| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * tuplesort.c |
| 4 | * Generalized tuple sorting routines. |
| 5 | * |
| 6 | * This module handles sorting of heap tuples, index tuples, or single |
| 7 | * Datums (and could easily support other kinds of sortable objects, |
| 8 | * if necessary). It works efficiently for both small and large amounts |
| 9 | * of data. Small amounts are sorted in-memory using qsort(). Large |
| 10 | * amounts are sorted using temporary files and a standard external sort |
| 11 | * algorithm. |
| 12 | * |
| 13 | * See Knuth, volume 3, for more than you want to know about the external |
| 14 | * sorting algorithm. Historically, we divided the input into sorted runs |
| 15 | * using replacement selection, in the form of a priority tree implemented |
| 16 | * as a heap (essentially his Algorithm 5.2.3H), but now we always use |
| 17 | * quicksort for run generation. We merge the runs using polyphase merge, |
| 18 | * Knuth's Algorithm 5.4.2D. The logical "tapes" used by Algorithm D are |
| 19 | * implemented by logtape.c, which avoids space wastage by recycling disk |
| 20 | * space as soon as each block is read from its "tape". |
| 21 | * |
| 22 | * The approximate amount of memory allowed for any one sort operation |
| 23 | * is specified in kilobytes by the caller (most pass work_mem). Initially, |
| 24 | * we absorb tuples and simply store them in an unsorted array as long as |
| 25 | * we haven't exceeded workMem. If we reach the end of the input without |
| 26 | * exceeding workMem, we sort the array using qsort() and subsequently return |
| 27 | * tuples just by scanning the tuple array sequentially. If we do exceed |
| 28 | * workMem, we begin to emit tuples into sorted runs in temporary tapes. |
| 29 | * When tuples are dumped in batch after quicksorting, we begin a new run |
| 30 | * with a new output tape (selected per Algorithm D). After the end of the |
| 31 | * input is reached, we dump out remaining tuples in memory into a final run, |
| 32 | * then merge the runs using Algorithm D. |
| 33 | * |
| 34 | * When merging runs, we use a heap containing just the frontmost tuple from |
| 35 | * each source run; we repeatedly output the smallest tuple and replace it |
| 36 | * with the next tuple from its source tape (if any). When the heap empties, |
| 37 | * the merge is complete. The basic merge algorithm thus needs very little |
| 38 | * memory --- only M tuples for an M-way merge, and M is constrained to a |
| 39 | * small number. However, we can still make good use of our full workMem |
| 40 | * allocation by pre-reading additional blocks from each source tape. Without |
| 41 | * prereading, our access pattern to the temporary file would be very erratic; |
| 42 | * on average we'd read one block from each of M source tapes during the same |
| 43 | * time that we're writing M blocks to the output tape, so there is no |
| 44 | * sequentiality of access at all, defeating the read-ahead methods used by |
| 45 | * most Unix kernels. Worse, the output tape gets written into a very random |
| 46 | * sequence of blocks of the temp file, ensuring that things will be even |
| 47 | * worse when it comes time to read that tape. A straightforward merge pass |
| 48 | * thus ends up doing a lot of waiting for disk seeks. We can improve matters |
| 49 | * by prereading from each source tape sequentially, loading about workMem/M |
| 50 | * bytes from each tape in turn, and making the sequential blocks immediately |
| 51 | * available for reuse. This approach helps to localize both read and write |
| 52 | * accesses. The pre-reading is handled by logtape.c, we just tell it how |
| 53 | * much memory to use for the buffers. |
| 54 | * |
| 55 | * When the caller requests random access to the sort result, we form |
| 56 | * the final sorted run on a logical tape which is then "frozen", so |
| 57 | * that we can access it randomly. When the caller does not need random |
| 58 | * access, we return from tuplesort_performsort() as soon as we are down |
| 59 | * to one run per logical tape. The final merge is then performed |
| 60 | * on-the-fly as the caller repeatedly calls tuplesort_getXXX; this |
| 61 | * saves one cycle of writing all the data out to disk and reading it in. |
| 62 | * |
| 63 | * Before Postgres 8.2, we always used a seven-tape polyphase merge, on the |
| 64 | * grounds that 7 is the "sweet spot" on the tapes-to-passes curve according |
| 65 | * to Knuth's figure 70 (section 5.4.2). However, Knuth is assuming that |
| 66 | * tape drives are expensive beasts, and in particular that there will always |
| 67 | * be many more runs than tape drives. In our implementation a "tape drive" |
| 68 | * doesn't cost much more than a few Kb of memory buffers, so we can afford |
| 69 | * to have lots of them. In particular, if we can have as many tape drives |
| 70 | * as sorted runs, we can eliminate any repeated I/O at all. In the current |
| 71 | * code we determine the number of tapes M on the basis of workMem: we want |
| 72 | * workMem/M to be large enough that we read a fair amount of data each time |
| 73 | * we preread from a tape, so as to maintain the locality of access described |
| 74 | * above. Nonetheless, with large workMem we can have many tapes (but not |
| 75 | * too many -- see the comments in tuplesort_merge_order). |
| 76 | * |
| 77 | * This module supports parallel sorting. Parallel sorts involve coordination |
| 78 | * among one or more worker processes, and a leader process, each with its own |
| 79 | * tuplesort state. The leader process (or, more accurately, the |
| 80 | * Tuplesortstate associated with a leader process) creates a full tapeset |
| 81 | * consisting of worker tapes with one run to merge; a run for every |
| 82 | * worker process. This is then merged. Worker processes are guaranteed to |
| 83 | * produce exactly one output run from their partial input. |
| 84 | * |
| 85 | * |
| 86 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 87 | * Portions Copyright (c) 1994, Regents of the University of California |
| 88 | * |
| 89 | * IDENTIFICATION |
| 90 | * src/backend/utils/sort/tuplesort.c |
| 91 | * |
| 92 | *------------------------------------------------------------------------- |
| 93 | */ |
| 94 | |
| 95 | #include "postgres.h" |
| 96 | |
| 97 | #include <limits.h> |
| 98 | |
| 99 | #include "access/hash.h" |
| 100 | #include "access/htup_details.h" |
| 101 | #include "access/nbtree.h" |
| 102 | #include "catalog/index.h" |
| 103 | #include "catalog/pg_am.h" |
| 104 | #include "commands/tablespace.h" |
| 105 | #include "executor/executor.h" |
| 106 | #include "miscadmin.h" |
| 107 | #include "pg_trace.h" |
| 108 | #include "utils/datum.h" |
| 109 | #include "utils/logtape.h" |
| 110 | #include "utils/lsyscache.h" |
| 111 | #include "utils/memutils.h" |
| 112 | #include "utils/pg_rusage.h" |
| 113 | #include "utils/rel.h" |
| 114 | #include "utils/sortsupport.h" |
| 115 | #include "utils/tuplesort.h" |
| 116 | |
| 117 | |
| 118 | /* sort-type codes for sort__start probes */ |
| 119 | #define HEAP_SORT 0 |
| 120 | #define INDEX_SORT 1 |
| 121 | #define DATUM_SORT 2 |
| 122 | #define CLUSTER_SORT 3 |
| 123 | |
| 124 | /* Sort parallel code from state for sort__start probes */ |
| 125 | #define PARALLEL_SORT(state) ((state)->shared == NULL ? 0 : \ |
| 126 | (state)->worker >= 0 ? 1 : 2) |
| 127 | |
| 128 | /* GUC variables */ |
| 129 | #ifdef TRACE_SORT |
| 130 | bool trace_sort = false; |
| 131 | #endif |
| 132 | |
| 133 | #ifdef DEBUG_BOUNDED_SORT |
| 134 | bool optimize_bounded_sort = true; |
| 135 | #endif |
| 136 | |
| 137 | |
| 138 | /* |
| 139 | * The objects we actually sort are SortTuple structs. These contain |
| 140 | * a pointer to the tuple proper (might be a MinimalTuple or IndexTuple), |
| 141 | * which is a separate palloc chunk --- we assume it is just one chunk and |
| 142 | * can be freed by a simple pfree() (except during merge, when we use a |
| 143 | * simple slab allocator). SortTuples also contain the tuple's first key |
| 144 | * column in Datum/nullflag format, and an index integer. |
| 145 | * |
| 146 | * Storing the first key column lets us save heap_getattr or index_getattr |
| 147 | * calls during tuple comparisons. We could extract and save all the key |
| 148 | * columns not just the first, but this would increase code complexity and |
| 149 | * overhead, and wouldn't actually save any comparison cycles in the common |
| 150 | * case where the first key determines the comparison result. Note that |
| 151 | * for a pass-by-reference datatype, datum1 points into the "tuple" storage. |
| 152 | * |
| 153 | * There is one special case: when the sort support infrastructure provides an |
| 154 | * "abbreviated key" representation, where the key is (typically) a pass by |
| 155 | * value proxy for a pass by reference type. In this case, the abbreviated key |
| 156 | * is stored in datum1 in place of the actual first key column. |
| 157 | * |
| 158 | * When sorting single Datums, the data value is represented directly by |
| 159 | * datum1/isnull1 for pass by value types (or null values). If the datatype is |
| 160 | * pass-by-reference and isnull1 is false, then "tuple" points to a separately |
| 161 | * palloc'd data value, otherwise "tuple" is NULL. The value of datum1 is then |
| 162 | * either the same pointer as "tuple", or is an abbreviated key value as |
| 163 | * described above. Accordingly, "tuple" is always used in preference to |
| 164 | * datum1 as the authoritative value for pass-by-reference cases. |
| 165 | * |
| 166 | * tupindex holds the input tape number that each tuple in the heap was read |
| 167 | * from during merge passes. |
| 168 | */ |
| 169 | typedef struct |
| 170 | { |
| 171 | void *tuple; /* the tuple itself */ |
| 172 | Datum datum1; /* value of first key column */ |
| 173 | bool isnull1; /* is first key column NULL? */ |
| 174 | int tupindex; /* see notes above */ |
| 175 | } SortTuple; |
| 176 | |
| 177 | /* |
| 178 | * During merge, we use a pre-allocated set of fixed-size slots to hold |
| 179 | * tuples. To avoid palloc/pfree overhead. |
| 180 | * |
| 181 | * Merge doesn't require a lot of memory, so we can afford to waste some, |
| 182 | * by using gratuitously-sized slots. If a tuple is larger than 1 kB, the |
| 183 | * palloc() overhead is not significant anymore. |
| 184 | * |
| 185 | * 'nextfree' is valid when this chunk is in the free list. When in use, the |
| 186 | * slot holds a tuple. |
| 187 | */ |
| 188 | #define SLAB_SLOT_SIZE 1024 |
| 189 | |
| 190 | typedef union SlabSlot |
| 191 | { |
| 192 | union SlabSlot *nextfree; |
| 193 | char buffer[SLAB_SLOT_SIZE]; |
| 194 | } SlabSlot; |
| 195 | |
| 196 | /* |
| 197 | * Possible states of a Tuplesort object. These denote the states that |
| 198 | * persist between calls of Tuplesort routines. |
| 199 | */ |
| 200 | typedef enum |
| 201 | { |
| 202 | TSS_INITIAL, /* Loading tuples; still within memory limit */ |
| 203 | TSS_BOUNDED, /* Loading tuples into bounded-size heap */ |
| 204 | TSS_BUILDRUNS, /* Loading tuples; writing to tape */ |
| 205 | TSS_SORTEDINMEM, /* Sort completed entirely in memory */ |
| 206 | TSS_SORTEDONTAPE, /* Sort completed, final run is on tape */ |
| 207 | TSS_FINALMERGE /* Performing final merge on-the-fly */ |
| 208 | } TupSortStatus; |
| 209 | |
| 210 | /* |
| 211 | * Parameters for calculation of number of tapes to use --- see inittapes() |
| 212 | * and tuplesort_merge_order(). |
| 213 | * |
| 214 | * In this calculation we assume that each tape will cost us about 1 blocks |
| 215 | * worth of buffer space. This ignores the overhead of all the other data |
| 216 | * structures needed for each tape, but it's probably close enough. |
| 217 | * |
| 218 | * MERGE_BUFFER_SIZE is how much data we'd like to read from each input |
| 219 | * tape during a preread cycle (see discussion at top of file). |
| 220 | */ |
| 221 | #define MINORDER 6 /* minimum merge order */ |
| 222 | #define MAXORDER 500 /* maximum merge order */ |
| 223 | #define TAPE_BUFFER_OVERHEAD BLCKSZ |
| 224 | #define MERGE_BUFFER_SIZE (BLCKSZ * 32) |
| 225 | |
| 226 | typedef int (*SortTupleComparator) (const SortTuple *a, const SortTuple *b, |
| 227 | Tuplesortstate *state); |
| 228 | |
| 229 | /* |
| 230 | * Private state of a Tuplesort operation. |
| 231 | */ |
| 232 | struct Tuplesortstate |
| 233 | { |
| 234 | TupSortStatus status; /* enumerated value as shown above */ |
| 235 | int nKeys; /* number of columns in sort key */ |
| 236 | bool randomAccess; /* did caller request random access? */ |
| 237 | bool bounded; /* did caller specify a maximum number of |
| 238 | * tuples to return? */ |
| 239 | bool boundUsed; /* true if we made use of a bounded heap */ |
| 240 | int bound; /* if bounded, the maximum number of tuples */ |
| 241 | bool tuples; /* Can SortTuple.tuple ever be set? */ |
| 242 | int64 availMem; /* remaining memory available, in bytes */ |
| 243 | int64 allowedMem; /* total memory allowed, in bytes */ |
| 244 | int maxTapes; /* number of tapes (Knuth's T) */ |
| 245 | int tapeRange; /* maxTapes-1 (Knuth's P) */ |
| 246 | MemoryContext sortcontext; /* memory context holding most sort data */ |
| 247 | MemoryContext tuplecontext; /* sub-context of sortcontext for tuple data */ |
| 248 | LogicalTapeSet *tapeset; /* logtape.c object for tapes in a temp file */ |
| 249 | |
| 250 | /* |
| 251 | * These function pointers decouple the routines that must know what kind |
| 252 | * of tuple we are sorting from the routines that don't need to know it. |
| 253 | * They are set up by the tuplesort_begin_xxx routines. |
| 254 | * |
| 255 | * Function to compare two tuples; result is per qsort() convention, ie: |
| 256 | * <0, 0, >0 according as a<b, a=b, a>b. The API must match |
| 257 | * qsort_arg_comparator. |
| 258 | */ |
| 259 | SortTupleComparator comparetup; |
| 260 | |
| 261 | /* |
| 262 | * Function to copy a supplied input tuple into palloc'd space and set up |
| 263 | * its SortTuple representation (ie, set tuple/datum1/isnull1). Also, |
| 264 | * state->availMem must be decreased by the amount of space used for the |
| 265 | * tuple copy (note the SortTuple struct itself is not counted). |
| 266 | */ |
| 267 | void (*copytup) (Tuplesortstate *state, SortTuple *stup, void *tup); |
| 268 | |
| 269 | /* |
| 270 | * Function to write a stored tuple onto tape. The representation of the |
| 271 | * tuple on tape need not be the same as it is in memory; requirements on |
| 272 | * the tape representation are given below. Unless the slab allocator is |
| 273 | * used, after writing the tuple, pfree() the out-of-line data (not the |
| 274 | * SortTuple struct!), and increase state->availMem by the amount of |
| 275 | * memory space thereby released. |
| 276 | */ |
| 277 | void (*writetup) (Tuplesortstate *state, int tapenum, |
| 278 | SortTuple *stup); |
| 279 | |
| 280 | /* |
| 281 | * Function to read a stored tuple from tape back into memory. 'len' is |
| 282 | * the already-read length of the stored tuple. The tuple is allocated |
| 283 | * from the slab memory arena, or is palloc'd, see readtup_alloc(). |
| 284 | */ |
| 285 | void (*readtup) (Tuplesortstate *state, SortTuple *stup, |
| 286 | int tapenum, unsigned int len); |
| 287 | |
| 288 | /* |
| 289 | * This array holds the tuples now in sort memory. If we are in state |
| 290 | * INITIAL, the tuples are in no particular order; if we are in state |
| 291 | * SORTEDINMEM, the tuples are in final sorted order; in states BUILDRUNS |
| 292 | * and FINALMERGE, the tuples are organized in "heap" order per Algorithm |
| 293 | * H. In state SORTEDONTAPE, the array is not used. |
| 294 | */ |
| 295 | SortTuple *memtuples; /* array of SortTuple structs */ |
| 296 | int memtupcount; /* number of tuples currently present */ |
| 297 | int memtupsize; /* allocated length of memtuples array */ |
| 298 | bool growmemtuples; /* memtuples' growth still underway? */ |
| 299 | |
| 300 | /* |
| 301 | * Memory for tuples is sometimes allocated using a simple slab allocator, |
| 302 | * rather than with palloc(). Currently, we switch to slab allocation |
| 303 | * when we start merging. Merging only needs to keep a small, fixed |
| 304 | * number of tuples in memory at any time, so we can avoid the |
| 305 | * palloc/pfree overhead by recycling a fixed number of fixed-size slots |
| 306 | * to hold the tuples. |
| 307 | * |
| 308 | * For the slab, we use one large allocation, divided into SLAB_SLOT_SIZE |
| 309 | * slots. The allocation is sized to have one slot per tape, plus one |
| 310 | * additional slot. We need that many slots to hold all the tuples kept |
| 311 | * in the heap during merge, plus the one we have last returned from the |
| 312 | * sort, with tuplesort_gettuple. |
| 313 | * |
| 314 | * Initially, all the slots are kept in a linked list of free slots. When |
| 315 | * a tuple is read from a tape, it is put to the next available slot, if |
| 316 | * it fits. If the tuple is larger than SLAB_SLOT_SIZE, it is palloc'd |
| 317 | * instead. |
| 318 | * |
| 319 | * When we're done processing a tuple, we return the slot back to the free |
| 320 | * list, or pfree() if it was palloc'd. We know that a tuple was |
| 321 | * allocated from the slab, if its pointer value is between |
| 322 | * slabMemoryBegin and -End. |
| 323 | * |
| 324 | * When the slab allocator is used, the USEMEM/LACKMEM mechanism of |
| 325 | * tracking memory usage is not used. |
| 326 | */ |
| 327 | bool slabAllocatorUsed; |
| 328 | |
| 329 | char *slabMemoryBegin; /* beginning of slab memory arena */ |
| 330 | char *slabMemoryEnd; /* end of slab memory arena */ |
| 331 | SlabSlot *slabFreeHead; /* head of free list */ |
| 332 | |
| 333 | /* Buffer size to use for reading input tapes, during merge. */ |
| 334 | size_t read_buffer_size; |
| 335 | |
| 336 | /* |
| 337 | * When we return a tuple to the caller in tuplesort_gettuple_XXX, that |
| 338 | * came from a tape (that is, in TSS_SORTEDONTAPE or TSS_FINALMERGE |
| 339 | * modes), we remember the tuple in 'lastReturnedTuple', so that we can |
| 340 | * recycle the memory on next gettuple call. |
| 341 | */ |
| 342 | void *lastReturnedTuple; |
| 343 | |
| 344 | /* |
| 345 | * While building initial runs, this is the current output run number. |
| 346 | * Afterwards, it is the number of initial runs we made. |
| 347 | */ |
| 348 | int currentRun; |
| 349 | |
| 350 | /* |
| 351 | * Unless otherwise noted, all pointer variables below are pointers to |
| 352 | * arrays of length maxTapes, holding per-tape data. |
| 353 | */ |
| 354 | |
| 355 | /* |
| 356 | * This variable is only used during merge passes. mergeactive[i] is true |
| 357 | * if we are reading an input run from (actual) tape number i and have not |
| 358 | * yet exhausted that run. |
| 359 | */ |
| 360 | bool *mergeactive; /* active input run source? */ |
| 361 | |
| 362 | /* |
| 363 | * Variables for Algorithm D. Note that destTape is a "logical" tape |
| 364 | * number, ie, an index into the tp_xxx[] arrays. Be careful to keep |
| 365 | * "logical" and "actual" tape numbers straight! |
| 366 | */ |
| 367 | int Level; /* Knuth's l */ |
| 368 | int destTape; /* current output tape (Knuth's j, less 1) */ |
| 369 | int *tp_fib; /* Target Fibonacci run counts (A[]) */ |
| 370 | int *tp_runs; /* # of real runs on each tape */ |
| 371 | int *tp_dummy; /* # of dummy runs for each tape (D[]) */ |
| 372 | int *tp_tapenum; /* Actual tape numbers (TAPE[]) */ |
| 373 | int activeTapes; /* # of active input tapes in merge pass */ |
| 374 | |
| 375 | /* |
| 376 | * These variables are used after completion of sorting to keep track of |
| 377 | * the next tuple to return. (In the tape case, the tape's current read |
| 378 | * position is also critical state.) |
| 379 | */ |
| 380 | int result_tape; /* actual tape number of finished output */ |
| 381 | int current; /* array index (only used if SORTEDINMEM) */ |
| 382 | bool eof_reached; /* reached EOF (needed for cursors) */ |
| 383 | |
| 384 | /* markpos_xxx holds marked position for mark and restore */ |
| 385 | long markpos_block; /* tape block# (only used if SORTEDONTAPE) */ |
| 386 | int markpos_offset; /* saved "current", or offset in tape block */ |
| 387 | bool markpos_eof; /* saved "eof_reached" */ |
| 388 | |
| 389 | /* |
| 390 | * These variables are used during parallel sorting. |
| 391 | * |
| 392 | * worker is our worker identifier. Follows the general convention that |
| 393 | * -1 value relates to a leader tuplesort, and values >= 0 worker |
| 394 | * tuplesorts. (-1 can also be a serial tuplesort.) |
| 395 | * |
| 396 | * shared is mutable shared memory state, which is used to coordinate |
| 397 | * parallel sorts. |
| 398 | * |
| 399 | * nParticipants is the number of worker Tuplesortstates known by the |
| 400 | * leader to have actually been launched, which implies that they must |
| 401 | * finish a run leader can merge. Typically includes a worker state held |
| 402 | * by the leader process itself. Set in the leader Tuplesortstate only. |
| 403 | */ |
| 404 | int worker; |
| 405 | Sharedsort *shared; |
| 406 | int nParticipants; |
| 407 | |
| 408 | /* |
| 409 | * The sortKeys variable is used by every case other than the hash index |
| 410 | * case; it is set by tuplesort_begin_xxx. tupDesc is only used by the |
| 411 | * MinimalTuple and CLUSTER routines, though. |
| 412 | */ |
| 413 | TupleDesc tupDesc; |
| 414 | SortSupport sortKeys; /* array of length nKeys */ |
| 415 | |
| 416 | /* |
| 417 | * This variable is shared by the single-key MinimalTuple case and the |
| 418 | * Datum case (which both use qsort_ssup()). Otherwise it's NULL. |
| 419 | */ |
| 420 | SortSupport onlyKey; |
| 421 | |
| 422 | /* |
| 423 | * Additional state for managing "abbreviated key" sortsupport routines |
| 424 | * (which currently may be used by all cases except the hash index case). |
| 425 | * Tracks the intervals at which the optimization's effectiveness is |
| 426 | * tested. |
| 427 | */ |
| 428 | int64 abbrevNext; /* Tuple # at which to next check |
| 429 | * applicability */ |
| 430 | |
| 431 | /* |
| 432 | * These variables are specific to the CLUSTER case; they are set by |
| 433 | * tuplesort_begin_cluster. |
| 434 | */ |
| 435 | IndexInfo *indexInfo; /* info about index being used for reference */ |
| 436 | EState *estate; /* for evaluating index expressions */ |
| 437 | |
| 438 | /* |
| 439 | * These variables are specific to the IndexTuple case; they are set by |
| 440 | * tuplesort_begin_index_xxx and used only by the IndexTuple routines. |
| 441 | */ |
| 442 | Relation heapRel; /* table the index is being built on */ |
| 443 | Relation indexRel; /* index being built */ |
| 444 | |
| 445 | /* These are specific to the index_btree subcase: */ |
| 446 | bool enforceUnique; /* complain if we find duplicate tuples */ |
| 447 | |
| 448 | /* These are specific to the index_hash subcase: */ |
| 449 | uint32 high_mask; /* masks for sortable part of hash code */ |
| 450 | uint32 low_mask; |
| 451 | uint32 max_buckets; |
| 452 | |
| 453 | /* |
| 454 | * These variables are specific to the Datum case; they are set by |
| 455 | * tuplesort_begin_datum and used only by the DatumTuple routines. |
| 456 | */ |
| 457 | Oid datumType; |
| 458 | /* we need typelen in order to know how to copy the Datums. */ |
| 459 | int datumTypeLen; |
| 460 | |
| 461 | /* |
| 462 | * Resource snapshot for time of sort start. |
| 463 | */ |
| 464 | #ifdef TRACE_SORT |
| 465 | PGRUsage ru_start; |
| 466 | #endif |
| 467 | }; |
| 468 | |
| 469 | /* |
| 470 | * Private mutable state of tuplesort-parallel-operation. This is allocated |
| 471 | * in shared memory. |
| 472 | */ |
| 473 | struct Sharedsort |
| 474 | { |
| 475 | /* mutex protects all fields prior to tapes */ |
| 476 | slock_t mutex; |
| 477 | |
| 478 | /* |
| 479 | * currentWorker generates ordinal identifier numbers for parallel sort |
| 480 | * workers. These start from 0, and are always gapless. |
| 481 | * |
| 482 | * Workers increment workersFinished to indicate having finished. If this |
| 483 | * is equal to state.nParticipants within the leader, leader is ready to |
| 484 | * merge worker runs. |
| 485 | */ |
| 486 | int currentWorker; |
| 487 | int workersFinished; |
| 488 | |
| 489 | /* Temporary file space */ |
| 490 | SharedFileSet fileset; |
| 491 | |
| 492 | /* Size of tapes flexible array */ |
| 493 | int nTapes; |
| 494 | |
| 495 | /* |
| 496 | * Tapes array used by workers to report back information needed by the |
| 497 | * leader to concatenate all worker tapes into one for merging |
| 498 | */ |
| 499 | TapeShare tapes[FLEXIBLE_ARRAY_MEMBER]; |
| 500 | }; |
| 501 | |
| 502 | /* |
| 503 | * Is the given tuple allocated from the slab memory arena? |
| 504 | */ |
| 505 | #define IS_SLAB_SLOT(state, tuple) \ |
| 506 | ((char *) (tuple) >= (state)->slabMemoryBegin && \ |
| 507 | (char *) (tuple) < (state)->slabMemoryEnd) |
| 508 | |
| 509 | /* |
| 510 | * Return the given tuple to the slab memory free list, or free it |
| 511 | * if it was palloc'd. |
| 512 | */ |
| 513 | #define RELEASE_SLAB_SLOT(state, tuple) \ |
| 514 | do { \ |
| 515 | SlabSlot *buf = (SlabSlot *) tuple; \ |
| 516 | \ |
| 517 | if (IS_SLAB_SLOT((state), buf)) \ |
| 518 | { \ |
| 519 | buf->nextfree = (state)->slabFreeHead; \ |
| 520 | (state)->slabFreeHead = buf; \ |
| 521 | } else \ |
| 522 | pfree(buf); \ |
| 523 | } while(0) |
| 524 | |
| 525 | #define COMPARETUP(state,a,b) ((*(state)->comparetup) (a, b, state)) |
| 526 | #define COPYTUP(state,stup,tup) ((*(state)->copytup) (state, stup, tup)) |
| 527 | #define WRITETUP(state,tape,stup) ((*(state)->writetup) (state, tape, stup)) |
| 528 | #define READTUP(state,stup,tape,len) ((*(state)->readtup) (state, stup, tape, len)) |
| 529 | #define LACKMEM(state) ((state)->availMem < 0 && !(state)->slabAllocatorUsed) |
| 530 | #define USEMEM(state,amt) ((state)->availMem -= (amt)) |
| 531 | #define FREEMEM(state,amt) ((state)->availMem += (amt)) |
| 532 | #define SERIAL(state) ((state)->shared == NULL) |
| 533 | #define WORKER(state) ((state)->shared && (state)->worker != -1) |
| 534 | #define LEADER(state) ((state)->shared && (state)->worker == -1) |
| 535 | |
| 536 | /* |
| 537 | * NOTES about on-tape representation of tuples: |
| 538 | * |
| 539 | * We require the first "unsigned int" of a stored tuple to be the total size |
| 540 | * on-tape of the tuple, including itself (so it is never zero; an all-zero |
| 541 | * unsigned int is used to delimit runs). The remainder of the stored tuple |
| 542 | * may or may not match the in-memory representation of the tuple --- |
| 543 | * any conversion needed is the job of the writetup and readtup routines. |
| 544 | * |
| 545 | * If state->randomAccess is true, then the stored representation of the |
| 546 | * tuple must be followed by another "unsigned int" that is a copy of the |
| 547 | * length --- so the total tape space used is actually sizeof(unsigned int) |
| 548 | * more than the stored length value. This allows read-backwards. When |
| 549 | * randomAccess is not true, the write/read routines may omit the extra |
| 550 | * length word. |
| 551 | * |
| 552 | * writetup is expected to write both length words as well as the tuple |
| 553 | * data. When readtup is called, the tape is positioned just after the |
| 554 | * front length word; readtup must read the tuple data and advance past |
| 555 | * the back length word (if present). |
| 556 | * |
| 557 | * The write/read routines can make use of the tuple description data |
| 558 | * stored in the Tuplesortstate record, if needed. They are also expected |
| 559 | * to adjust state->availMem by the amount of memory space (not tape space!) |
| 560 | * released or consumed. There is no error return from either writetup |
| 561 | * or readtup; they should ereport() on failure. |
| 562 | * |
| 563 | * |
| 564 | * NOTES about memory consumption calculations: |
| 565 | * |
| 566 | * We count space allocated for tuples against the workMem limit, plus |
| 567 | * the space used by the variable-size memtuples array. Fixed-size space |
| 568 | * is not counted; it's small enough to not be interesting. |
| 569 | * |
| 570 | * Note that we count actual space used (as shown by GetMemoryChunkSpace) |
| 571 | * rather than the originally-requested size. This is important since |
| 572 | * palloc can add substantial overhead. It's not a complete answer since |
| 573 | * we won't count any wasted space in palloc allocation blocks, but it's |
| 574 | * a lot better than what we were doing before 7.3. As of 9.6, a |
| 575 | * separate memory context is used for caller passed tuples. Resetting |
| 576 | * it at certain key increments significantly ameliorates fragmentation. |
| 577 | * Note that this places a responsibility on readtup and copytup routines |
| 578 | * to use the right memory context for these tuples (and to not use the |
| 579 | * reset context for anything whose lifetime needs to span multiple |
| 580 | * external sort runs). |
| 581 | */ |
| 582 | |
| 583 | /* When using this macro, beware of double evaluation of len */ |
| 584 | #define LogicalTapeReadExact(tapeset, tapenum, ptr, len) \ |
| 585 | do { \ |
| 586 | if (LogicalTapeRead(tapeset, tapenum, ptr, len) != (size_t) (len)) \ |
| 587 | elog(ERROR, "unexpected end of data"); \ |
| 588 | } while(0) |
| 589 | |
| 590 | |
| 591 | static Tuplesortstate *tuplesort_begin_common(int workMem, |
| 592 | SortCoordinate coordinate, |
| 593 | bool randomAccess); |
| 594 | static void puttuple_common(Tuplesortstate *state, SortTuple *tuple); |
| 595 | static bool consider_abort_common(Tuplesortstate *state); |
| 596 | static void inittapes(Tuplesortstate *state, bool mergeruns); |
| 597 | static void inittapestate(Tuplesortstate *state, int maxTapes); |
| 598 | static void selectnewtape(Tuplesortstate *state); |
| 599 | static void init_slab_allocator(Tuplesortstate *state, int numSlots); |
| 600 | static void mergeruns(Tuplesortstate *state); |
| 601 | static void mergeonerun(Tuplesortstate *state); |
| 602 | static void beginmerge(Tuplesortstate *state); |
| 603 | static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup); |
| 604 | static void dumptuples(Tuplesortstate *state, bool alltuples); |
| 605 | static void make_bounded_heap(Tuplesortstate *state); |
| 606 | static void sort_bounded_heap(Tuplesortstate *state); |
| 607 | static void tuplesort_sort_memtuples(Tuplesortstate *state); |
| 608 | static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple); |
| 609 | static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple); |
| 610 | static void tuplesort_heap_delete_top(Tuplesortstate *state); |
| 611 | static void reversedirection(Tuplesortstate *state); |
| 612 | static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK); |
| 613 | static void markrunend(Tuplesortstate *state, int tapenum); |
| 614 | static void *readtup_alloc(Tuplesortstate *state, Size tuplen); |
| 615 | static int comparetup_heap(const SortTuple *a, const SortTuple *b, |
| 616 | Tuplesortstate *state); |
| 617 | static void copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup); |
| 618 | static void writetup_heap(Tuplesortstate *state, int tapenum, |
| 619 | SortTuple *stup); |
| 620 | static void readtup_heap(Tuplesortstate *state, SortTuple *stup, |
| 621 | int tapenum, unsigned int len); |
| 622 | static int comparetup_cluster(const SortTuple *a, const SortTuple *b, |
| 623 | Tuplesortstate *state); |
| 624 | static void copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup); |
| 625 | static void writetup_cluster(Tuplesortstate *state, int tapenum, |
| 626 | SortTuple *stup); |
| 627 | static void readtup_cluster(Tuplesortstate *state, SortTuple *stup, |
| 628 | int tapenum, unsigned int len); |
| 629 | static int comparetup_index_btree(const SortTuple *a, const SortTuple *b, |
| 630 | Tuplesortstate *state); |
| 631 | static int comparetup_index_hash(const SortTuple *a, const SortTuple *b, |
| 632 | Tuplesortstate *state); |
| 633 | static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup); |
| 634 | static void writetup_index(Tuplesortstate *state, int tapenum, |
| 635 | SortTuple *stup); |
| 636 | static void readtup_index(Tuplesortstate *state, SortTuple *stup, |
| 637 | int tapenum, unsigned int len); |
| 638 | static int comparetup_datum(const SortTuple *a, const SortTuple *b, |
| 639 | Tuplesortstate *state); |
| 640 | static void copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup); |
| 641 | static void writetup_datum(Tuplesortstate *state, int tapenum, |
| 642 | SortTuple *stup); |
| 643 | static void readtup_datum(Tuplesortstate *state, SortTuple *stup, |
| 644 | int tapenum, unsigned int len); |
| 645 | static int worker_get_identifier(Tuplesortstate *state); |
| 646 | static void worker_freeze_result_tape(Tuplesortstate *state); |
| 647 | static void worker_nomergeruns(Tuplesortstate *state); |
| 648 | static void leader_takeover_tapes(Tuplesortstate *state); |
| 649 | static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup); |
| 650 | |
| 651 | /* |
| 652 | * Special versions of qsort just for SortTuple objects. qsort_tuple() sorts |
| 653 | * any variant of SortTuples, using the appropriate comparetup function. |
| 654 | * qsort_ssup() is specialized for the case where the comparetup function |
| 655 | * reduces to ApplySortComparator(), that is single-key MinimalTuple sorts |
| 656 | * and Datum sorts. |
| 657 | */ |
| 658 | #include "qsort_tuple.c" |
| 659 | |
| 660 | |
| 661 | /* |
| 662 | * tuplesort_begin_xxx |
| 663 | * |
| 664 | * Initialize for a tuple sort operation. |
| 665 | * |
| 666 | * After calling tuplesort_begin, the caller should call tuplesort_putXXX |
| 667 | * zero or more times, then call tuplesort_performsort when all the tuples |
| 668 | * have been supplied. After performsort, retrieve the tuples in sorted |
| 669 | * order by calling tuplesort_getXXX until it returns false/NULL. (If random |
| 670 | * access was requested, rescan, markpos, and restorepos can also be called.) |
| 671 | * Call tuplesort_end to terminate the operation and release memory/disk space. |
| 672 | * |
| 673 | * Each variant of tuplesort_begin has a workMem parameter specifying the |
| 674 | * maximum number of kilobytes of RAM to use before spilling data to disk. |
| 675 | * (The normal value of this parameter is work_mem, but some callers use |
| 676 | * other values.) Each variant also has a randomAccess parameter specifying |
| 677 | * whether the caller needs non-sequential access to the sort result. |
| 678 | */ |
| 679 | |
| 680 | static Tuplesortstate * |
| 681 | tuplesort_begin_common(int workMem, SortCoordinate coordinate, |
| 682 | bool randomAccess) |
| 683 | { |
| 684 | Tuplesortstate *state; |
| 685 | MemoryContext sortcontext; |
| 686 | MemoryContext tuplecontext; |
| 687 | MemoryContext oldcontext; |
| 688 | |
| 689 | /* See leader_takeover_tapes() remarks on randomAccess support */ |
| 690 | if (coordinate && randomAccess) |
| 691 | elog(ERROR, "random access disallowed under parallel sort" ); |
| 692 | |
| 693 | /* |
| 694 | * Create a working memory context for this sort operation. All data |
| 695 | * needed by the sort will live inside this context. |
| 696 | */ |
| 697 | sortcontext = AllocSetContextCreate(CurrentMemoryContext, |
| 698 | "TupleSort main" , |
| 699 | ALLOCSET_DEFAULT_SIZES); |
| 700 | |
| 701 | /* |
| 702 | * Caller tuple (e.g. IndexTuple) memory context. |
| 703 | * |
| 704 | * A dedicated child context used exclusively for caller passed tuples |
| 705 | * eases memory management. Resetting at key points reduces |
| 706 | * fragmentation. Note that the memtuples array of SortTuples is allocated |
| 707 | * in the parent context, not this context, because there is no need to |
| 708 | * free memtuples early. |
| 709 | */ |
| 710 | tuplecontext = AllocSetContextCreate(sortcontext, |
| 711 | "Caller tuples" , |
| 712 | ALLOCSET_DEFAULT_SIZES); |
| 713 | |
| 714 | /* |
| 715 | * Make the Tuplesortstate within the per-sort context. This way, we |
| 716 | * don't need a separate pfree() operation for it at shutdown. |
| 717 | */ |
| 718 | oldcontext = MemoryContextSwitchTo(sortcontext); |
| 719 | |
| 720 | state = (Tuplesortstate *) palloc0(sizeof(Tuplesortstate)); |
| 721 | |
| 722 | #ifdef TRACE_SORT |
| 723 | if (trace_sort) |
| 724 | pg_rusage_init(&state->ru_start); |
| 725 | #endif |
| 726 | |
| 727 | state->status = TSS_INITIAL; |
| 728 | state->randomAccess = randomAccess; |
| 729 | state->bounded = false; |
| 730 | state->tuples = true; |
| 731 | state->boundUsed = false; |
| 732 | |
| 733 | /* |
| 734 | * workMem is forced to be at least 64KB, the current minimum valid value |
| 735 | * for the work_mem GUC. This is a defense against parallel sort callers |
| 736 | * that divide out memory among many workers in a way that leaves each |
| 737 | * with very little memory. |
| 738 | */ |
| 739 | state->allowedMem = Max(workMem, 64) * (int64) 1024; |
| 740 | state->availMem = state->allowedMem; |
| 741 | state->sortcontext = sortcontext; |
| 742 | state->tuplecontext = tuplecontext; |
| 743 | state->tapeset = NULL; |
| 744 | |
| 745 | state->memtupcount = 0; |
| 746 | |
| 747 | /* |
| 748 | * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD; |
| 749 | * see comments in grow_memtuples(). |
| 750 | */ |
| 751 | state->memtupsize = Max(1024, |
| 752 | ALLOCSET_SEPARATE_THRESHOLD / sizeof(SortTuple) + 1); |
| 753 | |
| 754 | state->growmemtuples = true; |
| 755 | state->slabAllocatorUsed = false; |
| 756 | state->memtuples = (SortTuple *) palloc(state->memtupsize * sizeof(SortTuple)); |
| 757 | |
| 758 | USEMEM(state, GetMemoryChunkSpace(state->memtuples)); |
| 759 | |
| 760 | /* workMem must be large enough for the minimal memtuples array */ |
| 761 | if (LACKMEM(state)) |
| 762 | elog(ERROR, "insufficient memory allowed for sort" ); |
| 763 | |
| 764 | state->currentRun = 0; |
| 765 | |
| 766 | /* |
| 767 | * maxTapes, tapeRange, and Algorithm D variables will be initialized by |
| 768 | * inittapes(), if needed |
| 769 | */ |
| 770 | |
| 771 | state->result_tape = -1; /* flag that result tape has not been formed */ |
| 772 | |
| 773 | /* |
| 774 | * Initialize parallel-related state based on coordination information |
| 775 | * from caller |
| 776 | */ |
| 777 | if (!coordinate) |
| 778 | { |
| 779 | /* Serial sort */ |
| 780 | state->shared = NULL; |
| 781 | state->worker = -1; |
| 782 | state->nParticipants = -1; |
| 783 | } |
| 784 | else if (coordinate->isWorker) |
| 785 | { |
| 786 | /* Parallel worker produces exactly one final run from all input */ |
| 787 | state->shared = coordinate->sharedsort; |
| 788 | state->worker = worker_get_identifier(state); |
| 789 | state->nParticipants = -1; |
| 790 | } |
| 791 | else |
| 792 | { |
| 793 | /* Parallel leader state only used for final merge */ |
| 794 | state->shared = coordinate->sharedsort; |
| 795 | state->worker = -1; |
| 796 | state->nParticipants = coordinate->nParticipants; |
| 797 | Assert(state->nParticipants >= 1); |
| 798 | } |
| 799 | |
| 800 | MemoryContextSwitchTo(oldcontext); |
| 801 | |
| 802 | return state; |
| 803 | } |
| 804 | |
| 805 | Tuplesortstate * |
| 806 | tuplesort_begin_heap(TupleDesc tupDesc, |
| 807 | int nkeys, AttrNumber *attNums, |
| 808 | Oid *sortOperators, Oid *sortCollations, |
| 809 | bool *nullsFirstFlags, |
| 810 | int workMem, SortCoordinate coordinate, bool randomAccess) |
| 811 | { |
| 812 | Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate, |
| 813 | randomAccess); |
| 814 | MemoryContext oldcontext; |
| 815 | int i; |
| 816 | |
| 817 | oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 818 | |
| 819 | AssertArg(nkeys > 0); |
| 820 | |
| 821 | #ifdef TRACE_SORT |
| 822 | if (trace_sort) |
| 823 | elog(LOG, |
| 824 | "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c" , |
| 825 | nkeys, workMem, randomAccess ? 't' : 'f'); |
| 826 | #endif |
| 827 | |
| 828 | state->nKeys = nkeys; |
| 829 | |
| 830 | TRACE_POSTGRESQL_SORT_START(HEAP_SORT, |
| 831 | false, /* no unique check */ |
| 832 | nkeys, |
| 833 | workMem, |
| 834 | randomAccess, |
| 835 | PARALLEL_SORT(state)); |
| 836 | |
| 837 | state->comparetup = comparetup_heap; |
| 838 | state->copytup = copytup_heap; |
| 839 | state->writetup = writetup_heap; |
| 840 | state->readtup = readtup_heap; |
| 841 | |
| 842 | state->tupDesc = tupDesc; /* assume we need not copy tupDesc */ |
| 843 | state->abbrevNext = 10; |
| 844 | |
| 845 | /* Prepare SortSupport data for each column */ |
| 846 | state->sortKeys = (SortSupport) palloc0(nkeys * sizeof(SortSupportData)); |
| 847 | |
| 848 | for (i = 0; i < nkeys; i++) |
| 849 | { |
| 850 | SortSupport sortKey = state->sortKeys + i; |
| 851 | |
| 852 | AssertArg(attNums[i] != 0); |
| 853 | AssertArg(sortOperators[i] != 0); |
| 854 | |
| 855 | sortKey->ssup_cxt = CurrentMemoryContext; |
| 856 | sortKey->ssup_collation = sortCollations[i]; |
| 857 | sortKey->ssup_nulls_first = nullsFirstFlags[i]; |
| 858 | sortKey->ssup_attno = attNums[i]; |
| 859 | /* Convey if abbreviation optimization is applicable in principle */ |
| 860 | sortKey->abbreviate = (i == 0); |
| 861 | |
| 862 | PrepareSortSupportFromOrderingOp(sortOperators[i], sortKey); |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * The "onlyKey" optimization cannot be used with abbreviated keys, since |
| 867 | * tie-breaker comparisons may be required. Typically, the optimization |
| 868 | * is only of value to pass-by-value types anyway, whereas abbreviated |
| 869 | * keys are typically only of value to pass-by-reference types. |
| 870 | */ |
| 871 | if (nkeys == 1 && !state->sortKeys->abbrev_converter) |
| 872 | state->onlyKey = state->sortKeys; |
| 873 | |
| 874 | MemoryContextSwitchTo(oldcontext); |
| 875 | |
| 876 | return state; |
| 877 | } |
| 878 | |
| 879 | Tuplesortstate * |
| 880 | tuplesort_begin_cluster(TupleDesc tupDesc, |
| 881 | Relation indexRel, |
| 882 | int workMem, |
| 883 | SortCoordinate coordinate, bool randomAccess) |
| 884 | { |
| 885 | Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate, |
| 886 | randomAccess); |
| 887 | BTScanInsert indexScanKey; |
| 888 | MemoryContext oldcontext; |
| 889 | int i; |
| 890 | |
| 891 | Assert(indexRel->rd_rel->relam == BTREE_AM_OID); |
| 892 | |
| 893 | oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 894 | |
| 895 | #ifdef TRACE_SORT |
| 896 | if (trace_sort) |
| 897 | elog(LOG, |
| 898 | "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c" , |
| 899 | RelationGetNumberOfAttributes(indexRel), |
| 900 | workMem, randomAccess ? 't' : 'f'); |
| 901 | #endif |
| 902 | |
| 903 | state->nKeys = IndexRelationGetNumberOfKeyAttributes(indexRel); |
| 904 | |
| 905 | TRACE_POSTGRESQL_SORT_START(CLUSTER_SORT, |
| 906 | false, /* no unique check */ |
| 907 | state->nKeys, |
| 908 | workMem, |
| 909 | randomAccess, |
| 910 | PARALLEL_SORT(state)); |
| 911 | |
| 912 | state->comparetup = comparetup_cluster; |
| 913 | state->copytup = copytup_cluster; |
| 914 | state->writetup = writetup_cluster; |
| 915 | state->readtup = readtup_cluster; |
| 916 | state->abbrevNext = 10; |
| 917 | |
| 918 | state->indexInfo = BuildIndexInfo(indexRel); |
| 919 | |
| 920 | state->tupDesc = tupDesc; /* assume we need not copy tupDesc */ |
| 921 | |
| 922 | indexScanKey = _bt_mkscankey(indexRel, NULL); |
| 923 | |
| 924 | if (state->indexInfo->ii_Expressions != NULL) |
| 925 | { |
| 926 | TupleTableSlot *slot; |
| 927 | ExprContext *econtext; |
| 928 | |
| 929 | /* |
| 930 | * We will need to use FormIndexDatum to evaluate the index |
| 931 | * expressions. To do that, we need an EState, as well as a |
| 932 | * TupleTableSlot to put the table tuples into. The econtext's |
| 933 | * scantuple has to point to that slot, too. |
| 934 | */ |
| 935 | state->estate = CreateExecutorState(); |
| 936 | slot = MakeSingleTupleTableSlot(tupDesc, &TTSOpsVirtual); |
| 937 | econtext = GetPerTupleExprContext(state->estate); |
| 938 | econtext->ecxt_scantuple = slot; |
| 939 | } |
| 940 | |
| 941 | /* Prepare SortSupport data for each column */ |
| 942 | state->sortKeys = (SortSupport) palloc0(state->nKeys * |
| 943 | sizeof(SortSupportData)); |
| 944 | |
| 945 | for (i = 0; i < state->nKeys; i++) |
| 946 | { |
| 947 | SortSupport sortKey = state->sortKeys + i; |
| 948 | ScanKey scanKey = indexScanKey->scankeys + i; |
| 949 | int16 strategy; |
| 950 | |
| 951 | sortKey->ssup_cxt = CurrentMemoryContext; |
| 952 | sortKey->ssup_collation = scanKey->sk_collation; |
| 953 | sortKey->ssup_nulls_first = |
| 954 | (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0; |
| 955 | sortKey->ssup_attno = scanKey->sk_attno; |
| 956 | /* Convey if abbreviation optimization is applicable in principle */ |
| 957 | sortKey->abbreviate = (i == 0); |
| 958 | |
| 959 | AssertState(sortKey->ssup_attno != 0); |
| 960 | |
| 961 | strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ? |
| 962 | BTGreaterStrategyNumber : BTLessStrategyNumber; |
| 963 | |
| 964 | PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey); |
| 965 | } |
| 966 | |
| 967 | pfree(indexScanKey); |
| 968 | |
| 969 | MemoryContextSwitchTo(oldcontext); |
| 970 | |
| 971 | return state; |
| 972 | } |
| 973 | |
| 974 | Tuplesortstate * |
| 975 | tuplesort_begin_index_btree(Relation heapRel, |
| 976 | Relation indexRel, |
| 977 | bool enforceUnique, |
| 978 | int workMem, |
| 979 | SortCoordinate coordinate, |
| 980 | bool randomAccess) |
| 981 | { |
| 982 | Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate, |
| 983 | randomAccess); |
| 984 | BTScanInsert indexScanKey; |
| 985 | MemoryContext oldcontext; |
| 986 | int i; |
| 987 | |
| 988 | oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 989 | |
| 990 | #ifdef TRACE_SORT |
| 991 | if (trace_sort) |
| 992 | elog(LOG, |
| 993 | "begin index sort: unique = %c, workMem = %d, randomAccess = %c" , |
| 994 | enforceUnique ? 't' : 'f', |
| 995 | workMem, randomAccess ? 't' : 'f'); |
| 996 | #endif |
| 997 | |
| 998 | state->nKeys = IndexRelationGetNumberOfKeyAttributes(indexRel); |
| 999 | |
| 1000 | TRACE_POSTGRESQL_SORT_START(INDEX_SORT, |
| 1001 | enforceUnique, |
| 1002 | state->nKeys, |
| 1003 | workMem, |
| 1004 | randomAccess, |
| 1005 | PARALLEL_SORT(state)); |
| 1006 | |
| 1007 | state->comparetup = comparetup_index_btree; |
| 1008 | state->copytup = copytup_index; |
| 1009 | state->writetup = writetup_index; |
| 1010 | state->readtup = readtup_index; |
| 1011 | state->abbrevNext = 10; |
| 1012 | |
| 1013 | state->heapRel = heapRel; |
| 1014 | state->indexRel = indexRel; |
| 1015 | state->enforceUnique = enforceUnique; |
| 1016 | |
| 1017 | indexScanKey = _bt_mkscankey(indexRel, NULL); |
| 1018 | |
| 1019 | /* Prepare SortSupport data for each column */ |
| 1020 | state->sortKeys = (SortSupport) palloc0(state->nKeys * |
| 1021 | sizeof(SortSupportData)); |
| 1022 | |
| 1023 | for (i = 0; i < state->nKeys; i++) |
| 1024 | { |
| 1025 | SortSupport sortKey = state->sortKeys + i; |
| 1026 | ScanKey scanKey = indexScanKey->scankeys + i; |
| 1027 | int16 strategy; |
| 1028 | |
| 1029 | sortKey->ssup_cxt = CurrentMemoryContext; |
| 1030 | sortKey->ssup_collation = scanKey->sk_collation; |
| 1031 | sortKey->ssup_nulls_first = |
| 1032 | (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0; |
| 1033 | sortKey->ssup_attno = scanKey->sk_attno; |
| 1034 | /* Convey if abbreviation optimization is applicable in principle */ |
| 1035 | sortKey->abbreviate = (i == 0); |
| 1036 | |
| 1037 | AssertState(sortKey->ssup_attno != 0); |
| 1038 | |
| 1039 | strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ? |
| 1040 | BTGreaterStrategyNumber : BTLessStrategyNumber; |
| 1041 | |
| 1042 | PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey); |
| 1043 | } |
| 1044 | |
| 1045 | pfree(indexScanKey); |
| 1046 | |
| 1047 | MemoryContextSwitchTo(oldcontext); |
| 1048 | |
| 1049 | return state; |
| 1050 | } |
| 1051 | |
| 1052 | Tuplesortstate * |
| 1053 | tuplesort_begin_index_hash(Relation heapRel, |
| 1054 | Relation indexRel, |
| 1055 | uint32 high_mask, |
| 1056 | uint32 low_mask, |
| 1057 | uint32 max_buckets, |
| 1058 | int workMem, |
| 1059 | SortCoordinate coordinate, |
| 1060 | bool randomAccess) |
| 1061 | { |
| 1062 | Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate, |
| 1063 | randomAccess); |
| 1064 | MemoryContext oldcontext; |
| 1065 | |
| 1066 | oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 1067 | |
| 1068 | #ifdef TRACE_SORT |
| 1069 | if (trace_sort) |
| 1070 | elog(LOG, |
| 1071 | "begin index sort: high_mask = 0x%x, low_mask = 0x%x, " |
| 1072 | "max_buckets = 0x%x, workMem = %d, randomAccess = %c" , |
| 1073 | high_mask, |
| 1074 | low_mask, |
| 1075 | max_buckets, |
| 1076 | workMem, randomAccess ? 't' : 'f'); |
| 1077 | #endif |
| 1078 | |
| 1079 | state->nKeys = 1; /* Only one sort column, the hash code */ |
| 1080 | |
| 1081 | state->comparetup = comparetup_index_hash; |
| 1082 | state->copytup = copytup_index; |
| 1083 | state->writetup = writetup_index; |
| 1084 | state->readtup = readtup_index; |
| 1085 | |
| 1086 | state->heapRel = heapRel; |
| 1087 | state->indexRel = indexRel; |
| 1088 | |
| 1089 | state->high_mask = high_mask; |
| 1090 | state->low_mask = low_mask; |
| 1091 | state->max_buckets = max_buckets; |
| 1092 | |
| 1093 | MemoryContextSwitchTo(oldcontext); |
| 1094 | |
| 1095 | return state; |
| 1096 | } |
| 1097 | |
| 1098 | Tuplesortstate * |
| 1099 | tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, |
| 1100 | bool nullsFirstFlag, int workMem, |
| 1101 | SortCoordinate coordinate, bool randomAccess) |
| 1102 | { |
| 1103 | Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate, |
| 1104 | randomAccess); |
| 1105 | MemoryContext oldcontext; |
| 1106 | int16 typlen; |
| 1107 | bool typbyval; |
| 1108 | |
| 1109 | oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 1110 | |
| 1111 | #ifdef TRACE_SORT |
| 1112 | if (trace_sort) |
| 1113 | elog(LOG, |
| 1114 | "begin datum sort: workMem = %d, randomAccess = %c" , |
| 1115 | workMem, randomAccess ? 't' : 'f'); |
| 1116 | #endif |
| 1117 | |
| 1118 | state->nKeys = 1; /* always a one-column sort */ |
| 1119 | |
| 1120 | TRACE_POSTGRESQL_SORT_START(DATUM_SORT, |
| 1121 | false, /* no unique check */ |
| 1122 | 1, |
| 1123 | workMem, |
| 1124 | randomAccess, |
| 1125 | PARALLEL_SORT(state)); |
| 1126 | |
| 1127 | state->comparetup = comparetup_datum; |
| 1128 | state->copytup = copytup_datum; |
| 1129 | state->writetup = writetup_datum; |
| 1130 | state->readtup = readtup_datum; |
| 1131 | state->abbrevNext = 10; |
| 1132 | |
| 1133 | state->datumType = datumType; |
| 1134 | |
| 1135 | /* lookup necessary attributes of the datum type */ |
| 1136 | get_typlenbyval(datumType, &typlen, &typbyval); |
| 1137 | state->datumTypeLen = typlen; |
| 1138 | state->tuples = !typbyval; |
| 1139 | |
| 1140 | /* Prepare SortSupport data */ |
| 1141 | state->sortKeys = (SortSupport) palloc0(sizeof(SortSupportData)); |
| 1142 | |
| 1143 | state->sortKeys->ssup_cxt = CurrentMemoryContext; |
| 1144 | state->sortKeys->ssup_collation = sortCollation; |
| 1145 | state->sortKeys->ssup_nulls_first = nullsFirstFlag; |
| 1146 | |
| 1147 | /* |
| 1148 | * Abbreviation is possible here only for by-reference types. In theory, |
| 1149 | * a pass-by-value datatype could have an abbreviated form that is cheaper |
| 1150 | * to compare. In a tuple sort, we could support that, because we can |
| 1151 | * always extract the original datum from the tuple is needed. Here, we |
| 1152 | * can't, because a datum sort only stores a single copy of the datum; the |
| 1153 | * "tuple" field of each sortTuple is NULL. |
| 1154 | */ |
| 1155 | state->sortKeys->abbreviate = !typbyval; |
| 1156 | |
| 1157 | PrepareSortSupportFromOrderingOp(sortOperator, state->sortKeys); |
| 1158 | |
| 1159 | /* |
| 1160 | * The "onlyKey" optimization cannot be used with abbreviated keys, since |
| 1161 | * tie-breaker comparisons may be required. Typically, the optimization |
| 1162 | * is only of value to pass-by-value types anyway, whereas abbreviated |
| 1163 | * keys are typically only of value to pass-by-reference types. |
| 1164 | */ |
| 1165 | if (!state->sortKeys->abbrev_converter) |
| 1166 | state->onlyKey = state->sortKeys; |
| 1167 | |
| 1168 | MemoryContextSwitchTo(oldcontext); |
| 1169 | |
| 1170 | return state; |
| 1171 | } |
| 1172 | |
| 1173 | /* |
| 1174 | * tuplesort_set_bound |
| 1175 | * |
| 1176 | * Advise tuplesort that at most the first N result tuples are required. |
| 1177 | * |
| 1178 | * Must be called before inserting any tuples. (Actually, we could allow it |
| 1179 | * as long as the sort hasn't spilled to disk, but there seems no need for |
| 1180 | * delayed calls at the moment.) |
| 1181 | * |
| 1182 | * This is a hint only. The tuplesort may still return more tuples than |
| 1183 | * requested. Parallel leader tuplesorts will always ignore the hint. |
| 1184 | */ |
| 1185 | void |
| 1186 | tuplesort_set_bound(Tuplesortstate *state, int64 bound) |
| 1187 | { |
| 1188 | /* Assert we're called before loading any tuples */ |
| 1189 | Assert(state->status == TSS_INITIAL); |
| 1190 | Assert(state->memtupcount == 0); |
| 1191 | Assert(!state->bounded); |
| 1192 | Assert(!WORKER(state)); |
| 1193 | |
| 1194 | #ifdef DEBUG_BOUNDED_SORT |
| 1195 | /* Honor GUC setting that disables the feature (for easy testing) */ |
| 1196 | if (!optimize_bounded_sort) |
| 1197 | return; |
| 1198 | #endif |
| 1199 | |
| 1200 | /* Parallel leader ignores hint */ |
| 1201 | if (LEADER(state)) |
| 1202 | return; |
| 1203 | |
| 1204 | /* We want to be able to compute bound * 2, so limit the setting */ |
| 1205 | if (bound > (int64) (INT_MAX / 2)) |
| 1206 | return; |
| 1207 | |
| 1208 | state->bounded = true; |
| 1209 | state->bound = (int) bound; |
| 1210 | |
| 1211 | /* |
| 1212 | * Bounded sorts are not an effective target for abbreviated key |
| 1213 | * optimization. Disable by setting state to be consistent with no |
| 1214 | * abbreviation support. |
| 1215 | */ |
| 1216 | state->sortKeys->abbrev_converter = NULL; |
| 1217 | if (state->sortKeys->abbrev_full_comparator) |
| 1218 | state->sortKeys->comparator = state->sortKeys->abbrev_full_comparator; |
| 1219 | |
| 1220 | /* Not strictly necessary, but be tidy */ |
| 1221 | state->sortKeys->abbrev_abort = NULL; |
| 1222 | state->sortKeys->abbrev_full_comparator = NULL; |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * tuplesort_end |
| 1227 | * |
| 1228 | * Release resources and clean up. |
| 1229 | * |
| 1230 | * NOTE: after calling this, any pointers returned by tuplesort_getXXX are |
| 1231 | * pointing to garbage. Be careful not to attempt to use or free such |
| 1232 | * pointers afterwards! |
| 1233 | */ |
| 1234 | void |
| 1235 | tuplesort_end(Tuplesortstate *state) |
| 1236 | { |
| 1237 | /* context swap probably not needed, but let's be safe */ |
| 1238 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 1239 | |
| 1240 | #ifdef TRACE_SORT |
| 1241 | long spaceUsed; |
| 1242 | |
| 1243 | if (state->tapeset) |
| 1244 | spaceUsed = LogicalTapeSetBlocks(state->tapeset); |
| 1245 | else |
| 1246 | spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024; |
| 1247 | #endif |
| 1248 | |
| 1249 | /* |
| 1250 | * Delete temporary "tape" files, if any. |
| 1251 | * |
| 1252 | * Note: want to include this in reported total cost of sort, hence need |
| 1253 | * for two #ifdef TRACE_SORT sections. |
| 1254 | */ |
| 1255 | if (state->tapeset) |
| 1256 | LogicalTapeSetClose(state->tapeset); |
| 1257 | |
| 1258 | #ifdef TRACE_SORT |
| 1259 | if (trace_sort) |
| 1260 | { |
| 1261 | if (state->tapeset) |
| 1262 | elog(LOG, "%s of worker %d ended, %ld disk blocks used: %s" , |
| 1263 | SERIAL(state) ? "external sort" : "parallel external sort" , |
| 1264 | state->worker, spaceUsed, pg_rusage_show(&state->ru_start)); |
| 1265 | else |
| 1266 | elog(LOG, "%s of worker %d ended, %ld KB used: %s" , |
| 1267 | SERIAL(state) ? "internal sort" : "unperformed parallel sort" , |
| 1268 | state->worker, spaceUsed, pg_rusage_show(&state->ru_start)); |
| 1269 | } |
| 1270 | |
| 1271 | TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, spaceUsed); |
| 1272 | #else |
| 1273 | |
| 1274 | /* |
| 1275 | * If you disabled TRACE_SORT, you can still probe sort__done, but you |
| 1276 | * ain't getting space-used stats. |
| 1277 | */ |
| 1278 | TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, 0L); |
| 1279 | #endif |
| 1280 | |
| 1281 | /* Free any execution state created for CLUSTER case */ |
| 1282 | if (state->estate != NULL) |
| 1283 | { |
| 1284 | ExprContext *econtext = GetPerTupleExprContext(state->estate); |
| 1285 | |
| 1286 | ExecDropSingleTupleTableSlot(econtext->ecxt_scantuple); |
| 1287 | FreeExecutorState(state->estate); |
| 1288 | } |
| 1289 | |
| 1290 | MemoryContextSwitchTo(oldcontext); |
| 1291 | |
| 1292 | /* |
| 1293 | * Free the per-sort memory context, thereby releasing all working memory, |
| 1294 | * including the Tuplesortstate struct itself. |
| 1295 | */ |
| 1296 | MemoryContextDelete(state->sortcontext); |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * Grow the memtuples[] array, if possible within our memory constraint. We |
| 1301 | * must not exceed INT_MAX tuples in memory or the caller-provided memory |
| 1302 | * limit. Return true if we were able to enlarge the array, false if not. |
| 1303 | * |
| 1304 | * Normally, at each increment we double the size of the array. When doing |
| 1305 | * that would exceed a limit, we attempt one last, smaller increase (and then |
| 1306 | * clear the growmemtuples flag so we don't try any more). That allows us to |
| 1307 | * use memory as fully as permitted; sticking to the pure doubling rule could |
| 1308 | * result in almost half going unused. Because availMem moves around with |
| 1309 | * tuple addition/removal, we need some rule to prevent making repeated small |
| 1310 | * increases in memtupsize, which would just be useless thrashing. The |
| 1311 | * growmemtuples flag accomplishes that and also prevents useless |
| 1312 | * recalculations in this function. |
| 1313 | */ |
| 1314 | static bool |
| 1315 | grow_memtuples(Tuplesortstate *state) |
| 1316 | { |
| 1317 | int newmemtupsize; |
| 1318 | int memtupsize = state->memtupsize; |
| 1319 | int64 memNowUsed = state->allowedMem - state->availMem; |
| 1320 | |
| 1321 | /* Forget it if we've already maxed out memtuples, per comment above */ |
| 1322 | if (!state->growmemtuples) |
| 1323 | return false; |
| 1324 | |
| 1325 | /* Select new value of memtupsize */ |
| 1326 | if (memNowUsed <= state->availMem) |
| 1327 | { |
| 1328 | /* |
| 1329 | * We've used no more than half of allowedMem; double our usage, |
| 1330 | * clamping at INT_MAX tuples. |
| 1331 | */ |
| 1332 | if (memtupsize < INT_MAX / 2) |
| 1333 | newmemtupsize = memtupsize * 2; |
| 1334 | else |
| 1335 | { |
| 1336 | newmemtupsize = INT_MAX; |
| 1337 | state->growmemtuples = false; |
| 1338 | } |
| 1339 | } |
| 1340 | else |
| 1341 | { |
| 1342 | /* |
| 1343 | * This will be the last increment of memtupsize. Abandon doubling |
| 1344 | * strategy and instead increase as much as we safely can. |
| 1345 | * |
| 1346 | * To stay within allowedMem, we can't increase memtupsize by more |
| 1347 | * than availMem / sizeof(SortTuple) elements. In practice, we want |
| 1348 | * to increase it by considerably less, because we need to leave some |
| 1349 | * space for the tuples to which the new array slots will refer. We |
| 1350 | * assume the new tuples will be about the same size as the tuples |
| 1351 | * we've already seen, and thus we can extrapolate from the space |
| 1352 | * consumption so far to estimate an appropriate new size for the |
| 1353 | * memtuples array. The optimal value might be higher or lower than |
| 1354 | * this estimate, but it's hard to know that in advance. We again |
| 1355 | * clamp at INT_MAX tuples. |
| 1356 | * |
| 1357 | * This calculation is safe against enlarging the array so much that |
| 1358 | * LACKMEM becomes true, because the memory currently used includes |
| 1359 | * the present array; thus, there would be enough allowedMem for the |
| 1360 | * new array elements even if no other memory were currently used. |
| 1361 | * |
| 1362 | * We do the arithmetic in float8, because otherwise the product of |
| 1363 | * memtupsize and allowedMem could overflow. Any inaccuracy in the |
| 1364 | * result should be insignificant; but even if we computed a |
| 1365 | * completely insane result, the checks below will prevent anything |
| 1366 | * really bad from happening. |
| 1367 | */ |
| 1368 | double grow_ratio; |
| 1369 | |
| 1370 | grow_ratio = (double) state->allowedMem / (double) memNowUsed; |
| 1371 | if (memtupsize * grow_ratio < INT_MAX) |
| 1372 | newmemtupsize = (int) (memtupsize * grow_ratio); |
| 1373 | else |
| 1374 | newmemtupsize = INT_MAX; |
| 1375 | |
| 1376 | /* We won't make any further enlargement attempts */ |
| 1377 | state->growmemtuples = false; |
| 1378 | } |
| 1379 | |
| 1380 | /* Must enlarge array by at least one element, else report failure */ |
| 1381 | if (newmemtupsize <= memtupsize) |
| 1382 | goto noalloc; |
| 1383 | |
| 1384 | /* |
| 1385 | * On a 32-bit machine, allowedMem could exceed MaxAllocHugeSize. Clamp |
| 1386 | * to ensure our request won't be rejected. Note that we can easily |
| 1387 | * exhaust address space before facing this outcome. (This is presently |
| 1388 | * impossible due to guc.c's MAX_KILOBYTES limitation on work_mem, but |
| 1389 | * don't rely on that at this distance.) |
| 1390 | */ |
| 1391 | if ((Size) newmemtupsize >= MaxAllocHugeSize / sizeof(SortTuple)) |
| 1392 | { |
| 1393 | newmemtupsize = (int) (MaxAllocHugeSize / sizeof(SortTuple)); |
| 1394 | state->growmemtuples = false; /* can't grow any more */ |
| 1395 | } |
| 1396 | |
| 1397 | /* |
| 1398 | * We need to be sure that we do not cause LACKMEM to become true, else |
| 1399 | * the space management algorithm will go nuts. The code above should |
| 1400 | * never generate a dangerous request, but to be safe, check explicitly |
| 1401 | * that the array growth fits within availMem. (We could still cause |
| 1402 | * LACKMEM if the memory chunk overhead associated with the memtuples |
| 1403 | * array were to increase. That shouldn't happen because we chose the |
| 1404 | * initial array size large enough to ensure that palloc will be treating |
| 1405 | * both old and new arrays as separate chunks. But we'll check LACKMEM |
| 1406 | * explicitly below just in case.) |
| 1407 | */ |
| 1408 | if (state->availMem < (int64) ((newmemtupsize - memtupsize) * sizeof(SortTuple))) |
| 1409 | goto noalloc; |
| 1410 | |
| 1411 | /* OK, do it */ |
| 1412 | FREEMEM(state, GetMemoryChunkSpace(state->memtuples)); |
| 1413 | state->memtupsize = newmemtupsize; |
| 1414 | state->memtuples = (SortTuple *) |
| 1415 | repalloc_huge(state->memtuples, |
| 1416 | state->memtupsize * sizeof(SortTuple)); |
| 1417 | USEMEM(state, GetMemoryChunkSpace(state->memtuples)); |
| 1418 | if (LACKMEM(state)) |
| 1419 | elog(ERROR, "unexpected out-of-memory situation in tuplesort" ); |
| 1420 | return true; |
| 1421 | |
| 1422 | noalloc: |
| 1423 | /* If for any reason we didn't realloc, shut off future attempts */ |
| 1424 | state->growmemtuples = false; |
| 1425 | return false; |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * Accept one tuple while collecting input data for sort. |
| 1430 | * |
| 1431 | * Note that the input data is always copied; the caller need not save it. |
| 1432 | */ |
| 1433 | void |
| 1434 | tuplesort_puttupleslot(Tuplesortstate *state, TupleTableSlot *slot) |
| 1435 | { |
| 1436 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 1437 | SortTuple stup; |
| 1438 | |
| 1439 | /* |
| 1440 | * Copy the given tuple into memory we control, and decrease availMem. |
| 1441 | * Then call the common code. |
| 1442 | */ |
| 1443 | COPYTUP(state, &stup, (void *) slot); |
| 1444 | |
| 1445 | puttuple_common(state, &stup); |
| 1446 | |
| 1447 | MemoryContextSwitchTo(oldcontext); |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * Accept one tuple while collecting input data for sort. |
| 1452 | * |
| 1453 | * Note that the input data is always copied; the caller need not save it. |
| 1454 | */ |
| 1455 | void |
| 1456 | tuplesort_putheaptuple(Tuplesortstate *state, HeapTuple tup) |
| 1457 | { |
| 1458 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 1459 | SortTuple stup; |
| 1460 | |
| 1461 | /* |
| 1462 | * Copy the given tuple into memory we control, and decrease availMem. |
| 1463 | * Then call the common code. |
| 1464 | */ |
| 1465 | COPYTUP(state, &stup, (void *) tup); |
| 1466 | |
| 1467 | puttuple_common(state, &stup); |
| 1468 | |
| 1469 | MemoryContextSwitchTo(oldcontext); |
| 1470 | } |
| 1471 | |
| 1472 | /* |
| 1473 | * Collect one index tuple while collecting input data for sort, building |
| 1474 | * it from caller-supplied values. |
| 1475 | */ |
| 1476 | void |
| 1477 | tuplesort_putindextuplevalues(Tuplesortstate *state, Relation rel, |
| 1478 | ItemPointer self, Datum *values, |
| 1479 | bool *isnull) |
| 1480 | { |
| 1481 | MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext); |
| 1482 | SortTuple stup; |
| 1483 | Datum original; |
| 1484 | IndexTuple tuple; |
| 1485 | |
| 1486 | stup.tuple = index_form_tuple(RelationGetDescr(rel), values, isnull); |
| 1487 | tuple = ((IndexTuple) stup.tuple); |
| 1488 | tuple->t_tid = *self; |
| 1489 | USEMEM(state, GetMemoryChunkSpace(stup.tuple)); |
| 1490 | /* set up first-column key value */ |
| 1491 | original = index_getattr(tuple, |
| 1492 | 1, |
| 1493 | RelationGetDescr(state->indexRel), |
| 1494 | &stup.isnull1); |
| 1495 | |
| 1496 | MemoryContextSwitchTo(state->sortcontext); |
| 1497 | |
| 1498 | if (!state->sortKeys || !state->sortKeys->abbrev_converter || stup.isnull1) |
| 1499 | { |
| 1500 | /* |
| 1501 | * Store ordinary Datum representation, or NULL value. If there is a |
| 1502 | * converter it won't expect NULL values, and cost model is not |
| 1503 | * required to account for NULL, so in that case we avoid calling |
| 1504 | * converter and just set datum1 to zeroed representation (to be |
| 1505 | * consistent, and to support cheap inequality tests for NULL |
| 1506 | * abbreviated keys). |
| 1507 | */ |
| 1508 | stup.datum1 = original; |
| 1509 | } |
| 1510 | else if (!consider_abort_common(state)) |
| 1511 | { |
| 1512 | /* Store abbreviated key representation */ |
| 1513 | stup.datum1 = state->sortKeys->abbrev_converter(original, |
| 1514 | state->sortKeys); |
| 1515 | } |
| 1516 | else |
| 1517 | { |
| 1518 | /* Abort abbreviation */ |
| 1519 | int i; |
| 1520 | |
| 1521 | stup.datum1 = original; |
| 1522 | |
| 1523 | /* |
| 1524 | * Set state to be consistent with never trying abbreviation. |
| 1525 | * |
| 1526 | * Alter datum1 representation in already-copied tuples, so as to |
| 1527 | * ensure a consistent representation (current tuple was just |
| 1528 | * handled). It does not matter if some dumped tuples are already |
| 1529 | * sorted on tape, since serialized tuples lack abbreviated keys |
| 1530 | * (TSS_BUILDRUNS state prevents control reaching here in any case). |
| 1531 | */ |
| 1532 | for (i = 0; i < state->memtupcount; i++) |
| 1533 | { |
| 1534 | SortTuple *mtup = &state->memtuples[i]; |
| 1535 | |
| 1536 | tuple = mtup->tuple; |
| 1537 | mtup->datum1 = index_getattr(tuple, |
| 1538 | 1, |
| 1539 | RelationGetDescr(state->indexRel), |
| 1540 | &mtup->isnull1); |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | puttuple_common(state, &stup); |
| 1545 | |
| 1546 | MemoryContextSwitchTo(oldcontext); |
| 1547 | } |
| 1548 | |
| 1549 | /* |
| 1550 | * Accept one Datum while collecting input data for sort. |
| 1551 | * |
| 1552 | * If the Datum is pass-by-ref type, the value will be copied. |
| 1553 | */ |
| 1554 | void |
| 1555 | tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull) |
| 1556 | { |
| 1557 | MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext); |
| 1558 | SortTuple stup; |
| 1559 | |
| 1560 | /* |
| 1561 | * Pass-by-value types or null values are just stored directly in |
| 1562 | * stup.datum1 (and stup.tuple is not used and set to NULL). |
| 1563 | * |
| 1564 | * Non-null pass-by-reference values need to be copied into memory we |
| 1565 | * control, and possibly abbreviated. The copied value is pointed to by |
| 1566 | * stup.tuple and is treated as the canonical copy (e.g. to return via |
| 1567 | * tuplesort_getdatum or when writing to tape); stup.datum1 gets the |
| 1568 | * abbreviated value if abbreviation is happening, otherwise it's |
| 1569 | * identical to stup.tuple. |
| 1570 | */ |
| 1571 | |
| 1572 | if (isNull || !state->tuples) |
| 1573 | { |
| 1574 | /* |
| 1575 | * Set datum1 to zeroed representation for NULLs (to be consistent, |
| 1576 | * and to support cheap inequality tests for NULL abbreviated keys). |
| 1577 | */ |
| 1578 | stup.datum1 = !isNull ? val : (Datum) 0; |
| 1579 | stup.isnull1 = isNull; |
| 1580 | stup.tuple = NULL; /* no separate storage */ |
| 1581 | MemoryContextSwitchTo(state->sortcontext); |
| 1582 | } |
| 1583 | else |
| 1584 | { |
| 1585 | Datum original = datumCopy(val, false, state->datumTypeLen); |
| 1586 | |
| 1587 | stup.isnull1 = false; |
| 1588 | stup.tuple = DatumGetPointer(original); |
| 1589 | USEMEM(state, GetMemoryChunkSpace(stup.tuple)); |
| 1590 | MemoryContextSwitchTo(state->sortcontext); |
| 1591 | |
| 1592 | if (!state->sortKeys->abbrev_converter) |
| 1593 | { |
| 1594 | stup.datum1 = original; |
| 1595 | } |
| 1596 | else if (!consider_abort_common(state)) |
| 1597 | { |
| 1598 | /* Store abbreviated key representation */ |
| 1599 | stup.datum1 = state->sortKeys->abbrev_converter(original, |
| 1600 | state->sortKeys); |
| 1601 | } |
| 1602 | else |
| 1603 | { |
| 1604 | /* Abort abbreviation */ |
| 1605 | int i; |
| 1606 | |
| 1607 | stup.datum1 = original; |
| 1608 | |
| 1609 | /* |
| 1610 | * Set state to be consistent with never trying abbreviation. |
| 1611 | * |
| 1612 | * Alter datum1 representation in already-copied tuples, so as to |
| 1613 | * ensure a consistent representation (current tuple was just |
| 1614 | * handled). It does not matter if some dumped tuples are already |
| 1615 | * sorted on tape, since serialized tuples lack abbreviated keys |
| 1616 | * (TSS_BUILDRUNS state prevents control reaching here in any |
| 1617 | * case). |
| 1618 | */ |
| 1619 | for (i = 0; i < state->memtupcount; i++) |
| 1620 | { |
| 1621 | SortTuple *mtup = &state->memtuples[i]; |
| 1622 | |
| 1623 | mtup->datum1 = PointerGetDatum(mtup->tuple); |
| 1624 | } |
| 1625 | } |
| 1626 | } |
| 1627 | |
| 1628 | puttuple_common(state, &stup); |
| 1629 | |
| 1630 | MemoryContextSwitchTo(oldcontext); |
| 1631 | } |
| 1632 | |
| 1633 | /* |
| 1634 | * Shared code for tuple and datum cases. |
| 1635 | */ |
| 1636 | static void |
| 1637 | puttuple_common(Tuplesortstate *state, SortTuple *tuple) |
| 1638 | { |
| 1639 | Assert(!LEADER(state)); |
| 1640 | |
| 1641 | switch (state->status) |
| 1642 | { |
| 1643 | case TSS_INITIAL: |
| 1644 | |
| 1645 | /* |
| 1646 | * Save the tuple into the unsorted array. First, grow the array |
| 1647 | * as needed. Note that we try to grow the array when there is |
| 1648 | * still one free slot remaining --- if we fail, there'll still be |
| 1649 | * room to store the incoming tuple, and then we'll switch to |
| 1650 | * tape-based operation. |
| 1651 | */ |
| 1652 | if (state->memtupcount >= state->memtupsize - 1) |
| 1653 | { |
| 1654 | (void) grow_memtuples(state); |
| 1655 | Assert(state->memtupcount < state->memtupsize); |
| 1656 | } |
| 1657 | state->memtuples[state->memtupcount++] = *tuple; |
| 1658 | |
| 1659 | /* |
| 1660 | * Check if it's time to switch over to a bounded heapsort. We do |
| 1661 | * so if the input tuple count exceeds twice the desired tuple |
| 1662 | * count (this is a heuristic for where heapsort becomes cheaper |
| 1663 | * than a quicksort), or if we've just filled workMem and have |
| 1664 | * enough tuples to meet the bound. |
| 1665 | * |
| 1666 | * Note that once we enter TSS_BOUNDED state we will always try to |
| 1667 | * complete the sort that way. In the worst case, if later input |
| 1668 | * tuples are larger than earlier ones, this might cause us to |
| 1669 | * exceed workMem significantly. |
| 1670 | */ |
| 1671 | if (state->bounded && |
| 1672 | (state->memtupcount > state->bound * 2 || |
| 1673 | (state->memtupcount > state->bound && LACKMEM(state)))) |
| 1674 | { |
| 1675 | #ifdef TRACE_SORT |
| 1676 | if (trace_sort) |
| 1677 | elog(LOG, "switching to bounded heapsort at %d tuples: %s" , |
| 1678 | state->memtupcount, |
| 1679 | pg_rusage_show(&state->ru_start)); |
| 1680 | #endif |
| 1681 | make_bounded_heap(state); |
| 1682 | return; |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * Done if we still fit in available memory and have array slots. |
| 1687 | */ |
| 1688 | if (state->memtupcount < state->memtupsize && !LACKMEM(state)) |
| 1689 | return; |
| 1690 | |
| 1691 | /* |
| 1692 | * Nope; time to switch to tape-based operation. |
| 1693 | */ |
| 1694 | inittapes(state, true); |
| 1695 | |
| 1696 | /* |
| 1697 | * Dump all tuples. |
| 1698 | */ |
| 1699 | dumptuples(state, false); |
| 1700 | break; |
| 1701 | |
| 1702 | case TSS_BOUNDED: |
| 1703 | |
| 1704 | /* |
| 1705 | * We don't want to grow the array here, so check whether the new |
| 1706 | * tuple can be discarded before putting it in. This should be a |
| 1707 | * good speed optimization, too, since when there are many more |
| 1708 | * input tuples than the bound, most input tuples can be discarded |
| 1709 | * with just this one comparison. Note that because we currently |
| 1710 | * have the sort direction reversed, we must check for <= not >=. |
| 1711 | */ |
| 1712 | if (COMPARETUP(state, tuple, &state->memtuples[0]) <= 0) |
| 1713 | { |
| 1714 | /* new tuple <= top of the heap, so we can discard it */ |
| 1715 | free_sort_tuple(state, tuple); |
| 1716 | CHECK_FOR_INTERRUPTS(); |
| 1717 | } |
| 1718 | else |
| 1719 | { |
| 1720 | /* discard top of heap, replacing it with the new tuple */ |
| 1721 | free_sort_tuple(state, &state->memtuples[0]); |
| 1722 | tuplesort_heap_replace_top(state, tuple); |
| 1723 | } |
| 1724 | break; |
| 1725 | |
| 1726 | case TSS_BUILDRUNS: |
| 1727 | |
| 1728 | /* |
| 1729 | * Save the tuple into the unsorted array (there must be space) |
| 1730 | */ |
| 1731 | state->memtuples[state->memtupcount++] = *tuple; |
| 1732 | |
| 1733 | /* |
| 1734 | * If we are over the memory limit, dump all tuples. |
| 1735 | */ |
| 1736 | dumptuples(state, false); |
| 1737 | break; |
| 1738 | |
| 1739 | default: |
| 1740 | elog(ERROR, "invalid tuplesort state" ); |
| 1741 | break; |
| 1742 | } |
| 1743 | } |
| 1744 | |
| 1745 | static bool |
| 1746 | consider_abort_common(Tuplesortstate *state) |
| 1747 | { |
| 1748 | Assert(state->sortKeys[0].abbrev_converter != NULL); |
| 1749 | Assert(state->sortKeys[0].abbrev_abort != NULL); |
| 1750 | Assert(state->sortKeys[0].abbrev_full_comparator != NULL); |
| 1751 | |
| 1752 | /* |
| 1753 | * Check effectiveness of abbreviation optimization. Consider aborting |
| 1754 | * when still within memory limit. |
| 1755 | */ |
| 1756 | if (state->status == TSS_INITIAL && |
| 1757 | state->memtupcount >= state->abbrevNext) |
| 1758 | { |
| 1759 | state->abbrevNext *= 2; |
| 1760 | |
| 1761 | /* |
| 1762 | * Check opclass-supplied abbreviation abort routine. It may indicate |
| 1763 | * that abbreviation should not proceed. |
| 1764 | */ |
| 1765 | if (!state->sortKeys->abbrev_abort(state->memtupcount, |
| 1766 | state->sortKeys)) |
| 1767 | return false; |
| 1768 | |
| 1769 | /* |
| 1770 | * Finally, restore authoritative comparator, and indicate that |
| 1771 | * abbreviation is not in play by setting abbrev_converter to NULL |
| 1772 | */ |
| 1773 | state->sortKeys[0].comparator = state->sortKeys[0].abbrev_full_comparator; |
| 1774 | state->sortKeys[0].abbrev_converter = NULL; |
| 1775 | /* Not strictly necessary, but be tidy */ |
| 1776 | state->sortKeys[0].abbrev_abort = NULL; |
| 1777 | state->sortKeys[0].abbrev_full_comparator = NULL; |
| 1778 | |
| 1779 | /* Give up - expect original pass-by-value representation */ |
| 1780 | return true; |
| 1781 | } |
| 1782 | |
| 1783 | return false; |
| 1784 | } |
| 1785 | |
| 1786 | /* |
| 1787 | * All tuples have been provided; finish the sort. |
| 1788 | */ |
| 1789 | void |
| 1790 | tuplesort_performsort(Tuplesortstate *state) |
| 1791 | { |
| 1792 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 1793 | |
| 1794 | #ifdef TRACE_SORT |
| 1795 | if (trace_sort) |
| 1796 | elog(LOG, "performsort of worker %d starting: %s" , |
| 1797 | state->worker, pg_rusage_show(&state->ru_start)); |
| 1798 | #endif |
| 1799 | |
| 1800 | switch (state->status) |
| 1801 | { |
| 1802 | case TSS_INITIAL: |
| 1803 | |
| 1804 | /* |
| 1805 | * We were able to accumulate all the tuples within the allowed |
| 1806 | * amount of memory, or leader to take over worker tapes |
| 1807 | */ |
| 1808 | if (SERIAL(state)) |
| 1809 | { |
| 1810 | /* Just qsort 'em and we're done */ |
| 1811 | tuplesort_sort_memtuples(state); |
| 1812 | state->status = TSS_SORTEDINMEM; |
| 1813 | } |
| 1814 | else if (WORKER(state)) |
| 1815 | { |
| 1816 | /* |
| 1817 | * Parallel workers must still dump out tuples to tape. No |
| 1818 | * merge is required to produce single output run, though. |
| 1819 | */ |
| 1820 | inittapes(state, false); |
| 1821 | dumptuples(state, true); |
| 1822 | worker_nomergeruns(state); |
| 1823 | state->status = TSS_SORTEDONTAPE; |
| 1824 | } |
| 1825 | else |
| 1826 | { |
| 1827 | /* |
| 1828 | * Leader will take over worker tapes and merge worker runs. |
| 1829 | * Note that mergeruns sets the correct state->status. |
| 1830 | */ |
| 1831 | leader_takeover_tapes(state); |
| 1832 | mergeruns(state); |
| 1833 | } |
| 1834 | state->current = 0; |
| 1835 | state->eof_reached = false; |
| 1836 | state->markpos_block = 0L; |
| 1837 | state->markpos_offset = 0; |
| 1838 | state->markpos_eof = false; |
| 1839 | break; |
| 1840 | |
| 1841 | case TSS_BOUNDED: |
| 1842 | |
| 1843 | /* |
| 1844 | * We were able to accumulate all the tuples required for output |
| 1845 | * in memory, using a heap to eliminate excess tuples. Now we |
| 1846 | * have to transform the heap to a properly-sorted array. |
| 1847 | */ |
| 1848 | sort_bounded_heap(state); |
| 1849 | state->current = 0; |
| 1850 | state->eof_reached = false; |
| 1851 | state->markpos_offset = 0; |
| 1852 | state->markpos_eof = false; |
| 1853 | state->status = TSS_SORTEDINMEM; |
| 1854 | break; |
| 1855 | |
| 1856 | case TSS_BUILDRUNS: |
| 1857 | |
| 1858 | /* |
| 1859 | * Finish tape-based sort. First, flush all tuples remaining in |
| 1860 | * memory out to tape; then merge until we have a single remaining |
| 1861 | * run (or, if !randomAccess and !WORKER(), one run per tape). |
| 1862 | * Note that mergeruns sets the correct state->status. |
| 1863 | */ |
| 1864 | dumptuples(state, true); |
| 1865 | mergeruns(state); |
| 1866 | state->eof_reached = false; |
| 1867 | state->markpos_block = 0L; |
| 1868 | state->markpos_offset = 0; |
| 1869 | state->markpos_eof = false; |
| 1870 | break; |
| 1871 | |
| 1872 | default: |
| 1873 | elog(ERROR, "invalid tuplesort state" ); |
| 1874 | break; |
| 1875 | } |
| 1876 | |
| 1877 | #ifdef TRACE_SORT |
| 1878 | if (trace_sort) |
| 1879 | { |
| 1880 | if (state->status == TSS_FINALMERGE) |
| 1881 | elog(LOG, "performsort of worker %d done (except %d-way final merge): %s" , |
| 1882 | state->worker, state->activeTapes, |
| 1883 | pg_rusage_show(&state->ru_start)); |
| 1884 | else |
| 1885 | elog(LOG, "performsort of worker %d done: %s" , |
| 1886 | state->worker, pg_rusage_show(&state->ru_start)); |
| 1887 | } |
| 1888 | #endif |
| 1889 | |
| 1890 | MemoryContextSwitchTo(oldcontext); |
| 1891 | } |
| 1892 | |
| 1893 | /* |
| 1894 | * Internal routine to fetch the next tuple in either forward or back |
| 1895 | * direction into *stup. Returns false if no more tuples. |
| 1896 | * Returned tuple belongs to tuplesort memory context, and must not be freed |
| 1897 | * by caller. Note that fetched tuple is stored in memory that may be |
| 1898 | * recycled by any future fetch. |
| 1899 | */ |
| 1900 | static bool |
| 1901 | tuplesort_gettuple_common(Tuplesortstate *state, bool forward, |
| 1902 | SortTuple *stup) |
| 1903 | { |
| 1904 | unsigned int tuplen; |
| 1905 | size_t nmoved; |
| 1906 | |
| 1907 | Assert(!WORKER(state)); |
| 1908 | |
| 1909 | switch (state->status) |
| 1910 | { |
| 1911 | case TSS_SORTEDINMEM: |
| 1912 | Assert(forward || state->randomAccess); |
| 1913 | Assert(!state->slabAllocatorUsed); |
| 1914 | if (forward) |
| 1915 | { |
| 1916 | if (state->current < state->memtupcount) |
| 1917 | { |
| 1918 | *stup = state->memtuples[state->current++]; |
| 1919 | return true; |
| 1920 | } |
| 1921 | state->eof_reached = true; |
| 1922 | |
| 1923 | /* |
| 1924 | * Complain if caller tries to retrieve more tuples than |
| 1925 | * originally asked for in a bounded sort. This is because |
| 1926 | * returning EOF here might be the wrong thing. |
| 1927 | */ |
| 1928 | if (state->bounded && state->current >= state->bound) |
| 1929 | elog(ERROR, "retrieved too many tuples in a bounded sort" ); |
| 1930 | |
| 1931 | return false; |
| 1932 | } |
| 1933 | else |
| 1934 | { |
| 1935 | if (state->current <= 0) |
| 1936 | return false; |
| 1937 | |
| 1938 | /* |
| 1939 | * if all tuples are fetched already then we return last |
| 1940 | * tuple, else - tuple before last returned. |
| 1941 | */ |
| 1942 | if (state->eof_reached) |
| 1943 | state->eof_reached = false; |
| 1944 | else |
| 1945 | { |
| 1946 | state->current--; /* last returned tuple */ |
| 1947 | if (state->current <= 0) |
| 1948 | return false; |
| 1949 | } |
| 1950 | *stup = state->memtuples[state->current - 1]; |
| 1951 | return true; |
| 1952 | } |
| 1953 | break; |
| 1954 | |
| 1955 | case TSS_SORTEDONTAPE: |
| 1956 | Assert(forward || state->randomAccess); |
| 1957 | Assert(state->slabAllocatorUsed); |
| 1958 | |
| 1959 | /* |
| 1960 | * The slot that held the tuple that we returned in previous |
| 1961 | * gettuple call can now be reused. |
| 1962 | */ |
| 1963 | if (state->lastReturnedTuple) |
| 1964 | { |
| 1965 | RELEASE_SLAB_SLOT(state, state->lastReturnedTuple); |
| 1966 | state->lastReturnedTuple = NULL; |
| 1967 | } |
| 1968 | |
| 1969 | if (forward) |
| 1970 | { |
| 1971 | if (state->eof_reached) |
| 1972 | return false; |
| 1973 | |
| 1974 | if ((tuplen = getlen(state, state->result_tape, true)) != 0) |
| 1975 | { |
| 1976 | READTUP(state, stup, state->result_tape, tuplen); |
| 1977 | |
| 1978 | /* |
| 1979 | * Remember the tuple we return, so that we can recycle |
| 1980 | * its memory on next call. (This can be NULL, in the |
| 1981 | * !state->tuples case). |
| 1982 | */ |
| 1983 | state->lastReturnedTuple = stup->tuple; |
| 1984 | |
| 1985 | return true; |
| 1986 | } |
| 1987 | else |
| 1988 | { |
| 1989 | state->eof_reached = true; |
| 1990 | return false; |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | /* |
| 1995 | * Backward. |
| 1996 | * |
| 1997 | * if all tuples are fetched already then we return last tuple, |
| 1998 | * else - tuple before last returned. |
| 1999 | */ |
| 2000 | if (state->eof_reached) |
| 2001 | { |
| 2002 | /* |
| 2003 | * Seek position is pointing just past the zero tuplen at the |
| 2004 | * end of file; back up to fetch last tuple's ending length |
| 2005 | * word. If seek fails we must have a completely empty file. |
| 2006 | */ |
| 2007 | nmoved = LogicalTapeBackspace(state->tapeset, |
| 2008 | state->result_tape, |
| 2009 | 2 * sizeof(unsigned int)); |
| 2010 | if (nmoved == 0) |
| 2011 | return false; |
| 2012 | else if (nmoved != 2 * sizeof(unsigned int)) |
| 2013 | elog(ERROR, "unexpected tape position" ); |
| 2014 | state->eof_reached = false; |
| 2015 | } |
| 2016 | else |
| 2017 | { |
| 2018 | /* |
| 2019 | * Back up and fetch previously-returned tuple's ending length |
| 2020 | * word. If seek fails, assume we are at start of file. |
| 2021 | */ |
| 2022 | nmoved = LogicalTapeBackspace(state->tapeset, |
| 2023 | state->result_tape, |
| 2024 | sizeof(unsigned int)); |
| 2025 | if (nmoved == 0) |
| 2026 | return false; |
| 2027 | else if (nmoved != sizeof(unsigned int)) |
| 2028 | elog(ERROR, "unexpected tape position" ); |
| 2029 | tuplen = getlen(state, state->result_tape, false); |
| 2030 | |
| 2031 | /* |
| 2032 | * Back up to get ending length word of tuple before it. |
| 2033 | */ |
| 2034 | nmoved = LogicalTapeBackspace(state->tapeset, |
| 2035 | state->result_tape, |
| 2036 | tuplen + 2 * sizeof(unsigned int)); |
| 2037 | if (nmoved == tuplen + sizeof(unsigned int)) |
| 2038 | { |
| 2039 | /* |
| 2040 | * We backed up over the previous tuple, but there was no |
| 2041 | * ending length word before it. That means that the prev |
| 2042 | * tuple is the first tuple in the file. It is now the |
| 2043 | * next to read in forward direction (not obviously right, |
| 2044 | * but that is what in-memory case does). |
| 2045 | */ |
| 2046 | return false; |
| 2047 | } |
| 2048 | else if (nmoved != tuplen + 2 * sizeof(unsigned int)) |
| 2049 | elog(ERROR, "bogus tuple length in backward scan" ); |
| 2050 | } |
| 2051 | |
| 2052 | tuplen = getlen(state, state->result_tape, false); |
| 2053 | |
| 2054 | /* |
| 2055 | * Now we have the length of the prior tuple, back up and read it. |
| 2056 | * Note: READTUP expects we are positioned after the initial |
| 2057 | * length word of the tuple, so back up to that point. |
| 2058 | */ |
| 2059 | nmoved = LogicalTapeBackspace(state->tapeset, |
| 2060 | state->result_tape, |
| 2061 | tuplen); |
| 2062 | if (nmoved != tuplen) |
| 2063 | elog(ERROR, "bogus tuple length in backward scan" ); |
| 2064 | READTUP(state, stup, state->result_tape, tuplen); |
| 2065 | |
| 2066 | /* |
| 2067 | * Remember the tuple we return, so that we can recycle its memory |
| 2068 | * on next call. (This can be NULL, in the Datum case). |
| 2069 | */ |
| 2070 | state->lastReturnedTuple = stup->tuple; |
| 2071 | |
| 2072 | return true; |
| 2073 | |
| 2074 | case TSS_FINALMERGE: |
| 2075 | Assert(forward); |
| 2076 | /* We are managing memory ourselves, with the slab allocator. */ |
| 2077 | Assert(state->slabAllocatorUsed); |
| 2078 | |
| 2079 | /* |
| 2080 | * The slab slot holding the tuple that we returned in previous |
| 2081 | * gettuple call can now be reused. |
| 2082 | */ |
| 2083 | if (state->lastReturnedTuple) |
| 2084 | { |
| 2085 | RELEASE_SLAB_SLOT(state, state->lastReturnedTuple); |
| 2086 | state->lastReturnedTuple = NULL; |
| 2087 | } |
| 2088 | |
| 2089 | /* |
| 2090 | * This code should match the inner loop of mergeonerun(). |
| 2091 | */ |
| 2092 | if (state->memtupcount > 0) |
| 2093 | { |
| 2094 | int srcTape = state->memtuples[0].tupindex; |
| 2095 | SortTuple newtup; |
| 2096 | |
| 2097 | *stup = state->memtuples[0]; |
| 2098 | |
| 2099 | /* |
| 2100 | * Remember the tuple we return, so that we can recycle its |
| 2101 | * memory on next call. (This can be NULL, in the Datum case). |
| 2102 | */ |
| 2103 | state->lastReturnedTuple = stup->tuple; |
| 2104 | |
| 2105 | /* |
| 2106 | * Pull next tuple from tape, and replace the returned tuple |
| 2107 | * at top of the heap with it. |
| 2108 | */ |
| 2109 | if (!mergereadnext(state, srcTape, &newtup)) |
| 2110 | { |
| 2111 | /* |
| 2112 | * If no more data, we've reached end of run on this tape. |
| 2113 | * Remove the top node from the heap. |
| 2114 | */ |
| 2115 | tuplesort_heap_delete_top(state); |
| 2116 | |
| 2117 | /* |
| 2118 | * Rewind to free the read buffer. It'd go away at the |
| 2119 | * end of the sort anyway, but better to release the |
| 2120 | * memory early. |
| 2121 | */ |
| 2122 | LogicalTapeRewindForWrite(state->tapeset, srcTape); |
| 2123 | return true; |
| 2124 | } |
| 2125 | newtup.tupindex = srcTape; |
| 2126 | tuplesort_heap_replace_top(state, &newtup); |
| 2127 | return true; |
| 2128 | } |
| 2129 | return false; |
| 2130 | |
| 2131 | default: |
| 2132 | elog(ERROR, "invalid tuplesort state" ); |
| 2133 | return false; /* keep compiler quiet */ |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | /* |
| 2138 | * Fetch the next tuple in either forward or back direction. |
| 2139 | * If successful, put tuple in slot and return true; else, clear the slot |
| 2140 | * and return false. |
| 2141 | * |
| 2142 | * Caller may optionally be passed back abbreviated value (on true return |
| 2143 | * value) when abbreviation was used, which can be used to cheaply avoid |
| 2144 | * equality checks that might otherwise be required. Caller can safely make a |
| 2145 | * determination of "non-equal tuple" based on simple binary inequality. A |
| 2146 | * NULL value in leading attribute will set abbreviated value to zeroed |
| 2147 | * representation, which caller may rely on in abbreviated inequality check. |
| 2148 | * |
| 2149 | * If copy is true, the slot receives a tuple that's been copied into the |
| 2150 | * caller's memory context, so that it will stay valid regardless of future |
| 2151 | * manipulations of the tuplesort's state (up to and including deleting the |
| 2152 | * tuplesort). If copy is false, the slot will just receive a pointer to a |
| 2153 | * tuple held within the tuplesort, which is more efficient, but only safe for |
| 2154 | * callers that are prepared to have any subsequent manipulation of the |
| 2155 | * tuplesort's state invalidate slot contents. |
| 2156 | */ |
| 2157 | bool |
| 2158 | tuplesort_gettupleslot(Tuplesortstate *state, bool forward, bool copy, |
| 2159 | TupleTableSlot *slot, Datum *abbrev) |
| 2160 | { |
| 2161 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 2162 | SortTuple stup; |
| 2163 | |
| 2164 | if (!tuplesort_gettuple_common(state, forward, &stup)) |
| 2165 | stup.tuple = NULL; |
| 2166 | |
| 2167 | MemoryContextSwitchTo(oldcontext); |
| 2168 | |
| 2169 | if (stup.tuple) |
| 2170 | { |
| 2171 | /* Record abbreviated key for caller */ |
| 2172 | if (state->sortKeys->abbrev_converter && abbrev) |
| 2173 | *abbrev = stup.datum1; |
| 2174 | |
| 2175 | if (copy) |
| 2176 | stup.tuple = heap_copy_minimal_tuple((MinimalTuple) stup.tuple); |
| 2177 | |
| 2178 | ExecStoreMinimalTuple((MinimalTuple) stup.tuple, slot, copy); |
| 2179 | return true; |
| 2180 | } |
| 2181 | else |
| 2182 | { |
| 2183 | ExecClearTuple(slot); |
| 2184 | return false; |
| 2185 | } |
| 2186 | } |
| 2187 | |
| 2188 | /* |
| 2189 | * Fetch the next tuple in either forward or back direction. |
| 2190 | * Returns NULL if no more tuples. Returned tuple belongs to tuplesort memory |
| 2191 | * context, and must not be freed by caller. Caller may not rely on tuple |
| 2192 | * remaining valid after any further manipulation of tuplesort. |
| 2193 | */ |
| 2194 | HeapTuple |
| 2195 | tuplesort_getheaptuple(Tuplesortstate *state, bool forward) |
| 2196 | { |
| 2197 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 2198 | SortTuple stup; |
| 2199 | |
| 2200 | if (!tuplesort_gettuple_common(state, forward, &stup)) |
| 2201 | stup.tuple = NULL; |
| 2202 | |
| 2203 | MemoryContextSwitchTo(oldcontext); |
| 2204 | |
| 2205 | return stup.tuple; |
| 2206 | } |
| 2207 | |
| 2208 | /* |
| 2209 | * Fetch the next index tuple in either forward or back direction. |
| 2210 | * Returns NULL if no more tuples. Returned tuple belongs to tuplesort memory |
| 2211 | * context, and must not be freed by caller. Caller may not rely on tuple |
| 2212 | * remaining valid after any further manipulation of tuplesort. |
| 2213 | */ |
| 2214 | IndexTuple |
| 2215 | tuplesort_getindextuple(Tuplesortstate *state, bool forward) |
| 2216 | { |
| 2217 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 2218 | SortTuple stup; |
| 2219 | |
| 2220 | if (!tuplesort_gettuple_common(state, forward, &stup)) |
| 2221 | stup.tuple = NULL; |
| 2222 | |
| 2223 | MemoryContextSwitchTo(oldcontext); |
| 2224 | |
| 2225 | return (IndexTuple) stup.tuple; |
| 2226 | } |
| 2227 | |
| 2228 | /* |
| 2229 | * Fetch the next Datum in either forward or back direction. |
| 2230 | * Returns false if no more datums. |
| 2231 | * |
| 2232 | * If the Datum is pass-by-ref type, the returned value is freshly palloc'd |
| 2233 | * in caller's context, and is now owned by the caller (this differs from |
| 2234 | * similar routines for other types of tuplesorts). |
| 2235 | * |
| 2236 | * Caller may optionally be passed back abbreviated value (on true return |
| 2237 | * value) when abbreviation was used, which can be used to cheaply avoid |
| 2238 | * equality checks that might otherwise be required. Caller can safely make a |
| 2239 | * determination of "non-equal tuple" based on simple binary inequality. A |
| 2240 | * NULL value will have a zeroed abbreviated value representation, which caller |
| 2241 | * may rely on in abbreviated inequality check. |
| 2242 | */ |
| 2243 | bool |
| 2244 | tuplesort_getdatum(Tuplesortstate *state, bool forward, |
| 2245 | Datum *val, bool *isNull, Datum *abbrev) |
| 2246 | { |
| 2247 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 2248 | SortTuple stup; |
| 2249 | |
| 2250 | if (!tuplesort_gettuple_common(state, forward, &stup)) |
| 2251 | { |
| 2252 | MemoryContextSwitchTo(oldcontext); |
| 2253 | return false; |
| 2254 | } |
| 2255 | |
| 2256 | /* Ensure we copy into caller's memory context */ |
| 2257 | MemoryContextSwitchTo(oldcontext); |
| 2258 | |
| 2259 | /* Record abbreviated key for caller */ |
| 2260 | if (state->sortKeys->abbrev_converter && abbrev) |
| 2261 | *abbrev = stup.datum1; |
| 2262 | |
| 2263 | if (stup.isnull1 || !state->tuples) |
| 2264 | { |
| 2265 | *val = stup.datum1; |
| 2266 | *isNull = stup.isnull1; |
| 2267 | } |
| 2268 | else |
| 2269 | { |
| 2270 | /* use stup.tuple because stup.datum1 may be an abbreviation */ |
| 2271 | *val = datumCopy(PointerGetDatum(stup.tuple), false, state->datumTypeLen); |
| 2272 | *isNull = false; |
| 2273 | } |
| 2274 | |
| 2275 | return true; |
| 2276 | } |
| 2277 | |
| 2278 | /* |
| 2279 | * Advance over N tuples in either forward or back direction, |
| 2280 | * without returning any data. N==0 is a no-op. |
| 2281 | * Returns true if successful, false if ran out of tuples. |
| 2282 | */ |
| 2283 | bool |
| 2284 | tuplesort_skiptuples(Tuplesortstate *state, int64 ntuples, bool forward) |
| 2285 | { |
| 2286 | MemoryContext oldcontext; |
| 2287 | |
| 2288 | /* |
| 2289 | * We don't actually support backwards skip yet, because no callers need |
| 2290 | * it. The API is designed to allow for that later, though. |
| 2291 | */ |
| 2292 | Assert(forward); |
| 2293 | Assert(ntuples >= 0); |
| 2294 | Assert(!WORKER(state)); |
| 2295 | |
| 2296 | switch (state->status) |
| 2297 | { |
| 2298 | case TSS_SORTEDINMEM: |
| 2299 | if (state->memtupcount - state->current >= ntuples) |
| 2300 | { |
| 2301 | state->current += ntuples; |
| 2302 | return true; |
| 2303 | } |
| 2304 | state->current = state->memtupcount; |
| 2305 | state->eof_reached = true; |
| 2306 | |
| 2307 | /* |
| 2308 | * Complain if caller tries to retrieve more tuples than |
| 2309 | * originally asked for in a bounded sort. This is because |
| 2310 | * returning EOF here might be the wrong thing. |
| 2311 | */ |
| 2312 | if (state->bounded && state->current >= state->bound) |
| 2313 | elog(ERROR, "retrieved too many tuples in a bounded sort" ); |
| 2314 | |
| 2315 | return false; |
| 2316 | |
| 2317 | case TSS_SORTEDONTAPE: |
| 2318 | case TSS_FINALMERGE: |
| 2319 | |
| 2320 | /* |
| 2321 | * We could probably optimize these cases better, but for now it's |
| 2322 | * not worth the trouble. |
| 2323 | */ |
| 2324 | oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 2325 | while (ntuples-- > 0) |
| 2326 | { |
| 2327 | SortTuple stup; |
| 2328 | |
| 2329 | if (!tuplesort_gettuple_common(state, forward, &stup)) |
| 2330 | { |
| 2331 | MemoryContextSwitchTo(oldcontext); |
| 2332 | return false; |
| 2333 | } |
| 2334 | CHECK_FOR_INTERRUPTS(); |
| 2335 | } |
| 2336 | MemoryContextSwitchTo(oldcontext); |
| 2337 | return true; |
| 2338 | |
| 2339 | default: |
| 2340 | elog(ERROR, "invalid tuplesort state" ); |
| 2341 | return false; /* keep compiler quiet */ |
| 2342 | } |
| 2343 | } |
| 2344 | |
| 2345 | /* |
| 2346 | * tuplesort_merge_order - report merge order we'll use for given memory |
| 2347 | * (note: "merge order" just means the number of input tapes in the merge). |
| 2348 | * |
| 2349 | * This is exported for use by the planner. allowedMem is in bytes. |
| 2350 | */ |
| 2351 | int |
| 2352 | tuplesort_merge_order(int64 allowedMem) |
| 2353 | { |
| 2354 | int mOrder; |
| 2355 | |
| 2356 | /* |
| 2357 | * We need one tape for each merge input, plus another one for the output, |
| 2358 | * and each of these tapes needs buffer space. In addition we want |
| 2359 | * MERGE_BUFFER_SIZE workspace per input tape (but the output tape doesn't |
| 2360 | * count). |
| 2361 | * |
| 2362 | * Note: you might be thinking we need to account for the memtuples[] |
| 2363 | * array in this calculation, but we effectively treat that as part of the |
| 2364 | * MERGE_BUFFER_SIZE workspace. |
| 2365 | */ |
| 2366 | mOrder = (allowedMem - TAPE_BUFFER_OVERHEAD) / |
| 2367 | (MERGE_BUFFER_SIZE + TAPE_BUFFER_OVERHEAD); |
| 2368 | |
| 2369 | /* |
| 2370 | * Even in minimum memory, use at least a MINORDER merge. On the other |
| 2371 | * hand, even when we have lots of memory, do not use more than a MAXORDER |
| 2372 | * merge. Tapes are pretty cheap, but they're not entirely free. Each |
| 2373 | * additional tape reduces the amount of memory available to build runs, |
| 2374 | * which in turn can cause the same sort to need more runs, which makes |
| 2375 | * merging slower even if it can still be done in a single pass. Also, |
| 2376 | * high order merges are quite slow due to CPU cache effects; it can be |
| 2377 | * faster to pay the I/O cost of a polyphase merge than to perform a |
| 2378 | * single merge pass across many hundreds of tapes. |
| 2379 | */ |
| 2380 | mOrder = Max(mOrder, MINORDER); |
| 2381 | mOrder = Min(mOrder, MAXORDER); |
| 2382 | |
| 2383 | return mOrder; |
| 2384 | } |
| 2385 | |
| 2386 | /* |
| 2387 | * inittapes - initialize for tape sorting. |
| 2388 | * |
| 2389 | * This is called only if we have found we won't sort in memory. |
| 2390 | */ |
| 2391 | static void |
| 2392 | inittapes(Tuplesortstate *state, bool mergeruns) |
| 2393 | { |
| 2394 | int maxTapes, |
| 2395 | j; |
| 2396 | |
| 2397 | Assert(!LEADER(state)); |
| 2398 | |
| 2399 | if (mergeruns) |
| 2400 | { |
| 2401 | /* Compute number of tapes to use: merge order plus 1 */ |
| 2402 | maxTapes = tuplesort_merge_order(state->allowedMem) + 1; |
| 2403 | } |
| 2404 | else |
| 2405 | { |
| 2406 | /* Workers can sometimes produce single run, output without merge */ |
| 2407 | Assert(WORKER(state)); |
| 2408 | maxTapes = MINORDER + 1; |
| 2409 | } |
| 2410 | |
| 2411 | #ifdef TRACE_SORT |
| 2412 | if (trace_sort) |
| 2413 | elog(LOG, "worker %d switching to external sort with %d tapes: %s" , |
| 2414 | state->worker, maxTapes, pg_rusage_show(&state->ru_start)); |
| 2415 | #endif |
| 2416 | |
| 2417 | /* Create the tape set and allocate the per-tape data arrays */ |
| 2418 | inittapestate(state, maxTapes); |
| 2419 | state->tapeset = |
| 2420 | LogicalTapeSetCreate(maxTapes, NULL, |
| 2421 | state->shared ? &state->shared->fileset : NULL, |
| 2422 | state->worker); |
| 2423 | |
| 2424 | state->currentRun = 0; |
| 2425 | |
| 2426 | /* |
| 2427 | * Initialize variables of Algorithm D (step D1). |
| 2428 | */ |
| 2429 | for (j = 0; j < maxTapes; j++) |
| 2430 | { |
| 2431 | state->tp_fib[j] = 1; |
| 2432 | state->tp_runs[j] = 0; |
| 2433 | state->tp_dummy[j] = 1; |
| 2434 | state->tp_tapenum[j] = j; |
| 2435 | } |
| 2436 | state->tp_fib[state->tapeRange] = 0; |
| 2437 | state->tp_dummy[state->tapeRange] = 0; |
| 2438 | |
| 2439 | state->Level = 1; |
| 2440 | state->destTape = 0; |
| 2441 | |
| 2442 | state->status = TSS_BUILDRUNS; |
| 2443 | } |
| 2444 | |
| 2445 | /* |
| 2446 | * inittapestate - initialize generic tape management state |
| 2447 | */ |
| 2448 | static void |
| 2449 | inittapestate(Tuplesortstate *state, int maxTapes) |
| 2450 | { |
| 2451 | int64 tapeSpace; |
| 2452 | |
| 2453 | /* |
| 2454 | * Decrease availMem to reflect the space needed for tape buffers; but |
| 2455 | * don't decrease it to the point that we have no room for tuples. (That |
| 2456 | * case is only likely to occur if sorting pass-by-value Datums; in all |
| 2457 | * other scenarios the memtuples[] array is unlikely to occupy more than |
| 2458 | * half of allowedMem. In the pass-by-value case it's not important to |
| 2459 | * account for tuple space, so we don't care if LACKMEM becomes |
| 2460 | * inaccurate.) |
| 2461 | */ |
| 2462 | tapeSpace = (int64) maxTapes * TAPE_BUFFER_OVERHEAD; |
| 2463 | |
| 2464 | if (tapeSpace + GetMemoryChunkSpace(state->memtuples) < state->allowedMem) |
| 2465 | USEMEM(state, tapeSpace); |
| 2466 | |
| 2467 | /* |
| 2468 | * Make sure that the temp file(s) underlying the tape set are created in |
| 2469 | * suitable temp tablespaces. For parallel sorts, this should have been |
| 2470 | * called already, but it doesn't matter if it is called a second time. |
| 2471 | */ |
| 2472 | PrepareTempTablespaces(); |
| 2473 | |
| 2474 | state->mergeactive = (bool *) palloc0(maxTapes * sizeof(bool)); |
| 2475 | state->tp_fib = (int *) palloc0(maxTapes * sizeof(int)); |
| 2476 | state->tp_runs = (int *) palloc0(maxTapes * sizeof(int)); |
| 2477 | state->tp_dummy = (int *) palloc0(maxTapes * sizeof(int)); |
| 2478 | state->tp_tapenum = (int *) palloc0(maxTapes * sizeof(int)); |
| 2479 | |
| 2480 | /* Record # of tapes allocated (for duration of sort) */ |
| 2481 | state->maxTapes = maxTapes; |
| 2482 | /* Record maximum # of tapes usable as inputs when merging */ |
| 2483 | state->tapeRange = maxTapes - 1; |
| 2484 | } |
| 2485 | |
| 2486 | /* |
| 2487 | * selectnewtape -- select new tape for new initial run. |
| 2488 | * |
| 2489 | * This is called after finishing a run when we know another run |
| 2490 | * must be started. This implements steps D3, D4 of Algorithm D. |
| 2491 | */ |
| 2492 | static void |
| 2493 | selectnewtape(Tuplesortstate *state) |
| 2494 | { |
| 2495 | int j; |
| 2496 | int a; |
| 2497 | |
| 2498 | /* Step D3: advance j (destTape) */ |
| 2499 | if (state->tp_dummy[state->destTape] < state->tp_dummy[state->destTape + 1]) |
| 2500 | { |
| 2501 | state->destTape++; |
| 2502 | return; |
| 2503 | } |
| 2504 | if (state->tp_dummy[state->destTape] != 0) |
| 2505 | { |
| 2506 | state->destTape = 0; |
| 2507 | return; |
| 2508 | } |
| 2509 | |
| 2510 | /* Step D4: increase level */ |
| 2511 | state->Level++; |
| 2512 | a = state->tp_fib[0]; |
| 2513 | for (j = 0; j < state->tapeRange; j++) |
| 2514 | { |
| 2515 | state->tp_dummy[j] = a + state->tp_fib[j + 1] - state->tp_fib[j]; |
| 2516 | state->tp_fib[j] = a + state->tp_fib[j + 1]; |
| 2517 | } |
| 2518 | state->destTape = 0; |
| 2519 | } |
| 2520 | |
| 2521 | /* |
| 2522 | * Initialize the slab allocation arena, for the given number of slots. |
| 2523 | */ |
| 2524 | static void |
| 2525 | init_slab_allocator(Tuplesortstate *state, int numSlots) |
| 2526 | { |
| 2527 | if (numSlots > 0) |
| 2528 | { |
| 2529 | char *p; |
| 2530 | int i; |
| 2531 | |
| 2532 | state->slabMemoryBegin = palloc(numSlots * SLAB_SLOT_SIZE); |
| 2533 | state->slabMemoryEnd = state->slabMemoryBegin + |
| 2534 | numSlots * SLAB_SLOT_SIZE; |
| 2535 | state->slabFreeHead = (SlabSlot *) state->slabMemoryBegin; |
| 2536 | USEMEM(state, numSlots * SLAB_SLOT_SIZE); |
| 2537 | |
| 2538 | p = state->slabMemoryBegin; |
| 2539 | for (i = 0; i < numSlots - 1; i++) |
| 2540 | { |
| 2541 | ((SlabSlot *) p)->nextfree = (SlabSlot *) (p + SLAB_SLOT_SIZE); |
| 2542 | p += SLAB_SLOT_SIZE; |
| 2543 | } |
| 2544 | ((SlabSlot *) p)->nextfree = NULL; |
| 2545 | } |
| 2546 | else |
| 2547 | { |
| 2548 | state->slabMemoryBegin = state->slabMemoryEnd = NULL; |
| 2549 | state->slabFreeHead = NULL; |
| 2550 | } |
| 2551 | state->slabAllocatorUsed = true; |
| 2552 | } |
| 2553 | |
| 2554 | /* |
| 2555 | * mergeruns -- merge all the completed initial runs. |
| 2556 | * |
| 2557 | * This implements steps D5, D6 of Algorithm D. All input data has |
| 2558 | * already been written to initial runs on tape (see dumptuples). |
| 2559 | */ |
| 2560 | static void |
| 2561 | mergeruns(Tuplesortstate *state) |
| 2562 | { |
| 2563 | int tapenum, |
| 2564 | svTape, |
| 2565 | svRuns, |
| 2566 | svDummy; |
| 2567 | int numTapes; |
| 2568 | int numInputTapes; |
| 2569 | |
| 2570 | Assert(state->status == TSS_BUILDRUNS); |
| 2571 | Assert(state->memtupcount == 0); |
| 2572 | |
| 2573 | if (state->sortKeys != NULL && state->sortKeys->abbrev_converter != NULL) |
| 2574 | { |
| 2575 | /* |
| 2576 | * If there are multiple runs to be merged, when we go to read back |
| 2577 | * tuples from disk, abbreviated keys will not have been stored, and |
| 2578 | * we don't care to regenerate them. Disable abbreviation from this |
| 2579 | * point on. |
| 2580 | */ |
| 2581 | state->sortKeys->abbrev_converter = NULL; |
| 2582 | state->sortKeys->comparator = state->sortKeys->abbrev_full_comparator; |
| 2583 | |
| 2584 | /* Not strictly necessary, but be tidy */ |
| 2585 | state->sortKeys->abbrev_abort = NULL; |
| 2586 | state->sortKeys->abbrev_full_comparator = NULL; |
| 2587 | } |
| 2588 | |
| 2589 | /* |
| 2590 | * Reset tuple memory. We've freed all the tuples that we previously |
| 2591 | * allocated. We will use the slab allocator from now on. |
| 2592 | */ |
| 2593 | MemoryContextDelete(state->tuplecontext); |
| 2594 | state->tuplecontext = NULL; |
| 2595 | |
| 2596 | /* |
| 2597 | * We no longer need a large memtuples array. (We will allocate a smaller |
| 2598 | * one for the heap later.) |
| 2599 | */ |
| 2600 | FREEMEM(state, GetMemoryChunkSpace(state->memtuples)); |
| 2601 | pfree(state->memtuples); |
| 2602 | state->memtuples = NULL; |
| 2603 | |
| 2604 | /* |
| 2605 | * If we had fewer runs than tapes, refund the memory that we imagined we |
| 2606 | * would need for the tape buffers of the unused tapes. |
| 2607 | * |
| 2608 | * numTapes and numInputTapes reflect the actual number of tapes we will |
| 2609 | * use. Note that the output tape's tape number is maxTapes - 1, so the |
| 2610 | * tape numbers of the used tapes are not consecutive, and you cannot just |
| 2611 | * loop from 0 to numTapes to visit all used tapes! |
| 2612 | */ |
| 2613 | if (state->Level == 1) |
| 2614 | { |
| 2615 | numInputTapes = state->currentRun; |
| 2616 | numTapes = numInputTapes + 1; |
| 2617 | FREEMEM(state, (state->maxTapes - numTapes) * TAPE_BUFFER_OVERHEAD); |
| 2618 | } |
| 2619 | else |
| 2620 | { |
| 2621 | numInputTapes = state->tapeRange; |
| 2622 | numTapes = state->maxTapes; |
| 2623 | } |
| 2624 | |
| 2625 | /* |
| 2626 | * Initialize the slab allocator. We need one slab slot per input tape, |
| 2627 | * for the tuples in the heap, plus one to hold the tuple last returned |
| 2628 | * from tuplesort_gettuple. (If we're sorting pass-by-val Datums, |
| 2629 | * however, we don't need to do allocate anything.) |
| 2630 | * |
| 2631 | * From this point on, we no longer use the USEMEM()/LACKMEM() mechanism |
| 2632 | * to track memory usage of individual tuples. |
| 2633 | */ |
| 2634 | if (state->tuples) |
| 2635 | init_slab_allocator(state, numInputTapes + 1); |
| 2636 | else |
| 2637 | init_slab_allocator(state, 0); |
| 2638 | |
| 2639 | /* |
| 2640 | * Allocate a new 'memtuples' array, for the heap. It will hold one tuple |
| 2641 | * from each input tape. |
| 2642 | */ |
| 2643 | state->memtupsize = numInputTapes; |
| 2644 | state->memtuples = (SortTuple *) palloc(numInputTapes * sizeof(SortTuple)); |
| 2645 | USEMEM(state, GetMemoryChunkSpace(state->memtuples)); |
| 2646 | |
| 2647 | /* |
| 2648 | * Use all the remaining memory we have available for read buffers among |
| 2649 | * the input tapes. |
| 2650 | * |
| 2651 | * We don't try to "rebalance" the memory among tapes, when we start a new |
| 2652 | * merge phase, even if some tapes are inactive in the new phase. That |
| 2653 | * would be hard, because logtape.c doesn't know where one run ends and |
| 2654 | * another begins. When a new merge phase begins, and a tape doesn't |
| 2655 | * participate in it, its buffer nevertheless already contains tuples from |
| 2656 | * the next run on same tape, so we cannot release the buffer. That's OK |
| 2657 | * in practice, merge performance isn't that sensitive to the amount of |
| 2658 | * buffers used, and most merge phases use all or almost all tapes, |
| 2659 | * anyway. |
| 2660 | */ |
| 2661 | #ifdef TRACE_SORT |
| 2662 | if (trace_sort) |
| 2663 | elog(LOG, "worker %d using " INT64_FORMAT " KB of memory for read buffers among %d input tapes" , |
| 2664 | state->worker, state->availMem / 1024, numInputTapes); |
| 2665 | #endif |
| 2666 | |
| 2667 | state->read_buffer_size = Max(state->availMem / numInputTapes, 0); |
| 2668 | USEMEM(state, state->read_buffer_size * numInputTapes); |
| 2669 | |
| 2670 | /* End of step D2: rewind all output tapes to prepare for merging */ |
| 2671 | for (tapenum = 0; tapenum < state->tapeRange; tapenum++) |
| 2672 | LogicalTapeRewindForRead(state->tapeset, tapenum, state->read_buffer_size); |
| 2673 | |
| 2674 | for (;;) |
| 2675 | { |
| 2676 | /* |
| 2677 | * At this point we know that tape[T] is empty. If there's just one |
| 2678 | * (real or dummy) run left on each input tape, then only one merge |
| 2679 | * pass remains. If we don't have to produce a materialized sorted |
| 2680 | * tape, we can stop at this point and do the final merge on-the-fly. |
| 2681 | */ |
| 2682 | if (!state->randomAccess && !WORKER(state)) |
| 2683 | { |
| 2684 | bool allOneRun = true; |
| 2685 | |
| 2686 | Assert(state->tp_runs[state->tapeRange] == 0); |
| 2687 | for (tapenum = 0; tapenum < state->tapeRange; tapenum++) |
| 2688 | { |
| 2689 | if (state->tp_runs[tapenum] + state->tp_dummy[tapenum] != 1) |
| 2690 | { |
| 2691 | allOneRun = false; |
| 2692 | break; |
| 2693 | } |
| 2694 | } |
| 2695 | if (allOneRun) |
| 2696 | { |
| 2697 | /* Tell logtape.c we won't be writing anymore */ |
| 2698 | LogicalTapeSetForgetFreeSpace(state->tapeset); |
| 2699 | /* Initialize for the final merge pass */ |
| 2700 | beginmerge(state); |
| 2701 | state->status = TSS_FINALMERGE; |
| 2702 | return; |
| 2703 | } |
| 2704 | } |
| 2705 | |
| 2706 | /* Step D5: merge runs onto tape[T] until tape[P] is empty */ |
| 2707 | while (state->tp_runs[state->tapeRange - 1] || |
| 2708 | state->tp_dummy[state->tapeRange - 1]) |
| 2709 | { |
| 2710 | bool allDummy = true; |
| 2711 | |
| 2712 | for (tapenum = 0; tapenum < state->tapeRange; tapenum++) |
| 2713 | { |
| 2714 | if (state->tp_dummy[tapenum] == 0) |
| 2715 | { |
| 2716 | allDummy = false; |
| 2717 | break; |
| 2718 | } |
| 2719 | } |
| 2720 | |
| 2721 | if (allDummy) |
| 2722 | { |
| 2723 | state->tp_dummy[state->tapeRange]++; |
| 2724 | for (tapenum = 0; tapenum < state->tapeRange; tapenum++) |
| 2725 | state->tp_dummy[tapenum]--; |
| 2726 | } |
| 2727 | else |
| 2728 | mergeonerun(state); |
| 2729 | } |
| 2730 | |
| 2731 | /* Step D6: decrease level */ |
| 2732 | if (--state->Level == 0) |
| 2733 | break; |
| 2734 | /* rewind output tape T to use as new input */ |
| 2735 | LogicalTapeRewindForRead(state->tapeset, state->tp_tapenum[state->tapeRange], |
| 2736 | state->read_buffer_size); |
| 2737 | /* rewind used-up input tape P, and prepare it for write pass */ |
| 2738 | LogicalTapeRewindForWrite(state->tapeset, state->tp_tapenum[state->tapeRange - 1]); |
| 2739 | state->tp_runs[state->tapeRange - 1] = 0; |
| 2740 | |
| 2741 | /* |
| 2742 | * reassign tape units per step D6; note we no longer care about A[] |
| 2743 | */ |
| 2744 | svTape = state->tp_tapenum[state->tapeRange]; |
| 2745 | svDummy = state->tp_dummy[state->tapeRange]; |
| 2746 | svRuns = state->tp_runs[state->tapeRange]; |
| 2747 | for (tapenum = state->tapeRange; tapenum > 0; tapenum--) |
| 2748 | { |
| 2749 | state->tp_tapenum[tapenum] = state->tp_tapenum[tapenum - 1]; |
| 2750 | state->tp_dummy[tapenum] = state->tp_dummy[tapenum - 1]; |
| 2751 | state->tp_runs[tapenum] = state->tp_runs[tapenum - 1]; |
| 2752 | } |
| 2753 | state->tp_tapenum[0] = svTape; |
| 2754 | state->tp_dummy[0] = svDummy; |
| 2755 | state->tp_runs[0] = svRuns; |
| 2756 | } |
| 2757 | |
| 2758 | /* |
| 2759 | * Done. Knuth says that the result is on TAPE[1], but since we exited |
| 2760 | * the loop without performing the last iteration of step D6, we have not |
| 2761 | * rearranged the tape unit assignment, and therefore the result is on |
| 2762 | * TAPE[T]. We need to do it this way so that we can freeze the final |
| 2763 | * output tape while rewinding it. The last iteration of step D6 would be |
| 2764 | * a waste of cycles anyway... |
| 2765 | */ |
| 2766 | state->result_tape = state->tp_tapenum[state->tapeRange]; |
| 2767 | if (!WORKER(state)) |
| 2768 | LogicalTapeFreeze(state->tapeset, state->result_tape, NULL); |
| 2769 | else |
| 2770 | worker_freeze_result_tape(state); |
| 2771 | state->status = TSS_SORTEDONTAPE; |
| 2772 | |
| 2773 | /* Release the read buffers of all the other tapes, by rewinding them. */ |
| 2774 | for (tapenum = 0; tapenum < state->maxTapes; tapenum++) |
| 2775 | { |
| 2776 | if (tapenum != state->result_tape) |
| 2777 | LogicalTapeRewindForWrite(state->tapeset, tapenum); |
| 2778 | } |
| 2779 | } |
| 2780 | |
| 2781 | /* |
| 2782 | * Merge one run from each input tape, except ones with dummy runs. |
| 2783 | * |
| 2784 | * This is the inner loop of Algorithm D step D5. We know that the |
| 2785 | * output tape is TAPE[T]. |
| 2786 | */ |
| 2787 | static void |
| 2788 | mergeonerun(Tuplesortstate *state) |
| 2789 | { |
| 2790 | int destTape = state->tp_tapenum[state->tapeRange]; |
| 2791 | int srcTape; |
| 2792 | |
| 2793 | /* |
| 2794 | * Start the merge by loading one tuple from each active source tape into |
| 2795 | * the heap. We can also decrease the input run/dummy run counts. |
| 2796 | */ |
| 2797 | beginmerge(state); |
| 2798 | |
| 2799 | /* |
| 2800 | * Execute merge by repeatedly extracting lowest tuple in heap, writing it |
| 2801 | * out, and replacing it with next tuple from same tape (if there is |
| 2802 | * another one). |
| 2803 | */ |
| 2804 | while (state->memtupcount > 0) |
| 2805 | { |
| 2806 | SortTuple stup; |
| 2807 | |
| 2808 | /* write the tuple to destTape */ |
| 2809 | srcTape = state->memtuples[0].tupindex; |
| 2810 | WRITETUP(state, destTape, &state->memtuples[0]); |
| 2811 | |
| 2812 | /* recycle the slot of the tuple we just wrote out, for the next read */ |
| 2813 | if (state->memtuples[0].tuple) |
| 2814 | RELEASE_SLAB_SLOT(state, state->memtuples[0].tuple); |
| 2815 | |
| 2816 | /* |
| 2817 | * pull next tuple from the tape, and replace the written-out tuple in |
| 2818 | * the heap with it. |
| 2819 | */ |
| 2820 | if (mergereadnext(state, srcTape, &stup)) |
| 2821 | { |
| 2822 | stup.tupindex = srcTape; |
| 2823 | tuplesort_heap_replace_top(state, &stup); |
| 2824 | |
| 2825 | } |
| 2826 | else |
| 2827 | tuplesort_heap_delete_top(state); |
| 2828 | } |
| 2829 | |
| 2830 | /* |
| 2831 | * When the heap empties, we're done. Write an end-of-run marker on the |
| 2832 | * output tape, and increment its count of real runs. |
| 2833 | */ |
| 2834 | markrunend(state, destTape); |
| 2835 | state->tp_runs[state->tapeRange]++; |
| 2836 | |
| 2837 | #ifdef TRACE_SORT |
| 2838 | if (trace_sort) |
| 2839 | elog(LOG, "worker %d finished %d-way merge step: %s" , state->worker, |
| 2840 | state->activeTapes, pg_rusage_show(&state->ru_start)); |
| 2841 | #endif |
| 2842 | } |
| 2843 | |
| 2844 | /* |
| 2845 | * beginmerge - initialize for a merge pass |
| 2846 | * |
| 2847 | * We decrease the counts of real and dummy runs for each tape, and mark |
| 2848 | * which tapes contain active input runs in mergeactive[]. Then, fill the |
| 2849 | * merge heap with the first tuple from each active tape. |
| 2850 | */ |
| 2851 | static void |
| 2852 | beginmerge(Tuplesortstate *state) |
| 2853 | { |
| 2854 | int activeTapes; |
| 2855 | int tapenum; |
| 2856 | int srcTape; |
| 2857 | |
| 2858 | /* Heap should be empty here */ |
| 2859 | Assert(state->memtupcount == 0); |
| 2860 | |
| 2861 | /* Adjust run counts and mark the active tapes */ |
| 2862 | memset(state->mergeactive, 0, |
| 2863 | state->maxTapes * sizeof(*state->mergeactive)); |
| 2864 | activeTapes = 0; |
| 2865 | for (tapenum = 0; tapenum < state->tapeRange; tapenum++) |
| 2866 | { |
| 2867 | if (state->tp_dummy[tapenum] > 0) |
| 2868 | state->tp_dummy[tapenum]--; |
| 2869 | else |
| 2870 | { |
| 2871 | Assert(state->tp_runs[tapenum] > 0); |
| 2872 | state->tp_runs[tapenum]--; |
| 2873 | srcTape = state->tp_tapenum[tapenum]; |
| 2874 | state->mergeactive[srcTape] = true; |
| 2875 | activeTapes++; |
| 2876 | } |
| 2877 | } |
| 2878 | Assert(activeTapes > 0); |
| 2879 | state->activeTapes = activeTapes; |
| 2880 | |
| 2881 | /* Load the merge heap with the first tuple from each input tape */ |
| 2882 | for (srcTape = 0; srcTape < state->maxTapes; srcTape++) |
| 2883 | { |
| 2884 | SortTuple tup; |
| 2885 | |
| 2886 | if (mergereadnext(state, srcTape, &tup)) |
| 2887 | { |
| 2888 | tup.tupindex = srcTape; |
| 2889 | tuplesort_heap_insert(state, &tup); |
| 2890 | } |
| 2891 | } |
| 2892 | } |
| 2893 | |
| 2894 | /* |
| 2895 | * mergereadnext - read next tuple from one merge input tape |
| 2896 | * |
| 2897 | * Returns false on EOF. |
| 2898 | */ |
| 2899 | static bool |
| 2900 | mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup) |
| 2901 | { |
| 2902 | unsigned int tuplen; |
| 2903 | |
| 2904 | if (!state->mergeactive[srcTape]) |
| 2905 | return false; /* tape's run is already exhausted */ |
| 2906 | |
| 2907 | /* read next tuple, if any */ |
| 2908 | if ((tuplen = getlen(state, srcTape, true)) == 0) |
| 2909 | { |
| 2910 | state->mergeactive[srcTape] = false; |
| 2911 | return false; |
| 2912 | } |
| 2913 | READTUP(state, stup, srcTape, tuplen); |
| 2914 | |
| 2915 | return true; |
| 2916 | } |
| 2917 | |
| 2918 | /* |
| 2919 | * dumptuples - remove tuples from memtuples and write initial run to tape |
| 2920 | * |
| 2921 | * When alltuples = true, dump everything currently in memory. (This case is |
| 2922 | * only used at end of input data.) |
| 2923 | */ |
| 2924 | static void |
| 2925 | dumptuples(Tuplesortstate *state, bool alltuples) |
| 2926 | { |
| 2927 | int memtupwrite; |
| 2928 | int i; |
| 2929 | |
| 2930 | /* |
| 2931 | * Nothing to do if we still fit in available memory and have array slots, |
| 2932 | * unless this is the final call during initial run generation. |
| 2933 | */ |
| 2934 | if (state->memtupcount < state->memtupsize && !LACKMEM(state) && |
| 2935 | !alltuples) |
| 2936 | return; |
| 2937 | |
| 2938 | /* |
| 2939 | * Final call might require no sorting, in rare cases where we just so |
| 2940 | * happen to have previously LACKMEM()'d at the point where exactly all |
| 2941 | * remaining tuples are loaded into memory, just before input was |
| 2942 | * exhausted. |
| 2943 | * |
| 2944 | * In general, short final runs are quite possible. Rather than allowing |
| 2945 | * a special case where there was a superfluous selectnewtape() call (i.e. |
| 2946 | * a call with no subsequent run actually written to destTape), we prefer |
| 2947 | * to write out a 0 tuple run. |
| 2948 | * |
| 2949 | * mergereadnext() is prepared for 0 tuple runs, and will reliably mark |
| 2950 | * the tape inactive for the merge when called from beginmerge(). This |
| 2951 | * case is therefore similar to the case where mergeonerun() finds a dummy |
| 2952 | * run for the tape, and so doesn't need to merge a run from the tape (or |
| 2953 | * conceptually "merges" the dummy run, if you prefer). According to |
| 2954 | * Knuth, Algorithm D "isn't strictly optimal" in its method of |
| 2955 | * distribution and dummy run assignment; this edge case seems very |
| 2956 | * unlikely to make that appreciably worse. |
| 2957 | */ |
| 2958 | Assert(state->status == TSS_BUILDRUNS); |
| 2959 | |
| 2960 | /* |
| 2961 | * It seems unlikely that this limit will ever be exceeded, but take no |
| 2962 | * chances |
| 2963 | */ |
| 2964 | if (state->currentRun == INT_MAX) |
| 2965 | ereport(ERROR, |
| 2966 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 2967 | errmsg("cannot have more than %d runs for an external sort" , |
| 2968 | INT_MAX))); |
| 2969 | |
| 2970 | state->currentRun++; |
| 2971 | |
| 2972 | #ifdef TRACE_SORT |
| 2973 | if (trace_sort) |
| 2974 | elog(LOG, "worker %d starting quicksort of run %d: %s" , |
| 2975 | state->worker, state->currentRun, |
| 2976 | pg_rusage_show(&state->ru_start)); |
| 2977 | #endif |
| 2978 | |
| 2979 | /* |
| 2980 | * Sort all tuples accumulated within the allowed amount of memory for |
| 2981 | * this run using quicksort |
| 2982 | */ |
| 2983 | tuplesort_sort_memtuples(state); |
| 2984 | |
| 2985 | #ifdef TRACE_SORT |
| 2986 | if (trace_sort) |
| 2987 | elog(LOG, "worker %d finished quicksort of run %d: %s" , |
| 2988 | state->worker, state->currentRun, |
| 2989 | pg_rusage_show(&state->ru_start)); |
| 2990 | #endif |
| 2991 | |
| 2992 | memtupwrite = state->memtupcount; |
| 2993 | for (i = 0; i < memtupwrite; i++) |
| 2994 | { |
| 2995 | WRITETUP(state, state->tp_tapenum[state->destTape], |
| 2996 | &state->memtuples[i]); |
| 2997 | state->memtupcount--; |
| 2998 | } |
| 2999 | |
| 3000 | /* |
| 3001 | * Reset tuple memory. We've freed all of the tuples that we previously |
| 3002 | * allocated. It's important to avoid fragmentation when there is a stark |
| 3003 | * change in the sizes of incoming tuples. Fragmentation due to |
| 3004 | * AllocSetFree's bucketing by size class might be particularly bad if |
| 3005 | * this step wasn't taken. |
| 3006 | */ |
| 3007 | MemoryContextReset(state->tuplecontext); |
| 3008 | |
| 3009 | markrunend(state, state->tp_tapenum[state->destTape]); |
| 3010 | state->tp_runs[state->destTape]++; |
| 3011 | state->tp_dummy[state->destTape]--; /* per Alg D step D2 */ |
| 3012 | |
| 3013 | #ifdef TRACE_SORT |
| 3014 | if (trace_sort) |
| 3015 | elog(LOG, "worker %d finished writing run %d to tape %d: %s" , |
| 3016 | state->worker, state->currentRun, state->destTape, |
| 3017 | pg_rusage_show(&state->ru_start)); |
| 3018 | #endif |
| 3019 | |
| 3020 | if (!alltuples) |
| 3021 | selectnewtape(state); |
| 3022 | } |
| 3023 | |
| 3024 | /* |
| 3025 | * tuplesort_rescan - rewind and replay the scan |
| 3026 | */ |
| 3027 | void |
| 3028 | tuplesort_rescan(Tuplesortstate *state) |
| 3029 | { |
| 3030 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 3031 | |
| 3032 | Assert(state->randomAccess); |
| 3033 | |
| 3034 | switch (state->status) |
| 3035 | { |
| 3036 | case TSS_SORTEDINMEM: |
| 3037 | state->current = 0; |
| 3038 | state->eof_reached = false; |
| 3039 | state->markpos_offset = 0; |
| 3040 | state->markpos_eof = false; |
| 3041 | break; |
| 3042 | case TSS_SORTEDONTAPE: |
| 3043 | LogicalTapeRewindForRead(state->tapeset, |
| 3044 | state->result_tape, |
| 3045 | 0); |
| 3046 | state->eof_reached = false; |
| 3047 | state->markpos_block = 0L; |
| 3048 | state->markpos_offset = 0; |
| 3049 | state->markpos_eof = false; |
| 3050 | break; |
| 3051 | default: |
| 3052 | elog(ERROR, "invalid tuplesort state" ); |
| 3053 | break; |
| 3054 | } |
| 3055 | |
| 3056 | MemoryContextSwitchTo(oldcontext); |
| 3057 | } |
| 3058 | |
| 3059 | /* |
| 3060 | * tuplesort_markpos - saves current position in the merged sort file |
| 3061 | */ |
| 3062 | void |
| 3063 | tuplesort_markpos(Tuplesortstate *state) |
| 3064 | { |
| 3065 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 3066 | |
| 3067 | Assert(state->randomAccess); |
| 3068 | |
| 3069 | switch (state->status) |
| 3070 | { |
| 3071 | case TSS_SORTEDINMEM: |
| 3072 | state->markpos_offset = state->current; |
| 3073 | state->markpos_eof = state->eof_reached; |
| 3074 | break; |
| 3075 | case TSS_SORTEDONTAPE: |
| 3076 | LogicalTapeTell(state->tapeset, |
| 3077 | state->result_tape, |
| 3078 | &state->markpos_block, |
| 3079 | &state->markpos_offset); |
| 3080 | state->markpos_eof = state->eof_reached; |
| 3081 | break; |
| 3082 | default: |
| 3083 | elog(ERROR, "invalid tuplesort state" ); |
| 3084 | break; |
| 3085 | } |
| 3086 | |
| 3087 | MemoryContextSwitchTo(oldcontext); |
| 3088 | } |
| 3089 | |
| 3090 | /* |
| 3091 | * tuplesort_restorepos - restores current position in merged sort file to |
| 3092 | * last saved position |
| 3093 | */ |
| 3094 | void |
| 3095 | tuplesort_restorepos(Tuplesortstate *state) |
| 3096 | { |
| 3097 | MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext); |
| 3098 | |
| 3099 | Assert(state->randomAccess); |
| 3100 | |
| 3101 | switch (state->status) |
| 3102 | { |
| 3103 | case TSS_SORTEDINMEM: |
| 3104 | state->current = state->markpos_offset; |
| 3105 | state->eof_reached = state->markpos_eof; |
| 3106 | break; |
| 3107 | case TSS_SORTEDONTAPE: |
| 3108 | LogicalTapeSeek(state->tapeset, |
| 3109 | state->result_tape, |
| 3110 | state->markpos_block, |
| 3111 | state->markpos_offset); |
| 3112 | state->eof_reached = state->markpos_eof; |
| 3113 | break; |
| 3114 | default: |
| 3115 | elog(ERROR, "invalid tuplesort state" ); |
| 3116 | break; |
| 3117 | } |
| 3118 | |
| 3119 | MemoryContextSwitchTo(oldcontext); |
| 3120 | } |
| 3121 | |
| 3122 | /* |
| 3123 | * tuplesort_get_stats - extract summary statistics |
| 3124 | * |
| 3125 | * This can be called after tuplesort_performsort() finishes to obtain |
| 3126 | * printable summary information about how the sort was performed. |
| 3127 | */ |
| 3128 | void |
| 3129 | tuplesort_get_stats(Tuplesortstate *state, |
| 3130 | TuplesortInstrumentation *stats) |
| 3131 | { |
| 3132 | /* |
| 3133 | * Note: it might seem we should provide both memory and disk usage for a |
| 3134 | * disk-based sort. However, the current code doesn't track memory space |
| 3135 | * accurately once we have begun to return tuples to the caller (since we |
| 3136 | * don't account for pfree's the caller is expected to do), so we cannot |
| 3137 | * rely on availMem in a disk sort. This does not seem worth the overhead |
| 3138 | * to fix. Is it worth creating an API for the memory context code to |
| 3139 | * tell us how much is actually used in sortcontext? |
| 3140 | */ |
| 3141 | if (state->tapeset) |
| 3142 | { |
| 3143 | stats->spaceType = SORT_SPACE_TYPE_DISK; |
| 3144 | stats->spaceUsed = LogicalTapeSetBlocks(state->tapeset) * (BLCKSZ / 1024); |
| 3145 | } |
| 3146 | else |
| 3147 | { |
| 3148 | stats->spaceType = SORT_SPACE_TYPE_MEMORY; |
| 3149 | stats->spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024; |
| 3150 | } |
| 3151 | |
| 3152 | switch (state->status) |
| 3153 | { |
| 3154 | case TSS_SORTEDINMEM: |
| 3155 | if (state->boundUsed) |
| 3156 | stats->sortMethod = SORT_TYPE_TOP_N_HEAPSORT; |
| 3157 | else |
| 3158 | stats->sortMethod = SORT_TYPE_QUICKSORT; |
| 3159 | break; |
| 3160 | case TSS_SORTEDONTAPE: |
| 3161 | stats->sortMethod = SORT_TYPE_EXTERNAL_SORT; |
| 3162 | break; |
| 3163 | case TSS_FINALMERGE: |
| 3164 | stats->sortMethod = SORT_TYPE_EXTERNAL_MERGE; |
| 3165 | break; |
| 3166 | default: |
| 3167 | stats->sortMethod = SORT_TYPE_STILL_IN_PROGRESS; |
| 3168 | break; |
| 3169 | } |
| 3170 | } |
| 3171 | |
| 3172 | /* |
| 3173 | * Convert TuplesortMethod to a string. |
| 3174 | */ |
| 3175 | const char * |
| 3176 | tuplesort_method_name(TuplesortMethod m) |
| 3177 | { |
| 3178 | switch (m) |
| 3179 | { |
| 3180 | case SORT_TYPE_STILL_IN_PROGRESS: |
| 3181 | return "still in progress" ; |
| 3182 | case SORT_TYPE_TOP_N_HEAPSORT: |
| 3183 | return "top-N heapsort" ; |
| 3184 | case SORT_TYPE_QUICKSORT: |
| 3185 | return "quicksort" ; |
| 3186 | case SORT_TYPE_EXTERNAL_SORT: |
| 3187 | return "external sort" ; |
| 3188 | case SORT_TYPE_EXTERNAL_MERGE: |
| 3189 | return "external merge" ; |
| 3190 | } |
| 3191 | |
| 3192 | return "unknown" ; |
| 3193 | } |
| 3194 | |
| 3195 | /* |
| 3196 | * Convert TuplesortSpaceType to a string. |
| 3197 | */ |
| 3198 | const char * |
| 3199 | tuplesort_space_type_name(TuplesortSpaceType t) |
| 3200 | { |
| 3201 | Assert(t == SORT_SPACE_TYPE_DISK || t == SORT_SPACE_TYPE_MEMORY); |
| 3202 | return t == SORT_SPACE_TYPE_DISK ? "Disk" : "Memory" ; |
| 3203 | } |
| 3204 | |
| 3205 | |
| 3206 | /* |
| 3207 | * Heap manipulation routines, per Knuth's Algorithm 5.2.3H. |
| 3208 | */ |
| 3209 | |
| 3210 | /* |
| 3211 | * Convert the existing unordered array of SortTuples to a bounded heap, |
| 3212 | * discarding all but the smallest "state->bound" tuples. |
| 3213 | * |
| 3214 | * When working with a bounded heap, we want to keep the largest entry |
| 3215 | * at the root (array entry zero), instead of the smallest as in the normal |
| 3216 | * sort case. This allows us to discard the largest entry cheaply. |
| 3217 | * Therefore, we temporarily reverse the sort direction. |
| 3218 | */ |
| 3219 | static void |
| 3220 | make_bounded_heap(Tuplesortstate *state) |
| 3221 | { |
| 3222 | int tupcount = state->memtupcount; |
| 3223 | int i; |
| 3224 | |
| 3225 | Assert(state->status == TSS_INITIAL); |
| 3226 | Assert(state->bounded); |
| 3227 | Assert(tupcount >= state->bound); |
| 3228 | Assert(SERIAL(state)); |
| 3229 | |
| 3230 | /* Reverse sort direction so largest entry will be at root */ |
| 3231 | reversedirection(state); |
| 3232 | |
| 3233 | state->memtupcount = 0; /* make the heap empty */ |
| 3234 | for (i = 0; i < tupcount; i++) |
| 3235 | { |
| 3236 | if (state->memtupcount < state->bound) |
| 3237 | { |
| 3238 | /* Insert next tuple into heap */ |
| 3239 | /* Must copy source tuple to avoid possible overwrite */ |
| 3240 | SortTuple stup = state->memtuples[i]; |
| 3241 | |
| 3242 | tuplesort_heap_insert(state, &stup); |
| 3243 | } |
| 3244 | else |
| 3245 | { |
| 3246 | /* |
| 3247 | * The heap is full. Replace the largest entry with the new |
| 3248 | * tuple, or just discard it, if it's larger than anything already |
| 3249 | * in the heap. |
| 3250 | */ |
| 3251 | if (COMPARETUP(state, &state->memtuples[i], &state->memtuples[0]) <= 0) |
| 3252 | { |
| 3253 | free_sort_tuple(state, &state->memtuples[i]); |
| 3254 | CHECK_FOR_INTERRUPTS(); |
| 3255 | } |
| 3256 | else |
| 3257 | tuplesort_heap_replace_top(state, &state->memtuples[i]); |
| 3258 | } |
| 3259 | } |
| 3260 | |
| 3261 | Assert(state->memtupcount == state->bound); |
| 3262 | state->status = TSS_BOUNDED; |
| 3263 | } |
| 3264 | |
| 3265 | /* |
| 3266 | * Convert the bounded heap to a properly-sorted array |
| 3267 | */ |
| 3268 | static void |
| 3269 | sort_bounded_heap(Tuplesortstate *state) |
| 3270 | { |
| 3271 | int tupcount = state->memtupcount; |
| 3272 | |
| 3273 | Assert(state->status == TSS_BOUNDED); |
| 3274 | Assert(state->bounded); |
| 3275 | Assert(tupcount == state->bound); |
| 3276 | Assert(SERIAL(state)); |
| 3277 | |
| 3278 | /* |
| 3279 | * We can unheapify in place because each delete-top call will remove the |
| 3280 | * largest entry, which we can promptly store in the newly freed slot at |
| 3281 | * the end. Once we're down to a single-entry heap, we're done. |
| 3282 | */ |
| 3283 | while (state->memtupcount > 1) |
| 3284 | { |
| 3285 | SortTuple stup = state->memtuples[0]; |
| 3286 | |
| 3287 | /* this sifts-up the next-largest entry and decreases memtupcount */ |
| 3288 | tuplesort_heap_delete_top(state); |
| 3289 | state->memtuples[state->memtupcount] = stup; |
| 3290 | } |
| 3291 | state->memtupcount = tupcount; |
| 3292 | |
| 3293 | /* |
| 3294 | * Reverse sort direction back to the original state. This is not |
| 3295 | * actually necessary but seems like a good idea for tidiness. |
| 3296 | */ |
| 3297 | reversedirection(state); |
| 3298 | |
| 3299 | state->status = TSS_SORTEDINMEM; |
| 3300 | state->boundUsed = true; |
| 3301 | } |
| 3302 | |
| 3303 | /* |
| 3304 | * Sort all memtuples using specialized qsort() routines. |
| 3305 | * |
| 3306 | * Quicksort is used for small in-memory sorts, and external sort runs. |
| 3307 | */ |
| 3308 | static void |
| 3309 | tuplesort_sort_memtuples(Tuplesortstate *state) |
| 3310 | { |
| 3311 | Assert(!LEADER(state)); |
| 3312 | |
| 3313 | if (state->memtupcount > 1) |
| 3314 | { |
| 3315 | /* Can we use the single-key sort function? */ |
| 3316 | if (state->onlyKey != NULL) |
| 3317 | qsort_ssup(state->memtuples, state->memtupcount, |
| 3318 | state->onlyKey); |
| 3319 | else |
| 3320 | qsort_tuple(state->memtuples, |
| 3321 | state->memtupcount, |
| 3322 | state->comparetup, |
| 3323 | state); |
| 3324 | } |
| 3325 | } |
| 3326 | |
| 3327 | /* |
| 3328 | * Insert a new tuple into an empty or existing heap, maintaining the |
| 3329 | * heap invariant. Caller is responsible for ensuring there's room. |
| 3330 | * |
| 3331 | * Note: For some callers, tuple points to a memtuples[] entry above the |
| 3332 | * end of the heap. This is safe as long as it's not immediately adjacent |
| 3333 | * to the end of the heap (ie, in the [memtupcount] array entry) --- if it |
| 3334 | * is, it might get overwritten before being moved into the heap! |
| 3335 | */ |
| 3336 | static void |
| 3337 | tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple) |
| 3338 | { |
| 3339 | SortTuple *memtuples; |
| 3340 | int j; |
| 3341 | |
| 3342 | memtuples = state->memtuples; |
| 3343 | Assert(state->memtupcount < state->memtupsize); |
| 3344 | |
| 3345 | CHECK_FOR_INTERRUPTS(); |
| 3346 | |
| 3347 | /* |
| 3348 | * Sift-up the new entry, per Knuth 5.2.3 exercise 16. Note that Knuth is |
| 3349 | * using 1-based array indexes, not 0-based. |
| 3350 | */ |
| 3351 | j = state->memtupcount++; |
| 3352 | while (j > 0) |
| 3353 | { |
| 3354 | int i = (j - 1) >> 1; |
| 3355 | |
| 3356 | if (COMPARETUP(state, tuple, &memtuples[i]) >= 0) |
| 3357 | break; |
| 3358 | memtuples[j] = memtuples[i]; |
| 3359 | j = i; |
| 3360 | } |
| 3361 | memtuples[j] = *tuple; |
| 3362 | } |
| 3363 | |
| 3364 | /* |
| 3365 | * Remove the tuple at state->memtuples[0] from the heap. Decrement |
| 3366 | * memtupcount, and sift up to maintain the heap invariant. |
| 3367 | * |
| 3368 | * The caller has already free'd the tuple the top node points to, |
| 3369 | * if necessary. |
| 3370 | */ |
| 3371 | static void |
| 3372 | tuplesort_heap_delete_top(Tuplesortstate *state) |
| 3373 | { |
| 3374 | SortTuple *memtuples = state->memtuples; |
| 3375 | SortTuple *tuple; |
| 3376 | |
| 3377 | if (--state->memtupcount <= 0) |
| 3378 | return; |
| 3379 | |
| 3380 | /* |
| 3381 | * Remove the last tuple in the heap, and re-insert it, by replacing the |
| 3382 | * current top node with it. |
| 3383 | */ |
| 3384 | tuple = &memtuples[state->memtupcount]; |
| 3385 | tuplesort_heap_replace_top(state, tuple); |
| 3386 | } |
| 3387 | |
| 3388 | /* |
| 3389 | * Replace the tuple at state->memtuples[0] with a new tuple. Sift up to |
| 3390 | * maintain the heap invariant. |
| 3391 | * |
| 3392 | * This corresponds to Knuth's "sift-up" algorithm (Algorithm 5.2.3H, |
| 3393 | * Heapsort, steps H3-H8). |
| 3394 | */ |
| 3395 | static void |
| 3396 | tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple) |
| 3397 | { |
| 3398 | SortTuple *memtuples = state->memtuples; |
| 3399 | unsigned int i, |
| 3400 | n; |
| 3401 | |
| 3402 | Assert(state->memtupcount >= 1); |
| 3403 | |
| 3404 | CHECK_FOR_INTERRUPTS(); |
| 3405 | |
| 3406 | /* |
| 3407 | * state->memtupcount is "int", but we use "unsigned int" for i, j, n. |
| 3408 | * This prevents overflow in the "2 * i + 1" calculation, since at the top |
| 3409 | * of the loop we must have i < n <= INT_MAX <= UINT_MAX/2. |
| 3410 | */ |
| 3411 | n = state->memtupcount; |
| 3412 | i = 0; /* i is where the "hole" is */ |
| 3413 | for (;;) |
| 3414 | { |
| 3415 | unsigned int j = 2 * i + 1; |
| 3416 | |
| 3417 | if (j >= n) |
| 3418 | break; |
| 3419 | if (j + 1 < n && |
| 3420 | COMPARETUP(state, &memtuples[j], &memtuples[j + 1]) > 0) |
| 3421 | j++; |
| 3422 | if (COMPARETUP(state, tuple, &memtuples[j]) <= 0) |
| 3423 | break; |
| 3424 | memtuples[i] = memtuples[j]; |
| 3425 | i = j; |
| 3426 | } |
| 3427 | memtuples[i] = *tuple; |
| 3428 | } |
| 3429 | |
| 3430 | /* |
| 3431 | * Function to reverse the sort direction from its current state |
| 3432 | * |
| 3433 | * It is not safe to call this when performing hash tuplesorts |
| 3434 | */ |
| 3435 | static void |
| 3436 | reversedirection(Tuplesortstate *state) |
| 3437 | { |
| 3438 | SortSupport sortKey = state->sortKeys; |
| 3439 | int nkey; |
| 3440 | |
| 3441 | for (nkey = 0; nkey < state->nKeys; nkey++, sortKey++) |
| 3442 | { |
| 3443 | sortKey->ssup_reverse = !sortKey->ssup_reverse; |
| 3444 | sortKey->ssup_nulls_first = !sortKey->ssup_nulls_first; |
| 3445 | } |
| 3446 | } |
| 3447 | |
| 3448 | |
| 3449 | /* |
| 3450 | * Tape interface routines |
| 3451 | */ |
| 3452 | |
| 3453 | static unsigned int |
| 3454 | getlen(Tuplesortstate *state, int tapenum, bool eofOK) |
| 3455 | { |
| 3456 | unsigned int len; |
| 3457 | |
| 3458 | if (LogicalTapeRead(state->tapeset, tapenum, |
| 3459 | &len, sizeof(len)) != sizeof(len)) |
| 3460 | elog(ERROR, "unexpected end of tape" ); |
| 3461 | if (len == 0 && !eofOK) |
| 3462 | elog(ERROR, "unexpected end of data" ); |
| 3463 | return len; |
| 3464 | } |
| 3465 | |
| 3466 | static void |
| 3467 | markrunend(Tuplesortstate *state, int tapenum) |
| 3468 | { |
| 3469 | unsigned int len = 0; |
| 3470 | |
| 3471 | LogicalTapeWrite(state->tapeset, tapenum, (void *) &len, sizeof(len)); |
| 3472 | } |
| 3473 | |
| 3474 | /* |
| 3475 | * Get memory for tuple from within READTUP() routine. |
| 3476 | * |
| 3477 | * We use next free slot from the slab allocator, or palloc() if the tuple |
| 3478 | * is too large for that. |
| 3479 | */ |
| 3480 | static void * |
| 3481 | readtup_alloc(Tuplesortstate *state, Size tuplen) |
| 3482 | { |
| 3483 | SlabSlot *buf; |
| 3484 | |
| 3485 | /* |
| 3486 | * We pre-allocate enough slots in the slab arena that we should never run |
| 3487 | * out. |
| 3488 | */ |
| 3489 | Assert(state->slabFreeHead); |
| 3490 | |
| 3491 | if (tuplen > SLAB_SLOT_SIZE || !state->slabFreeHead) |
| 3492 | return MemoryContextAlloc(state->sortcontext, tuplen); |
| 3493 | else |
| 3494 | { |
| 3495 | buf = state->slabFreeHead; |
| 3496 | /* Reuse this slot */ |
| 3497 | state->slabFreeHead = buf->nextfree; |
| 3498 | |
| 3499 | return buf; |
| 3500 | } |
| 3501 | } |
| 3502 | |
| 3503 | |
| 3504 | /* |
| 3505 | * Routines specialized for HeapTuple (actually MinimalTuple) case |
| 3506 | */ |
| 3507 | |
| 3508 | static int |
| 3509 | comparetup_heap(const SortTuple *a, const SortTuple *b, Tuplesortstate *state) |
| 3510 | { |
| 3511 | SortSupport sortKey = state->sortKeys; |
| 3512 | HeapTupleData ltup; |
| 3513 | HeapTupleData rtup; |
| 3514 | TupleDesc tupDesc; |
| 3515 | int nkey; |
| 3516 | int32 compare; |
| 3517 | AttrNumber attno; |
| 3518 | Datum datum1, |
| 3519 | datum2; |
| 3520 | bool isnull1, |
| 3521 | isnull2; |
| 3522 | |
| 3523 | |
| 3524 | /* Compare the leading sort key */ |
| 3525 | compare = ApplySortComparator(a->datum1, a->isnull1, |
| 3526 | b->datum1, b->isnull1, |
| 3527 | sortKey); |
| 3528 | if (compare != 0) |
| 3529 | return compare; |
| 3530 | |
| 3531 | /* Compare additional sort keys */ |
| 3532 | ltup.t_len = ((MinimalTuple) a->tuple)->t_len + MINIMAL_TUPLE_OFFSET; |
| 3533 | ltup.t_data = (HeapTupleHeader) ((char *) a->tuple - MINIMAL_TUPLE_OFFSET); |
| 3534 | rtup.t_len = ((MinimalTuple) b->tuple)->t_len + MINIMAL_TUPLE_OFFSET; |
| 3535 | rtup.t_data = (HeapTupleHeader) ((char *) b->tuple - MINIMAL_TUPLE_OFFSET); |
| 3536 | tupDesc = state->tupDesc; |
| 3537 | |
| 3538 | if (sortKey->abbrev_converter) |
| 3539 | { |
| 3540 | attno = sortKey->ssup_attno; |
| 3541 | |
| 3542 | datum1 = heap_getattr(<up, attno, tupDesc, &isnull1); |
| 3543 | datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2); |
| 3544 | |
| 3545 | compare = ApplySortAbbrevFullComparator(datum1, isnull1, |
| 3546 | datum2, isnull2, |
| 3547 | sortKey); |
| 3548 | if (compare != 0) |
| 3549 | return compare; |
| 3550 | } |
| 3551 | |
| 3552 | sortKey++; |
| 3553 | for (nkey = 1; nkey < state->nKeys; nkey++, sortKey++) |
| 3554 | { |
| 3555 | attno = sortKey->ssup_attno; |
| 3556 | |
| 3557 | datum1 = heap_getattr(<up, attno, tupDesc, &isnull1); |
| 3558 | datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2); |
| 3559 | |
| 3560 | compare = ApplySortComparator(datum1, isnull1, |
| 3561 | datum2, isnull2, |
| 3562 | sortKey); |
| 3563 | if (compare != 0) |
| 3564 | return compare; |
| 3565 | } |
| 3566 | |
| 3567 | return 0; |
| 3568 | } |
| 3569 | |
| 3570 | static void |
| 3571 | copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup) |
| 3572 | { |
| 3573 | /* |
| 3574 | * We expect the passed "tup" to be a TupleTableSlot, and form a |
| 3575 | * MinimalTuple using the exported interface for that. |
| 3576 | */ |
| 3577 | TupleTableSlot *slot = (TupleTableSlot *) tup; |
| 3578 | Datum original; |
| 3579 | MinimalTuple tuple; |
| 3580 | HeapTupleData htup; |
| 3581 | MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext); |
| 3582 | |
| 3583 | /* copy the tuple into sort storage */ |
| 3584 | tuple = ExecCopySlotMinimalTuple(slot); |
| 3585 | stup->tuple = (void *) tuple; |
| 3586 | USEMEM(state, GetMemoryChunkSpace(tuple)); |
| 3587 | /* set up first-column key value */ |
| 3588 | htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET; |
| 3589 | htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET); |
| 3590 | original = heap_getattr(&htup, |
| 3591 | state->sortKeys[0].ssup_attno, |
| 3592 | state->tupDesc, |
| 3593 | &stup->isnull1); |
| 3594 | |
| 3595 | MemoryContextSwitchTo(oldcontext); |
| 3596 | |
| 3597 | if (!state->sortKeys->abbrev_converter || stup->isnull1) |
| 3598 | { |
| 3599 | /* |
| 3600 | * Store ordinary Datum representation, or NULL value. If there is a |
| 3601 | * converter it won't expect NULL values, and cost model is not |
| 3602 | * required to account for NULL, so in that case we avoid calling |
| 3603 | * converter and just set datum1 to zeroed representation (to be |
| 3604 | * consistent, and to support cheap inequality tests for NULL |
| 3605 | * abbreviated keys). |
| 3606 | */ |
| 3607 | stup->datum1 = original; |
| 3608 | } |
| 3609 | else if (!consider_abort_common(state)) |
| 3610 | { |
| 3611 | /* Store abbreviated key representation */ |
| 3612 | stup->datum1 = state->sortKeys->abbrev_converter(original, |
| 3613 | state->sortKeys); |
| 3614 | } |
| 3615 | else |
| 3616 | { |
| 3617 | /* Abort abbreviation */ |
| 3618 | int i; |
| 3619 | |
| 3620 | stup->datum1 = original; |
| 3621 | |
| 3622 | /* |
| 3623 | * Set state to be consistent with never trying abbreviation. |
| 3624 | * |
| 3625 | * Alter datum1 representation in already-copied tuples, so as to |
| 3626 | * ensure a consistent representation (current tuple was just |
| 3627 | * handled). It does not matter if some dumped tuples are already |
| 3628 | * sorted on tape, since serialized tuples lack abbreviated keys |
| 3629 | * (TSS_BUILDRUNS state prevents control reaching here in any case). |
| 3630 | */ |
| 3631 | for (i = 0; i < state->memtupcount; i++) |
| 3632 | { |
| 3633 | SortTuple *mtup = &state->memtuples[i]; |
| 3634 | |
| 3635 | htup.t_len = ((MinimalTuple) mtup->tuple)->t_len + |
| 3636 | MINIMAL_TUPLE_OFFSET; |
| 3637 | htup.t_data = (HeapTupleHeader) ((char *) mtup->tuple - |
| 3638 | MINIMAL_TUPLE_OFFSET); |
| 3639 | |
| 3640 | mtup->datum1 = heap_getattr(&htup, |
| 3641 | state->sortKeys[0].ssup_attno, |
| 3642 | state->tupDesc, |
| 3643 | &mtup->isnull1); |
| 3644 | } |
| 3645 | } |
| 3646 | } |
| 3647 | |
| 3648 | static void |
| 3649 | writetup_heap(Tuplesortstate *state, int tapenum, SortTuple *stup) |
| 3650 | { |
| 3651 | MinimalTuple tuple = (MinimalTuple) stup->tuple; |
| 3652 | |
| 3653 | /* the part of the MinimalTuple we'll write: */ |
| 3654 | char *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET; |
| 3655 | unsigned int tupbodylen = tuple->t_len - MINIMAL_TUPLE_DATA_OFFSET; |
| 3656 | |
| 3657 | /* total on-disk footprint: */ |
| 3658 | unsigned int tuplen = tupbodylen + sizeof(int); |
| 3659 | |
| 3660 | LogicalTapeWrite(state->tapeset, tapenum, |
| 3661 | (void *) &tuplen, sizeof(tuplen)); |
| 3662 | LogicalTapeWrite(state->tapeset, tapenum, |
| 3663 | (void *) tupbody, tupbodylen); |
| 3664 | if (state->randomAccess) /* need trailing length word? */ |
| 3665 | LogicalTapeWrite(state->tapeset, tapenum, |
| 3666 | (void *) &tuplen, sizeof(tuplen)); |
| 3667 | |
| 3668 | if (!state->slabAllocatorUsed) |
| 3669 | { |
| 3670 | FREEMEM(state, GetMemoryChunkSpace(tuple)); |
| 3671 | heap_free_minimal_tuple(tuple); |
| 3672 | } |
| 3673 | } |
| 3674 | |
| 3675 | static void |
| 3676 | readtup_heap(Tuplesortstate *state, SortTuple *stup, |
| 3677 | int tapenum, unsigned int len) |
| 3678 | { |
| 3679 | unsigned int tupbodylen = len - sizeof(int); |
| 3680 | unsigned int tuplen = tupbodylen + MINIMAL_TUPLE_DATA_OFFSET; |
| 3681 | MinimalTuple tuple = (MinimalTuple) readtup_alloc(state, tuplen); |
| 3682 | char *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET; |
| 3683 | HeapTupleData htup; |
| 3684 | |
| 3685 | /* read in the tuple proper */ |
| 3686 | tuple->t_len = tuplen; |
| 3687 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 3688 | tupbody, tupbodylen); |
| 3689 | if (state->randomAccess) /* need trailing length word? */ |
| 3690 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 3691 | &tuplen, sizeof(tuplen)); |
| 3692 | stup->tuple = (void *) tuple; |
| 3693 | /* set up first-column key value */ |
| 3694 | htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET; |
| 3695 | htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET); |
| 3696 | stup->datum1 = heap_getattr(&htup, |
| 3697 | state->sortKeys[0].ssup_attno, |
| 3698 | state->tupDesc, |
| 3699 | &stup->isnull1); |
| 3700 | } |
| 3701 | |
| 3702 | /* |
| 3703 | * Routines specialized for the CLUSTER case (HeapTuple data, with |
| 3704 | * comparisons per a btree index definition) |
| 3705 | */ |
| 3706 | |
| 3707 | static int |
| 3708 | comparetup_cluster(const SortTuple *a, const SortTuple *b, |
| 3709 | Tuplesortstate *state) |
| 3710 | { |
| 3711 | SortSupport sortKey = state->sortKeys; |
| 3712 | HeapTuple ltup; |
| 3713 | HeapTuple rtup; |
| 3714 | TupleDesc tupDesc; |
| 3715 | int nkey; |
| 3716 | int32 compare; |
| 3717 | Datum datum1, |
| 3718 | datum2; |
| 3719 | bool isnull1, |
| 3720 | isnull2; |
| 3721 | AttrNumber leading = state->indexInfo->ii_IndexAttrNumbers[0]; |
| 3722 | |
| 3723 | /* Be prepared to compare additional sort keys */ |
| 3724 | ltup = (HeapTuple) a->tuple; |
| 3725 | rtup = (HeapTuple) b->tuple; |
| 3726 | tupDesc = state->tupDesc; |
| 3727 | |
| 3728 | /* Compare the leading sort key, if it's simple */ |
| 3729 | if (leading != 0) |
| 3730 | { |
| 3731 | compare = ApplySortComparator(a->datum1, a->isnull1, |
| 3732 | b->datum1, b->isnull1, |
| 3733 | sortKey); |
| 3734 | if (compare != 0) |
| 3735 | return compare; |
| 3736 | |
| 3737 | if (sortKey->abbrev_converter) |
| 3738 | { |
| 3739 | datum1 = heap_getattr(ltup, leading, tupDesc, &isnull1); |
| 3740 | datum2 = heap_getattr(rtup, leading, tupDesc, &isnull2); |
| 3741 | |
| 3742 | compare = ApplySortAbbrevFullComparator(datum1, isnull1, |
| 3743 | datum2, isnull2, |
| 3744 | sortKey); |
| 3745 | } |
| 3746 | if (compare != 0 || state->nKeys == 1) |
| 3747 | return compare; |
| 3748 | /* Compare additional columns the hard way */ |
| 3749 | sortKey++; |
| 3750 | nkey = 1; |
| 3751 | } |
| 3752 | else |
| 3753 | { |
| 3754 | /* Must compare all keys the hard way */ |
| 3755 | nkey = 0; |
| 3756 | } |
| 3757 | |
| 3758 | if (state->indexInfo->ii_Expressions == NULL) |
| 3759 | { |
| 3760 | /* If not expression index, just compare the proper heap attrs */ |
| 3761 | |
| 3762 | for (; nkey < state->nKeys; nkey++, sortKey++) |
| 3763 | { |
| 3764 | AttrNumber attno = state->indexInfo->ii_IndexAttrNumbers[nkey]; |
| 3765 | |
| 3766 | datum1 = heap_getattr(ltup, attno, tupDesc, &isnull1); |
| 3767 | datum2 = heap_getattr(rtup, attno, tupDesc, &isnull2); |
| 3768 | |
| 3769 | compare = ApplySortComparator(datum1, isnull1, |
| 3770 | datum2, isnull2, |
| 3771 | sortKey); |
| 3772 | if (compare != 0) |
| 3773 | return compare; |
| 3774 | } |
| 3775 | } |
| 3776 | else |
| 3777 | { |
| 3778 | /* |
| 3779 | * In the expression index case, compute the whole index tuple and |
| 3780 | * then compare values. It would perhaps be faster to compute only as |
| 3781 | * many columns as we need to compare, but that would require |
| 3782 | * duplicating all the logic in FormIndexDatum. |
| 3783 | */ |
| 3784 | Datum l_index_values[INDEX_MAX_KEYS]; |
| 3785 | bool l_index_isnull[INDEX_MAX_KEYS]; |
| 3786 | Datum r_index_values[INDEX_MAX_KEYS]; |
| 3787 | bool r_index_isnull[INDEX_MAX_KEYS]; |
| 3788 | TupleTableSlot *ecxt_scantuple; |
| 3789 | |
| 3790 | /* Reset context each time to prevent memory leakage */ |
| 3791 | ResetPerTupleExprContext(state->estate); |
| 3792 | |
| 3793 | ecxt_scantuple = GetPerTupleExprContext(state->estate)->ecxt_scantuple; |
| 3794 | |
| 3795 | ExecStoreHeapTuple(ltup, ecxt_scantuple, false); |
| 3796 | FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate, |
| 3797 | l_index_values, l_index_isnull); |
| 3798 | |
| 3799 | ExecStoreHeapTuple(rtup, ecxt_scantuple, false); |
| 3800 | FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate, |
| 3801 | r_index_values, r_index_isnull); |
| 3802 | |
| 3803 | for (; nkey < state->nKeys; nkey++, sortKey++) |
| 3804 | { |
| 3805 | compare = ApplySortComparator(l_index_values[nkey], |
| 3806 | l_index_isnull[nkey], |
| 3807 | r_index_values[nkey], |
| 3808 | r_index_isnull[nkey], |
| 3809 | sortKey); |
| 3810 | if (compare != 0) |
| 3811 | return compare; |
| 3812 | } |
| 3813 | } |
| 3814 | |
| 3815 | return 0; |
| 3816 | } |
| 3817 | |
| 3818 | static void |
| 3819 | copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup) |
| 3820 | { |
| 3821 | HeapTuple tuple = (HeapTuple) tup; |
| 3822 | Datum original; |
| 3823 | MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext); |
| 3824 | |
| 3825 | /* copy the tuple into sort storage */ |
| 3826 | tuple = heap_copytuple(tuple); |
| 3827 | stup->tuple = (void *) tuple; |
| 3828 | USEMEM(state, GetMemoryChunkSpace(tuple)); |
| 3829 | |
| 3830 | MemoryContextSwitchTo(oldcontext); |
| 3831 | |
| 3832 | /* |
| 3833 | * set up first-column key value, and potentially abbreviate, if it's a |
| 3834 | * simple column |
| 3835 | */ |
| 3836 | if (state->indexInfo->ii_IndexAttrNumbers[0] == 0) |
| 3837 | return; |
| 3838 | |
| 3839 | original = heap_getattr(tuple, |
| 3840 | state->indexInfo->ii_IndexAttrNumbers[0], |
| 3841 | state->tupDesc, |
| 3842 | &stup->isnull1); |
| 3843 | |
| 3844 | if (!state->sortKeys->abbrev_converter || stup->isnull1) |
| 3845 | { |
| 3846 | /* |
| 3847 | * Store ordinary Datum representation, or NULL value. If there is a |
| 3848 | * converter it won't expect NULL values, and cost model is not |
| 3849 | * required to account for NULL, so in that case we avoid calling |
| 3850 | * converter and just set datum1 to zeroed representation (to be |
| 3851 | * consistent, and to support cheap inequality tests for NULL |
| 3852 | * abbreviated keys). |
| 3853 | */ |
| 3854 | stup->datum1 = original; |
| 3855 | } |
| 3856 | else if (!consider_abort_common(state)) |
| 3857 | { |
| 3858 | /* Store abbreviated key representation */ |
| 3859 | stup->datum1 = state->sortKeys->abbrev_converter(original, |
| 3860 | state->sortKeys); |
| 3861 | } |
| 3862 | else |
| 3863 | { |
| 3864 | /* Abort abbreviation */ |
| 3865 | int i; |
| 3866 | |
| 3867 | stup->datum1 = original; |
| 3868 | |
| 3869 | /* |
| 3870 | * Set state to be consistent with never trying abbreviation. |
| 3871 | * |
| 3872 | * Alter datum1 representation in already-copied tuples, so as to |
| 3873 | * ensure a consistent representation (current tuple was just |
| 3874 | * handled). It does not matter if some dumped tuples are already |
| 3875 | * sorted on tape, since serialized tuples lack abbreviated keys |
| 3876 | * (TSS_BUILDRUNS state prevents control reaching here in any case). |
| 3877 | */ |
| 3878 | for (i = 0; i < state->memtupcount; i++) |
| 3879 | { |
| 3880 | SortTuple *mtup = &state->memtuples[i]; |
| 3881 | |
| 3882 | tuple = (HeapTuple) mtup->tuple; |
| 3883 | mtup->datum1 = heap_getattr(tuple, |
| 3884 | state->indexInfo->ii_IndexAttrNumbers[0], |
| 3885 | state->tupDesc, |
| 3886 | &mtup->isnull1); |
| 3887 | } |
| 3888 | } |
| 3889 | } |
| 3890 | |
| 3891 | static void |
| 3892 | writetup_cluster(Tuplesortstate *state, int tapenum, SortTuple *stup) |
| 3893 | { |
| 3894 | HeapTuple tuple = (HeapTuple) stup->tuple; |
| 3895 | unsigned int tuplen = tuple->t_len + sizeof(ItemPointerData) + sizeof(int); |
| 3896 | |
| 3897 | /* We need to store t_self, but not other fields of HeapTupleData */ |
| 3898 | LogicalTapeWrite(state->tapeset, tapenum, |
| 3899 | &tuplen, sizeof(tuplen)); |
| 3900 | LogicalTapeWrite(state->tapeset, tapenum, |
| 3901 | &tuple->t_self, sizeof(ItemPointerData)); |
| 3902 | LogicalTapeWrite(state->tapeset, tapenum, |
| 3903 | tuple->t_data, tuple->t_len); |
| 3904 | if (state->randomAccess) /* need trailing length word? */ |
| 3905 | LogicalTapeWrite(state->tapeset, tapenum, |
| 3906 | &tuplen, sizeof(tuplen)); |
| 3907 | |
| 3908 | if (!state->slabAllocatorUsed) |
| 3909 | { |
| 3910 | FREEMEM(state, GetMemoryChunkSpace(tuple)); |
| 3911 | heap_freetuple(tuple); |
| 3912 | } |
| 3913 | } |
| 3914 | |
| 3915 | static void |
| 3916 | readtup_cluster(Tuplesortstate *state, SortTuple *stup, |
| 3917 | int tapenum, unsigned int tuplen) |
| 3918 | { |
| 3919 | unsigned int t_len = tuplen - sizeof(ItemPointerData) - sizeof(int); |
| 3920 | HeapTuple tuple = (HeapTuple) readtup_alloc(state, |
| 3921 | t_len + HEAPTUPLESIZE); |
| 3922 | |
| 3923 | /* Reconstruct the HeapTupleData header */ |
| 3924 | tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE); |
| 3925 | tuple->t_len = t_len; |
| 3926 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 3927 | &tuple->t_self, sizeof(ItemPointerData)); |
| 3928 | /* We don't currently bother to reconstruct t_tableOid */ |
| 3929 | tuple->t_tableOid = InvalidOid; |
| 3930 | /* Read in the tuple body */ |
| 3931 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 3932 | tuple->t_data, tuple->t_len); |
| 3933 | if (state->randomAccess) /* need trailing length word? */ |
| 3934 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 3935 | &tuplen, sizeof(tuplen)); |
| 3936 | stup->tuple = (void *) tuple; |
| 3937 | /* set up first-column key value, if it's a simple column */ |
| 3938 | if (state->indexInfo->ii_IndexAttrNumbers[0] != 0) |
| 3939 | stup->datum1 = heap_getattr(tuple, |
| 3940 | state->indexInfo->ii_IndexAttrNumbers[0], |
| 3941 | state->tupDesc, |
| 3942 | &stup->isnull1); |
| 3943 | } |
| 3944 | |
| 3945 | /* |
| 3946 | * Routines specialized for IndexTuple case |
| 3947 | * |
| 3948 | * The btree and hash cases require separate comparison functions, but the |
| 3949 | * IndexTuple representation is the same so the copy/write/read support |
| 3950 | * functions can be shared. |
| 3951 | */ |
| 3952 | |
| 3953 | static int |
| 3954 | comparetup_index_btree(const SortTuple *a, const SortTuple *b, |
| 3955 | Tuplesortstate *state) |
| 3956 | { |
| 3957 | /* |
| 3958 | * This is similar to comparetup_heap(), but expects index tuples. There |
| 3959 | * is also special handling for enforcing uniqueness, and special |
| 3960 | * treatment for equal keys at the end. |
| 3961 | */ |
| 3962 | SortSupport sortKey = state->sortKeys; |
| 3963 | IndexTuple tuple1; |
| 3964 | IndexTuple tuple2; |
| 3965 | int keysz; |
| 3966 | TupleDesc tupDes; |
| 3967 | bool equal_hasnull = false; |
| 3968 | int nkey; |
| 3969 | int32 compare; |
| 3970 | Datum datum1, |
| 3971 | datum2; |
| 3972 | bool isnull1, |
| 3973 | isnull2; |
| 3974 | |
| 3975 | |
| 3976 | /* Compare the leading sort key */ |
| 3977 | compare = ApplySortComparator(a->datum1, a->isnull1, |
| 3978 | b->datum1, b->isnull1, |
| 3979 | sortKey); |
| 3980 | if (compare != 0) |
| 3981 | return compare; |
| 3982 | |
| 3983 | /* Compare additional sort keys */ |
| 3984 | tuple1 = (IndexTuple) a->tuple; |
| 3985 | tuple2 = (IndexTuple) b->tuple; |
| 3986 | keysz = state->nKeys; |
| 3987 | tupDes = RelationGetDescr(state->indexRel); |
| 3988 | |
| 3989 | if (sortKey->abbrev_converter) |
| 3990 | { |
| 3991 | datum1 = index_getattr(tuple1, 1, tupDes, &isnull1); |
| 3992 | datum2 = index_getattr(tuple2, 1, tupDes, &isnull2); |
| 3993 | |
| 3994 | compare = ApplySortAbbrevFullComparator(datum1, isnull1, |
| 3995 | datum2, isnull2, |
| 3996 | sortKey); |
| 3997 | if (compare != 0) |
| 3998 | return compare; |
| 3999 | } |
| 4000 | |
| 4001 | /* they are equal, so we only need to examine one null flag */ |
| 4002 | if (a->isnull1) |
| 4003 | equal_hasnull = true; |
| 4004 | |
| 4005 | sortKey++; |
| 4006 | for (nkey = 2; nkey <= keysz; nkey++, sortKey++) |
| 4007 | { |
| 4008 | datum1 = index_getattr(tuple1, nkey, tupDes, &isnull1); |
| 4009 | datum2 = index_getattr(tuple2, nkey, tupDes, &isnull2); |
| 4010 | |
| 4011 | compare = ApplySortComparator(datum1, isnull1, |
| 4012 | datum2, isnull2, |
| 4013 | sortKey); |
| 4014 | if (compare != 0) |
| 4015 | return compare; /* done when we find unequal attributes */ |
| 4016 | |
| 4017 | /* they are equal, so we only need to examine one null flag */ |
| 4018 | if (isnull1) |
| 4019 | equal_hasnull = true; |
| 4020 | } |
| 4021 | |
| 4022 | /* |
| 4023 | * If btree has asked us to enforce uniqueness, complain if two equal |
| 4024 | * tuples are detected (unless there was at least one NULL field). |
| 4025 | * |
| 4026 | * It is sufficient to make the test here, because if two tuples are equal |
| 4027 | * they *must* get compared at some stage of the sort --- otherwise the |
| 4028 | * sort algorithm wouldn't have checked whether one must appear before the |
| 4029 | * other. |
| 4030 | */ |
| 4031 | if (state->enforceUnique && !equal_hasnull) |
| 4032 | { |
| 4033 | Datum values[INDEX_MAX_KEYS]; |
| 4034 | bool isnull[INDEX_MAX_KEYS]; |
| 4035 | char *key_desc; |
| 4036 | |
| 4037 | /* |
| 4038 | * Some rather brain-dead implementations of qsort (such as the one in |
| 4039 | * QNX 4) will sometimes call the comparison routine to compare a |
| 4040 | * value to itself, but we always use our own implementation, which |
| 4041 | * does not. |
| 4042 | */ |
| 4043 | Assert(tuple1 != tuple2); |
| 4044 | |
| 4045 | index_deform_tuple(tuple1, tupDes, values, isnull); |
| 4046 | |
| 4047 | key_desc = BuildIndexValueDescription(state->indexRel, values, isnull); |
| 4048 | |
| 4049 | ereport(ERROR, |
| 4050 | (errcode(ERRCODE_UNIQUE_VIOLATION), |
| 4051 | errmsg("could not create unique index \"%s\"" , |
| 4052 | RelationGetRelationName(state->indexRel)), |
| 4053 | key_desc ? errdetail("Key %s is duplicated." , key_desc) : |
| 4054 | errdetail("Duplicate keys exist." ), |
| 4055 | errtableconstraint(state->heapRel, |
| 4056 | RelationGetRelationName(state->indexRel)))); |
| 4057 | } |
| 4058 | |
| 4059 | /* |
| 4060 | * If key values are equal, we sort on ItemPointer. This is required for |
| 4061 | * btree indexes, since heap TID is treated as an implicit last key |
| 4062 | * attribute in order to ensure that all keys in the index are physically |
| 4063 | * unique. |
| 4064 | */ |
| 4065 | { |
| 4066 | BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid); |
| 4067 | BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid); |
| 4068 | |
| 4069 | if (blk1 != blk2) |
| 4070 | return (blk1 < blk2) ? -1 : 1; |
| 4071 | } |
| 4072 | { |
| 4073 | OffsetNumber pos1 = ItemPointerGetOffsetNumber(&tuple1->t_tid); |
| 4074 | OffsetNumber pos2 = ItemPointerGetOffsetNumber(&tuple2->t_tid); |
| 4075 | |
| 4076 | if (pos1 != pos2) |
| 4077 | return (pos1 < pos2) ? -1 : 1; |
| 4078 | } |
| 4079 | |
| 4080 | /* ItemPointer values should never be equal */ |
| 4081 | Assert(false); |
| 4082 | |
| 4083 | return 0; |
| 4084 | } |
| 4085 | |
| 4086 | static int |
| 4087 | comparetup_index_hash(const SortTuple *a, const SortTuple *b, |
| 4088 | Tuplesortstate *state) |
| 4089 | { |
| 4090 | Bucket bucket1; |
| 4091 | Bucket bucket2; |
| 4092 | IndexTuple tuple1; |
| 4093 | IndexTuple tuple2; |
| 4094 | |
| 4095 | /* |
| 4096 | * Fetch hash keys and mask off bits we don't want to sort by. We know |
| 4097 | * that the first column of the index tuple is the hash key. |
| 4098 | */ |
| 4099 | Assert(!a->isnull1); |
| 4100 | bucket1 = _hash_hashkey2bucket(DatumGetUInt32(a->datum1), |
| 4101 | state->max_buckets, state->high_mask, |
| 4102 | state->low_mask); |
| 4103 | Assert(!b->isnull1); |
| 4104 | bucket2 = _hash_hashkey2bucket(DatumGetUInt32(b->datum1), |
| 4105 | state->max_buckets, state->high_mask, |
| 4106 | state->low_mask); |
| 4107 | if (bucket1 > bucket2) |
| 4108 | return 1; |
| 4109 | else if (bucket1 < bucket2) |
| 4110 | return -1; |
| 4111 | |
| 4112 | /* |
| 4113 | * If hash values are equal, we sort on ItemPointer. This does not affect |
| 4114 | * validity of the finished index, but it may be useful to have index |
| 4115 | * scans in physical order. |
| 4116 | */ |
| 4117 | tuple1 = (IndexTuple) a->tuple; |
| 4118 | tuple2 = (IndexTuple) b->tuple; |
| 4119 | |
| 4120 | { |
| 4121 | BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid); |
| 4122 | BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid); |
| 4123 | |
| 4124 | if (blk1 != blk2) |
| 4125 | return (blk1 < blk2) ? -1 : 1; |
| 4126 | } |
| 4127 | { |
| 4128 | OffsetNumber pos1 = ItemPointerGetOffsetNumber(&tuple1->t_tid); |
| 4129 | OffsetNumber pos2 = ItemPointerGetOffsetNumber(&tuple2->t_tid); |
| 4130 | |
| 4131 | if (pos1 != pos2) |
| 4132 | return (pos1 < pos2) ? -1 : 1; |
| 4133 | } |
| 4134 | |
| 4135 | /* ItemPointer values should never be equal */ |
| 4136 | Assert(false); |
| 4137 | |
| 4138 | return 0; |
| 4139 | } |
| 4140 | |
| 4141 | static void |
| 4142 | copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup) |
| 4143 | { |
| 4144 | IndexTuple tuple = (IndexTuple) tup; |
| 4145 | unsigned int tuplen = IndexTupleSize(tuple); |
| 4146 | IndexTuple newtuple; |
| 4147 | Datum original; |
| 4148 | |
| 4149 | /* copy the tuple into sort storage */ |
| 4150 | newtuple = (IndexTuple) MemoryContextAlloc(state->tuplecontext, tuplen); |
| 4151 | memcpy(newtuple, tuple, tuplen); |
| 4152 | USEMEM(state, GetMemoryChunkSpace(newtuple)); |
| 4153 | stup->tuple = (void *) newtuple; |
| 4154 | /* set up first-column key value */ |
| 4155 | original = index_getattr(newtuple, |
| 4156 | 1, |
| 4157 | RelationGetDescr(state->indexRel), |
| 4158 | &stup->isnull1); |
| 4159 | |
| 4160 | if (!state->sortKeys->abbrev_converter || stup->isnull1) |
| 4161 | { |
| 4162 | /* |
| 4163 | * Store ordinary Datum representation, or NULL value. If there is a |
| 4164 | * converter it won't expect NULL values, and cost model is not |
| 4165 | * required to account for NULL, so in that case we avoid calling |
| 4166 | * converter and just set datum1 to zeroed representation (to be |
| 4167 | * consistent, and to support cheap inequality tests for NULL |
| 4168 | * abbreviated keys). |
| 4169 | */ |
| 4170 | stup->datum1 = original; |
| 4171 | } |
| 4172 | else if (!consider_abort_common(state)) |
| 4173 | { |
| 4174 | /* Store abbreviated key representation */ |
| 4175 | stup->datum1 = state->sortKeys->abbrev_converter(original, |
| 4176 | state->sortKeys); |
| 4177 | } |
| 4178 | else |
| 4179 | { |
| 4180 | /* Abort abbreviation */ |
| 4181 | int i; |
| 4182 | |
| 4183 | stup->datum1 = original; |
| 4184 | |
| 4185 | /* |
| 4186 | * Set state to be consistent with never trying abbreviation. |
| 4187 | * |
| 4188 | * Alter datum1 representation in already-copied tuples, so as to |
| 4189 | * ensure a consistent representation (current tuple was just |
| 4190 | * handled). It does not matter if some dumped tuples are already |
| 4191 | * sorted on tape, since serialized tuples lack abbreviated keys |
| 4192 | * (TSS_BUILDRUNS state prevents control reaching here in any case). |
| 4193 | */ |
| 4194 | for (i = 0; i < state->memtupcount; i++) |
| 4195 | { |
| 4196 | SortTuple *mtup = &state->memtuples[i]; |
| 4197 | |
| 4198 | tuple = (IndexTuple) mtup->tuple; |
| 4199 | mtup->datum1 = index_getattr(tuple, |
| 4200 | 1, |
| 4201 | RelationGetDescr(state->indexRel), |
| 4202 | &mtup->isnull1); |
| 4203 | } |
| 4204 | } |
| 4205 | } |
| 4206 | |
| 4207 | static void |
| 4208 | writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup) |
| 4209 | { |
| 4210 | IndexTuple tuple = (IndexTuple) stup->tuple; |
| 4211 | unsigned int tuplen; |
| 4212 | |
| 4213 | tuplen = IndexTupleSize(tuple) + sizeof(tuplen); |
| 4214 | LogicalTapeWrite(state->tapeset, tapenum, |
| 4215 | (void *) &tuplen, sizeof(tuplen)); |
| 4216 | LogicalTapeWrite(state->tapeset, tapenum, |
| 4217 | (void *) tuple, IndexTupleSize(tuple)); |
| 4218 | if (state->randomAccess) /* need trailing length word? */ |
| 4219 | LogicalTapeWrite(state->tapeset, tapenum, |
| 4220 | (void *) &tuplen, sizeof(tuplen)); |
| 4221 | |
| 4222 | if (!state->slabAllocatorUsed) |
| 4223 | { |
| 4224 | FREEMEM(state, GetMemoryChunkSpace(tuple)); |
| 4225 | pfree(tuple); |
| 4226 | } |
| 4227 | } |
| 4228 | |
| 4229 | static void |
| 4230 | readtup_index(Tuplesortstate *state, SortTuple *stup, |
| 4231 | int tapenum, unsigned int len) |
| 4232 | { |
| 4233 | unsigned int tuplen = len - sizeof(unsigned int); |
| 4234 | IndexTuple tuple = (IndexTuple) readtup_alloc(state, tuplen); |
| 4235 | |
| 4236 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 4237 | tuple, tuplen); |
| 4238 | if (state->randomAccess) /* need trailing length word? */ |
| 4239 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 4240 | &tuplen, sizeof(tuplen)); |
| 4241 | stup->tuple = (void *) tuple; |
| 4242 | /* set up first-column key value */ |
| 4243 | stup->datum1 = index_getattr(tuple, |
| 4244 | 1, |
| 4245 | RelationGetDescr(state->indexRel), |
| 4246 | &stup->isnull1); |
| 4247 | } |
| 4248 | |
| 4249 | /* |
| 4250 | * Routines specialized for DatumTuple case |
| 4251 | */ |
| 4252 | |
| 4253 | static int |
| 4254 | comparetup_datum(const SortTuple *a, const SortTuple *b, Tuplesortstate *state) |
| 4255 | { |
| 4256 | int compare; |
| 4257 | |
| 4258 | compare = ApplySortComparator(a->datum1, a->isnull1, |
| 4259 | b->datum1, b->isnull1, |
| 4260 | state->sortKeys); |
| 4261 | if (compare != 0) |
| 4262 | return compare; |
| 4263 | |
| 4264 | /* if we have abbreviations, then "tuple" has the original value */ |
| 4265 | |
| 4266 | if (state->sortKeys->abbrev_converter) |
| 4267 | compare = ApplySortAbbrevFullComparator(PointerGetDatum(a->tuple), a->isnull1, |
| 4268 | PointerGetDatum(b->tuple), b->isnull1, |
| 4269 | state->sortKeys); |
| 4270 | |
| 4271 | return compare; |
| 4272 | } |
| 4273 | |
| 4274 | static void |
| 4275 | copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup) |
| 4276 | { |
| 4277 | /* Not currently needed */ |
| 4278 | elog(ERROR, "copytup_datum() should not be called" ); |
| 4279 | } |
| 4280 | |
| 4281 | static void |
| 4282 | writetup_datum(Tuplesortstate *state, int tapenum, SortTuple *stup) |
| 4283 | { |
| 4284 | void *waddr; |
| 4285 | unsigned int tuplen; |
| 4286 | unsigned int writtenlen; |
| 4287 | |
| 4288 | if (stup->isnull1) |
| 4289 | { |
| 4290 | waddr = NULL; |
| 4291 | tuplen = 0; |
| 4292 | } |
| 4293 | else if (!state->tuples) |
| 4294 | { |
| 4295 | waddr = &stup->datum1; |
| 4296 | tuplen = sizeof(Datum); |
| 4297 | } |
| 4298 | else |
| 4299 | { |
| 4300 | waddr = stup->tuple; |
| 4301 | tuplen = datumGetSize(PointerGetDatum(stup->tuple), false, state->datumTypeLen); |
| 4302 | Assert(tuplen != 0); |
| 4303 | } |
| 4304 | |
| 4305 | writtenlen = tuplen + sizeof(unsigned int); |
| 4306 | |
| 4307 | LogicalTapeWrite(state->tapeset, tapenum, |
| 4308 | (void *) &writtenlen, sizeof(writtenlen)); |
| 4309 | LogicalTapeWrite(state->tapeset, tapenum, |
| 4310 | waddr, tuplen); |
| 4311 | if (state->randomAccess) /* need trailing length word? */ |
| 4312 | LogicalTapeWrite(state->tapeset, tapenum, |
| 4313 | (void *) &writtenlen, sizeof(writtenlen)); |
| 4314 | |
| 4315 | if (!state->slabAllocatorUsed && stup->tuple) |
| 4316 | { |
| 4317 | FREEMEM(state, GetMemoryChunkSpace(stup->tuple)); |
| 4318 | pfree(stup->tuple); |
| 4319 | } |
| 4320 | } |
| 4321 | |
| 4322 | static void |
| 4323 | readtup_datum(Tuplesortstate *state, SortTuple *stup, |
| 4324 | int tapenum, unsigned int len) |
| 4325 | { |
| 4326 | unsigned int tuplen = len - sizeof(unsigned int); |
| 4327 | |
| 4328 | if (tuplen == 0) |
| 4329 | { |
| 4330 | /* it's NULL */ |
| 4331 | stup->datum1 = (Datum) 0; |
| 4332 | stup->isnull1 = true; |
| 4333 | stup->tuple = NULL; |
| 4334 | } |
| 4335 | else if (!state->tuples) |
| 4336 | { |
| 4337 | Assert(tuplen == sizeof(Datum)); |
| 4338 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 4339 | &stup->datum1, tuplen); |
| 4340 | stup->isnull1 = false; |
| 4341 | stup->tuple = NULL; |
| 4342 | } |
| 4343 | else |
| 4344 | { |
| 4345 | void *raddr = readtup_alloc(state, tuplen); |
| 4346 | |
| 4347 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 4348 | raddr, tuplen); |
| 4349 | stup->datum1 = PointerGetDatum(raddr); |
| 4350 | stup->isnull1 = false; |
| 4351 | stup->tuple = raddr; |
| 4352 | } |
| 4353 | |
| 4354 | if (state->randomAccess) /* need trailing length word? */ |
| 4355 | LogicalTapeReadExact(state->tapeset, tapenum, |
| 4356 | &tuplen, sizeof(tuplen)); |
| 4357 | } |
| 4358 | |
| 4359 | /* |
| 4360 | * Parallel sort routines |
| 4361 | */ |
| 4362 | |
| 4363 | /* |
| 4364 | * tuplesort_estimate_shared - estimate required shared memory allocation |
| 4365 | * |
| 4366 | * nWorkers is an estimate of the number of workers (it's the number that |
| 4367 | * will be requested). |
| 4368 | */ |
| 4369 | Size |
| 4370 | tuplesort_estimate_shared(int nWorkers) |
| 4371 | { |
| 4372 | Size tapesSize; |
| 4373 | |
| 4374 | Assert(nWorkers > 0); |
| 4375 | |
| 4376 | /* Make sure that BufFile shared state is MAXALIGN'd */ |
| 4377 | tapesSize = mul_size(sizeof(TapeShare), nWorkers); |
| 4378 | tapesSize = MAXALIGN(add_size(tapesSize, offsetof(Sharedsort, tapes))); |
| 4379 | |
| 4380 | return tapesSize; |
| 4381 | } |
| 4382 | |
| 4383 | /* |
| 4384 | * tuplesort_initialize_shared - initialize shared tuplesort state |
| 4385 | * |
| 4386 | * Must be called from leader process before workers are launched, to |
| 4387 | * establish state needed up-front for worker tuplesortstates. nWorkers |
| 4388 | * should match the argument passed to tuplesort_estimate_shared(). |
| 4389 | */ |
| 4390 | void |
| 4391 | tuplesort_initialize_shared(Sharedsort *shared, int nWorkers, dsm_segment *seg) |
| 4392 | { |
| 4393 | int i; |
| 4394 | |
| 4395 | Assert(nWorkers > 0); |
| 4396 | |
| 4397 | SpinLockInit(&shared->mutex); |
| 4398 | shared->currentWorker = 0; |
| 4399 | shared->workersFinished = 0; |
| 4400 | SharedFileSetInit(&shared->fileset, seg); |
| 4401 | shared->nTapes = nWorkers; |
| 4402 | for (i = 0; i < nWorkers; i++) |
| 4403 | { |
| 4404 | shared->tapes[i].firstblocknumber = 0L; |
| 4405 | } |
| 4406 | } |
| 4407 | |
| 4408 | /* |
| 4409 | * tuplesort_attach_shared - attach to shared tuplesort state |
| 4410 | * |
| 4411 | * Must be called by all worker processes. |
| 4412 | */ |
| 4413 | void |
| 4414 | tuplesort_attach_shared(Sharedsort *shared, dsm_segment *seg) |
| 4415 | { |
| 4416 | /* Attach to SharedFileSet */ |
| 4417 | SharedFileSetAttach(&shared->fileset, seg); |
| 4418 | } |
| 4419 | |
| 4420 | /* |
| 4421 | * worker_get_identifier - Assign and return ordinal identifier for worker |
| 4422 | * |
| 4423 | * The order in which these are assigned is not well defined, and should not |
| 4424 | * matter; worker numbers across parallel sort participants need only be |
| 4425 | * distinct and gapless. logtape.c requires this. |
| 4426 | * |
| 4427 | * Note that the identifiers assigned from here have no relation to |
| 4428 | * ParallelWorkerNumber number, to avoid making any assumption about |
| 4429 | * caller's requirements. However, we do follow the ParallelWorkerNumber |
| 4430 | * convention of representing a non-worker with worker number -1. This |
| 4431 | * includes the leader, as well as serial Tuplesort processes. |
| 4432 | */ |
| 4433 | static int |
| 4434 | worker_get_identifier(Tuplesortstate *state) |
| 4435 | { |
| 4436 | Sharedsort *shared = state->shared; |
| 4437 | int worker; |
| 4438 | |
| 4439 | Assert(WORKER(state)); |
| 4440 | |
| 4441 | SpinLockAcquire(&shared->mutex); |
| 4442 | worker = shared->currentWorker++; |
| 4443 | SpinLockRelease(&shared->mutex); |
| 4444 | |
| 4445 | return worker; |
| 4446 | } |
| 4447 | |
| 4448 | /* |
| 4449 | * worker_freeze_result_tape - freeze worker's result tape for leader |
| 4450 | * |
| 4451 | * This is called by workers just after the result tape has been determined, |
| 4452 | * instead of calling LogicalTapeFreeze() directly. They do so because |
| 4453 | * workers require a few additional steps over similar serial |
| 4454 | * TSS_SORTEDONTAPE external sort cases, which also happen here. The extra |
| 4455 | * steps are around freeing now unneeded resources, and representing to |
| 4456 | * leader that worker's input run is available for its merge. |
| 4457 | * |
| 4458 | * There should only be one final output run for each worker, which consists |
| 4459 | * of all tuples that were originally input into worker. |
| 4460 | */ |
| 4461 | static void |
| 4462 | worker_freeze_result_tape(Tuplesortstate *state) |
| 4463 | { |
| 4464 | Sharedsort *shared = state->shared; |
| 4465 | TapeShare output; |
| 4466 | |
| 4467 | Assert(WORKER(state)); |
| 4468 | Assert(state->result_tape != -1); |
| 4469 | Assert(state->memtupcount == 0); |
| 4470 | |
| 4471 | /* |
| 4472 | * Free most remaining memory, in case caller is sensitive to our holding |
| 4473 | * on to it. memtuples may not be a tiny merge heap at this point. |
| 4474 | */ |
| 4475 | pfree(state->memtuples); |
| 4476 | /* Be tidy */ |
| 4477 | state->memtuples = NULL; |
| 4478 | state->memtupsize = 0; |
| 4479 | |
| 4480 | /* |
| 4481 | * Parallel worker requires result tape metadata, which is to be stored in |
| 4482 | * shared memory for leader |
| 4483 | */ |
| 4484 | LogicalTapeFreeze(state->tapeset, state->result_tape, &output); |
| 4485 | |
| 4486 | /* Store properties of output tape, and update finished worker count */ |
| 4487 | SpinLockAcquire(&shared->mutex); |
| 4488 | shared->tapes[state->worker] = output; |
| 4489 | shared->workersFinished++; |
| 4490 | SpinLockRelease(&shared->mutex); |
| 4491 | } |
| 4492 | |
| 4493 | /* |
| 4494 | * worker_nomergeruns - dump memtuples in worker, without merging |
| 4495 | * |
| 4496 | * This called as an alternative to mergeruns() with a worker when no |
| 4497 | * merging is required. |
| 4498 | */ |
| 4499 | static void |
| 4500 | worker_nomergeruns(Tuplesortstate *state) |
| 4501 | { |
| 4502 | Assert(WORKER(state)); |
| 4503 | Assert(state->result_tape == -1); |
| 4504 | |
| 4505 | state->result_tape = state->tp_tapenum[state->destTape]; |
| 4506 | worker_freeze_result_tape(state); |
| 4507 | } |
| 4508 | |
| 4509 | /* |
| 4510 | * leader_takeover_tapes - create tapeset for leader from worker tapes |
| 4511 | * |
| 4512 | * So far, leader Tuplesortstate has performed no actual sorting. By now, all |
| 4513 | * sorting has occurred in workers, all of which must have already returned |
| 4514 | * from tuplesort_performsort(). |
| 4515 | * |
| 4516 | * When this returns, leader process is left in a state that is virtually |
| 4517 | * indistinguishable from it having generated runs as a serial external sort |
| 4518 | * might have. |
| 4519 | */ |
| 4520 | static void |
| 4521 | leader_takeover_tapes(Tuplesortstate *state) |
| 4522 | { |
| 4523 | Sharedsort *shared = state->shared; |
| 4524 | int nParticipants = state->nParticipants; |
| 4525 | int workersFinished; |
| 4526 | int j; |
| 4527 | |
| 4528 | Assert(LEADER(state)); |
| 4529 | Assert(nParticipants >= 1); |
| 4530 | |
| 4531 | SpinLockAcquire(&shared->mutex); |
| 4532 | workersFinished = shared->workersFinished; |
| 4533 | SpinLockRelease(&shared->mutex); |
| 4534 | |
| 4535 | if (nParticipants != workersFinished) |
| 4536 | elog(ERROR, "cannot take over tapes before all workers finish" ); |
| 4537 | |
| 4538 | /* |
| 4539 | * Create the tapeset from worker tapes, including a leader-owned tape at |
| 4540 | * the end. Parallel workers are far more expensive than logical tapes, |
| 4541 | * so the number of tapes allocated here should never be excessive. |
| 4542 | * |
| 4543 | * We still have a leader tape, though it's not possible to write to it |
| 4544 | * due to restrictions in the shared fileset infrastructure used by |
| 4545 | * logtape.c. It will never be written to in practice because |
| 4546 | * randomAccess is disallowed for parallel sorts. |
| 4547 | */ |
| 4548 | inittapestate(state, nParticipants + 1); |
| 4549 | state->tapeset = LogicalTapeSetCreate(nParticipants + 1, shared->tapes, |
| 4550 | &shared->fileset, state->worker); |
| 4551 | |
| 4552 | /* mergeruns() relies on currentRun for # of runs (in one-pass cases) */ |
| 4553 | state->currentRun = nParticipants; |
| 4554 | |
| 4555 | /* |
| 4556 | * Initialize variables of Algorithm D to be consistent with runs from |
| 4557 | * workers having been generated in the leader. |
| 4558 | * |
| 4559 | * There will always be exactly 1 run per worker, and exactly one input |
| 4560 | * tape per run, because workers always output exactly 1 run, even when |
| 4561 | * there were no input tuples for workers to sort. |
| 4562 | */ |
| 4563 | for (j = 0; j < state->maxTapes; j++) |
| 4564 | { |
| 4565 | /* One real run; no dummy runs for worker tapes */ |
| 4566 | state->tp_fib[j] = 1; |
| 4567 | state->tp_runs[j] = 1; |
| 4568 | state->tp_dummy[j] = 0; |
| 4569 | state->tp_tapenum[j] = j; |
| 4570 | } |
| 4571 | /* Leader tape gets one dummy run, and no real runs */ |
| 4572 | state->tp_fib[state->tapeRange] = 0; |
| 4573 | state->tp_runs[state->tapeRange] = 0; |
| 4574 | state->tp_dummy[state->tapeRange] = 1; |
| 4575 | |
| 4576 | state->Level = 1; |
| 4577 | state->destTape = 0; |
| 4578 | |
| 4579 | state->status = TSS_BUILDRUNS; |
| 4580 | } |
| 4581 | |
| 4582 | /* |
| 4583 | * Convenience routine to free a tuple previously loaded into sort memory |
| 4584 | */ |
| 4585 | static void |
| 4586 | free_sort_tuple(Tuplesortstate *state, SortTuple *stup) |
| 4587 | { |
| 4588 | FREEMEM(state, GetMemoryChunkSpace(stup->tuple)); |
| 4589 | pfree(stup->tuple); |
| 4590 | } |
| 4591 | |