reltuples |
| 2933 | * |
| 2934 | * For analyze, the analysis done is that the number of tuples inserted, |
| 2935 | * deleted and updated since the last analyze exceeds a threshold calculated |
| 2936 | * in the same fashion as above. Note that the collector actually stores |
| 2937 | * the number of tuples (both live and dead) that there were as of the last |
| 2938 | * analyze. This is asymmetric to the VACUUM case. |
| 2939 | * |
| 2940 | * We also force vacuum if the table's relfrozenxid is more than freeze_max_age |
| 2941 | * transactions back, and if its relminmxid is more than |
| 2942 | * multixact_freeze_max_age multixacts back. |
| 2943 | * |
| 2944 | * A table whose autovacuum_enabled option is false is |
| 2945 | * automatically skipped (unless we have to vacuum it due to freeze_max_age). |
| 2946 | * Thus autovacuum can be disabled for specific tables. Also, when the stats |
| 2947 | * collector does not have data about a table, it will be skipped. |
| 2948 | * |
| 2949 | * A table whose vac_base_thresh value is < 0 takes the base value from the |
| 2950 | * autovacuum_vacuum_threshold GUC variable. Similarly, a vac_scale_factor |
| 2951 | * value < 0 is substituted with the value of |
| 2952 | * autovacuum_vacuum_scale_factor GUC variable. Ditto for analyze. |
| 2953 | */ |
| 2954 | static void |
| 2955 | relation_needs_vacanalyze(Oid relid, |
| 2956 | AutoVacOpts *relopts, |
| 2957 | Form_pg_class classForm, |
| 2958 | PgStat_StatTabEntry *tabentry, |
| 2959 | int effective_multixact_freeze_max_age, |
| 2960 | /* output params below */ |
| 2961 | bool *dovacuum, |
| 2962 | bool *doanalyze, |
| 2963 | bool *wraparound) |
| 2964 | { |
| 2965 | bool force_vacuum; |
| 2966 | bool av_enabled; |
| 2967 | float4 reltuples; /* pg_class.reltuples */ |
| 2968 | |
| 2969 | /* constants from reloptions or GUC variables */ |
| 2970 | int vac_base_thresh, |
| 2971 | anl_base_thresh; |
| 2972 | float4 vac_scale_factor, |
| 2973 | anl_scale_factor; |
| 2974 | |
| 2975 | /* thresholds calculated from above constants */ |
| 2976 | float4 vacthresh, |
| 2977 | anlthresh; |
| 2978 | |
| 2979 | /* number of vacuum (resp. analyze) tuples at this time */ |
| 2980 | float4 vactuples, |
| 2981 | anltuples; |
| 2982 | |
| 2983 | /* freeze parameters */ |
| 2984 | int freeze_max_age; |
| 2985 | int multixact_freeze_max_age; |
| 2986 | TransactionId xidForceLimit; |
| 2987 | MultiXactId multiForceLimit; |
| 2988 | |
| 2989 | AssertArg(classForm != NULL); |
| 2990 | AssertArg(OidIsValid(relid)); |
| 2991 | |
| 2992 | /* |
| 2993 | * Determine vacuum/analyze equation parameters. We have two possible |
| 2994 | * sources: the passed reloptions (which could be a main table or a toast |
| 2995 | * table), or the autovacuum GUC variables. |
| 2996 | */ |
| 2997 | |
| 2998 | /* -1 in autovac setting means use plain vacuum_scale_factor */ |
| 2999 | vac_scale_factor = (relopts && relopts->vacuum_scale_factor >= 0) |
| 3000 | ? relopts->vacuum_scale_factor |
| 3001 | : autovacuum_vac_scale; |
| 3002 | |
| 3003 | vac_base_thresh = (relopts && relopts->vacuum_threshold >= 0) |
| 3004 | ? relopts->vacuum_threshold |
| 3005 | : autovacuum_vac_thresh; |
| 3006 | |
| 3007 | anl_scale_factor = (relopts && relopts->analyze_scale_factor >= 0) |
| 3008 | ? relopts->analyze_scale_factor |
| 3009 | : autovacuum_anl_scale; |
| 3010 | |
| 3011 | anl_base_thresh = (relopts && relopts->analyze_threshold >= 0) |
| 3012 | ? relopts->analyze_threshold |
| 3013 | : autovacuum_anl_thresh; |
| 3014 | |
| 3015 | freeze_max_age = (relopts && relopts->freeze_max_age >= 0) |
| 3016 | ? Min(relopts->freeze_max_age, autovacuum_freeze_max_age) |
| 3017 | : autovacuum_freeze_max_age; |
| 3018 | |
| 3019 | multixact_freeze_max_age = (relopts && relopts->multixact_freeze_max_age >= 0) |
| 3020 | ? Min(relopts->multixact_freeze_max_age, effective_multixact_freeze_max_age) |
| 3021 | : effective_multixact_freeze_max_age; |
| 3022 | |
| 3023 | av_enabled = (relopts ? relopts->enabled : true); |
| 3024 | |
| 3025 | /* Force vacuum if table is at risk of wraparound */ |
| 3026 | xidForceLimit = recentXid - freeze_max_age; |
| 3027 | if (xidForceLimit < FirstNormalTransactionId) |
| 3028 | xidForceLimit -= FirstNormalTransactionId; |
| 3029 | force_vacuum = (TransactionIdIsNormal(classForm->relfrozenxid) && |
| 3030 | TransactionIdPrecedes(classForm->relfrozenxid, |
| 3031 | xidForceLimit)); |
| 3032 | if (!force_vacuum) |
| 3033 | { |
| 3034 | multiForceLimit = recentMulti - multixact_freeze_max_age; |
| 3035 | if (multiForceLimit < FirstMultiXactId) |
| 3036 | multiForceLimit -= FirstMultiXactId; |
| 3037 | force_vacuum = MultiXactIdIsValid(classForm->relminmxid) && |
| 3038 | MultiXactIdPrecedes(classForm->relminmxid, multiForceLimit); |
| 3039 | } |
| 3040 | *wraparound = force_vacuum; |
| 3041 | |
| 3042 | /* User disabled it in pg_class.reloptions? (But ignore if at risk) */ |
| 3043 | if (!av_enabled && !force_vacuum) |
| 3044 | { |
| 3045 | *doanalyze = false; |
| 3046 | *dovacuum = false; |
| 3047 | return; |
| 3048 | } |
| 3049 | |
| 3050 | /* |
| 3051 | * If we found the table in the stats hash, and autovacuum is currently |
| 3052 | * enabled, make a threshold-based decision whether to vacuum and/or |
| 3053 | * analyze. If autovacuum is currently disabled, we must be here for |
| 3054 | * anti-wraparound vacuuming only, so don't vacuum (or analyze) anything |
| 3055 | * that's not being forced. |
| 3056 | */ |
| 3057 | if (PointerIsValid(tabentry) && AutoVacuumingActive()) |
| 3058 | { |
| 3059 | reltuples = classForm->reltuples; |
| 3060 | vactuples = tabentry->n_dead_tuples; |
| 3061 | anltuples = tabentry->changes_since_analyze; |
| 3062 | |
| 3063 | vacthresh = (float4) vac_base_thresh + vac_scale_factor * reltuples; |
| 3064 | anlthresh = (float4) anl_base_thresh + anl_scale_factor * reltuples; |
| 3065 | |
| 3066 | /* |
| 3067 | * Note that we don't need to take special consideration for stat |
| 3068 | * reset, because if that happens, the last vacuum and analyze counts |
| 3069 | * will be reset too. |
| 3070 | */ |
| 3071 | elog(DEBUG3, "%s: vac: %.0f (threshold %.0f), anl: %.0f (threshold %.0f)" , |
| 3072 | NameStr(classForm->relname), |
| 3073 | vactuples, vacthresh, anltuples, anlthresh); |
| 3074 | |
| 3075 | /* Determine if this table needs vacuum or analyze. */ |
| 3076 | *dovacuum = force_vacuum || (vactuples > vacthresh); |
| 3077 | *doanalyze = (anltuples > anlthresh); |
| 3078 | } |
| 3079 | else |
| 3080 | { |
| 3081 | /* |
| 3082 | * Skip a table not found in stat hash, unless we have to force vacuum |
| 3083 | * for anti-wrap purposes. If it's not acted upon, there's no need to |
| 3084 | * vacuum it. |
| 3085 | */ |
| 3086 | *dovacuum = force_vacuum; |
| 3087 | *doanalyze = false; |
| 3088 | } |
| 3089 | |
| 3090 | /* ANALYZE refuses to work with pg_statistic */ |
| 3091 | if (relid == StatisticRelationId) |
| 3092 | *doanalyze = false; |
| 3093 | } |
| 3094 | |
| 3095 | /* |
| 3096 | * autovacuum_do_vac_analyze |
| 3097 | * Vacuum and/or analyze the specified table |
| 3098 | */ |
| 3099 | static void |
| 3100 | autovacuum_do_vac_analyze(autovac_table *tab, BufferAccessStrategy bstrategy) |
| 3101 | { |
| 3102 | RangeVar *rangevar; |
| 3103 | VacuumRelation *rel; |
| 3104 | List *rel_list; |
| 3105 | |
| 3106 | /* Let pgstat know what we're doing */ |
| 3107 | autovac_report_activity(tab); |
| 3108 | |
| 3109 | /* Set up one VacuumRelation target, identified by OID, for vacuum() */ |
| 3110 | rangevar = makeRangeVar(tab->at_nspname, tab->at_relname, -1); |
| 3111 | rel = makeVacuumRelation(rangevar, tab->at_relid, NIL); |
| 3112 | rel_list = list_make1(rel); |
| 3113 | |
| 3114 | vacuum(rel_list, &tab->at_params, bstrategy, true); |
| 3115 | } |
| 3116 | |
| 3117 | /* |
| 3118 | * autovac_report_activity |
| 3119 | * Report to pgstat what autovacuum is doing |
| 3120 | * |
| 3121 | * We send a SQL string corresponding to what the user would see if the |
| 3122 | * equivalent command was to be issued manually. |
| 3123 | * |
| 3124 | * Note we assume that we are going to report the next command as soon as we're |
| 3125 | * done with the current one, and exit right after the last one, so we don't |
| 3126 | * bother to report "<IDLE>" or some such. |
| 3127 | */ |
| 3128 | static void |
| 3129 | autovac_report_activity(autovac_table *tab) |
| 3130 | { |
| 3131 | #define MAX_AUTOVAC_ACTIV_LEN (NAMEDATALEN * 2 + 56) |
| 3132 | char activity[MAX_AUTOVAC_ACTIV_LEN]; |
| 3133 | int len; |
| 3134 | |
| 3135 | /* Report the command and possible options */ |
| 3136 | if (tab->at_params.options & VACOPT_VACUUM) |
| 3137 | snprintf(activity, MAX_AUTOVAC_ACTIV_LEN, |
| 3138 | "autovacuum: VACUUM%s" , |
| 3139 | tab->at_params.options & VACOPT_ANALYZE ? " ANALYZE" : "" ); |
| 3140 | else |
| 3141 | snprintf(activity, MAX_AUTOVAC_ACTIV_LEN, |
| 3142 | "autovacuum: ANALYZE" ); |
| 3143 | |
| 3144 | /* |
| 3145 | * Report the qualified name of the relation. |
| 3146 | */ |
| 3147 | len = strlen(activity); |
| 3148 | |
| 3149 | snprintf(activity + len, MAX_AUTOVAC_ACTIV_LEN - len, |
| 3150 | " %s.%s%s" , tab->at_nspname, tab->at_relname, |
| 3151 | tab->at_params.is_wraparound ? " (to prevent wraparound)" : "" ); |
| 3152 | |
| 3153 | /* Set statement_timestamp() to current time for pg_stat_activity */ |
| 3154 | SetCurrentStatementStartTimestamp(); |
| 3155 | |
| 3156 | pgstat_report_activity(STATE_RUNNING, activity); |
| 3157 | } |
| 3158 | |
| 3159 | /* |
| 3160 | * autovac_report_workitem |
| 3161 | * Report to pgstat that autovacuum is processing a work item |
| 3162 | */ |
| 3163 | static void |
| 3164 | autovac_report_workitem(AutoVacuumWorkItem *workitem, |
| 3165 | const char *nspname, const char *relname) |
| 3166 | { |
| 3167 | char activity[MAX_AUTOVAC_ACTIV_LEN + 12 + 2]; |
| 3168 | char blk[12 + 2]; |
| 3169 | int len; |
| 3170 | |
| 3171 | switch (workitem->avw_type) |
| 3172 | { |
| 3173 | case AVW_BRINSummarizeRange: |
| 3174 | snprintf(activity, MAX_AUTOVAC_ACTIV_LEN, |
| 3175 | "autovacuum: BRIN summarize" ); |
| 3176 | break; |
| 3177 | } |
| 3178 | |
| 3179 | /* |
| 3180 | * Report the qualified name of the relation, and the block number if any |
| 3181 | */ |
| 3182 | len = strlen(activity); |
| 3183 | |
| 3184 | if (BlockNumberIsValid(workitem->avw_blockNumber)) |
| 3185 | snprintf(blk, sizeof(blk), " %u" , workitem->avw_blockNumber); |
| 3186 | else |
| 3187 | blk[0] = '\0'; |
| 3188 | |
| 3189 | snprintf(activity + len, MAX_AUTOVAC_ACTIV_LEN - len, |
| 3190 | " %s.%s%s" , nspname, relname, blk); |
| 3191 | |
| 3192 | /* Set statement_timestamp() to current time for pg_stat_activity */ |
| 3193 | SetCurrentStatementStartTimestamp(); |
| 3194 | |
| 3195 | pgstat_report_activity(STATE_RUNNING, activity); |
| 3196 | } |
| 3197 | |
| 3198 | /* |
| 3199 | * AutoVacuumingActive |
| 3200 | * Check GUC vars and report whether the autovacuum process should be |
| 3201 | * running. |
| 3202 | */ |
| 3203 | bool |
| 3204 | AutoVacuumingActive(void) |
| 3205 | { |
| 3206 | if (!autovacuum_start_daemon || !pgstat_track_counts) |
| 3207 | return false; |
| 3208 | return true; |
| 3209 | } |
| 3210 | |
| 3211 | /* |
| 3212 | * Request one work item to the next autovacuum run processing our database. |
| 3213 | * Return false if the request can't be recorded. |
| 3214 | */ |
| 3215 | bool |
| 3216 | AutoVacuumRequestWork(AutoVacuumWorkItemType type, Oid relationId, |
| 3217 | BlockNumber blkno) |
| 3218 | { |
| 3219 | int i; |
| 3220 | bool result = false; |
| 3221 | |
| 3222 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
| 3223 | |
| 3224 | /* |
| 3225 | * Locate an unused work item and fill it with the given data. |
| 3226 | */ |
| 3227 | for (i = 0; i < NUM_WORKITEMS; i++) |
| 3228 | { |
| 3229 | AutoVacuumWorkItem *workitem = &AutoVacuumShmem->av_workItems[i]; |
| 3230 | |
| 3231 | if (workitem->avw_used) |
| 3232 | continue; |
| 3233 | |
| 3234 | workitem->avw_used = true; |
| 3235 | workitem->avw_active = false; |
| 3236 | workitem->avw_type = type; |
| 3237 | workitem->avw_database = MyDatabaseId; |
| 3238 | workitem->avw_relation = relationId; |
| 3239 | workitem->avw_blockNumber = blkno; |
| 3240 | result = true; |
| 3241 | |
| 3242 | /* done */ |
| 3243 | break; |
| 3244 | } |
| 3245 | |
| 3246 | LWLockRelease(AutovacuumLock); |
| 3247 | |
| 3248 | return result; |
| 3249 | } |
| 3250 | |
| 3251 | /* |
| 3252 | * autovac_init |
| 3253 | * This is called at postmaster initialization. |
| 3254 | * |
| 3255 | * All we do here is annoy the user if he got it wrong. |
| 3256 | */ |
| 3257 | void |
| 3258 | autovac_init(void) |
| 3259 | { |
| 3260 | if (autovacuum_start_daemon && !pgstat_track_counts) |
| 3261 | ereport(WARNING, |
| 3262 | (errmsg("autovacuum not started because of misconfiguration" ), |
| 3263 | errhint("Enable the \"track_counts\" option." ))); |
| 3264 | } |
| 3265 | |
| 3266 | /* |
| 3267 | * IsAutoVacuum functions |
| 3268 | * Return whether this is either a launcher autovacuum process or a worker |
| 3269 | * process. |
| 3270 | */ |
| 3271 | bool |
| 3272 | IsAutoVacuumLauncherProcess(void) |
| 3273 | { |
| 3274 | return am_autovacuum_launcher; |
| 3275 | } |
| 3276 | |
| 3277 | bool |
| 3278 | IsAutoVacuumWorkerProcess(void) |
| 3279 | { |
| 3280 | return am_autovacuum_worker; |
| 3281 | } |
| 3282 | |
| 3283 | |
| 3284 | /* |
| 3285 | * AutoVacuumShmemSize |
| 3286 | * Compute space needed for autovacuum-related shared memory |
| 3287 | */ |
| 3288 | Size |
| 3289 | AutoVacuumShmemSize(void) |
| 3290 | { |
| 3291 | Size size; |
| 3292 | |
| 3293 | /* |
| 3294 | * Need the fixed struct and the array of WorkerInfoData. |
| 3295 | */ |
| 3296 | size = sizeof(AutoVacuumShmemStruct); |
| 3297 | size = MAXALIGN(size); |
| 3298 | size = add_size(size, mul_size(autovacuum_max_workers, |
| 3299 | sizeof(WorkerInfoData))); |
| 3300 | return size; |
| 3301 | } |
| 3302 | |
| 3303 | /* |
| 3304 | * AutoVacuumShmemInit |
| 3305 | * Allocate and initialize autovacuum-related shared memory |
| 3306 | */ |
| 3307 | void |
| 3308 | AutoVacuumShmemInit(void) |
| 3309 | { |
| 3310 | bool found; |
| 3311 | |
| 3312 | AutoVacuumShmem = (AutoVacuumShmemStruct *) |
| 3313 | ShmemInitStruct("AutoVacuum Data" , |
| 3314 | AutoVacuumShmemSize(), |
| 3315 | &found); |
| 3316 | |
| 3317 | if (!IsUnderPostmaster) |
| 3318 | { |
| 3319 | WorkerInfo worker; |
| 3320 | int i; |
| 3321 | |
| 3322 | Assert(!found); |
| 3323 | |
| 3324 | AutoVacuumShmem->av_launcherpid = 0; |
| 3325 | dlist_init(&AutoVacuumShmem->av_freeWorkers); |
| 3326 | dlist_init(&AutoVacuumShmem->av_runningWorkers); |
| 3327 | AutoVacuumShmem->av_startingWorker = NULL; |
| 3328 | memset(AutoVacuumShmem->av_workItems, 0, |
| 3329 | sizeof(AutoVacuumWorkItem) * NUM_WORKITEMS); |
| 3330 | |
| 3331 | worker = (WorkerInfo) ((char *) AutoVacuumShmem + |
| 3332 | MAXALIGN(sizeof(AutoVacuumShmemStruct))); |
| 3333 | |
| 3334 | /* initialize the WorkerInfo free list */ |
| 3335 | for (i = 0; i < autovacuum_max_workers; i++) |
| 3336 | dlist_push_head(&AutoVacuumShmem->av_freeWorkers, |
| 3337 | &worker[i].wi_links); |
| 3338 | } |
| 3339 | else |
| 3340 | Assert(found); |
| 3341 | } |
| 3342 | |
| 3343 | /* |
| 3344 | * autovac_refresh_stats |
| 3345 | * Refresh pgstats data for an autovacuum process |
| 3346 | * |
| 3347 | * Cause the next pgstats read operation to obtain fresh data, but throttle |
| 3348 | * such refreshing in the autovacuum launcher. This is mostly to avoid |
| 3349 | * rereading the pgstats files too many times in quick succession when there |
| 3350 | * are many databases. |
| 3351 | * |
| 3352 | * Note: we avoid throttling in the autovac worker, as it would be |
| 3353 | * counterproductive in the recheck logic. |
| 3354 | */ |
| 3355 | static void |
| 3356 | autovac_refresh_stats(void) |
| 3357 | { |
| 3358 | if (IsAutoVacuumLauncherProcess()) |
| 3359 | { |
| 3360 | static TimestampTz last_read = 0; |
| 3361 | TimestampTz current_time; |
| 3362 | |
| 3363 | current_time = GetCurrentTimestamp(); |
| 3364 | |
| 3365 | if (!TimestampDifferenceExceeds(last_read, current_time, |
| 3366 | STATS_READ_DELAY)) |
| 3367 | return; |
| 3368 | |
| 3369 | last_read = current_time; |
| 3370 | } |
| 3371 | |
| 3372 | pgstat_clear_snapshot(); |
| 3373 | } |
| 3374 | |