| 1 | //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains the declarations of classes that represent "derived |
| 11 | // types". These are things like "arrays of x" or "structure of x, y, z" or |
| 12 | // "function returning x taking (y,z) as parameters", etc... |
| 13 | // |
| 14 | // The implementations of these classes live in the Type.cpp file. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #ifndef LLVM_IR_DERIVEDTYPES_H |
| 19 | #define LLVM_IR_DERIVEDTYPES_H |
| 20 | |
| 21 | #include "llvm/ADT/ArrayRef.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/StringRef.h" |
| 24 | #include "llvm/IR/Type.h" |
| 25 | #include "llvm/Support/Casting.h" |
| 26 | #include "llvm/Support/Compiler.h" |
| 27 | #include <cassert> |
| 28 | #include <cstdint> |
| 29 | |
| 30 | namespace llvm { |
| 31 | |
| 32 | class Value; |
| 33 | class APInt; |
| 34 | class LLVMContext; |
| 35 | |
| 36 | /// Class to represent integer types. Note that this class is also used to |
| 37 | /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and |
| 38 | /// Int64Ty. |
| 39 | /// Integer representation type |
| 40 | class IntegerType : public Type { |
| 41 | friend class LLVMContextImpl; |
| 42 | |
| 43 | protected: |
| 44 | explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ |
| 45 | setSubclassData(NumBits); |
| 46 | } |
| 47 | |
| 48 | public: |
| 49 | /// This enum is just used to hold constants we need for IntegerType. |
| 50 | enum { |
| 51 | MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified |
| 52 | MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified |
| 53 | ///< Note that bit width is stored in the Type classes SubclassData field |
| 54 | ///< which has 24 bits. This yields a maximum bit width of 16,777,215 |
| 55 | ///< bits. |
| 56 | }; |
| 57 | |
| 58 | /// This static method is the primary way of constructing an IntegerType. |
| 59 | /// If an IntegerType with the same NumBits value was previously instantiated, |
| 60 | /// that instance will be returned. Otherwise a new one will be created. Only |
| 61 | /// one instance with a given NumBits value is ever created. |
| 62 | /// Get or create an IntegerType instance. |
| 63 | static IntegerType *get(LLVMContext &C, unsigned NumBits); |
| 64 | |
| 65 | /// Get the number of bits in this IntegerType |
| 66 | unsigned getBitWidth() const { return getSubclassData(); } |
| 67 | |
| 68 | /// Return a bitmask with ones set for all of the bits that can be set by an |
| 69 | /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc. |
| 70 | uint64_t getBitMask() const { |
| 71 | return ~uint64_t(0UL) >> (64-getBitWidth()); |
| 72 | } |
| 73 | |
| 74 | /// Return a uint64_t with just the most significant bit set (the sign bit, if |
| 75 | /// the value is treated as a signed number). |
| 76 | uint64_t getSignBit() const { |
| 77 | return 1ULL << (getBitWidth()-1); |
| 78 | } |
| 79 | |
| 80 | /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. |
| 81 | /// @returns a bit mask with ones set for all the bits of this type. |
| 82 | /// Get a bit mask for this type. |
| 83 | APInt getMask() const; |
| 84 | |
| 85 | /// This method determines if the width of this IntegerType is a power-of-2 |
| 86 | /// in terms of 8 bit bytes. |
| 87 | /// @returns true if this is a power-of-2 byte width. |
| 88 | /// Is this a power-of-2 byte-width IntegerType ? |
| 89 | bool isPowerOf2ByteWidth() const; |
| 90 | |
| 91 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 92 | static bool classof(const Type *T) { |
| 93 | return T->getTypeID() == IntegerTyID; |
| 94 | } |
| 95 | }; |
| 96 | |
| 97 | unsigned Type::getIntegerBitWidth() const { |
| 98 | return cast<IntegerType>(this)->getBitWidth(); |
| 99 | } |
| 100 | |
| 101 | /// Class to represent function types |
| 102 | /// |
| 103 | class FunctionType : public Type { |
| 104 | FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs); |
| 105 | |
| 106 | public: |
| 107 | FunctionType(const FunctionType &) = delete; |
| 108 | FunctionType &operator=(const FunctionType &) = delete; |
| 109 | |
| 110 | /// This static method is the primary way of constructing a FunctionType. |
| 111 | static FunctionType *get(Type *Result, |
| 112 | ArrayRef<Type*> Params, bool isVarArg); |
| 113 | |
| 114 | /// Create a FunctionType taking no parameters. |
| 115 | static FunctionType *get(Type *Result, bool isVarArg); |
| 116 | |
| 117 | /// Return true if the specified type is valid as a return type. |
| 118 | static bool isValidReturnType(Type *RetTy); |
| 119 | |
| 120 | /// Return true if the specified type is valid as an argument type. |
| 121 | static bool isValidArgumentType(Type *ArgTy); |
| 122 | |
| 123 | bool isVarArg() const { return getSubclassData()!=0; } |
| 124 | Type *getReturnType() const { return ContainedTys[0]; } |
| 125 | |
| 126 | using param_iterator = Type::subtype_iterator; |
| 127 | |
| 128 | param_iterator param_begin() const { return ContainedTys + 1; } |
| 129 | param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } |
| 130 | ArrayRef<Type *> params() const { |
| 131 | return makeArrayRef(param_begin(), param_end()); |
| 132 | } |
| 133 | |
| 134 | /// Parameter type accessors. |
| 135 | Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } |
| 136 | |
| 137 | /// Return the number of fixed parameters this function type requires. |
| 138 | /// This does not consider varargs. |
| 139 | unsigned getNumParams() const { return NumContainedTys - 1; } |
| 140 | |
| 141 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 142 | static bool classof(const Type *T) { |
| 143 | return T->getTypeID() == FunctionTyID; |
| 144 | } |
| 145 | }; |
| 146 | static_assert(alignof(FunctionType) >= alignof(Type *), |
| 147 | "Alignment sufficient for objects appended to FunctionType" ); |
| 148 | |
| 149 | bool Type::isFunctionVarArg() const { |
| 150 | return cast<FunctionType>(this)->isVarArg(); |
| 151 | } |
| 152 | |
| 153 | Type *Type::getFunctionParamType(unsigned i) const { |
| 154 | return cast<FunctionType>(this)->getParamType(i); |
| 155 | } |
| 156 | |
| 157 | unsigned Type::getFunctionNumParams() const { |
| 158 | return cast<FunctionType>(this)->getNumParams(); |
| 159 | } |
| 160 | |
| 161 | /// Common super class of ArrayType, StructType and VectorType. |
| 162 | class CompositeType : public Type { |
| 163 | protected: |
| 164 | explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {} |
| 165 | |
| 166 | public: |
| 167 | /// Given an index value into the type, return the type of the element. |
| 168 | Type *getTypeAtIndex(const Value *V) const; |
| 169 | Type *getTypeAtIndex(unsigned Idx) const; |
| 170 | bool indexValid(const Value *V) const; |
| 171 | bool indexValid(unsigned Idx) const; |
| 172 | |
| 173 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 174 | static bool classof(const Type *T) { |
| 175 | return T->getTypeID() == ArrayTyID || |
| 176 | T->getTypeID() == StructTyID || |
| 177 | T->getTypeID() == VectorTyID; |
| 178 | } |
| 179 | }; |
| 180 | |
| 181 | /// Class to represent struct types. There are two different kinds of struct |
| 182 | /// types: Literal structs and Identified structs. |
| 183 | /// |
| 184 | /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must |
| 185 | /// always have a body when created. You can get one of these by using one of |
| 186 | /// the StructType::get() forms. |
| 187 | /// |
| 188 | /// Identified structs (e.g. %foo or %42) may optionally have a name and are not |
| 189 | /// uniqued. The names for identified structs are managed at the LLVMContext |
| 190 | /// level, so there can only be a single identified struct with a given name in |
| 191 | /// a particular LLVMContext. Identified structs may also optionally be opaque |
| 192 | /// (have no body specified). You get one of these by using one of the |
| 193 | /// StructType::create() forms. |
| 194 | /// |
| 195 | /// Independent of what kind of struct you have, the body of a struct type are |
| 196 | /// laid out in memory consecutively with the elements directly one after the |
| 197 | /// other (if the struct is packed) or (if not packed) with padding between the |
| 198 | /// elements as defined by DataLayout (which is required to match what the code |
| 199 | /// generator for a target expects). |
| 200 | /// |
| 201 | class StructType : public CompositeType { |
| 202 | StructType(LLVMContext &C) : CompositeType(C, StructTyID) {} |
| 203 | |
| 204 | enum { |
| 205 | /// This is the contents of the SubClassData field. |
| 206 | SCDB_HasBody = 1, |
| 207 | SCDB_Packed = 2, |
| 208 | SCDB_IsLiteral = 4, |
| 209 | SCDB_IsSized = 8 |
| 210 | }; |
| 211 | |
| 212 | /// For a named struct that actually has a name, this is a pointer to the |
| 213 | /// symbol table entry (maintained by LLVMContext) for the struct. |
| 214 | /// This is null if the type is an literal struct or if it is a identified |
| 215 | /// type that has an empty name. |
| 216 | void *SymbolTableEntry = nullptr; |
| 217 | |
| 218 | public: |
| 219 | StructType(const StructType &) = delete; |
| 220 | StructType &operator=(const StructType &) = delete; |
| 221 | |
| 222 | /// This creates an identified struct. |
| 223 | static StructType *create(LLVMContext &Context, StringRef Name); |
| 224 | static StructType *create(LLVMContext &Context); |
| 225 | |
| 226 | static StructType *create(ArrayRef<Type *> Elements, StringRef Name, |
| 227 | bool isPacked = false); |
| 228 | static StructType *create(ArrayRef<Type *> Elements); |
| 229 | static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements, |
| 230 | StringRef Name, bool isPacked = false); |
| 231 | static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements); |
| 232 | template <class... Tys> |
| 233 | static typename std::enable_if<are_base_of<Type, Tys...>::value, |
| 234 | StructType *>::type |
| 235 | create(StringRef Name, Type *elt1, Tys *... elts) { |
| 236 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
| 237 | SmallVector<llvm::Type *, 8> StructFields({elt1, elts...}); |
| 238 | return create(StructFields, Name); |
| 239 | } |
| 240 | |
| 241 | /// This static method is the primary way to create a literal StructType. |
| 242 | static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements, |
| 243 | bool isPacked = false); |
| 244 | |
| 245 | /// Create an empty structure type. |
| 246 | static StructType *get(LLVMContext &Context, bool isPacked = false); |
| 247 | |
| 248 | /// This static method is a convenience method for creating structure types by |
| 249 | /// specifying the elements as arguments. Note that this method always returns |
| 250 | /// a non-packed struct, and requires at least one element type. |
| 251 | template <class... Tys> |
| 252 | static typename std::enable_if<are_base_of<Type, Tys...>::value, |
| 253 | StructType *>::type |
| 254 | get(Type *elt1, Tys *... elts) { |
| 255 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
| 256 | LLVMContext &Ctx = elt1->getContext(); |
| 257 | SmallVector<llvm::Type *, 8> StructFields({elt1, elts...}); |
| 258 | return llvm::StructType::get(Ctx, StructFields); |
| 259 | } |
| 260 | |
| 261 | bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } |
| 262 | |
| 263 | /// Return true if this type is uniqued by structural equivalence, false if it |
| 264 | /// is a struct definition. |
| 265 | bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } |
| 266 | |
| 267 | /// Return true if this is a type with an identity that has no body specified |
| 268 | /// yet. These prints as 'opaque' in .ll files. |
| 269 | bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } |
| 270 | |
| 271 | /// isSized - Return true if this is a sized type. |
| 272 | bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const; |
| 273 | |
| 274 | /// Return true if this is a named struct that has a non-empty name. |
| 275 | bool hasName() const { return SymbolTableEntry != nullptr; } |
| 276 | |
| 277 | /// Return the name for this struct type if it has an identity. |
| 278 | /// This may return an empty string for an unnamed struct type. Do not call |
| 279 | /// this on an literal type. |
| 280 | StringRef getName() const; |
| 281 | |
| 282 | /// Change the name of this type to the specified name, or to a name with a |
| 283 | /// suffix if there is a collision. Do not call this on an literal type. |
| 284 | void setName(StringRef Name); |
| 285 | |
| 286 | /// Specify a body for an opaque identified type. |
| 287 | void setBody(ArrayRef<Type*> Elements, bool isPacked = false); |
| 288 | |
| 289 | template <typename... Tys> |
| 290 | typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type |
| 291 | setBody(Type *elt1, Tys *... elts) { |
| 292 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
| 293 | SmallVector<llvm::Type *, 8> StructFields({elt1, elts...}); |
| 294 | setBody(StructFields); |
| 295 | } |
| 296 | |
| 297 | /// Return true if the specified type is valid as a element type. |
| 298 | static bool isValidElementType(Type *ElemTy); |
| 299 | |
| 300 | // Iterator access to the elements. |
| 301 | using element_iterator = Type::subtype_iterator; |
| 302 | |
| 303 | element_iterator element_begin() const { return ContainedTys; } |
| 304 | element_iterator element_end() const { return &ContainedTys[NumContainedTys];} |
| 305 | ArrayRef<Type *> const elements() const { |
| 306 | return makeArrayRef(element_begin(), element_end()); |
| 307 | } |
| 308 | |
| 309 | /// Return true if this is layout identical to the specified struct. |
| 310 | bool isLayoutIdentical(StructType *Other) const; |
| 311 | |
| 312 | /// Random access to the elements |
| 313 | unsigned getNumElements() const { return NumContainedTys; } |
| 314 | Type *getElementType(unsigned N) const { |
| 315 | assert(N < NumContainedTys && "Element number out of range!" ); |
| 316 | return ContainedTys[N]; |
| 317 | } |
| 318 | |
| 319 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 320 | static bool classof(const Type *T) { |
| 321 | return T->getTypeID() == StructTyID; |
| 322 | } |
| 323 | }; |
| 324 | |
| 325 | StringRef Type::getStructName() const { |
| 326 | return cast<StructType>(this)->getName(); |
| 327 | } |
| 328 | |
| 329 | unsigned Type::getStructNumElements() const { |
| 330 | return cast<StructType>(this)->getNumElements(); |
| 331 | } |
| 332 | |
| 333 | Type *Type::getStructElementType(unsigned N) const { |
| 334 | return cast<StructType>(this)->getElementType(N); |
| 335 | } |
| 336 | |
| 337 | /// This is the superclass of the array and vector type classes. Both of these |
| 338 | /// represent "arrays" in memory. The array type represents a specifically sized |
| 339 | /// array, and the vector type represents a specifically sized array that allows |
| 340 | /// for use of SIMD instructions. SequentialType holds the common features of |
| 341 | /// both, which stem from the fact that both lay their components out in memory |
| 342 | /// identically. |
| 343 | class SequentialType : public CompositeType { |
| 344 | Type *ContainedType; ///< Storage for the single contained type. |
| 345 | uint64_t NumElements; |
| 346 | |
| 347 | protected: |
| 348 | SequentialType(TypeID TID, Type *ElType, uint64_t NumElements) |
| 349 | : CompositeType(ElType->getContext(), TID), ContainedType(ElType), |
| 350 | NumElements(NumElements) { |
| 351 | ContainedTys = &ContainedType; |
| 352 | NumContainedTys = 1; |
| 353 | } |
| 354 | |
| 355 | public: |
| 356 | SequentialType(const SequentialType &) = delete; |
| 357 | SequentialType &operator=(const SequentialType &) = delete; |
| 358 | |
| 359 | uint64_t getNumElements() const { return NumElements; } |
| 360 | Type *getElementType() const { return ContainedType; } |
| 361 | |
| 362 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 363 | static bool classof(const Type *T) { |
| 364 | return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID; |
| 365 | } |
| 366 | }; |
| 367 | |
| 368 | /// Class to represent array types. |
| 369 | class ArrayType : public SequentialType { |
| 370 | ArrayType(Type *ElType, uint64_t NumEl); |
| 371 | |
| 372 | public: |
| 373 | ArrayType(const ArrayType &) = delete; |
| 374 | ArrayType &operator=(const ArrayType &) = delete; |
| 375 | |
| 376 | /// This static method is the primary way to construct an ArrayType |
| 377 | static ArrayType *get(Type *ElementType, uint64_t NumElements); |
| 378 | |
| 379 | /// Return true if the specified type is valid as a element type. |
| 380 | static bool isValidElementType(Type *ElemTy); |
| 381 | |
| 382 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 383 | static bool classof(const Type *T) { |
| 384 | return T->getTypeID() == ArrayTyID; |
| 385 | } |
| 386 | }; |
| 387 | |
| 388 | uint64_t Type::getArrayNumElements() const { |
| 389 | return cast<ArrayType>(this)->getNumElements(); |
| 390 | } |
| 391 | |
| 392 | /// Class to represent vector types. |
| 393 | class VectorType : public SequentialType { |
| 394 | VectorType(Type *ElType, unsigned NumEl); |
| 395 | |
| 396 | public: |
| 397 | VectorType(const VectorType &) = delete; |
| 398 | VectorType &operator=(const VectorType &) = delete; |
| 399 | |
| 400 | /// This static method is the primary way to construct an VectorType. |
| 401 | static VectorType *get(Type *ElementType, unsigned NumElements); |
| 402 | |
| 403 | /// This static method gets a VectorType with the same number of elements as |
| 404 | /// the input type, and the element type is an integer type of the same width |
| 405 | /// as the input element type. |
| 406 | static VectorType *getInteger(VectorType *VTy) { |
| 407 | unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| 408 | assert(EltBits && "Element size must be of a non-zero size" ); |
| 409 | Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); |
| 410 | return VectorType::get(EltTy, VTy->getNumElements()); |
| 411 | } |
| 412 | |
| 413 | /// This static method is like getInteger except that the element types are |
| 414 | /// twice as wide as the elements in the input type. |
| 415 | static VectorType *getExtendedElementVectorType(VectorType *VTy) { |
| 416 | unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| 417 | Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2); |
| 418 | return VectorType::get(EltTy, VTy->getNumElements()); |
| 419 | } |
| 420 | |
| 421 | /// This static method is like getInteger except that the element types are |
| 422 | /// half as wide as the elements in the input type. |
| 423 | static VectorType *getTruncatedElementVectorType(VectorType *VTy) { |
| 424 | unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| 425 | assert((EltBits & 1) == 0 && |
| 426 | "Cannot truncate vector element with odd bit-width" ); |
| 427 | Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); |
| 428 | return VectorType::get(EltTy, VTy->getNumElements()); |
| 429 | } |
| 430 | |
| 431 | /// This static method returns a VectorType with half as many elements as the |
| 432 | /// input type and the same element type. |
| 433 | static VectorType *getHalfElementsVectorType(VectorType *VTy) { |
| 434 | unsigned NumElts = VTy->getNumElements(); |
| 435 | assert ((NumElts & 1) == 0 && |
| 436 | "Cannot halve vector with odd number of elements." ); |
| 437 | return VectorType::get(VTy->getElementType(), NumElts/2); |
| 438 | } |
| 439 | |
| 440 | /// This static method returns a VectorType with twice as many elements as the |
| 441 | /// input type and the same element type. |
| 442 | static VectorType *getDoubleElementsVectorType(VectorType *VTy) { |
| 443 | unsigned NumElts = VTy->getNumElements(); |
| 444 | return VectorType::get(VTy->getElementType(), NumElts*2); |
| 445 | } |
| 446 | |
| 447 | /// Return true if the specified type is valid as a element type. |
| 448 | static bool isValidElementType(Type *ElemTy); |
| 449 | |
| 450 | /// Return the number of bits in the Vector type. |
| 451 | /// Returns zero when the vector is a vector of pointers. |
| 452 | unsigned getBitWidth() const { |
| 453 | return getNumElements() * getElementType()->getPrimitiveSizeInBits(); |
| 454 | } |
| 455 | |
| 456 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 457 | static bool classof(const Type *T) { |
| 458 | return T->getTypeID() == VectorTyID; |
| 459 | } |
| 460 | }; |
| 461 | |
| 462 | unsigned Type::getVectorNumElements() const { |
| 463 | return cast<VectorType>(this)->getNumElements(); |
| 464 | } |
| 465 | |
| 466 | /// Class to represent pointers. |
| 467 | class PointerType : public Type { |
| 468 | explicit PointerType(Type *ElType, unsigned AddrSpace); |
| 469 | |
| 470 | Type *PointeeTy; |
| 471 | |
| 472 | public: |
| 473 | PointerType(const PointerType &) = delete; |
| 474 | PointerType &operator=(const PointerType &) = delete; |
| 475 | |
| 476 | /// This constructs a pointer to an object of the specified type in a numbered |
| 477 | /// address space. |
| 478 | static PointerType *get(Type *ElementType, unsigned AddressSpace); |
| 479 | |
| 480 | /// This constructs a pointer to an object of the specified type in the |
| 481 | /// generic address space (address space zero). |
| 482 | static PointerType *getUnqual(Type *ElementType) { |
| 483 | return PointerType::get(ElementType, 0); |
| 484 | } |
| 485 | |
| 486 | Type *getElementType() const { return PointeeTy; } |
| 487 | |
| 488 | /// Return true if the specified type is valid as a element type. |
| 489 | static bool isValidElementType(Type *ElemTy); |
| 490 | |
| 491 | /// Return true if we can load or store from a pointer to this type. |
| 492 | static bool isLoadableOrStorableType(Type *ElemTy); |
| 493 | |
| 494 | /// Return the address space of the Pointer type. |
| 495 | inline unsigned getAddressSpace() const { return getSubclassData(); } |
| 496 | |
| 497 | /// Implement support type inquiry through isa, cast, and dyn_cast. |
| 498 | static bool classof(const Type *T) { |
| 499 | return T->getTypeID() == PointerTyID; |
| 500 | } |
| 501 | }; |
| 502 | |
| 503 | unsigned Type::getPointerAddressSpace() const { |
| 504 | return cast<PointerType>(getScalarType())->getAddressSpace(); |
| 505 | } |
| 506 | |
| 507 | } // end namespace llvm |
| 508 | |
| 509 | #endif // LLVM_IR_DERIVEDTYPES_H |
| 510 | |