| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * walreceiver.c |
| 4 | * |
| 5 | * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It |
| 6 | * is the process in the standby server that takes charge of receiving |
| 7 | * XLOG records from a primary server during streaming replication. |
| 8 | * |
| 9 | * When the startup process determines that it's time to start streaming, |
| 10 | * it instructs postmaster to start walreceiver. Walreceiver first connects |
| 11 | * to the primary server (it will be served by a walsender process |
| 12 | * in the primary server), and then keeps receiving XLOG records and |
| 13 | * writing them to the disk as long as the connection is alive. As XLOG |
| 14 | * records are received and flushed to disk, it updates the |
| 15 | * WalRcv->receivedUpto variable in shared memory, to inform the startup |
| 16 | * process of how far it can proceed with XLOG replay. |
| 17 | * |
| 18 | * If the primary server ends streaming, but doesn't disconnect, walreceiver |
| 19 | * goes into "waiting" mode, and waits for the startup process to give new |
| 20 | * instructions. The startup process will treat that the same as |
| 21 | * disconnection, and will rescan the archive/pg_wal directory. But when the |
| 22 | * startup process wants to try streaming replication again, it will just |
| 23 | * nudge the existing walreceiver process that's waiting, instead of launching |
| 24 | * a new one. |
| 25 | * |
| 26 | * Normal termination is by SIGTERM, which instructs the walreceiver to |
| 27 | * exit(0). Emergency termination is by SIGQUIT; like any postmaster child |
| 28 | * process, the walreceiver will simply abort and exit on SIGQUIT. A close |
| 29 | * of the connection and a FATAL error are treated not as a crash but as |
| 30 | * normal operation. |
| 31 | * |
| 32 | * This file contains the server-facing parts of walreceiver. The libpq- |
| 33 | * specific parts are in the libpqwalreceiver module. It's loaded |
| 34 | * dynamically to avoid linking the server with libpq. |
| 35 | * |
| 36 | * Portions Copyright (c) 2010-2019, PostgreSQL Global Development Group |
| 37 | * |
| 38 | * |
| 39 | * IDENTIFICATION |
| 40 | * src/backend/replication/walreceiver.c |
| 41 | * |
| 42 | *------------------------------------------------------------------------- |
| 43 | */ |
| 44 | #include "postgres.h" |
| 45 | |
| 46 | #include <signal.h> |
| 47 | #include <unistd.h> |
| 48 | |
| 49 | #include "access/htup_details.h" |
| 50 | #include "access/timeline.h" |
| 51 | #include "access/transam.h" |
| 52 | #include "access/xlog_internal.h" |
| 53 | #include "catalog/pg_authid.h" |
| 54 | #include "catalog/pg_type.h" |
| 55 | #include "common/ip.h" |
| 56 | #include "funcapi.h" |
| 57 | #include "libpq/pqformat.h" |
| 58 | #include "libpq/pqsignal.h" |
| 59 | #include "miscadmin.h" |
| 60 | #include "pgstat.h" |
| 61 | #include "replication/walreceiver.h" |
| 62 | #include "replication/walsender.h" |
| 63 | #include "storage/ipc.h" |
| 64 | #include "storage/pmsignal.h" |
| 65 | #include "storage/procarray.h" |
| 66 | #include "utils/builtins.h" |
| 67 | #include "utils/guc.h" |
| 68 | #include "utils/pg_lsn.h" |
| 69 | #include "utils/ps_status.h" |
| 70 | #include "utils/resowner.h" |
| 71 | #include "utils/timestamp.h" |
| 72 | |
| 73 | |
| 74 | /* GUC variables */ |
| 75 | int wal_receiver_status_interval; |
| 76 | int wal_receiver_timeout; |
| 77 | bool hot_standby_feedback; |
| 78 | |
| 79 | /* libpqwalreceiver connection */ |
| 80 | static WalReceiverConn *wrconn = NULL; |
| 81 | WalReceiverFunctionsType *WalReceiverFunctions = NULL; |
| 82 | |
| 83 | #define NAPTIME_PER_CYCLE 100 /* max sleep time between cycles (100ms) */ |
| 84 | |
| 85 | /* |
| 86 | * These variables are used similarly to openLogFile/SegNo/Off, |
| 87 | * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID |
| 88 | * corresponding the filename of recvFile. |
| 89 | */ |
| 90 | static int recvFile = -1; |
| 91 | static TimeLineID recvFileTLI = 0; |
| 92 | static XLogSegNo recvSegNo = 0; |
| 93 | static uint32 recvOff = 0; |
| 94 | |
| 95 | /* |
| 96 | * Flags set by interrupt handlers of walreceiver for later service in the |
| 97 | * main loop. |
| 98 | */ |
| 99 | static volatile sig_atomic_t got_SIGHUP = false; |
| 100 | static volatile sig_atomic_t got_SIGTERM = false; |
| 101 | |
| 102 | /* |
| 103 | * LogstreamResult indicates the byte positions that we have already |
| 104 | * written/fsynced. |
| 105 | */ |
| 106 | static struct |
| 107 | { |
| 108 | XLogRecPtr Write; /* last byte + 1 written out in the standby */ |
| 109 | XLogRecPtr Flush; /* last byte + 1 flushed in the standby */ |
| 110 | } LogstreamResult; |
| 111 | |
| 112 | static StringInfoData reply_message; |
| 113 | static StringInfoData incoming_message; |
| 114 | |
| 115 | /* Prototypes for private functions */ |
| 116 | static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last); |
| 117 | static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI); |
| 118 | static void WalRcvDie(int code, Datum arg); |
| 119 | static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len); |
| 120 | static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr); |
| 121 | static void XLogWalRcvFlush(bool dying); |
| 122 | static void XLogWalRcvSendReply(bool force, bool requestReply); |
| 123 | static void XLogWalRcvSendHSFeedback(bool immed); |
| 124 | static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime); |
| 125 | |
| 126 | /* Signal handlers */ |
| 127 | static void WalRcvSigHupHandler(SIGNAL_ARGS); |
| 128 | static void WalRcvSigUsr1Handler(SIGNAL_ARGS); |
| 129 | static void WalRcvShutdownHandler(SIGNAL_ARGS); |
| 130 | static void WalRcvQuickDieHandler(SIGNAL_ARGS); |
| 131 | |
| 132 | |
| 133 | /* |
| 134 | * Process any interrupts the walreceiver process may have received. |
| 135 | * This should be called any time the process's latch has become set. |
| 136 | * |
| 137 | * Currently, only SIGTERM is of interest. We can't just exit(1) within the |
| 138 | * SIGTERM signal handler, because the signal might arrive in the middle of |
| 139 | * some critical operation, like while we're holding a spinlock. Instead, the |
| 140 | * signal handler sets a flag variable as well as setting the process's latch. |
| 141 | * We must check the flag (by calling ProcessWalRcvInterrupts) anytime the |
| 142 | * latch has become set. Operations that could block for a long time, such as |
| 143 | * reading from a remote server, must pay attention to the latch too; see |
| 144 | * libpqrcv_PQgetResult for example. |
| 145 | */ |
| 146 | void |
| 147 | ProcessWalRcvInterrupts(void) |
| 148 | { |
| 149 | /* |
| 150 | * Although walreceiver interrupt handling doesn't use the same scheme as |
| 151 | * regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive |
| 152 | * any incoming signals on Win32. |
| 153 | */ |
| 154 | CHECK_FOR_INTERRUPTS(); |
| 155 | |
| 156 | if (got_SIGTERM) |
| 157 | { |
| 158 | ereport(FATAL, |
| 159 | (errcode(ERRCODE_ADMIN_SHUTDOWN), |
| 160 | errmsg("terminating walreceiver process due to administrator command" ))); |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | |
| 165 | /* Main entry point for walreceiver process */ |
| 166 | void |
| 167 | WalReceiverMain(void) |
| 168 | { |
| 169 | char conninfo[MAXCONNINFO]; |
| 170 | char *tmp_conninfo; |
| 171 | char slotname[NAMEDATALEN]; |
| 172 | XLogRecPtr startpoint; |
| 173 | TimeLineID startpointTLI; |
| 174 | TimeLineID primaryTLI; |
| 175 | bool first_stream; |
| 176 | WalRcvData *walrcv = WalRcv; |
| 177 | TimestampTz last_recv_timestamp; |
| 178 | TimestampTz now; |
| 179 | bool ping_sent; |
| 180 | char *err; |
| 181 | char *sender_host = NULL; |
| 182 | int sender_port = 0; |
| 183 | |
| 184 | /* |
| 185 | * WalRcv should be set up already (if we are a backend, we inherit this |
| 186 | * by fork() or EXEC_BACKEND mechanism from the postmaster). |
| 187 | */ |
| 188 | Assert(walrcv != NULL); |
| 189 | |
| 190 | now = GetCurrentTimestamp(); |
| 191 | |
| 192 | /* |
| 193 | * Mark walreceiver as running in shared memory. |
| 194 | * |
| 195 | * Do this as early as possible, so that if we fail later on, we'll set |
| 196 | * state to STOPPED. If we die before this, the startup process will keep |
| 197 | * waiting for us to start up, until it times out. |
| 198 | */ |
| 199 | SpinLockAcquire(&walrcv->mutex); |
| 200 | Assert(walrcv->pid == 0); |
| 201 | switch (walrcv->walRcvState) |
| 202 | { |
| 203 | case WALRCV_STOPPING: |
| 204 | /* If we've already been requested to stop, don't start up. */ |
| 205 | walrcv->walRcvState = WALRCV_STOPPED; |
| 206 | /* fall through */ |
| 207 | |
| 208 | case WALRCV_STOPPED: |
| 209 | SpinLockRelease(&walrcv->mutex); |
| 210 | proc_exit(1); |
| 211 | break; |
| 212 | |
| 213 | case WALRCV_STARTING: |
| 214 | /* The usual case */ |
| 215 | break; |
| 216 | |
| 217 | case WALRCV_WAITING: |
| 218 | case WALRCV_STREAMING: |
| 219 | case WALRCV_RESTARTING: |
| 220 | default: |
| 221 | /* Shouldn't happen */ |
| 222 | SpinLockRelease(&walrcv->mutex); |
| 223 | elog(PANIC, "walreceiver still running according to shared memory state" ); |
| 224 | } |
| 225 | /* Advertise our PID so that the startup process can kill us */ |
| 226 | walrcv->pid = MyProcPid; |
| 227 | walrcv->walRcvState = WALRCV_STREAMING; |
| 228 | |
| 229 | /* Fetch information required to start streaming */ |
| 230 | walrcv->ready_to_display = false; |
| 231 | strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO); |
| 232 | strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN); |
| 233 | startpoint = walrcv->receiveStart; |
| 234 | startpointTLI = walrcv->receiveStartTLI; |
| 235 | |
| 236 | /* Initialise to a sanish value */ |
| 237 | walrcv->lastMsgSendTime = |
| 238 | walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now; |
| 239 | |
| 240 | /* Report the latch to use to awaken this process */ |
| 241 | walrcv->latch = &MyProc->procLatch; |
| 242 | |
| 243 | SpinLockRelease(&walrcv->mutex); |
| 244 | |
| 245 | /* Arrange to clean up at walreceiver exit */ |
| 246 | on_shmem_exit(WalRcvDie, 0); |
| 247 | |
| 248 | /* Properly accept or ignore signals the postmaster might send us */ |
| 249 | pqsignal(SIGHUP, WalRcvSigHupHandler); /* set flag to read config file */ |
| 250 | pqsignal(SIGINT, SIG_IGN); |
| 251 | pqsignal(SIGTERM, WalRcvShutdownHandler); /* request shutdown */ |
| 252 | pqsignal(SIGQUIT, WalRcvQuickDieHandler); /* hard crash time */ |
| 253 | pqsignal(SIGALRM, SIG_IGN); |
| 254 | pqsignal(SIGPIPE, SIG_IGN); |
| 255 | pqsignal(SIGUSR1, WalRcvSigUsr1Handler); |
| 256 | pqsignal(SIGUSR2, SIG_IGN); |
| 257 | |
| 258 | /* Reset some signals that are accepted by postmaster but not here */ |
| 259 | pqsignal(SIGCHLD, SIG_DFL); |
| 260 | |
| 261 | /* We allow SIGQUIT (quickdie) at all times */ |
| 262 | sigdelset(&BlockSig, SIGQUIT); |
| 263 | |
| 264 | /* Load the libpq-specific functions */ |
| 265 | load_file("libpqwalreceiver" , false); |
| 266 | if (WalReceiverFunctions == NULL) |
| 267 | elog(ERROR, "libpqwalreceiver didn't initialize correctly" ); |
| 268 | |
| 269 | /* Unblock signals (they were blocked when the postmaster forked us) */ |
| 270 | PG_SETMASK(&UnBlockSig); |
| 271 | |
| 272 | /* Establish the connection to the primary for XLOG streaming */ |
| 273 | wrconn = walrcv_connect(conninfo, false, cluster_name[0] ? cluster_name : "walreceiver" , &err); |
| 274 | if (!wrconn) |
| 275 | ereport(ERROR, |
| 276 | (errmsg("could not connect to the primary server: %s" , err))); |
| 277 | |
| 278 | /* |
| 279 | * Save user-visible connection string. This clobbers the original |
| 280 | * conninfo, for security. Also save host and port of the sender server |
| 281 | * this walreceiver is connected to. |
| 282 | */ |
| 283 | tmp_conninfo = walrcv_get_conninfo(wrconn); |
| 284 | walrcv_get_senderinfo(wrconn, &sender_host, &sender_port); |
| 285 | SpinLockAcquire(&walrcv->mutex); |
| 286 | memset(walrcv->conninfo, 0, MAXCONNINFO); |
| 287 | if (tmp_conninfo) |
| 288 | strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO); |
| 289 | |
| 290 | memset(walrcv->sender_host, 0, NI_MAXHOST); |
| 291 | if (sender_host) |
| 292 | strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST); |
| 293 | |
| 294 | walrcv->sender_port = sender_port; |
| 295 | walrcv->ready_to_display = true; |
| 296 | SpinLockRelease(&walrcv->mutex); |
| 297 | |
| 298 | if (tmp_conninfo) |
| 299 | pfree(tmp_conninfo); |
| 300 | |
| 301 | if (sender_host) |
| 302 | pfree(sender_host); |
| 303 | |
| 304 | first_stream = true; |
| 305 | for (;;) |
| 306 | { |
| 307 | char *primary_sysid; |
| 308 | char standby_sysid[32]; |
| 309 | WalRcvStreamOptions options; |
| 310 | |
| 311 | /* |
| 312 | * Check that we're connected to a valid server using the |
| 313 | * IDENTIFY_SYSTEM replication command. |
| 314 | */ |
| 315 | primary_sysid = walrcv_identify_system(wrconn, &primaryTLI); |
| 316 | |
| 317 | snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT, |
| 318 | GetSystemIdentifier()); |
| 319 | if (strcmp(primary_sysid, standby_sysid) != 0) |
| 320 | { |
| 321 | ereport(ERROR, |
| 322 | (errmsg("database system identifier differs between the primary and standby" ), |
| 323 | errdetail("The primary's identifier is %s, the standby's identifier is %s." , |
| 324 | primary_sysid, standby_sysid))); |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | * Confirm that the current timeline of the primary is the same or |
| 329 | * ahead of ours. |
| 330 | */ |
| 331 | if (primaryTLI < startpointTLI) |
| 332 | ereport(ERROR, |
| 333 | (errmsg("highest timeline %u of the primary is behind recovery timeline %u" , |
| 334 | primaryTLI, startpointTLI))); |
| 335 | |
| 336 | /* |
| 337 | * Get any missing history files. We do this always, even when we're |
| 338 | * not interested in that timeline, so that if we're promoted to |
| 339 | * become the master later on, we don't select the same timeline that |
| 340 | * was already used in the current master. This isn't bullet-proof - |
| 341 | * you'll need some external software to manage your cluster if you |
| 342 | * need to ensure that a unique timeline id is chosen in every case, |
| 343 | * but let's avoid the confusion of timeline id collisions where we |
| 344 | * can. |
| 345 | */ |
| 346 | WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI); |
| 347 | |
| 348 | /* |
| 349 | * Start streaming. |
| 350 | * |
| 351 | * We'll try to start at the requested starting point and timeline, |
| 352 | * even if it's different from the server's latest timeline. In case |
| 353 | * we've already reached the end of the old timeline, the server will |
| 354 | * finish the streaming immediately, and we will go back to await |
| 355 | * orders from the startup process. If recovery_target_timeline is |
| 356 | * 'latest', the startup process will scan pg_wal and find the new |
| 357 | * history file, bump recovery target timeline, and ask us to restart |
| 358 | * on the new timeline. |
| 359 | */ |
| 360 | options.logical = false; |
| 361 | options.startpoint = startpoint; |
| 362 | options.slotname = slotname[0] != '\0' ? slotname : NULL; |
| 363 | options.proto.physical.startpointTLI = startpointTLI; |
| 364 | ThisTimeLineID = startpointTLI; |
| 365 | if (walrcv_startstreaming(wrconn, &options)) |
| 366 | { |
| 367 | if (first_stream) |
| 368 | ereport(LOG, |
| 369 | (errmsg("started streaming WAL from primary at %X/%X on timeline %u" , |
| 370 | (uint32) (startpoint >> 32), (uint32) startpoint, |
| 371 | startpointTLI))); |
| 372 | else |
| 373 | ereport(LOG, |
| 374 | (errmsg("restarted WAL streaming at %X/%X on timeline %u" , |
| 375 | (uint32) (startpoint >> 32), (uint32) startpoint, |
| 376 | startpointTLI))); |
| 377 | first_stream = false; |
| 378 | |
| 379 | /* Initialize LogstreamResult and buffers for processing messages */ |
| 380 | LogstreamResult.Write = LogstreamResult.Flush = GetXLogReplayRecPtr(NULL); |
| 381 | initStringInfo(&reply_message); |
| 382 | initStringInfo(&incoming_message); |
| 383 | |
| 384 | /* Initialize the last recv timestamp */ |
| 385 | last_recv_timestamp = GetCurrentTimestamp(); |
| 386 | ping_sent = false; |
| 387 | |
| 388 | /* Loop until end-of-streaming or error */ |
| 389 | for (;;) |
| 390 | { |
| 391 | char *buf; |
| 392 | int len; |
| 393 | bool endofwal = false; |
| 394 | pgsocket wait_fd = PGINVALID_SOCKET; |
| 395 | int rc; |
| 396 | |
| 397 | /* |
| 398 | * Exit walreceiver if we're not in recovery. This should not |
| 399 | * happen, but cross-check the status here. |
| 400 | */ |
| 401 | if (!RecoveryInProgress()) |
| 402 | ereport(FATAL, |
| 403 | (errmsg("cannot continue WAL streaming, recovery has already ended" ))); |
| 404 | |
| 405 | /* Process any requests or signals received recently */ |
| 406 | ProcessWalRcvInterrupts(); |
| 407 | |
| 408 | if (got_SIGHUP) |
| 409 | { |
| 410 | got_SIGHUP = false; |
| 411 | ProcessConfigFile(PGC_SIGHUP); |
| 412 | XLogWalRcvSendHSFeedback(true); |
| 413 | } |
| 414 | |
| 415 | /* See if we can read data immediately */ |
| 416 | len = walrcv_receive(wrconn, &buf, &wait_fd); |
| 417 | if (len != 0) |
| 418 | { |
| 419 | /* |
| 420 | * Process the received data, and any subsequent data we |
| 421 | * can read without blocking. |
| 422 | */ |
| 423 | for (;;) |
| 424 | { |
| 425 | if (len > 0) |
| 426 | { |
| 427 | /* |
| 428 | * Something was received from master, so reset |
| 429 | * timeout |
| 430 | */ |
| 431 | last_recv_timestamp = GetCurrentTimestamp(); |
| 432 | ping_sent = false; |
| 433 | XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1); |
| 434 | } |
| 435 | else if (len == 0) |
| 436 | break; |
| 437 | else if (len < 0) |
| 438 | { |
| 439 | ereport(LOG, |
| 440 | (errmsg("replication terminated by primary server" ), |
| 441 | errdetail("End of WAL reached on timeline %u at %X/%X." , |
| 442 | startpointTLI, |
| 443 | (uint32) (LogstreamResult.Write >> 32), (uint32) LogstreamResult.Write))); |
| 444 | endofwal = true; |
| 445 | break; |
| 446 | } |
| 447 | len = walrcv_receive(wrconn, &buf, &wait_fd); |
| 448 | } |
| 449 | |
| 450 | /* Let the master know that we received some data. */ |
| 451 | XLogWalRcvSendReply(false, false); |
| 452 | |
| 453 | /* |
| 454 | * If we've written some records, flush them to disk and |
| 455 | * let the startup process and primary server know about |
| 456 | * them. |
| 457 | */ |
| 458 | XLogWalRcvFlush(false); |
| 459 | } |
| 460 | |
| 461 | /* Check if we need to exit the streaming loop. */ |
| 462 | if (endofwal) |
| 463 | break; |
| 464 | |
| 465 | /* |
| 466 | * Ideally we would reuse a WaitEventSet object repeatedly |
| 467 | * here to avoid the overheads of WaitLatchOrSocket on epoll |
| 468 | * systems, but we can't be sure that libpq (or any other |
| 469 | * walreceiver implementation) has the same socket (even if |
| 470 | * the fd is the same number, it may have been closed and |
| 471 | * reopened since the last time). In future, if there is a |
| 472 | * function for removing sockets from WaitEventSet, then we |
| 473 | * could add and remove just the socket each time, potentially |
| 474 | * avoiding some system calls. |
| 475 | */ |
| 476 | Assert(wait_fd != PGINVALID_SOCKET); |
| 477 | rc = WaitLatchOrSocket(walrcv->latch, |
| 478 | WL_EXIT_ON_PM_DEATH | WL_SOCKET_READABLE | |
| 479 | WL_TIMEOUT | WL_LATCH_SET, |
| 480 | wait_fd, |
| 481 | NAPTIME_PER_CYCLE, |
| 482 | WAIT_EVENT_WAL_RECEIVER_MAIN); |
| 483 | if (rc & WL_LATCH_SET) |
| 484 | { |
| 485 | ResetLatch(walrcv->latch); |
| 486 | ProcessWalRcvInterrupts(); |
| 487 | |
| 488 | if (walrcv->force_reply) |
| 489 | { |
| 490 | /* |
| 491 | * The recovery process has asked us to send apply |
| 492 | * feedback now. Make sure the flag is really set to |
| 493 | * false in shared memory before sending the reply, so |
| 494 | * we don't miss a new request for a reply. |
| 495 | */ |
| 496 | walrcv->force_reply = false; |
| 497 | pg_memory_barrier(); |
| 498 | XLogWalRcvSendReply(true, false); |
| 499 | } |
| 500 | } |
| 501 | if (rc & WL_TIMEOUT) |
| 502 | { |
| 503 | /* |
| 504 | * We didn't receive anything new. If we haven't heard |
| 505 | * anything from the server for more than |
| 506 | * wal_receiver_timeout / 2, ping the server. Also, if |
| 507 | * it's been longer than wal_receiver_status_interval |
| 508 | * since the last update we sent, send a status update to |
| 509 | * the master anyway, to report any progress in applying |
| 510 | * WAL. |
| 511 | */ |
| 512 | bool requestReply = false; |
| 513 | |
| 514 | /* |
| 515 | * Check if time since last receive from standby has |
| 516 | * reached the configured limit. |
| 517 | */ |
| 518 | if (wal_receiver_timeout > 0) |
| 519 | { |
| 520 | TimestampTz now = GetCurrentTimestamp(); |
| 521 | TimestampTz timeout; |
| 522 | |
| 523 | timeout = |
| 524 | TimestampTzPlusMilliseconds(last_recv_timestamp, |
| 525 | wal_receiver_timeout); |
| 526 | |
| 527 | if (now >= timeout) |
| 528 | ereport(ERROR, |
| 529 | (errmsg("terminating walreceiver due to timeout" ))); |
| 530 | |
| 531 | /* |
| 532 | * We didn't receive anything new, for half of |
| 533 | * receiver replication timeout. Ping the server. |
| 534 | */ |
| 535 | if (!ping_sent) |
| 536 | { |
| 537 | timeout = TimestampTzPlusMilliseconds(last_recv_timestamp, |
| 538 | (wal_receiver_timeout / 2)); |
| 539 | if (now >= timeout) |
| 540 | { |
| 541 | requestReply = true; |
| 542 | ping_sent = true; |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | XLogWalRcvSendReply(requestReply, requestReply); |
| 548 | XLogWalRcvSendHSFeedback(false); |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | * The backend finished streaming. Exit streaming COPY-mode from |
| 554 | * our side, too. |
| 555 | */ |
| 556 | walrcv_endstreaming(wrconn, &primaryTLI); |
| 557 | |
| 558 | /* |
| 559 | * If the server had switched to a new timeline that we didn't |
| 560 | * know about when we began streaming, fetch its timeline history |
| 561 | * file now. |
| 562 | */ |
| 563 | WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI); |
| 564 | } |
| 565 | else |
| 566 | ereport(LOG, |
| 567 | (errmsg("primary server contains no more WAL on requested timeline %u" , |
| 568 | startpointTLI))); |
| 569 | |
| 570 | /* |
| 571 | * End of WAL reached on the requested timeline. Close the last |
| 572 | * segment, and await for new orders from the startup process. |
| 573 | */ |
| 574 | if (recvFile >= 0) |
| 575 | { |
| 576 | char xlogfname[MAXFNAMELEN]; |
| 577 | |
| 578 | XLogWalRcvFlush(false); |
| 579 | if (close(recvFile) != 0) |
| 580 | ereport(PANIC, |
| 581 | (errcode_for_file_access(), |
| 582 | errmsg("could not close log segment %s: %m" , |
| 583 | XLogFileNameP(recvFileTLI, recvSegNo)))); |
| 584 | |
| 585 | /* |
| 586 | * Create .done file forcibly to prevent the streamed segment from |
| 587 | * being archived later. |
| 588 | */ |
| 589 | XLogFileName(xlogfname, recvFileTLI, recvSegNo, wal_segment_size); |
| 590 | if (XLogArchiveMode != ARCHIVE_MODE_ALWAYS) |
| 591 | XLogArchiveForceDone(xlogfname); |
| 592 | else |
| 593 | XLogArchiveNotify(xlogfname); |
| 594 | } |
| 595 | recvFile = -1; |
| 596 | |
| 597 | elog(DEBUG1, "walreceiver ended streaming and awaits new instructions" ); |
| 598 | WalRcvWaitForStartPosition(&startpoint, &startpointTLI); |
| 599 | } |
| 600 | /* not reached */ |
| 601 | } |
| 602 | |
| 603 | /* |
| 604 | * Wait for startup process to set receiveStart and receiveStartTLI. |
| 605 | */ |
| 606 | static void |
| 607 | WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI) |
| 608 | { |
| 609 | WalRcvData *walrcv = WalRcv; |
| 610 | int state; |
| 611 | |
| 612 | SpinLockAcquire(&walrcv->mutex); |
| 613 | state = walrcv->walRcvState; |
| 614 | if (state != WALRCV_STREAMING) |
| 615 | { |
| 616 | SpinLockRelease(&walrcv->mutex); |
| 617 | if (state == WALRCV_STOPPING) |
| 618 | proc_exit(0); |
| 619 | else |
| 620 | elog(FATAL, "unexpected walreceiver state" ); |
| 621 | } |
| 622 | walrcv->walRcvState = WALRCV_WAITING; |
| 623 | walrcv->receiveStart = InvalidXLogRecPtr; |
| 624 | walrcv->receiveStartTLI = 0; |
| 625 | SpinLockRelease(&walrcv->mutex); |
| 626 | |
| 627 | if (update_process_title) |
| 628 | set_ps_display("idle" , false); |
| 629 | |
| 630 | /* |
| 631 | * nudge startup process to notice that we've stopped streaming and are |
| 632 | * now waiting for instructions. |
| 633 | */ |
| 634 | WakeupRecovery(); |
| 635 | for (;;) |
| 636 | { |
| 637 | ResetLatch(walrcv->latch); |
| 638 | |
| 639 | ProcessWalRcvInterrupts(); |
| 640 | |
| 641 | SpinLockAcquire(&walrcv->mutex); |
| 642 | Assert(walrcv->walRcvState == WALRCV_RESTARTING || |
| 643 | walrcv->walRcvState == WALRCV_WAITING || |
| 644 | walrcv->walRcvState == WALRCV_STOPPING); |
| 645 | if (walrcv->walRcvState == WALRCV_RESTARTING) |
| 646 | { |
| 647 | /* we don't expect primary_conninfo to change */ |
| 648 | *startpoint = walrcv->receiveStart; |
| 649 | *startpointTLI = walrcv->receiveStartTLI; |
| 650 | walrcv->walRcvState = WALRCV_STREAMING; |
| 651 | SpinLockRelease(&walrcv->mutex); |
| 652 | break; |
| 653 | } |
| 654 | if (walrcv->walRcvState == WALRCV_STOPPING) |
| 655 | { |
| 656 | /* |
| 657 | * We should've received SIGTERM if the startup process wants us |
| 658 | * to die, but might as well check it here too. |
| 659 | */ |
| 660 | SpinLockRelease(&walrcv->mutex); |
| 661 | exit(1); |
| 662 | } |
| 663 | SpinLockRelease(&walrcv->mutex); |
| 664 | |
| 665 | (void) WaitLatch(walrcv->latch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0, |
| 666 | WAIT_EVENT_WAL_RECEIVER_WAIT_START); |
| 667 | } |
| 668 | |
| 669 | if (update_process_title) |
| 670 | { |
| 671 | char activitymsg[50]; |
| 672 | |
| 673 | snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X" , |
| 674 | (uint32) (*startpoint >> 32), |
| 675 | (uint32) *startpoint); |
| 676 | set_ps_display(activitymsg, false); |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | /* |
| 681 | * Fetch any missing timeline history files between 'first' and 'last' |
| 682 | * (inclusive) from the server. |
| 683 | */ |
| 684 | static void |
| 685 | WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last) |
| 686 | { |
| 687 | TimeLineID tli; |
| 688 | |
| 689 | for (tli = first; tli <= last; tli++) |
| 690 | { |
| 691 | /* there's no history file for timeline 1 */ |
| 692 | if (tli != 1 && !existsTimeLineHistory(tli)) |
| 693 | { |
| 694 | char *fname; |
| 695 | char *content; |
| 696 | int len; |
| 697 | char expectedfname[MAXFNAMELEN]; |
| 698 | |
| 699 | ereport(LOG, |
| 700 | (errmsg("fetching timeline history file for timeline %u from primary server" , |
| 701 | tli))); |
| 702 | |
| 703 | walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len); |
| 704 | |
| 705 | /* |
| 706 | * Check that the filename on the master matches what we |
| 707 | * calculated ourselves. This is just a sanity check, it should |
| 708 | * always match. |
| 709 | */ |
| 710 | TLHistoryFileName(expectedfname, tli); |
| 711 | if (strcmp(fname, expectedfname) != 0) |
| 712 | ereport(ERROR, |
| 713 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 714 | errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u" , |
| 715 | tli))); |
| 716 | |
| 717 | /* |
| 718 | * Write the file to pg_wal. |
| 719 | */ |
| 720 | writeTimeLineHistoryFile(tli, content, len); |
| 721 | |
| 722 | pfree(fname); |
| 723 | pfree(content); |
| 724 | } |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * Mark us as STOPPED in shared memory at exit. |
| 730 | */ |
| 731 | static void |
| 732 | WalRcvDie(int code, Datum arg) |
| 733 | { |
| 734 | WalRcvData *walrcv = WalRcv; |
| 735 | |
| 736 | /* Ensure that all WAL records received are flushed to disk */ |
| 737 | XLogWalRcvFlush(true); |
| 738 | |
| 739 | /* Mark ourselves inactive in shared memory */ |
| 740 | SpinLockAcquire(&walrcv->mutex); |
| 741 | Assert(walrcv->walRcvState == WALRCV_STREAMING || |
| 742 | walrcv->walRcvState == WALRCV_RESTARTING || |
| 743 | walrcv->walRcvState == WALRCV_STARTING || |
| 744 | walrcv->walRcvState == WALRCV_WAITING || |
| 745 | walrcv->walRcvState == WALRCV_STOPPING); |
| 746 | Assert(walrcv->pid == MyProcPid); |
| 747 | walrcv->walRcvState = WALRCV_STOPPED; |
| 748 | walrcv->pid = 0; |
| 749 | walrcv->ready_to_display = false; |
| 750 | walrcv->latch = NULL; |
| 751 | SpinLockRelease(&walrcv->mutex); |
| 752 | |
| 753 | /* Terminate the connection gracefully. */ |
| 754 | if (wrconn != NULL) |
| 755 | walrcv_disconnect(wrconn); |
| 756 | |
| 757 | /* Wake up the startup process to notice promptly that we're gone */ |
| 758 | WakeupRecovery(); |
| 759 | } |
| 760 | |
| 761 | /* SIGHUP: set flag to re-read config file at next convenient time */ |
| 762 | static void |
| 763 | WalRcvSigHupHandler(SIGNAL_ARGS) |
| 764 | { |
| 765 | got_SIGHUP = true; |
| 766 | } |
| 767 | |
| 768 | |
| 769 | /* SIGUSR1: used by latch mechanism */ |
| 770 | static void |
| 771 | WalRcvSigUsr1Handler(SIGNAL_ARGS) |
| 772 | { |
| 773 | int save_errno = errno; |
| 774 | |
| 775 | latch_sigusr1_handler(); |
| 776 | |
| 777 | errno = save_errno; |
| 778 | } |
| 779 | |
| 780 | /* SIGTERM: set flag for ProcessWalRcvInterrupts */ |
| 781 | static void |
| 782 | WalRcvShutdownHandler(SIGNAL_ARGS) |
| 783 | { |
| 784 | int save_errno = errno; |
| 785 | |
| 786 | got_SIGTERM = true; |
| 787 | |
| 788 | if (WalRcv->latch) |
| 789 | SetLatch(WalRcv->latch); |
| 790 | |
| 791 | errno = save_errno; |
| 792 | } |
| 793 | |
| 794 | /* |
| 795 | * WalRcvQuickDieHandler() occurs when signalled SIGQUIT by the postmaster. |
| 796 | * |
| 797 | * Some backend has bought the farm, so we need to stop what we're doing and |
| 798 | * exit. |
| 799 | */ |
| 800 | static void |
| 801 | WalRcvQuickDieHandler(SIGNAL_ARGS) |
| 802 | { |
| 803 | /* |
| 804 | * We DO NOT want to run proc_exit() or atexit() callbacks -- we're here |
| 805 | * because shared memory may be corrupted, so we don't want to try to |
| 806 | * clean up our transaction. Just nail the windows shut and get out of |
| 807 | * town. The callbacks wouldn't be safe to run from a signal handler, |
| 808 | * anyway. |
| 809 | * |
| 810 | * Note we use _exit(2) not _exit(0). This is to force the postmaster |
| 811 | * into a system reset cycle if someone sends a manual SIGQUIT to a random |
| 812 | * backend. This is necessary precisely because we don't clean up our |
| 813 | * shared memory state. (The "dead man switch" mechanism in pmsignal.c |
| 814 | * should ensure the postmaster sees this as a crash, too, but no harm in |
| 815 | * being doubly sure.) |
| 816 | */ |
| 817 | _exit(2); |
| 818 | } |
| 819 | |
| 820 | /* |
| 821 | * Accept the message from XLOG stream, and process it. |
| 822 | */ |
| 823 | static void |
| 824 | XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len) |
| 825 | { |
| 826 | int hdrlen; |
| 827 | XLogRecPtr dataStart; |
| 828 | XLogRecPtr walEnd; |
| 829 | TimestampTz sendTime; |
| 830 | bool replyRequested; |
| 831 | |
| 832 | resetStringInfo(&incoming_message); |
| 833 | |
| 834 | switch (type) |
| 835 | { |
| 836 | case 'w': /* WAL records */ |
| 837 | { |
| 838 | /* copy message to StringInfo */ |
| 839 | hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64); |
| 840 | if (len < hdrlen) |
| 841 | ereport(ERROR, |
| 842 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 843 | errmsg_internal("invalid WAL message received from primary" ))); |
| 844 | appendBinaryStringInfo(&incoming_message, buf, hdrlen); |
| 845 | |
| 846 | /* read the fields */ |
| 847 | dataStart = pq_getmsgint64(&incoming_message); |
| 848 | walEnd = pq_getmsgint64(&incoming_message); |
| 849 | sendTime = pq_getmsgint64(&incoming_message); |
| 850 | ProcessWalSndrMessage(walEnd, sendTime); |
| 851 | |
| 852 | buf += hdrlen; |
| 853 | len -= hdrlen; |
| 854 | XLogWalRcvWrite(buf, len, dataStart); |
| 855 | break; |
| 856 | } |
| 857 | case 'k': /* Keepalive */ |
| 858 | { |
| 859 | /* copy message to StringInfo */ |
| 860 | hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char); |
| 861 | if (len != hdrlen) |
| 862 | ereport(ERROR, |
| 863 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 864 | errmsg_internal("invalid keepalive message received from primary" ))); |
| 865 | appendBinaryStringInfo(&incoming_message, buf, hdrlen); |
| 866 | |
| 867 | /* read the fields */ |
| 868 | walEnd = pq_getmsgint64(&incoming_message); |
| 869 | sendTime = pq_getmsgint64(&incoming_message); |
| 870 | replyRequested = pq_getmsgbyte(&incoming_message); |
| 871 | |
| 872 | ProcessWalSndrMessage(walEnd, sendTime); |
| 873 | |
| 874 | /* If the primary requested a reply, send one immediately */ |
| 875 | if (replyRequested) |
| 876 | XLogWalRcvSendReply(true, false); |
| 877 | break; |
| 878 | } |
| 879 | default: |
| 880 | ereport(ERROR, |
| 881 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 882 | errmsg_internal("invalid replication message type %d" , |
| 883 | type))); |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * Write XLOG data to disk. |
| 889 | */ |
| 890 | static void |
| 891 | XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr) |
| 892 | { |
| 893 | int startoff; |
| 894 | int byteswritten; |
| 895 | |
| 896 | while (nbytes > 0) |
| 897 | { |
| 898 | int segbytes; |
| 899 | |
| 900 | if (recvFile < 0 || !XLByteInSeg(recptr, recvSegNo, wal_segment_size)) |
| 901 | { |
| 902 | bool use_existent; |
| 903 | |
| 904 | /* |
| 905 | * fsync() and close current file before we switch to next one. We |
| 906 | * would otherwise have to reopen this file to fsync it later |
| 907 | */ |
| 908 | if (recvFile >= 0) |
| 909 | { |
| 910 | char xlogfname[MAXFNAMELEN]; |
| 911 | |
| 912 | XLogWalRcvFlush(false); |
| 913 | |
| 914 | /* |
| 915 | * XLOG segment files will be re-read by recovery in startup |
| 916 | * process soon, so we don't advise the OS to release cache |
| 917 | * pages associated with the file like XLogFileClose() does. |
| 918 | */ |
| 919 | if (close(recvFile) != 0) |
| 920 | ereport(PANIC, |
| 921 | (errcode_for_file_access(), |
| 922 | errmsg("could not close log segment %s: %m" , |
| 923 | XLogFileNameP(recvFileTLI, recvSegNo)))); |
| 924 | |
| 925 | /* |
| 926 | * Create .done file forcibly to prevent the streamed segment |
| 927 | * from being archived later. |
| 928 | */ |
| 929 | XLogFileName(xlogfname, recvFileTLI, recvSegNo, wal_segment_size); |
| 930 | if (XLogArchiveMode != ARCHIVE_MODE_ALWAYS) |
| 931 | XLogArchiveForceDone(xlogfname); |
| 932 | else |
| 933 | XLogArchiveNotify(xlogfname); |
| 934 | } |
| 935 | recvFile = -1; |
| 936 | |
| 937 | /* Create/use new log file */ |
| 938 | XLByteToSeg(recptr, recvSegNo, wal_segment_size); |
| 939 | use_existent = true; |
| 940 | recvFile = XLogFileInit(recvSegNo, &use_existent, true); |
| 941 | recvFileTLI = ThisTimeLineID; |
| 942 | recvOff = 0; |
| 943 | } |
| 944 | |
| 945 | /* Calculate the start offset of the received logs */ |
| 946 | startoff = XLogSegmentOffset(recptr, wal_segment_size); |
| 947 | |
| 948 | if (startoff + nbytes > wal_segment_size) |
| 949 | segbytes = wal_segment_size - startoff; |
| 950 | else |
| 951 | segbytes = nbytes; |
| 952 | |
| 953 | /* Need to seek in the file? */ |
| 954 | if (recvOff != startoff) |
| 955 | { |
| 956 | if (lseek(recvFile, (off_t) startoff, SEEK_SET) < 0) |
| 957 | ereport(PANIC, |
| 958 | (errcode_for_file_access(), |
| 959 | errmsg("could not seek in log segment %s to offset %u: %m" , |
| 960 | XLogFileNameP(recvFileTLI, recvSegNo), |
| 961 | startoff))); |
| 962 | recvOff = startoff; |
| 963 | } |
| 964 | |
| 965 | /* OK to write the logs */ |
| 966 | errno = 0; |
| 967 | |
| 968 | byteswritten = write(recvFile, buf, segbytes); |
| 969 | if (byteswritten <= 0) |
| 970 | { |
| 971 | /* if write didn't set errno, assume no disk space */ |
| 972 | if (errno == 0) |
| 973 | errno = ENOSPC; |
| 974 | ereport(PANIC, |
| 975 | (errcode_for_file_access(), |
| 976 | errmsg("could not write to log segment %s " |
| 977 | "at offset %u, length %lu: %m" , |
| 978 | XLogFileNameP(recvFileTLI, recvSegNo), |
| 979 | recvOff, (unsigned long) segbytes))); |
| 980 | } |
| 981 | |
| 982 | /* Update state for write */ |
| 983 | recptr += byteswritten; |
| 984 | |
| 985 | recvOff += byteswritten; |
| 986 | nbytes -= byteswritten; |
| 987 | buf += byteswritten; |
| 988 | |
| 989 | LogstreamResult.Write = recptr; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | /* |
| 994 | * Flush the log to disk. |
| 995 | * |
| 996 | * If we're in the midst of dying, it's unwise to do anything that might throw |
| 997 | * an error, so we skip sending a reply in that case. |
| 998 | */ |
| 999 | static void |
| 1000 | XLogWalRcvFlush(bool dying) |
| 1001 | { |
| 1002 | if (LogstreamResult.Flush < LogstreamResult.Write) |
| 1003 | { |
| 1004 | WalRcvData *walrcv = WalRcv; |
| 1005 | |
| 1006 | issue_xlog_fsync(recvFile, recvSegNo); |
| 1007 | |
| 1008 | LogstreamResult.Flush = LogstreamResult.Write; |
| 1009 | |
| 1010 | /* Update shared-memory status */ |
| 1011 | SpinLockAcquire(&walrcv->mutex); |
| 1012 | if (walrcv->receivedUpto < LogstreamResult.Flush) |
| 1013 | { |
| 1014 | walrcv->latestChunkStart = walrcv->receivedUpto; |
| 1015 | walrcv->receivedUpto = LogstreamResult.Flush; |
| 1016 | walrcv->receivedTLI = ThisTimeLineID; |
| 1017 | } |
| 1018 | SpinLockRelease(&walrcv->mutex); |
| 1019 | |
| 1020 | /* Signal the startup process and walsender that new WAL has arrived */ |
| 1021 | WakeupRecovery(); |
| 1022 | if (AllowCascadeReplication()) |
| 1023 | WalSndWakeup(); |
| 1024 | |
| 1025 | /* Report XLOG streaming progress in PS display */ |
| 1026 | if (update_process_title) |
| 1027 | { |
| 1028 | char activitymsg[50]; |
| 1029 | |
| 1030 | snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X" , |
| 1031 | (uint32) (LogstreamResult.Write >> 32), |
| 1032 | (uint32) LogstreamResult.Write); |
| 1033 | set_ps_display(activitymsg, false); |
| 1034 | } |
| 1035 | |
| 1036 | /* Also let the master know that we made some progress */ |
| 1037 | if (!dying) |
| 1038 | { |
| 1039 | XLogWalRcvSendReply(false, false); |
| 1040 | XLogWalRcvSendHSFeedback(false); |
| 1041 | } |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | * Send reply message to primary, indicating our current WAL locations, oldest |
| 1047 | * xmin and the current time. |
| 1048 | * |
| 1049 | * If 'force' is not set, the message is only sent if enough time has |
| 1050 | * passed since last status update to reach wal_receiver_status_interval. |
| 1051 | * If wal_receiver_status_interval is disabled altogether and 'force' is |
| 1052 | * false, this is a no-op. |
| 1053 | * |
| 1054 | * If 'requestReply' is true, requests the server to reply immediately upon |
| 1055 | * receiving this message. This is used for heartbearts, when approaching |
| 1056 | * wal_receiver_timeout. |
| 1057 | */ |
| 1058 | static void |
| 1059 | XLogWalRcvSendReply(bool force, bool requestReply) |
| 1060 | { |
| 1061 | static XLogRecPtr writePtr = 0; |
| 1062 | static XLogRecPtr flushPtr = 0; |
| 1063 | XLogRecPtr applyPtr; |
| 1064 | static TimestampTz sendTime = 0; |
| 1065 | TimestampTz now; |
| 1066 | |
| 1067 | /* |
| 1068 | * If the user doesn't want status to be reported to the master, be sure |
| 1069 | * to exit before doing anything at all. |
| 1070 | */ |
| 1071 | if (!force && wal_receiver_status_interval <= 0) |
| 1072 | return; |
| 1073 | |
| 1074 | /* Get current timestamp. */ |
| 1075 | now = GetCurrentTimestamp(); |
| 1076 | |
| 1077 | /* |
| 1078 | * We can compare the write and flush positions to the last message we |
| 1079 | * sent without taking any lock, but the apply position requires a spin |
| 1080 | * lock, so we don't check that unless something else has changed or 10 |
| 1081 | * seconds have passed. This means that the apply WAL location will |
| 1082 | * appear, from the master's point of view, to lag slightly, but since |
| 1083 | * this is only for reporting purposes and only on idle systems, that's |
| 1084 | * probably OK. |
| 1085 | */ |
| 1086 | if (!force |
| 1087 | && writePtr == LogstreamResult.Write |
| 1088 | && flushPtr == LogstreamResult.Flush |
| 1089 | && !TimestampDifferenceExceeds(sendTime, now, |
| 1090 | wal_receiver_status_interval * 1000)) |
| 1091 | return; |
| 1092 | sendTime = now; |
| 1093 | |
| 1094 | /* Construct a new message */ |
| 1095 | writePtr = LogstreamResult.Write; |
| 1096 | flushPtr = LogstreamResult.Flush; |
| 1097 | applyPtr = GetXLogReplayRecPtr(NULL); |
| 1098 | |
| 1099 | resetStringInfo(&reply_message); |
| 1100 | pq_sendbyte(&reply_message, 'r'); |
| 1101 | pq_sendint64(&reply_message, writePtr); |
| 1102 | pq_sendint64(&reply_message, flushPtr); |
| 1103 | pq_sendint64(&reply_message, applyPtr); |
| 1104 | pq_sendint64(&reply_message, GetCurrentTimestamp()); |
| 1105 | pq_sendbyte(&reply_message, requestReply ? 1 : 0); |
| 1106 | |
| 1107 | /* Send it */ |
| 1108 | elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s" , |
| 1109 | (uint32) (writePtr >> 32), (uint32) writePtr, |
| 1110 | (uint32) (flushPtr >> 32), (uint32) flushPtr, |
| 1111 | (uint32) (applyPtr >> 32), (uint32) applyPtr, |
| 1112 | requestReply ? " (reply requested)" : "" ); |
| 1113 | |
| 1114 | walrcv_send(wrconn, reply_message.data, reply_message.len); |
| 1115 | } |
| 1116 | |
| 1117 | /* |
| 1118 | * Send hot standby feedback message to primary, plus the current time, |
| 1119 | * in case they don't have a watch. |
| 1120 | * |
| 1121 | * If the user disables feedback, send one final message to tell sender |
| 1122 | * to forget about the xmin on this standby. We also send this message |
| 1123 | * on first connect because a previous connection might have set xmin |
| 1124 | * on a replication slot. (If we're not using a slot it's harmless to |
| 1125 | * send a feedback message explicitly setting InvalidTransactionId). |
| 1126 | */ |
| 1127 | static void |
| 1128 | XLogWalRcvSendHSFeedback(bool immed) |
| 1129 | { |
| 1130 | TimestampTz now; |
| 1131 | FullTransactionId nextFullXid; |
| 1132 | TransactionId nextXid; |
| 1133 | uint32 xmin_epoch, |
| 1134 | catalog_xmin_epoch; |
| 1135 | TransactionId xmin, |
| 1136 | catalog_xmin; |
| 1137 | static TimestampTz sendTime = 0; |
| 1138 | |
| 1139 | /* initially true so we always send at least one feedback message */ |
| 1140 | static bool master_has_standby_xmin = true; |
| 1141 | |
| 1142 | /* |
| 1143 | * If the user doesn't want status to be reported to the master, be sure |
| 1144 | * to exit before doing anything at all. |
| 1145 | */ |
| 1146 | if ((wal_receiver_status_interval <= 0 || !hot_standby_feedback) && |
| 1147 | !master_has_standby_xmin) |
| 1148 | return; |
| 1149 | |
| 1150 | /* Get current timestamp. */ |
| 1151 | now = GetCurrentTimestamp(); |
| 1152 | |
| 1153 | if (!immed) |
| 1154 | { |
| 1155 | /* |
| 1156 | * Send feedback at most once per wal_receiver_status_interval. |
| 1157 | */ |
| 1158 | if (!TimestampDifferenceExceeds(sendTime, now, |
| 1159 | wal_receiver_status_interval * 1000)) |
| 1160 | return; |
| 1161 | sendTime = now; |
| 1162 | } |
| 1163 | |
| 1164 | /* |
| 1165 | * If Hot Standby is not yet accepting connections there is nothing to |
| 1166 | * send. Check this after the interval has expired to reduce number of |
| 1167 | * calls. |
| 1168 | * |
| 1169 | * Bailing out here also ensures that we don't send feedback until we've |
| 1170 | * read our own replication slot state, so we don't tell the master to |
| 1171 | * discard needed xmin or catalog_xmin from any slots that may exist on |
| 1172 | * this replica. |
| 1173 | */ |
| 1174 | if (!HotStandbyActive()) |
| 1175 | return; |
| 1176 | |
| 1177 | /* |
| 1178 | * Make the expensive call to get the oldest xmin once we are certain |
| 1179 | * everything else has been checked. |
| 1180 | */ |
| 1181 | if (hot_standby_feedback) |
| 1182 | { |
| 1183 | TransactionId slot_xmin; |
| 1184 | |
| 1185 | /* |
| 1186 | * Usually GetOldestXmin() would include both global replication slot |
| 1187 | * xmin and catalog_xmin in its calculations, but we want to derive |
| 1188 | * separate values for each of those. So we ask for an xmin that |
| 1189 | * excludes the catalog_xmin. |
| 1190 | */ |
| 1191 | xmin = GetOldestXmin(NULL, |
| 1192 | PROCARRAY_FLAGS_DEFAULT | PROCARRAY_SLOTS_XMIN); |
| 1193 | |
| 1194 | ProcArrayGetReplicationSlotXmin(&slot_xmin, &catalog_xmin); |
| 1195 | |
| 1196 | if (TransactionIdIsValid(slot_xmin) && |
| 1197 | TransactionIdPrecedes(slot_xmin, xmin)) |
| 1198 | xmin = slot_xmin; |
| 1199 | } |
| 1200 | else |
| 1201 | { |
| 1202 | xmin = InvalidTransactionId; |
| 1203 | catalog_xmin = InvalidTransactionId; |
| 1204 | } |
| 1205 | |
| 1206 | /* |
| 1207 | * Get epoch and adjust if nextXid and oldestXmin are different sides of |
| 1208 | * the epoch boundary. |
| 1209 | */ |
| 1210 | nextFullXid = ReadNextFullTransactionId(); |
| 1211 | nextXid = XidFromFullTransactionId(nextFullXid); |
| 1212 | xmin_epoch = EpochFromFullTransactionId(nextFullXid); |
| 1213 | catalog_xmin_epoch = xmin_epoch; |
| 1214 | if (nextXid < xmin) |
| 1215 | xmin_epoch--; |
| 1216 | if (nextXid < catalog_xmin) |
| 1217 | catalog_xmin_epoch--; |
| 1218 | |
| 1219 | elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u" , |
| 1220 | xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch); |
| 1221 | |
| 1222 | /* Construct the message and send it. */ |
| 1223 | resetStringInfo(&reply_message); |
| 1224 | pq_sendbyte(&reply_message, 'h'); |
| 1225 | pq_sendint64(&reply_message, GetCurrentTimestamp()); |
| 1226 | pq_sendint32(&reply_message, xmin); |
| 1227 | pq_sendint32(&reply_message, xmin_epoch); |
| 1228 | pq_sendint32(&reply_message, catalog_xmin); |
| 1229 | pq_sendint32(&reply_message, catalog_xmin_epoch); |
| 1230 | walrcv_send(wrconn, reply_message.data, reply_message.len); |
| 1231 | if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin)) |
| 1232 | master_has_standby_xmin = true; |
| 1233 | else |
| 1234 | master_has_standby_xmin = false; |
| 1235 | } |
| 1236 | |
| 1237 | /* |
| 1238 | * Update shared memory status upon receiving a message from primary. |
| 1239 | * |
| 1240 | * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest |
| 1241 | * message, reported by primary. |
| 1242 | */ |
| 1243 | static void |
| 1244 | ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime) |
| 1245 | { |
| 1246 | WalRcvData *walrcv = WalRcv; |
| 1247 | |
| 1248 | TimestampTz lastMsgReceiptTime = GetCurrentTimestamp(); |
| 1249 | |
| 1250 | /* Update shared-memory status */ |
| 1251 | SpinLockAcquire(&walrcv->mutex); |
| 1252 | if (walrcv->latestWalEnd < walEnd) |
| 1253 | walrcv->latestWalEndTime = sendTime; |
| 1254 | walrcv->latestWalEnd = walEnd; |
| 1255 | walrcv->lastMsgSendTime = sendTime; |
| 1256 | walrcv->lastMsgReceiptTime = lastMsgReceiptTime; |
| 1257 | SpinLockRelease(&walrcv->mutex); |
| 1258 | |
| 1259 | if (log_min_messages <= DEBUG2) |
| 1260 | { |
| 1261 | char *sendtime; |
| 1262 | char *receipttime; |
| 1263 | int applyDelay; |
| 1264 | |
| 1265 | /* Copy because timestamptz_to_str returns a static buffer */ |
| 1266 | sendtime = pstrdup(timestamptz_to_str(sendTime)); |
| 1267 | receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime)); |
| 1268 | applyDelay = GetReplicationApplyDelay(); |
| 1269 | |
| 1270 | /* apply delay is not available */ |
| 1271 | if (applyDelay == -1) |
| 1272 | elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms" , |
| 1273 | sendtime, |
| 1274 | receipttime, |
| 1275 | GetReplicationTransferLatency()); |
| 1276 | else |
| 1277 | elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms" , |
| 1278 | sendtime, |
| 1279 | receipttime, |
| 1280 | applyDelay, |
| 1281 | GetReplicationTransferLatency()); |
| 1282 | |
| 1283 | pfree(sendtime); |
| 1284 | pfree(receipttime); |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | /* |
| 1289 | * Wake up the walreceiver main loop. |
| 1290 | * |
| 1291 | * This is called by the startup process whenever interesting xlog records |
| 1292 | * are applied, so that walreceiver can check if it needs to send an apply |
| 1293 | * notification back to the master which may be waiting in a COMMIT with |
| 1294 | * synchronous_commit = remote_apply. |
| 1295 | */ |
| 1296 | void |
| 1297 | WalRcvForceReply(void) |
| 1298 | { |
| 1299 | Latch *latch; |
| 1300 | |
| 1301 | WalRcv->force_reply = true; |
| 1302 | /* fetching the latch pointer might not be atomic, so use spinlock */ |
| 1303 | SpinLockAcquire(&WalRcv->mutex); |
| 1304 | latch = WalRcv->latch; |
| 1305 | SpinLockRelease(&WalRcv->mutex); |
| 1306 | if (latch) |
| 1307 | SetLatch(latch); |
| 1308 | } |
| 1309 | |
| 1310 | /* |
| 1311 | * Return a string constant representing the state. This is used |
| 1312 | * in system functions and views, and should *not* be translated. |
| 1313 | */ |
| 1314 | static const char * |
| 1315 | WalRcvGetStateString(WalRcvState state) |
| 1316 | { |
| 1317 | switch (state) |
| 1318 | { |
| 1319 | case WALRCV_STOPPED: |
| 1320 | return "stopped" ; |
| 1321 | case WALRCV_STARTING: |
| 1322 | return "starting" ; |
| 1323 | case WALRCV_STREAMING: |
| 1324 | return "streaming" ; |
| 1325 | case WALRCV_WAITING: |
| 1326 | return "waiting" ; |
| 1327 | case WALRCV_RESTARTING: |
| 1328 | return "restarting" ; |
| 1329 | case WALRCV_STOPPING: |
| 1330 | return "stopping" ; |
| 1331 | } |
| 1332 | return "UNKNOWN" ; |
| 1333 | } |
| 1334 | |
| 1335 | /* |
| 1336 | * Returns activity of WAL receiver, including pid, state and xlog locations |
| 1337 | * received from the WAL sender of another server. |
| 1338 | */ |
| 1339 | Datum |
| 1340 | pg_stat_get_wal_receiver(PG_FUNCTION_ARGS) |
| 1341 | { |
| 1342 | TupleDesc tupdesc; |
| 1343 | Datum *values; |
| 1344 | bool *nulls; |
| 1345 | int pid; |
| 1346 | bool ready_to_display; |
| 1347 | WalRcvState state; |
| 1348 | XLogRecPtr receive_start_lsn; |
| 1349 | TimeLineID receive_start_tli; |
| 1350 | XLogRecPtr received_lsn; |
| 1351 | TimeLineID received_tli; |
| 1352 | TimestampTz last_send_time; |
| 1353 | TimestampTz last_receipt_time; |
| 1354 | XLogRecPtr latest_end_lsn; |
| 1355 | TimestampTz latest_end_time; |
| 1356 | char sender_host[NI_MAXHOST]; |
| 1357 | int sender_port = 0; |
| 1358 | char slotname[NAMEDATALEN]; |
| 1359 | char conninfo[MAXCONNINFO]; |
| 1360 | |
| 1361 | /* Take a lock to ensure value consistency */ |
| 1362 | SpinLockAcquire(&WalRcv->mutex); |
| 1363 | pid = (int) WalRcv->pid; |
| 1364 | ready_to_display = WalRcv->ready_to_display; |
| 1365 | state = WalRcv->walRcvState; |
| 1366 | receive_start_lsn = WalRcv->receiveStart; |
| 1367 | receive_start_tli = WalRcv->receiveStartTLI; |
| 1368 | received_lsn = WalRcv->receivedUpto; |
| 1369 | received_tli = WalRcv->receivedTLI; |
| 1370 | last_send_time = WalRcv->lastMsgSendTime; |
| 1371 | last_receipt_time = WalRcv->lastMsgReceiptTime; |
| 1372 | latest_end_lsn = WalRcv->latestWalEnd; |
| 1373 | latest_end_time = WalRcv->latestWalEndTime; |
| 1374 | strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname)); |
| 1375 | strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host)); |
| 1376 | sender_port = WalRcv->sender_port; |
| 1377 | strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo)); |
| 1378 | SpinLockRelease(&WalRcv->mutex); |
| 1379 | |
| 1380 | /* |
| 1381 | * No WAL receiver (or not ready yet), just return a tuple with NULL |
| 1382 | * values |
| 1383 | */ |
| 1384 | if (pid == 0 || !ready_to_display) |
| 1385 | PG_RETURN_NULL(); |
| 1386 | |
| 1387 | /* determine result type */ |
| 1388 | if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) |
| 1389 | elog(ERROR, "return type must be a row type" ); |
| 1390 | |
| 1391 | values = palloc0(sizeof(Datum) * tupdesc->natts); |
| 1392 | nulls = palloc0(sizeof(bool) * tupdesc->natts); |
| 1393 | |
| 1394 | /* Fetch values */ |
| 1395 | values[0] = Int32GetDatum(pid); |
| 1396 | |
| 1397 | if (!is_member_of_role(GetUserId(), DEFAULT_ROLE_READ_ALL_STATS)) |
| 1398 | { |
| 1399 | /* |
| 1400 | * Only superusers and members of pg_read_all_stats can see details. |
| 1401 | * Other users only get the pid value to know whether it is a WAL |
| 1402 | * receiver, but no details. |
| 1403 | */ |
| 1404 | MemSet(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1)); |
| 1405 | } |
| 1406 | else |
| 1407 | { |
| 1408 | values[1] = CStringGetTextDatum(WalRcvGetStateString(state)); |
| 1409 | |
| 1410 | if (XLogRecPtrIsInvalid(receive_start_lsn)) |
| 1411 | nulls[2] = true; |
| 1412 | else |
| 1413 | values[2] = LSNGetDatum(receive_start_lsn); |
| 1414 | values[3] = Int32GetDatum(receive_start_tli); |
| 1415 | if (XLogRecPtrIsInvalid(received_lsn)) |
| 1416 | nulls[4] = true; |
| 1417 | else |
| 1418 | values[4] = LSNGetDatum(received_lsn); |
| 1419 | values[5] = Int32GetDatum(received_tli); |
| 1420 | if (last_send_time == 0) |
| 1421 | nulls[6] = true; |
| 1422 | else |
| 1423 | values[6] = TimestampTzGetDatum(last_send_time); |
| 1424 | if (last_receipt_time == 0) |
| 1425 | nulls[7] = true; |
| 1426 | else |
| 1427 | values[7] = TimestampTzGetDatum(last_receipt_time); |
| 1428 | if (XLogRecPtrIsInvalid(latest_end_lsn)) |
| 1429 | nulls[8] = true; |
| 1430 | else |
| 1431 | values[8] = LSNGetDatum(latest_end_lsn); |
| 1432 | if (latest_end_time == 0) |
| 1433 | nulls[9] = true; |
| 1434 | else |
| 1435 | values[9] = TimestampTzGetDatum(latest_end_time); |
| 1436 | if (*slotname == '\0') |
| 1437 | nulls[10] = true; |
| 1438 | else |
| 1439 | values[10] = CStringGetTextDatum(slotname); |
| 1440 | if (*sender_host == '\0') |
| 1441 | nulls[11] = true; |
| 1442 | else |
| 1443 | values[11] = CStringGetTextDatum(sender_host); |
| 1444 | if (sender_port == 0) |
| 1445 | nulls[12] = true; |
| 1446 | else |
| 1447 | values[12] = Int32GetDatum(sender_port); |
| 1448 | if (*conninfo == '\0') |
| 1449 | nulls[13] = true; |
| 1450 | else |
| 1451 | values[13] = CStringGetTextDatum(conninfo); |
| 1452 | } |
| 1453 | |
| 1454 | /* Returns the record as Datum */ |
| 1455 | PG_RETURN_DATUM(HeapTupleGetDatum(heap_form_tuple(tupdesc, values, nulls))); |
| 1456 | } |
| 1457 | |