1 | //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file contains the declarations of classes that represent "derived |
11 | // types". These are things like "arrays of x" or "structure of x, y, z" or |
12 | // "function returning x taking (y,z) as parameters", etc... |
13 | // |
14 | // The implementations of these classes live in the Type.cpp file. |
15 | // |
16 | //===----------------------------------------------------------------------===// |
17 | |
18 | #ifndef LLVM_IR_DERIVEDTYPES_H |
19 | #define LLVM_IR_DERIVEDTYPES_H |
20 | |
21 | #include "llvm/ADT/ArrayRef.h" |
22 | #include "llvm/ADT/STLExtras.h" |
23 | #include "llvm/ADT/StringRef.h" |
24 | #include "llvm/IR/Type.h" |
25 | #include "llvm/Support/Casting.h" |
26 | #include "llvm/Support/Compiler.h" |
27 | #include <cassert> |
28 | #include <cstdint> |
29 | |
30 | namespace llvm { |
31 | |
32 | class Value; |
33 | class APInt; |
34 | class LLVMContext; |
35 | |
36 | /// Class to represent integer types. Note that this class is also used to |
37 | /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and |
38 | /// Int64Ty. |
39 | /// Integer representation type |
40 | class IntegerType : public Type { |
41 | friend class LLVMContextImpl; |
42 | |
43 | protected: |
44 | explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ |
45 | setSubclassData(NumBits); |
46 | } |
47 | |
48 | public: |
49 | /// This enum is just used to hold constants we need for IntegerType. |
50 | enum { |
51 | MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified |
52 | MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified |
53 | ///< Note that bit width is stored in the Type classes SubclassData field |
54 | ///< which has 24 bits. This yields a maximum bit width of 16,777,215 |
55 | ///< bits. |
56 | }; |
57 | |
58 | /// This static method is the primary way of constructing an IntegerType. |
59 | /// If an IntegerType with the same NumBits value was previously instantiated, |
60 | /// that instance will be returned. Otherwise a new one will be created. Only |
61 | /// one instance with a given NumBits value is ever created. |
62 | /// Get or create an IntegerType instance. |
63 | static IntegerType *get(LLVMContext &C, unsigned NumBits); |
64 | |
65 | /// Get the number of bits in this IntegerType |
66 | unsigned getBitWidth() const { return getSubclassData(); } |
67 | |
68 | /// Return a bitmask with ones set for all of the bits that can be set by an |
69 | /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc. |
70 | uint64_t getBitMask() const { |
71 | return ~uint64_t(0UL) >> (64-getBitWidth()); |
72 | } |
73 | |
74 | /// Return a uint64_t with just the most significant bit set (the sign bit, if |
75 | /// the value is treated as a signed number). |
76 | uint64_t getSignBit() const { |
77 | return 1ULL << (getBitWidth()-1); |
78 | } |
79 | |
80 | /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. |
81 | /// @returns a bit mask with ones set for all the bits of this type. |
82 | /// Get a bit mask for this type. |
83 | APInt getMask() const; |
84 | |
85 | /// This method determines if the width of this IntegerType is a power-of-2 |
86 | /// in terms of 8 bit bytes. |
87 | /// @returns true if this is a power-of-2 byte width. |
88 | /// Is this a power-of-2 byte-width IntegerType ? |
89 | bool isPowerOf2ByteWidth() const; |
90 | |
91 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
92 | static bool classof(const Type *T) { |
93 | return T->getTypeID() == IntegerTyID; |
94 | } |
95 | }; |
96 | |
97 | unsigned Type::getIntegerBitWidth() const { |
98 | return cast<IntegerType>(this)->getBitWidth(); |
99 | } |
100 | |
101 | /// Class to represent function types |
102 | /// |
103 | class FunctionType : public Type { |
104 | FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs); |
105 | |
106 | public: |
107 | FunctionType(const FunctionType &) = delete; |
108 | FunctionType &operator=(const FunctionType &) = delete; |
109 | |
110 | /// This static method is the primary way of constructing a FunctionType. |
111 | static FunctionType *get(Type *Result, |
112 | ArrayRef<Type*> Params, bool isVarArg); |
113 | |
114 | /// Create a FunctionType taking no parameters. |
115 | static FunctionType *get(Type *Result, bool isVarArg); |
116 | |
117 | /// Return true if the specified type is valid as a return type. |
118 | static bool isValidReturnType(Type *RetTy); |
119 | |
120 | /// Return true if the specified type is valid as an argument type. |
121 | static bool isValidArgumentType(Type *ArgTy); |
122 | |
123 | bool isVarArg() const { return getSubclassData()!=0; } |
124 | Type *getReturnType() const { return ContainedTys[0]; } |
125 | |
126 | using param_iterator = Type::subtype_iterator; |
127 | |
128 | param_iterator param_begin() const { return ContainedTys + 1; } |
129 | param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } |
130 | ArrayRef<Type *> params() const { |
131 | return makeArrayRef(param_begin(), param_end()); |
132 | } |
133 | |
134 | /// Parameter type accessors. |
135 | Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } |
136 | |
137 | /// Return the number of fixed parameters this function type requires. |
138 | /// This does not consider varargs. |
139 | unsigned getNumParams() const { return NumContainedTys - 1; } |
140 | |
141 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
142 | static bool classof(const Type *T) { |
143 | return T->getTypeID() == FunctionTyID; |
144 | } |
145 | }; |
146 | static_assert(alignof(FunctionType) >= alignof(Type *), |
147 | "Alignment sufficient for objects appended to FunctionType" ); |
148 | |
149 | bool Type::isFunctionVarArg() const { |
150 | return cast<FunctionType>(this)->isVarArg(); |
151 | } |
152 | |
153 | Type *Type::getFunctionParamType(unsigned i) const { |
154 | return cast<FunctionType>(this)->getParamType(i); |
155 | } |
156 | |
157 | unsigned Type::getFunctionNumParams() const { |
158 | return cast<FunctionType>(this)->getNumParams(); |
159 | } |
160 | |
161 | /// Common super class of ArrayType, StructType and VectorType. |
162 | class CompositeType : public Type { |
163 | protected: |
164 | explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {} |
165 | |
166 | public: |
167 | /// Given an index value into the type, return the type of the element. |
168 | Type *getTypeAtIndex(const Value *V) const; |
169 | Type *getTypeAtIndex(unsigned Idx) const; |
170 | bool indexValid(const Value *V) const; |
171 | bool indexValid(unsigned Idx) const; |
172 | |
173 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
174 | static bool classof(const Type *T) { |
175 | return T->getTypeID() == ArrayTyID || |
176 | T->getTypeID() == StructTyID || |
177 | T->getTypeID() == VectorTyID; |
178 | } |
179 | }; |
180 | |
181 | /// Class to represent struct types. There are two different kinds of struct |
182 | /// types: Literal structs and Identified structs. |
183 | /// |
184 | /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must |
185 | /// always have a body when created. You can get one of these by using one of |
186 | /// the StructType::get() forms. |
187 | /// |
188 | /// Identified structs (e.g. %foo or %42) may optionally have a name and are not |
189 | /// uniqued. The names for identified structs are managed at the LLVMContext |
190 | /// level, so there can only be a single identified struct with a given name in |
191 | /// a particular LLVMContext. Identified structs may also optionally be opaque |
192 | /// (have no body specified). You get one of these by using one of the |
193 | /// StructType::create() forms. |
194 | /// |
195 | /// Independent of what kind of struct you have, the body of a struct type are |
196 | /// laid out in memory consecutively with the elements directly one after the |
197 | /// other (if the struct is packed) or (if not packed) with padding between the |
198 | /// elements as defined by DataLayout (which is required to match what the code |
199 | /// generator for a target expects). |
200 | /// |
201 | class StructType : public CompositeType { |
202 | StructType(LLVMContext &C) : CompositeType(C, StructTyID) {} |
203 | |
204 | enum { |
205 | /// This is the contents of the SubClassData field. |
206 | SCDB_HasBody = 1, |
207 | SCDB_Packed = 2, |
208 | SCDB_IsLiteral = 4, |
209 | SCDB_IsSized = 8 |
210 | }; |
211 | |
212 | /// For a named struct that actually has a name, this is a pointer to the |
213 | /// symbol table entry (maintained by LLVMContext) for the struct. |
214 | /// This is null if the type is an literal struct or if it is a identified |
215 | /// type that has an empty name. |
216 | void *SymbolTableEntry = nullptr; |
217 | |
218 | public: |
219 | StructType(const StructType &) = delete; |
220 | StructType &operator=(const StructType &) = delete; |
221 | |
222 | /// This creates an identified struct. |
223 | static StructType *create(LLVMContext &Context, StringRef Name); |
224 | static StructType *create(LLVMContext &Context); |
225 | |
226 | static StructType *create(ArrayRef<Type *> Elements, StringRef Name, |
227 | bool isPacked = false); |
228 | static StructType *create(ArrayRef<Type *> Elements); |
229 | static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements, |
230 | StringRef Name, bool isPacked = false); |
231 | static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements); |
232 | template <class... Tys> |
233 | static typename std::enable_if<are_base_of<Type, Tys...>::value, |
234 | StructType *>::type |
235 | create(StringRef Name, Type *elt1, Tys *... elts) { |
236 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
237 | SmallVector<llvm::Type *, 8> StructFields({elt1, elts...}); |
238 | return create(StructFields, Name); |
239 | } |
240 | |
241 | /// This static method is the primary way to create a literal StructType. |
242 | static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements, |
243 | bool isPacked = false); |
244 | |
245 | /// Create an empty structure type. |
246 | static StructType *get(LLVMContext &Context, bool isPacked = false); |
247 | |
248 | /// This static method is a convenience method for creating structure types by |
249 | /// specifying the elements as arguments. Note that this method always returns |
250 | /// a non-packed struct, and requires at least one element type. |
251 | template <class... Tys> |
252 | static typename std::enable_if<are_base_of<Type, Tys...>::value, |
253 | StructType *>::type |
254 | get(Type *elt1, Tys *... elts) { |
255 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
256 | LLVMContext &Ctx = elt1->getContext(); |
257 | SmallVector<llvm::Type *, 8> StructFields({elt1, elts...}); |
258 | return llvm::StructType::get(Ctx, StructFields); |
259 | } |
260 | |
261 | bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } |
262 | |
263 | /// Return true if this type is uniqued by structural equivalence, false if it |
264 | /// is a struct definition. |
265 | bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } |
266 | |
267 | /// Return true if this is a type with an identity that has no body specified |
268 | /// yet. These prints as 'opaque' in .ll files. |
269 | bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } |
270 | |
271 | /// isSized - Return true if this is a sized type. |
272 | bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const; |
273 | |
274 | /// Return true if this is a named struct that has a non-empty name. |
275 | bool hasName() const { return SymbolTableEntry != nullptr; } |
276 | |
277 | /// Return the name for this struct type if it has an identity. |
278 | /// This may return an empty string for an unnamed struct type. Do not call |
279 | /// this on an literal type. |
280 | StringRef getName() const; |
281 | |
282 | /// Change the name of this type to the specified name, or to a name with a |
283 | /// suffix if there is a collision. Do not call this on an literal type. |
284 | void setName(StringRef Name); |
285 | |
286 | /// Specify a body for an opaque identified type. |
287 | void setBody(ArrayRef<Type*> Elements, bool isPacked = false); |
288 | |
289 | template <typename... Tys> |
290 | typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type |
291 | setBody(Type *elt1, Tys *... elts) { |
292 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
293 | SmallVector<llvm::Type *, 8> StructFields({elt1, elts...}); |
294 | setBody(StructFields); |
295 | } |
296 | |
297 | /// Return true if the specified type is valid as a element type. |
298 | static bool isValidElementType(Type *ElemTy); |
299 | |
300 | // Iterator access to the elements. |
301 | using element_iterator = Type::subtype_iterator; |
302 | |
303 | element_iterator element_begin() const { return ContainedTys; } |
304 | element_iterator element_end() const { return &ContainedTys[NumContainedTys];} |
305 | ArrayRef<Type *> const elements() const { |
306 | return makeArrayRef(element_begin(), element_end()); |
307 | } |
308 | |
309 | /// Return true if this is layout identical to the specified struct. |
310 | bool isLayoutIdentical(StructType *Other) const; |
311 | |
312 | /// Random access to the elements |
313 | unsigned getNumElements() const { return NumContainedTys; } |
314 | Type *getElementType(unsigned N) const { |
315 | assert(N < NumContainedTys && "Element number out of range!" ); |
316 | return ContainedTys[N]; |
317 | } |
318 | |
319 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
320 | static bool classof(const Type *T) { |
321 | return T->getTypeID() == StructTyID; |
322 | } |
323 | }; |
324 | |
325 | StringRef Type::getStructName() const { |
326 | return cast<StructType>(this)->getName(); |
327 | } |
328 | |
329 | unsigned Type::getStructNumElements() const { |
330 | return cast<StructType>(this)->getNumElements(); |
331 | } |
332 | |
333 | Type *Type::getStructElementType(unsigned N) const { |
334 | return cast<StructType>(this)->getElementType(N); |
335 | } |
336 | |
337 | /// This is the superclass of the array and vector type classes. Both of these |
338 | /// represent "arrays" in memory. The array type represents a specifically sized |
339 | /// array, and the vector type represents a specifically sized array that allows |
340 | /// for use of SIMD instructions. SequentialType holds the common features of |
341 | /// both, which stem from the fact that both lay their components out in memory |
342 | /// identically. |
343 | class SequentialType : public CompositeType { |
344 | Type *ContainedType; ///< Storage for the single contained type. |
345 | uint64_t NumElements; |
346 | |
347 | protected: |
348 | SequentialType(TypeID TID, Type *ElType, uint64_t NumElements) |
349 | : CompositeType(ElType->getContext(), TID), ContainedType(ElType), |
350 | NumElements(NumElements) { |
351 | ContainedTys = &ContainedType; |
352 | NumContainedTys = 1; |
353 | } |
354 | |
355 | public: |
356 | SequentialType(const SequentialType &) = delete; |
357 | SequentialType &operator=(const SequentialType &) = delete; |
358 | |
359 | uint64_t getNumElements() const { return NumElements; } |
360 | Type *getElementType() const { return ContainedType; } |
361 | |
362 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
363 | static bool classof(const Type *T) { |
364 | return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID; |
365 | } |
366 | }; |
367 | |
368 | /// Class to represent array types. |
369 | class ArrayType : public SequentialType { |
370 | ArrayType(Type *ElType, uint64_t NumEl); |
371 | |
372 | public: |
373 | ArrayType(const ArrayType &) = delete; |
374 | ArrayType &operator=(const ArrayType &) = delete; |
375 | |
376 | /// This static method is the primary way to construct an ArrayType |
377 | static ArrayType *get(Type *ElementType, uint64_t NumElements); |
378 | |
379 | /// Return true if the specified type is valid as a element type. |
380 | static bool isValidElementType(Type *ElemTy); |
381 | |
382 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
383 | static bool classof(const Type *T) { |
384 | return T->getTypeID() == ArrayTyID; |
385 | } |
386 | }; |
387 | |
388 | uint64_t Type::getArrayNumElements() const { |
389 | return cast<ArrayType>(this)->getNumElements(); |
390 | } |
391 | |
392 | /// Class to represent vector types. |
393 | class VectorType : public SequentialType { |
394 | VectorType(Type *ElType, unsigned NumEl); |
395 | |
396 | public: |
397 | VectorType(const VectorType &) = delete; |
398 | VectorType &operator=(const VectorType &) = delete; |
399 | |
400 | /// This static method is the primary way to construct an VectorType. |
401 | static VectorType *get(Type *ElementType, unsigned NumElements); |
402 | |
403 | /// This static method gets a VectorType with the same number of elements as |
404 | /// the input type, and the element type is an integer type of the same width |
405 | /// as the input element type. |
406 | static VectorType *getInteger(VectorType *VTy) { |
407 | unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
408 | assert(EltBits && "Element size must be of a non-zero size" ); |
409 | Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); |
410 | return VectorType::get(EltTy, VTy->getNumElements()); |
411 | } |
412 | |
413 | /// This static method is like getInteger except that the element types are |
414 | /// twice as wide as the elements in the input type. |
415 | static VectorType *getExtendedElementVectorType(VectorType *VTy) { |
416 | unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
417 | Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2); |
418 | return VectorType::get(EltTy, VTy->getNumElements()); |
419 | } |
420 | |
421 | /// This static method is like getInteger except that the element types are |
422 | /// half as wide as the elements in the input type. |
423 | static VectorType *getTruncatedElementVectorType(VectorType *VTy) { |
424 | unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
425 | assert((EltBits & 1) == 0 && |
426 | "Cannot truncate vector element with odd bit-width" ); |
427 | Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); |
428 | return VectorType::get(EltTy, VTy->getNumElements()); |
429 | } |
430 | |
431 | /// This static method returns a VectorType with half as many elements as the |
432 | /// input type and the same element type. |
433 | static VectorType *getHalfElementsVectorType(VectorType *VTy) { |
434 | unsigned NumElts = VTy->getNumElements(); |
435 | assert ((NumElts & 1) == 0 && |
436 | "Cannot halve vector with odd number of elements." ); |
437 | return VectorType::get(VTy->getElementType(), NumElts/2); |
438 | } |
439 | |
440 | /// This static method returns a VectorType with twice as many elements as the |
441 | /// input type and the same element type. |
442 | static VectorType *getDoubleElementsVectorType(VectorType *VTy) { |
443 | unsigned NumElts = VTy->getNumElements(); |
444 | return VectorType::get(VTy->getElementType(), NumElts*2); |
445 | } |
446 | |
447 | /// Return true if the specified type is valid as a element type. |
448 | static bool isValidElementType(Type *ElemTy); |
449 | |
450 | /// Return the number of bits in the Vector type. |
451 | /// Returns zero when the vector is a vector of pointers. |
452 | unsigned getBitWidth() const { |
453 | return getNumElements() * getElementType()->getPrimitiveSizeInBits(); |
454 | } |
455 | |
456 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
457 | static bool classof(const Type *T) { |
458 | return T->getTypeID() == VectorTyID; |
459 | } |
460 | }; |
461 | |
462 | unsigned Type::getVectorNumElements() const { |
463 | return cast<VectorType>(this)->getNumElements(); |
464 | } |
465 | |
466 | /// Class to represent pointers. |
467 | class PointerType : public Type { |
468 | explicit PointerType(Type *ElType, unsigned AddrSpace); |
469 | |
470 | Type *PointeeTy; |
471 | |
472 | public: |
473 | PointerType(const PointerType &) = delete; |
474 | PointerType &operator=(const PointerType &) = delete; |
475 | |
476 | /// This constructs a pointer to an object of the specified type in a numbered |
477 | /// address space. |
478 | static PointerType *get(Type *ElementType, unsigned AddressSpace); |
479 | |
480 | /// This constructs a pointer to an object of the specified type in the |
481 | /// generic address space (address space zero). |
482 | static PointerType *getUnqual(Type *ElementType) { |
483 | return PointerType::get(ElementType, 0); |
484 | } |
485 | |
486 | Type *getElementType() const { return PointeeTy; } |
487 | |
488 | /// Return true if the specified type is valid as a element type. |
489 | static bool isValidElementType(Type *ElemTy); |
490 | |
491 | /// Return true if we can load or store from a pointer to this type. |
492 | static bool isLoadableOrStorableType(Type *ElemTy); |
493 | |
494 | /// Return the address space of the Pointer type. |
495 | inline unsigned getAddressSpace() const { return getSubclassData(); } |
496 | |
497 | /// Implement support type inquiry through isa, cast, and dyn_cast. |
498 | static bool classof(const Type *T) { |
499 | return T->getTypeID() == PointerTyID; |
500 | } |
501 | }; |
502 | |
503 | unsigned Type::getPointerAddressSpace() const { |
504 | return cast<PointerType>(getScalarType())->getAddressSpace(); |
505 | } |
506 | |
507 | } // end namespace llvm |
508 | |
509 | #endif // LLVM_IR_DERIVEDTYPES_H |
510 | |