1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * walreceiver.c |
4 | * |
5 | * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It |
6 | * is the process in the standby server that takes charge of receiving |
7 | * XLOG records from a primary server during streaming replication. |
8 | * |
9 | * When the startup process determines that it's time to start streaming, |
10 | * it instructs postmaster to start walreceiver. Walreceiver first connects |
11 | * to the primary server (it will be served by a walsender process |
12 | * in the primary server), and then keeps receiving XLOG records and |
13 | * writing them to the disk as long as the connection is alive. As XLOG |
14 | * records are received and flushed to disk, it updates the |
15 | * WalRcv->receivedUpto variable in shared memory, to inform the startup |
16 | * process of how far it can proceed with XLOG replay. |
17 | * |
18 | * If the primary server ends streaming, but doesn't disconnect, walreceiver |
19 | * goes into "waiting" mode, and waits for the startup process to give new |
20 | * instructions. The startup process will treat that the same as |
21 | * disconnection, and will rescan the archive/pg_wal directory. But when the |
22 | * startup process wants to try streaming replication again, it will just |
23 | * nudge the existing walreceiver process that's waiting, instead of launching |
24 | * a new one. |
25 | * |
26 | * Normal termination is by SIGTERM, which instructs the walreceiver to |
27 | * exit(0). Emergency termination is by SIGQUIT; like any postmaster child |
28 | * process, the walreceiver will simply abort and exit on SIGQUIT. A close |
29 | * of the connection and a FATAL error are treated not as a crash but as |
30 | * normal operation. |
31 | * |
32 | * This file contains the server-facing parts of walreceiver. The libpq- |
33 | * specific parts are in the libpqwalreceiver module. It's loaded |
34 | * dynamically to avoid linking the server with libpq. |
35 | * |
36 | * Portions Copyright (c) 2010-2019, PostgreSQL Global Development Group |
37 | * |
38 | * |
39 | * IDENTIFICATION |
40 | * src/backend/replication/walreceiver.c |
41 | * |
42 | *------------------------------------------------------------------------- |
43 | */ |
44 | #include "postgres.h" |
45 | |
46 | #include <signal.h> |
47 | #include <unistd.h> |
48 | |
49 | #include "access/htup_details.h" |
50 | #include "access/timeline.h" |
51 | #include "access/transam.h" |
52 | #include "access/xlog_internal.h" |
53 | #include "catalog/pg_authid.h" |
54 | #include "catalog/pg_type.h" |
55 | #include "common/ip.h" |
56 | #include "funcapi.h" |
57 | #include "libpq/pqformat.h" |
58 | #include "libpq/pqsignal.h" |
59 | #include "miscadmin.h" |
60 | #include "pgstat.h" |
61 | #include "replication/walreceiver.h" |
62 | #include "replication/walsender.h" |
63 | #include "storage/ipc.h" |
64 | #include "storage/pmsignal.h" |
65 | #include "storage/procarray.h" |
66 | #include "utils/builtins.h" |
67 | #include "utils/guc.h" |
68 | #include "utils/pg_lsn.h" |
69 | #include "utils/ps_status.h" |
70 | #include "utils/resowner.h" |
71 | #include "utils/timestamp.h" |
72 | |
73 | |
74 | /* GUC variables */ |
75 | int wal_receiver_status_interval; |
76 | int wal_receiver_timeout; |
77 | bool hot_standby_feedback; |
78 | |
79 | /* libpqwalreceiver connection */ |
80 | static WalReceiverConn *wrconn = NULL; |
81 | WalReceiverFunctionsType *WalReceiverFunctions = NULL; |
82 | |
83 | #define NAPTIME_PER_CYCLE 100 /* max sleep time between cycles (100ms) */ |
84 | |
85 | /* |
86 | * These variables are used similarly to openLogFile/SegNo/Off, |
87 | * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID |
88 | * corresponding the filename of recvFile. |
89 | */ |
90 | static int recvFile = -1; |
91 | static TimeLineID recvFileTLI = 0; |
92 | static XLogSegNo recvSegNo = 0; |
93 | static uint32 recvOff = 0; |
94 | |
95 | /* |
96 | * Flags set by interrupt handlers of walreceiver for later service in the |
97 | * main loop. |
98 | */ |
99 | static volatile sig_atomic_t got_SIGHUP = false; |
100 | static volatile sig_atomic_t got_SIGTERM = false; |
101 | |
102 | /* |
103 | * LogstreamResult indicates the byte positions that we have already |
104 | * written/fsynced. |
105 | */ |
106 | static struct |
107 | { |
108 | XLogRecPtr Write; /* last byte + 1 written out in the standby */ |
109 | XLogRecPtr Flush; /* last byte + 1 flushed in the standby */ |
110 | } LogstreamResult; |
111 | |
112 | static StringInfoData reply_message; |
113 | static StringInfoData incoming_message; |
114 | |
115 | /* Prototypes for private functions */ |
116 | static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last); |
117 | static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI); |
118 | static void WalRcvDie(int code, Datum arg); |
119 | static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len); |
120 | static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr); |
121 | static void XLogWalRcvFlush(bool dying); |
122 | static void XLogWalRcvSendReply(bool force, bool requestReply); |
123 | static void XLogWalRcvSendHSFeedback(bool immed); |
124 | static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime); |
125 | |
126 | /* Signal handlers */ |
127 | static void WalRcvSigHupHandler(SIGNAL_ARGS); |
128 | static void WalRcvSigUsr1Handler(SIGNAL_ARGS); |
129 | static void WalRcvShutdownHandler(SIGNAL_ARGS); |
130 | static void WalRcvQuickDieHandler(SIGNAL_ARGS); |
131 | |
132 | |
133 | /* |
134 | * Process any interrupts the walreceiver process may have received. |
135 | * This should be called any time the process's latch has become set. |
136 | * |
137 | * Currently, only SIGTERM is of interest. We can't just exit(1) within the |
138 | * SIGTERM signal handler, because the signal might arrive in the middle of |
139 | * some critical operation, like while we're holding a spinlock. Instead, the |
140 | * signal handler sets a flag variable as well as setting the process's latch. |
141 | * We must check the flag (by calling ProcessWalRcvInterrupts) anytime the |
142 | * latch has become set. Operations that could block for a long time, such as |
143 | * reading from a remote server, must pay attention to the latch too; see |
144 | * libpqrcv_PQgetResult for example. |
145 | */ |
146 | void |
147 | ProcessWalRcvInterrupts(void) |
148 | { |
149 | /* |
150 | * Although walreceiver interrupt handling doesn't use the same scheme as |
151 | * regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive |
152 | * any incoming signals on Win32. |
153 | */ |
154 | CHECK_FOR_INTERRUPTS(); |
155 | |
156 | if (got_SIGTERM) |
157 | { |
158 | ereport(FATAL, |
159 | (errcode(ERRCODE_ADMIN_SHUTDOWN), |
160 | errmsg("terminating walreceiver process due to administrator command" ))); |
161 | } |
162 | } |
163 | |
164 | |
165 | /* Main entry point for walreceiver process */ |
166 | void |
167 | WalReceiverMain(void) |
168 | { |
169 | char conninfo[MAXCONNINFO]; |
170 | char *tmp_conninfo; |
171 | char slotname[NAMEDATALEN]; |
172 | XLogRecPtr startpoint; |
173 | TimeLineID startpointTLI; |
174 | TimeLineID primaryTLI; |
175 | bool first_stream; |
176 | WalRcvData *walrcv = WalRcv; |
177 | TimestampTz last_recv_timestamp; |
178 | TimestampTz now; |
179 | bool ping_sent; |
180 | char *err; |
181 | char *sender_host = NULL; |
182 | int sender_port = 0; |
183 | |
184 | /* |
185 | * WalRcv should be set up already (if we are a backend, we inherit this |
186 | * by fork() or EXEC_BACKEND mechanism from the postmaster). |
187 | */ |
188 | Assert(walrcv != NULL); |
189 | |
190 | now = GetCurrentTimestamp(); |
191 | |
192 | /* |
193 | * Mark walreceiver as running in shared memory. |
194 | * |
195 | * Do this as early as possible, so that if we fail later on, we'll set |
196 | * state to STOPPED. If we die before this, the startup process will keep |
197 | * waiting for us to start up, until it times out. |
198 | */ |
199 | SpinLockAcquire(&walrcv->mutex); |
200 | Assert(walrcv->pid == 0); |
201 | switch (walrcv->walRcvState) |
202 | { |
203 | case WALRCV_STOPPING: |
204 | /* If we've already been requested to stop, don't start up. */ |
205 | walrcv->walRcvState = WALRCV_STOPPED; |
206 | /* fall through */ |
207 | |
208 | case WALRCV_STOPPED: |
209 | SpinLockRelease(&walrcv->mutex); |
210 | proc_exit(1); |
211 | break; |
212 | |
213 | case WALRCV_STARTING: |
214 | /* The usual case */ |
215 | break; |
216 | |
217 | case WALRCV_WAITING: |
218 | case WALRCV_STREAMING: |
219 | case WALRCV_RESTARTING: |
220 | default: |
221 | /* Shouldn't happen */ |
222 | SpinLockRelease(&walrcv->mutex); |
223 | elog(PANIC, "walreceiver still running according to shared memory state" ); |
224 | } |
225 | /* Advertise our PID so that the startup process can kill us */ |
226 | walrcv->pid = MyProcPid; |
227 | walrcv->walRcvState = WALRCV_STREAMING; |
228 | |
229 | /* Fetch information required to start streaming */ |
230 | walrcv->ready_to_display = false; |
231 | strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO); |
232 | strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN); |
233 | startpoint = walrcv->receiveStart; |
234 | startpointTLI = walrcv->receiveStartTLI; |
235 | |
236 | /* Initialise to a sanish value */ |
237 | walrcv->lastMsgSendTime = |
238 | walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now; |
239 | |
240 | /* Report the latch to use to awaken this process */ |
241 | walrcv->latch = &MyProc->procLatch; |
242 | |
243 | SpinLockRelease(&walrcv->mutex); |
244 | |
245 | /* Arrange to clean up at walreceiver exit */ |
246 | on_shmem_exit(WalRcvDie, 0); |
247 | |
248 | /* Properly accept or ignore signals the postmaster might send us */ |
249 | pqsignal(SIGHUP, WalRcvSigHupHandler); /* set flag to read config file */ |
250 | pqsignal(SIGINT, SIG_IGN); |
251 | pqsignal(SIGTERM, WalRcvShutdownHandler); /* request shutdown */ |
252 | pqsignal(SIGQUIT, WalRcvQuickDieHandler); /* hard crash time */ |
253 | pqsignal(SIGALRM, SIG_IGN); |
254 | pqsignal(SIGPIPE, SIG_IGN); |
255 | pqsignal(SIGUSR1, WalRcvSigUsr1Handler); |
256 | pqsignal(SIGUSR2, SIG_IGN); |
257 | |
258 | /* Reset some signals that are accepted by postmaster but not here */ |
259 | pqsignal(SIGCHLD, SIG_DFL); |
260 | |
261 | /* We allow SIGQUIT (quickdie) at all times */ |
262 | sigdelset(&BlockSig, SIGQUIT); |
263 | |
264 | /* Load the libpq-specific functions */ |
265 | load_file("libpqwalreceiver" , false); |
266 | if (WalReceiverFunctions == NULL) |
267 | elog(ERROR, "libpqwalreceiver didn't initialize correctly" ); |
268 | |
269 | /* Unblock signals (they were blocked when the postmaster forked us) */ |
270 | PG_SETMASK(&UnBlockSig); |
271 | |
272 | /* Establish the connection to the primary for XLOG streaming */ |
273 | wrconn = walrcv_connect(conninfo, false, cluster_name[0] ? cluster_name : "walreceiver" , &err); |
274 | if (!wrconn) |
275 | ereport(ERROR, |
276 | (errmsg("could not connect to the primary server: %s" , err))); |
277 | |
278 | /* |
279 | * Save user-visible connection string. This clobbers the original |
280 | * conninfo, for security. Also save host and port of the sender server |
281 | * this walreceiver is connected to. |
282 | */ |
283 | tmp_conninfo = walrcv_get_conninfo(wrconn); |
284 | walrcv_get_senderinfo(wrconn, &sender_host, &sender_port); |
285 | SpinLockAcquire(&walrcv->mutex); |
286 | memset(walrcv->conninfo, 0, MAXCONNINFO); |
287 | if (tmp_conninfo) |
288 | strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO); |
289 | |
290 | memset(walrcv->sender_host, 0, NI_MAXHOST); |
291 | if (sender_host) |
292 | strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST); |
293 | |
294 | walrcv->sender_port = sender_port; |
295 | walrcv->ready_to_display = true; |
296 | SpinLockRelease(&walrcv->mutex); |
297 | |
298 | if (tmp_conninfo) |
299 | pfree(tmp_conninfo); |
300 | |
301 | if (sender_host) |
302 | pfree(sender_host); |
303 | |
304 | first_stream = true; |
305 | for (;;) |
306 | { |
307 | char *primary_sysid; |
308 | char standby_sysid[32]; |
309 | WalRcvStreamOptions options; |
310 | |
311 | /* |
312 | * Check that we're connected to a valid server using the |
313 | * IDENTIFY_SYSTEM replication command. |
314 | */ |
315 | primary_sysid = walrcv_identify_system(wrconn, &primaryTLI); |
316 | |
317 | snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT, |
318 | GetSystemIdentifier()); |
319 | if (strcmp(primary_sysid, standby_sysid) != 0) |
320 | { |
321 | ereport(ERROR, |
322 | (errmsg("database system identifier differs between the primary and standby" ), |
323 | errdetail("The primary's identifier is %s, the standby's identifier is %s." , |
324 | primary_sysid, standby_sysid))); |
325 | } |
326 | |
327 | /* |
328 | * Confirm that the current timeline of the primary is the same or |
329 | * ahead of ours. |
330 | */ |
331 | if (primaryTLI < startpointTLI) |
332 | ereport(ERROR, |
333 | (errmsg("highest timeline %u of the primary is behind recovery timeline %u" , |
334 | primaryTLI, startpointTLI))); |
335 | |
336 | /* |
337 | * Get any missing history files. We do this always, even when we're |
338 | * not interested in that timeline, so that if we're promoted to |
339 | * become the master later on, we don't select the same timeline that |
340 | * was already used in the current master. This isn't bullet-proof - |
341 | * you'll need some external software to manage your cluster if you |
342 | * need to ensure that a unique timeline id is chosen in every case, |
343 | * but let's avoid the confusion of timeline id collisions where we |
344 | * can. |
345 | */ |
346 | WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI); |
347 | |
348 | /* |
349 | * Start streaming. |
350 | * |
351 | * We'll try to start at the requested starting point and timeline, |
352 | * even if it's different from the server's latest timeline. In case |
353 | * we've already reached the end of the old timeline, the server will |
354 | * finish the streaming immediately, and we will go back to await |
355 | * orders from the startup process. If recovery_target_timeline is |
356 | * 'latest', the startup process will scan pg_wal and find the new |
357 | * history file, bump recovery target timeline, and ask us to restart |
358 | * on the new timeline. |
359 | */ |
360 | options.logical = false; |
361 | options.startpoint = startpoint; |
362 | options.slotname = slotname[0] != '\0' ? slotname : NULL; |
363 | options.proto.physical.startpointTLI = startpointTLI; |
364 | ThisTimeLineID = startpointTLI; |
365 | if (walrcv_startstreaming(wrconn, &options)) |
366 | { |
367 | if (first_stream) |
368 | ereport(LOG, |
369 | (errmsg("started streaming WAL from primary at %X/%X on timeline %u" , |
370 | (uint32) (startpoint >> 32), (uint32) startpoint, |
371 | startpointTLI))); |
372 | else |
373 | ereport(LOG, |
374 | (errmsg("restarted WAL streaming at %X/%X on timeline %u" , |
375 | (uint32) (startpoint >> 32), (uint32) startpoint, |
376 | startpointTLI))); |
377 | first_stream = false; |
378 | |
379 | /* Initialize LogstreamResult and buffers for processing messages */ |
380 | LogstreamResult.Write = LogstreamResult.Flush = GetXLogReplayRecPtr(NULL); |
381 | initStringInfo(&reply_message); |
382 | initStringInfo(&incoming_message); |
383 | |
384 | /* Initialize the last recv timestamp */ |
385 | last_recv_timestamp = GetCurrentTimestamp(); |
386 | ping_sent = false; |
387 | |
388 | /* Loop until end-of-streaming or error */ |
389 | for (;;) |
390 | { |
391 | char *buf; |
392 | int len; |
393 | bool endofwal = false; |
394 | pgsocket wait_fd = PGINVALID_SOCKET; |
395 | int rc; |
396 | |
397 | /* |
398 | * Exit walreceiver if we're not in recovery. This should not |
399 | * happen, but cross-check the status here. |
400 | */ |
401 | if (!RecoveryInProgress()) |
402 | ereport(FATAL, |
403 | (errmsg("cannot continue WAL streaming, recovery has already ended" ))); |
404 | |
405 | /* Process any requests or signals received recently */ |
406 | ProcessWalRcvInterrupts(); |
407 | |
408 | if (got_SIGHUP) |
409 | { |
410 | got_SIGHUP = false; |
411 | ProcessConfigFile(PGC_SIGHUP); |
412 | XLogWalRcvSendHSFeedback(true); |
413 | } |
414 | |
415 | /* See if we can read data immediately */ |
416 | len = walrcv_receive(wrconn, &buf, &wait_fd); |
417 | if (len != 0) |
418 | { |
419 | /* |
420 | * Process the received data, and any subsequent data we |
421 | * can read without blocking. |
422 | */ |
423 | for (;;) |
424 | { |
425 | if (len > 0) |
426 | { |
427 | /* |
428 | * Something was received from master, so reset |
429 | * timeout |
430 | */ |
431 | last_recv_timestamp = GetCurrentTimestamp(); |
432 | ping_sent = false; |
433 | XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1); |
434 | } |
435 | else if (len == 0) |
436 | break; |
437 | else if (len < 0) |
438 | { |
439 | ereport(LOG, |
440 | (errmsg("replication terminated by primary server" ), |
441 | errdetail("End of WAL reached on timeline %u at %X/%X." , |
442 | startpointTLI, |
443 | (uint32) (LogstreamResult.Write >> 32), (uint32) LogstreamResult.Write))); |
444 | endofwal = true; |
445 | break; |
446 | } |
447 | len = walrcv_receive(wrconn, &buf, &wait_fd); |
448 | } |
449 | |
450 | /* Let the master know that we received some data. */ |
451 | XLogWalRcvSendReply(false, false); |
452 | |
453 | /* |
454 | * If we've written some records, flush them to disk and |
455 | * let the startup process and primary server know about |
456 | * them. |
457 | */ |
458 | XLogWalRcvFlush(false); |
459 | } |
460 | |
461 | /* Check if we need to exit the streaming loop. */ |
462 | if (endofwal) |
463 | break; |
464 | |
465 | /* |
466 | * Ideally we would reuse a WaitEventSet object repeatedly |
467 | * here to avoid the overheads of WaitLatchOrSocket on epoll |
468 | * systems, but we can't be sure that libpq (or any other |
469 | * walreceiver implementation) has the same socket (even if |
470 | * the fd is the same number, it may have been closed and |
471 | * reopened since the last time). In future, if there is a |
472 | * function for removing sockets from WaitEventSet, then we |
473 | * could add and remove just the socket each time, potentially |
474 | * avoiding some system calls. |
475 | */ |
476 | Assert(wait_fd != PGINVALID_SOCKET); |
477 | rc = WaitLatchOrSocket(walrcv->latch, |
478 | WL_EXIT_ON_PM_DEATH | WL_SOCKET_READABLE | |
479 | WL_TIMEOUT | WL_LATCH_SET, |
480 | wait_fd, |
481 | NAPTIME_PER_CYCLE, |
482 | WAIT_EVENT_WAL_RECEIVER_MAIN); |
483 | if (rc & WL_LATCH_SET) |
484 | { |
485 | ResetLatch(walrcv->latch); |
486 | ProcessWalRcvInterrupts(); |
487 | |
488 | if (walrcv->force_reply) |
489 | { |
490 | /* |
491 | * The recovery process has asked us to send apply |
492 | * feedback now. Make sure the flag is really set to |
493 | * false in shared memory before sending the reply, so |
494 | * we don't miss a new request for a reply. |
495 | */ |
496 | walrcv->force_reply = false; |
497 | pg_memory_barrier(); |
498 | XLogWalRcvSendReply(true, false); |
499 | } |
500 | } |
501 | if (rc & WL_TIMEOUT) |
502 | { |
503 | /* |
504 | * We didn't receive anything new. If we haven't heard |
505 | * anything from the server for more than |
506 | * wal_receiver_timeout / 2, ping the server. Also, if |
507 | * it's been longer than wal_receiver_status_interval |
508 | * since the last update we sent, send a status update to |
509 | * the master anyway, to report any progress in applying |
510 | * WAL. |
511 | */ |
512 | bool requestReply = false; |
513 | |
514 | /* |
515 | * Check if time since last receive from standby has |
516 | * reached the configured limit. |
517 | */ |
518 | if (wal_receiver_timeout > 0) |
519 | { |
520 | TimestampTz now = GetCurrentTimestamp(); |
521 | TimestampTz timeout; |
522 | |
523 | timeout = |
524 | TimestampTzPlusMilliseconds(last_recv_timestamp, |
525 | wal_receiver_timeout); |
526 | |
527 | if (now >= timeout) |
528 | ereport(ERROR, |
529 | (errmsg("terminating walreceiver due to timeout" ))); |
530 | |
531 | /* |
532 | * We didn't receive anything new, for half of |
533 | * receiver replication timeout. Ping the server. |
534 | */ |
535 | if (!ping_sent) |
536 | { |
537 | timeout = TimestampTzPlusMilliseconds(last_recv_timestamp, |
538 | (wal_receiver_timeout / 2)); |
539 | if (now >= timeout) |
540 | { |
541 | requestReply = true; |
542 | ping_sent = true; |
543 | } |
544 | } |
545 | } |
546 | |
547 | XLogWalRcvSendReply(requestReply, requestReply); |
548 | XLogWalRcvSendHSFeedback(false); |
549 | } |
550 | } |
551 | |
552 | /* |
553 | * The backend finished streaming. Exit streaming COPY-mode from |
554 | * our side, too. |
555 | */ |
556 | walrcv_endstreaming(wrconn, &primaryTLI); |
557 | |
558 | /* |
559 | * If the server had switched to a new timeline that we didn't |
560 | * know about when we began streaming, fetch its timeline history |
561 | * file now. |
562 | */ |
563 | WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI); |
564 | } |
565 | else |
566 | ereport(LOG, |
567 | (errmsg("primary server contains no more WAL on requested timeline %u" , |
568 | startpointTLI))); |
569 | |
570 | /* |
571 | * End of WAL reached on the requested timeline. Close the last |
572 | * segment, and await for new orders from the startup process. |
573 | */ |
574 | if (recvFile >= 0) |
575 | { |
576 | char xlogfname[MAXFNAMELEN]; |
577 | |
578 | XLogWalRcvFlush(false); |
579 | if (close(recvFile) != 0) |
580 | ereport(PANIC, |
581 | (errcode_for_file_access(), |
582 | errmsg("could not close log segment %s: %m" , |
583 | XLogFileNameP(recvFileTLI, recvSegNo)))); |
584 | |
585 | /* |
586 | * Create .done file forcibly to prevent the streamed segment from |
587 | * being archived later. |
588 | */ |
589 | XLogFileName(xlogfname, recvFileTLI, recvSegNo, wal_segment_size); |
590 | if (XLogArchiveMode != ARCHIVE_MODE_ALWAYS) |
591 | XLogArchiveForceDone(xlogfname); |
592 | else |
593 | XLogArchiveNotify(xlogfname); |
594 | } |
595 | recvFile = -1; |
596 | |
597 | elog(DEBUG1, "walreceiver ended streaming and awaits new instructions" ); |
598 | WalRcvWaitForStartPosition(&startpoint, &startpointTLI); |
599 | } |
600 | /* not reached */ |
601 | } |
602 | |
603 | /* |
604 | * Wait for startup process to set receiveStart and receiveStartTLI. |
605 | */ |
606 | static void |
607 | WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI) |
608 | { |
609 | WalRcvData *walrcv = WalRcv; |
610 | int state; |
611 | |
612 | SpinLockAcquire(&walrcv->mutex); |
613 | state = walrcv->walRcvState; |
614 | if (state != WALRCV_STREAMING) |
615 | { |
616 | SpinLockRelease(&walrcv->mutex); |
617 | if (state == WALRCV_STOPPING) |
618 | proc_exit(0); |
619 | else |
620 | elog(FATAL, "unexpected walreceiver state" ); |
621 | } |
622 | walrcv->walRcvState = WALRCV_WAITING; |
623 | walrcv->receiveStart = InvalidXLogRecPtr; |
624 | walrcv->receiveStartTLI = 0; |
625 | SpinLockRelease(&walrcv->mutex); |
626 | |
627 | if (update_process_title) |
628 | set_ps_display("idle" , false); |
629 | |
630 | /* |
631 | * nudge startup process to notice that we've stopped streaming and are |
632 | * now waiting for instructions. |
633 | */ |
634 | WakeupRecovery(); |
635 | for (;;) |
636 | { |
637 | ResetLatch(walrcv->latch); |
638 | |
639 | ProcessWalRcvInterrupts(); |
640 | |
641 | SpinLockAcquire(&walrcv->mutex); |
642 | Assert(walrcv->walRcvState == WALRCV_RESTARTING || |
643 | walrcv->walRcvState == WALRCV_WAITING || |
644 | walrcv->walRcvState == WALRCV_STOPPING); |
645 | if (walrcv->walRcvState == WALRCV_RESTARTING) |
646 | { |
647 | /* we don't expect primary_conninfo to change */ |
648 | *startpoint = walrcv->receiveStart; |
649 | *startpointTLI = walrcv->receiveStartTLI; |
650 | walrcv->walRcvState = WALRCV_STREAMING; |
651 | SpinLockRelease(&walrcv->mutex); |
652 | break; |
653 | } |
654 | if (walrcv->walRcvState == WALRCV_STOPPING) |
655 | { |
656 | /* |
657 | * We should've received SIGTERM if the startup process wants us |
658 | * to die, but might as well check it here too. |
659 | */ |
660 | SpinLockRelease(&walrcv->mutex); |
661 | exit(1); |
662 | } |
663 | SpinLockRelease(&walrcv->mutex); |
664 | |
665 | (void) WaitLatch(walrcv->latch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0, |
666 | WAIT_EVENT_WAL_RECEIVER_WAIT_START); |
667 | } |
668 | |
669 | if (update_process_title) |
670 | { |
671 | char activitymsg[50]; |
672 | |
673 | snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X" , |
674 | (uint32) (*startpoint >> 32), |
675 | (uint32) *startpoint); |
676 | set_ps_display(activitymsg, false); |
677 | } |
678 | } |
679 | |
680 | /* |
681 | * Fetch any missing timeline history files between 'first' and 'last' |
682 | * (inclusive) from the server. |
683 | */ |
684 | static void |
685 | WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last) |
686 | { |
687 | TimeLineID tli; |
688 | |
689 | for (tli = first; tli <= last; tli++) |
690 | { |
691 | /* there's no history file for timeline 1 */ |
692 | if (tli != 1 && !existsTimeLineHistory(tli)) |
693 | { |
694 | char *fname; |
695 | char *content; |
696 | int len; |
697 | char expectedfname[MAXFNAMELEN]; |
698 | |
699 | ereport(LOG, |
700 | (errmsg("fetching timeline history file for timeline %u from primary server" , |
701 | tli))); |
702 | |
703 | walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len); |
704 | |
705 | /* |
706 | * Check that the filename on the master matches what we |
707 | * calculated ourselves. This is just a sanity check, it should |
708 | * always match. |
709 | */ |
710 | TLHistoryFileName(expectedfname, tli); |
711 | if (strcmp(fname, expectedfname) != 0) |
712 | ereport(ERROR, |
713 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
714 | errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u" , |
715 | tli))); |
716 | |
717 | /* |
718 | * Write the file to pg_wal. |
719 | */ |
720 | writeTimeLineHistoryFile(tli, content, len); |
721 | |
722 | pfree(fname); |
723 | pfree(content); |
724 | } |
725 | } |
726 | } |
727 | |
728 | /* |
729 | * Mark us as STOPPED in shared memory at exit. |
730 | */ |
731 | static void |
732 | WalRcvDie(int code, Datum arg) |
733 | { |
734 | WalRcvData *walrcv = WalRcv; |
735 | |
736 | /* Ensure that all WAL records received are flushed to disk */ |
737 | XLogWalRcvFlush(true); |
738 | |
739 | /* Mark ourselves inactive in shared memory */ |
740 | SpinLockAcquire(&walrcv->mutex); |
741 | Assert(walrcv->walRcvState == WALRCV_STREAMING || |
742 | walrcv->walRcvState == WALRCV_RESTARTING || |
743 | walrcv->walRcvState == WALRCV_STARTING || |
744 | walrcv->walRcvState == WALRCV_WAITING || |
745 | walrcv->walRcvState == WALRCV_STOPPING); |
746 | Assert(walrcv->pid == MyProcPid); |
747 | walrcv->walRcvState = WALRCV_STOPPED; |
748 | walrcv->pid = 0; |
749 | walrcv->ready_to_display = false; |
750 | walrcv->latch = NULL; |
751 | SpinLockRelease(&walrcv->mutex); |
752 | |
753 | /* Terminate the connection gracefully. */ |
754 | if (wrconn != NULL) |
755 | walrcv_disconnect(wrconn); |
756 | |
757 | /* Wake up the startup process to notice promptly that we're gone */ |
758 | WakeupRecovery(); |
759 | } |
760 | |
761 | /* SIGHUP: set flag to re-read config file at next convenient time */ |
762 | static void |
763 | WalRcvSigHupHandler(SIGNAL_ARGS) |
764 | { |
765 | got_SIGHUP = true; |
766 | } |
767 | |
768 | |
769 | /* SIGUSR1: used by latch mechanism */ |
770 | static void |
771 | WalRcvSigUsr1Handler(SIGNAL_ARGS) |
772 | { |
773 | int save_errno = errno; |
774 | |
775 | latch_sigusr1_handler(); |
776 | |
777 | errno = save_errno; |
778 | } |
779 | |
780 | /* SIGTERM: set flag for ProcessWalRcvInterrupts */ |
781 | static void |
782 | WalRcvShutdownHandler(SIGNAL_ARGS) |
783 | { |
784 | int save_errno = errno; |
785 | |
786 | got_SIGTERM = true; |
787 | |
788 | if (WalRcv->latch) |
789 | SetLatch(WalRcv->latch); |
790 | |
791 | errno = save_errno; |
792 | } |
793 | |
794 | /* |
795 | * WalRcvQuickDieHandler() occurs when signalled SIGQUIT by the postmaster. |
796 | * |
797 | * Some backend has bought the farm, so we need to stop what we're doing and |
798 | * exit. |
799 | */ |
800 | static void |
801 | WalRcvQuickDieHandler(SIGNAL_ARGS) |
802 | { |
803 | /* |
804 | * We DO NOT want to run proc_exit() or atexit() callbacks -- we're here |
805 | * because shared memory may be corrupted, so we don't want to try to |
806 | * clean up our transaction. Just nail the windows shut and get out of |
807 | * town. The callbacks wouldn't be safe to run from a signal handler, |
808 | * anyway. |
809 | * |
810 | * Note we use _exit(2) not _exit(0). This is to force the postmaster |
811 | * into a system reset cycle if someone sends a manual SIGQUIT to a random |
812 | * backend. This is necessary precisely because we don't clean up our |
813 | * shared memory state. (The "dead man switch" mechanism in pmsignal.c |
814 | * should ensure the postmaster sees this as a crash, too, but no harm in |
815 | * being doubly sure.) |
816 | */ |
817 | _exit(2); |
818 | } |
819 | |
820 | /* |
821 | * Accept the message from XLOG stream, and process it. |
822 | */ |
823 | static void |
824 | XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len) |
825 | { |
826 | int hdrlen; |
827 | XLogRecPtr dataStart; |
828 | XLogRecPtr walEnd; |
829 | TimestampTz sendTime; |
830 | bool replyRequested; |
831 | |
832 | resetStringInfo(&incoming_message); |
833 | |
834 | switch (type) |
835 | { |
836 | case 'w': /* WAL records */ |
837 | { |
838 | /* copy message to StringInfo */ |
839 | hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64); |
840 | if (len < hdrlen) |
841 | ereport(ERROR, |
842 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
843 | errmsg_internal("invalid WAL message received from primary" ))); |
844 | appendBinaryStringInfo(&incoming_message, buf, hdrlen); |
845 | |
846 | /* read the fields */ |
847 | dataStart = pq_getmsgint64(&incoming_message); |
848 | walEnd = pq_getmsgint64(&incoming_message); |
849 | sendTime = pq_getmsgint64(&incoming_message); |
850 | ProcessWalSndrMessage(walEnd, sendTime); |
851 | |
852 | buf += hdrlen; |
853 | len -= hdrlen; |
854 | XLogWalRcvWrite(buf, len, dataStart); |
855 | break; |
856 | } |
857 | case 'k': /* Keepalive */ |
858 | { |
859 | /* copy message to StringInfo */ |
860 | hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char); |
861 | if (len != hdrlen) |
862 | ereport(ERROR, |
863 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
864 | errmsg_internal("invalid keepalive message received from primary" ))); |
865 | appendBinaryStringInfo(&incoming_message, buf, hdrlen); |
866 | |
867 | /* read the fields */ |
868 | walEnd = pq_getmsgint64(&incoming_message); |
869 | sendTime = pq_getmsgint64(&incoming_message); |
870 | replyRequested = pq_getmsgbyte(&incoming_message); |
871 | |
872 | ProcessWalSndrMessage(walEnd, sendTime); |
873 | |
874 | /* If the primary requested a reply, send one immediately */ |
875 | if (replyRequested) |
876 | XLogWalRcvSendReply(true, false); |
877 | break; |
878 | } |
879 | default: |
880 | ereport(ERROR, |
881 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
882 | errmsg_internal("invalid replication message type %d" , |
883 | type))); |
884 | } |
885 | } |
886 | |
887 | /* |
888 | * Write XLOG data to disk. |
889 | */ |
890 | static void |
891 | XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr) |
892 | { |
893 | int startoff; |
894 | int byteswritten; |
895 | |
896 | while (nbytes > 0) |
897 | { |
898 | int segbytes; |
899 | |
900 | if (recvFile < 0 || !XLByteInSeg(recptr, recvSegNo, wal_segment_size)) |
901 | { |
902 | bool use_existent; |
903 | |
904 | /* |
905 | * fsync() and close current file before we switch to next one. We |
906 | * would otherwise have to reopen this file to fsync it later |
907 | */ |
908 | if (recvFile >= 0) |
909 | { |
910 | char xlogfname[MAXFNAMELEN]; |
911 | |
912 | XLogWalRcvFlush(false); |
913 | |
914 | /* |
915 | * XLOG segment files will be re-read by recovery in startup |
916 | * process soon, so we don't advise the OS to release cache |
917 | * pages associated with the file like XLogFileClose() does. |
918 | */ |
919 | if (close(recvFile) != 0) |
920 | ereport(PANIC, |
921 | (errcode_for_file_access(), |
922 | errmsg("could not close log segment %s: %m" , |
923 | XLogFileNameP(recvFileTLI, recvSegNo)))); |
924 | |
925 | /* |
926 | * Create .done file forcibly to prevent the streamed segment |
927 | * from being archived later. |
928 | */ |
929 | XLogFileName(xlogfname, recvFileTLI, recvSegNo, wal_segment_size); |
930 | if (XLogArchiveMode != ARCHIVE_MODE_ALWAYS) |
931 | XLogArchiveForceDone(xlogfname); |
932 | else |
933 | XLogArchiveNotify(xlogfname); |
934 | } |
935 | recvFile = -1; |
936 | |
937 | /* Create/use new log file */ |
938 | XLByteToSeg(recptr, recvSegNo, wal_segment_size); |
939 | use_existent = true; |
940 | recvFile = XLogFileInit(recvSegNo, &use_existent, true); |
941 | recvFileTLI = ThisTimeLineID; |
942 | recvOff = 0; |
943 | } |
944 | |
945 | /* Calculate the start offset of the received logs */ |
946 | startoff = XLogSegmentOffset(recptr, wal_segment_size); |
947 | |
948 | if (startoff + nbytes > wal_segment_size) |
949 | segbytes = wal_segment_size - startoff; |
950 | else |
951 | segbytes = nbytes; |
952 | |
953 | /* Need to seek in the file? */ |
954 | if (recvOff != startoff) |
955 | { |
956 | if (lseek(recvFile, (off_t) startoff, SEEK_SET) < 0) |
957 | ereport(PANIC, |
958 | (errcode_for_file_access(), |
959 | errmsg("could not seek in log segment %s to offset %u: %m" , |
960 | XLogFileNameP(recvFileTLI, recvSegNo), |
961 | startoff))); |
962 | recvOff = startoff; |
963 | } |
964 | |
965 | /* OK to write the logs */ |
966 | errno = 0; |
967 | |
968 | byteswritten = write(recvFile, buf, segbytes); |
969 | if (byteswritten <= 0) |
970 | { |
971 | /* if write didn't set errno, assume no disk space */ |
972 | if (errno == 0) |
973 | errno = ENOSPC; |
974 | ereport(PANIC, |
975 | (errcode_for_file_access(), |
976 | errmsg("could not write to log segment %s " |
977 | "at offset %u, length %lu: %m" , |
978 | XLogFileNameP(recvFileTLI, recvSegNo), |
979 | recvOff, (unsigned long) segbytes))); |
980 | } |
981 | |
982 | /* Update state for write */ |
983 | recptr += byteswritten; |
984 | |
985 | recvOff += byteswritten; |
986 | nbytes -= byteswritten; |
987 | buf += byteswritten; |
988 | |
989 | LogstreamResult.Write = recptr; |
990 | } |
991 | } |
992 | |
993 | /* |
994 | * Flush the log to disk. |
995 | * |
996 | * If we're in the midst of dying, it's unwise to do anything that might throw |
997 | * an error, so we skip sending a reply in that case. |
998 | */ |
999 | static void |
1000 | XLogWalRcvFlush(bool dying) |
1001 | { |
1002 | if (LogstreamResult.Flush < LogstreamResult.Write) |
1003 | { |
1004 | WalRcvData *walrcv = WalRcv; |
1005 | |
1006 | issue_xlog_fsync(recvFile, recvSegNo); |
1007 | |
1008 | LogstreamResult.Flush = LogstreamResult.Write; |
1009 | |
1010 | /* Update shared-memory status */ |
1011 | SpinLockAcquire(&walrcv->mutex); |
1012 | if (walrcv->receivedUpto < LogstreamResult.Flush) |
1013 | { |
1014 | walrcv->latestChunkStart = walrcv->receivedUpto; |
1015 | walrcv->receivedUpto = LogstreamResult.Flush; |
1016 | walrcv->receivedTLI = ThisTimeLineID; |
1017 | } |
1018 | SpinLockRelease(&walrcv->mutex); |
1019 | |
1020 | /* Signal the startup process and walsender that new WAL has arrived */ |
1021 | WakeupRecovery(); |
1022 | if (AllowCascadeReplication()) |
1023 | WalSndWakeup(); |
1024 | |
1025 | /* Report XLOG streaming progress in PS display */ |
1026 | if (update_process_title) |
1027 | { |
1028 | char activitymsg[50]; |
1029 | |
1030 | snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X" , |
1031 | (uint32) (LogstreamResult.Write >> 32), |
1032 | (uint32) LogstreamResult.Write); |
1033 | set_ps_display(activitymsg, false); |
1034 | } |
1035 | |
1036 | /* Also let the master know that we made some progress */ |
1037 | if (!dying) |
1038 | { |
1039 | XLogWalRcvSendReply(false, false); |
1040 | XLogWalRcvSendHSFeedback(false); |
1041 | } |
1042 | } |
1043 | } |
1044 | |
1045 | /* |
1046 | * Send reply message to primary, indicating our current WAL locations, oldest |
1047 | * xmin and the current time. |
1048 | * |
1049 | * If 'force' is not set, the message is only sent if enough time has |
1050 | * passed since last status update to reach wal_receiver_status_interval. |
1051 | * If wal_receiver_status_interval is disabled altogether and 'force' is |
1052 | * false, this is a no-op. |
1053 | * |
1054 | * If 'requestReply' is true, requests the server to reply immediately upon |
1055 | * receiving this message. This is used for heartbearts, when approaching |
1056 | * wal_receiver_timeout. |
1057 | */ |
1058 | static void |
1059 | XLogWalRcvSendReply(bool force, bool requestReply) |
1060 | { |
1061 | static XLogRecPtr writePtr = 0; |
1062 | static XLogRecPtr flushPtr = 0; |
1063 | XLogRecPtr applyPtr; |
1064 | static TimestampTz sendTime = 0; |
1065 | TimestampTz now; |
1066 | |
1067 | /* |
1068 | * If the user doesn't want status to be reported to the master, be sure |
1069 | * to exit before doing anything at all. |
1070 | */ |
1071 | if (!force && wal_receiver_status_interval <= 0) |
1072 | return; |
1073 | |
1074 | /* Get current timestamp. */ |
1075 | now = GetCurrentTimestamp(); |
1076 | |
1077 | /* |
1078 | * We can compare the write and flush positions to the last message we |
1079 | * sent without taking any lock, but the apply position requires a spin |
1080 | * lock, so we don't check that unless something else has changed or 10 |
1081 | * seconds have passed. This means that the apply WAL location will |
1082 | * appear, from the master's point of view, to lag slightly, but since |
1083 | * this is only for reporting purposes and only on idle systems, that's |
1084 | * probably OK. |
1085 | */ |
1086 | if (!force |
1087 | && writePtr == LogstreamResult.Write |
1088 | && flushPtr == LogstreamResult.Flush |
1089 | && !TimestampDifferenceExceeds(sendTime, now, |
1090 | wal_receiver_status_interval * 1000)) |
1091 | return; |
1092 | sendTime = now; |
1093 | |
1094 | /* Construct a new message */ |
1095 | writePtr = LogstreamResult.Write; |
1096 | flushPtr = LogstreamResult.Flush; |
1097 | applyPtr = GetXLogReplayRecPtr(NULL); |
1098 | |
1099 | resetStringInfo(&reply_message); |
1100 | pq_sendbyte(&reply_message, 'r'); |
1101 | pq_sendint64(&reply_message, writePtr); |
1102 | pq_sendint64(&reply_message, flushPtr); |
1103 | pq_sendint64(&reply_message, applyPtr); |
1104 | pq_sendint64(&reply_message, GetCurrentTimestamp()); |
1105 | pq_sendbyte(&reply_message, requestReply ? 1 : 0); |
1106 | |
1107 | /* Send it */ |
1108 | elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s" , |
1109 | (uint32) (writePtr >> 32), (uint32) writePtr, |
1110 | (uint32) (flushPtr >> 32), (uint32) flushPtr, |
1111 | (uint32) (applyPtr >> 32), (uint32) applyPtr, |
1112 | requestReply ? " (reply requested)" : "" ); |
1113 | |
1114 | walrcv_send(wrconn, reply_message.data, reply_message.len); |
1115 | } |
1116 | |
1117 | /* |
1118 | * Send hot standby feedback message to primary, plus the current time, |
1119 | * in case they don't have a watch. |
1120 | * |
1121 | * If the user disables feedback, send one final message to tell sender |
1122 | * to forget about the xmin on this standby. We also send this message |
1123 | * on first connect because a previous connection might have set xmin |
1124 | * on a replication slot. (If we're not using a slot it's harmless to |
1125 | * send a feedback message explicitly setting InvalidTransactionId). |
1126 | */ |
1127 | static void |
1128 | XLogWalRcvSendHSFeedback(bool immed) |
1129 | { |
1130 | TimestampTz now; |
1131 | FullTransactionId nextFullXid; |
1132 | TransactionId nextXid; |
1133 | uint32 xmin_epoch, |
1134 | catalog_xmin_epoch; |
1135 | TransactionId xmin, |
1136 | catalog_xmin; |
1137 | static TimestampTz sendTime = 0; |
1138 | |
1139 | /* initially true so we always send at least one feedback message */ |
1140 | static bool master_has_standby_xmin = true; |
1141 | |
1142 | /* |
1143 | * If the user doesn't want status to be reported to the master, be sure |
1144 | * to exit before doing anything at all. |
1145 | */ |
1146 | if ((wal_receiver_status_interval <= 0 || !hot_standby_feedback) && |
1147 | !master_has_standby_xmin) |
1148 | return; |
1149 | |
1150 | /* Get current timestamp. */ |
1151 | now = GetCurrentTimestamp(); |
1152 | |
1153 | if (!immed) |
1154 | { |
1155 | /* |
1156 | * Send feedback at most once per wal_receiver_status_interval. |
1157 | */ |
1158 | if (!TimestampDifferenceExceeds(sendTime, now, |
1159 | wal_receiver_status_interval * 1000)) |
1160 | return; |
1161 | sendTime = now; |
1162 | } |
1163 | |
1164 | /* |
1165 | * If Hot Standby is not yet accepting connections there is nothing to |
1166 | * send. Check this after the interval has expired to reduce number of |
1167 | * calls. |
1168 | * |
1169 | * Bailing out here also ensures that we don't send feedback until we've |
1170 | * read our own replication slot state, so we don't tell the master to |
1171 | * discard needed xmin or catalog_xmin from any slots that may exist on |
1172 | * this replica. |
1173 | */ |
1174 | if (!HotStandbyActive()) |
1175 | return; |
1176 | |
1177 | /* |
1178 | * Make the expensive call to get the oldest xmin once we are certain |
1179 | * everything else has been checked. |
1180 | */ |
1181 | if (hot_standby_feedback) |
1182 | { |
1183 | TransactionId slot_xmin; |
1184 | |
1185 | /* |
1186 | * Usually GetOldestXmin() would include both global replication slot |
1187 | * xmin and catalog_xmin in its calculations, but we want to derive |
1188 | * separate values for each of those. So we ask for an xmin that |
1189 | * excludes the catalog_xmin. |
1190 | */ |
1191 | xmin = GetOldestXmin(NULL, |
1192 | PROCARRAY_FLAGS_DEFAULT | PROCARRAY_SLOTS_XMIN); |
1193 | |
1194 | ProcArrayGetReplicationSlotXmin(&slot_xmin, &catalog_xmin); |
1195 | |
1196 | if (TransactionIdIsValid(slot_xmin) && |
1197 | TransactionIdPrecedes(slot_xmin, xmin)) |
1198 | xmin = slot_xmin; |
1199 | } |
1200 | else |
1201 | { |
1202 | xmin = InvalidTransactionId; |
1203 | catalog_xmin = InvalidTransactionId; |
1204 | } |
1205 | |
1206 | /* |
1207 | * Get epoch and adjust if nextXid and oldestXmin are different sides of |
1208 | * the epoch boundary. |
1209 | */ |
1210 | nextFullXid = ReadNextFullTransactionId(); |
1211 | nextXid = XidFromFullTransactionId(nextFullXid); |
1212 | xmin_epoch = EpochFromFullTransactionId(nextFullXid); |
1213 | catalog_xmin_epoch = xmin_epoch; |
1214 | if (nextXid < xmin) |
1215 | xmin_epoch--; |
1216 | if (nextXid < catalog_xmin) |
1217 | catalog_xmin_epoch--; |
1218 | |
1219 | elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u" , |
1220 | xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch); |
1221 | |
1222 | /* Construct the message and send it. */ |
1223 | resetStringInfo(&reply_message); |
1224 | pq_sendbyte(&reply_message, 'h'); |
1225 | pq_sendint64(&reply_message, GetCurrentTimestamp()); |
1226 | pq_sendint32(&reply_message, xmin); |
1227 | pq_sendint32(&reply_message, xmin_epoch); |
1228 | pq_sendint32(&reply_message, catalog_xmin); |
1229 | pq_sendint32(&reply_message, catalog_xmin_epoch); |
1230 | walrcv_send(wrconn, reply_message.data, reply_message.len); |
1231 | if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin)) |
1232 | master_has_standby_xmin = true; |
1233 | else |
1234 | master_has_standby_xmin = false; |
1235 | } |
1236 | |
1237 | /* |
1238 | * Update shared memory status upon receiving a message from primary. |
1239 | * |
1240 | * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest |
1241 | * message, reported by primary. |
1242 | */ |
1243 | static void |
1244 | ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime) |
1245 | { |
1246 | WalRcvData *walrcv = WalRcv; |
1247 | |
1248 | TimestampTz lastMsgReceiptTime = GetCurrentTimestamp(); |
1249 | |
1250 | /* Update shared-memory status */ |
1251 | SpinLockAcquire(&walrcv->mutex); |
1252 | if (walrcv->latestWalEnd < walEnd) |
1253 | walrcv->latestWalEndTime = sendTime; |
1254 | walrcv->latestWalEnd = walEnd; |
1255 | walrcv->lastMsgSendTime = sendTime; |
1256 | walrcv->lastMsgReceiptTime = lastMsgReceiptTime; |
1257 | SpinLockRelease(&walrcv->mutex); |
1258 | |
1259 | if (log_min_messages <= DEBUG2) |
1260 | { |
1261 | char *sendtime; |
1262 | char *receipttime; |
1263 | int applyDelay; |
1264 | |
1265 | /* Copy because timestamptz_to_str returns a static buffer */ |
1266 | sendtime = pstrdup(timestamptz_to_str(sendTime)); |
1267 | receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime)); |
1268 | applyDelay = GetReplicationApplyDelay(); |
1269 | |
1270 | /* apply delay is not available */ |
1271 | if (applyDelay == -1) |
1272 | elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms" , |
1273 | sendtime, |
1274 | receipttime, |
1275 | GetReplicationTransferLatency()); |
1276 | else |
1277 | elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms" , |
1278 | sendtime, |
1279 | receipttime, |
1280 | applyDelay, |
1281 | GetReplicationTransferLatency()); |
1282 | |
1283 | pfree(sendtime); |
1284 | pfree(receipttime); |
1285 | } |
1286 | } |
1287 | |
1288 | /* |
1289 | * Wake up the walreceiver main loop. |
1290 | * |
1291 | * This is called by the startup process whenever interesting xlog records |
1292 | * are applied, so that walreceiver can check if it needs to send an apply |
1293 | * notification back to the master which may be waiting in a COMMIT with |
1294 | * synchronous_commit = remote_apply. |
1295 | */ |
1296 | void |
1297 | WalRcvForceReply(void) |
1298 | { |
1299 | Latch *latch; |
1300 | |
1301 | WalRcv->force_reply = true; |
1302 | /* fetching the latch pointer might not be atomic, so use spinlock */ |
1303 | SpinLockAcquire(&WalRcv->mutex); |
1304 | latch = WalRcv->latch; |
1305 | SpinLockRelease(&WalRcv->mutex); |
1306 | if (latch) |
1307 | SetLatch(latch); |
1308 | } |
1309 | |
1310 | /* |
1311 | * Return a string constant representing the state. This is used |
1312 | * in system functions and views, and should *not* be translated. |
1313 | */ |
1314 | static const char * |
1315 | WalRcvGetStateString(WalRcvState state) |
1316 | { |
1317 | switch (state) |
1318 | { |
1319 | case WALRCV_STOPPED: |
1320 | return "stopped" ; |
1321 | case WALRCV_STARTING: |
1322 | return "starting" ; |
1323 | case WALRCV_STREAMING: |
1324 | return "streaming" ; |
1325 | case WALRCV_WAITING: |
1326 | return "waiting" ; |
1327 | case WALRCV_RESTARTING: |
1328 | return "restarting" ; |
1329 | case WALRCV_STOPPING: |
1330 | return "stopping" ; |
1331 | } |
1332 | return "UNKNOWN" ; |
1333 | } |
1334 | |
1335 | /* |
1336 | * Returns activity of WAL receiver, including pid, state and xlog locations |
1337 | * received from the WAL sender of another server. |
1338 | */ |
1339 | Datum |
1340 | pg_stat_get_wal_receiver(PG_FUNCTION_ARGS) |
1341 | { |
1342 | TupleDesc tupdesc; |
1343 | Datum *values; |
1344 | bool *nulls; |
1345 | int pid; |
1346 | bool ready_to_display; |
1347 | WalRcvState state; |
1348 | XLogRecPtr receive_start_lsn; |
1349 | TimeLineID receive_start_tli; |
1350 | XLogRecPtr received_lsn; |
1351 | TimeLineID received_tli; |
1352 | TimestampTz last_send_time; |
1353 | TimestampTz last_receipt_time; |
1354 | XLogRecPtr latest_end_lsn; |
1355 | TimestampTz latest_end_time; |
1356 | char sender_host[NI_MAXHOST]; |
1357 | int sender_port = 0; |
1358 | char slotname[NAMEDATALEN]; |
1359 | char conninfo[MAXCONNINFO]; |
1360 | |
1361 | /* Take a lock to ensure value consistency */ |
1362 | SpinLockAcquire(&WalRcv->mutex); |
1363 | pid = (int) WalRcv->pid; |
1364 | ready_to_display = WalRcv->ready_to_display; |
1365 | state = WalRcv->walRcvState; |
1366 | receive_start_lsn = WalRcv->receiveStart; |
1367 | receive_start_tli = WalRcv->receiveStartTLI; |
1368 | received_lsn = WalRcv->receivedUpto; |
1369 | received_tli = WalRcv->receivedTLI; |
1370 | last_send_time = WalRcv->lastMsgSendTime; |
1371 | last_receipt_time = WalRcv->lastMsgReceiptTime; |
1372 | latest_end_lsn = WalRcv->latestWalEnd; |
1373 | latest_end_time = WalRcv->latestWalEndTime; |
1374 | strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname)); |
1375 | strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host)); |
1376 | sender_port = WalRcv->sender_port; |
1377 | strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo)); |
1378 | SpinLockRelease(&WalRcv->mutex); |
1379 | |
1380 | /* |
1381 | * No WAL receiver (or not ready yet), just return a tuple with NULL |
1382 | * values |
1383 | */ |
1384 | if (pid == 0 || !ready_to_display) |
1385 | PG_RETURN_NULL(); |
1386 | |
1387 | /* determine result type */ |
1388 | if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) |
1389 | elog(ERROR, "return type must be a row type" ); |
1390 | |
1391 | values = palloc0(sizeof(Datum) * tupdesc->natts); |
1392 | nulls = palloc0(sizeof(bool) * tupdesc->natts); |
1393 | |
1394 | /* Fetch values */ |
1395 | values[0] = Int32GetDatum(pid); |
1396 | |
1397 | if (!is_member_of_role(GetUserId(), DEFAULT_ROLE_READ_ALL_STATS)) |
1398 | { |
1399 | /* |
1400 | * Only superusers and members of pg_read_all_stats can see details. |
1401 | * Other users only get the pid value to know whether it is a WAL |
1402 | * receiver, but no details. |
1403 | */ |
1404 | MemSet(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1)); |
1405 | } |
1406 | else |
1407 | { |
1408 | values[1] = CStringGetTextDatum(WalRcvGetStateString(state)); |
1409 | |
1410 | if (XLogRecPtrIsInvalid(receive_start_lsn)) |
1411 | nulls[2] = true; |
1412 | else |
1413 | values[2] = LSNGetDatum(receive_start_lsn); |
1414 | values[3] = Int32GetDatum(receive_start_tli); |
1415 | if (XLogRecPtrIsInvalid(received_lsn)) |
1416 | nulls[4] = true; |
1417 | else |
1418 | values[4] = LSNGetDatum(received_lsn); |
1419 | values[5] = Int32GetDatum(received_tli); |
1420 | if (last_send_time == 0) |
1421 | nulls[6] = true; |
1422 | else |
1423 | values[6] = TimestampTzGetDatum(last_send_time); |
1424 | if (last_receipt_time == 0) |
1425 | nulls[7] = true; |
1426 | else |
1427 | values[7] = TimestampTzGetDatum(last_receipt_time); |
1428 | if (XLogRecPtrIsInvalid(latest_end_lsn)) |
1429 | nulls[8] = true; |
1430 | else |
1431 | values[8] = LSNGetDatum(latest_end_lsn); |
1432 | if (latest_end_time == 0) |
1433 | nulls[9] = true; |
1434 | else |
1435 | values[9] = TimestampTzGetDatum(latest_end_time); |
1436 | if (*slotname == '\0') |
1437 | nulls[10] = true; |
1438 | else |
1439 | values[10] = CStringGetTextDatum(slotname); |
1440 | if (*sender_host == '\0') |
1441 | nulls[11] = true; |
1442 | else |
1443 | values[11] = CStringGetTextDatum(sender_host); |
1444 | if (sender_port == 0) |
1445 | nulls[12] = true; |
1446 | else |
1447 | values[12] = Int32GetDatum(sender_port); |
1448 | if (*conninfo == '\0') |
1449 | nulls[13] = true; |
1450 | else |
1451 | values[13] = CStringGetTextDatum(conninfo); |
1452 | } |
1453 | |
1454 | /* Returns the record as Datum */ |
1455 | PG_RETURN_DATUM(HeapTupleGetDatum(heap_form_tuple(tupdesc, values, nulls))); |
1456 | } |
1457 | |