| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * relcache.c |
| 4 | * POSTGRES relation descriptor cache code |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/cache/relcache.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | /* |
| 16 | * INTERFACE ROUTINES |
| 17 | * RelationCacheInitialize - initialize relcache (to empty) |
| 18 | * RelationCacheInitializePhase2 - initialize shared-catalog entries |
| 19 | * RelationCacheInitializePhase3 - finish initializing relcache |
| 20 | * RelationIdGetRelation - get a reldesc by relation id |
| 21 | * RelationClose - close an open relation |
| 22 | * |
| 23 | * NOTES |
| 24 | * The following code contains many undocumented hacks. Please be |
| 25 | * careful.... |
| 26 | */ |
| 27 | #include "postgres.h" |
| 28 | |
| 29 | #include <sys/file.h> |
| 30 | #include <fcntl.h> |
| 31 | #include <unistd.h> |
| 32 | |
| 33 | #include "access/htup_details.h" |
| 34 | #include "access/multixact.h" |
| 35 | #include "access/nbtree.h" |
| 36 | #include "access/reloptions.h" |
| 37 | #include "access/sysattr.h" |
| 38 | #include "access/table.h" |
| 39 | #include "access/tableam.h" |
| 40 | #include "access/tupdesc_details.h" |
| 41 | #include "access/xact.h" |
| 42 | #include "access/xlog.h" |
| 43 | #include "catalog/catalog.h" |
| 44 | #include "catalog/indexing.h" |
| 45 | #include "catalog/namespace.h" |
| 46 | #include "catalog/partition.h" |
| 47 | #include "catalog/pg_am.h" |
| 48 | #include "catalog/pg_amproc.h" |
| 49 | #include "catalog/pg_attrdef.h" |
| 50 | #include "catalog/pg_authid.h" |
| 51 | #include "catalog/pg_auth_members.h" |
| 52 | #include "catalog/pg_constraint.h" |
| 53 | #include "catalog/pg_database.h" |
| 54 | #include "catalog/pg_namespace.h" |
| 55 | #include "catalog/pg_opclass.h" |
| 56 | #include "catalog/pg_partitioned_table.h" |
| 57 | #include "catalog/pg_proc.h" |
| 58 | #include "catalog/pg_publication.h" |
| 59 | #include "catalog/pg_rewrite.h" |
| 60 | #include "catalog/pg_shseclabel.h" |
| 61 | #include "catalog/pg_statistic_ext.h" |
| 62 | #include "catalog/pg_subscription.h" |
| 63 | #include "catalog/pg_tablespace.h" |
| 64 | #include "catalog/pg_trigger.h" |
| 65 | #include "catalog/pg_type.h" |
| 66 | #include "catalog/schemapg.h" |
| 67 | #include "catalog/storage.h" |
| 68 | #include "commands/policy.h" |
| 69 | #include "commands/trigger.h" |
| 70 | #include "miscadmin.h" |
| 71 | #include "nodes/makefuncs.h" |
| 72 | #include "nodes/nodeFuncs.h" |
| 73 | #include "optimizer/optimizer.h" |
| 74 | #include "partitioning/partbounds.h" |
| 75 | #include "partitioning/partdesc.h" |
| 76 | #include "rewrite/rewriteDefine.h" |
| 77 | #include "rewrite/rowsecurity.h" |
| 78 | #include "storage/lmgr.h" |
| 79 | #include "storage/smgr.h" |
| 80 | #include "utils/array.h" |
| 81 | #include "utils/builtins.h" |
| 82 | #include "utils/datum.h" |
| 83 | #include "utils/fmgroids.h" |
| 84 | #include "utils/inval.h" |
| 85 | #include "utils/lsyscache.h" |
| 86 | #include "utils/memutils.h" |
| 87 | #include "utils/partcache.h" |
| 88 | #include "utils/relmapper.h" |
| 89 | #include "utils/resowner_private.h" |
| 90 | #include "utils/snapmgr.h" |
| 91 | #include "utils/syscache.h" |
| 92 | |
| 93 | |
| 94 | #define RELCACHE_INIT_FILEMAGIC 0x573266 /* version ID value */ |
| 95 | |
| 96 | /* |
| 97 | * Default policy for whether to apply RECOVER_RELATION_BUILD_MEMORY: |
| 98 | * do so in clobber-cache builds but not otherwise. This choice can be |
| 99 | * overridden at compile time with -DRECOVER_RELATION_BUILD_MEMORY=1 or =0. |
| 100 | */ |
| 101 | #ifndef RECOVER_RELATION_BUILD_MEMORY |
| 102 | #if defined(CLOBBER_CACHE_ALWAYS) || defined(CLOBBER_CACHE_RECURSIVELY) |
| 103 | #define RECOVER_RELATION_BUILD_MEMORY 1 |
| 104 | #else |
| 105 | #define RECOVER_RELATION_BUILD_MEMORY 0 |
| 106 | #endif |
| 107 | #endif |
| 108 | |
| 109 | /* |
| 110 | * hardcoded tuple descriptors, contents generated by genbki.pl |
| 111 | */ |
| 112 | static const FormData_pg_attribute Desc_pg_class[Natts_pg_class] = {Schema_pg_class}; |
| 113 | static const FormData_pg_attribute Desc_pg_attribute[Natts_pg_attribute] = {Schema_pg_attribute}; |
| 114 | static const FormData_pg_attribute Desc_pg_proc[Natts_pg_proc] = {Schema_pg_proc}; |
| 115 | static const FormData_pg_attribute Desc_pg_type[Natts_pg_type] = {Schema_pg_type}; |
| 116 | static const FormData_pg_attribute Desc_pg_database[Natts_pg_database] = {Schema_pg_database}; |
| 117 | static const FormData_pg_attribute Desc_pg_authid[Natts_pg_authid] = {Schema_pg_authid}; |
| 118 | static const FormData_pg_attribute Desc_pg_auth_members[Natts_pg_auth_members] = {Schema_pg_auth_members}; |
| 119 | static const FormData_pg_attribute Desc_pg_index[Natts_pg_index] = {Schema_pg_index}; |
| 120 | static const FormData_pg_attribute Desc_pg_shseclabel[Natts_pg_shseclabel] = {Schema_pg_shseclabel}; |
| 121 | static const FormData_pg_attribute Desc_pg_subscription[Natts_pg_subscription] = {Schema_pg_subscription}; |
| 122 | |
| 123 | /* |
| 124 | * Hash tables that index the relation cache |
| 125 | * |
| 126 | * We used to index the cache by both name and OID, but now there |
| 127 | * is only an index by OID. |
| 128 | */ |
| 129 | typedef struct relidcacheent |
| 130 | { |
| 131 | Oid reloid; |
| 132 | Relation reldesc; |
| 133 | } RelIdCacheEnt; |
| 134 | |
| 135 | static HTAB *RelationIdCache; |
| 136 | |
| 137 | /* |
| 138 | * This flag is false until we have prepared the critical relcache entries |
| 139 | * that are needed to do indexscans on the tables read by relcache building. |
| 140 | */ |
| 141 | bool criticalRelcachesBuilt = false; |
| 142 | |
| 143 | /* |
| 144 | * This flag is false until we have prepared the critical relcache entries |
| 145 | * for shared catalogs (which are the tables needed for login). |
| 146 | */ |
| 147 | bool criticalSharedRelcachesBuilt = false; |
| 148 | |
| 149 | /* |
| 150 | * This counter counts relcache inval events received since backend startup |
| 151 | * (but only for rels that are actually in cache). Presently, we use it only |
| 152 | * to detect whether data about to be written by write_relcache_init_file() |
| 153 | * might already be obsolete. |
| 154 | */ |
| 155 | static long relcacheInvalsReceived = 0L; |
| 156 | |
| 157 | /* |
| 158 | * eoxact_list[] stores the OIDs of relations that (might) need AtEOXact |
| 159 | * cleanup work. This list intentionally has limited size; if it overflows, |
| 160 | * we fall back to scanning the whole hashtable. There is no value in a very |
| 161 | * large list because (1) at some point, a hash_seq_search scan is faster than |
| 162 | * retail lookups, and (2) the value of this is to reduce EOXact work for |
| 163 | * short transactions, which can't have dirtied all that many tables anyway. |
| 164 | * EOXactListAdd() does not bother to prevent duplicate list entries, so the |
| 165 | * cleanup processing must be idempotent. |
| 166 | */ |
| 167 | #define MAX_EOXACT_LIST 32 |
| 168 | static Oid eoxact_list[MAX_EOXACT_LIST]; |
| 169 | static int eoxact_list_len = 0; |
| 170 | static bool eoxact_list_overflowed = false; |
| 171 | |
| 172 | #define EOXactListAdd(rel) \ |
| 173 | do { \ |
| 174 | if (eoxact_list_len < MAX_EOXACT_LIST) \ |
| 175 | eoxact_list[eoxact_list_len++] = (rel)->rd_id; \ |
| 176 | else \ |
| 177 | eoxact_list_overflowed = true; \ |
| 178 | } while (0) |
| 179 | |
| 180 | /* |
| 181 | * EOXactTupleDescArray stores TupleDescs that (might) need AtEOXact |
| 182 | * cleanup work. The array expands as needed; there is no hashtable because |
| 183 | * we don't need to access individual items except at EOXact. |
| 184 | */ |
| 185 | static TupleDesc *EOXactTupleDescArray; |
| 186 | static int NextEOXactTupleDescNum = 0; |
| 187 | static int EOXactTupleDescArrayLen = 0; |
| 188 | |
| 189 | /* |
| 190 | * macros to manipulate the lookup hashtable |
| 191 | */ |
| 192 | #define RelationCacheInsert(RELATION, replace_allowed) \ |
| 193 | do { \ |
| 194 | RelIdCacheEnt *hentry; bool found; \ |
| 195 | hentry = (RelIdCacheEnt *) hash_search(RelationIdCache, \ |
| 196 | (void *) &((RELATION)->rd_id), \ |
| 197 | HASH_ENTER, &found); \ |
| 198 | if (found) \ |
| 199 | { \ |
| 200 | /* see comments in RelationBuildDesc and RelationBuildLocalRelation */ \ |
| 201 | Relation _old_rel = hentry->reldesc; \ |
| 202 | Assert(replace_allowed); \ |
| 203 | hentry->reldesc = (RELATION); \ |
| 204 | if (RelationHasReferenceCountZero(_old_rel)) \ |
| 205 | RelationDestroyRelation(_old_rel, false); \ |
| 206 | else if (!IsBootstrapProcessingMode()) \ |
| 207 | elog(WARNING, "leaking still-referenced relcache entry for \"%s\"", \ |
| 208 | RelationGetRelationName(_old_rel)); \ |
| 209 | } \ |
| 210 | else \ |
| 211 | hentry->reldesc = (RELATION); \ |
| 212 | } while(0) |
| 213 | |
| 214 | #define RelationIdCacheLookup(ID, RELATION) \ |
| 215 | do { \ |
| 216 | RelIdCacheEnt *hentry; \ |
| 217 | hentry = (RelIdCacheEnt *) hash_search(RelationIdCache, \ |
| 218 | (void *) &(ID), \ |
| 219 | HASH_FIND, NULL); \ |
| 220 | if (hentry) \ |
| 221 | RELATION = hentry->reldesc; \ |
| 222 | else \ |
| 223 | RELATION = NULL; \ |
| 224 | } while(0) |
| 225 | |
| 226 | #define RelationCacheDelete(RELATION) \ |
| 227 | do { \ |
| 228 | RelIdCacheEnt *hentry; \ |
| 229 | hentry = (RelIdCacheEnt *) hash_search(RelationIdCache, \ |
| 230 | (void *) &((RELATION)->rd_id), \ |
| 231 | HASH_REMOVE, NULL); \ |
| 232 | if (hentry == NULL) \ |
| 233 | elog(WARNING, "failed to delete relcache entry for OID %u", \ |
| 234 | (RELATION)->rd_id); \ |
| 235 | } while(0) |
| 236 | |
| 237 | |
| 238 | /* |
| 239 | * Special cache for opclass-related information |
| 240 | * |
| 241 | * Note: only default support procs get cached, ie, those with |
| 242 | * lefttype = righttype = opcintype. |
| 243 | */ |
| 244 | typedef struct opclasscacheent |
| 245 | { |
| 246 | Oid opclassoid; /* lookup key: OID of opclass */ |
| 247 | bool valid; /* set true after successful fill-in */ |
| 248 | StrategyNumber numSupport; /* max # of support procs (from pg_am) */ |
| 249 | Oid opcfamily; /* OID of opclass's family */ |
| 250 | Oid opcintype; /* OID of opclass's declared input type */ |
| 251 | RegProcedure *supportProcs; /* OIDs of support procedures */ |
| 252 | } OpClassCacheEnt; |
| 253 | |
| 254 | static HTAB *OpClassCache = NULL; |
| 255 | |
| 256 | |
| 257 | /* non-export function prototypes */ |
| 258 | |
| 259 | static void RelationDestroyRelation(Relation relation, bool remember_tupdesc); |
| 260 | static void RelationClearRelation(Relation relation, bool rebuild); |
| 261 | |
| 262 | static void RelationReloadIndexInfo(Relation relation); |
| 263 | static void RelationReloadNailed(Relation relation); |
| 264 | static void RelationFlushRelation(Relation relation); |
| 265 | static void RememberToFreeTupleDescAtEOX(TupleDesc td); |
| 266 | static void AtEOXact_cleanup(Relation relation, bool isCommit); |
| 267 | static void AtEOSubXact_cleanup(Relation relation, bool isCommit, |
| 268 | SubTransactionId mySubid, SubTransactionId parentSubid); |
| 269 | static bool load_relcache_init_file(bool shared); |
| 270 | static void write_relcache_init_file(bool shared); |
| 271 | static void write_item(const void *data, Size len, FILE *fp); |
| 272 | |
| 273 | static void formrdesc(const char *relationName, Oid relationReltype, |
| 274 | bool isshared, int natts, const FormData_pg_attribute *attrs); |
| 275 | |
| 276 | static HeapTuple ScanPgRelation(Oid targetRelId, bool indexOK, bool force_non_historic); |
| 277 | static Relation AllocateRelationDesc(Form_pg_class relp); |
| 278 | static void RelationParseRelOptions(Relation relation, HeapTuple tuple); |
| 279 | static void RelationBuildTupleDesc(Relation relation); |
| 280 | static Relation RelationBuildDesc(Oid targetRelId, bool insertIt); |
| 281 | static void RelationInitPhysicalAddr(Relation relation); |
| 282 | static void load_critical_index(Oid indexoid, Oid heapoid); |
| 283 | static TupleDesc GetPgClassDescriptor(void); |
| 284 | static TupleDesc GetPgIndexDescriptor(void); |
| 285 | static void AttrDefaultFetch(Relation relation); |
| 286 | static void CheckConstraintFetch(Relation relation); |
| 287 | static int CheckConstraintCmp(const void *a, const void *b); |
| 288 | static List *insert_ordered_oid(List *list, Oid datum); |
| 289 | static void InitIndexAmRoutine(Relation relation); |
| 290 | static void IndexSupportInitialize(oidvector *indclass, |
| 291 | RegProcedure *indexSupport, |
| 292 | Oid *opFamily, |
| 293 | Oid *opcInType, |
| 294 | StrategyNumber maxSupportNumber, |
| 295 | AttrNumber maxAttributeNumber); |
| 296 | static OpClassCacheEnt *LookupOpclassInfo(Oid operatorClassOid, |
| 297 | StrategyNumber numSupport); |
| 298 | static void RelationCacheInitFileRemoveInDir(const char *tblspcpath); |
| 299 | static void unlink_initfile(const char *initfilename, int elevel); |
| 300 | |
| 301 | |
| 302 | /* |
| 303 | * ScanPgRelation |
| 304 | * |
| 305 | * This is used by RelationBuildDesc to find a pg_class |
| 306 | * tuple matching targetRelId. The caller must hold at least |
| 307 | * AccessShareLock on the target relid to prevent concurrent-update |
| 308 | * scenarios; it isn't guaranteed that all scans used to build the |
| 309 | * relcache entry will use the same snapshot. If, for example, |
| 310 | * an attribute were to be added after scanning pg_class and before |
| 311 | * scanning pg_attribute, relnatts wouldn't match. |
| 312 | * |
| 313 | * NB: the returned tuple has been copied into palloc'd storage |
| 314 | * and must eventually be freed with heap_freetuple. |
| 315 | */ |
| 316 | static HeapTuple |
| 317 | ScanPgRelation(Oid targetRelId, bool indexOK, bool force_non_historic) |
| 318 | { |
| 319 | HeapTuple pg_class_tuple; |
| 320 | Relation pg_class_desc; |
| 321 | SysScanDesc pg_class_scan; |
| 322 | ScanKeyData key[1]; |
| 323 | Snapshot snapshot; |
| 324 | |
| 325 | /* |
| 326 | * If something goes wrong during backend startup, we might find ourselves |
| 327 | * trying to read pg_class before we've selected a database. That ain't |
| 328 | * gonna work, so bail out with a useful error message. If this happens, |
| 329 | * it probably means a relcache entry that needs to be nailed isn't. |
| 330 | */ |
| 331 | if (!OidIsValid(MyDatabaseId)) |
| 332 | elog(FATAL, "cannot read pg_class without having selected a database" ); |
| 333 | |
| 334 | /* |
| 335 | * form a scan key |
| 336 | */ |
| 337 | ScanKeyInit(&key[0], |
| 338 | Anum_pg_class_oid, |
| 339 | BTEqualStrategyNumber, F_OIDEQ, |
| 340 | ObjectIdGetDatum(targetRelId)); |
| 341 | |
| 342 | /* |
| 343 | * Open pg_class and fetch a tuple. Force heap scan if we haven't yet |
| 344 | * built the critical relcache entries (this includes initdb and startup |
| 345 | * without a pg_internal.init file). The caller can also force a heap |
| 346 | * scan by setting indexOK == false. |
| 347 | */ |
| 348 | pg_class_desc = table_open(RelationRelationId, AccessShareLock); |
| 349 | |
| 350 | /* |
| 351 | * The caller might need a tuple that's newer than the one the historic |
| 352 | * snapshot; currently the only case requiring to do so is looking up the |
| 353 | * relfilenode of non mapped system relations during decoding. |
| 354 | */ |
| 355 | if (force_non_historic) |
| 356 | snapshot = GetNonHistoricCatalogSnapshot(RelationRelationId); |
| 357 | else |
| 358 | snapshot = GetCatalogSnapshot(RelationRelationId); |
| 359 | |
| 360 | pg_class_scan = systable_beginscan(pg_class_desc, ClassOidIndexId, |
| 361 | indexOK && criticalRelcachesBuilt, |
| 362 | snapshot, |
| 363 | 1, key); |
| 364 | |
| 365 | pg_class_tuple = systable_getnext(pg_class_scan); |
| 366 | |
| 367 | /* |
| 368 | * Must copy tuple before releasing buffer. |
| 369 | */ |
| 370 | if (HeapTupleIsValid(pg_class_tuple)) |
| 371 | pg_class_tuple = heap_copytuple(pg_class_tuple); |
| 372 | |
| 373 | /* all done */ |
| 374 | systable_endscan(pg_class_scan); |
| 375 | table_close(pg_class_desc, AccessShareLock); |
| 376 | |
| 377 | return pg_class_tuple; |
| 378 | } |
| 379 | |
| 380 | /* |
| 381 | * AllocateRelationDesc |
| 382 | * |
| 383 | * This is used to allocate memory for a new relation descriptor |
| 384 | * and initialize the rd_rel field from the given pg_class tuple. |
| 385 | */ |
| 386 | static Relation |
| 387 | AllocateRelationDesc(Form_pg_class relp) |
| 388 | { |
| 389 | Relation relation; |
| 390 | MemoryContext oldcxt; |
| 391 | Form_pg_class relationForm; |
| 392 | |
| 393 | /* Relcache entries must live in CacheMemoryContext */ |
| 394 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 395 | |
| 396 | /* |
| 397 | * allocate and zero space for new relation descriptor |
| 398 | */ |
| 399 | relation = (Relation) palloc0(sizeof(RelationData)); |
| 400 | |
| 401 | /* make sure relation is marked as having no open file yet */ |
| 402 | relation->rd_smgr = NULL; |
| 403 | |
| 404 | /* |
| 405 | * Copy the relation tuple form |
| 406 | * |
| 407 | * We only allocate space for the fixed fields, ie, CLASS_TUPLE_SIZE. The |
| 408 | * variable-length fields (relacl, reloptions) are NOT stored in the |
| 409 | * relcache --- there'd be little point in it, since we don't copy the |
| 410 | * tuple's nulls bitmap and hence wouldn't know if the values are valid. |
| 411 | * Bottom line is that relacl *cannot* be retrieved from the relcache. Get |
| 412 | * it from the syscache if you need it. The same goes for the original |
| 413 | * form of reloptions (however, we do store the parsed form of reloptions |
| 414 | * in rd_options). |
| 415 | */ |
| 416 | relationForm = (Form_pg_class) palloc(CLASS_TUPLE_SIZE); |
| 417 | |
| 418 | memcpy(relationForm, relp, CLASS_TUPLE_SIZE); |
| 419 | |
| 420 | /* initialize relation tuple form */ |
| 421 | relation->rd_rel = relationForm; |
| 422 | |
| 423 | /* and allocate attribute tuple form storage */ |
| 424 | relation->rd_att = CreateTemplateTupleDesc(relationForm->relnatts); |
| 425 | /* which we mark as a reference-counted tupdesc */ |
| 426 | relation->rd_att->tdrefcount = 1; |
| 427 | |
| 428 | MemoryContextSwitchTo(oldcxt); |
| 429 | |
| 430 | return relation; |
| 431 | } |
| 432 | |
| 433 | /* |
| 434 | * RelationParseRelOptions |
| 435 | * Convert pg_class.reloptions into pre-parsed rd_options |
| 436 | * |
| 437 | * tuple is the real pg_class tuple (not rd_rel!) for relation |
| 438 | * |
| 439 | * Note: rd_rel and (if an index) rd_indam must be valid already |
| 440 | */ |
| 441 | static void |
| 442 | RelationParseRelOptions(Relation relation, HeapTuple tuple) |
| 443 | { |
| 444 | bytea *options; |
| 445 | amoptions_function amoptsfn; |
| 446 | |
| 447 | relation->rd_options = NULL; |
| 448 | |
| 449 | /* |
| 450 | * Look up any AM-specific parse function; fall out if relkind should not |
| 451 | * have options. |
| 452 | */ |
| 453 | switch (relation->rd_rel->relkind) |
| 454 | { |
| 455 | case RELKIND_RELATION: |
| 456 | case RELKIND_TOASTVALUE: |
| 457 | case RELKIND_VIEW: |
| 458 | case RELKIND_MATVIEW: |
| 459 | case RELKIND_PARTITIONED_TABLE: |
| 460 | amoptsfn = NULL; |
| 461 | break; |
| 462 | case RELKIND_INDEX: |
| 463 | case RELKIND_PARTITIONED_INDEX: |
| 464 | amoptsfn = relation->rd_indam->amoptions; |
| 465 | break; |
| 466 | default: |
| 467 | return; |
| 468 | } |
| 469 | |
| 470 | /* |
| 471 | * Fetch reloptions from tuple; have to use a hardwired descriptor because |
| 472 | * we might not have any other for pg_class yet (consider executing this |
| 473 | * code for pg_class itself) |
| 474 | */ |
| 475 | options = extractRelOptions(tuple, GetPgClassDescriptor(), amoptsfn); |
| 476 | |
| 477 | /* |
| 478 | * Copy parsed data into CacheMemoryContext. To guard against the |
| 479 | * possibility of leaks in the reloptions code, we want to do the actual |
| 480 | * parsing in the caller's memory context and copy the results into |
| 481 | * CacheMemoryContext after the fact. |
| 482 | */ |
| 483 | if (options) |
| 484 | { |
| 485 | relation->rd_options = MemoryContextAlloc(CacheMemoryContext, |
| 486 | VARSIZE(options)); |
| 487 | memcpy(relation->rd_options, options, VARSIZE(options)); |
| 488 | pfree(options); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * RelationBuildTupleDesc |
| 494 | * |
| 495 | * Form the relation's tuple descriptor from information in |
| 496 | * the pg_attribute, pg_attrdef & pg_constraint system catalogs. |
| 497 | */ |
| 498 | static void |
| 499 | RelationBuildTupleDesc(Relation relation) |
| 500 | { |
| 501 | HeapTuple pg_attribute_tuple; |
| 502 | Relation pg_attribute_desc; |
| 503 | SysScanDesc pg_attribute_scan; |
| 504 | ScanKeyData skey[2]; |
| 505 | int need; |
| 506 | TupleConstr *constr; |
| 507 | AttrDefault *attrdef = NULL; |
| 508 | AttrMissing *attrmiss = NULL; |
| 509 | int ndef = 0; |
| 510 | |
| 511 | /* copy some fields from pg_class row to rd_att */ |
| 512 | relation->rd_att->tdtypeid = relation->rd_rel->reltype; |
| 513 | relation->rd_att->tdtypmod = -1; /* unnecessary, but... */ |
| 514 | |
| 515 | constr = (TupleConstr *) MemoryContextAlloc(CacheMemoryContext, |
| 516 | sizeof(TupleConstr)); |
| 517 | constr->has_not_null = false; |
| 518 | constr->has_generated_stored = false; |
| 519 | |
| 520 | /* |
| 521 | * Form a scan key that selects only user attributes (attnum > 0). |
| 522 | * (Eliminating system attribute rows at the index level is lots faster |
| 523 | * than fetching them.) |
| 524 | */ |
| 525 | ScanKeyInit(&skey[0], |
| 526 | Anum_pg_attribute_attrelid, |
| 527 | BTEqualStrategyNumber, F_OIDEQ, |
| 528 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 529 | ScanKeyInit(&skey[1], |
| 530 | Anum_pg_attribute_attnum, |
| 531 | BTGreaterStrategyNumber, F_INT2GT, |
| 532 | Int16GetDatum(0)); |
| 533 | |
| 534 | /* |
| 535 | * Open pg_attribute and begin a scan. Force heap scan if we haven't yet |
| 536 | * built the critical relcache entries (this includes initdb and startup |
| 537 | * without a pg_internal.init file). |
| 538 | */ |
| 539 | pg_attribute_desc = table_open(AttributeRelationId, AccessShareLock); |
| 540 | pg_attribute_scan = systable_beginscan(pg_attribute_desc, |
| 541 | AttributeRelidNumIndexId, |
| 542 | criticalRelcachesBuilt, |
| 543 | NULL, |
| 544 | 2, skey); |
| 545 | |
| 546 | /* |
| 547 | * add attribute data to relation->rd_att |
| 548 | */ |
| 549 | need = RelationGetNumberOfAttributes(relation); |
| 550 | |
| 551 | while (HeapTupleIsValid(pg_attribute_tuple = systable_getnext(pg_attribute_scan))) |
| 552 | { |
| 553 | Form_pg_attribute attp; |
| 554 | int attnum; |
| 555 | |
| 556 | attp = (Form_pg_attribute) GETSTRUCT(pg_attribute_tuple); |
| 557 | |
| 558 | attnum = attp->attnum; |
| 559 | if (attnum <= 0 || attnum > RelationGetNumberOfAttributes(relation)) |
| 560 | elog(ERROR, "invalid attribute number %d for %s" , |
| 561 | attp->attnum, RelationGetRelationName(relation)); |
| 562 | |
| 563 | |
| 564 | memcpy(TupleDescAttr(relation->rd_att, attnum - 1), |
| 565 | attp, |
| 566 | ATTRIBUTE_FIXED_PART_SIZE); |
| 567 | |
| 568 | /* Update constraint/default info */ |
| 569 | if (attp->attnotnull) |
| 570 | constr->has_not_null = true; |
| 571 | if (attp->attgenerated == ATTRIBUTE_GENERATED_STORED) |
| 572 | constr->has_generated_stored = true; |
| 573 | |
| 574 | /* If the column has a default, fill it into the attrdef array */ |
| 575 | if (attp->atthasdef) |
| 576 | { |
| 577 | if (attrdef == NULL) |
| 578 | attrdef = (AttrDefault *) |
| 579 | MemoryContextAllocZero(CacheMemoryContext, |
| 580 | RelationGetNumberOfAttributes(relation) * |
| 581 | sizeof(AttrDefault)); |
| 582 | attrdef[ndef].adnum = attnum; |
| 583 | attrdef[ndef].adbin = NULL; |
| 584 | |
| 585 | ndef++; |
| 586 | } |
| 587 | |
| 588 | /* Likewise for a missing value */ |
| 589 | if (attp->atthasmissing) |
| 590 | { |
| 591 | Datum missingval; |
| 592 | bool missingNull; |
| 593 | |
| 594 | /* Do we have a missing value? */ |
| 595 | missingval = heap_getattr(pg_attribute_tuple, |
| 596 | Anum_pg_attribute_attmissingval, |
| 597 | pg_attribute_desc->rd_att, |
| 598 | &missingNull); |
| 599 | if (!missingNull) |
| 600 | { |
| 601 | /* Yes, fetch from the array */ |
| 602 | MemoryContext oldcxt; |
| 603 | bool is_null; |
| 604 | int one = 1; |
| 605 | Datum missval; |
| 606 | |
| 607 | if (attrmiss == NULL) |
| 608 | attrmiss = (AttrMissing *) |
| 609 | MemoryContextAllocZero(CacheMemoryContext, |
| 610 | relation->rd_rel->relnatts * |
| 611 | sizeof(AttrMissing)); |
| 612 | |
| 613 | missval = array_get_element(missingval, |
| 614 | 1, |
| 615 | &one, |
| 616 | -1, |
| 617 | attp->attlen, |
| 618 | attp->attbyval, |
| 619 | attp->attalign, |
| 620 | &is_null); |
| 621 | Assert(!is_null); |
| 622 | if (attp->attbyval) |
| 623 | { |
| 624 | /* for copy by val just copy the datum direct */ |
| 625 | attrmiss[attnum - 1].am_value = missval; |
| 626 | } |
| 627 | else |
| 628 | { |
| 629 | /* otherwise copy in the correct context */ |
| 630 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 631 | attrmiss[attnum - 1].am_value = datumCopy(missval, |
| 632 | attp->attbyval, |
| 633 | attp->attlen); |
| 634 | MemoryContextSwitchTo(oldcxt); |
| 635 | } |
| 636 | attrmiss[attnum - 1].am_present = true; |
| 637 | } |
| 638 | } |
| 639 | need--; |
| 640 | if (need == 0) |
| 641 | break; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * end the scan and close the attribute relation |
| 646 | */ |
| 647 | systable_endscan(pg_attribute_scan); |
| 648 | table_close(pg_attribute_desc, AccessShareLock); |
| 649 | |
| 650 | if (need != 0) |
| 651 | elog(ERROR, "catalog is missing %d attribute(s) for relid %u" , |
| 652 | need, RelationGetRelid(relation)); |
| 653 | |
| 654 | /* |
| 655 | * The attcacheoff values we read from pg_attribute should all be -1 |
| 656 | * ("unknown"). Verify this if assert checking is on. They will be |
| 657 | * computed when and if needed during tuple access. |
| 658 | */ |
| 659 | #ifdef USE_ASSERT_CHECKING |
| 660 | { |
| 661 | int i; |
| 662 | |
| 663 | for (i = 0; i < RelationGetNumberOfAttributes(relation); i++) |
| 664 | Assert(TupleDescAttr(relation->rd_att, i)->attcacheoff == -1); |
| 665 | } |
| 666 | #endif |
| 667 | |
| 668 | /* |
| 669 | * However, we can easily set the attcacheoff value for the first |
| 670 | * attribute: it must be zero. This eliminates the need for special cases |
| 671 | * for attnum=1 that used to exist in fastgetattr() and index_getattr(). |
| 672 | */ |
| 673 | if (RelationGetNumberOfAttributes(relation) > 0) |
| 674 | TupleDescAttr(relation->rd_att, 0)->attcacheoff = 0; |
| 675 | |
| 676 | /* |
| 677 | * Set up constraint/default info |
| 678 | */ |
| 679 | if (constr->has_not_null || ndef > 0 || |
| 680 | attrmiss || relation->rd_rel->relchecks) |
| 681 | { |
| 682 | relation->rd_att->constr = constr; |
| 683 | |
| 684 | if (ndef > 0) /* DEFAULTs */ |
| 685 | { |
| 686 | if (ndef < RelationGetNumberOfAttributes(relation)) |
| 687 | constr->defval = (AttrDefault *) |
| 688 | repalloc(attrdef, ndef * sizeof(AttrDefault)); |
| 689 | else |
| 690 | constr->defval = attrdef; |
| 691 | constr->num_defval = ndef; |
| 692 | AttrDefaultFetch(relation); |
| 693 | } |
| 694 | else |
| 695 | constr->num_defval = 0; |
| 696 | |
| 697 | constr->missing = attrmiss; |
| 698 | |
| 699 | if (relation->rd_rel->relchecks > 0) /* CHECKs */ |
| 700 | { |
| 701 | constr->num_check = relation->rd_rel->relchecks; |
| 702 | constr->check = (ConstrCheck *) |
| 703 | MemoryContextAllocZero(CacheMemoryContext, |
| 704 | constr->num_check * sizeof(ConstrCheck)); |
| 705 | CheckConstraintFetch(relation); |
| 706 | } |
| 707 | else |
| 708 | constr->num_check = 0; |
| 709 | } |
| 710 | else |
| 711 | { |
| 712 | pfree(constr); |
| 713 | relation->rd_att->constr = NULL; |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * RelationBuildRuleLock |
| 719 | * |
| 720 | * Form the relation's rewrite rules from information in |
| 721 | * the pg_rewrite system catalog. |
| 722 | * |
| 723 | * Note: The rule parsetrees are potentially very complex node structures. |
| 724 | * To allow these trees to be freed when the relcache entry is flushed, |
| 725 | * we make a private memory context to hold the RuleLock information for |
| 726 | * each relcache entry that has associated rules. The context is used |
| 727 | * just for rule info, not for any other subsidiary data of the relcache |
| 728 | * entry, because that keeps the update logic in RelationClearRelation() |
| 729 | * manageable. The other subsidiary data structures are simple enough |
| 730 | * to be easy to free explicitly, anyway. |
| 731 | */ |
| 732 | static void |
| 733 | RelationBuildRuleLock(Relation relation) |
| 734 | { |
| 735 | MemoryContext rulescxt; |
| 736 | MemoryContext oldcxt; |
| 737 | HeapTuple rewrite_tuple; |
| 738 | Relation rewrite_desc; |
| 739 | TupleDesc rewrite_tupdesc; |
| 740 | SysScanDesc rewrite_scan; |
| 741 | ScanKeyData key; |
| 742 | RuleLock *rulelock; |
| 743 | int numlocks; |
| 744 | RewriteRule **rules; |
| 745 | int maxlocks; |
| 746 | |
| 747 | /* |
| 748 | * Make the private context. Assume it'll not contain much data. |
| 749 | */ |
| 750 | rulescxt = AllocSetContextCreate(CacheMemoryContext, |
| 751 | "relation rules" , |
| 752 | ALLOCSET_SMALL_SIZES); |
| 753 | relation->rd_rulescxt = rulescxt; |
| 754 | MemoryContextCopyAndSetIdentifier(rulescxt, |
| 755 | RelationGetRelationName(relation)); |
| 756 | |
| 757 | /* |
| 758 | * allocate an array to hold the rewrite rules (the array is extended if |
| 759 | * necessary) |
| 760 | */ |
| 761 | maxlocks = 4; |
| 762 | rules = (RewriteRule **) |
| 763 | MemoryContextAlloc(rulescxt, sizeof(RewriteRule *) * maxlocks); |
| 764 | numlocks = 0; |
| 765 | |
| 766 | /* |
| 767 | * form a scan key |
| 768 | */ |
| 769 | ScanKeyInit(&key, |
| 770 | Anum_pg_rewrite_ev_class, |
| 771 | BTEqualStrategyNumber, F_OIDEQ, |
| 772 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 773 | |
| 774 | /* |
| 775 | * open pg_rewrite and begin a scan |
| 776 | * |
| 777 | * Note: since we scan the rules using RewriteRelRulenameIndexId, we will |
| 778 | * be reading the rules in name order, except possibly during |
| 779 | * emergency-recovery operations (ie, IgnoreSystemIndexes). This in turn |
| 780 | * ensures that rules will be fired in name order. |
| 781 | */ |
| 782 | rewrite_desc = table_open(RewriteRelationId, AccessShareLock); |
| 783 | rewrite_tupdesc = RelationGetDescr(rewrite_desc); |
| 784 | rewrite_scan = systable_beginscan(rewrite_desc, |
| 785 | RewriteRelRulenameIndexId, |
| 786 | true, NULL, |
| 787 | 1, &key); |
| 788 | |
| 789 | while (HeapTupleIsValid(rewrite_tuple = systable_getnext(rewrite_scan))) |
| 790 | { |
| 791 | Form_pg_rewrite rewrite_form = (Form_pg_rewrite) GETSTRUCT(rewrite_tuple); |
| 792 | bool isnull; |
| 793 | Datum rule_datum; |
| 794 | char *rule_str; |
| 795 | RewriteRule *rule; |
| 796 | |
| 797 | rule = (RewriteRule *) MemoryContextAlloc(rulescxt, |
| 798 | sizeof(RewriteRule)); |
| 799 | |
| 800 | rule->ruleId = rewrite_form->oid; |
| 801 | |
| 802 | rule->event = rewrite_form->ev_type - '0'; |
| 803 | rule->enabled = rewrite_form->ev_enabled; |
| 804 | rule->isInstead = rewrite_form->is_instead; |
| 805 | |
| 806 | /* |
| 807 | * Must use heap_getattr to fetch ev_action and ev_qual. Also, the |
| 808 | * rule strings are often large enough to be toasted. To avoid |
| 809 | * leaking memory in the caller's context, do the detoasting here so |
| 810 | * we can free the detoasted version. |
| 811 | */ |
| 812 | rule_datum = heap_getattr(rewrite_tuple, |
| 813 | Anum_pg_rewrite_ev_action, |
| 814 | rewrite_tupdesc, |
| 815 | &isnull); |
| 816 | Assert(!isnull); |
| 817 | rule_str = TextDatumGetCString(rule_datum); |
| 818 | oldcxt = MemoryContextSwitchTo(rulescxt); |
| 819 | rule->actions = (List *) stringToNode(rule_str); |
| 820 | MemoryContextSwitchTo(oldcxt); |
| 821 | pfree(rule_str); |
| 822 | |
| 823 | rule_datum = heap_getattr(rewrite_tuple, |
| 824 | Anum_pg_rewrite_ev_qual, |
| 825 | rewrite_tupdesc, |
| 826 | &isnull); |
| 827 | Assert(!isnull); |
| 828 | rule_str = TextDatumGetCString(rule_datum); |
| 829 | oldcxt = MemoryContextSwitchTo(rulescxt); |
| 830 | rule->qual = (Node *) stringToNode(rule_str); |
| 831 | MemoryContextSwitchTo(oldcxt); |
| 832 | pfree(rule_str); |
| 833 | |
| 834 | /* |
| 835 | * We want the rule's table references to be checked as though by the |
| 836 | * table owner, not the user referencing the rule. Therefore, scan |
| 837 | * through the rule's actions and set the checkAsUser field on all |
| 838 | * rtable entries. We have to look at the qual as well, in case it |
| 839 | * contains sublinks. |
| 840 | * |
| 841 | * The reason for doing this when the rule is loaded, rather than when |
| 842 | * it is stored, is that otherwise ALTER TABLE OWNER would have to |
| 843 | * grovel through stored rules to update checkAsUser fields. Scanning |
| 844 | * the rule tree during load is relatively cheap (compared to |
| 845 | * constructing it in the first place), so we do it here. |
| 846 | */ |
| 847 | setRuleCheckAsUser((Node *) rule->actions, relation->rd_rel->relowner); |
| 848 | setRuleCheckAsUser(rule->qual, relation->rd_rel->relowner); |
| 849 | |
| 850 | if (numlocks >= maxlocks) |
| 851 | { |
| 852 | maxlocks *= 2; |
| 853 | rules = (RewriteRule **) |
| 854 | repalloc(rules, sizeof(RewriteRule *) * maxlocks); |
| 855 | } |
| 856 | rules[numlocks++] = rule; |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * end the scan and close the attribute relation |
| 861 | */ |
| 862 | systable_endscan(rewrite_scan); |
| 863 | table_close(rewrite_desc, AccessShareLock); |
| 864 | |
| 865 | /* |
| 866 | * there might not be any rules (if relhasrules is out-of-date) |
| 867 | */ |
| 868 | if (numlocks == 0) |
| 869 | { |
| 870 | relation->rd_rules = NULL; |
| 871 | relation->rd_rulescxt = NULL; |
| 872 | MemoryContextDelete(rulescxt); |
| 873 | return; |
| 874 | } |
| 875 | |
| 876 | /* |
| 877 | * form a RuleLock and insert into relation |
| 878 | */ |
| 879 | rulelock = (RuleLock *) MemoryContextAlloc(rulescxt, sizeof(RuleLock)); |
| 880 | rulelock->numLocks = numlocks; |
| 881 | rulelock->rules = rules; |
| 882 | |
| 883 | relation->rd_rules = rulelock; |
| 884 | } |
| 885 | |
| 886 | /* |
| 887 | * equalRuleLocks |
| 888 | * |
| 889 | * Determine whether two RuleLocks are equivalent |
| 890 | * |
| 891 | * Probably this should be in the rules code someplace... |
| 892 | */ |
| 893 | static bool |
| 894 | equalRuleLocks(RuleLock *rlock1, RuleLock *rlock2) |
| 895 | { |
| 896 | int i; |
| 897 | |
| 898 | /* |
| 899 | * As of 7.3 we assume the rule ordering is repeatable, because |
| 900 | * RelationBuildRuleLock should read 'em in a consistent order. So just |
| 901 | * compare corresponding slots. |
| 902 | */ |
| 903 | if (rlock1 != NULL) |
| 904 | { |
| 905 | if (rlock2 == NULL) |
| 906 | return false; |
| 907 | if (rlock1->numLocks != rlock2->numLocks) |
| 908 | return false; |
| 909 | for (i = 0; i < rlock1->numLocks; i++) |
| 910 | { |
| 911 | RewriteRule *rule1 = rlock1->rules[i]; |
| 912 | RewriteRule *rule2 = rlock2->rules[i]; |
| 913 | |
| 914 | if (rule1->ruleId != rule2->ruleId) |
| 915 | return false; |
| 916 | if (rule1->event != rule2->event) |
| 917 | return false; |
| 918 | if (rule1->enabled != rule2->enabled) |
| 919 | return false; |
| 920 | if (rule1->isInstead != rule2->isInstead) |
| 921 | return false; |
| 922 | if (!equal(rule1->qual, rule2->qual)) |
| 923 | return false; |
| 924 | if (!equal(rule1->actions, rule2->actions)) |
| 925 | return false; |
| 926 | } |
| 927 | } |
| 928 | else if (rlock2 != NULL) |
| 929 | return false; |
| 930 | return true; |
| 931 | } |
| 932 | |
| 933 | /* |
| 934 | * equalPolicy |
| 935 | * |
| 936 | * Determine whether two policies are equivalent |
| 937 | */ |
| 938 | static bool |
| 939 | equalPolicy(RowSecurityPolicy *policy1, RowSecurityPolicy *policy2) |
| 940 | { |
| 941 | int i; |
| 942 | Oid *r1, |
| 943 | *r2; |
| 944 | |
| 945 | if (policy1 != NULL) |
| 946 | { |
| 947 | if (policy2 == NULL) |
| 948 | return false; |
| 949 | |
| 950 | if (policy1->polcmd != policy2->polcmd) |
| 951 | return false; |
| 952 | if (policy1->hassublinks != policy2->hassublinks) |
| 953 | return false; |
| 954 | if (strcmp(policy1->policy_name, policy2->policy_name) != 0) |
| 955 | return false; |
| 956 | if (ARR_DIMS(policy1->roles)[0] != ARR_DIMS(policy2->roles)[0]) |
| 957 | return false; |
| 958 | |
| 959 | r1 = (Oid *) ARR_DATA_PTR(policy1->roles); |
| 960 | r2 = (Oid *) ARR_DATA_PTR(policy2->roles); |
| 961 | |
| 962 | for (i = 0; i < ARR_DIMS(policy1->roles)[0]; i++) |
| 963 | { |
| 964 | if (r1[i] != r2[i]) |
| 965 | return false; |
| 966 | } |
| 967 | |
| 968 | if (!equal(policy1->qual, policy2->qual)) |
| 969 | return false; |
| 970 | if (!equal(policy1->with_check_qual, policy2->with_check_qual)) |
| 971 | return false; |
| 972 | } |
| 973 | else if (policy2 != NULL) |
| 974 | return false; |
| 975 | |
| 976 | return true; |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | * equalRSDesc |
| 981 | * |
| 982 | * Determine whether two RowSecurityDesc's are equivalent |
| 983 | */ |
| 984 | static bool |
| 985 | equalRSDesc(RowSecurityDesc *rsdesc1, RowSecurityDesc *rsdesc2) |
| 986 | { |
| 987 | ListCell *lc, |
| 988 | *rc; |
| 989 | |
| 990 | if (rsdesc1 == NULL && rsdesc2 == NULL) |
| 991 | return true; |
| 992 | |
| 993 | if ((rsdesc1 != NULL && rsdesc2 == NULL) || |
| 994 | (rsdesc1 == NULL && rsdesc2 != NULL)) |
| 995 | return false; |
| 996 | |
| 997 | if (list_length(rsdesc1->policies) != list_length(rsdesc2->policies)) |
| 998 | return false; |
| 999 | |
| 1000 | /* RelationBuildRowSecurity should build policies in order */ |
| 1001 | forboth(lc, rsdesc1->policies, rc, rsdesc2->policies) |
| 1002 | { |
| 1003 | RowSecurityPolicy *l = (RowSecurityPolicy *) lfirst(lc); |
| 1004 | RowSecurityPolicy *r = (RowSecurityPolicy *) lfirst(rc); |
| 1005 | |
| 1006 | if (!equalPolicy(l, r)) |
| 1007 | return false; |
| 1008 | } |
| 1009 | |
| 1010 | return true; |
| 1011 | } |
| 1012 | |
| 1013 | /* |
| 1014 | * RelationBuildDesc |
| 1015 | * |
| 1016 | * Build a relation descriptor. The caller must hold at least |
| 1017 | * AccessShareLock on the target relid. |
| 1018 | * |
| 1019 | * The new descriptor is inserted into the hash table if insertIt is true. |
| 1020 | * |
| 1021 | * Returns NULL if no pg_class row could be found for the given relid |
| 1022 | * (suggesting we are trying to access a just-deleted relation). |
| 1023 | * Any other error is reported via elog. |
| 1024 | */ |
| 1025 | static Relation |
| 1026 | RelationBuildDesc(Oid targetRelId, bool insertIt) |
| 1027 | { |
| 1028 | Relation relation; |
| 1029 | Oid relid; |
| 1030 | HeapTuple pg_class_tuple; |
| 1031 | Form_pg_class relp; |
| 1032 | |
| 1033 | /* |
| 1034 | * This function and its subroutines can allocate a good deal of transient |
| 1035 | * data in CurrentMemoryContext. Traditionally we've just leaked that |
| 1036 | * data, reasoning that the caller's context is at worst of transaction |
| 1037 | * scope, and relcache loads shouldn't happen so often that it's essential |
| 1038 | * to recover transient data before end of statement/transaction. However |
| 1039 | * that's definitely not true in clobber-cache test builds, and perhaps |
| 1040 | * it's not true in other cases. If RECOVER_RELATION_BUILD_MEMORY is not |
| 1041 | * zero, arrange to allocate the junk in a temporary context that we'll |
| 1042 | * free before returning. Make it a child of caller's context so that it |
| 1043 | * will get cleaned up appropriately if we error out partway through. |
| 1044 | */ |
| 1045 | #if RECOVER_RELATION_BUILD_MEMORY |
| 1046 | MemoryContext tmpcxt; |
| 1047 | MemoryContext oldcxt; |
| 1048 | |
| 1049 | tmpcxt = AllocSetContextCreate(CurrentMemoryContext, |
| 1050 | "RelationBuildDesc workspace" , |
| 1051 | ALLOCSET_DEFAULT_SIZES); |
| 1052 | oldcxt = MemoryContextSwitchTo(tmpcxt); |
| 1053 | #endif |
| 1054 | |
| 1055 | /* |
| 1056 | * find the tuple in pg_class corresponding to the given relation id |
| 1057 | */ |
| 1058 | pg_class_tuple = ScanPgRelation(targetRelId, true, false); |
| 1059 | |
| 1060 | /* |
| 1061 | * if no such tuple exists, return NULL |
| 1062 | */ |
| 1063 | if (!HeapTupleIsValid(pg_class_tuple)) |
| 1064 | { |
| 1065 | #if RECOVER_RELATION_BUILD_MEMORY |
| 1066 | /* Return to caller's context, and blow away the temporary context */ |
| 1067 | MemoryContextSwitchTo(oldcxt); |
| 1068 | MemoryContextDelete(tmpcxt); |
| 1069 | #endif |
| 1070 | return NULL; |
| 1071 | } |
| 1072 | |
| 1073 | /* |
| 1074 | * get information from the pg_class_tuple |
| 1075 | */ |
| 1076 | relp = (Form_pg_class) GETSTRUCT(pg_class_tuple); |
| 1077 | relid = relp->oid; |
| 1078 | Assert(relid == targetRelId); |
| 1079 | |
| 1080 | /* |
| 1081 | * allocate storage for the relation descriptor, and copy pg_class_tuple |
| 1082 | * to relation->rd_rel. |
| 1083 | */ |
| 1084 | relation = AllocateRelationDesc(relp); |
| 1085 | |
| 1086 | /* |
| 1087 | * initialize the relation's relation id (relation->rd_id) |
| 1088 | */ |
| 1089 | RelationGetRelid(relation) = relid; |
| 1090 | |
| 1091 | /* |
| 1092 | * normal relations are not nailed into the cache; nor can a pre-existing |
| 1093 | * relation be new. It could be temp though. (Actually, it could be new |
| 1094 | * too, but it's okay to forget that fact if forced to flush the entry.) |
| 1095 | */ |
| 1096 | relation->rd_refcnt = 0; |
| 1097 | relation->rd_isnailed = false; |
| 1098 | relation->rd_createSubid = InvalidSubTransactionId; |
| 1099 | relation->rd_newRelfilenodeSubid = InvalidSubTransactionId; |
| 1100 | switch (relation->rd_rel->relpersistence) |
| 1101 | { |
| 1102 | case RELPERSISTENCE_UNLOGGED: |
| 1103 | case RELPERSISTENCE_PERMANENT: |
| 1104 | relation->rd_backend = InvalidBackendId; |
| 1105 | relation->rd_islocaltemp = false; |
| 1106 | break; |
| 1107 | case RELPERSISTENCE_TEMP: |
| 1108 | if (isTempOrTempToastNamespace(relation->rd_rel->relnamespace)) |
| 1109 | { |
| 1110 | relation->rd_backend = BackendIdForTempRelations(); |
| 1111 | relation->rd_islocaltemp = true; |
| 1112 | } |
| 1113 | else |
| 1114 | { |
| 1115 | /* |
| 1116 | * If it's a temp table, but not one of ours, we have to use |
| 1117 | * the slow, grotty method to figure out the owning backend. |
| 1118 | * |
| 1119 | * Note: it's possible that rd_backend gets set to MyBackendId |
| 1120 | * here, in case we are looking at a pg_class entry left over |
| 1121 | * from a crashed backend that coincidentally had the same |
| 1122 | * BackendId we're using. We should *not* consider such a |
| 1123 | * table to be "ours"; this is why we need the separate |
| 1124 | * rd_islocaltemp flag. The pg_class entry will get flushed |
| 1125 | * if/when we clean out the corresponding temp table namespace |
| 1126 | * in preparation for using it. |
| 1127 | */ |
| 1128 | relation->rd_backend = |
| 1129 | GetTempNamespaceBackendId(relation->rd_rel->relnamespace); |
| 1130 | Assert(relation->rd_backend != InvalidBackendId); |
| 1131 | relation->rd_islocaltemp = false; |
| 1132 | } |
| 1133 | break; |
| 1134 | default: |
| 1135 | elog(ERROR, "invalid relpersistence: %c" , |
| 1136 | relation->rd_rel->relpersistence); |
| 1137 | break; |
| 1138 | } |
| 1139 | |
| 1140 | /* |
| 1141 | * initialize the tuple descriptor (relation->rd_att). |
| 1142 | */ |
| 1143 | RelationBuildTupleDesc(relation); |
| 1144 | |
| 1145 | /* |
| 1146 | * Fetch rules and triggers that affect this relation |
| 1147 | */ |
| 1148 | if (relation->rd_rel->relhasrules) |
| 1149 | RelationBuildRuleLock(relation); |
| 1150 | else |
| 1151 | { |
| 1152 | relation->rd_rules = NULL; |
| 1153 | relation->rd_rulescxt = NULL; |
| 1154 | } |
| 1155 | |
| 1156 | if (relation->rd_rel->relhastriggers) |
| 1157 | RelationBuildTriggers(relation); |
| 1158 | else |
| 1159 | relation->trigdesc = NULL; |
| 1160 | |
| 1161 | if (relation->rd_rel->relrowsecurity) |
| 1162 | RelationBuildRowSecurity(relation); |
| 1163 | else |
| 1164 | relation->rd_rsdesc = NULL; |
| 1165 | |
| 1166 | /* foreign key data is not loaded till asked for */ |
| 1167 | relation->rd_fkeylist = NIL; |
| 1168 | relation->rd_fkeyvalid = false; |
| 1169 | |
| 1170 | /* if a partitioned table, initialize key and partition descriptor info */ |
| 1171 | if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE) |
| 1172 | { |
| 1173 | RelationBuildPartitionKey(relation); |
| 1174 | RelationBuildPartitionDesc(relation); |
| 1175 | } |
| 1176 | else |
| 1177 | { |
| 1178 | relation->rd_partkey = NULL; |
| 1179 | relation->rd_partkeycxt = NULL; |
| 1180 | relation->rd_partdesc = NULL; |
| 1181 | relation->rd_pdcxt = NULL; |
| 1182 | } |
| 1183 | /* ... but partcheck is not loaded till asked for */ |
| 1184 | relation->rd_partcheck = NIL; |
| 1185 | relation->rd_partcheckvalid = false; |
| 1186 | relation->rd_partcheckcxt = NULL; |
| 1187 | |
| 1188 | /* |
| 1189 | * initialize access method information |
| 1190 | */ |
| 1191 | switch (relation->rd_rel->relkind) |
| 1192 | { |
| 1193 | case RELKIND_INDEX: |
| 1194 | case RELKIND_PARTITIONED_INDEX: |
| 1195 | Assert(relation->rd_rel->relam != InvalidOid); |
| 1196 | RelationInitIndexAccessInfo(relation); |
| 1197 | break; |
| 1198 | case RELKIND_RELATION: |
| 1199 | case RELKIND_TOASTVALUE: |
| 1200 | case RELKIND_MATVIEW: |
| 1201 | Assert(relation->rd_rel->relam != InvalidOid); |
| 1202 | RelationInitTableAccessMethod(relation); |
| 1203 | break; |
| 1204 | case RELKIND_SEQUENCE: |
| 1205 | Assert(relation->rd_rel->relam == InvalidOid); |
| 1206 | RelationInitTableAccessMethod(relation); |
| 1207 | break; |
| 1208 | case RELKIND_VIEW: |
| 1209 | case RELKIND_COMPOSITE_TYPE: |
| 1210 | case RELKIND_FOREIGN_TABLE: |
| 1211 | case RELKIND_PARTITIONED_TABLE: |
| 1212 | Assert(relation->rd_rel->relam == InvalidOid); |
| 1213 | break; |
| 1214 | } |
| 1215 | |
| 1216 | /* extract reloptions if any */ |
| 1217 | RelationParseRelOptions(relation, pg_class_tuple); |
| 1218 | |
| 1219 | /* |
| 1220 | * initialize the relation lock manager information |
| 1221 | */ |
| 1222 | RelationInitLockInfo(relation); /* see lmgr.c */ |
| 1223 | |
| 1224 | /* |
| 1225 | * initialize physical addressing information for the relation |
| 1226 | */ |
| 1227 | RelationInitPhysicalAddr(relation); |
| 1228 | |
| 1229 | /* make sure relation is marked as having no open file yet */ |
| 1230 | relation->rd_smgr = NULL; |
| 1231 | |
| 1232 | /* |
| 1233 | * now we can free the memory allocated for pg_class_tuple |
| 1234 | */ |
| 1235 | heap_freetuple(pg_class_tuple); |
| 1236 | |
| 1237 | /* |
| 1238 | * Insert newly created relation into relcache hash table, if requested. |
| 1239 | * |
| 1240 | * There is one scenario in which we might find a hashtable entry already |
| 1241 | * present, even though our caller failed to find it: if the relation is a |
| 1242 | * system catalog or index that's used during relcache load, we might have |
| 1243 | * recursively created the same relcache entry during the preceding steps. |
| 1244 | * So allow RelationCacheInsert to delete any already-present relcache |
| 1245 | * entry for the same OID. The already-present entry should have refcount |
| 1246 | * zero (else somebody forgot to close it); in the event that it doesn't, |
| 1247 | * we'll elog a WARNING and leak the already-present entry. |
| 1248 | */ |
| 1249 | if (insertIt) |
| 1250 | RelationCacheInsert(relation, true); |
| 1251 | |
| 1252 | /* It's fully valid */ |
| 1253 | relation->rd_isvalid = true; |
| 1254 | |
| 1255 | #if RECOVER_RELATION_BUILD_MEMORY |
| 1256 | /* Return to caller's context, and blow away the temporary context */ |
| 1257 | MemoryContextSwitchTo(oldcxt); |
| 1258 | MemoryContextDelete(tmpcxt); |
| 1259 | #endif |
| 1260 | |
| 1261 | return relation; |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | * Initialize the physical addressing info (RelFileNode) for a relcache entry |
| 1266 | * |
| 1267 | * Note: at the physical level, relations in the pg_global tablespace must |
| 1268 | * be treated as shared, even if relisshared isn't set. Hence we do not |
| 1269 | * look at relisshared here. |
| 1270 | */ |
| 1271 | static void |
| 1272 | RelationInitPhysicalAddr(Relation relation) |
| 1273 | { |
| 1274 | /* these relations kinds never have storage */ |
| 1275 | if (!RELKIND_HAS_STORAGE(relation->rd_rel->relkind)) |
| 1276 | return; |
| 1277 | |
| 1278 | if (relation->rd_rel->reltablespace) |
| 1279 | relation->rd_node.spcNode = relation->rd_rel->reltablespace; |
| 1280 | else |
| 1281 | relation->rd_node.spcNode = MyDatabaseTableSpace; |
| 1282 | if (relation->rd_node.spcNode == GLOBALTABLESPACE_OID) |
| 1283 | relation->rd_node.dbNode = InvalidOid; |
| 1284 | else |
| 1285 | relation->rd_node.dbNode = MyDatabaseId; |
| 1286 | |
| 1287 | if (relation->rd_rel->relfilenode) |
| 1288 | { |
| 1289 | /* |
| 1290 | * Even if we are using a decoding snapshot that doesn't represent the |
| 1291 | * current state of the catalog we need to make sure the filenode |
| 1292 | * points to the current file since the older file will be gone (or |
| 1293 | * truncated). The new file will still contain older rows so lookups |
| 1294 | * in them will work correctly. This wouldn't work correctly if |
| 1295 | * rewrites were allowed to change the schema in an incompatible way, |
| 1296 | * but those are prevented both on catalog tables and on user tables |
| 1297 | * declared as additional catalog tables. |
| 1298 | */ |
| 1299 | if (HistoricSnapshotActive() |
| 1300 | && RelationIsAccessibleInLogicalDecoding(relation) |
| 1301 | && IsTransactionState()) |
| 1302 | { |
| 1303 | HeapTuple phys_tuple; |
| 1304 | Form_pg_class physrel; |
| 1305 | |
| 1306 | phys_tuple = ScanPgRelation(RelationGetRelid(relation), |
| 1307 | RelationGetRelid(relation) != ClassOidIndexId, |
| 1308 | true); |
| 1309 | if (!HeapTupleIsValid(phys_tuple)) |
| 1310 | elog(ERROR, "could not find pg_class entry for %u" , |
| 1311 | RelationGetRelid(relation)); |
| 1312 | physrel = (Form_pg_class) GETSTRUCT(phys_tuple); |
| 1313 | |
| 1314 | relation->rd_rel->reltablespace = physrel->reltablespace; |
| 1315 | relation->rd_rel->relfilenode = physrel->relfilenode; |
| 1316 | heap_freetuple(phys_tuple); |
| 1317 | } |
| 1318 | |
| 1319 | relation->rd_node.relNode = relation->rd_rel->relfilenode; |
| 1320 | } |
| 1321 | else |
| 1322 | { |
| 1323 | /* Consult the relation mapper */ |
| 1324 | relation->rd_node.relNode = |
| 1325 | RelationMapOidToFilenode(relation->rd_id, |
| 1326 | relation->rd_rel->relisshared); |
| 1327 | if (!OidIsValid(relation->rd_node.relNode)) |
| 1328 | elog(ERROR, "could not find relation mapping for relation \"%s\", OID %u" , |
| 1329 | RelationGetRelationName(relation), relation->rd_id); |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * Fill in the IndexAmRoutine for an index relation. |
| 1335 | * |
| 1336 | * relation's rd_amhandler and rd_indexcxt must be valid already. |
| 1337 | */ |
| 1338 | static void |
| 1339 | InitIndexAmRoutine(Relation relation) |
| 1340 | { |
| 1341 | IndexAmRoutine *cached, |
| 1342 | *tmp; |
| 1343 | |
| 1344 | /* |
| 1345 | * Call the amhandler in current, short-lived memory context, just in case |
| 1346 | * it leaks anything (it probably won't, but let's be paranoid). |
| 1347 | */ |
| 1348 | tmp = GetIndexAmRoutine(relation->rd_amhandler); |
| 1349 | |
| 1350 | /* OK, now transfer the data into relation's rd_indexcxt. */ |
| 1351 | cached = (IndexAmRoutine *) MemoryContextAlloc(relation->rd_indexcxt, |
| 1352 | sizeof(IndexAmRoutine)); |
| 1353 | memcpy(cached, tmp, sizeof(IndexAmRoutine)); |
| 1354 | relation->rd_indam = cached; |
| 1355 | |
| 1356 | pfree(tmp); |
| 1357 | } |
| 1358 | |
| 1359 | /* |
| 1360 | * Initialize index-access-method support data for an index relation |
| 1361 | */ |
| 1362 | void |
| 1363 | RelationInitIndexAccessInfo(Relation relation) |
| 1364 | { |
| 1365 | HeapTuple tuple; |
| 1366 | Form_pg_am aform; |
| 1367 | Datum indcollDatum; |
| 1368 | Datum indclassDatum; |
| 1369 | Datum indoptionDatum; |
| 1370 | bool isnull; |
| 1371 | oidvector *indcoll; |
| 1372 | oidvector *indclass; |
| 1373 | int2vector *indoption; |
| 1374 | MemoryContext indexcxt; |
| 1375 | MemoryContext oldcontext; |
| 1376 | int indnatts; |
| 1377 | int indnkeyatts; |
| 1378 | uint16 amsupport; |
| 1379 | |
| 1380 | /* |
| 1381 | * Make a copy of the pg_index entry for the index. Since pg_index |
| 1382 | * contains variable-length and possibly-null fields, we have to do this |
| 1383 | * honestly rather than just treating it as a Form_pg_index struct. |
| 1384 | */ |
| 1385 | tuple = SearchSysCache1(INDEXRELID, |
| 1386 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 1387 | if (!HeapTupleIsValid(tuple)) |
| 1388 | elog(ERROR, "cache lookup failed for index %u" , |
| 1389 | RelationGetRelid(relation)); |
| 1390 | oldcontext = MemoryContextSwitchTo(CacheMemoryContext); |
| 1391 | relation->rd_indextuple = heap_copytuple(tuple); |
| 1392 | relation->rd_index = (Form_pg_index) GETSTRUCT(relation->rd_indextuple); |
| 1393 | MemoryContextSwitchTo(oldcontext); |
| 1394 | ReleaseSysCache(tuple); |
| 1395 | |
| 1396 | /* |
| 1397 | * Look up the index's access method, save the OID of its handler function |
| 1398 | */ |
| 1399 | tuple = SearchSysCache1(AMOID, ObjectIdGetDatum(relation->rd_rel->relam)); |
| 1400 | if (!HeapTupleIsValid(tuple)) |
| 1401 | elog(ERROR, "cache lookup failed for access method %u" , |
| 1402 | relation->rd_rel->relam); |
| 1403 | aform = (Form_pg_am) GETSTRUCT(tuple); |
| 1404 | relation->rd_amhandler = aform->amhandler; |
| 1405 | ReleaseSysCache(tuple); |
| 1406 | |
| 1407 | indnatts = RelationGetNumberOfAttributes(relation); |
| 1408 | if (indnatts != IndexRelationGetNumberOfAttributes(relation)) |
| 1409 | elog(ERROR, "relnatts disagrees with indnatts for index %u" , |
| 1410 | RelationGetRelid(relation)); |
| 1411 | indnkeyatts = IndexRelationGetNumberOfKeyAttributes(relation); |
| 1412 | |
| 1413 | /* |
| 1414 | * Make the private context to hold index access info. The reason we need |
| 1415 | * a context, and not just a couple of pallocs, is so that we won't leak |
| 1416 | * any subsidiary info attached to fmgr lookup records. |
| 1417 | */ |
| 1418 | indexcxt = AllocSetContextCreate(CacheMemoryContext, |
| 1419 | "index info" , |
| 1420 | ALLOCSET_SMALL_SIZES); |
| 1421 | relation->rd_indexcxt = indexcxt; |
| 1422 | MemoryContextCopyAndSetIdentifier(indexcxt, |
| 1423 | RelationGetRelationName(relation)); |
| 1424 | |
| 1425 | /* |
| 1426 | * Now we can fetch the index AM's API struct |
| 1427 | */ |
| 1428 | InitIndexAmRoutine(relation); |
| 1429 | |
| 1430 | /* |
| 1431 | * Allocate arrays to hold data. Opclasses are not used for included |
| 1432 | * columns, so allocate them for indnkeyatts only. |
| 1433 | */ |
| 1434 | relation->rd_opfamily = (Oid *) |
| 1435 | MemoryContextAllocZero(indexcxt, indnkeyatts * sizeof(Oid)); |
| 1436 | relation->rd_opcintype = (Oid *) |
| 1437 | MemoryContextAllocZero(indexcxt, indnkeyatts * sizeof(Oid)); |
| 1438 | |
| 1439 | amsupport = relation->rd_indam->amsupport; |
| 1440 | if (amsupport > 0) |
| 1441 | { |
| 1442 | int nsupport = indnatts * amsupport; |
| 1443 | |
| 1444 | relation->rd_support = (RegProcedure *) |
| 1445 | MemoryContextAllocZero(indexcxt, nsupport * sizeof(RegProcedure)); |
| 1446 | relation->rd_supportinfo = (FmgrInfo *) |
| 1447 | MemoryContextAllocZero(indexcxt, nsupport * sizeof(FmgrInfo)); |
| 1448 | } |
| 1449 | else |
| 1450 | { |
| 1451 | relation->rd_support = NULL; |
| 1452 | relation->rd_supportinfo = NULL; |
| 1453 | } |
| 1454 | |
| 1455 | relation->rd_indcollation = (Oid *) |
| 1456 | MemoryContextAllocZero(indexcxt, indnkeyatts * sizeof(Oid)); |
| 1457 | |
| 1458 | relation->rd_indoption = (int16 *) |
| 1459 | MemoryContextAllocZero(indexcxt, indnkeyatts * sizeof(int16)); |
| 1460 | |
| 1461 | /* |
| 1462 | * indcollation cannot be referenced directly through the C struct, |
| 1463 | * because it comes after the variable-width indkey field. Must extract |
| 1464 | * the datum the hard way... |
| 1465 | */ |
| 1466 | indcollDatum = fastgetattr(relation->rd_indextuple, |
| 1467 | Anum_pg_index_indcollation, |
| 1468 | GetPgIndexDescriptor(), |
| 1469 | &isnull); |
| 1470 | Assert(!isnull); |
| 1471 | indcoll = (oidvector *) DatumGetPointer(indcollDatum); |
| 1472 | memcpy(relation->rd_indcollation, indcoll->values, indnkeyatts * sizeof(Oid)); |
| 1473 | |
| 1474 | /* |
| 1475 | * indclass cannot be referenced directly through the C struct, because it |
| 1476 | * comes after the variable-width indkey field. Must extract the datum |
| 1477 | * the hard way... |
| 1478 | */ |
| 1479 | indclassDatum = fastgetattr(relation->rd_indextuple, |
| 1480 | Anum_pg_index_indclass, |
| 1481 | GetPgIndexDescriptor(), |
| 1482 | &isnull); |
| 1483 | Assert(!isnull); |
| 1484 | indclass = (oidvector *) DatumGetPointer(indclassDatum); |
| 1485 | |
| 1486 | /* |
| 1487 | * Fill the support procedure OID array, as well as the info about |
| 1488 | * opfamilies and opclass input types. (aminfo and supportinfo are left |
| 1489 | * as zeroes, and are filled on-the-fly when used) |
| 1490 | */ |
| 1491 | IndexSupportInitialize(indclass, relation->rd_support, |
| 1492 | relation->rd_opfamily, relation->rd_opcintype, |
| 1493 | amsupport, indnkeyatts); |
| 1494 | |
| 1495 | /* |
| 1496 | * Similarly extract indoption and copy it to the cache entry |
| 1497 | */ |
| 1498 | indoptionDatum = fastgetattr(relation->rd_indextuple, |
| 1499 | Anum_pg_index_indoption, |
| 1500 | GetPgIndexDescriptor(), |
| 1501 | &isnull); |
| 1502 | Assert(!isnull); |
| 1503 | indoption = (int2vector *) DatumGetPointer(indoptionDatum); |
| 1504 | memcpy(relation->rd_indoption, indoption->values, indnkeyatts * sizeof(int16)); |
| 1505 | |
| 1506 | /* |
| 1507 | * expressions, predicate, exclusion caches will be filled later |
| 1508 | */ |
| 1509 | relation->rd_indexprs = NIL; |
| 1510 | relation->rd_indpred = NIL; |
| 1511 | relation->rd_exclops = NULL; |
| 1512 | relation->rd_exclprocs = NULL; |
| 1513 | relation->rd_exclstrats = NULL; |
| 1514 | relation->rd_amcache = NULL; |
| 1515 | } |
| 1516 | |
| 1517 | /* |
| 1518 | * IndexSupportInitialize |
| 1519 | * Initializes an index's cached opclass information, |
| 1520 | * given the index's pg_index.indclass entry. |
| 1521 | * |
| 1522 | * Data is returned into *indexSupport, *opFamily, and *opcInType, |
| 1523 | * which are arrays allocated by the caller. |
| 1524 | * |
| 1525 | * The caller also passes maxSupportNumber and maxAttributeNumber, since these |
| 1526 | * indicate the size of the arrays it has allocated --- but in practice these |
| 1527 | * numbers must always match those obtainable from the system catalog entries |
| 1528 | * for the index and access method. |
| 1529 | */ |
| 1530 | static void |
| 1531 | IndexSupportInitialize(oidvector *indclass, |
| 1532 | RegProcedure *indexSupport, |
| 1533 | Oid *opFamily, |
| 1534 | Oid *opcInType, |
| 1535 | StrategyNumber maxSupportNumber, |
| 1536 | AttrNumber maxAttributeNumber) |
| 1537 | { |
| 1538 | int attIndex; |
| 1539 | |
| 1540 | for (attIndex = 0; attIndex < maxAttributeNumber; attIndex++) |
| 1541 | { |
| 1542 | OpClassCacheEnt *opcentry; |
| 1543 | |
| 1544 | if (!OidIsValid(indclass->values[attIndex])) |
| 1545 | elog(ERROR, "bogus pg_index tuple" ); |
| 1546 | |
| 1547 | /* look up the info for this opclass, using a cache */ |
| 1548 | opcentry = LookupOpclassInfo(indclass->values[attIndex], |
| 1549 | maxSupportNumber); |
| 1550 | |
| 1551 | /* copy cached data into relcache entry */ |
| 1552 | opFamily[attIndex] = opcentry->opcfamily; |
| 1553 | opcInType[attIndex] = opcentry->opcintype; |
| 1554 | if (maxSupportNumber > 0) |
| 1555 | memcpy(&indexSupport[attIndex * maxSupportNumber], |
| 1556 | opcentry->supportProcs, |
| 1557 | maxSupportNumber * sizeof(RegProcedure)); |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | /* |
| 1562 | * LookupOpclassInfo |
| 1563 | * |
| 1564 | * This routine maintains a per-opclass cache of the information needed |
| 1565 | * by IndexSupportInitialize(). This is more efficient than relying on |
| 1566 | * the catalog cache, because we can load all the info about a particular |
| 1567 | * opclass in a single indexscan of pg_amproc. |
| 1568 | * |
| 1569 | * The information from pg_am about expected range of support function |
| 1570 | * numbers is passed in, rather than being looked up, mainly because the |
| 1571 | * caller will have it already. |
| 1572 | * |
| 1573 | * Note there is no provision for flushing the cache. This is OK at the |
| 1574 | * moment because there is no way to ALTER any interesting properties of an |
| 1575 | * existing opclass --- all you can do is drop it, which will result in |
| 1576 | * a useless but harmless dead entry in the cache. To support altering |
| 1577 | * opclass membership (not the same as opfamily membership!), we'd need to |
| 1578 | * be able to flush this cache as well as the contents of relcache entries |
| 1579 | * for indexes. |
| 1580 | */ |
| 1581 | static OpClassCacheEnt * |
| 1582 | LookupOpclassInfo(Oid operatorClassOid, |
| 1583 | StrategyNumber numSupport) |
| 1584 | { |
| 1585 | OpClassCacheEnt *opcentry; |
| 1586 | bool found; |
| 1587 | Relation rel; |
| 1588 | SysScanDesc scan; |
| 1589 | ScanKeyData skey[3]; |
| 1590 | HeapTuple htup; |
| 1591 | bool indexOK; |
| 1592 | |
| 1593 | if (OpClassCache == NULL) |
| 1594 | { |
| 1595 | /* First time through: initialize the opclass cache */ |
| 1596 | HASHCTL ctl; |
| 1597 | |
| 1598 | MemSet(&ctl, 0, sizeof(ctl)); |
| 1599 | ctl.keysize = sizeof(Oid); |
| 1600 | ctl.entrysize = sizeof(OpClassCacheEnt); |
| 1601 | OpClassCache = hash_create("Operator class cache" , 64, |
| 1602 | &ctl, HASH_ELEM | HASH_BLOBS); |
| 1603 | |
| 1604 | /* Also make sure CacheMemoryContext exists */ |
| 1605 | if (!CacheMemoryContext) |
| 1606 | CreateCacheMemoryContext(); |
| 1607 | } |
| 1608 | |
| 1609 | opcentry = (OpClassCacheEnt *) hash_search(OpClassCache, |
| 1610 | (void *) &operatorClassOid, |
| 1611 | HASH_ENTER, &found); |
| 1612 | |
| 1613 | if (!found) |
| 1614 | { |
| 1615 | /* Need to allocate memory for new entry */ |
| 1616 | opcentry->valid = false; /* until known OK */ |
| 1617 | opcentry->numSupport = numSupport; |
| 1618 | |
| 1619 | if (numSupport > 0) |
| 1620 | opcentry->supportProcs = (RegProcedure *) |
| 1621 | MemoryContextAllocZero(CacheMemoryContext, |
| 1622 | numSupport * sizeof(RegProcedure)); |
| 1623 | else |
| 1624 | opcentry->supportProcs = NULL; |
| 1625 | } |
| 1626 | else |
| 1627 | { |
| 1628 | Assert(numSupport == opcentry->numSupport); |
| 1629 | } |
| 1630 | |
| 1631 | /* |
| 1632 | * When testing for cache-flush hazards, we intentionally disable the |
| 1633 | * operator class cache and force reloading of the info on each call. This |
| 1634 | * is helpful because we want to test the case where a cache flush occurs |
| 1635 | * while we are loading the info, and it's very hard to provoke that if |
| 1636 | * this happens only once per opclass per backend. |
| 1637 | */ |
| 1638 | #if defined(CLOBBER_CACHE_ALWAYS) |
| 1639 | opcentry->valid = false; |
| 1640 | #endif |
| 1641 | |
| 1642 | if (opcentry->valid) |
| 1643 | return opcentry; |
| 1644 | |
| 1645 | /* |
| 1646 | * Need to fill in new entry. |
| 1647 | * |
| 1648 | * To avoid infinite recursion during startup, force heap scans if we're |
| 1649 | * looking up info for the opclasses used by the indexes we would like to |
| 1650 | * reference here. |
| 1651 | */ |
| 1652 | indexOK = criticalRelcachesBuilt || |
| 1653 | (operatorClassOid != OID_BTREE_OPS_OID && |
| 1654 | operatorClassOid != INT2_BTREE_OPS_OID); |
| 1655 | |
| 1656 | /* |
| 1657 | * We have to fetch the pg_opclass row to determine its opfamily and |
| 1658 | * opcintype, which are needed to look up related operators and functions. |
| 1659 | * It'd be convenient to use the syscache here, but that probably doesn't |
| 1660 | * work while bootstrapping. |
| 1661 | */ |
| 1662 | ScanKeyInit(&skey[0], |
| 1663 | Anum_pg_opclass_oid, |
| 1664 | BTEqualStrategyNumber, F_OIDEQ, |
| 1665 | ObjectIdGetDatum(operatorClassOid)); |
| 1666 | rel = table_open(OperatorClassRelationId, AccessShareLock); |
| 1667 | scan = systable_beginscan(rel, OpclassOidIndexId, indexOK, |
| 1668 | NULL, 1, skey); |
| 1669 | |
| 1670 | if (HeapTupleIsValid(htup = systable_getnext(scan))) |
| 1671 | { |
| 1672 | Form_pg_opclass opclassform = (Form_pg_opclass) GETSTRUCT(htup); |
| 1673 | |
| 1674 | opcentry->opcfamily = opclassform->opcfamily; |
| 1675 | opcentry->opcintype = opclassform->opcintype; |
| 1676 | } |
| 1677 | else |
| 1678 | elog(ERROR, "could not find tuple for opclass %u" , operatorClassOid); |
| 1679 | |
| 1680 | systable_endscan(scan); |
| 1681 | table_close(rel, AccessShareLock); |
| 1682 | |
| 1683 | /* |
| 1684 | * Scan pg_amproc to obtain support procs for the opclass. We only fetch |
| 1685 | * the default ones (those with lefttype = righttype = opcintype). |
| 1686 | */ |
| 1687 | if (numSupport > 0) |
| 1688 | { |
| 1689 | ScanKeyInit(&skey[0], |
| 1690 | Anum_pg_amproc_amprocfamily, |
| 1691 | BTEqualStrategyNumber, F_OIDEQ, |
| 1692 | ObjectIdGetDatum(opcentry->opcfamily)); |
| 1693 | ScanKeyInit(&skey[1], |
| 1694 | Anum_pg_amproc_amproclefttype, |
| 1695 | BTEqualStrategyNumber, F_OIDEQ, |
| 1696 | ObjectIdGetDatum(opcentry->opcintype)); |
| 1697 | ScanKeyInit(&skey[2], |
| 1698 | Anum_pg_amproc_amprocrighttype, |
| 1699 | BTEqualStrategyNumber, F_OIDEQ, |
| 1700 | ObjectIdGetDatum(opcentry->opcintype)); |
| 1701 | rel = table_open(AccessMethodProcedureRelationId, AccessShareLock); |
| 1702 | scan = systable_beginscan(rel, AccessMethodProcedureIndexId, indexOK, |
| 1703 | NULL, 3, skey); |
| 1704 | |
| 1705 | while (HeapTupleIsValid(htup = systable_getnext(scan))) |
| 1706 | { |
| 1707 | Form_pg_amproc amprocform = (Form_pg_amproc) GETSTRUCT(htup); |
| 1708 | |
| 1709 | if (amprocform->amprocnum <= 0 || |
| 1710 | (StrategyNumber) amprocform->amprocnum > numSupport) |
| 1711 | elog(ERROR, "invalid amproc number %d for opclass %u" , |
| 1712 | amprocform->amprocnum, operatorClassOid); |
| 1713 | |
| 1714 | opcentry->supportProcs[amprocform->amprocnum - 1] = |
| 1715 | amprocform->amproc; |
| 1716 | } |
| 1717 | |
| 1718 | systable_endscan(scan); |
| 1719 | table_close(rel, AccessShareLock); |
| 1720 | } |
| 1721 | |
| 1722 | opcentry->valid = true; |
| 1723 | return opcentry; |
| 1724 | } |
| 1725 | |
| 1726 | /* |
| 1727 | * Fill in the TableAmRoutine for a relation |
| 1728 | * |
| 1729 | * relation's rd_amhandler must be valid already. |
| 1730 | */ |
| 1731 | static void |
| 1732 | InitTableAmRoutine(Relation relation) |
| 1733 | { |
| 1734 | relation->rd_tableam = GetTableAmRoutine(relation->rd_amhandler); |
| 1735 | } |
| 1736 | |
| 1737 | /* |
| 1738 | * Initialize table access method support for a table like relation |
| 1739 | */ |
| 1740 | void |
| 1741 | RelationInitTableAccessMethod(Relation relation) |
| 1742 | { |
| 1743 | HeapTuple tuple; |
| 1744 | Form_pg_am aform; |
| 1745 | |
| 1746 | if (relation->rd_rel->relkind == RELKIND_SEQUENCE) |
| 1747 | { |
| 1748 | /* |
| 1749 | * Sequences are currently accessed like heap tables, but it doesn't |
| 1750 | * seem prudent to show that in the catalog. So just overwrite it |
| 1751 | * here. |
| 1752 | */ |
| 1753 | relation->rd_amhandler = HEAP_TABLE_AM_HANDLER_OID; |
| 1754 | } |
| 1755 | else if (IsCatalogRelation(relation)) |
| 1756 | { |
| 1757 | /* |
| 1758 | * Avoid doing a syscache lookup for catalog tables. |
| 1759 | */ |
| 1760 | Assert(relation->rd_rel->relam == HEAP_TABLE_AM_OID); |
| 1761 | relation->rd_amhandler = HEAP_TABLE_AM_HANDLER_OID; |
| 1762 | } |
| 1763 | else |
| 1764 | { |
| 1765 | /* |
| 1766 | * Look up the table access method, save the OID of its handler |
| 1767 | * function. |
| 1768 | */ |
| 1769 | Assert(relation->rd_rel->relam != InvalidOid); |
| 1770 | tuple = SearchSysCache1(AMOID, |
| 1771 | ObjectIdGetDatum(relation->rd_rel->relam)); |
| 1772 | if (!HeapTupleIsValid(tuple)) |
| 1773 | elog(ERROR, "cache lookup failed for access method %u" , |
| 1774 | relation->rd_rel->relam); |
| 1775 | aform = (Form_pg_am) GETSTRUCT(tuple); |
| 1776 | relation->rd_amhandler = aform->amhandler; |
| 1777 | ReleaseSysCache(tuple); |
| 1778 | } |
| 1779 | |
| 1780 | /* |
| 1781 | * Now we can fetch the table AM's API struct |
| 1782 | */ |
| 1783 | InitTableAmRoutine(relation); |
| 1784 | } |
| 1785 | |
| 1786 | /* |
| 1787 | * formrdesc |
| 1788 | * |
| 1789 | * This is a special cut-down version of RelationBuildDesc(), |
| 1790 | * used while initializing the relcache. |
| 1791 | * The relation descriptor is built just from the supplied parameters, |
| 1792 | * without actually looking at any system table entries. We cheat |
| 1793 | * quite a lot since we only need to work for a few basic system |
| 1794 | * catalogs. |
| 1795 | * |
| 1796 | * The catalogs this is used for can't have constraints (except attnotnull), |
| 1797 | * default values, rules, or triggers, since we don't cope with any of that. |
| 1798 | * (Well, actually, this only matters for properties that need to be valid |
| 1799 | * during bootstrap or before RelationCacheInitializePhase3 runs, and none of |
| 1800 | * these properties matter then...) |
| 1801 | * |
| 1802 | * NOTE: we assume we are already switched into CacheMemoryContext. |
| 1803 | */ |
| 1804 | static void |
| 1805 | formrdesc(const char *relationName, Oid relationReltype, |
| 1806 | bool isshared, |
| 1807 | int natts, const FormData_pg_attribute *attrs) |
| 1808 | { |
| 1809 | Relation relation; |
| 1810 | int i; |
| 1811 | bool has_not_null; |
| 1812 | |
| 1813 | /* |
| 1814 | * allocate new relation desc, clear all fields of reldesc |
| 1815 | */ |
| 1816 | relation = (Relation) palloc0(sizeof(RelationData)); |
| 1817 | |
| 1818 | /* make sure relation is marked as having no open file yet */ |
| 1819 | relation->rd_smgr = NULL; |
| 1820 | |
| 1821 | /* |
| 1822 | * initialize reference count: 1 because it is nailed in cache |
| 1823 | */ |
| 1824 | relation->rd_refcnt = 1; |
| 1825 | |
| 1826 | /* |
| 1827 | * all entries built with this routine are nailed-in-cache; none are for |
| 1828 | * new or temp relations. |
| 1829 | */ |
| 1830 | relation->rd_isnailed = true; |
| 1831 | relation->rd_createSubid = InvalidSubTransactionId; |
| 1832 | relation->rd_newRelfilenodeSubid = InvalidSubTransactionId; |
| 1833 | relation->rd_backend = InvalidBackendId; |
| 1834 | relation->rd_islocaltemp = false; |
| 1835 | |
| 1836 | /* |
| 1837 | * initialize relation tuple form |
| 1838 | * |
| 1839 | * The data we insert here is pretty incomplete/bogus, but it'll serve to |
| 1840 | * get us launched. RelationCacheInitializePhase3() will read the real |
| 1841 | * data from pg_class and replace what we've done here. Note in |
| 1842 | * particular that relowner is left as zero; this cues |
| 1843 | * RelationCacheInitializePhase3 that the real data isn't there yet. |
| 1844 | */ |
| 1845 | relation->rd_rel = (Form_pg_class) palloc0(CLASS_TUPLE_SIZE); |
| 1846 | |
| 1847 | namestrcpy(&relation->rd_rel->relname, relationName); |
| 1848 | relation->rd_rel->relnamespace = PG_CATALOG_NAMESPACE; |
| 1849 | relation->rd_rel->reltype = relationReltype; |
| 1850 | |
| 1851 | /* |
| 1852 | * It's important to distinguish between shared and non-shared relations, |
| 1853 | * even at bootstrap time, to make sure we know where they are stored. |
| 1854 | */ |
| 1855 | relation->rd_rel->relisshared = isshared; |
| 1856 | if (isshared) |
| 1857 | relation->rd_rel->reltablespace = GLOBALTABLESPACE_OID; |
| 1858 | |
| 1859 | /* formrdesc is used only for permanent relations */ |
| 1860 | relation->rd_rel->relpersistence = RELPERSISTENCE_PERMANENT; |
| 1861 | |
| 1862 | /* ... and they're always populated, too */ |
| 1863 | relation->rd_rel->relispopulated = true; |
| 1864 | |
| 1865 | relation->rd_rel->relreplident = REPLICA_IDENTITY_NOTHING; |
| 1866 | relation->rd_rel->relpages = 0; |
| 1867 | relation->rd_rel->reltuples = 0; |
| 1868 | relation->rd_rel->relallvisible = 0; |
| 1869 | relation->rd_rel->relkind = RELKIND_RELATION; |
| 1870 | relation->rd_rel->relnatts = (int16) natts; |
| 1871 | relation->rd_rel->relam = HEAP_TABLE_AM_OID; |
| 1872 | |
| 1873 | /* |
| 1874 | * initialize attribute tuple form |
| 1875 | * |
| 1876 | * Unlike the case with the relation tuple, this data had better be right |
| 1877 | * because it will never be replaced. The data comes from |
| 1878 | * src/include/catalog/ headers via genbki.pl. |
| 1879 | */ |
| 1880 | relation->rd_att = CreateTemplateTupleDesc(natts); |
| 1881 | relation->rd_att->tdrefcount = 1; /* mark as refcounted */ |
| 1882 | |
| 1883 | relation->rd_att->tdtypeid = relationReltype; |
| 1884 | relation->rd_att->tdtypmod = -1; /* unnecessary, but... */ |
| 1885 | |
| 1886 | /* |
| 1887 | * initialize tuple desc info |
| 1888 | */ |
| 1889 | has_not_null = false; |
| 1890 | for (i = 0; i < natts; i++) |
| 1891 | { |
| 1892 | memcpy(TupleDescAttr(relation->rd_att, i), |
| 1893 | &attrs[i], |
| 1894 | ATTRIBUTE_FIXED_PART_SIZE); |
| 1895 | has_not_null |= attrs[i].attnotnull; |
| 1896 | /* make sure attcacheoff is valid */ |
| 1897 | TupleDescAttr(relation->rd_att, i)->attcacheoff = -1; |
| 1898 | } |
| 1899 | |
| 1900 | /* initialize first attribute's attcacheoff, cf RelationBuildTupleDesc */ |
| 1901 | TupleDescAttr(relation->rd_att, 0)->attcacheoff = 0; |
| 1902 | |
| 1903 | /* mark not-null status */ |
| 1904 | if (has_not_null) |
| 1905 | { |
| 1906 | TupleConstr *constr = (TupleConstr *) palloc0(sizeof(TupleConstr)); |
| 1907 | |
| 1908 | constr->has_not_null = true; |
| 1909 | relation->rd_att->constr = constr; |
| 1910 | } |
| 1911 | |
| 1912 | /* |
| 1913 | * initialize relation id from info in att array (my, this is ugly) |
| 1914 | */ |
| 1915 | RelationGetRelid(relation) = TupleDescAttr(relation->rd_att, 0)->attrelid; |
| 1916 | |
| 1917 | /* |
| 1918 | * All relations made with formrdesc are mapped. This is necessarily so |
| 1919 | * because there is no other way to know what filenode they currently |
| 1920 | * have. In bootstrap mode, add them to the initial relation mapper data, |
| 1921 | * specifying that the initial filenode is the same as the OID. |
| 1922 | */ |
| 1923 | relation->rd_rel->relfilenode = InvalidOid; |
| 1924 | if (IsBootstrapProcessingMode()) |
| 1925 | RelationMapUpdateMap(RelationGetRelid(relation), |
| 1926 | RelationGetRelid(relation), |
| 1927 | isshared, true); |
| 1928 | |
| 1929 | /* |
| 1930 | * initialize the relation lock manager information |
| 1931 | */ |
| 1932 | RelationInitLockInfo(relation); /* see lmgr.c */ |
| 1933 | |
| 1934 | /* |
| 1935 | * initialize physical addressing information for the relation |
| 1936 | */ |
| 1937 | RelationInitPhysicalAddr(relation); |
| 1938 | |
| 1939 | /* |
| 1940 | * initialize the table am handler |
| 1941 | */ |
| 1942 | relation->rd_rel->relam = HEAP_TABLE_AM_OID; |
| 1943 | relation->rd_tableam = GetHeapamTableAmRoutine(); |
| 1944 | |
| 1945 | /* |
| 1946 | * initialize the rel-has-index flag, using hardwired knowledge |
| 1947 | */ |
| 1948 | if (IsBootstrapProcessingMode()) |
| 1949 | { |
| 1950 | /* In bootstrap mode, we have no indexes */ |
| 1951 | relation->rd_rel->relhasindex = false; |
| 1952 | } |
| 1953 | else |
| 1954 | { |
| 1955 | /* Otherwise, all the rels formrdesc is used for have indexes */ |
| 1956 | relation->rd_rel->relhasindex = true; |
| 1957 | } |
| 1958 | |
| 1959 | /* |
| 1960 | * add new reldesc to relcache |
| 1961 | */ |
| 1962 | RelationCacheInsert(relation, false); |
| 1963 | |
| 1964 | /* It's fully valid */ |
| 1965 | relation->rd_isvalid = true; |
| 1966 | } |
| 1967 | |
| 1968 | |
| 1969 | /* ---------------------------------------------------------------- |
| 1970 | * Relation Descriptor Lookup Interface |
| 1971 | * ---------------------------------------------------------------- |
| 1972 | */ |
| 1973 | |
| 1974 | /* |
| 1975 | * RelationIdGetRelation |
| 1976 | * |
| 1977 | * Lookup a reldesc by OID; make one if not already in cache. |
| 1978 | * |
| 1979 | * Returns NULL if no pg_class row could be found for the given relid |
| 1980 | * (suggesting we are trying to access a just-deleted relation). |
| 1981 | * Any other error is reported via elog. |
| 1982 | * |
| 1983 | * NB: caller should already have at least AccessShareLock on the |
| 1984 | * relation ID, else there are nasty race conditions. |
| 1985 | * |
| 1986 | * NB: relation ref count is incremented, or set to 1 if new entry. |
| 1987 | * Caller should eventually decrement count. (Usually, |
| 1988 | * that happens by calling RelationClose().) |
| 1989 | */ |
| 1990 | Relation |
| 1991 | RelationIdGetRelation(Oid relationId) |
| 1992 | { |
| 1993 | Relation rd; |
| 1994 | |
| 1995 | /* Make sure we're in an xact, even if this ends up being a cache hit */ |
| 1996 | Assert(IsTransactionState()); |
| 1997 | |
| 1998 | /* |
| 1999 | * first try to find reldesc in the cache |
| 2000 | */ |
| 2001 | RelationIdCacheLookup(relationId, rd); |
| 2002 | |
| 2003 | if (RelationIsValid(rd)) |
| 2004 | { |
| 2005 | RelationIncrementReferenceCount(rd); |
| 2006 | /* revalidate cache entry if necessary */ |
| 2007 | if (!rd->rd_isvalid) |
| 2008 | { |
| 2009 | /* |
| 2010 | * Indexes only have a limited number of possible schema changes, |
| 2011 | * and we don't want to use the full-blown procedure because it's |
| 2012 | * a headache for indexes that reload itself depends on. |
| 2013 | */ |
| 2014 | if (rd->rd_rel->relkind == RELKIND_INDEX || |
| 2015 | rd->rd_rel->relkind == RELKIND_PARTITIONED_INDEX) |
| 2016 | RelationReloadIndexInfo(rd); |
| 2017 | else |
| 2018 | RelationClearRelation(rd, true); |
| 2019 | |
| 2020 | /* |
| 2021 | * Normally entries need to be valid here, but before the relcache |
| 2022 | * has been initialized, not enough infrastructure exists to |
| 2023 | * perform pg_class lookups. The structure of such entries doesn't |
| 2024 | * change, but we still want to update the rd_rel entry. So |
| 2025 | * rd_isvalid = false is left in place for a later lookup. |
| 2026 | */ |
| 2027 | Assert(rd->rd_isvalid || |
| 2028 | (rd->rd_isnailed && !criticalRelcachesBuilt)); |
| 2029 | } |
| 2030 | return rd; |
| 2031 | } |
| 2032 | |
| 2033 | /* |
| 2034 | * no reldesc in the cache, so have RelationBuildDesc() build one and add |
| 2035 | * it. |
| 2036 | */ |
| 2037 | rd = RelationBuildDesc(relationId, true); |
| 2038 | if (RelationIsValid(rd)) |
| 2039 | RelationIncrementReferenceCount(rd); |
| 2040 | return rd; |
| 2041 | } |
| 2042 | |
| 2043 | /* ---------------------------------------------------------------- |
| 2044 | * cache invalidation support routines |
| 2045 | * ---------------------------------------------------------------- |
| 2046 | */ |
| 2047 | |
| 2048 | /* |
| 2049 | * RelationIncrementReferenceCount |
| 2050 | * Increments relation reference count. |
| 2051 | * |
| 2052 | * Note: bootstrap mode has its own weird ideas about relation refcount |
| 2053 | * behavior; we ought to fix it someday, but for now, just disable |
| 2054 | * reference count ownership tracking in bootstrap mode. |
| 2055 | */ |
| 2056 | void |
| 2057 | RelationIncrementReferenceCount(Relation rel) |
| 2058 | { |
| 2059 | ResourceOwnerEnlargeRelationRefs(CurrentResourceOwner); |
| 2060 | rel->rd_refcnt += 1; |
| 2061 | if (!IsBootstrapProcessingMode()) |
| 2062 | ResourceOwnerRememberRelationRef(CurrentResourceOwner, rel); |
| 2063 | } |
| 2064 | |
| 2065 | /* |
| 2066 | * RelationDecrementReferenceCount |
| 2067 | * Decrements relation reference count. |
| 2068 | */ |
| 2069 | void |
| 2070 | RelationDecrementReferenceCount(Relation rel) |
| 2071 | { |
| 2072 | Assert(rel->rd_refcnt > 0); |
| 2073 | rel->rd_refcnt -= 1; |
| 2074 | if (!IsBootstrapProcessingMode()) |
| 2075 | ResourceOwnerForgetRelationRef(CurrentResourceOwner, rel); |
| 2076 | } |
| 2077 | |
| 2078 | /* |
| 2079 | * RelationClose - close an open relation |
| 2080 | * |
| 2081 | * Actually, we just decrement the refcount. |
| 2082 | * |
| 2083 | * NOTE: if compiled with -DRELCACHE_FORCE_RELEASE then relcache entries |
| 2084 | * will be freed as soon as their refcount goes to zero. In combination |
| 2085 | * with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test |
| 2086 | * to catch references to already-released relcache entries. It slows |
| 2087 | * things down quite a bit, however. |
| 2088 | */ |
| 2089 | void |
| 2090 | RelationClose(Relation relation) |
| 2091 | { |
| 2092 | /* Note: no locking manipulations needed */ |
| 2093 | RelationDecrementReferenceCount(relation); |
| 2094 | |
| 2095 | #ifdef RELCACHE_FORCE_RELEASE |
| 2096 | if (RelationHasReferenceCountZero(relation) && |
| 2097 | relation->rd_createSubid == InvalidSubTransactionId && |
| 2098 | relation->rd_newRelfilenodeSubid == InvalidSubTransactionId) |
| 2099 | RelationClearRelation(relation, false); |
| 2100 | #endif |
| 2101 | } |
| 2102 | |
| 2103 | /* |
| 2104 | * RelationReloadIndexInfo - reload minimal information for an open index |
| 2105 | * |
| 2106 | * This function is used only for indexes. A relcache inval on an index |
| 2107 | * can mean that its pg_class or pg_index row changed. There are only |
| 2108 | * very limited changes that are allowed to an existing index's schema, |
| 2109 | * so we can update the relcache entry without a complete rebuild; which |
| 2110 | * is fortunate because we can't rebuild an index entry that is "nailed" |
| 2111 | * and/or in active use. We support full replacement of the pg_class row, |
| 2112 | * as well as updates of a few simple fields of the pg_index row. |
| 2113 | * |
| 2114 | * We can't necessarily reread the catalog rows right away; we might be |
| 2115 | * in a failed transaction when we receive the SI notification. If so, |
| 2116 | * RelationClearRelation just marks the entry as invalid by setting |
| 2117 | * rd_isvalid to false. This routine is called to fix the entry when it |
| 2118 | * is next needed. |
| 2119 | * |
| 2120 | * We assume that at the time we are called, we have at least AccessShareLock |
| 2121 | * on the target index. (Note: in the calls from RelationClearRelation, |
| 2122 | * this is legitimate because we know the rel has positive refcount.) |
| 2123 | * |
| 2124 | * If the target index is an index on pg_class or pg_index, we'd better have |
| 2125 | * previously gotten at least AccessShareLock on its underlying catalog, |
| 2126 | * else we are at risk of deadlock against someone trying to exclusive-lock |
| 2127 | * the heap and index in that order. This is ensured in current usage by |
| 2128 | * only applying this to indexes being opened or having positive refcount. |
| 2129 | */ |
| 2130 | static void |
| 2131 | RelationReloadIndexInfo(Relation relation) |
| 2132 | { |
| 2133 | bool indexOK; |
| 2134 | HeapTuple pg_class_tuple; |
| 2135 | Form_pg_class relp; |
| 2136 | |
| 2137 | /* Should be called only for invalidated indexes */ |
| 2138 | Assert((relation->rd_rel->relkind == RELKIND_INDEX || |
| 2139 | relation->rd_rel->relkind == RELKIND_PARTITIONED_INDEX) && |
| 2140 | !relation->rd_isvalid); |
| 2141 | |
| 2142 | /* Ensure it's closed at smgr level */ |
| 2143 | RelationCloseSmgr(relation); |
| 2144 | |
| 2145 | /* Must free any AM cached data upon relcache flush */ |
| 2146 | if (relation->rd_amcache) |
| 2147 | pfree(relation->rd_amcache); |
| 2148 | relation->rd_amcache = NULL; |
| 2149 | |
| 2150 | /* |
| 2151 | * If it's a shared index, we might be called before backend startup has |
| 2152 | * finished selecting a database, in which case we have no way to read |
| 2153 | * pg_class yet. However, a shared index can never have any significant |
| 2154 | * schema updates, so it's okay to ignore the invalidation signal. Just |
| 2155 | * mark it valid and return without doing anything more. |
| 2156 | */ |
| 2157 | if (relation->rd_rel->relisshared && !criticalRelcachesBuilt) |
| 2158 | { |
| 2159 | relation->rd_isvalid = true; |
| 2160 | return; |
| 2161 | } |
| 2162 | |
| 2163 | /* |
| 2164 | * Read the pg_class row |
| 2165 | * |
| 2166 | * Don't try to use an indexscan of pg_class_oid_index to reload the info |
| 2167 | * for pg_class_oid_index ... |
| 2168 | */ |
| 2169 | indexOK = (RelationGetRelid(relation) != ClassOidIndexId); |
| 2170 | pg_class_tuple = ScanPgRelation(RelationGetRelid(relation), indexOK, false); |
| 2171 | if (!HeapTupleIsValid(pg_class_tuple)) |
| 2172 | elog(ERROR, "could not find pg_class tuple for index %u" , |
| 2173 | RelationGetRelid(relation)); |
| 2174 | relp = (Form_pg_class) GETSTRUCT(pg_class_tuple); |
| 2175 | memcpy(relation->rd_rel, relp, CLASS_TUPLE_SIZE); |
| 2176 | /* Reload reloptions in case they changed */ |
| 2177 | if (relation->rd_options) |
| 2178 | pfree(relation->rd_options); |
| 2179 | RelationParseRelOptions(relation, pg_class_tuple); |
| 2180 | /* done with pg_class tuple */ |
| 2181 | heap_freetuple(pg_class_tuple); |
| 2182 | /* We must recalculate physical address in case it changed */ |
| 2183 | RelationInitPhysicalAddr(relation); |
| 2184 | |
| 2185 | /* |
| 2186 | * For a non-system index, there are fields of the pg_index row that are |
| 2187 | * allowed to change, so re-read that row and update the relcache entry. |
| 2188 | * Most of the info derived from pg_index (such as support function lookup |
| 2189 | * info) cannot change, and indeed the whole point of this routine is to |
| 2190 | * update the relcache entry without clobbering that data; so wholesale |
| 2191 | * replacement is not appropriate. |
| 2192 | */ |
| 2193 | if (!IsSystemRelation(relation)) |
| 2194 | { |
| 2195 | HeapTuple tuple; |
| 2196 | Form_pg_index index; |
| 2197 | |
| 2198 | tuple = SearchSysCache1(INDEXRELID, |
| 2199 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 2200 | if (!HeapTupleIsValid(tuple)) |
| 2201 | elog(ERROR, "cache lookup failed for index %u" , |
| 2202 | RelationGetRelid(relation)); |
| 2203 | index = (Form_pg_index) GETSTRUCT(tuple); |
| 2204 | |
| 2205 | /* |
| 2206 | * Basically, let's just copy all the bool fields. There are one or |
| 2207 | * two of these that can't actually change in the current code, but |
| 2208 | * it's not worth it to track exactly which ones they are. None of |
| 2209 | * the array fields are allowed to change, though. |
| 2210 | */ |
| 2211 | relation->rd_index->indisunique = index->indisunique; |
| 2212 | relation->rd_index->indisprimary = index->indisprimary; |
| 2213 | relation->rd_index->indisexclusion = index->indisexclusion; |
| 2214 | relation->rd_index->indimmediate = index->indimmediate; |
| 2215 | relation->rd_index->indisclustered = index->indisclustered; |
| 2216 | relation->rd_index->indisvalid = index->indisvalid; |
| 2217 | relation->rd_index->indcheckxmin = index->indcheckxmin; |
| 2218 | relation->rd_index->indisready = index->indisready; |
| 2219 | relation->rd_index->indislive = index->indislive; |
| 2220 | |
| 2221 | /* Copy xmin too, as that is needed to make sense of indcheckxmin */ |
| 2222 | HeapTupleHeaderSetXmin(relation->rd_indextuple->t_data, |
| 2223 | HeapTupleHeaderGetXmin(tuple->t_data)); |
| 2224 | |
| 2225 | ReleaseSysCache(tuple); |
| 2226 | } |
| 2227 | |
| 2228 | /* Okay, now it's valid again */ |
| 2229 | relation->rd_isvalid = true; |
| 2230 | } |
| 2231 | |
| 2232 | /* |
| 2233 | * RelationReloadNailed - reload minimal information for nailed relations. |
| 2234 | * |
| 2235 | * The structure of a nailed relation can never change (which is good, because |
| 2236 | * we rely on knowing their structure to be able to read catalog content). But |
| 2237 | * some parts, e.g. pg_class.relfrozenxid, are still important to have |
| 2238 | * accurate content for. Therefore those need to be reloaded after the arrival |
| 2239 | * of invalidations. |
| 2240 | */ |
| 2241 | static void |
| 2242 | RelationReloadNailed(Relation relation) |
| 2243 | { |
| 2244 | Assert(relation->rd_isnailed); |
| 2245 | |
| 2246 | /* |
| 2247 | * Redo RelationInitPhysicalAddr in case it is a mapped relation whose |
| 2248 | * mapping changed. |
| 2249 | */ |
| 2250 | RelationInitPhysicalAddr(relation); |
| 2251 | |
| 2252 | /* flag as needing to be revalidated */ |
| 2253 | relation->rd_isvalid = false; |
| 2254 | |
| 2255 | /* |
| 2256 | * Can only reread catalog contents if in a transaction. If the relation |
| 2257 | * is currently open (not counting the nailed refcount), do so |
| 2258 | * immediately. Otherwise we've already marked the entry as possibly |
| 2259 | * invalid, and it'll be fixed when next opened. |
| 2260 | */ |
| 2261 | if (!IsTransactionState() || relation->rd_refcnt <= 1) |
| 2262 | return; |
| 2263 | |
| 2264 | if (relation->rd_rel->relkind == RELKIND_INDEX) |
| 2265 | { |
| 2266 | /* |
| 2267 | * If it's a nailed-but-not-mapped index, then we need to re-read the |
| 2268 | * pg_class row to see if its relfilenode changed. |
| 2269 | */ |
| 2270 | RelationReloadIndexInfo(relation); |
| 2271 | } |
| 2272 | else |
| 2273 | { |
| 2274 | /* |
| 2275 | * Reload a non-index entry. We can't easily do so if relcaches |
| 2276 | * aren't yet built, but that's fine because at that stage the |
| 2277 | * attributes that need to be current (like relfrozenxid) aren't yet |
| 2278 | * accessed. To ensure the entry will later be revalidated, we leave |
| 2279 | * it in invalid state, but allow use (cf. RelationIdGetRelation()). |
| 2280 | */ |
| 2281 | if (criticalRelcachesBuilt) |
| 2282 | { |
| 2283 | HeapTuple pg_class_tuple; |
| 2284 | Form_pg_class relp; |
| 2285 | |
| 2286 | /* |
| 2287 | * NB: Mark the entry as valid before starting to scan, to avoid |
| 2288 | * self-recursion when re-building pg_class. |
| 2289 | */ |
| 2290 | relation->rd_isvalid = true; |
| 2291 | |
| 2292 | pg_class_tuple = ScanPgRelation(RelationGetRelid(relation), |
| 2293 | true, false); |
| 2294 | relp = (Form_pg_class) GETSTRUCT(pg_class_tuple); |
| 2295 | memcpy(relation->rd_rel, relp, CLASS_TUPLE_SIZE); |
| 2296 | heap_freetuple(pg_class_tuple); |
| 2297 | |
| 2298 | /* |
| 2299 | * Again mark as valid, to protect against concurrently arriving |
| 2300 | * invalidations. |
| 2301 | */ |
| 2302 | relation->rd_isvalid = true; |
| 2303 | } |
| 2304 | } |
| 2305 | } |
| 2306 | |
| 2307 | /* |
| 2308 | * RelationDestroyRelation |
| 2309 | * |
| 2310 | * Physically delete a relation cache entry and all subsidiary data. |
| 2311 | * Caller must already have unhooked the entry from the hash table. |
| 2312 | */ |
| 2313 | static void |
| 2314 | RelationDestroyRelation(Relation relation, bool remember_tupdesc) |
| 2315 | { |
| 2316 | Assert(RelationHasReferenceCountZero(relation)); |
| 2317 | |
| 2318 | /* |
| 2319 | * Make sure smgr and lower levels close the relation's files, if they |
| 2320 | * weren't closed already. (This was probably done by caller, but let's |
| 2321 | * just be real sure.) |
| 2322 | */ |
| 2323 | RelationCloseSmgr(relation); |
| 2324 | |
| 2325 | /* |
| 2326 | * Free all the subsidiary data structures of the relcache entry, then the |
| 2327 | * entry itself. |
| 2328 | */ |
| 2329 | if (relation->rd_rel) |
| 2330 | pfree(relation->rd_rel); |
| 2331 | /* can't use DecrTupleDescRefCount here */ |
| 2332 | Assert(relation->rd_att->tdrefcount > 0); |
| 2333 | if (--relation->rd_att->tdrefcount == 0) |
| 2334 | { |
| 2335 | /* |
| 2336 | * If we Rebuilt a relcache entry during a transaction then its |
| 2337 | * possible we did that because the TupDesc changed as the result of |
| 2338 | * an ALTER TABLE that ran at less than AccessExclusiveLock. It's |
| 2339 | * possible someone copied that TupDesc, in which case the copy would |
| 2340 | * point to free'd memory. So if we rebuild an entry we keep the |
| 2341 | * TupDesc around until end of transaction, to be safe. |
| 2342 | */ |
| 2343 | if (remember_tupdesc) |
| 2344 | RememberToFreeTupleDescAtEOX(relation->rd_att); |
| 2345 | else |
| 2346 | FreeTupleDesc(relation->rd_att); |
| 2347 | } |
| 2348 | FreeTriggerDesc(relation->trigdesc); |
| 2349 | list_free_deep(relation->rd_fkeylist); |
| 2350 | list_free(relation->rd_indexlist); |
| 2351 | bms_free(relation->rd_indexattr); |
| 2352 | bms_free(relation->rd_keyattr); |
| 2353 | bms_free(relation->rd_pkattr); |
| 2354 | bms_free(relation->rd_idattr); |
| 2355 | if (relation->rd_pubactions) |
| 2356 | pfree(relation->rd_pubactions); |
| 2357 | if (relation->rd_options) |
| 2358 | pfree(relation->rd_options); |
| 2359 | if (relation->rd_indextuple) |
| 2360 | pfree(relation->rd_indextuple); |
| 2361 | if (relation->rd_amcache) |
| 2362 | pfree(relation->rd_amcache); |
| 2363 | if (relation->rd_fdwroutine) |
| 2364 | pfree(relation->rd_fdwroutine); |
| 2365 | if (relation->rd_indexcxt) |
| 2366 | MemoryContextDelete(relation->rd_indexcxt); |
| 2367 | if (relation->rd_rulescxt) |
| 2368 | MemoryContextDelete(relation->rd_rulescxt); |
| 2369 | if (relation->rd_rsdesc) |
| 2370 | MemoryContextDelete(relation->rd_rsdesc->rscxt); |
| 2371 | if (relation->rd_partkeycxt) |
| 2372 | MemoryContextDelete(relation->rd_partkeycxt); |
| 2373 | if (relation->rd_pdcxt) |
| 2374 | MemoryContextDelete(relation->rd_pdcxt); |
| 2375 | if (relation->rd_partcheckcxt) |
| 2376 | MemoryContextDelete(relation->rd_partcheckcxt); |
| 2377 | pfree(relation); |
| 2378 | } |
| 2379 | |
| 2380 | /* |
| 2381 | * RelationClearRelation |
| 2382 | * |
| 2383 | * Physically blow away a relation cache entry, or reset it and rebuild |
| 2384 | * it from scratch (that is, from catalog entries). The latter path is |
| 2385 | * used when we are notified of a change to an open relation (one with |
| 2386 | * refcount > 0). |
| 2387 | * |
| 2388 | * NB: when rebuilding, we'd better hold some lock on the relation, |
| 2389 | * else the catalog data we need to read could be changing under us. |
| 2390 | * Also, a rel to be rebuilt had better have refcnt > 0. This is because |
| 2391 | * a sinval reset could happen while we're accessing the catalogs, and |
| 2392 | * the rel would get blown away underneath us by RelationCacheInvalidate |
| 2393 | * if it has zero refcnt. |
| 2394 | * |
| 2395 | * The "rebuild" parameter is redundant in current usage because it has |
| 2396 | * to match the relation's refcnt status, but we keep it as a crosscheck |
| 2397 | * that we're doing what the caller expects. |
| 2398 | */ |
| 2399 | static void |
| 2400 | RelationClearRelation(Relation relation, bool rebuild) |
| 2401 | { |
| 2402 | /* |
| 2403 | * As per notes above, a rel to be rebuilt MUST have refcnt > 0; while of |
| 2404 | * course it would be an equally bad idea to blow away one with nonzero |
| 2405 | * refcnt, since that would leave someone somewhere with a dangling |
| 2406 | * pointer. All callers are expected to have verified that this holds. |
| 2407 | */ |
| 2408 | Assert(rebuild ? |
| 2409 | !RelationHasReferenceCountZero(relation) : |
| 2410 | RelationHasReferenceCountZero(relation)); |
| 2411 | |
| 2412 | /* |
| 2413 | * Make sure smgr and lower levels close the relation's files, if they |
| 2414 | * weren't closed already. If the relation is not getting deleted, the |
| 2415 | * next smgr access should reopen the files automatically. This ensures |
| 2416 | * that the low-level file access state is updated after, say, a vacuum |
| 2417 | * truncation. |
| 2418 | */ |
| 2419 | RelationCloseSmgr(relation); |
| 2420 | |
| 2421 | /* Free AM cached data, if any */ |
| 2422 | if (relation->rd_amcache) |
| 2423 | pfree(relation->rd_amcache); |
| 2424 | relation->rd_amcache = NULL; |
| 2425 | |
| 2426 | /* |
| 2427 | * Treat nailed-in system relations separately, they always need to be |
| 2428 | * accessible, so we can't blow them away. |
| 2429 | */ |
| 2430 | if (relation->rd_isnailed) |
| 2431 | { |
| 2432 | RelationReloadNailed(relation); |
| 2433 | return; |
| 2434 | } |
| 2435 | |
| 2436 | /* |
| 2437 | * Even non-system indexes should not be blown away if they are open and |
| 2438 | * have valid index support information. This avoids problems with active |
| 2439 | * use of the index support information. As with nailed indexes, we |
| 2440 | * re-read the pg_class row to handle possible physical relocation of the |
| 2441 | * index, and we check for pg_index updates too. |
| 2442 | */ |
| 2443 | if ((relation->rd_rel->relkind == RELKIND_INDEX || |
| 2444 | relation->rd_rel->relkind == RELKIND_PARTITIONED_INDEX) && |
| 2445 | relation->rd_refcnt > 0 && |
| 2446 | relation->rd_indexcxt != NULL) |
| 2447 | { |
| 2448 | relation->rd_isvalid = false; /* needs to be revalidated */ |
| 2449 | if (IsTransactionState()) |
| 2450 | RelationReloadIndexInfo(relation); |
| 2451 | return; |
| 2452 | } |
| 2453 | |
| 2454 | /* Mark it invalid until we've finished rebuild */ |
| 2455 | relation->rd_isvalid = false; |
| 2456 | |
| 2457 | /* |
| 2458 | * If we're really done with the relcache entry, blow it away. But if |
| 2459 | * someone is still using it, reconstruct the whole deal without moving |
| 2460 | * the physical RelationData record (so that the someone's pointer is |
| 2461 | * still valid). |
| 2462 | */ |
| 2463 | if (!rebuild) |
| 2464 | { |
| 2465 | /* Remove it from the hash table */ |
| 2466 | RelationCacheDelete(relation); |
| 2467 | |
| 2468 | /* And release storage */ |
| 2469 | RelationDestroyRelation(relation, false); |
| 2470 | } |
| 2471 | else if (!IsTransactionState()) |
| 2472 | { |
| 2473 | /* |
| 2474 | * If we're not inside a valid transaction, we can't do any catalog |
| 2475 | * access so it's not possible to rebuild yet. Just exit, leaving |
| 2476 | * rd_isvalid = false so that the rebuild will occur when the entry is |
| 2477 | * next opened. |
| 2478 | * |
| 2479 | * Note: it's possible that we come here during subtransaction abort, |
| 2480 | * and the reason for wanting to rebuild is that the rel is open in |
| 2481 | * the outer transaction. In that case it might seem unsafe to not |
| 2482 | * rebuild immediately, since whatever code has the rel already open |
| 2483 | * will keep on using the relcache entry as-is. However, in such a |
| 2484 | * case the outer transaction should be holding a lock that's |
| 2485 | * sufficient to prevent any significant change in the rel's schema, |
| 2486 | * so the existing entry contents should be good enough for its |
| 2487 | * purposes; at worst we might be behind on statistics updates or the |
| 2488 | * like. (See also CheckTableNotInUse() and its callers.) These same |
| 2489 | * remarks also apply to the cases above where we exit without having |
| 2490 | * done RelationReloadIndexInfo() yet. |
| 2491 | */ |
| 2492 | return; |
| 2493 | } |
| 2494 | else |
| 2495 | { |
| 2496 | /* |
| 2497 | * Our strategy for rebuilding an open relcache entry is to build a |
| 2498 | * new entry from scratch, swap its contents with the old entry, and |
| 2499 | * finally delete the new entry (along with any infrastructure swapped |
| 2500 | * over from the old entry). This is to avoid trouble in case an |
| 2501 | * error causes us to lose control partway through. The old entry |
| 2502 | * will still be marked !rd_isvalid, so we'll try to rebuild it again |
| 2503 | * on next access. Meanwhile it's not any less valid than it was |
| 2504 | * before, so any code that might expect to continue accessing it |
| 2505 | * isn't hurt by the rebuild failure. (Consider for example a |
| 2506 | * subtransaction that ALTERs a table and then gets canceled partway |
| 2507 | * through the cache entry rebuild. The outer transaction should |
| 2508 | * still see the not-modified cache entry as valid.) The worst |
| 2509 | * consequence of an error is leaking the necessarily-unreferenced new |
| 2510 | * entry, and this shouldn't happen often enough for that to be a big |
| 2511 | * problem. |
| 2512 | * |
| 2513 | * When rebuilding an open relcache entry, we must preserve ref count, |
| 2514 | * rd_createSubid/rd_newRelfilenodeSubid, and rd_toastoid state. Also |
| 2515 | * attempt to preserve the pg_class entry (rd_rel), tupledesc, |
| 2516 | * rewrite-rule, partition key, and partition descriptor substructures |
| 2517 | * in place, because various places assume that these structures won't |
| 2518 | * move while they are working with an open relcache entry. (Note: |
| 2519 | * the refcount mechanism for tupledescs might someday allow us to |
| 2520 | * remove this hack for the tupledesc.) |
| 2521 | * |
| 2522 | * Note that this process does not touch CurrentResourceOwner; which |
| 2523 | * is good because whatever ref counts the entry may have do not |
| 2524 | * necessarily belong to that resource owner. |
| 2525 | */ |
| 2526 | Relation newrel; |
| 2527 | Oid save_relid = RelationGetRelid(relation); |
| 2528 | bool keep_tupdesc; |
| 2529 | bool keep_rules; |
| 2530 | bool keep_policies; |
| 2531 | bool keep_partkey; |
| 2532 | bool keep_partdesc; |
| 2533 | |
| 2534 | /* Build temporary entry, but don't link it into hashtable */ |
| 2535 | newrel = RelationBuildDesc(save_relid, false); |
| 2536 | if (newrel == NULL) |
| 2537 | { |
| 2538 | /* |
| 2539 | * We can validly get here, if we're using a historic snapshot in |
| 2540 | * which a relation, accessed from outside logical decoding, is |
| 2541 | * still invisible. In that case it's fine to just mark the |
| 2542 | * relation as invalid and return - it'll fully get reloaded by |
| 2543 | * the cache reset at the end of logical decoding (or at the next |
| 2544 | * access). During normal processing we don't want to ignore this |
| 2545 | * case as it shouldn't happen there, as explained below. |
| 2546 | */ |
| 2547 | if (HistoricSnapshotActive()) |
| 2548 | return; |
| 2549 | |
| 2550 | /* |
| 2551 | * This shouldn't happen as dropping a relation is intended to be |
| 2552 | * impossible if still referenced (cf. CheckTableNotInUse()). But |
| 2553 | * if we get here anyway, we can't just delete the relcache entry, |
| 2554 | * as it possibly could get accessed later (as e.g. the error |
| 2555 | * might get trapped and handled via a subtransaction rollback). |
| 2556 | */ |
| 2557 | elog(ERROR, "relation %u deleted while still in use" , save_relid); |
| 2558 | } |
| 2559 | |
| 2560 | keep_tupdesc = equalTupleDescs(relation->rd_att, newrel->rd_att); |
| 2561 | keep_rules = equalRuleLocks(relation->rd_rules, newrel->rd_rules); |
| 2562 | keep_policies = equalRSDesc(relation->rd_rsdesc, newrel->rd_rsdesc); |
| 2563 | /* partkey is immutable once set up, so we can always keep it */ |
| 2564 | keep_partkey = (relation->rd_partkey != NULL); |
| 2565 | keep_partdesc = equalPartitionDescs(relation->rd_partkey, |
| 2566 | relation->rd_partdesc, |
| 2567 | newrel->rd_partdesc); |
| 2568 | |
| 2569 | /* |
| 2570 | * Perform swapping of the relcache entry contents. Within this |
| 2571 | * process the old entry is momentarily invalid, so there *must* be no |
| 2572 | * possibility of CHECK_FOR_INTERRUPTS within this sequence. Do it in |
| 2573 | * all-in-line code for safety. |
| 2574 | * |
| 2575 | * Since the vast majority of fields should be swapped, our method is |
| 2576 | * to swap the whole structures and then re-swap those few fields we |
| 2577 | * didn't want swapped. |
| 2578 | */ |
| 2579 | #define SWAPFIELD(fldtype, fldname) \ |
| 2580 | do { \ |
| 2581 | fldtype _tmp = newrel->fldname; \ |
| 2582 | newrel->fldname = relation->fldname; \ |
| 2583 | relation->fldname = _tmp; \ |
| 2584 | } while (0) |
| 2585 | |
| 2586 | /* swap all Relation struct fields */ |
| 2587 | { |
| 2588 | RelationData tmpstruct; |
| 2589 | |
| 2590 | memcpy(&tmpstruct, newrel, sizeof(RelationData)); |
| 2591 | memcpy(newrel, relation, sizeof(RelationData)); |
| 2592 | memcpy(relation, &tmpstruct, sizeof(RelationData)); |
| 2593 | } |
| 2594 | |
| 2595 | /* rd_smgr must not be swapped, due to back-links from smgr level */ |
| 2596 | SWAPFIELD(SMgrRelation, rd_smgr); |
| 2597 | /* rd_refcnt must be preserved */ |
| 2598 | SWAPFIELD(int, rd_refcnt); |
| 2599 | /* isnailed shouldn't change */ |
| 2600 | Assert(newrel->rd_isnailed == relation->rd_isnailed); |
| 2601 | /* creation sub-XIDs must be preserved */ |
| 2602 | SWAPFIELD(SubTransactionId, rd_createSubid); |
| 2603 | SWAPFIELD(SubTransactionId, rd_newRelfilenodeSubid); |
| 2604 | /* un-swap rd_rel pointers, swap contents instead */ |
| 2605 | SWAPFIELD(Form_pg_class, rd_rel); |
| 2606 | /* ... but actually, we don't have to update newrel->rd_rel */ |
| 2607 | memcpy(relation->rd_rel, newrel->rd_rel, CLASS_TUPLE_SIZE); |
| 2608 | /* preserve old tupledesc, rules, policies if no logical change */ |
| 2609 | if (keep_tupdesc) |
| 2610 | SWAPFIELD(TupleDesc, rd_att); |
| 2611 | if (keep_rules) |
| 2612 | { |
| 2613 | SWAPFIELD(RuleLock *, rd_rules); |
| 2614 | SWAPFIELD(MemoryContext, rd_rulescxt); |
| 2615 | } |
| 2616 | if (keep_policies) |
| 2617 | SWAPFIELD(RowSecurityDesc *, rd_rsdesc); |
| 2618 | /* toast OID override must be preserved */ |
| 2619 | SWAPFIELD(Oid, rd_toastoid); |
| 2620 | /* pgstat_info must be preserved */ |
| 2621 | SWAPFIELD(struct PgStat_TableStatus *, pgstat_info); |
| 2622 | /* preserve old partitioning info if no logical change */ |
| 2623 | if (keep_partkey) |
| 2624 | { |
| 2625 | SWAPFIELD(PartitionKey, rd_partkey); |
| 2626 | SWAPFIELD(MemoryContext, rd_partkeycxt); |
| 2627 | } |
| 2628 | if (keep_partdesc) |
| 2629 | { |
| 2630 | SWAPFIELD(PartitionDesc, rd_partdesc); |
| 2631 | SWAPFIELD(MemoryContext, rd_pdcxt); |
| 2632 | } |
| 2633 | else if (rebuild && newrel->rd_pdcxt != NULL) |
| 2634 | { |
| 2635 | /* |
| 2636 | * We are rebuilding a partitioned relation with a non-zero |
| 2637 | * reference count, so keep the old partition descriptor around, |
| 2638 | * in case there's a PartitionDirectory with a pointer to it. |
| 2639 | * Attach it to the new rd_pdcxt so that it gets cleaned up |
| 2640 | * eventually. In the case where the reference count is 0, this |
| 2641 | * code is not reached, which should be OK because in that case |
| 2642 | * there should be no PartitionDirectory with a pointer to the old |
| 2643 | * entry. |
| 2644 | * |
| 2645 | * Note that newrel and relation have already been swapped, so the |
| 2646 | * "old" partition descriptor is actually the one hanging off of |
| 2647 | * newrel. |
| 2648 | */ |
| 2649 | MemoryContextSetParent(newrel->rd_pdcxt, relation->rd_pdcxt); |
| 2650 | newrel->rd_partdesc = NULL; |
| 2651 | newrel->rd_pdcxt = NULL; |
| 2652 | } |
| 2653 | |
| 2654 | #undef SWAPFIELD |
| 2655 | |
| 2656 | /* And now we can throw away the temporary entry */ |
| 2657 | RelationDestroyRelation(newrel, !keep_tupdesc); |
| 2658 | } |
| 2659 | } |
| 2660 | |
| 2661 | /* |
| 2662 | * RelationFlushRelation |
| 2663 | * |
| 2664 | * Rebuild the relation if it is open (refcount > 0), else blow it away. |
| 2665 | * This is used when we receive a cache invalidation event for the rel. |
| 2666 | */ |
| 2667 | static void |
| 2668 | RelationFlushRelation(Relation relation) |
| 2669 | { |
| 2670 | if (relation->rd_createSubid != InvalidSubTransactionId || |
| 2671 | relation->rd_newRelfilenodeSubid != InvalidSubTransactionId) |
| 2672 | { |
| 2673 | /* |
| 2674 | * New relcache entries are always rebuilt, not flushed; else we'd |
| 2675 | * forget the "new" status of the relation, which is a useful |
| 2676 | * optimization to have. Ditto for the new-relfilenode status. |
| 2677 | * |
| 2678 | * The rel could have zero refcnt here, so temporarily increment the |
| 2679 | * refcnt to ensure it's safe to rebuild it. We can assume that the |
| 2680 | * current transaction has some lock on the rel already. |
| 2681 | */ |
| 2682 | RelationIncrementReferenceCount(relation); |
| 2683 | RelationClearRelation(relation, true); |
| 2684 | RelationDecrementReferenceCount(relation); |
| 2685 | } |
| 2686 | else |
| 2687 | { |
| 2688 | /* |
| 2689 | * Pre-existing rels can be dropped from the relcache if not open. |
| 2690 | */ |
| 2691 | bool rebuild = !RelationHasReferenceCountZero(relation); |
| 2692 | |
| 2693 | RelationClearRelation(relation, rebuild); |
| 2694 | } |
| 2695 | } |
| 2696 | |
| 2697 | /* |
| 2698 | * RelationForgetRelation - unconditionally remove a relcache entry |
| 2699 | * |
| 2700 | * External interface for destroying a relcache entry when we |
| 2701 | * drop the relation. |
| 2702 | */ |
| 2703 | void |
| 2704 | RelationForgetRelation(Oid rid) |
| 2705 | { |
| 2706 | Relation relation; |
| 2707 | |
| 2708 | RelationIdCacheLookup(rid, relation); |
| 2709 | |
| 2710 | if (!PointerIsValid(relation)) |
| 2711 | return; /* not in cache, nothing to do */ |
| 2712 | |
| 2713 | if (!RelationHasReferenceCountZero(relation)) |
| 2714 | elog(ERROR, "relation %u is still open" , rid); |
| 2715 | |
| 2716 | /* Unconditionally destroy the relcache entry */ |
| 2717 | RelationClearRelation(relation, false); |
| 2718 | } |
| 2719 | |
| 2720 | /* |
| 2721 | * RelationCacheInvalidateEntry |
| 2722 | * |
| 2723 | * This routine is invoked for SI cache flush messages. |
| 2724 | * |
| 2725 | * Any relcache entry matching the relid must be flushed. (Note: caller has |
| 2726 | * already determined that the relid belongs to our database or is a shared |
| 2727 | * relation.) |
| 2728 | * |
| 2729 | * We used to skip local relations, on the grounds that they could |
| 2730 | * not be targets of cross-backend SI update messages; but it seems |
| 2731 | * safer to process them, so that our *own* SI update messages will |
| 2732 | * have the same effects during CommandCounterIncrement for both |
| 2733 | * local and nonlocal relations. |
| 2734 | */ |
| 2735 | void |
| 2736 | RelationCacheInvalidateEntry(Oid relationId) |
| 2737 | { |
| 2738 | Relation relation; |
| 2739 | |
| 2740 | RelationIdCacheLookup(relationId, relation); |
| 2741 | |
| 2742 | if (PointerIsValid(relation)) |
| 2743 | { |
| 2744 | relcacheInvalsReceived++; |
| 2745 | RelationFlushRelation(relation); |
| 2746 | } |
| 2747 | } |
| 2748 | |
| 2749 | /* |
| 2750 | * RelationCacheInvalidate |
| 2751 | * Blow away cached relation descriptors that have zero reference counts, |
| 2752 | * and rebuild those with positive reference counts. Also reset the smgr |
| 2753 | * relation cache and re-read relation mapping data. |
| 2754 | * |
| 2755 | * This is currently used only to recover from SI message buffer overflow, |
| 2756 | * so we do not touch new-in-transaction relations; they cannot be targets |
| 2757 | * of cross-backend SI updates (and our own updates now go through a |
| 2758 | * separate linked list that isn't limited by the SI message buffer size). |
| 2759 | * Likewise, we need not discard new-relfilenode-in-transaction hints, |
| 2760 | * since any invalidation of those would be a local event. |
| 2761 | * |
| 2762 | * We do this in two phases: the first pass deletes deletable items, and |
| 2763 | * the second one rebuilds the rebuildable items. This is essential for |
| 2764 | * safety, because hash_seq_search only copes with concurrent deletion of |
| 2765 | * the element it is currently visiting. If a second SI overflow were to |
| 2766 | * occur while we are walking the table, resulting in recursive entry to |
| 2767 | * this routine, we could crash because the inner invocation blows away |
| 2768 | * the entry next to be visited by the outer scan. But this way is OK, |
| 2769 | * because (a) during the first pass we won't process any more SI messages, |
| 2770 | * so hash_seq_search will complete safely; (b) during the second pass we |
| 2771 | * only hold onto pointers to nondeletable entries. |
| 2772 | * |
| 2773 | * The two-phase approach also makes it easy to update relfilenodes for |
| 2774 | * mapped relations before we do anything else, and to ensure that the |
| 2775 | * second pass processes nailed-in-cache items before other nondeletable |
| 2776 | * items. This should ensure that system catalogs are up to date before |
| 2777 | * we attempt to use them to reload information about other open relations. |
| 2778 | */ |
| 2779 | void |
| 2780 | RelationCacheInvalidate(void) |
| 2781 | { |
| 2782 | HASH_SEQ_STATUS status; |
| 2783 | RelIdCacheEnt *idhentry; |
| 2784 | Relation relation; |
| 2785 | List *rebuildFirstList = NIL; |
| 2786 | List *rebuildList = NIL; |
| 2787 | ListCell *l; |
| 2788 | |
| 2789 | /* |
| 2790 | * Reload relation mapping data before starting to reconstruct cache. |
| 2791 | */ |
| 2792 | RelationMapInvalidateAll(); |
| 2793 | |
| 2794 | /* Phase 1 */ |
| 2795 | hash_seq_init(&status, RelationIdCache); |
| 2796 | |
| 2797 | while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL) |
| 2798 | { |
| 2799 | relation = idhentry->reldesc; |
| 2800 | |
| 2801 | /* Must close all smgr references to avoid leaving dangling ptrs */ |
| 2802 | RelationCloseSmgr(relation); |
| 2803 | |
| 2804 | /* |
| 2805 | * Ignore new relations; no other backend will manipulate them before |
| 2806 | * we commit. Likewise, before replacing a relation's relfilenode, we |
| 2807 | * shall have acquired AccessExclusiveLock and drained any applicable |
| 2808 | * pending invalidations. |
| 2809 | */ |
| 2810 | if (relation->rd_createSubid != InvalidSubTransactionId || |
| 2811 | relation->rd_newRelfilenodeSubid != InvalidSubTransactionId) |
| 2812 | continue; |
| 2813 | |
| 2814 | relcacheInvalsReceived++; |
| 2815 | |
| 2816 | if (RelationHasReferenceCountZero(relation)) |
| 2817 | { |
| 2818 | /* Delete this entry immediately */ |
| 2819 | Assert(!relation->rd_isnailed); |
| 2820 | RelationClearRelation(relation, false); |
| 2821 | } |
| 2822 | else |
| 2823 | { |
| 2824 | /* |
| 2825 | * If it's a mapped relation, immediately update its rd_node in |
| 2826 | * case its relfilenode changed. We must do this during phase 1 |
| 2827 | * in case the relation is consulted during rebuild of other |
| 2828 | * relcache entries in phase 2. It's safe since consulting the |
| 2829 | * map doesn't involve any access to relcache entries. |
| 2830 | */ |
| 2831 | if (RelationIsMapped(relation)) |
| 2832 | RelationInitPhysicalAddr(relation); |
| 2833 | |
| 2834 | /* |
| 2835 | * Add this entry to list of stuff to rebuild in second pass. |
| 2836 | * pg_class goes to the front of rebuildFirstList while |
| 2837 | * pg_class_oid_index goes to the back of rebuildFirstList, so |
| 2838 | * they are done first and second respectively. Other nailed |
| 2839 | * relations go to the front of rebuildList, so they'll be done |
| 2840 | * next in no particular order; and everything else goes to the |
| 2841 | * back of rebuildList. |
| 2842 | */ |
| 2843 | if (RelationGetRelid(relation) == RelationRelationId) |
| 2844 | rebuildFirstList = lcons(relation, rebuildFirstList); |
| 2845 | else if (RelationGetRelid(relation) == ClassOidIndexId) |
| 2846 | rebuildFirstList = lappend(rebuildFirstList, relation); |
| 2847 | else if (relation->rd_isnailed) |
| 2848 | rebuildList = lcons(relation, rebuildList); |
| 2849 | else |
| 2850 | rebuildList = lappend(rebuildList, relation); |
| 2851 | } |
| 2852 | } |
| 2853 | |
| 2854 | /* |
| 2855 | * Now zap any remaining smgr cache entries. This must happen before we |
| 2856 | * start to rebuild entries, since that may involve catalog fetches which |
| 2857 | * will re-open catalog files. |
| 2858 | */ |
| 2859 | smgrcloseall(); |
| 2860 | |
| 2861 | /* Phase 2: rebuild the items found to need rebuild in phase 1 */ |
| 2862 | foreach(l, rebuildFirstList) |
| 2863 | { |
| 2864 | relation = (Relation) lfirst(l); |
| 2865 | RelationClearRelation(relation, true); |
| 2866 | } |
| 2867 | list_free(rebuildFirstList); |
| 2868 | foreach(l, rebuildList) |
| 2869 | { |
| 2870 | relation = (Relation) lfirst(l); |
| 2871 | RelationClearRelation(relation, true); |
| 2872 | } |
| 2873 | list_free(rebuildList); |
| 2874 | } |
| 2875 | |
| 2876 | /* |
| 2877 | * RelationCloseSmgrByOid - close a relcache entry's smgr link |
| 2878 | * |
| 2879 | * Needed in some cases where we are changing a relation's physical mapping. |
| 2880 | * The link will be automatically reopened on next use. |
| 2881 | */ |
| 2882 | void |
| 2883 | RelationCloseSmgrByOid(Oid relationId) |
| 2884 | { |
| 2885 | Relation relation; |
| 2886 | |
| 2887 | RelationIdCacheLookup(relationId, relation); |
| 2888 | |
| 2889 | if (!PointerIsValid(relation)) |
| 2890 | return; /* not in cache, nothing to do */ |
| 2891 | |
| 2892 | RelationCloseSmgr(relation); |
| 2893 | } |
| 2894 | |
| 2895 | static void |
| 2896 | RememberToFreeTupleDescAtEOX(TupleDesc td) |
| 2897 | { |
| 2898 | if (EOXactTupleDescArray == NULL) |
| 2899 | { |
| 2900 | MemoryContext oldcxt; |
| 2901 | |
| 2902 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 2903 | |
| 2904 | EOXactTupleDescArray = (TupleDesc *) palloc(16 * sizeof(TupleDesc)); |
| 2905 | EOXactTupleDescArrayLen = 16; |
| 2906 | NextEOXactTupleDescNum = 0; |
| 2907 | MemoryContextSwitchTo(oldcxt); |
| 2908 | } |
| 2909 | else if (NextEOXactTupleDescNum >= EOXactTupleDescArrayLen) |
| 2910 | { |
| 2911 | int32 newlen = EOXactTupleDescArrayLen * 2; |
| 2912 | |
| 2913 | Assert(EOXactTupleDescArrayLen > 0); |
| 2914 | |
| 2915 | EOXactTupleDescArray = (TupleDesc *) repalloc(EOXactTupleDescArray, |
| 2916 | newlen * sizeof(TupleDesc)); |
| 2917 | EOXactTupleDescArrayLen = newlen; |
| 2918 | } |
| 2919 | |
| 2920 | EOXactTupleDescArray[NextEOXactTupleDescNum++] = td; |
| 2921 | } |
| 2922 | |
| 2923 | /* |
| 2924 | * AtEOXact_RelationCache |
| 2925 | * |
| 2926 | * Clean up the relcache at main-transaction commit or abort. |
| 2927 | * |
| 2928 | * Note: this must be called *before* processing invalidation messages. |
| 2929 | * In the case of abort, we don't want to try to rebuild any invalidated |
| 2930 | * cache entries (since we can't safely do database accesses). Therefore |
| 2931 | * we must reset refcnts before handling pending invalidations. |
| 2932 | * |
| 2933 | * As of PostgreSQL 8.1, relcache refcnts should get released by the |
| 2934 | * ResourceOwner mechanism. This routine just does a debugging |
| 2935 | * cross-check that no pins remain. However, we also need to do special |
| 2936 | * cleanup when the current transaction created any relations or made use |
| 2937 | * of forced index lists. |
| 2938 | */ |
| 2939 | void |
| 2940 | AtEOXact_RelationCache(bool isCommit) |
| 2941 | { |
| 2942 | HASH_SEQ_STATUS status; |
| 2943 | RelIdCacheEnt *idhentry; |
| 2944 | int i; |
| 2945 | |
| 2946 | /* |
| 2947 | * Unless the eoxact_list[] overflowed, we only need to examine the rels |
| 2948 | * listed in it. Otherwise fall back on a hash_seq_search scan. |
| 2949 | * |
| 2950 | * For simplicity, eoxact_list[] entries are not deleted till end of |
| 2951 | * top-level transaction, even though we could remove them at |
| 2952 | * subtransaction end in some cases, or remove relations from the list if |
| 2953 | * they are cleared for other reasons. Therefore we should expect the |
| 2954 | * case that list entries are not found in the hashtable; if not, there's |
| 2955 | * nothing to do for them. |
| 2956 | */ |
| 2957 | if (eoxact_list_overflowed) |
| 2958 | { |
| 2959 | hash_seq_init(&status, RelationIdCache); |
| 2960 | while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL) |
| 2961 | { |
| 2962 | AtEOXact_cleanup(idhentry->reldesc, isCommit); |
| 2963 | } |
| 2964 | } |
| 2965 | else |
| 2966 | { |
| 2967 | for (i = 0; i < eoxact_list_len; i++) |
| 2968 | { |
| 2969 | idhentry = (RelIdCacheEnt *) hash_search(RelationIdCache, |
| 2970 | (void *) &eoxact_list[i], |
| 2971 | HASH_FIND, |
| 2972 | NULL); |
| 2973 | if (idhentry != NULL) |
| 2974 | AtEOXact_cleanup(idhentry->reldesc, isCommit); |
| 2975 | } |
| 2976 | } |
| 2977 | |
| 2978 | if (EOXactTupleDescArrayLen > 0) |
| 2979 | { |
| 2980 | Assert(EOXactTupleDescArray != NULL); |
| 2981 | for (i = 0; i < NextEOXactTupleDescNum; i++) |
| 2982 | FreeTupleDesc(EOXactTupleDescArray[i]); |
| 2983 | pfree(EOXactTupleDescArray); |
| 2984 | EOXactTupleDescArray = NULL; |
| 2985 | } |
| 2986 | |
| 2987 | /* Now we're out of the transaction and can clear the lists */ |
| 2988 | eoxact_list_len = 0; |
| 2989 | eoxact_list_overflowed = false; |
| 2990 | NextEOXactTupleDescNum = 0; |
| 2991 | EOXactTupleDescArrayLen = 0; |
| 2992 | } |
| 2993 | |
| 2994 | /* |
| 2995 | * AtEOXact_cleanup |
| 2996 | * |
| 2997 | * Clean up a single rel at main-transaction commit or abort |
| 2998 | * |
| 2999 | * NB: this processing must be idempotent, because EOXactListAdd() doesn't |
| 3000 | * bother to prevent duplicate entries in eoxact_list[]. |
| 3001 | */ |
| 3002 | static void |
| 3003 | AtEOXact_cleanup(Relation relation, bool isCommit) |
| 3004 | { |
| 3005 | /* |
| 3006 | * The relcache entry's ref count should be back to its normal |
| 3007 | * not-in-a-transaction state: 0 unless it's nailed in cache. |
| 3008 | * |
| 3009 | * In bootstrap mode, this is NOT true, so don't check it --- the |
| 3010 | * bootstrap code expects relations to stay open across start/commit |
| 3011 | * transaction calls. (That seems bogus, but it's not worth fixing.) |
| 3012 | * |
| 3013 | * Note: ideally this check would be applied to every relcache entry, not |
| 3014 | * just those that have eoxact work to do. But it's not worth forcing a |
| 3015 | * scan of the whole relcache just for this. (Moreover, doing so would |
| 3016 | * mean that assert-enabled testing never tests the hash_search code path |
| 3017 | * above, which seems a bad idea.) |
| 3018 | */ |
| 3019 | #ifdef USE_ASSERT_CHECKING |
| 3020 | if (!IsBootstrapProcessingMode()) |
| 3021 | { |
| 3022 | int expected_refcnt; |
| 3023 | |
| 3024 | expected_refcnt = relation->rd_isnailed ? 1 : 0; |
| 3025 | Assert(relation->rd_refcnt == expected_refcnt); |
| 3026 | } |
| 3027 | #endif |
| 3028 | |
| 3029 | /* |
| 3030 | * Is it a relation created in the current transaction? |
| 3031 | * |
| 3032 | * During commit, reset the flag to zero, since we are now out of the |
| 3033 | * creating transaction. During abort, simply delete the relcache entry |
| 3034 | * --- it isn't interesting any longer. (NOTE: if we have forgotten the |
| 3035 | * new-ness of a new relation due to a forced cache flush, the entry will |
| 3036 | * get deleted anyway by shared-cache-inval processing of the aborted |
| 3037 | * pg_class insertion.) |
| 3038 | */ |
| 3039 | if (relation->rd_createSubid != InvalidSubTransactionId) |
| 3040 | { |
| 3041 | if (isCommit) |
| 3042 | relation->rd_createSubid = InvalidSubTransactionId; |
| 3043 | else if (RelationHasReferenceCountZero(relation)) |
| 3044 | { |
| 3045 | RelationClearRelation(relation, false); |
| 3046 | return; |
| 3047 | } |
| 3048 | else |
| 3049 | { |
| 3050 | /* |
| 3051 | * Hmm, somewhere there's a (leaked?) reference to the relation. |
| 3052 | * We daren't remove the entry for fear of dereferencing a |
| 3053 | * dangling pointer later. Bleat, and mark it as not belonging to |
| 3054 | * the current transaction. Hopefully it'll get cleaned up |
| 3055 | * eventually. This must be just a WARNING to avoid |
| 3056 | * error-during-error-recovery loops. |
| 3057 | */ |
| 3058 | relation->rd_createSubid = InvalidSubTransactionId; |
| 3059 | elog(WARNING, "cannot remove relcache entry for \"%s\" because it has nonzero refcount" , |
| 3060 | RelationGetRelationName(relation)); |
| 3061 | } |
| 3062 | } |
| 3063 | |
| 3064 | /* |
| 3065 | * Likewise, reset the hint about the relfilenode being new. |
| 3066 | */ |
| 3067 | relation->rd_newRelfilenodeSubid = InvalidSubTransactionId; |
| 3068 | } |
| 3069 | |
| 3070 | /* |
| 3071 | * AtEOSubXact_RelationCache |
| 3072 | * |
| 3073 | * Clean up the relcache at sub-transaction commit or abort. |
| 3074 | * |
| 3075 | * Note: this must be called *before* processing invalidation messages. |
| 3076 | */ |
| 3077 | void |
| 3078 | AtEOSubXact_RelationCache(bool isCommit, SubTransactionId mySubid, |
| 3079 | SubTransactionId parentSubid) |
| 3080 | { |
| 3081 | HASH_SEQ_STATUS status; |
| 3082 | RelIdCacheEnt *idhentry; |
| 3083 | int i; |
| 3084 | |
| 3085 | /* |
| 3086 | * Unless the eoxact_list[] overflowed, we only need to examine the rels |
| 3087 | * listed in it. Otherwise fall back on a hash_seq_search scan. Same |
| 3088 | * logic as in AtEOXact_RelationCache. |
| 3089 | */ |
| 3090 | if (eoxact_list_overflowed) |
| 3091 | { |
| 3092 | hash_seq_init(&status, RelationIdCache); |
| 3093 | while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL) |
| 3094 | { |
| 3095 | AtEOSubXact_cleanup(idhentry->reldesc, isCommit, |
| 3096 | mySubid, parentSubid); |
| 3097 | } |
| 3098 | } |
| 3099 | else |
| 3100 | { |
| 3101 | for (i = 0; i < eoxact_list_len; i++) |
| 3102 | { |
| 3103 | idhentry = (RelIdCacheEnt *) hash_search(RelationIdCache, |
| 3104 | (void *) &eoxact_list[i], |
| 3105 | HASH_FIND, |
| 3106 | NULL); |
| 3107 | if (idhentry != NULL) |
| 3108 | AtEOSubXact_cleanup(idhentry->reldesc, isCommit, |
| 3109 | mySubid, parentSubid); |
| 3110 | } |
| 3111 | } |
| 3112 | |
| 3113 | /* Don't reset the list; we still need more cleanup later */ |
| 3114 | } |
| 3115 | |
| 3116 | /* |
| 3117 | * AtEOSubXact_cleanup |
| 3118 | * |
| 3119 | * Clean up a single rel at subtransaction commit or abort |
| 3120 | * |
| 3121 | * NB: this processing must be idempotent, because EOXactListAdd() doesn't |
| 3122 | * bother to prevent duplicate entries in eoxact_list[]. |
| 3123 | */ |
| 3124 | static void |
| 3125 | AtEOSubXact_cleanup(Relation relation, bool isCommit, |
| 3126 | SubTransactionId mySubid, SubTransactionId parentSubid) |
| 3127 | { |
| 3128 | /* |
| 3129 | * Is it a relation created in the current subtransaction? |
| 3130 | * |
| 3131 | * During subcommit, mark it as belonging to the parent, instead. During |
| 3132 | * subabort, simply delete the relcache entry. |
| 3133 | */ |
| 3134 | if (relation->rd_createSubid == mySubid) |
| 3135 | { |
| 3136 | if (isCommit) |
| 3137 | relation->rd_createSubid = parentSubid; |
| 3138 | else if (RelationHasReferenceCountZero(relation)) |
| 3139 | { |
| 3140 | RelationClearRelation(relation, false); |
| 3141 | return; |
| 3142 | } |
| 3143 | else |
| 3144 | { |
| 3145 | /* |
| 3146 | * Hmm, somewhere there's a (leaked?) reference to the relation. |
| 3147 | * We daren't remove the entry for fear of dereferencing a |
| 3148 | * dangling pointer later. Bleat, and transfer it to the parent |
| 3149 | * subtransaction so we can try again later. This must be just a |
| 3150 | * WARNING to avoid error-during-error-recovery loops. |
| 3151 | */ |
| 3152 | relation->rd_createSubid = parentSubid; |
| 3153 | elog(WARNING, "cannot remove relcache entry for \"%s\" because it has nonzero refcount" , |
| 3154 | RelationGetRelationName(relation)); |
| 3155 | } |
| 3156 | } |
| 3157 | |
| 3158 | /* |
| 3159 | * Likewise, update or drop any new-relfilenode-in-subtransaction hint. |
| 3160 | */ |
| 3161 | if (relation->rd_newRelfilenodeSubid == mySubid) |
| 3162 | { |
| 3163 | if (isCommit) |
| 3164 | relation->rd_newRelfilenodeSubid = parentSubid; |
| 3165 | else |
| 3166 | relation->rd_newRelfilenodeSubid = InvalidSubTransactionId; |
| 3167 | } |
| 3168 | } |
| 3169 | |
| 3170 | |
| 3171 | /* |
| 3172 | * RelationBuildLocalRelation |
| 3173 | * Build a relcache entry for an about-to-be-created relation, |
| 3174 | * and enter it into the relcache. |
| 3175 | */ |
| 3176 | Relation |
| 3177 | RelationBuildLocalRelation(const char *relname, |
| 3178 | Oid relnamespace, |
| 3179 | TupleDesc tupDesc, |
| 3180 | Oid relid, |
| 3181 | Oid accessmtd, |
| 3182 | Oid relfilenode, |
| 3183 | Oid reltablespace, |
| 3184 | bool shared_relation, |
| 3185 | bool mapped_relation, |
| 3186 | char relpersistence, |
| 3187 | char relkind) |
| 3188 | { |
| 3189 | Relation rel; |
| 3190 | MemoryContext oldcxt; |
| 3191 | int natts = tupDesc->natts; |
| 3192 | int i; |
| 3193 | bool has_not_null; |
| 3194 | bool nailit; |
| 3195 | |
| 3196 | AssertArg(natts >= 0); |
| 3197 | |
| 3198 | /* |
| 3199 | * check for creation of a rel that must be nailed in cache. |
| 3200 | * |
| 3201 | * XXX this list had better match the relations specially handled in |
| 3202 | * RelationCacheInitializePhase2/3. |
| 3203 | */ |
| 3204 | switch (relid) |
| 3205 | { |
| 3206 | case DatabaseRelationId: |
| 3207 | case AuthIdRelationId: |
| 3208 | case AuthMemRelationId: |
| 3209 | case RelationRelationId: |
| 3210 | case AttributeRelationId: |
| 3211 | case ProcedureRelationId: |
| 3212 | case TypeRelationId: |
| 3213 | nailit = true; |
| 3214 | break; |
| 3215 | default: |
| 3216 | nailit = false; |
| 3217 | break; |
| 3218 | } |
| 3219 | |
| 3220 | /* |
| 3221 | * check that hardwired list of shared rels matches what's in the |
| 3222 | * bootstrap .bki file. If you get a failure here during initdb, you |
| 3223 | * probably need to fix IsSharedRelation() to match whatever you've done |
| 3224 | * to the set of shared relations. |
| 3225 | */ |
| 3226 | if (shared_relation != IsSharedRelation(relid)) |
| 3227 | elog(ERROR, "shared_relation flag for \"%s\" does not match IsSharedRelation(%u)" , |
| 3228 | relname, relid); |
| 3229 | |
| 3230 | /* Shared relations had better be mapped, too */ |
| 3231 | Assert(mapped_relation || !shared_relation); |
| 3232 | |
| 3233 | /* |
| 3234 | * switch to the cache context to create the relcache entry. |
| 3235 | */ |
| 3236 | if (!CacheMemoryContext) |
| 3237 | CreateCacheMemoryContext(); |
| 3238 | |
| 3239 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 3240 | |
| 3241 | /* |
| 3242 | * allocate a new relation descriptor and fill in basic state fields. |
| 3243 | */ |
| 3244 | rel = (Relation) palloc0(sizeof(RelationData)); |
| 3245 | |
| 3246 | /* make sure relation is marked as having no open file yet */ |
| 3247 | rel->rd_smgr = NULL; |
| 3248 | |
| 3249 | /* mark it nailed if appropriate */ |
| 3250 | rel->rd_isnailed = nailit; |
| 3251 | |
| 3252 | rel->rd_refcnt = nailit ? 1 : 0; |
| 3253 | |
| 3254 | /* it's being created in this transaction */ |
| 3255 | rel->rd_createSubid = GetCurrentSubTransactionId(); |
| 3256 | rel->rd_newRelfilenodeSubid = InvalidSubTransactionId; |
| 3257 | |
| 3258 | /* |
| 3259 | * create a new tuple descriptor from the one passed in. We do this |
| 3260 | * partly to copy it into the cache context, and partly because the new |
| 3261 | * relation can't have any defaults or constraints yet; they have to be |
| 3262 | * added in later steps, because they require additions to multiple system |
| 3263 | * catalogs. We can copy attnotnull constraints here, however. |
| 3264 | */ |
| 3265 | rel->rd_att = CreateTupleDescCopy(tupDesc); |
| 3266 | rel->rd_att->tdrefcount = 1; /* mark as refcounted */ |
| 3267 | has_not_null = false; |
| 3268 | for (i = 0; i < natts; i++) |
| 3269 | { |
| 3270 | Form_pg_attribute satt = TupleDescAttr(tupDesc, i); |
| 3271 | Form_pg_attribute datt = TupleDescAttr(rel->rd_att, i); |
| 3272 | |
| 3273 | datt->attidentity = satt->attidentity; |
| 3274 | datt->attgenerated = satt->attgenerated; |
| 3275 | datt->attnotnull = satt->attnotnull; |
| 3276 | has_not_null |= satt->attnotnull; |
| 3277 | } |
| 3278 | |
| 3279 | if (has_not_null) |
| 3280 | { |
| 3281 | TupleConstr *constr = (TupleConstr *) palloc0(sizeof(TupleConstr)); |
| 3282 | |
| 3283 | constr->has_not_null = true; |
| 3284 | rel->rd_att->constr = constr; |
| 3285 | } |
| 3286 | |
| 3287 | /* |
| 3288 | * initialize relation tuple form (caller may add/override data later) |
| 3289 | */ |
| 3290 | rel->rd_rel = (Form_pg_class) palloc0(CLASS_TUPLE_SIZE); |
| 3291 | |
| 3292 | namestrcpy(&rel->rd_rel->relname, relname); |
| 3293 | rel->rd_rel->relnamespace = relnamespace; |
| 3294 | |
| 3295 | rel->rd_rel->relkind = relkind; |
| 3296 | rel->rd_rel->relnatts = natts; |
| 3297 | rel->rd_rel->reltype = InvalidOid; |
| 3298 | /* needed when bootstrapping: */ |
| 3299 | rel->rd_rel->relowner = BOOTSTRAP_SUPERUSERID; |
| 3300 | |
| 3301 | /* set up persistence and relcache fields dependent on it */ |
| 3302 | rel->rd_rel->relpersistence = relpersistence; |
| 3303 | switch (relpersistence) |
| 3304 | { |
| 3305 | case RELPERSISTENCE_UNLOGGED: |
| 3306 | case RELPERSISTENCE_PERMANENT: |
| 3307 | rel->rd_backend = InvalidBackendId; |
| 3308 | rel->rd_islocaltemp = false; |
| 3309 | break; |
| 3310 | case RELPERSISTENCE_TEMP: |
| 3311 | Assert(isTempOrTempToastNamespace(relnamespace)); |
| 3312 | rel->rd_backend = BackendIdForTempRelations(); |
| 3313 | rel->rd_islocaltemp = true; |
| 3314 | break; |
| 3315 | default: |
| 3316 | elog(ERROR, "invalid relpersistence: %c" , relpersistence); |
| 3317 | break; |
| 3318 | } |
| 3319 | |
| 3320 | /* if it's a materialized view, it's not populated initially */ |
| 3321 | if (relkind == RELKIND_MATVIEW) |
| 3322 | rel->rd_rel->relispopulated = false; |
| 3323 | else |
| 3324 | rel->rd_rel->relispopulated = true; |
| 3325 | |
| 3326 | /* set replica identity -- system catalogs and non-tables don't have one */ |
| 3327 | if (!IsCatalogNamespace(relnamespace) && |
| 3328 | (relkind == RELKIND_RELATION || |
| 3329 | relkind == RELKIND_MATVIEW || |
| 3330 | relkind == RELKIND_PARTITIONED_TABLE)) |
| 3331 | rel->rd_rel->relreplident = REPLICA_IDENTITY_DEFAULT; |
| 3332 | else |
| 3333 | rel->rd_rel->relreplident = REPLICA_IDENTITY_NOTHING; |
| 3334 | |
| 3335 | /* |
| 3336 | * Insert relation physical and logical identifiers (OIDs) into the right |
| 3337 | * places. For a mapped relation, we set relfilenode to zero and rely on |
| 3338 | * RelationInitPhysicalAddr to consult the map. |
| 3339 | */ |
| 3340 | rel->rd_rel->relisshared = shared_relation; |
| 3341 | |
| 3342 | RelationGetRelid(rel) = relid; |
| 3343 | |
| 3344 | for (i = 0; i < natts; i++) |
| 3345 | TupleDescAttr(rel->rd_att, i)->attrelid = relid; |
| 3346 | |
| 3347 | rel->rd_rel->reltablespace = reltablespace; |
| 3348 | |
| 3349 | if (mapped_relation) |
| 3350 | { |
| 3351 | rel->rd_rel->relfilenode = InvalidOid; |
| 3352 | /* Add it to the active mapping information */ |
| 3353 | RelationMapUpdateMap(relid, relfilenode, shared_relation, true); |
| 3354 | } |
| 3355 | else |
| 3356 | rel->rd_rel->relfilenode = relfilenode; |
| 3357 | |
| 3358 | RelationInitLockInfo(rel); /* see lmgr.c */ |
| 3359 | |
| 3360 | RelationInitPhysicalAddr(rel); |
| 3361 | |
| 3362 | rel->rd_rel->relam = accessmtd; |
| 3363 | |
| 3364 | if (relkind == RELKIND_RELATION || |
| 3365 | relkind == RELKIND_SEQUENCE || |
| 3366 | relkind == RELKIND_TOASTVALUE || |
| 3367 | relkind == RELKIND_MATVIEW) |
| 3368 | RelationInitTableAccessMethod(rel); |
| 3369 | |
| 3370 | /* |
| 3371 | * Okay to insert into the relcache hash table. |
| 3372 | * |
| 3373 | * Ordinarily, there should certainly not be an existing hash entry for |
| 3374 | * the same OID; but during bootstrap, when we create a "real" relcache |
| 3375 | * entry for one of the bootstrap relations, we'll be overwriting the |
| 3376 | * phony one created with formrdesc. So allow that to happen for nailed |
| 3377 | * rels. |
| 3378 | */ |
| 3379 | RelationCacheInsert(rel, nailit); |
| 3380 | |
| 3381 | /* |
| 3382 | * Flag relation as needing eoxact cleanup (to clear rd_createSubid). We |
| 3383 | * can't do this before storing relid in it. |
| 3384 | */ |
| 3385 | EOXactListAdd(rel); |
| 3386 | |
| 3387 | /* |
| 3388 | * done building relcache entry. |
| 3389 | */ |
| 3390 | MemoryContextSwitchTo(oldcxt); |
| 3391 | |
| 3392 | /* It's fully valid */ |
| 3393 | rel->rd_isvalid = true; |
| 3394 | |
| 3395 | /* |
| 3396 | * Caller expects us to pin the returned entry. |
| 3397 | */ |
| 3398 | RelationIncrementReferenceCount(rel); |
| 3399 | |
| 3400 | return rel; |
| 3401 | } |
| 3402 | |
| 3403 | |
| 3404 | /* |
| 3405 | * RelationSetNewRelfilenode |
| 3406 | * |
| 3407 | * Assign a new relfilenode (physical file name), and possibly a new |
| 3408 | * persistence setting, to the relation. |
| 3409 | * |
| 3410 | * This allows a full rewrite of the relation to be done with transactional |
| 3411 | * safety (since the filenode assignment can be rolled back). Note however |
| 3412 | * that there is no simple way to access the relation's old data for the |
| 3413 | * remainder of the current transaction. This limits the usefulness to cases |
| 3414 | * such as TRUNCATE or rebuilding an index from scratch. |
| 3415 | * |
| 3416 | * Caller must already hold exclusive lock on the relation. |
| 3417 | */ |
| 3418 | void |
| 3419 | RelationSetNewRelfilenode(Relation relation, char persistence) |
| 3420 | { |
| 3421 | Oid newrelfilenode; |
| 3422 | Relation pg_class; |
| 3423 | HeapTuple tuple; |
| 3424 | Form_pg_class classform; |
| 3425 | MultiXactId minmulti = InvalidMultiXactId; |
| 3426 | TransactionId freezeXid = InvalidTransactionId; |
| 3427 | RelFileNode newrnode; |
| 3428 | |
| 3429 | /* Allocate a new relfilenode */ |
| 3430 | newrelfilenode = GetNewRelFileNode(relation->rd_rel->reltablespace, NULL, |
| 3431 | persistence); |
| 3432 | |
| 3433 | /* |
| 3434 | * Get a writable copy of the pg_class tuple for the given relation. |
| 3435 | */ |
| 3436 | pg_class = table_open(RelationRelationId, RowExclusiveLock); |
| 3437 | |
| 3438 | tuple = SearchSysCacheCopy1(RELOID, |
| 3439 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 3440 | if (!HeapTupleIsValid(tuple)) |
| 3441 | elog(ERROR, "could not find tuple for relation %u" , |
| 3442 | RelationGetRelid(relation)); |
| 3443 | classform = (Form_pg_class) GETSTRUCT(tuple); |
| 3444 | |
| 3445 | /* |
| 3446 | * Schedule unlinking of the old storage at transaction commit. |
| 3447 | */ |
| 3448 | RelationDropStorage(relation); |
| 3449 | |
| 3450 | /* |
| 3451 | * Create storage for the main fork of the new relfilenode. If it's a |
| 3452 | * table-like object, call into the table AM to do so, which'll also |
| 3453 | * create the table's init fork if needed. |
| 3454 | * |
| 3455 | * NOTE: If relevant for the AM, any conflict in relfilenode value will be |
| 3456 | * caught here, if GetNewRelFileNode messes up for any reason. |
| 3457 | */ |
| 3458 | newrnode = relation->rd_node; |
| 3459 | newrnode.relNode = newrelfilenode; |
| 3460 | |
| 3461 | switch (relation->rd_rel->relkind) |
| 3462 | { |
| 3463 | case RELKIND_INDEX: |
| 3464 | case RELKIND_SEQUENCE: |
| 3465 | { |
| 3466 | /* handle these directly, at least for now */ |
| 3467 | SMgrRelation srel; |
| 3468 | |
| 3469 | srel = RelationCreateStorage(newrnode, persistence); |
| 3470 | smgrclose(srel); |
| 3471 | } |
| 3472 | break; |
| 3473 | |
| 3474 | case RELKIND_RELATION: |
| 3475 | case RELKIND_TOASTVALUE: |
| 3476 | case RELKIND_MATVIEW: |
| 3477 | table_relation_set_new_filenode(relation, &newrnode, |
| 3478 | persistence, |
| 3479 | &freezeXid, &minmulti); |
| 3480 | break; |
| 3481 | |
| 3482 | default: |
| 3483 | /* we shouldn't be called for anything else */ |
| 3484 | elog(ERROR, "relation \"%s\" does not have storage" , |
| 3485 | RelationGetRelationName(relation)); |
| 3486 | break; |
| 3487 | } |
| 3488 | |
| 3489 | /* |
| 3490 | * If we're dealing with a mapped index, pg_class.relfilenode doesn't |
| 3491 | * change; instead we have to send the update to the relation mapper. |
| 3492 | * |
| 3493 | * For mapped indexes, we don't actually change the pg_class entry at all; |
| 3494 | * this is essential when reindexing pg_class itself. That leaves us with |
| 3495 | * possibly-inaccurate values of relpages etc, but those will be fixed up |
| 3496 | * later. |
| 3497 | */ |
| 3498 | if (RelationIsMapped(relation)) |
| 3499 | { |
| 3500 | /* This case is only supported for indexes */ |
| 3501 | Assert(relation->rd_rel->relkind == RELKIND_INDEX); |
| 3502 | |
| 3503 | /* Since we're not updating pg_class, these had better not change */ |
| 3504 | Assert(classform->relfrozenxid == freezeXid); |
| 3505 | Assert(classform->relminmxid == minmulti); |
| 3506 | Assert(classform->relpersistence == persistence); |
| 3507 | |
| 3508 | /* |
| 3509 | * In some code paths it's possible that the tuple update we'd |
| 3510 | * otherwise do here is the only thing that would assign an XID for |
| 3511 | * the current transaction. However, we must have an XID to delete |
| 3512 | * files, so make sure one is assigned. |
| 3513 | */ |
| 3514 | (void) GetCurrentTransactionId(); |
| 3515 | |
| 3516 | /* Do the deed */ |
| 3517 | RelationMapUpdateMap(RelationGetRelid(relation), |
| 3518 | newrelfilenode, |
| 3519 | relation->rd_rel->relisshared, |
| 3520 | false); |
| 3521 | |
| 3522 | /* Since we're not updating pg_class, must trigger inval manually */ |
| 3523 | CacheInvalidateRelcache(relation); |
| 3524 | } |
| 3525 | else |
| 3526 | { |
| 3527 | /* Normal case, update the pg_class entry */ |
| 3528 | classform->relfilenode = newrelfilenode; |
| 3529 | |
| 3530 | /* relpages etc. never change for sequences */ |
| 3531 | if (relation->rd_rel->relkind != RELKIND_SEQUENCE) |
| 3532 | { |
| 3533 | classform->relpages = 0; /* it's empty until further notice */ |
| 3534 | classform->reltuples = 0; |
| 3535 | classform->relallvisible = 0; |
| 3536 | } |
| 3537 | classform->relfrozenxid = freezeXid; |
| 3538 | classform->relminmxid = minmulti; |
| 3539 | classform->relpersistence = persistence; |
| 3540 | |
| 3541 | CatalogTupleUpdate(pg_class, &tuple->t_self, tuple); |
| 3542 | } |
| 3543 | |
| 3544 | heap_freetuple(tuple); |
| 3545 | |
| 3546 | table_close(pg_class, RowExclusiveLock); |
| 3547 | |
| 3548 | /* |
| 3549 | * Make the pg_class row change or relation map change visible. This will |
| 3550 | * cause the relcache entry to get updated, too. |
| 3551 | */ |
| 3552 | CommandCounterIncrement(); |
| 3553 | |
| 3554 | /* |
| 3555 | * Mark the rel as having been given a new relfilenode in the current |
| 3556 | * (sub) transaction. This is a hint that can be used to optimize later |
| 3557 | * operations on the rel in the same transaction. |
| 3558 | */ |
| 3559 | relation->rd_newRelfilenodeSubid = GetCurrentSubTransactionId(); |
| 3560 | |
| 3561 | /* Flag relation as needing eoxact cleanup (to remove the hint) */ |
| 3562 | EOXactListAdd(relation); |
| 3563 | } |
| 3564 | |
| 3565 | |
| 3566 | /* |
| 3567 | * RelationCacheInitialize |
| 3568 | * |
| 3569 | * This initializes the relation descriptor cache. At the time |
| 3570 | * that this is invoked, we can't do database access yet (mainly |
| 3571 | * because the transaction subsystem is not up); all we are doing |
| 3572 | * is making an empty cache hashtable. This must be done before |
| 3573 | * starting the initialization transaction, because otherwise |
| 3574 | * AtEOXact_RelationCache would crash if that transaction aborts |
| 3575 | * before we can get the relcache set up. |
| 3576 | */ |
| 3577 | |
| 3578 | #define INITRELCACHESIZE 400 |
| 3579 | |
| 3580 | void |
| 3581 | RelationCacheInitialize(void) |
| 3582 | { |
| 3583 | HASHCTL ctl; |
| 3584 | |
| 3585 | /* |
| 3586 | * make sure cache memory context exists |
| 3587 | */ |
| 3588 | if (!CacheMemoryContext) |
| 3589 | CreateCacheMemoryContext(); |
| 3590 | |
| 3591 | /* |
| 3592 | * create hashtable that indexes the relcache |
| 3593 | */ |
| 3594 | MemSet(&ctl, 0, sizeof(ctl)); |
| 3595 | ctl.keysize = sizeof(Oid); |
| 3596 | ctl.entrysize = sizeof(RelIdCacheEnt); |
| 3597 | RelationIdCache = hash_create("Relcache by OID" , INITRELCACHESIZE, |
| 3598 | &ctl, HASH_ELEM | HASH_BLOBS); |
| 3599 | |
| 3600 | /* |
| 3601 | * relation mapper needs to be initialized too |
| 3602 | */ |
| 3603 | RelationMapInitialize(); |
| 3604 | } |
| 3605 | |
| 3606 | /* |
| 3607 | * RelationCacheInitializePhase2 |
| 3608 | * |
| 3609 | * This is called to prepare for access to shared catalogs during startup. |
| 3610 | * We must at least set up nailed reldescs for pg_database, pg_authid, |
| 3611 | * pg_auth_members, and pg_shseclabel. Ideally we'd like to have reldescs |
| 3612 | * for their indexes, too. We attempt to load this information from the |
| 3613 | * shared relcache init file. If that's missing or broken, just make |
| 3614 | * phony entries for the catalogs themselves. |
| 3615 | * RelationCacheInitializePhase3 will clean up as needed. |
| 3616 | */ |
| 3617 | void |
| 3618 | RelationCacheInitializePhase2(void) |
| 3619 | { |
| 3620 | MemoryContext oldcxt; |
| 3621 | |
| 3622 | /* |
| 3623 | * relation mapper needs initialized too |
| 3624 | */ |
| 3625 | RelationMapInitializePhase2(); |
| 3626 | |
| 3627 | /* |
| 3628 | * In bootstrap mode, the shared catalogs aren't there yet anyway, so do |
| 3629 | * nothing. |
| 3630 | */ |
| 3631 | if (IsBootstrapProcessingMode()) |
| 3632 | return; |
| 3633 | |
| 3634 | /* |
| 3635 | * switch to cache memory context |
| 3636 | */ |
| 3637 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 3638 | |
| 3639 | /* |
| 3640 | * Try to load the shared relcache cache file. If unsuccessful, bootstrap |
| 3641 | * the cache with pre-made descriptors for the critical shared catalogs. |
| 3642 | */ |
| 3643 | if (!load_relcache_init_file(true)) |
| 3644 | { |
| 3645 | formrdesc("pg_database" , DatabaseRelation_Rowtype_Id, true, |
| 3646 | Natts_pg_database, Desc_pg_database); |
| 3647 | formrdesc("pg_authid" , AuthIdRelation_Rowtype_Id, true, |
| 3648 | Natts_pg_authid, Desc_pg_authid); |
| 3649 | formrdesc("pg_auth_members" , AuthMemRelation_Rowtype_Id, true, |
| 3650 | Natts_pg_auth_members, Desc_pg_auth_members); |
| 3651 | formrdesc("pg_shseclabel" , SharedSecLabelRelation_Rowtype_Id, true, |
| 3652 | Natts_pg_shseclabel, Desc_pg_shseclabel); |
| 3653 | formrdesc("pg_subscription" , SubscriptionRelation_Rowtype_Id, true, |
| 3654 | Natts_pg_subscription, Desc_pg_subscription); |
| 3655 | |
| 3656 | #define NUM_CRITICAL_SHARED_RELS 5 /* fix if you change list above */ |
| 3657 | } |
| 3658 | |
| 3659 | MemoryContextSwitchTo(oldcxt); |
| 3660 | } |
| 3661 | |
| 3662 | /* |
| 3663 | * RelationCacheInitializePhase3 |
| 3664 | * |
| 3665 | * This is called as soon as the catcache and transaction system |
| 3666 | * are functional and we have determined MyDatabaseId. At this point |
| 3667 | * we can actually read data from the database's system catalogs. |
| 3668 | * We first try to read pre-computed relcache entries from the local |
| 3669 | * relcache init file. If that's missing or broken, make phony entries |
| 3670 | * for the minimum set of nailed-in-cache relations. Then (unless |
| 3671 | * bootstrapping) make sure we have entries for the critical system |
| 3672 | * indexes. Once we've done all this, we have enough infrastructure to |
| 3673 | * open any system catalog or use any catcache. The last step is to |
| 3674 | * rewrite the cache files if needed. |
| 3675 | */ |
| 3676 | void |
| 3677 | RelationCacheInitializePhase3(void) |
| 3678 | { |
| 3679 | HASH_SEQ_STATUS status; |
| 3680 | RelIdCacheEnt *idhentry; |
| 3681 | MemoryContext oldcxt; |
| 3682 | bool needNewCacheFile = !criticalSharedRelcachesBuilt; |
| 3683 | |
| 3684 | /* |
| 3685 | * relation mapper needs initialized too |
| 3686 | */ |
| 3687 | RelationMapInitializePhase3(); |
| 3688 | |
| 3689 | /* |
| 3690 | * switch to cache memory context |
| 3691 | */ |
| 3692 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 3693 | |
| 3694 | /* |
| 3695 | * Try to load the local relcache cache file. If unsuccessful, bootstrap |
| 3696 | * the cache with pre-made descriptors for the critical "nailed-in" system |
| 3697 | * catalogs. |
| 3698 | */ |
| 3699 | if (IsBootstrapProcessingMode() || |
| 3700 | !load_relcache_init_file(false)) |
| 3701 | { |
| 3702 | needNewCacheFile = true; |
| 3703 | |
| 3704 | formrdesc("pg_class" , RelationRelation_Rowtype_Id, false, |
| 3705 | Natts_pg_class, Desc_pg_class); |
| 3706 | formrdesc("pg_attribute" , AttributeRelation_Rowtype_Id, false, |
| 3707 | Natts_pg_attribute, Desc_pg_attribute); |
| 3708 | formrdesc("pg_proc" , ProcedureRelation_Rowtype_Id, false, |
| 3709 | Natts_pg_proc, Desc_pg_proc); |
| 3710 | formrdesc("pg_type" , TypeRelation_Rowtype_Id, false, |
| 3711 | Natts_pg_type, Desc_pg_type); |
| 3712 | |
| 3713 | #define NUM_CRITICAL_LOCAL_RELS 4 /* fix if you change list above */ |
| 3714 | } |
| 3715 | |
| 3716 | MemoryContextSwitchTo(oldcxt); |
| 3717 | |
| 3718 | /* In bootstrap mode, the faked-up formrdesc info is all we'll have */ |
| 3719 | if (IsBootstrapProcessingMode()) |
| 3720 | return; |
| 3721 | |
| 3722 | /* |
| 3723 | * If we didn't get the critical system indexes loaded into relcache, do |
| 3724 | * so now. These are critical because the catcache and/or opclass cache |
| 3725 | * depend on them for fetches done during relcache load. Thus, we have an |
| 3726 | * infinite-recursion problem. We can break the recursion by doing |
| 3727 | * heapscans instead of indexscans at certain key spots. To avoid hobbling |
| 3728 | * performance, we only want to do that until we have the critical indexes |
| 3729 | * loaded into relcache. Thus, the flag criticalRelcachesBuilt is used to |
| 3730 | * decide whether to do heapscan or indexscan at the key spots, and we set |
| 3731 | * it true after we've loaded the critical indexes. |
| 3732 | * |
| 3733 | * The critical indexes are marked as "nailed in cache", partly to make it |
| 3734 | * easy for load_relcache_init_file to count them, but mainly because we |
| 3735 | * cannot flush and rebuild them once we've set criticalRelcachesBuilt to |
| 3736 | * true. (NOTE: perhaps it would be possible to reload them by |
| 3737 | * temporarily setting criticalRelcachesBuilt to false again. For now, |
| 3738 | * though, we just nail 'em in.) |
| 3739 | * |
| 3740 | * RewriteRelRulenameIndexId and TriggerRelidNameIndexId are not critical |
| 3741 | * in the same way as the others, because the critical catalogs don't |
| 3742 | * (currently) have any rules or triggers, and so these indexes can be |
| 3743 | * rebuilt without inducing recursion. However they are used during |
| 3744 | * relcache load when a rel does have rules or triggers, so we choose to |
| 3745 | * nail them for performance reasons. |
| 3746 | */ |
| 3747 | if (!criticalRelcachesBuilt) |
| 3748 | { |
| 3749 | load_critical_index(ClassOidIndexId, |
| 3750 | RelationRelationId); |
| 3751 | load_critical_index(AttributeRelidNumIndexId, |
| 3752 | AttributeRelationId); |
| 3753 | load_critical_index(IndexRelidIndexId, |
| 3754 | IndexRelationId); |
| 3755 | load_critical_index(OpclassOidIndexId, |
| 3756 | OperatorClassRelationId); |
| 3757 | load_critical_index(AccessMethodProcedureIndexId, |
| 3758 | AccessMethodProcedureRelationId); |
| 3759 | load_critical_index(RewriteRelRulenameIndexId, |
| 3760 | RewriteRelationId); |
| 3761 | load_critical_index(TriggerRelidNameIndexId, |
| 3762 | TriggerRelationId); |
| 3763 | |
| 3764 | #define NUM_CRITICAL_LOCAL_INDEXES 7 /* fix if you change list above */ |
| 3765 | |
| 3766 | criticalRelcachesBuilt = true; |
| 3767 | } |
| 3768 | |
| 3769 | /* |
| 3770 | * Process critical shared indexes too. |
| 3771 | * |
| 3772 | * DatabaseNameIndexId isn't critical for relcache loading, but rather for |
| 3773 | * initial lookup of MyDatabaseId, without which we'll never find any |
| 3774 | * non-shared catalogs at all. Autovacuum calls InitPostgres with a |
| 3775 | * database OID, so it instead depends on DatabaseOidIndexId. We also |
| 3776 | * need to nail up some indexes on pg_authid and pg_auth_members for use |
| 3777 | * during client authentication. SharedSecLabelObjectIndexId isn't |
| 3778 | * critical for the core system, but authentication hooks might be |
| 3779 | * interested in it. |
| 3780 | */ |
| 3781 | if (!criticalSharedRelcachesBuilt) |
| 3782 | { |
| 3783 | load_critical_index(DatabaseNameIndexId, |
| 3784 | DatabaseRelationId); |
| 3785 | load_critical_index(DatabaseOidIndexId, |
| 3786 | DatabaseRelationId); |
| 3787 | load_critical_index(AuthIdRolnameIndexId, |
| 3788 | AuthIdRelationId); |
| 3789 | load_critical_index(AuthIdOidIndexId, |
| 3790 | AuthIdRelationId); |
| 3791 | load_critical_index(AuthMemMemRoleIndexId, |
| 3792 | AuthMemRelationId); |
| 3793 | load_critical_index(SharedSecLabelObjectIndexId, |
| 3794 | SharedSecLabelRelationId); |
| 3795 | |
| 3796 | #define NUM_CRITICAL_SHARED_INDEXES 6 /* fix if you change list above */ |
| 3797 | |
| 3798 | criticalSharedRelcachesBuilt = true; |
| 3799 | } |
| 3800 | |
| 3801 | /* |
| 3802 | * Now, scan all the relcache entries and update anything that might be |
| 3803 | * wrong in the results from formrdesc or the relcache cache file. If we |
| 3804 | * faked up relcache entries using formrdesc, then read the real pg_class |
| 3805 | * rows and replace the fake entries with them. Also, if any of the |
| 3806 | * relcache entries have rules, triggers, or security policies, load that |
| 3807 | * info the hard way since it isn't recorded in the cache file. |
| 3808 | * |
| 3809 | * Whenever we access the catalogs to read data, there is a possibility of |
| 3810 | * a shared-inval cache flush causing relcache entries to be removed. |
| 3811 | * Since hash_seq_search only guarantees to still work after the *current* |
| 3812 | * entry is removed, it's unsafe to continue the hashtable scan afterward. |
| 3813 | * We handle this by restarting the scan from scratch after each access. |
| 3814 | * This is theoretically O(N^2), but the number of entries that actually |
| 3815 | * need to be fixed is small enough that it doesn't matter. |
| 3816 | */ |
| 3817 | hash_seq_init(&status, RelationIdCache); |
| 3818 | |
| 3819 | while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL) |
| 3820 | { |
| 3821 | Relation relation = idhentry->reldesc; |
| 3822 | bool restart = false; |
| 3823 | |
| 3824 | /* |
| 3825 | * Make sure *this* entry doesn't get flushed while we work with it. |
| 3826 | */ |
| 3827 | RelationIncrementReferenceCount(relation); |
| 3828 | |
| 3829 | /* |
| 3830 | * If it's a faked-up entry, read the real pg_class tuple. |
| 3831 | */ |
| 3832 | if (relation->rd_rel->relowner == InvalidOid) |
| 3833 | { |
| 3834 | HeapTuple htup; |
| 3835 | Form_pg_class relp; |
| 3836 | |
| 3837 | htup = SearchSysCache1(RELOID, |
| 3838 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 3839 | if (!HeapTupleIsValid(htup)) |
| 3840 | elog(FATAL, "cache lookup failed for relation %u" , |
| 3841 | RelationGetRelid(relation)); |
| 3842 | relp = (Form_pg_class) GETSTRUCT(htup); |
| 3843 | |
| 3844 | /* |
| 3845 | * Copy tuple to relation->rd_rel. (See notes in |
| 3846 | * AllocateRelationDesc()) |
| 3847 | */ |
| 3848 | memcpy((char *) relation->rd_rel, (char *) relp, CLASS_TUPLE_SIZE); |
| 3849 | |
| 3850 | /* Update rd_options while we have the tuple */ |
| 3851 | if (relation->rd_options) |
| 3852 | pfree(relation->rd_options); |
| 3853 | RelationParseRelOptions(relation, htup); |
| 3854 | |
| 3855 | /* |
| 3856 | * Check the values in rd_att were set up correctly. (We cannot |
| 3857 | * just copy them over now: formrdesc must have set up the rd_att |
| 3858 | * data correctly to start with, because it may already have been |
| 3859 | * copied into one or more catcache entries.) |
| 3860 | */ |
| 3861 | Assert(relation->rd_att->tdtypeid == relp->reltype); |
| 3862 | Assert(relation->rd_att->tdtypmod == -1); |
| 3863 | |
| 3864 | ReleaseSysCache(htup); |
| 3865 | |
| 3866 | /* relowner had better be OK now, else we'll loop forever */ |
| 3867 | if (relation->rd_rel->relowner == InvalidOid) |
| 3868 | elog(ERROR, "invalid relowner in pg_class entry for \"%s\"" , |
| 3869 | RelationGetRelationName(relation)); |
| 3870 | |
| 3871 | restart = true; |
| 3872 | } |
| 3873 | |
| 3874 | /* |
| 3875 | * Fix data that isn't saved in relcache cache file. |
| 3876 | * |
| 3877 | * relhasrules or relhastriggers could possibly be wrong or out of |
| 3878 | * date. If we don't actually find any rules or triggers, clear the |
| 3879 | * local copy of the flag so that we don't get into an infinite loop |
| 3880 | * here. We don't make any attempt to fix the pg_class entry, though. |
| 3881 | */ |
| 3882 | if (relation->rd_rel->relhasrules && relation->rd_rules == NULL) |
| 3883 | { |
| 3884 | RelationBuildRuleLock(relation); |
| 3885 | if (relation->rd_rules == NULL) |
| 3886 | relation->rd_rel->relhasrules = false; |
| 3887 | restart = true; |
| 3888 | } |
| 3889 | if (relation->rd_rel->relhastriggers && relation->trigdesc == NULL) |
| 3890 | { |
| 3891 | RelationBuildTriggers(relation); |
| 3892 | if (relation->trigdesc == NULL) |
| 3893 | relation->rd_rel->relhastriggers = false; |
| 3894 | restart = true; |
| 3895 | } |
| 3896 | |
| 3897 | /* |
| 3898 | * Re-load the row security policies if the relation has them, since |
| 3899 | * they are not preserved in the cache. Note that we can never NOT |
| 3900 | * have a policy while relrowsecurity is true, |
| 3901 | * RelationBuildRowSecurity will create a single default-deny policy |
| 3902 | * if there is no policy defined in pg_policy. |
| 3903 | */ |
| 3904 | if (relation->rd_rel->relrowsecurity && relation->rd_rsdesc == NULL) |
| 3905 | { |
| 3906 | RelationBuildRowSecurity(relation); |
| 3907 | |
| 3908 | Assert(relation->rd_rsdesc != NULL); |
| 3909 | restart = true; |
| 3910 | } |
| 3911 | |
| 3912 | /* |
| 3913 | * Reload the partition key and descriptor for a partitioned table. |
| 3914 | */ |
| 3915 | if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE && |
| 3916 | relation->rd_partkey == NULL) |
| 3917 | { |
| 3918 | RelationBuildPartitionKey(relation); |
| 3919 | Assert(relation->rd_partkey != NULL); |
| 3920 | |
| 3921 | restart = true; |
| 3922 | } |
| 3923 | |
| 3924 | if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE && |
| 3925 | relation->rd_partdesc == NULL) |
| 3926 | { |
| 3927 | RelationBuildPartitionDesc(relation); |
| 3928 | Assert(relation->rd_partdesc != NULL); |
| 3929 | |
| 3930 | restart = true; |
| 3931 | } |
| 3932 | |
| 3933 | if (relation->rd_tableam == NULL && |
| 3934 | (relation->rd_rel->relkind == RELKIND_RELATION || |
| 3935 | relation->rd_rel->relkind == RELKIND_SEQUENCE || |
| 3936 | relation->rd_rel->relkind == RELKIND_TOASTVALUE || |
| 3937 | relation->rd_rel->relkind == RELKIND_MATVIEW)) |
| 3938 | { |
| 3939 | RelationInitTableAccessMethod(relation); |
| 3940 | Assert(relation->rd_tableam != NULL); |
| 3941 | |
| 3942 | restart = true; |
| 3943 | } |
| 3944 | |
| 3945 | /* Release hold on the relation */ |
| 3946 | RelationDecrementReferenceCount(relation); |
| 3947 | |
| 3948 | /* Now, restart the hashtable scan if needed */ |
| 3949 | if (restart) |
| 3950 | { |
| 3951 | hash_seq_term(&status); |
| 3952 | hash_seq_init(&status, RelationIdCache); |
| 3953 | } |
| 3954 | } |
| 3955 | |
| 3956 | /* |
| 3957 | * Lastly, write out new relcache cache files if needed. We don't bother |
| 3958 | * to distinguish cases where only one of the two needs an update. |
| 3959 | */ |
| 3960 | if (needNewCacheFile) |
| 3961 | { |
| 3962 | /* |
| 3963 | * Force all the catcaches to finish initializing and thereby open the |
| 3964 | * catalogs and indexes they use. This will preload the relcache with |
| 3965 | * entries for all the most important system catalogs and indexes, so |
| 3966 | * that the init files will be most useful for future backends. |
| 3967 | */ |
| 3968 | InitCatalogCachePhase2(); |
| 3969 | |
| 3970 | /* now write the files */ |
| 3971 | write_relcache_init_file(true); |
| 3972 | write_relcache_init_file(false); |
| 3973 | } |
| 3974 | } |
| 3975 | |
| 3976 | /* |
| 3977 | * Load one critical system index into the relcache |
| 3978 | * |
| 3979 | * indexoid is the OID of the target index, heapoid is the OID of the catalog |
| 3980 | * it belongs to. |
| 3981 | */ |
| 3982 | static void |
| 3983 | load_critical_index(Oid indexoid, Oid heapoid) |
| 3984 | { |
| 3985 | Relation ird; |
| 3986 | |
| 3987 | /* |
| 3988 | * We must lock the underlying catalog before locking the index to avoid |
| 3989 | * deadlock, since RelationBuildDesc might well need to read the catalog, |
| 3990 | * and if anyone else is exclusive-locking this catalog and index they'll |
| 3991 | * be doing it in that order. |
| 3992 | */ |
| 3993 | LockRelationOid(heapoid, AccessShareLock); |
| 3994 | LockRelationOid(indexoid, AccessShareLock); |
| 3995 | ird = RelationBuildDesc(indexoid, true); |
| 3996 | if (ird == NULL) |
| 3997 | elog(PANIC, "could not open critical system index %u" , indexoid); |
| 3998 | ird->rd_isnailed = true; |
| 3999 | ird->rd_refcnt = 1; |
| 4000 | UnlockRelationOid(indexoid, AccessShareLock); |
| 4001 | UnlockRelationOid(heapoid, AccessShareLock); |
| 4002 | } |
| 4003 | |
| 4004 | /* |
| 4005 | * GetPgClassDescriptor -- get a predefined tuple descriptor for pg_class |
| 4006 | * GetPgIndexDescriptor -- get a predefined tuple descriptor for pg_index |
| 4007 | * |
| 4008 | * We need this kluge because we have to be able to access non-fixed-width |
| 4009 | * fields of pg_class and pg_index before we have the standard catalog caches |
| 4010 | * available. We use predefined data that's set up in just the same way as |
| 4011 | * the bootstrapped reldescs used by formrdesc(). The resulting tupdesc is |
| 4012 | * not 100% kosher: it does not have the correct rowtype OID in tdtypeid, nor |
| 4013 | * does it have a TupleConstr field. But it's good enough for the purpose of |
| 4014 | * extracting fields. |
| 4015 | */ |
| 4016 | static TupleDesc |
| 4017 | BuildHardcodedDescriptor(int natts, const FormData_pg_attribute *attrs) |
| 4018 | { |
| 4019 | TupleDesc result; |
| 4020 | MemoryContext oldcxt; |
| 4021 | int i; |
| 4022 | |
| 4023 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 4024 | |
| 4025 | result = CreateTemplateTupleDesc(natts); |
| 4026 | result->tdtypeid = RECORDOID; /* not right, but we don't care */ |
| 4027 | result->tdtypmod = -1; |
| 4028 | |
| 4029 | for (i = 0; i < natts; i++) |
| 4030 | { |
| 4031 | memcpy(TupleDescAttr(result, i), &attrs[i], ATTRIBUTE_FIXED_PART_SIZE); |
| 4032 | /* make sure attcacheoff is valid */ |
| 4033 | TupleDescAttr(result, i)->attcacheoff = -1; |
| 4034 | } |
| 4035 | |
| 4036 | /* initialize first attribute's attcacheoff, cf RelationBuildTupleDesc */ |
| 4037 | TupleDescAttr(result, 0)->attcacheoff = 0; |
| 4038 | |
| 4039 | /* Note: we don't bother to set up a TupleConstr entry */ |
| 4040 | |
| 4041 | MemoryContextSwitchTo(oldcxt); |
| 4042 | |
| 4043 | return result; |
| 4044 | } |
| 4045 | |
| 4046 | static TupleDesc |
| 4047 | GetPgClassDescriptor(void) |
| 4048 | { |
| 4049 | static TupleDesc pgclassdesc = NULL; |
| 4050 | |
| 4051 | /* Already done? */ |
| 4052 | if (pgclassdesc == NULL) |
| 4053 | pgclassdesc = BuildHardcodedDescriptor(Natts_pg_class, |
| 4054 | Desc_pg_class); |
| 4055 | |
| 4056 | return pgclassdesc; |
| 4057 | } |
| 4058 | |
| 4059 | static TupleDesc |
| 4060 | GetPgIndexDescriptor(void) |
| 4061 | { |
| 4062 | static TupleDesc pgindexdesc = NULL; |
| 4063 | |
| 4064 | /* Already done? */ |
| 4065 | if (pgindexdesc == NULL) |
| 4066 | pgindexdesc = BuildHardcodedDescriptor(Natts_pg_index, |
| 4067 | Desc_pg_index); |
| 4068 | |
| 4069 | return pgindexdesc; |
| 4070 | } |
| 4071 | |
| 4072 | /* |
| 4073 | * Load any default attribute value definitions for the relation. |
| 4074 | */ |
| 4075 | static void |
| 4076 | AttrDefaultFetch(Relation relation) |
| 4077 | { |
| 4078 | AttrDefault *attrdef = relation->rd_att->constr->defval; |
| 4079 | int ndef = relation->rd_att->constr->num_defval; |
| 4080 | Relation adrel; |
| 4081 | SysScanDesc adscan; |
| 4082 | ScanKeyData skey; |
| 4083 | HeapTuple htup; |
| 4084 | Datum val; |
| 4085 | bool isnull; |
| 4086 | int found; |
| 4087 | int i; |
| 4088 | |
| 4089 | ScanKeyInit(&skey, |
| 4090 | Anum_pg_attrdef_adrelid, |
| 4091 | BTEqualStrategyNumber, F_OIDEQ, |
| 4092 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 4093 | |
| 4094 | adrel = table_open(AttrDefaultRelationId, AccessShareLock); |
| 4095 | adscan = systable_beginscan(adrel, AttrDefaultIndexId, true, |
| 4096 | NULL, 1, &skey); |
| 4097 | found = 0; |
| 4098 | |
| 4099 | while (HeapTupleIsValid(htup = systable_getnext(adscan))) |
| 4100 | { |
| 4101 | Form_pg_attrdef adform = (Form_pg_attrdef) GETSTRUCT(htup); |
| 4102 | Form_pg_attribute attr = TupleDescAttr(relation->rd_att, adform->adnum - 1); |
| 4103 | |
| 4104 | for (i = 0; i < ndef; i++) |
| 4105 | { |
| 4106 | if (adform->adnum != attrdef[i].adnum) |
| 4107 | continue; |
| 4108 | if (attrdef[i].adbin != NULL) |
| 4109 | elog(WARNING, "multiple attrdef records found for attr %s of rel %s" , |
| 4110 | NameStr(attr->attname), |
| 4111 | RelationGetRelationName(relation)); |
| 4112 | else |
| 4113 | found++; |
| 4114 | |
| 4115 | val = fastgetattr(htup, |
| 4116 | Anum_pg_attrdef_adbin, |
| 4117 | adrel->rd_att, &isnull); |
| 4118 | if (isnull) |
| 4119 | elog(WARNING, "null adbin for attr %s of rel %s" , |
| 4120 | NameStr(attr->attname), |
| 4121 | RelationGetRelationName(relation)); |
| 4122 | else |
| 4123 | { |
| 4124 | /* detoast and convert to cstring in caller's context */ |
| 4125 | char *s = TextDatumGetCString(val); |
| 4126 | |
| 4127 | attrdef[i].adbin = MemoryContextStrdup(CacheMemoryContext, s); |
| 4128 | pfree(s); |
| 4129 | } |
| 4130 | break; |
| 4131 | } |
| 4132 | |
| 4133 | if (i >= ndef) |
| 4134 | elog(WARNING, "unexpected attrdef record found for attr %d of rel %s" , |
| 4135 | adform->adnum, RelationGetRelationName(relation)); |
| 4136 | } |
| 4137 | |
| 4138 | systable_endscan(adscan); |
| 4139 | table_close(adrel, AccessShareLock); |
| 4140 | } |
| 4141 | |
| 4142 | /* |
| 4143 | * Load any check constraints for the relation. |
| 4144 | */ |
| 4145 | static void |
| 4146 | CheckConstraintFetch(Relation relation) |
| 4147 | { |
| 4148 | ConstrCheck *check = relation->rd_att->constr->check; |
| 4149 | int ncheck = relation->rd_att->constr->num_check; |
| 4150 | Relation conrel; |
| 4151 | SysScanDesc conscan; |
| 4152 | ScanKeyData skey[1]; |
| 4153 | HeapTuple htup; |
| 4154 | int found = 0; |
| 4155 | |
| 4156 | ScanKeyInit(&skey[0], |
| 4157 | Anum_pg_constraint_conrelid, |
| 4158 | BTEqualStrategyNumber, F_OIDEQ, |
| 4159 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 4160 | |
| 4161 | conrel = table_open(ConstraintRelationId, AccessShareLock); |
| 4162 | conscan = systable_beginscan(conrel, ConstraintRelidTypidNameIndexId, true, |
| 4163 | NULL, 1, skey); |
| 4164 | |
| 4165 | while (HeapTupleIsValid(htup = systable_getnext(conscan))) |
| 4166 | { |
| 4167 | Form_pg_constraint conform = (Form_pg_constraint) GETSTRUCT(htup); |
| 4168 | Datum val; |
| 4169 | bool isnull; |
| 4170 | char *s; |
| 4171 | |
| 4172 | /* We want check constraints only */ |
| 4173 | if (conform->contype != CONSTRAINT_CHECK) |
| 4174 | continue; |
| 4175 | |
| 4176 | if (found >= ncheck) |
| 4177 | elog(ERROR, "unexpected constraint record found for rel %s" , |
| 4178 | RelationGetRelationName(relation)); |
| 4179 | |
| 4180 | check[found].ccvalid = conform->convalidated; |
| 4181 | check[found].ccnoinherit = conform->connoinherit; |
| 4182 | check[found].ccname = MemoryContextStrdup(CacheMemoryContext, |
| 4183 | NameStr(conform->conname)); |
| 4184 | |
| 4185 | /* Grab and test conbin is actually set */ |
| 4186 | val = fastgetattr(htup, |
| 4187 | Anum_pg_constraint_conbin, |
| 4188 | conrel->rd_att, &isnull); |
| 4189 | if (isnull) |
| 4190 | elog(ERROR, "null conbin for rel %s" , |
| 4191 | RelationGetRelationName(relation)); |
| 4192 | |
| 4193 | /* detoast and convert to cstring in caller's context */ |
| 4194 | s = TextDatumGetCString(val); |
| 4195 | check[found].ccbin = MemoryContextStrdup(CacheMemoryContext, s); |
| 4196 | pfree(s); |
| 4197 | |
| 4198 | found++; |
| 4199 | } |
| 4200 | |
| 4201 | systable_endscan(conscan); |
| 4202 | table_close(conrel, AccessShareLock); |
| 4203 | |
| 4204 | if (found != ncheck) |
| 4205 | elog(ERROR, "%d constraint record(s) missing for rel %s" , |
| 4206 | ncheck - found, RelationGetRelationName(relation)); |
| 4207 | |
| 4208 | /* Sort the records so that CHECKs are applied in a deterministic order */ |
| 4209 | if (ncheck > 1) |
| 4210 | qsort(check, ncheck, sizeof(ConstrCheck), CheckConstraintCmp); |
| 4211 | } |
| 4212 | |
| 4213 | /* |
| 4214 | * qsort comparator to sort ConstrCheck entries by name |
| 4215 | */ |
| 4216 | static int |
| 4217 | CheckConstraintCmp(const void *a, const void *b) |
| 4218 | { |
| 4219 | const ConstrCheck *ca = (const ConstrCheck *) a; |
| 4220 | const ConstrCheck *cb = (const ConstrCheck *) b; |
| 4221 | |
| 4222 | return strcmp(ca->ccname, cb->ccname); |
| 4223 | } |
| 4224 | |
| 4225 | /* |
| 4226 | * RelationGetFKeyList -- get a list of foreign key info for the relation |
| 4227 | * |
| 4228 | * Returns a list of ForeignKeyCacheInfo structs, one per FK constraining |
| 4229 | * the given relation. This data is a direct copy of relevant fields from |
| 4230 | * pg_constraint. The list items are in no particular order. |
| 4231 | * |
| 4232 | * CAUTION: the returned list is part of the relcache's data, and could |
| 4233 | * vanish in a relcache entry reset. Callers must inspect or copy it |
| 4234 | * before doing anything that might trigger a cache flush, such as |
| 4235 | * system catalog accesses. copyObject() can be used if desired. |
| 4236 | * (We define it this way because current callers want to filter and |
| 4237 | * modify the list entries anyway, so copying would be a waste of time.) |
| 4238 | */ |
| 4239 | List * |
| 4240 | RelationGetFKeyList(Relation relation) |
| 4241 | { |
| 4242 | List *result; |
| 4243 | Relation conrel; |
| 4244 | SysScanDesc conscan; |
| 4245 | ScanKeyData skey; |
| 4246 | HeapTuple htup; |
| 4247 | List *oldlist; |
| 4248 | MemoryContext oldcxt; |
| 4249 | |
| 4250 | /* Quick exit if we already computed the list. */ |
| 4251 | if (relation->rd_fkeyvalid) |
| 4252 | return relation->rd_fkeylist; |
| 4253 | |
| 4254 | /* Fast path: non-partitioned tables without triggers can't have FKs */ |
| 4255 | if (!relation->rd_rel->relhastriggers && |
| 4256 | relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE) |
| 4257 | return NIL; |
| 4258 | |
| 4259 | /* |
| 4260 | * We build the list we intend to return (in the caller's context) while |
| 4261 | * doing the scan. After successfully completing the scan, we copy that |
| 4262 | * list into the relcache entry. This avoids cache-context memory leakage |
| 4263 | * if we get some sort of error partway through. |
| 4264 | */ |
| 4265 | result = NIL; |
| 4266 | |
| 4267 | /* Prepare to scan pg_constraint for entries having conrelid = this rel. */ |
| 4268 | ScanKeyInit(&skey, |
| 4269 | Anum_pg_constraint_conrelid, |
| 4270 | BTEqualStrategyNumber, F_OIDEQ, |
| 4271 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 4272 | |
| 4273 | conrel = table_open(ConstraintRelationId, AccessShareLock); |
| 4274 | conscan = systable_beginscan(conrel, ConstraintRelidTypidNameIndexId, true, |
| 4275 | NULL, 1, &skey); |
| 4276 | |
| 4277 | while (HeapTupleIsValid(htup = systable_getnext(conscan))) |
| 4278 | { |
| 4279 | Form_pg_constraint constraint = (Form_pg_constraint) GETSTRUCT(htup); |
| 4280 | ForeignKeyCacheInfo *info; |
| 4281 | |
| 4282 | /* consider only foreign keys */ |
| 4283 | if (constraint->contype != CONSTRAINT_FOREIGN) |
| 4284 | continue; |
| 4285 | |
| 4286 | info = makeNode(ForeignKeyCacheInfo); |
| 4287 | info->conoid = constraint->oid; |
| 4288 | info->conrelid = constraint->conrelid; |
| 4289 | info->confrelid = constraint->confrelid; |
| 4290 | |
| 4291 | DeconstructFkConstraintRow(htup, &info->nkeys, |
| 4292 | info->conkey, |
| 4293 | info->confkey, |
| 4294 | info->conpfeqop, |
| 4295 | NULL, NULL); |
| 4296 | |
| 4297 | /* Add FK's node to the result list */ |
| 4298 | result = lappend(result, info); |
| 4299 | } |
| 4300 | |
| 4301 | systable_endscan(conscan); |
| 4302 | table_close(conrel, AccessShareLock); |
| 4303 | |
| 4304 | /* Now save a copy of the completed list in the relcache entry. */ |
| 4305 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 4306 | oldlist = relation->rd_fkeylist; |
| 4307 | relation->rd_fkeylist = copyObject(result); |
| 4308 | relation->rd_fkeyvalid = true; |
| 4309 | MemoryContextSwitchTo(oldcxt); |
| 4310 | |
| 4311 | /* Don't leak the old list, if there is one */ |
| 4312 | list_free_deep(oldlist); |
| 4313 | |
| 4314 | return result; |
| 4315 | } |
| 4316 | |
| 4317 | /* |
| 4318 | * RelationGetIndexList -- get a list of OIDs of indexes on this relation |
| 4319 | * |
| 4320 | * The index list is created only if someone requests it. We scan pg_index |
| 4321 | * to find relevant indexes, and add the list to the relcache entry so that |
| 4322 | * we won't have to compute it again. Note that shared cache inval of a |
| 4323 | * relcache entry will delete the old list and set rd_indexvalid to false, |
| 4324 | * so that we must recompute the index list on next request. This handles |
| 4325 | * creation or deletion of an index. |
| 4326 | * |
| 4327 | * Indexes that are marked not indislive are omitted from the returned list. |
| 4328 | * Such indexes are expected to be dropped momentarily, and should not be |
| 4329 | * touched at all by any caller of this function. |
| 4330 | * |
| 4331 | * The returned list is guaranteed to be sorted in order by OID. This is |
| 4332 | * needed by the executor, since for index types that we obtain exclusive |
| 4333 | * locks on when updating the index, all backends must lock the indexes in |
| 4334 | * the same order or we will get deadlocks (see ExecOpenIndices()). Any |
| 4335 | * consistent ordering would do, but ordering by OID is easy. |
| 4336 | * |
| 4337 | * Since shared cache inval causes the relcache's copy of the list to go away, |
| 4338 | * we return a copy of the list palloc'd in the caller's context. The caller |
| 4339 | * may list_free() the returned list after scanning it. This is necessary |
| 4340 | * since the caller will typically be doing syscache lookups on the relevant |
| 4341 | * indexes, and syscache lookup could cause SI messages to be processed! |
| 4342 | * |
| 4343 | * In exactly the same way, we update rd_pkindex, which is the OID of the |
| 4344 | * relation's primary key index if any, else InvalidOid; and rd_replidindex, |
| 4345 | * which is the pg_class OID of an index to be used as the relation's |
| 4346 | * replication identity index, or InvalidOid if there is no such index. |
| 4347 | */ |
| 4348 | List * |
| 4349 | RelationGetIndexList(Relation relation) |
| 4350 | { |
| 4351 | Relation indrel; |
| 4352 | SysScanDesc indscan; |
| 4353 | ScanKeyData skey; |
| 4354 | HeapTuple htup; |
| 4355 | List *result; |
| 4356 | List *oldlist; |
| 4357 | char replident = relation->rd_rel->relreplident; |
| 4358 | Oid pkeyIndex = InvalidOid; |
| 4359 | Oid candidateIndex = InvalidOid; |
| 4360 | MemoryContext oldcxt; |
| 4361 | |
| 4362 | /* Quick exit if we already computed the list. */ |
| 4363 | if (relation->rd_indexvalid) |
| 4364 | return list_copy(relation->rd_indexlist); |
| 4365 | |
| 4366 | /* |
| 4367 | * We build the list we intend to return (in the caller's context) while |
| 4368 | * doing the scan. After successfully completing the scan, we copy that |
| 4369 | * list into the relcache entry. This avoids cache-context memory leakage |
| 4370 | * if we get some sort of error partway through. |
| 4371 | */ |
| 4372 | result = NIL; |
| 4373 | |
| 4374 | /* Prepare to scan pg_index for entries having indrelid = this rel. */ |
| 4375 | ScanKeyInit(&skey, |
| 4376 | Anum_pg_index_indrelid, |
| 4377 | BTEqualStrategyNumber, F_OIDEQ, |
| 4378 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 4379 | |
| 4380 | indrel = table_open(IndexRelationId, AccessShareLock); |
| 4381 | indscan = systable_beginscan(indrel, IndexIndrelidIndexId, true, |
| 4382 | NULL, 1, &skey); |
| 4383 | |
| 4384 | while (HeapTupleIsValid(htup = systable_getnext(indscan))) |
| 4385 | { |
| 4386 | Form_pg_index index = (Form_pg_index) GETSTRUCT(htup); |
| 4387 | |
| 4388 | /* |
| 4389 | * Ignore any indexes that are currently being dropped. This will |
| 4390 | * prevent them from being searched, inserted into, or considered in |
| 4391 | * HOT-safety decisions. It's unsafe to touch such an index at all |
| 4392 | * since its catalog entries could disappear at any instant. |
| 4393 | */ |
| 4394 | if (!index->indislive) |
| 4395 | continue; |
| 4396 | |
| 4397 | /* Add index's OID to result list in the proper order */ |
| 4398 | result = insert_ordered_oid(result, index->indexrelid); |
| 4399 | |
| 4400 | /* |
| 4401 | * Invalid, non-unique, non-immediate or predicate indexes aren't |
| 4402 | * interesting for either oid indexes or replication identity indexes, |
| 4403 | * so don't check them. |
| 4404 | */ |
| 4405 | if (!index->indisvalid || !index->indisunique || |
| 4406 | !index->indimmediate || |
| 4407 | !heap_attisnull(htup, Anum_pg_index_indpred, NULL)) |
| 4408 | continue; |
| 4409 | |
| 4410 | /* remember primary key index if any */ |
| 4411 | if (index->indisprimary) |
| 4412 | pkeyIndex = index->indexrelid; |
| 4413 | |
| 4414 | /* remember explicitly chosen replica index */ |
| 4415 | if (index->indisreplident) |
| 4416 | candidateIndex = index->indexrelid; |
| 4417 | } |
| 4418 | |
| 4419 | systable_endscan(indscan); |
| 4420 | |
| 4421 | table_close(indrel, AccessShareLock); |
| 4422 | |
| 4423 | /* Now save a copy of the completed list in the relcache entry. */ |
| 4424 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 4425 | oldlist = relation->rd_indexlist; |
| 4426 | relation->rd_indexlist = list_copy(result); |
| 4427 | relation->rd_pkindex = pkeyIndex; |
| 4428 | if (replident == REPLICA_IDENTITY_DEFAULT && OidIsValid(pkeyIndex)) |
| 4429 | relation->rd_replidindex = pkeyIndex; |
| 4430 | else if (replident == REPLICA_IDENTITY_INDEX && OidIsValid(candidateIndex)) |
| 4431 | relation->rd_replidindex = candidateIndex; |
| 4432 | else |
| 4433 | relation->rd_replidindex = InvalidOid; |
| 4434 | relation->rd_indexvalid = true; |
| 4435 | MemoryContextSwitchTo(oldcxt); |
| 4436 | |
| 4437 | /* Don't leak the old list, if there is one */ |
| 4438 | list_free(oldlist); |
| 4439 | |
| 4440 | return result; |
| 4441 | } |
| 4442 | |
| 4443 | /* |
| 4444 | * RelationGetStatExtList |
| 4445 | * get a list of OIDs of statistics objects on this relation |
| 4446 | * |
| 4447 | * The statistics list is created only if someone requests it, in a way |
| 4448 | * similar to RelationGetIndexList(). We scan pg_statistic_ext to find |
| 4449 | * relevant statistics, and add the list to the relcache entry so that we |
| 4450 | * won't have to compute it again. Note that shared cache inval of a |
| 4451 | * relcache entry will delete the old list and set rd_statvalid to 0, |
| 4452 | * so that we must recompute the statistics list on next request. This |
| 4453 | * handles creation or deletion of a statistics object. |
| 4454 | * |
| 4455 | * The returned list is guaranteed to be sorted in order by OID, although |
| 4456 | * this is not currently needed. |
| 4457 | * |
| 4458 | * Since shared cache inval causes the relcache's copy of the list to go away, |
| 4459 | * we return a copy of the list palloc'd in the caller's context. The caller |
| 4460 | * may list_free() the returned list after scanning it. This is necessary |
| 4461 | * since the caller will typically be doing syscache lookups on the relevant |
| 4462 | * statistics, and syscache lookup could cause SI messages to be processed! |
| 4463 | */ |
| 4464 | List * |
| 4465 | RelationGetStatExtList(Relation relation) |
| 4466 | { |
| 4467 | Relation indrel; |
| 4468 | SysScanDesc indscan; |
| 4469 | ScanKeyData skey; |
| 4470 | HeapTuple htup; |
| 4471 | List *result; |
| 4472 | List *oldlist; |
| 4473 | MemoryContext oldcxt; |
| 4474 | |
| 4475 | /* Quick exit if we already computed the list. */ |
| 4476 | if (relation->rd_statvalid != 0) |
| 4477 | return list_copy(relation->rd_statlist); |
| 4478 | |
| 4479 | /* |
| 4480 | * We build the list we intend to return (in the caller's context) while |
| 4481 | * doing the scan. After successfully completing the scan, we copy that |
| 4482 | * list into the relcache entry. This avoids cache-context memory leakage |
| 4483 | * if we get some sort of error partway through. |
| 4484 | */ |
| 4485 | result = NIL; |
| 4486 | |
| 4487 | /* |
| 4488 | * Prepare to scan pg_statistic_ext for entries having stxrelid = this |
| 4489 | * rel. |
| 4490 | */ |
| 4491 | ScanKeyInit(&skey, |
| 4492 | Anum_pg_statistic_ext_stxrelid, |
| 4493 | BTEqualStrategyNumber, F_OIDEQ, |
| 4494 | ObjectIdGetDatum(RelationGetRelid(relation))); |
| 4495 | |
| 4496 | indrel = table_open(StatisticExtRelationId, AccessShareLock); |
| 4497 | indscan = systable_beginscan(indrel, StatisticExtRelidIndexId, true, |
| 4498 | NULL, 1, &skey); |
| 4499 | |
| 4500 | while (HeapTupleIsValid(htup = systable_getnext(indscan))) |
| 4501 | { |
| 4502 | Oid oid = ((Form_pg_statistic_ext) GETSTRUCT(htup))->oid; |
| 4503 | |
| 4504 | result = insert_ordered_oid(result, oid); |
| 4505 | } |
| 4506 | |
| 4507 | systable_endscan(indscan); |
| 4508 | |
| 4509 | table_close(indrel, AccessShareLock); |
| 4510 | |
| 4511 | /* Now save a copy of the completed list in the relcache entry. */ |
| 4512 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 4513 | oldlist = relation->rd_statlist; |
| 4514 | relation->rd_statlist = list_copy(result); |
| 4515 | |
| 4516 | relation->rd_statvalid = true; |
| 4517 | MemoryContextSwitchTo(oldcxt); |
| 4518 | |
| 4519 | /* Don't leak the old list, if there is one */ |
| 4520 | list_free(oldlist); |
| 4521 | |
| 4522 | return result; |
| 4523 | } |
| 4524 | |
| 4525 | /* |
| 4526 | * insert_ordered_oid |
| 4527 | * Insert a new Oid into a sorted list of Oids, preserving ordering |
| 4528 | * |
| 4529 | * Building the ordered list this way is O(N^2), but with a pretty small |
| 4530 | * constant, so for the number of entries we expect it will probably be |
| 4531 | * faster than trying to apply qsort(). Most tables don't have very many |
| 4532 | * indexes... |
| 4533 | */ |
| 4534 | static List * |
| 4535 | insert_ordered_oid(List *list, Oid datum) |
| 4536 | { |
| 4537 | ListCell *prev; |
| 4538 | |
| 4539 | /* Does the datum belong at the front? */ |
| 4540 | if (list == NIL || datum < linitial_oid(list)) |
| 4541 | return lcons_oid(datum, list); |
| 4542 | /* No, so find the entry it belongs after */ |
| 4543 | prev = list_head(list); |
| 4544 | for (;;) |
| 4545 | { |
| 4546 | ListCell *curr = lnext(prev); |
| 4547 | |
| 4548 | if (curr == NULL || datum < lfirst_oid(curr)) |
| 4549 | break; /* it belongs after 'prev', before 'curr' */ |
| 4550 | |
| 4551 | prev = curr; |
| 4552 | } |
| 4553 | /* Insert datum into list after 'prev' */ |
| 4554 | lappend_cell_oid(list, prev, datum); |
| 4555 | return list; |
| 4556 | } |
| 4557 | |
| 4558 | /* |
| 4559 | * RelationGetPrimaryKeyIndex -- get OID of the relation's primary key index |
| 4560 | * |
| 4561 | * Returns InvalidOid if there is no such index. |
| 4562 | */ |
| 4563 | Oid |
| 4564 | RelationGetPrimaryKeyIndex(Relation relation) |
| 4565 | { |
| 4566 | List *ilist; |
| 4567 | |
| 4568 | if (!relation->rd_indexvalid) |
| 4569 | { |
| 4570 | /* RelationGetIndexList does the heavy lifting. */ |
| 4571 | ilist = RelationGetIndexList(relation); |
| 4572 | list_free(ilist); |
| 4573 | Assert(relation->rd_indexvalid); |
| 4574 | } |
| 4575 | |
| 4576 | return relation->rd_pkindex; |
| 4577 | } |
| 4578 | |
| 4579 | /* |
| 4580 | * RelationGetReplicaIndex -- get OID of the relation's replica identity index |
| 4581 | * |
| 4582 | * Returns InvalidOid if there is no such index. |
| 4583 | */ |
| 4584 | Oid |
| 4585 | RelationGetReplicaIndex(Relation relation) |
| 4586 | { |
| 4587 | List *ilist; |
| 4588 | |
| 4589 | if (!relation->rd_indexvalid) |
| 4590 | { |
| 4591 | /* RelationGetIndexList does the heavy lifting. */ |
| 4592 | ilist = RelationGetIndexList(relation); |
| 4593 | list_free(ilist); |
| 4594 | Assert(relation->rd_indexvalid); |
| 4595 | } |
| 4596 | |
| 4597 | return relation->rd_replidindex; |
| 4598 | } |
| 4599 | |
| 4600 | /* |
| 4601 | * RelationGetIndexExpressions -- get the index expressions for an index |
| 4602 | * |
| 4603 | * We cache the result of transforming pg_index.indexprs into a node tree. |
| 4604 | * If the rel is not an index or has no expressional columns, we return NIL. |
| 4605 | * Otherwise, the returned tree is copied into the caller's memory context. |
| 4606 | * (We don't want to return a pointer to the relcache copy, since it could |
| 4607 | * disappear due to relcache invalidation.) |
| 4608 | */ |
| 4609 | List * |
| 4610 | RelationGetIndexExpressions(Relation relation) |
| 4611 | { |
| 4612 | List *result; |
| 4613 | Datum exprsDatum; |
| 4614 | bool isnull; |
| 4615 | char *; |
| 4616 | MemoryContext oldcxt; |
| 4617 | |
| 4618 | /* Quick exit if we already computed the result. */ |
| 4619 | if (relation->rd_indexprs) |
| 4620 | return copyObject(relation->rd_indexprs); |
| 4621 | |
| 4622 | /* Quick exit if there is nothing to do. */ |
| 4623 | if (relation->rd_indextuple == NULL || |
| 4624 | heap_attisnull(relation->rd_indextuple, Anum_pg_index_indexprs, NULL)) |
| 4625 | return NIL; |
| 4626 | |
| 4627 | /* |
| 4628 | * We build the tree we intend to return in the caller's context. After |
| 4629 | * successfully completing the work, we copy it into the relcache entry. |
| 4630 | * This avoids problems if we get some sort of error partway through. |
| 4631 | */ |
| 4632 | exprsDatum = heap_getattr(relation->rd_indextuple, |
| 4633 | Anum_pg_index_indexprs, |
| 4634 | GetPgIndexDescriptor(), |
| 4635 | &isnull); |
| 4636 | Assert(!isnull); |
| 4637 | exprsString = TextDatumGetCString(exprsDatum); |
| 4638 | result = (List *) stringToNode(exprsString); |
| 4639 | pfree(exprsString); |
| 4640 | |
| 4641 | /* |
| 4642 | * Run the expressions through eval_const_expressions. This is not just an |
| 4643 | * optimization, but is necessary, because the planner will be comparing |
| 4644 | * them to similarly-processed qual clauses, and may fail to detect valid |
| 4645 | * matches without this. We must not use canonicalize_qual, however, |
| 4646 | * since these aren't qual expressions. |
| 4647 | */ |
| 4648 | result = (List *) eval_const_expressions(NULL, (Node *) result); |
| 4649 | |
| 4650 | /* May as well fix opfuncids too */ |
| 4651 | fix_opfuncids((Node *) result); |
| 4652 | |
| 4653 | /* Now save a copy of the completed tree in the relcache entry. */ |
| 4654 | oldcxt = MemoryContextSwitchTo(relation->rd_indexcxt); |
| 4655 | relation->rd_indexprs = copyObject(result); |
| 4656 | MemoryContextSwitchTo(oldcxt); |
| 4657 | |
| 4658 | return result; |
| 4659 | } |
| 4660 | |
| 4661 | /* |
| 4662 | * RelationGetIndexPredicate -- get the index predicate for an index |
| 4663 | * |
| 4664 | * We cache the result of transforming pg_index.indpred into an implicit-AND |
| 4665 | * node tree (suitable for use in planning). |
| 4666 | * If the rel is not an index or has no predicate, we return NIL. |
| 4667 | * Otherwise, the returned tree is copied into the caller's memory context. |
| 4668 | * (We don't want to return a pointer to the relcache copy, since it could |
| 4669 | * disappear due to relcache invalidation.) |
| 4670 | */ |
| 4671 | List * |
| 4672 | RelationGetIndexPredicate(Relation relation) |
| 4673 | { |
| 4674 | List *result; |
| 4675 | Datum predDatum; |
| 4676 | bool isnull; |
| 4677 | char *predString; |
| 4678 | MemoryContext oldcxt; |
| 4679 | |
| 4680 | /* Quick exit if we already computed the result. */ |
| 4681 | if (relation->rd_indpred) |
| 4682 | return copyObject(relation->rd_indpred); |
| 4683 | |
| 4684 | /* Quick exit if there is nothing to do. */ |
| 4685 | if (relation->rd_indextuple == NULL || |
| 4686 | heap_attisnull(relation->rd_indextuple, Anum_pg_index_indpred, NULL)) |
| 4687 | return NIL; |
| 4688 | |
| 4689 | /* |
| 4690 | * We build the tree we intend to return in the caller's context. After |
| 4691 | * successfully completing the work, we copy it into the relcache entry. |
| 4692 | * This avoids problems if we get some sort of error partway through. |
| 4693 | */ |
| 4694 | predDatum = heap_getattr(relation->rd_indextuple, |
| 4695 | Anum_pg_index_indpred, |
| 4696 | GetPgIndexDescriptor(), |
| 4697 | &isnull); |
| 4698 | Assert(!isnull); |
| 4699 | predString = TextDatumGetCString(predDatum); |
| 4700 | result = (List *) stringToNode(predString); |
| 4701 | pfree(predString); |
| 4702 | |
| 4703 | /* |
| 4704 | * Run the expression through const-simplification and canonicalization. |
| 4705 | * This is not just an optimization, but is necessary, because the planner |
| 4706 | * will be comparing it to similarly-processed qual clauses, and may fail |
| 4707 | * to detect valid matches without this. This must match the processing |
| 4708 | * done to qual clauses in preprocess_expression()! (We can skip the |
| 4709 | * stuff involving subqueries, however, since we don't allow any in index |
| 4710 | * predicates.) |
| 4711 | */ |
| 4712 | result = (List *) eval_const_expressions(NULL, (Node *) result); |
| 4713 | |
| 4714 | result = (List *) canonicalize_qual((Expr *) result, false); |
| 4715 | |
| 4716 | /* Also convert to implicit-AND format */ |
| 4717 | result = make_ands_implicit((Expr *) result); |
| 4718 | |
| 4719 | /* May as well fix opfuncids too */ |
| 4720 | fix_opfuncids((Node *) result); |
| 4721 | |
| 4722 | /* Now save a copy of the completed tree in the relcache entry. */ |
| 4723 | oldcxt = MemoryContextSwitchTo(relation->rd_indexcxt); |
| 4724 | relation->rd_indpred = copyObject(result); |
| 4725 | MemoryContextSwitchTo(oldcxt); |
| 4726 | |
| 4727 | return result; |
| 4728 | } |
| 4729 | |
| 4730 | /* |
| 4731 | * RelationGetIndexAttrBitmap -- get a bitmap of index attribute numbers |
| 4732 | * |
| 4733 | * The result has a bit set for each attribute used anywhere in the index |
| 4734 | * definitions of all the indexes on this relation. (This includes not only |
| 4735 | * simple index keys, but attributes used in expressions and partial-index |
| 4736 | * predicates.) |
| 4737 | * |
| 4738 | * Depending on attrKind, a bitmap covering the attnums for all index columns, |
| 4739 | * for all potential foreign key columns, or for all columns in the configured |
| 4740 | * replica identity index is returned. |
| 4741 | * |
| 4742 | * Attribute numbers are offset by FirstLowInvalidHeapAttributeNumber so that |
| 4743 | * we can include system attributes (e.g., OID) in the bitmap representation. |
| 4744 | * |
| 4745 | * Caller had better hold at least RowExclusiveLock on the target relation |
| 4746 | * to ensure it is safe (deadlock-free) for us to take locks on the relation's |
| 4747 | * indexes. Note that since the introduction of CREATE INDEX CONCURRENTLY, |
| 4748 | * that lock level doesn't guarantee a stable set of indexes, so we have to |
| 4749 | * be prepared to retry here in case of a change in the set of indexes. |
| 4750 | * |
| 4751 | * The returned result is palloc'd in the caller's memory context and should |
| 4752 | * be bms_free'd when not needed anymore. |
| 4753 | */ |
| 4754 | Bitmapset * |
| 4755 | RelationGetIndexAttrBitmap(Relation relation, IndexAttrBitmapKind attrKind) |
| 4756 | { |
| 4757 | Bitmapset *indexattrs; /* indexed columns */ |
| 4758 | Bitmapset *uindexattrs; /* columns in unique indexes */ |
| 4759 | Bitmapset *pkindexattrs; /* columns in the primary index */ |
| 4760 | Bitmapset *idindexattrs; /* columns in the replica identity */ |
| 4761 | List *indexoidlist; |
| 4762 | List *newindexoidlist; |
| 4763 | Oid relpkindex; |
| 4764 | Oid relreplindex; |
| 4765 | ListCell *l; |
| 4766 | MemoryContext oldcxt; |
| 4767 | |
| 4768 | /* Quick exit if we already computed the result. */ |
| 4769 | if (relation->rd_indexattr != NULL) |
| 4770 | { |
| 4771 | switch (attrKind) |
| 4772 | { |
| 4773 | case INDEX_ATTR_BITMAP_ALL: |
| 4774 | return bms_copy(relation->rd_indexattr); |
| 4775 | case INDEX_ATTR_BITMAP_KEY: |
| 4776 | return bms_copy(relation->rd_keyattr); |
| 4777 | case INDEX_ATTR_BITMAP_PRIMARY_KEY: |
| 4778 | return bms_copy(relation->rd_pkattr); |
| 4779 | case INDEX_ATTR_BITMAP_IDENTITY_KEY: |
| 4780 | return bms_copy(relation->rd_idattr); |
| 4781 | default: |
| 4782 | elog(ERROR, "unknown attrKind %u" , attrKind); |
| 4783 | } |
| 4784 | } |
| 4785 | |
| 4786 | /* Fast path if definitely no indexes */ |
| 4787 | if (!RelationGetForm(relation)->relhasindex) |
| 4788 | return NULL; |
| 4789 | |
| 4790 | /* |
| 4791 | * Get cached list of index OIDs. If we have to start over, we do so here. |
| 4792 | */ |
| 4793 | restart: |
| 4794 | indexoidlist = RelationGetIndexList(relation); |
| 4795 | |
| 4796 | /* Fall out if no indexes (but relhasindex was set) */ |
| 4797 | if (indexoidlist == NIL) |
| 4798 | return NULL; |
| 4799 | |
| 4800 | /* |
| 4801 | * Copy the rd_pkindex and rd_replidindex values computed by |
| 4802 | * RelationGetIndexList before proceeding. This is needed because a |
| 4803 | * relcache flush could occur inside index_open below, resetting the |
| 4804 | * fields managed by RelationGetIndexList. We need to do the work with |
| 4805 | * stable values of these fields. |
| 4806 | */ |
| 4807 | relpkindex = relation->rd_pkindex; |
| 4808 | relreplindex = relation->rd_replidindex; |
| 4809 | |
| 4810 | /* |
| 4811 | * For each index, add referenced attributes to indexattrs. |
| 4812 | * |
| 4813 | * Note: we consider all indexes returned by RelationGetIndexList, even if |
| 4814 | * they are not indisready or indisvalid. This is important because an |
| 4815 | * index for which CREATE INDEX CONCURRENTLY has just started must be |
| 4816 | * included in HOT-safety decisions (see README.HOT). If a DROP INDEX |
| 4817 | * CONCURRENTLY is far enough along that we should ignore the index, it |
| 4818 | * won't be returned at all by RelationGetIndexList. |
| 4819 | */ |
| 4820 | indexattrs = NULL; |
| 4821 | uindexattrs = NULL; |
| 4822 | pkindexattrs = NULL; |
| 4823 | idindexattrs = NULL; |
| 4824 | foreach(l, indexoidlist) |
| 4825 | { |
| 4826 | Oid indexOid = lfirst_oid(l); |
| 4827 | Relation indexDesc; |
| 4828 | Datum datum; |
| 4829 | bool isnull; |
| 4830 | Node *indexExpressions; |
| 4831 | Node *indexPredicate; |
| 4832 | int i; |
| 4833 | bool isKey; /* candidate key */ |
| 4834 | bool isPK; /* primary key */ |
| 4835 | bool isIDKey; /* replica identity index */ |
| 4836 | |
| 4837 | indexDesc = index_open(indexOid, AccessShareLock); |
| 4838 | |
| 4839 | /* |
| 4840 | * Extract index expressions and index predicate. Note: Don't use |
| 4841 | * RelationGetIndexExpressions()/RelationGetIndexPredicate(), because |
| 4842 | * those might run constant expressions evaluation, which needs a |
| 4843 | * snapshot, which we might not have here. (Also, it's probably more |
| 4844 | * sound to collect the bitmaps before any transformations that might |
| 4845 | * eliminate columns, but the practical impact of this is limited.) |
| 4846 | */ |
| 4847 | |
| 4848 | datum = heap_getattr(indexDesc->rd_indextuple, Anum_pg_index_indexprs, |
| 4849 | GetPgIndexDescriptor(), &isnull); |
| 4850 | if (!isnull) |
| 4851 | indexExpressions = stringToNode(TextDatumGetCString(datum)); |
| 4852 | else |
| 4853 | indexExpressions = NULL; |
| 4854 | |
| 4855 | datum = heap_getattr(indexDesc->rd_indextuple, Anum_pg_index_indpred, |
| 4856 | GetPgIndexDescriptor(), &isnull); |
| 4857 | if (!isnull) |
| 4858 | indexPredicate = stringToNode(TextDatumGetCString(datum)); |
| 4859 | else |
| 4860 | indexPredicate = NULL; |
| 4861 | |
| 4862 | /* Can this index be referenced by a foreign key? */ |
| 4863 | isKey = indexDesc->rd_index->indisunique && |
| 4864 | indexExpressions == NULL && |
| 4865 | indexPredicate == NULL; |
| 4866 | |
| 4867 | /* Is this a primary key? */ |
| 4868 | isPK = (indexOid == relpkindex); |
| 4869 | |
| 4870 | /* Is this index the configured (or default) replica identity? */ |
| 4871 | isIDKey = (indexOid == relreplindex); |
| 4872 | |
| 4873 | /* Collect simple attribute references */ |
| 4874 | for (i = 0; i < indexDesc->rd_index->indnatts; i++) |
| 4875 | { |
| 4876 | int attrnum = indexDesc->rd_index->indkey.values[i]; |
| 4877 | |
| 4878 | /* |
| 4879 | * Since we have covering indexes with non-key columns, we must |
| 4880 | * handle them accurately here. non-key columns must be added into |
| 4881 | * indexattrs, since they are in index, and HOT-update shouldn't |
| 4882 | * miss them. Obviously, non-key columns couldn't be referenced by |
| 4883 | * foreign key or identity key. Hence we do not include them into |
| 4884 | * uindexattrs, pkindexattrs and idindexattrs bitmaps. |
| 4885 | */ |
| 4886 | if (attrnum != 0) |
| 4887 | { |
| 4888 | indexattrs = bms_add_member(indexattrs, |
| 4889 | attrnum - FirstLowInvalidHeapAttributeNumber); |
| 4890 | |
| 4891 | if (isKey && i < indexDesc->rd_index->indnkeyatts) |
| 4892 | uindexattrs = bms_add_member(uindexattrs, |
| 4893 | attrnum - FirstLowInvalidHeapAttributeNumber); |
| 4894 | |
| 4895 | if (isPK && i < indexDesc->rd_index->indnkeyatts) |
| 4896 | pkindexattrs = bms_add_member(pkindexattrs, |
| 4897 | attrnum - FirstLowInvalidHeapAttributeNumber); |
| 4898 | |
| 4899 | if (isIDKey && i < indexDesc->rd_index->indnkeyatts) |
| 4900 | idindexattrs = bms_add_member(idindexattrs, |
| 4901 | attrnum - FirstLowInvalidHeapAttributeNumber); |
| 4902 | } |
| 4903 | } |
| 4904 | |
| 4905 | /* Collect all attributes used in expressions, too */ |
| 4906 | pull_varattnos(indexExpressions, 1, &indexattrs); |
| 4907 | |
| 4908 | /* Collect all attributes in the index predicate, too */ |
| 4909 | pull_varattnos(indexPredicate, 1, &indexattrs); |
| 4910 | |
| 4911 | index_close(indexDesc, AccessShareLock); |
| 4912 | } |
| 4913 | |
| 4914 | /* |
| 4915 | * During one of the index_opens in the above loop, we might have received |
| 4916 | * a relcache flush event on this relcache entry, which might have been |
| 4917 | * signaling a change in the rel's index list. If so, we'd better start |
| 4918 | * over to ensure we deliver up-to-date attribute bitmaps. |
| 4919 | */ |
| 4920 | newindexoidlist = RelationGetIndexList(relation); |
| 4921 | if (equal(indexoidlist, newindexoidlist) && |
| 4922 | relpkindex == relation->rd_pkindex && |
| 4923 | relreplindex == relation->rd_replidindex) |
| 4924 | { |
| 4925 | /* Still the same index set, so proceed */ |
| 4926 | list_free(newindexoidlist); |
| 4927 | list_free(indexoidlist); |
| 4928 | } |
| 4929 | else |
| 4930 | { |
| 4931 | /* Gotta do it over ... might as well not leak memory */ |
| 4932 | list_free(newindexoidlist); |
| 4933 | list_free(indexoidlist); |
| 4934 | bms_free(uindexattrs); |
| 4935 | bms_free(pkindexattrs); |
| 4936 | bms_free(idindexattrs); |
| 4937 | bms_free(indexattrs); |
| 4938 | |
| 4939 | goto restart; |
| 4940 | } |
| 4941 | |
| 4942 | /* Don't leak the old values of these bitmaps, if any */ |
| 4943 | bms_free(relation->rd_indexattr); |
| 4944 | relation->rd_indexattr = NULL; |
| 4945 | bms_free(relation->rd_keyattr); |
| 4946 | relation->rd_keyattr = NULL; |
| 4947 | bms_free(relation->rd_pkattr); |
| 4948 | relation->rd_pkattr = NULL; |
| 4949 | bms_free(relation->rd_idattr); |
| 4950 | relation->rd_idattr = NULL; |
| 4951 | |
| 4952 | /* |
| 4953 | * Now save copies of the bitmaps in the relcache entry. We intentionally |
| 4954 | * set rd_indexattr last, because that's the one that signals validity of |
| 4955 | * the values; if we run out of memory before making that copy, we won't |
| 4956 | * leave the relcache entry looking like the other ones are valid but |
| 4957 | * empty. |
| 4958 | */ |
| 4959 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 4960 | relation->rd_keyattr = bms_copy(uindexattrs); |
| 4961 | relation->rd_pkattr = bms_copy(pkindexattrs); |
| 4962 | relation->rd_idattr = bms_copy(idindexattrs); |
| 4963 | relation->rd_indexattr = bms_copy(indexattrs); |
| 4964 | MemoryContextSwitchTo(oldcxt); |
| 4965 | |
| 4966 | /* We return our original working copy for caller to play with */ |
| 4967 | switch (attrKind) |
| 4968 | { |
| 4969 | case INDEX_ATTR_BITMAP_ALL: |
| 4970 | return indexattrs; |
| 4971 | case INDEX_ATTR_BITMAP_KEY: |
| 4972 | return uindexattrs; |
| 4973 | case INDEX_ATTR_BITMAP_PRIMARY_KEY: |
| 4974 | return pkindexattrs; |
| 4975 | case INDEX_ATTR_BITMAP_IDENTITY_KEY: |
| 4976 | return idindexattrs; |
| 4977 | default: |
| 4978 | elog(ERROR, "unknown attrKind %u" , attrKind); |
| 4979 | return NULL; |
| 4980 | } |
| 4981 | } |
| 4982 | |
| 4983 | /* |
| 4984 | * RelationGetExclusionInfo -- get info about index's exclusion constraint |
| 4985 | * |
| 4986 | * This should be called only for an index that is known to have an |
| 4987 | * associated exclusion constraint. It returns arrays (palloc'd in caller's |
| 4988 | * context) of the exclusion operator OIDs, their underlying functions' |
| 4989 | * OIDs, and their strategy numbers in the index's opclasses. We cache |
| 4990 | * all this information since it requires a fair amount of work to get. |
| 4991 | */ |
| 4992 | void |
| 4993 | RelationGetExclusionInfo(Relation indexRelation, |
| 4994 | Oid **operators, |
| 4995 | Oid **procs, |
| 4996 | uint16 **strategies) |
| 4997 | { |
| 4998 | int indnkeyatts; |
| 4999 | Oid *ops; |
| 5000 | Oid *funcs; |
| 5001 | uint16 *strats; |
| 5002 | Relation conrel; |
| 5003 | SysScanDesc conscan; |
| 5004 | ScanKeyData skey[1]; |
| 5005 | HeapTuple htup; |
| 5006 | bool found; |
| 5007 | MemoryContext oldcxt; |
| 5008 | int i; |
| 5009 | |
| 5010 | indnkeyatts = IndexRelationGetNumberOfKeyAttributes(indexRelation); |
| 5011 | |
| 5012 | /* Allocate result space in caller context */ |
| 5013 | *operators = ops = (Oid *) palloc(sizeof(Oid) * indnkeyatts); |
| 5014 | *procs = funcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts); |
| 5015 | *strategies = strats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts); |
| 5016 | |
| 5017 | /* Quick exit if we have the data cached already */ |
| 5018 | if (indexRelation->rd_exclstrats != NULL) |
| 5019 | { |
| 5020 | memcpy(ops, indexRelation->rd_exclops, sizeof(Oid) * indnkeyatts); |
| 5021 | memcpy(funcs, indexRelation->rd_exclprocs, sizeof(Oid) * indnkeyatts); |
| 5022 | memcpy(strats, indexRelation->rd_exclstrats, sizeof(uint16) * indnkeyatts); |
| 5023 | return; |
| 5024 | } |
| 5025 | |
| 5026 | /* |
| 5027 | * Search pg_constraint for the constraint associated with the index. To |
| 5028 | * make this not too painfully slow, we use the index on conrelid; that |
| 5029 | * will hold the parent relation's OID not the index's own OID. |
| 5030 | * |
| 5031 | * Note: if we wanted to rely on the constraint name matching the index's |
| 5032 | * name, we could just do a direct lookup using pg_constraint's unique |
| 5033 | * index. For the moment it doesn't seem worth requiring that. |
| 5034 | */ |
| 5035 | ScanKeyInit(&skey[0], |
| 5036 | Anum_pg_constraint_conrelid, |
| 5037 | BTEqualStrategyNumber, F_OIDEQ, |
| 5038 | ObjectIdGetDatum(indexRelation->rd_index->indrelid)); |
| 5039 | |
| 5040 | conrel = table_open(ConstraintRelationId, AccessShareLock); |
| 5041 | conscan = systable_beginscan(conrel, ConstraintRelidTypidNameIndexId, true, |
| 5042 | NULL, 1, skey); |
| 5043 | found = false; |
| 5044 | |
| 5045 | while (HeapTupleIsValid(htup = systable_getnext(conscan))) |
| 5046 | { |
| 5047 | Form_pg_constraint conform = (Form_pg_constraint) GETSTRUCT(htup); |
| 5048 | Datum val; |
| 5049 | bool isnull; |
| 5050 | ArrayType *arr; |
| 5051 | int nelem; |
| 5052 | |
| 5053 | /* We want the exclusion constraint owning the index */ |
| 5054 | if (conform->contype != CONSTRAINT_EXCLUSION || |
| 5055 | conform->conindid != RelationGetRelid(indexRelation)) |
| 5056 | continue; |
| 5057 | |
| 5058 | /* There should be only one */ |
| 5059 | if (found) |
| 5060 | elog(ERROR, "unexpected exclusion constraint record found for rel %s" , |
| 5061 | RelationGetRelationName(indexRelation)); |
| 5062 | found = true; |
| 5063 | |
| 5064 | /* Extract the operator OIDS from conexclop */ |
| 5065 | val = fastgetattr(htup, |
| 5066 | Anum_pg_constraint_conexclop, |
| 5067 | conrel->rd_att, &isnull); |
| 5068 | if (isnull) |
| 5069 | elog(ERROR, "null conexclop for rel %s" , |
| 5070 | RelationGetRelationName(indexRelation)); |
| 5071 | |
| 5072 | arr = DatumGetArrayTypeP(val); /* ensure not toasted */ |
| 5073 | nelem = ARR_DIMS(arr)[0]; |
| 5074 | if (ARR_NDIM(arr) != 1 || |
| 5075 | nelem != indnkeyatts || |
| 5076 | ARR_HASNULL(arr) || |
| 5077 | ARR_ELEMTYPE(arr) != OIDOID) |
| 5078 | elog(ERROR, "conexclop is not a 1-D Oid array" ); |
| 5079 | |
| 5080 | memcpy(ops, ARR_DATA_PTR(arr), sizeof(Oid) * indnkeyatts); |
| 5081 | } |
| 5082 | |
| 5083 | systable_endscan(conscan); |
| 5084 | table_close(conrel, AccessShareLock); |
| 5085 | |
| 5086 | if (!found) |
| 5087 | elog(ERROR, "exclusion constraint record missing for rel %s" , |
| 5088 | RelationGetRelationName(indexRelation)); |
| 5089 | |
| 5090 | /* We need the func OIDs and strategy numbers too */ |
| 5091 | for (i = 0; i < indnkeyatts; i++) |
| 5092 | { |
| 5093 | funcs[i] = get_opcode(ops[i]); |
| 5094 | strats[i] = get_op_opfamily_strategy(ops[i], |
| 5095 | indexRelation->rd_opfamily[i]); |
| 5096 | /* shouldn't fail, since it was checked at index creation */ |
| 5097 | if (strats[i] == InvalidStrategy) |
| 5098 | elog(ERROR, "could not find strategy for operator %u in family %u" , |
| 5099 | ops[i], indexRelation->rd_opfamily[i]); |
| 5100 | } |
| 5101 | |
| 5102 | /* Save a copy of the results in the relcache entry. */ |
| 5103 | oldcxt = MemoryContextSwitchTo(indexRelation->rd_indexcxt); |
| 5104 | indexRelation->rd_exclops = (Oid *) palloc(sizeof(Oid) * indnkeyatts); |
| 5105 | indexRelation->rd_exclprocs = (Oid *) palloc(sizeof(Oid) * indnkeyatts); |
| 5106 | indexRelation->rd_exclstrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts); |
| 5107 | memcpy(indexRelation->rd_exclops, ops, sizeof(Oid) * indnkeyatts); |
| 5108 | memcpy(indexRelation->rd_exclprocs, funcs, sizeof(Oid) * indnkeyatts); |
| 5109 | memcpy(indexRelation->rd_exclstrats, strats, sizeof(uint16) * indnkeyatts); |
| 5110 | MemoryContextSwitchTo(oldcxt); |
| 5111 | } |
| 5112 | |
| 5113 | /* |
| 5114 | * Get publication actions for the given relation. |
| 5115 | */ |
| 5116 | struct PublicationActions * |
| 5117 | GetRelationPublicationActions(Relation relation) |
| 5118 | { |
| 5119 | List *puboids; |
| 5120 | ListCell *lc; |
| 5121 | MemoryContext oldcxt; |
| 5122 | PublicationActions *pubactions = palloc0(sizeof(PublicationActions)); |
| 5123 | |
| 5124 | /* |
| 5125 | * If not publishable, it publishes no actions. (pgoutput_change() will |
| 5126 | * ignore it.) |
| 5127 | */ |
| 5128 | if (!is_publishable_relation(relation)) |
| 5129 | return pubactions; |
| 5130 | |
| 5131 | if (relation->rd_pubactions) |
| 5132 | return memcpy(pubactions, relation->rd_pubactions, |
| 5133 | sizeof(PublicationActions)); |
| 5134 | |
| 5135 | /* Fetch the publication membership info. */ |
| 5136 | puboids = GetRelationPublications(RelationGetRelid(relation)); |
| 5137 | puboids = list_concat_unique_oid(puboids, GetAllTablesPublications()); |
| 5138 | |
| 5139 | foreach(lc, puboids) |
| 5140 | { |
| 5141 | Oid pubid = lfirst_oid(lc); |
| 5142 | HeapTuple tup; |
| 5143 | Form_pg_publication pubform; |
| 5144 | |
| 5145 | tup = SearchSysCache1(PUBLICATIONOID, ObjectIdGetDatum(pubid)); |
| 5146 | |
| 5147 | if (!HeapTupleIsValid(tup)) |
| 5148 | elog(ERROR, "cache lookup failed for publication %u" , pubid); |
| 5149 | |
| 5150 | pubform = (Form_pg_publication) GETSTRUCT(tup); |
| 5151 | |
| 5152 | pubactions->pubinsert |= pubform->pubinsert; |
| 5153 | pubactions->pubupdate |= pubform->pubupdate; |
| 5154 | pubactions->pubdelete |= pubform->pubdelete; |
| 5155 | pubactions->pubtruncate |= pubform->pubtruncate; |
| 5156 | |
| 5157 | ReleaseSysCache(tup); |
| 5158 | |
| 5159 | /* |
| 5160 | * If we know everything is replicated, there is no point to check for |
| 5161 | * other publications. |
| 5162 | */ |
| 5163 | if (pubactions->pubinsert && pubactions->pubupdate && |
| 5164 | pubactions->pubdelete && pubactions->pubtruncate) |
| 5165 | break; |
| 5166 | } |
| 5167 | |
| 5168 | if (relation->rd_pubactions) |
| 5169 | { |
| 5170 | pfree(relation->rd_pubactions); |
| 5171 | relation->rd_pubactions = NULL; |
| 5172 | } |
| 5173 | |
| 5174 | /* Now save copy of the actions in the relcache entry. */ |
| 5175 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 5176 | relation->rd_pubactions = palloc(sizeof(PublicationActions)); |
| 5177 | memcpy(relation->rd_pubactions, pubactions, sizeof(PublicationActions)); |
| 5178 | MemoryContextSwitchTo(oldcxt); |
| 5179 | |
| 5180 | return pubactions; |
| 5181 | } |
| 5182 | |
| 5183 | /* |
| 5184 | * Routines to support ereport() reports of relation-related errors |
| 5185 | * |
| 5186 | * These could have been put into elog.c, but it seems like a module layering |
| 5187 | * violation to have elog.c calling relcache or syscache stuff --- and we |
| 5188 | * definitely don't want elog.h including rel.h. So we put them here. |
| 5189 | */ |
| 5190 | |
| 5191 | /* |
| 5192 | * errtable --- stores schema_name and table_name of a table |
| 5193 | * within the current errordata. |
| 5194 | */ |
| 5195 | int |
| 5196 | errtable(Relation rel) |
| 5197 | { |
| 5198 | err_generic_string(PG_DIAG_SCHEMA_NAME, |
| 5199 | get_namespace_name(RelationGetNamespace(rel))); |
| 5200 | err_generic_string(PG_DIAG_TABLE_NAME, RelationGetRelationName(rel)); |
| 5201 | |
| 5202 | return 0; /* return value does not matter */ |
| 5203 | } |
| 5204 | |
| 5205 | /* |
| 5206 | * errtablecol --- stores schema_name, table_name and column_name |
| 5207 | * of a table column within the current errordata. |
| 5208 | * |
| 5209 | * The column is specified by attribute number --- for most callers, this is |
| 5210 | * easier and less error-prone than getting the column name for themselves. |
| 5211 | */ |
| 5212 | int |
| 5213 | errtablecol(Relation rel, int attnum) |
| 5214 | { |
| 5215 | TupleDesc reldesc = RelationGetDescr(rel); |
| 5216 | const char *colname; |
| 5217 | |
| 5218 | /* Use reldesc if it's a user attribute, else consult the catalogs */ |
| 5219 | if (attnum > 0 && attnum <= reldesc->natts) |
| 5220 | colname = NameStr(TupleDescAttr(reldesc, attnum - 1)->attname); |
| 5221 | else |
| 5222 | colname = get_attname(RelationGetRelid(rel), attnum, false); |
| 5223 | |
| 5224 | return errtablecolname(rel, colname); |
| 5225 | } |
| 5226 | |
| 5227 | /* |
| 5228 | * errtablecolname --- stores schema_name, table_name and column_name |
| 5229 | * of a table column within the current errordata, where the column name is |
| 5230 | * given directly rather than extracted from the relation's catalog data. |
| 5231 | * |
| 5232 | * Don't use this directly unless errtablecol() is inconvenient for some |
| 5233 | * reason. This might possibly be needed during intermediate states in ALTER |
| 5234 | * TABLE, for instance. |
| 5235 | */ |
| 5236 | int |
| 5237 | errtablecolname(Relation rel, const char *colname) |
| 5238 | { |
| 5239 | errtable(rel); |
| 5240 | err_generic_string(PG_DIAG_COLUMN_NAME, colname); |
| 5241 | |
| 5242 | return 0; /* return value does not matter */ |
| 5243 | } |
| 5244 | |
| 5245 | /* |
| 5246 | * errtableconstraint --- stores schema_name, table_name and constraint_name |
| 5247 | * of a table-related constraint within the current errordata. |
| 5248 | */ |
| 5249 | int |
| 5250 | errtableconstraint(Relation rel, const char *conname) |
| 5251 | { |
| 5252 | errtable(rel); |
| 5253 | err_generic_string(PG_DIAG_CONSTRAINT_NAME, conname); |
| 5254 | |
| 5255 | return 0; /* return value does not matter */ |
| 5256 | } |
| 5257 | |
| 5258 | |
| 5259 | /* |
| 5260 | * load_relcache_init_file, write_relcache_init_file |
| 5261 | * |
| 5262 | * In late 1992, we started regularly having databases with more than |
| 5263 | * a thousand classes in them. With this number of classes, it became |
| 5264 | * critical to do indexed lookups on the system catalogs. |
| 5265 | * |
| 5266 | * Bootstrapping these lookups is very hard. We want to be able to |
| 5267 | * use an index on pg_attribute, for example, but in order to do so, |
| 5268 | * we must have read pg_attribute for the attributes in the index, |
| 5269 | * which implies that we need to use the index. |
| 5270 | * |
| 5271 | * In order to get around the problem, we do the following: |
| 5272 | * |
| 5273 | * + When the database system is initialized (at initdb time), we |
| 5274 | * don't use indexes. We do sequential scans. |
| 5275 | * |
| 5276 | * + When the backend is started up in normal mode, we load an image |
| 5277 | * of the appropriate relation descriptors, in internal format, |
| 5278 | * from an initialization file in the data/base/... directory. |
| 5279 | * |
| 5280 | * + If the initialization file isn't there, then we create the |
| 5281 | * relation descriptors using sequential scans and write 'em to |
| 5282 | * the initialization file for use by subsequent backends. |
| 5283 | * |
| 5284 | * As of Postgres 9.0, there is one local initialization file in each |
| 5285 | * database, plus one shared initialization file for shared catalogs. |
| 5286 | * |
| 5287 | * We could dispense with the initialization files and just build the |
| 5288 | * critical reldescs the hard way on every backend startup, but that |
| 5289 | * slows down backend startup noticeably. |
| 5290 | * |
| 5291 | * We can in fact go further, and save more relcache entries than |
| 5292 | * just the ones that are absolutely critical; this allows us to speed |
| 5293 | * up backend startup by not having to build such entries the hard way. |
| 5294 | * Presently, all the catalog and index entries that are referred to |
| 5295 | * by catcaches are stored in the initialization files. |
| 5296 | * |
| 5297 | * The same mechanism that detects when catcache and relcache entries |
| 5298 | * need to be invalidated (due to catalog updates) also arranges to |
| 5299 | * unlink the initialization files when the contents may be out of date. |
| 5300 | * The files will then be rebuilt during the next backend startup. |
| 5301 | */ |
| 5302 | |
| 5303 | /* |
| 5304 | * load_relcache_init_file -- attempt to load cache from the shared |
| 5305 | * or local cache init file |
| 5306 | * |
| 5307 | * If successful, return true and set criticalRelcachesBuilt or |
| 5308 | * criticalSharedRelcachesBuilt to true. |
| 5309 | * If not successful, return false. |
| 5310 | * |
| 5311 | * NOTE: we assume we are already switched into CacheMemoryContext. |
| 5312 | */ |
| 5313 | static bool |
| 5314 | load_relcache_init_file(bool shared) |
| 5315 | { |
| 5316 | FILE *fp; |
| 5317 | char initfilename[MAXPGPATH]; |
| 5318 | Relation *rels; |
| 5319 | int relno, |
| 5320 | num_rels, |
| 5321 | max_rels, |
| 5322 | nailed_rels, |
| 5323 | nailed_indexes, |
| 5324 | magic; |
| 5325 | int i; |
| 5326 | |
| 5327 | if (shared) |
| 5328 | snprintf(initfilename, sizeof(initfilename), "global/%s" , |
| 5329 | RELCACHE_INIT_FILENAME); |
| 5330 | else |
| 5331 | snprintf(initfilename, sizeof(initfilename), "%s/%s" , |
| 5332 | DatabasePath, RELCACHE_INIT_FILENAME); |
| 5333 | |
| 5334 | fp = AllocateFile(initfilename, PG_BINARY_R); |
| 5335 | if (fp == NULL) |
| 5336 | return false; |
| 5337 | |
| 5338 | /* |
| 5339 | * Read the index relcache entries from the file. Note we will not enter |
| 5340 | * any of them into the cache if the read fails partway through; this |
| 5341 | * helps to guard against broken init files. |
| 5342 | */ |
| 5343 | max_rels = 100; |
| 5344 | rels = (Relation *) palloc(max_rels * sizeof(Relation)); |
| 5345 | num_rels = 0; |
| 5346 | nailed_rels = nailed_indexes = 0; |
| 5347 | |
| 5348 | /* check for correct magic number (compatible version) */ |
| 5349 | if (fread(&magic, 1, sizeof(magic), fp) != sizeof(magic)) |
| 5350 | goto read_failed; |
| 5351 | if (magic != RELCACHE_INIT_FILEMAGIC) |
| 5352 | goto read_failed; |
| 5353 | |
| 5354 | for (relno = 0;; relno++) |
| 5355 | { |
| 5356 | Size len; |
| 5357 | size_t nread; |
| 5358 | Relation rel; |
| 5359 | Form_pg_class relform; |
| 5360 | bool has_not_null; |
| 5361 | |
| 5362 | /* first read the relation descriptor length */ |
| 5363 | nread = fread(&len, 1, sizeof(len), fp); |
| 5364 | if (nread != sizeof(len)) |
| 5365 | { |
| 5366 | if (nread == 0) |
| 5367 | break; /* end of file */ |
| 5368 | goto read_failed; |
| 5369 | } |
| 5370 | |
| 5371 | /* safety check for incompatible relcache layout */ |
| 5372 | if (len != sizeof(RelationData)) |
| 5373 | goto read_failed; |
| 5374 | |
| 5375 | /* allocate another relcache header */ |
| 5376 | if (num_rels >= max_rels) |
| 5377 | { |
| 5378 | max_rels *= 2; |
| 5379 | rels = (Relation *) repalloc(rels, max_rels * sizeof(Relation)); |
| 5380 | } |
| 5381 | |
| 5382 | rel = rels[num_rels++] = (Relation) palloc(len); |
| 5383 | |
| 5384 | /* then, read the Relation structure */ |
| 5385 | if (fread(rel, 1, len, fp) != len) |
| 5386 | goto read_failed; |
| 5387 | |
| 5388 | /* next read the relation tuple form */ |
| 5389 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5390 | goto read_failed; |
| 5391 | |
| 5392 | relform = (Form_pg_class) palloc(len); |
| 5393 | if (fread(relform, 1, len, fp) != len) |
| 5394 | goto read_failed; |
| 5395 | |
| 5396 | rel->rd_rel = relform; |
| 5397 | |
| 5398 | /* initialize attribute tuple forms */ |
| 5399 | rel->rd_att = CreateTemplateTupleDesc(relform->relnatts); |
| 5400 | rel->rd_att->tdrefcount = 1; /* mark as refcounted */ |
| 5401 | |
| 5402 | rel->rd_att->tdtypeid = relform->reltype; |
| 5403 | rel->rd_att->tdtypmod = -1; /* unnecessary, but... */ |
| 5404 | |
| 5405 | /* next read all the attribute tuple form data entries */ |
| 5406 | has_not_null = false; |
| 5407 | for (i = 0; i < relform->relnatts; i++) |
| 5408 | { |
| 5409 | Form_pg_attribute attr = TupleDescAttr(rel->rd_att, i); |
| 5410 | |
| 5411 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5412 | goto read_failed; |
| 5413 | if (len != ATTRIBUTE_FIXED_PART_SIZE) |
| 5414 | goto read_failed; |
| 5415 | if (fread(attr, 1, len, fp) != len) |
| 5416 | goto read_failed; |
| 5417 | |
| 5418 | has_not_null |= attr->attnotnull; |
| 5419 | } |
| 5420 | |
| 5421 | /* next read the access method specific field */ |
| 5422 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5423 | goto read_failed; |
| 5424 | if (len > 0) |
| 5425 | { |
| 5426 | rel->rd_options = palloc(len); |
| 5427 | if (fread(rel->rd_options, 1, len, fp) != len) |
| 5428 | goto read_failed; |
| 5429 | if (len != VARSIZE(rel->rd_options)) |
| 5430 | goto read_failed; /* sanity check */ |
| 5431 | } |
| 5432 | else |
| 5433 | { |
| 5434 | rel->rd_options = NULL; |
| 5435 | } |
| 5436 | |
| 5437 | /* mark not-null status */ |
| 5438 | if (has_not_null) |
| 5439 | { |
| 5440 | TupleConstr *constr = (TupleConstr *) palloc0(sizeof(TupleConstr)); |
| 5441 | |
| 5442 | constr->has_not_null = true; |
| 5443 | rel->rd_att->constr = constr; |
| 5444 | } |
| 5445 | |
| 5446 | /* |
| 5447 | * If it's an index, there's more to do. Note we explicitly ignore |
| 5448 | * partitioned indexes here. |
| 5449 | */ |
| 5450 | if (rel->rd_rel->relkind == RELKIND_INDEX) |
| 5451 | { |
| 5452 | MemoryContext indexcxt; |
| 5453 | Oid *opfamily; |
| 5454 | Oid *opcintype; |
| 5455 | RegProcedure *support; |
| 5456 | int nsupport; |
| 5457 | int16 *indoption; |
| 5458 | Oid *indcollation; |
| 5459 | |
| 5460 | /* Count nailed indexes to ensure we have 'em all */ |
| 5461 | if (rel->rd_isnailed) |
| 5462 | nailed_indexes++; |
| 5463 | |
| 5464 | /* next, read the pg_index tuple */ |
| 5465 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5466 | goto read_failed; |
| 5467 | |
| 5468 | rel->rd_indextuple = (HeapTuple) palloc(len); |
| 5469 | if (fread(rel->rd_indextuple, 1, len, fp) != len) |
| 5470 | goto read_failed; |
| 5471 | |
| 5472 | /* Fix up internal pointers in the tuple -- see heap_copytuple */ |
| 5473 | rel->rd_indextuple->t_data = (HeapTupleHeader) ((char *) rel->rd_indextuple + HEAPTUPLESIZE); |
| 5474 | rel->rd_index = (Form_pg_index) GETSTRUCT(rel->rd_indextuple); |
| 5475 | |
| 5476 | /* |
| 5477 | * prepare index info context --- parameters should match |
| 5478 | * RelationInitIndexAccessInfo |
| 5479 | */ |
| 5480 | indexcxt = AllocSetContextCreate(CacheMemoryContext, |
| 5481 | "index info" , |
| 5482 | ALLOCSET_SMALL_SIZES); |
| 5483 | rel->rd_indexcxt = indexcxt; |
| 5484 | MemoryContextCopyAndSetIdentifier(indexcxt, |
| 5485 | RelationGetRelationName(rel)); |
| 5486 | |
| 5487 | /* |
| 5488 | * Now we can fetch the index AM's API struct. (We can't store |
| 5489 | * that in the init file, since it contains function pointers that |
| 5490 | * might vary across server executions. Fortunately, it should be |
| 5491 | * safe to call the amhandler even while bootstrapping indexes.) |
| 5492 | */ |
| 5493 | InitIndexAmRoutine(rel); |
| 5494 | |
| 5495 | /* next, read the vector of opfamily OIDs */ |
| 5496 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5497 | goto read_failed; |
| 5498 | |
| 5499 | opfamily = (Oid *) MemoryContextAlloc(indexcxt, len); |
| 5500 | if (fread(opfamily, 1, len, fp) != len) |
| 5501 | goto read_failed; |
| 5502 | |
| 5503 | rel->rd_opfamily = opfamily; |
| 5504 | |
| 5505 | /* next, read the vector of opcintype OIDs */ |
| 5506 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5507 | goto read_failed; |
| 5508 | |
| 5509 | opcintype = (Oid *) MemoryContextAlloc(indexcxt, len); |
| 5510 | if (fread(opcintype, 1, len, fp) != len) |
| 5511 | goto read_failed; |
| 5512 | |
| 5513 | rel->rd_opcintype = opcintype; |
| 5514 | |
| 5515 | /* next, read the vector of support procedure OIDs */ |
| 5516 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5517 | goto read_failed; |
| 5518 | support = (RegProcedure *) MemoryContextAlloc(indexcxt, len); |
| 5519 | if (fread(support, 1, len, fp) != len) |
| 5520 | goto read_failed; |
| 5521 | |
| 5522 | rel->rd_support = support; |
| 5523 | |
| 5524 | /* next, read the vector of collation OIDs */ |
| 5525 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5526 | goto read_failed; |
| 5527 | |
| 5528 | indcollation = (Oid *) MemoryContextAlloc(indexcxt, len); |
| 5529 | if (fread(indcollation, 1, len, fp) != len) |
| 5530 | goto read_failed; |
| 5531 | |
| 5532 | rel->rd_indcollation = indcollation; |
| 5533 | |
| 5534 | /* finally, read the vector of indoption values */ |
| 5535 | if (fread(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5536 | goto read_failed; |
| 5537 | |
| 5538 | indoption = (int16 *) MemoryContextAlloc(indexcxt, len); |
| 5539 | if (fread(indoption, 1, len, fp) != len) |
| 5540 | goto read_failed; |
| 5541 | |
| 5542 | rel->rd_indoption = indoption; |
| 5543 | |
| 5544 | /* set up zeroed fmgr-info vector */ |
| 5545 | nsupport = relform->relnatts * rel->rd_indam->amsupport; |
| 5546 | rel->rd_supportinfo = (FmgrInfo *) |
| 5547 | MemoryContextAllocZero(indexcxt, nsupport * sizeof(FmgrInfo)); |
| 5548 | } |
| 5549 | else |
| 5550 | { |
| 5551 | /* Count nailed rels to ensure we have 'em all */ |
| 5552 | if (rel->rd_isnailed) |
| 5553 | nailed_rels++; |
| 5554 | |
| 5555 | /* Load table AM data */ |
| 5556 | if (rel->rd_rel->relkind == RELKIND_RELATION || |
| 5557 | rel->rd_rel->relkind == RELKIND_SEQUENCE || |
| 5558 | rel->rd_rel->relkind == RELKIND_TOASTVALUE || |
| 5559 | rel->rd_rel->relkind == RELKIND_MATVIEW) |
| 5560 | RelationInitTableAccessMethod(rel); |
| 5561 | |
| 5562 | Assert(rel->rd_index == NULL); |
| 5563 | Assert(rel->rd_indextuple == NULL); |
| 5564 | Assert(rel->rd_indexcxt == NULL); |
| 5565 | Assert(rel->rd_indam == NULL); |
| 5566 | Assert(rel->rd_opfamily == NULL); |
| 5567 | Assert(rel->rd_opcintype == NULL); |
| 5568 | Assert(rel->rd_support == NULL); |
| 5569 | Assert(rel->rd_supportinfo == NULL); |
| 5570 | Assert(rel->rd_indoption == NULL); |
| 5571 | Assert(rel->rd_indcollation == NULL); |
| 5572 | } |
| 5573 | |
| 5574 | /* |
| 5575 | * Rules and triggers are not saved (mainly because the internal |
| 5576 | * format is complex and subject to change). They must be rebuilt if |
| 5577 | * needed by RelationCacheInitializePhase3. This is not expected to |
| 5578 | * be a big performance hit since few system catalogs have such. Ditto |
| 5579 | * for RLS policy data, partition info, index expressions, predicates, |
| 5580 | * exclusion info, and FDW info. |
| 5581 | */ |
| 5582 | rel->rd_rules = NULL; |
| 5583 | rel->rd_rulescxt = NULL; |
| 5584 | rel->trigdesc = NULL; |
| 5585 | rel->rd_rsdesc = NULL; |
| 5586 | rel->rd_partkey = NULL; |
| 5587 | rel->rd_partkeycxt = NULL; |
| 5588 | rel->rd_partdesc = NULL; |
| 5589 | rel->rd_pdcxt = NULL; |
| 5590 | rel->rd_partcheck = NIL; |
| 5591 | rel->rd_partcheckvalid = false; |
| 5592 | rel->rd_partcheckcxt = NULL; |
| 5593 | rel->rd_indexprs = NIL; |
| 5594 | rel->rd_indpred = NIL; |
| 5595 | rel->rd_exclops = NULL; |
| 5596 | rel->rd_exclprocs = NULL; |
| 5597 | rel->rd_exclstrats = NULL; |
| 5598 | rel->rd_fdwroutine = NULL; |
| 5599 | |
| 5600 | /* |
| 5601 | * Reset transient-state fields in the relcache entry |
| 5602 | */ |
| 5603 | rel->rd_smgr = NULL; |
| 5604 | if (rel->rd_isnailed) |
| 5605 | rel->rd_refcnt = 1; |
| 5606 | else |
| 5607 | rel->rd_refcnt = 0; |
| 5608 | rel->rd_indexvalid = false; |
| 5609 | rel->rd_indexlist = NIL; |
| 5610 | rel->rd_pkindex = InvalidOid; |
| 5611 | rel->rd_replidindex = InvalidOid; |
| 5612 | rel->rd_indexattr = NULL; |
| 5613 | rel->rd_keyattr = NULL; |
| 5614 | rel->rd_pkattr = NULL; |
| 5615 | rel->rd_idattr = NULL; |
| 5616 | rel->rd_pubactions = NULL; |
| 5617 | rel->rd_statvalid = false; |
| 5618 | rel->rd_statlist = NIL; |
| 5619 | rel->rd_fkeyvalid = false; |
| 5620 | rel->rd_fkeylist = NIL; |
| 5621 | rel->rd_createSubid = InvalidSubTransactionId; |
| 5622 | rel->rd_newRelfilenodeSubid = InvalidSubTransactionId; |
| 5623 | rel->rd_amcache = NULL; |
| 5624 | MemSet(&rel->pgstat_info, 0, sizeof(rel->pgstat_info)); |
| 5625 | |
| 5626 | /* |
| 5627 | * Recompute lock and physical addressing info. This is needed in |
| 5628 | * case the pg_internal.init file was copied from some other database |
| 5629 | * by CREATE DATABASE. |
| 5630 | */ |
| 5631 | RelationInitLockInfo(rel); |
| 5632 | RelationInitPhysicalAddr(rel); |
| 5633 | } |
| 5634 | |
| 5635 | /* |
| 5636 | * We reached the end of the init file without apparent problem. Did we |
| 5637 | * get the right number of nailed items? This is a useful crosscheck in |
| 5638 | * case the set of critical rels or indexes changes. However, that should |
| 5639 | * not happen in a normally-running system, so let's bleat if it does. |
| 5640 | * |
| 5641 | * For the shared init file, we're called before client authentication is |
| 5642 | * done, which means that elog(WARNING) will go only to the postmaster |
| 5643 | * log, where it's easily missed. To ensure that developers notice bad |
| 5644 | * values of NUM_CRITICAL_SHARED_RELS/NUM_CRITICAL_SHARED_INDEXES, we put |
| 5645 | * an Assert(false) there. |
| 5646 | */ |
| 5647 | if (shared) |
| 5648 | { |
| 5649 | if (nailed_rels != NUM_CRITICAL_SHARED_RELS || |
| 5650 | nailed_indexes != NUM_CRITICAL_SHARED_INDEXES) |
| 5651 | { |
| 5652 | elog(WARNING, "found %d nailed shared rels and %d nailed shared indexes in init file, but expected %d and %d respectively" , |
| 5653 | nailed_rels, nailed_indexes, |
| 5654 | NUM_CRITICAL_SHARED_RELS, NUM_CRITICAL_SHARED_INDEXES); |
| 5655 | /* Make sure we get developers' attention about this */ |
| 5656 | Assert(false); |
| 5657 | /* In production builds, recover by bootstrapping the relcache */ |
| 5658 | goto read_failed; |
| 5659 | } |
| 5660 | } |
| 5661 | else |
| 5662 | { |
| 5663 | if (nailed_rels != NUM_CRITICAL_LOCAL_RELS || |
| 5664 | nailed_indexes != NUM_CRITICAL_LOCAL_INDEXES) |
| 5665 | { |
| 5666 | elog(WARNING, "found %d nailed rels and %d nailed indexes in init file, but expected %d and %d respectively" , |
| 5667 | nailed_rels, nailed_indexes, |
| 5668 | NUM_CRITICAL_LOCAL_RELS, NUM_CRITICAL_LOCAL_INDEXES); |
| 5669 | /* We don't need an Assert() in this case */ |
| 5670 | goto read_failed; |
| 5671 | } |
| 5672 | } |
| 5673 | |
| 5674 | /* |
| 5675 | * OK, all appears well. |
| 5676 | * |
| 5677 | * Now insert all the new relcache entries into the cache. |
| 5678 | */ |
| 5679 | for (relno = 0; relno < num_rels; relno++) |
| 5680 | { |
| 5681 | RelationCacheInsert(rels[relno], false); |
| 5682 | } |
| 5683 | |
| 5684 | pfree(rels); |
| 5685 | FreeFile(fp); |
| 5686 | |
| 5687 | if (shared) |
| 5688 | criticalSharedRelcachesBuilt = true; |
| 5689 | else |
| 5690 | criticalRelcachesBuilt = true; |
| 5691 | return true; |
| 5692 | |
| 5693 | /* |
| 5694 | * init file is broken, so do it the hard way. We don't bother trying to |
| 5695 | * free the clutter we just allocated; it's not in the relcache so it |
| 5696 | * won't hurt. |
| 5697 | */ |
| 5698 | read_failed: |
| 5699 | pfree(rels); |
| 5700 | FreeFile(fp); |
| 5701 | |
| 5702 | return false; |
| 5703 | } |
| 5704 | |
| 5705 | /* |
| 5706 | * Write out a new initialization file with the current contents |
| 5707 | * of the relcache (either shared rels or local rels, as indicated). |
| 5708 | */ |
| 5709 | static void |
| 5710 | write_relcache_init_file(bool shared) |
| 5711 | { |
| 5712 | FILE *fp; |
| 5713 | char tempfilename[MAXPGPATH]; |
| 5714 | char finalfilename[MAXPGPATH]; |
| 5715 | int magic; |
| 5716 | HASH_SEQ_STATUS status; |
| 5717 | RelIdCacheEnt *idhentry; |
| 5718 | int i; |
| 5719 | |
| 5720 | /* |
| 5721 | * If we have already received any relcache inval events, there's no |
| 5722 | * chance of succeeding so we may as well skip the whole thing. |
| 5723 | */ |
| 5724 | if (relcacheInvalsReceived != 0L) |
| 5725 | return; |
| 5726 | |
| 5727 | /* |
| 5728 | * We must write a temporary file and rename it into place. Otherwise, |
| 5729 | * another backend starting at about the same time might crash trying to |
| 5730 | * read the partially-complete file. |
| 5731 | */ |
| 5732 | if (shared) |
| 5733 | { |
| 5734 | snprintf(tempfilename, sizeof(tempfilename), "global/%s.%d" , |
| 5735 | RELCACHE_INIT_FILENAME, MyProcPid); |
| 5736 | snprintf(finalfilename, sizeof(finalfilename), "global/%s" , |
| 5737 | RELCACHE_INIT_FILENAME); |
| 5738 | } |
| 5739 | else |
| 5740 | { |
| 5741 | snprintf(tempfilename, sizeof(tempfilename), "%s/%s.%d" , |
| 5742 | DatabasePath, RELCACHE_INIT_FILENAME, MyProcPid); |
| 5743 | snprintf(finalfilename, sizeof(finalfilename), "%s/%s" , |
| 5744 | DatabasePath, RELCACHE_INIT_FILENAME); |
| 5745 | } |
| 5746 | |
| 5747 | unlink(tempfilename); /* in case it exists w/wrong permissions */ |
| 5748 | |
| 5749 | fp = AllocateFile(tempfilename, PG_BINARY_W); |
| 5750 | if (fp == NULL) |
| 5751 | { |
| 5752 | /* |
| 5753 | * We used to consider this a fatal error, but we might as well |
| 5754 | * continue with backend startup ... |
| 5755 | */ |
| 5756 | ereport(WARNING, |
| 5757 | (errcode_for_file_access(), |
| 5758 | errmsg("could not create relation-cache initialization file \"%s\": %m" , |
| 5759 | tempfilename), |
| 5760 | errdetail("Continuing anyway, but there's something wrong." ))); |
| 5761 | return; |
| 5762 | } |
| 5763 | |
| 5764 | /* |
| 5765 | * Write a magic number to serve as a file version identifier. We can |
| 5766 | * change the magic number whenever the relcache layout changes. |
| 5767 | */ |
| 5768 | magic = RELCACHE_INIT_FILEMAGIC; |
| 5769 | if (fwrite(&magic, 1, sizeof(magic), fp) != sizeof(magic)) |
| 5770 | elog(FATAL, "could not write init file" ); |
| 5771 | |
| 5772 | /* |
| 5773 | * Write all the appropriate reldescs (in no particular order). |
| 5774 | */ |
| 5775 | hash_seq_init(&status, RelationIdCache); |
| 5776 | |
| 5777 | while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL) |
| 5778 | { |
| 5779 | Relation rel = idhentry->reldesc; |
| 5780 | Form_pg_class relform = rel->rd_rel; |
| 5781 | |
| 5782 | /* ignore if not correct group */ |
| 5783 | if (relform->relisshared != shared) |
| 5784 | continue; |
| 5785 | |
| 5786 | /* |
| 5787 | * Ignore if not supposed to be in init file. We can allow any shared |
| 5788 | * relation that's been loaded so far to be in the shared init file, |
| 5789 | * but unshared relations must be ones that should be in the local |
| 5790 | * file per RelationIdIsInInitFile. (Note: if you want to change the |
| 5791 | * criterion for rels to be kept in the init file, see also inval.c. |
| 5792 | * The reason for filtering here is to be sure that we don't put |
| 5793 | * anything into the local init file for which a relcache inval would |
| 5794 | * not cause invalidation of that init file.) |
| 5795 | */ |
| 5796 | if (!shared && !RelationIdIsInInitFile(RelationGetRelid(rel))) |
| 5797 | { |
| 5798 | /* Nailed rels had better get stored. */ |
| 5799 | Assert(!rel->rd_isnailed); |
| 5800 | continue; |
| 5801 | } |
| 5802 | |
| 5803 | /* first write the relcache entry proper */ |
| 5804 | write_item(rel, sizeof(RelationData), fp); |
| 5805 | |
| 5806 | /* next write the relation tuple form */ |
| 5807 | write_item(relform, CLASS_TUPLE_SIZE, fp); |
| 5808 | |
| 5809 | /* next, do all the attribute tuple form data entries */ |
| 5810 | for (i = 0; i < relform->relnatts; i++) |
| 5811 | { |
| 5812 | write_item(TupleDescAttr(rel->rd_att, i), |
| 5813 | ATTRIBUTE_FIXED_PART_SIZE, fp); |
| 5814 | } |
| 5815 | |
| 5816 | /* next, do the access method specific field */ |
| 5817 | write_item(rel->rd_options, |
| 5818 | (rel->rd_options ? VARSIZE(rel->rd_options) : 0), |
| 5819 | fp); |
| 5820 | |
| 5821 | /* |
| 5822 | * If it's an index, there's more to do. Note we explicitly ignore |
| 5823 | * partitioned indexes here. |
| 5824 | */ |
| 5825 | if (rel->rd_rel->relkind == RELKIND_INDEX) |
| 5826 | { |
| 5827 | /* write the pg_index tuple */ |
| 5828 | /* we assume this was created by heap_copytuple! */ |
| 5829 | write_item(rel->rd_indextuple, |
| 5830 | HEAPTUPLESIZE + rel->rd_indextuple->t_len, |
| 5831 | fp); |
| 5832 | |
| 5833 | /* next, write the vector of opfamily OIDs */ |
| 5834 | write_item(rel->rd_opfamily, |
| 5835 | relform->relnatts * sizeof(Oid), |
| 5836 | fp); |
| 5837 | |
| 5838 | /* next, write the vector of opcintype OIDs */ |
| 5839 | write_item(rel->rd_opcintype, |
| 5840 | relform->relnatts * sizeof(Oid), |
| 5841 | fp); |
| 5842 | |
| 5843 | /* next, write the vector of support procedure OIDs */ |
| 5844 | write_item(rel->rd_support, |
| 5845 | relform->relnatts * (rel->rd_indam->amsupport * sizeof(RegProcedure)), |
| 5846 | fp); |
| 5847 | |
| 5848 | /* next, write the vector of collation OIDs */ |
| 5849 | write_item(rel->rd_indcollation, |
| 5850 | relform->relnatts * sizeof(Oid), |
| 5851 | fp); |
| 5852 | |
| 5853 | /* finally, write the vector of indoption values */ |
| 5854 | write_item(rel->rd_indoption, |
| 5855 | relform->relnatts * sizeof(int16), |
| 5856 | fp); |
| 5857 | } |
| 5858 | } |
| 5859 | |
| 5860 | if (FreeFile(fp)) |
| 5861 | elog(FATAL, "could not write init file" ); |
| 5862 | |
| 5863 | /* |
| 5864 | * Now we have to check whether the data we've so painstakingly |
| 5865 | * accumulated is already obsolete due to someone else's just-committed |
| 5866 | * catalog changes. If so, we just delete the temp file and leave it to |
| 5867 | * the next backend to try again. (Our own relcache entries will be |
| 5868 | * updated by SI message processing, but we can't be sure whether what we |
| 5869 | * wrote out was up-to-date.) |
| 5870 | * |
| 5871 | * This mustn't run concurrently with the code that unlinks an init file |
| 5872 | * and sends SI messages, so grab a serialization lock for the duration. |
| 5873 | */ |
| 5874 | LWLockAcquire(RelCacheInitLock, LW_EXCLUSIVE); |
| 5875 | |
| 5876 | /* Make sure we have seen all incoming SI messages */ |
| 5877 | AcceptInvalidationMessages(); |
| 5878 | |
| 5879 | /* |
| 5880 | * If we have received any SI relcache invals since backend start, assume |
| 5881 | * we may have written out-of-date data. |
| 5882 | */ |
| 5883 | if (relcacheInvalsReceived == 0L) |
| 5884 | { |
| 5885 | /* |
| 5886 | * OK, rename the temp file to its final name, deleting any |
| 5887 | * previously-existing init file. |
| 5888 | * |
| 5889 | * Note: a failure here is possible under Cygwin, if some other |
| 5890 | * backend is holding open an unlinked-but-not-yet-gone init file. So |
| 5891 | * treat this as a noncritical failure; just remove the useless temp |
| 5892 | * file on failure. |
| 5893 | */ |
| 5894 | if (rename(tempfilename, finalfilename) < 0) |
| 5895 | unlink(tempfilename); |
| 5896 | } |
| 5897 | else |
| 5898 | { |
| 5899 | /* Delete the already-obsolete temp file */ |
| 5900 | unlink(tempfilename); |
| 5901 | } |
| 5902 | |
| 5903 | LWLockRelease(RelCacheInitLock); |
| 5904 | } |
| 5905 | |
| 5906 | /* write a chunk of data preceded by its length */ |
| 5907 | static void |
| 5908 | write_item(const void *data, Size len, FILE *fp) |
| 5909 | { |
| 5910 | if (fwrite(&len, 1, sizeof(len), fp) != sizeof(len)) |
| 5911 | elog(FATAL, "could not write init file" ); |
| 5912 | if (fwrite(data, 1, len, fp) != len) |
| 5913 | elog(FATAL, "could not write init file" ); |
| 5914 | } |
| 5915 | |
| 5916 | /* |
| 5917 | * Determine whether a given relation (identified by OID) is one of the ones |
| 5918 | * we should store in a relcache init file. |
| 5919 | * |
| 5920 | * We must cache all nailed rels, and for efficiency we should cache every rel |
| 5921 | * that supports a syscache. The former set is almost but not quite a subset |
| 5922 | * of the latter. The special cases are relations where |
| 5923 | * RelationCacheInitializePhase2/3 chooses to nail for efficiency reasons, but |
| 5924 | * which do not support any syscache. |
| 5925 | */ |
| 5926 | bool |
| 5927 | RelationIdIsInInitFile(Oid relationId) |
| 5928 | { |
| 5929 | if (relationId == SharedSecLabelRelationId || |
| 5930 | relationId == TriggerRelidNameIndexId || |
| 5931 | relationId == DatabaseNameIndexId || |
| 5932 | relationId == SharedSecLabelObjectIndexId) |
| 5933 | { |
| 5934 | /* |
| 5935 | * If this Assert fails, we don't need the applicable special case |
| 5936 | * anymore. |
| 5937 | */ |
| 5938 | Assert(!RelationSupportsSysCache(relationId)); |
| 5939 | return true; |
| 5940 | } |
| 5941 | return RelationSupportsSysCache(relationId); |
| 5942 | } |
| 5943 | |
| 5944 | /* |
| 5945 | * Invalidate (remove) the init file during commit of a transaction that |
| 5946 | * changed one or more of the relation cache entries that are kept in the |
| 5947 | * local init file. |
| 5948 | * |
| 5949 | * To be safe against concurrent inspection or rewriting of the init file, |
| 5950 | * we must take RelCacheInitLock, then remove the old init file, then send |
| 5951 | * the SI messages that include relcache inval for such relations, and then |
| 5952 | * release RelCacheInitLock. This serializes the whole affair against |
| 5953 | * write_relcache_init_file, so that we can be sure that any other process |
| 5954 | * that's concurrently trying to create a new init file won't move an |
| 5955 | * already-stale version into place after we unlink. Also, because we unlink |
| 5956 | * before sending the SI messages, a backend that's currently starting cannot |
| 5957 | * read the now-obsolete init file and then miss the SI messages that will |
| 5958 | * force it to update its relcache entries. (This works because the backend |
| 5959 | * startup sequence gets into the sinval array before trying to load the init |
| 5960 | * file.) |
| 5961 | * |
| 5962 | * We take the lock and do the unlink in RelationCacheInitFilePreInvalidate, |
| 5963 | * then release the lock in RelationCacheInitFilePostInvalidate. Caller must |
| 5964 | * send any pending SI messages between those calls. |
| 5965 | */ |
| 5966 | void |
| 5967 | RelationCacheInitFilePreInvalidate(void) |
| 5968 | { |
| 5969 | char localinitfname[MAXPGPATH]; |
| 5970 | char sharedinitfname[MAXPGPATH]; |
| 5971 | |
| 5972 | if (DatabasePath) |
| 5973 | snprintf(localinitfname, sizeof(localinitfname), "%s/%s" , |
| 5974 | DatabasePath, RELCACHE_INIT_FILENAME); |
| 5975 | snprintf(sharedinitfname, sizeof(sharedinitfname), "global/%s" , |
| 5976 | RELCACHE_INIT_FILENAME); |
| 5977 | |
| 5978 | LWLockAcquire(RelCacheInitLock, LW_EXCLUSIVE); |
| 5979 | |
| 5980 | /* |
| 5981 | * The files might not be there if no backend has been started since the |
| 5982 | * last removal. But complain about failures other than ENOENT with |
| 5983 | * ERROR. Fortunately, it's not too late to abort the transaction if we |
| 5984 | * can't get rid of the would-be-obsolete init file. |
| 5985 | */ |
| 5986 | if (DatabasePath) |
| 5987 | unlink_initfile(localinitfname, ERROR); |
| 5988 | unlink_initfile(sharedinitfname, ERROR); |
| 5989 | } |
| 5990 | |
| 5991 | void |
| 5992 | RelationCacheInitFilePostInvalidate(void) |
| 5993 | { |
| 5994 | LWLockRelease(RelCacheInitLock); |
| 5995 | } |
| 5996 | |
| 5997 | /* |
| 5998 | * Remove the init files during postmaster startup. |
| 5999 | * |
| 6000 | * We used to keep the init files across restarts, but that is unsafe in PITR |
| 6001 | * scenarios, and even in simple crash-recovery cases there are windows for |
| 6002 | * the init files to become out-of-sync with the database. So now we just |
| 6003 | * remove them during startup and expect the first backend launch to rebuild |
| 6004 | * them. Of course, this has to happen in each database of the cluster. |
| 6005 | */ |
| 6006 | void |
| 6007 | RelationCacheInitFileRemove(void) |
| 6008 | { |
| 6009 | const char *tblspcdir = "pg_tblspc" ; |
| 6010 | DIR *dir; |
| 6011 | struct dirent *de; |
| 6012 | char path[MAXPGPATH + 10 + sizeof(TABLESPACE_VERSION_DIRECTORY)]; |
| 6013 | |
| 6014 | snprintf(path, sizeof(path), "global/%s" , |
| 6015 | RELCACHE_INIT_FILENAME); |
| 6016 | unlink_initfile(path, LOG); |
| 6017 | |
| 6018 | /* Scan everything in the default tablespace */ |
| 6019 | RelationCacheInitFileRemoveInDir("base" ); |
| 6020 | |
| 6021 | /* Scan the tablespace link directory to find non-default tablespaces */ |
| 6022 | dir = AllocateDir(tblspcdir); |
| 6023 | |
| 6024 | while ((de = ReadDirExtended(dir, tblspcdir, LOG)) != NULL) |
| 6025 | { |
| 6026 | if (strspn(de->d_name, "0123456789" ) == strlen(de->d_name)) |
| 6027 | { |
| 6028 | /* Scan the tablespace dir for per-database dirs */ |
| 6029 | snprintf(path, sizeof(path), "%s/%s/%s" , |
| 6030 | tblspcdir, de->d_name, TABLESPACE_VERSION_DIRECTORY); |
| 6031 | RelationCacheInitFileRemoveInDir(path); |
| 6032 | } |
| 6033 | } |
| 6034 | |
| 6035 | FreeDir(dir); |
| 6036 | } |
| 6037 | |
| 6038 | /* Process one per-tablespace directory for RelationCacheInitFileRemove */ |
| 6039 | static void |
| 6040 | RelationCacheInitFileRemoveInDir(const char *tblspcpath) |
| 6041 | { |
| 6042 | DIR *dir; |
| 6043 | struct dirent *de; |
| 6044 | char initfilename[MAXPGPATH * 2]; |
| 6045 | |
| 6046 | /* Scan the tablespace directory to find per-database directories */ |
| 6047 | dir = AllocateDir(tblspcpath); |
| 6048 | |
| 6049 | while ((de = ReadDirExtended(dir, tblspcpath, LOG)) != NULL) |
| 6050 | { |
| 6051 | if (strspn(de->d_name, "0123456789" ) == strlen(de->d_name)) |
| 6052 | { |
| 6053 | /* Try to remove the init file in each database */ |
| 6054 | snprintf(initfilename, sizeof(initfilename), "%s/%s/%s" , |
| 6055 | tblspcpath, de->d_name, RELCACHE_INIT_FILENAME); |
| 6056 | unlink_initfile(initfilename, LOG); |
| 6057 | } |
| 6058 | } |
| 6059 | |
| 6060 | FreeDir(dir); |
| 6061 | } |
| 6062 | |
| 6063 | static void |
| 6064 | unlink_initfile(const char *initfilename, int elevel) |
| 6065 | { |
| 6066 | if (unlink(initfilename) < 0) |
| 6067 | { |
| 6068 | /* It might not be there, but log any error other than ENOENT */ |
| 6069 | if (errno != ENOENT) |
| 6070 | ereport(elevel, |
| 6071 | (errcode_for_file_access(), |
| 6072 | errmsg("could not remove cache file \"%s\": %m" , |
| 6073 | initfilename))); |
| 6074 | } |
| 6075 | } |
| 6076 | |