1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | /// |
10 | /// \file |
11 | /// This file implements a class to represent arbitrary precision |
12 | /// integral constant values and operations on them. |
13 | /// |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #ifndef LLVM_ADT_APINT_H |
17 | #define LLVM_ADT_APINT_H |
18 | |
19 | #include "llvm/Support/Compiler.h" |
20 | #include "llvm/Support/MathExtras.h" |
21 | #include <cassert> |
22 | #include <climits> |
23 | #include <cstring> |
24 | #include <string> |
25 | |
26 | namespace llvm { |
27 | class FoldingSetNodeID; |
28 | class StringRef; |
29 | class hash_code; |
30 | class raw_ostream; |
31 | |
32 | template <typename T> class SmallVectorImpl; |
33 | template <typename T> class ArrayRef; |
34 | template <typename T> class Optional; |
35 | |
36 | class APInt; |
37 | |
38 | inline APInt operator-(APInt); |
39 | |
40 | //===----------------------------------------------------------------------===// |
41 | // APInt Class |
42 | //===----------------------------------------------------------------------===// |
43 | |
44 | /// Class for arbitrary precision integers. |
45 | /// |
46 | /// APInt is a functional replacement for common case unsigned integer type like |
47 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
48 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
49 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
50 | /// and methods to manipulate integer values of any bit-width. It supports both |
51 | /// the typical integer arithmetic and comparison operations as well as bitwise |
52 | /// manipulation. |
53 | /// |
54 | /// The class has several invariants worth noting: |
55 | /// * All bit, byte, and word positions are zero-based. |
56 | /// * Once the bit width is set, it doesn't change except by the Truncate, |
57 | /// SignExtend, or ZeroExtend operations. |
58 | /// * All binary operators must be on APInt instances of the same bit width. |
59 | /// Attempting to use these operators on instances with different bit |
60 | /// widths will yield an assertion. |
61 | /// * The value is stored canonically as an unsigned value. For operations |
62 | /// where it makes a difference, there are both signed and unsigned variants |
63 | /// of the operation. For example, sdiv and udiv. However, because the bit |
64 | /// widths must be the same, operations such as Mul and Add produce the same |
65 | /// results regardless of whether the values are interpreted as signed or |
66 | /// not. |
67 | /// * In general, the class tries to follow the style of computation that LLVM |
68 | /// uses in its IR. This simplifies its use for LLVM. |
69 | /// |
70 | class LLVM_NODISCARD APInt { |
71 | public: |
72 | typedef uint64_t WordType; |
73 | |
74 | /// This enum is used to hold the constants we needed for APInt. |
75 | enum : unsigned { |
76 | /// Byte size of a word. |
77 | APINT_WORD_SIZE = sizeof(WordType), |
78 | /// Bits in a word. |
79 | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT |
80 | }; |
81 | |
82 | enum class Rounding { |
83 | DOWN, |
84 | TOWARD_ZERO, |
85 | UP, |
86 | }; |
87 | |
88 | static const WordType WORDTYPE_MAX = ~WordType(0); |
89 | |
90 | private: |
91 | /// This union is used to store the integer value. When the |
92 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
93 | union { |
94 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
95 | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
96 | } U; |
97 | |
98 | unsigned BitWidth; ///< The number of bits in this APInt. |
99 | |
100 | friend struct DenseMapAPIntKeyInfo; |
101 | |
102 | friend class APSInt; |
103 | |
104 | /// Fast internal constructor |
105 | /// |
106 | /// This constructor is used only internally for speed of construction of |
107 | /// temporaries. It is unsafe for general use so it is not public. |
108 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { |
109 | U.pVal = val; |
110 | } |
111 | |
112 | /// Determine if this APInt just has one word to store value. |
113 | /// |
114 | /// \returns true if the number of bits <= 64, false otherwise. |
115 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
116 | |
117 | /// Determine which word a bit is in. |
118 | /// |
119 | /// \returns the word position for the specified bit position. |
120 | static unsigned whichWord(unsigned bitPosition) { |
121 | return bitPosition / APINT_BITS_PER_WORD; |
122 | } |
123 | |
124 | /// Determine which bit in a word a bit is in. |
125 | /// |
126 | /// \returns the bit position in a word for the specified bit position |
127 | /// in the APInt. |
128 | static unsigned whichBit(unsigned bitPosition) { |
129 | return bitPosition % APINT_BITS_PER_WORD; |
130 | } |
131 | |
132 | /// Get a single bit mask. |
133 | /// |
134 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
135 | /// This method generates and returns a uint64_t (word) mask for a single |
136 | /// bit at a specific bit position. This is used to mask the bit in the |
137 | /// corresponding word. |
138 | static uint64_t maskBit(unsigned bitPosition) { |
139 | return 1ULL << whichBit(bitPosition); |
140 | } |
141 | |
142 | /// Clear unused high order bits |
143 | /// |
144 | /// This method is used internally to clear the top "N" bits in the high order |
145 | /// word that are not used by the APInt. This is needed after the most |
146 | /// significant word is assigned a value to ensure that those bits are |
147 | /// zero'd out. |
148 | APInt &clearUnusedBits() { |
149 | // Compute how many bits are used in the final word |
150 | unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; |
151 | |
152 | // Mask out the high bits. |
153 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
154 | if (isSingleWord()) |
155 | U.VAL &= mask; |
156 | else |
157 | U.pVal[getNumWords() - 1] &= mask; |
158 | return *this; |
159 | } |
160 | |
161 | /// Get the word corresponding to a bit position |
162 | /// \returns the corresponding word for the specified bit position. |
163 | uint64_t getWord(unsigned bitPosition) const { |
164 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
165 | } |
166 | |
167 | /// Utility method to change the bit width of this APInt to new bit width, |
168 | /// allocating and/or deallocating as necessary. There is no guarantee on the |
169 | /// value of any bits upon return. Caller should populate the bits after. |
170 | void reallocate(unsigned NewBitWidth); |
171 | |
172 | /// Convert a char array into an APInt |
173 | /// |
174 | /// \param radix 2, 8, 10, 16, or 36 |
175 | /// Converts a string into a number. The string must be non-empty |
176 | /// and well-formed as a number of the given base. The bit-width |
177 | /// must be sufficient to hold the result. |
178 | /// |
179 | /// This is used by the constructors that take string arguments. |
180 | /// |
181 | /// StringRef::getAsInteger is superficially similar but (1) does |
182 | /// not assume that the string is well-formed and (2) grows the |
183 | /// result to hold the input. |
184 | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
185 | |
186 | /// An internal division function for dividing APInts. |
187 | /// |
188 | /// This is used by the toString method to divide by the radix. It simply |
189 | /// provides a more convenient form of divide for internal use since KnuthDiv |
190 | /// has specific constraints on its inputs. If those constraints are not met |
191 | /// then it provides a simpler form of divide. |
192 | static void divide(const WordType *LHS, unsigned lhsWords, |
193 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
194 | WordType *Remainder); |
195 | |
196 | /// out-of-line slow case for inline constructor |
197 | void initSlowCase(uint64_t val, bool isSigned); |
198 | |
199 | /// shared code between two array constructors |
200 | void initFromArray(ArrayRef<uint64_t> array); |
201 | |
202 | /// out-of-line slow case for inline copy constructor |
203 | void initSlowCase(const APInt &that); |
204 | |
205 | /// out-of-line slow case for shl |
206 | void shlSlowCase(unsigned ShiftAmt); |
207 | |
208 | /// out-of-line slow case for lshr. |
209 | void lshrSlowCase(unsigned ShiftAmt); |
210 | |
211 | /// out-of-line slow case for ashr. |
212 | void ashrSlowCase(unsigned ShiftAmt); |
213 | |
214 | /// out-of-line slow case for operator= |
215 | void AssignSlowCase(const APInt &RHS); |
216 | |
217 | /// out-of-line slow case for operator== |
218 | bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; |
219 | |
220 | /// out-of-line slow case for countLeadingZeros |
221 | unsigned countLeadingZerosSlowCase() const LLVM_READONLY; |
222 | |
223 | /// out-of-line slow case for countLeadingOnes. |
224 | unsigned countLeadingOnesSlowCase() const LLVM_READONLY; |
225 | |
226 | /// out-of-line slow case for countTrailingZeros. |
227 | unsigned countTrailingZerosSlowCase() const LLVM_READONLY; |
228 | |
229 | /// out-of-line slow case for countTrailingOnes |
230 | unsigned countTrailingOnesSlowCase() const LLVM_READONLY; |
231 | |
232 | /// out-of-line slow case for countPopulation |
233 | unsigned countPopulationSlowCase() const LLVM_READONLY; |
234 | |
235 | /// out-of-line slow case for intersects. |
236 | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; |
237 | |
238 | /// out-of-line slow case for isSubsetOf. |
239 | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; |
240 | |
241 | /// out-of-line slow case for setBits. |
242 | void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
243 | |
244 | /// out-of-line slow case for flipAllBits. |
245 | void flipAllBitsSlowCase(); |
246 | |
247 | /// out-of-line slow case for operator&=. |
248 | void AndAssignSlowCase(const APInt& RHS); |
249 | |
250 | /// out-of-line slow case for operator|=. |
251 | void OrAssignSlowCase(const APInt& RHS); |
252 | |
253 | /// out-of-line slow case for operator^=. |
254 | void XorAssignSlowCase(const APInt& RHS); |
255 | |
256 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
257 | /// to, or greater than RHS. |
258 | int compare(const APInt &RHS) const LLVM_READONLY; |
259 | |
260 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
261 | /// to, or greater than RHS. |
262 | int compareSigned(const APInt &RHS) const LLVM_READONLY; |
263 | |
264 | public: |
265 | /// \name Constructors |
266 | /// @{ |
267 | |
268 | /// Create a new APInt of numBits width, initialized as val. |
269 | /// |
270 | /// If isSigned is true then val is treated as if it were a signed value |
271 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
272 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
273 | /// the range of val are zero filled). |
274 | /// |
275 | /// \param numBits the bit width of the constructed APInt |
276 | /// \param val the initial value of the APInt |
277 | /// \param isSigned how to treat signedness of val |
278 | APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
279 | : BitWidth(numBits) { |
280 | assert(BitWidth && "bitwidth too small" ); |
281 | if (isSingleWord()) { |
282 | U.VAL = val; |
283 | clearUnusedBits(); |
284 | } else { |
285 | initSlowCase(val, isSigned); |
286 | } |
287 | } |
288 | |
289 | /// Construct an APInt of numBits width, initialized as bigVal[]. |
290 | /// |
291 | /// Note that bigVal.size() can be smaller or larger than the corresponding |
292 | /// bit width but any extraneous bits will be dropped. |
293 | /// |
294 | /// \param numBits the bit width of the constructed APInt |
295 | /// \param bigVal a sequence of words to form the initial value of the APInt |
296 | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
297 | |
298 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
299 | /// deprecated because this constructor is prone to ambiguity with the |
300 | /// APInt(unsigned, uint64_t, bool) constructor. |
301 | /// |
302 | /// If this overload is ever deleted, care should be taken to prevent calls |
303 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
304 | /// constructor. |
305 | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
306 | |
307 | /// Construct an APInt from a string representation. |
308 | /// |
309 | /// This constructor interprets the string \p str in the given radix. The |
310 | /// interpretation stops when the first character that is not suitable for the |
311 | /// radix is encountered, or the end of the string. Acceptable radix values |
312 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
313 | /// string to require more bits than numBits. |
314 | /// |
315 | /// \param numBits the bit width of the constructed APInt |
316 | /// \param str the string to be interpreted |
317 | /// \param radix the radix to use for the conversion |
318 | APInt(unsigned numBits, StringRef str, uint8_t radix); |
319 | |
320 | /// Simply makes *this a copy of that. |
321 | /// Copy Constructor. |
322 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
323 | if (isSingleWord()) |
324 | U.VAL = that.U.VAL; |
325 | else |
326 | initSlowCase(that); |
327 | } |
328 | |
329 | /// Move Constructor. |
330 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
331 | memcpy(&U, &that.U, sizeof(U)); |
332 | that.BitWidth = 0; |
333 | } |
334 | |
335 | /// Destructor. |
336 | ~APInt() { |
337 | if (needsCleanup()) |
338 | delete[] U.pVal; |
339 | } |
340 | |
341 | /// Default constructor that creates an uninteresting APInt |
342 | /// representing a 1-bit zero value. |
343 | /// |
344 | /// This is useful for object deserialization (pair this with the static |
345 | /// method Read). |
346 | explicit APInt() : BitWidth(1) { U.VAL = 0; } |
347 | |
348 | /// Returns whether this instance allocated memory. |
349 | bool needsCleanup() const { return !isSingleWord(); } |
350 | |
351 | /// Used to insert APInt objects, or objects that contain APInt objects, into |
352 | /// FoldingSets. |
353 | void Profile(FoldingSetNodeID &id) const; |
354 | |
355 | /// @} |
356 | /// \name Value Tests |
357 | /// @{ |
358 | |
359 | /// Determine sign of this APInt. |
360 | /// |
361 | /// This tests the high bit of this APInt to determine if it is set. |
362 | /// |
363 | /// \returns true if this APInt is negative, false otherwise |
364 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
365 | |
366 | /// Determine if this APInt Value is non-negative (>= 0) |
367 | /// |
368 | /// This tests the high bit of the APInt to determine if it is unset. |
369 | bool isNonNegative() const { return !isNegative(); } |
370 | |
371 | /// Determine if sign bit of this APInt is set. |
372 | /// |
373 | /// This tests the high bit of this APInt to determine if it is set. |
374 | /// |
375 | /// \returns true if this APInt has its sign bit set, false otherwise. |
376 | bool isSignBitSet() const { return (*this)[BitWidth-1]; } |
377 | |
378 | /// Determine if sign bit of this APInt is clear. |
379 | /// |
380 | /// This tests the high bit of this APInt to determine if it is clear. |
381 | /// |
382 | /// \returns true if this APInt has its sign bit clear, false otherwise. |
383 | bool isSignBitClear() const { return !isSignBitSet(); } |
384 | |
385 | /// Determine if this APInt Value is positive. |
386 | /// |
387 | /// This tests if the value of this APInt is positive (> 0). Note |
388 | /// that 0 is not a positive value. |
389 | /// |
390 | /// \returns true if this APInt is positive. |
391 | bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } |
392 | |
393 | /// Determine if all bits are set |
394 | /// |
395 | /// This checks to see if the value has all bits of the APInt are set or not. |
396 | bool isAllOnesValue() const { |
397 | if (isSingleWord()) |
398 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
399 | return countTrailingOnesSlowCase() == BitWidth; |
400 | } |
401 | |
402 | /// Determine if all bits are clear |
403 | /// |
404 | /// This checks to see if the value has all bits of the APInt are clear or |
405 | /// not. |
406 | bool isNullValue() const { return !*this; } |
407 | |
408 | /// Determine if this is a value of 1. |
409 | /// |
410 | /// This checks to see if the value of this APInt is one. |
411 | bool isOneValue() const { |
412 | if (isSingleWord()) |
413 | return U.VAL == 1; |
414 | return countLeadingZerosSlowCase() == BitWidth - 1; |
415 | } |
416 | |
417 | /// Determine if this is the largest unsigned value. |
418 | /// |
419 | /// This checks to see if the value of this APInt is the maximum unsigned |
420 | /// value for the APInt's bit width. |
421 | bool isMaxValue() const { return isAllOnesValue(); } |
422 | |
423 | /// Determine if this is the largest signed value. |
424 | /// |
425 | /// This checks to see if the value of this APInt is the maximum signed |
426 | /// value for the APInt's bit width. |
427 | bool isMaxSignedValue() const { |
428 | if (isSingleWord()) |
429 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
430 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
431 | } |
432 | |
433 | /// Determine if this is the smallest unsigned value. |
434 | /// |
435 | /// This checks to see if the value of this APInt is the minimum unsigned |
436 | /// value for the APInt's bit width. |
437 | bool isMinValue() const { return isNullValue(); } |
438 | |
439 | /// Determine if this is the smallest signed value. |
440 | /// |
441 | /// This checks to see if the value of this APInt is the minimum signed |
442 | /// value for the APInt's bit width. |
443 | bool isMinSignedValue() const { |
444 | if (isSingleWord()) |
445 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
446 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
447 | } |
448 | |
449 | /// Check if this APInt has an N-bits unsigned integer value. |
450 | bool isIntN(unsigned N) const { |
451 | assert(N && "N == 0 ???" ); |
452 | return getActiveBits() <= N; |
453 | } |
454 | |
455 | /// Check if this APInt has an N-bits signed integer value. |
456 | bool isSignedIntN(unsigned N) const { |
457 | assert(N && "N == 0 ???" ); |
458 | return getMinSignedBits() <= N; |
459 | } |
460 | |
461 | /// Check if this APInt's value is a power of two greater than zero. |
462 | /// |
463 | /// \returns true if the argument APInt value is a power of two > 0. |
464 | bool isPowerOf2() const { |
465 | if (isSingleWord()) |
466 | return isPowerOf2_64(U.VAL); |
467 | return countPopulationSlowCase() == 1; |
468 | } |
469 | |
470 | /// Check if the APInt's value is returned by getSignMask. |
471 | /// |
472 | /// \returns true if this is the value returned by getSignMask. |
473 | bool isSignMask() const { return isMinSignedValue(); } |
474 | |
475 | /// Convert APInt to a boolean value. |
476 | /// |
477 | /// This converts the APInt to a boolean value as a test against zero. |
478 | bool getBoolValue() const { return !!*this; } |
479 | |
480 | /// If this value is smaller than the specified limit, return it, otherwise |
481 | /// return the limit value. This causes the value to saturate to the limit. |
482 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { |
483 | return ugt(Limit) ? Limit : getZExtValue(); |
484 | } |
485 | |
486 | /// Check if the APInt consists of a repeated bit pattern. |
487 | /// |
488 | /// e.g. 0x01010101 satisfies isSplat(8). |
489 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
490 | /// width without remainder. |
491 | bool isSplat(unsigned SplatSizeInBits) const; |
492 | |
493 | /// \returns true if this APInt value is a sequence of \param numBits ones |
494 | /// starting at the least significant bit with the remainder zero. |
495 | bool isMask(unsigned numBits) const { |
496 | assert(numBits != 0 && "numBits must be non-zero" ); |
497 | assert(numBits <= BitWidth && "numBits out of range" ); |
498 | if (isSingleWord()) |
499 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
500 | unsigned Ones = countTrailingOnesSlowCase(); |
501 | return (numBits == Ones) && |
502 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
503 | } |
504 | |
505 | /// \returns true if this APInt is a non-empty sequence of ones starting at |
506 | /// the least significant bit with the remainder zero. |
507 | /// Ex. isMask(0x0000FFFFU) == true. |
508 | bool isMask() const { |
509 | if (isSingleWord()) |
510 | return isMask_64(U.VAL); |
511 | unsigned Ones = countTrailingOnesSlowCase(); |
512 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
513 | } |
514 | |
515 | /// Return true if this APInt value contains a sequence of ones with |
516 | /// the remainder zero. |
517 | bool isShiftedMask() const { |
518 | if (isSingleWord()) |
519 | return isShiftedMask_64(U.VAL); |
520 | unsigned Ones = countPopulationSlowCase(); |
521 | unsigned LeadZ = countLeadingZerosSlowCase(); |
522 | return (Ones + LeadZ + countTrailingZeros()) == BitWidth; |
523 | } |
524 | |
525 | /// @} |
526 | /// \name Value Generators |
527 | /// @{ |
528 | |
529 | /// Gets maximum unsigned value of APInt for specific bit width. |
530 | static APInt getMaxValue(unsigned numBits) { |
531 | return getAllOnesValue(numBits); |
532 | } |
533 | |
534 | /// Gets maximum signed value of APInt for a specific bit width. |
535 | static APInt getSignedMaxValue(unsigned numBits) { |
536 | APInt API = getAllOnesValue(numBits); |
537 | API.clearBit(numBits - 1); |
538 | return API; |
539 | } |
540 | |
541 | /// Gets minimum unsigned value of APInt for a specific bit width. |
542 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
543 | |
544 | /// Gets minimum signed value of APInt for a specific bit width. |
545 | static APInt getSignedMinValue(unsigned numBits) { |
546 | APInt API(numBits, 0); |
547 | API.setBit(numBits - 1); |
548 | return API; |
549 | } |
550 | |
551 | /// Get the SignMask for a specific bit width. |
552 | /// |
553 | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
554 | /// readability when we want to get a SignMask. |
555 | static APInt getSignMask(unsigned BitWidth) { |
556 | return getSignedMinValue(BitWidth); |
557 | } |
558 | |
559 | /// Get the all-ones value. |
560 | /// |
561 | /// \returns the all-ones value for an APInt of the specified bit-width. |
562 | static APInt getAllOnesValue(unsigned numBits) { |
563 | return APInt(numBits, WORDTYPE_MAX, true); |
564 | } |
565 | |
566 | /// Get the '0' value. |
567 | /// |
568 | /// \returns the '0' value for an APInt of the specified bit-width. |
569 | static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } |
570 | |
571 | /// Compute an APInt containing numBits highbits from this APInt. |
572 | /// |
573 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
574 | /// the low bits and right shift to the least significant bit. |
575 | /// |
576 | /// \returns the high "numBits" bits of this APInt. |
577 | APInt getHiBits(unsigned numBits) const; |
578 | |
579 | /// Compute an APInt containing numBits lowbits from this APInt. |
580 | /// |
581 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
582 | /// the high bits. |
583 | /// |
584 | /// \returns the low "numBits" bits of this APInt. |
585 | APInt getLoBits(unsigned numBits) const; |
586 | |
587 | /// Return an APInt with exactly one bit set in the result. |
588 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
589 | APInt Res(numBits, 0); |
590 | Res.setBit(BitNo); |
591 | return Res; |
592 | } |
593 | |
594 | /// Get a value with a block of bits set. |
595 | /// |
596 | /// Constructs an APInt value that has a contiguous range of bits set. The |
597 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
598 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
599 | /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For |
600 | /// example, with parameters (32, 28, 4), you would get 0xF000000F. |
601 | /// |
602 | /// \param numBits the intended bit width of the result |
603 | /// \param loBit the index of the lowest bit set. |
604 | /// \param hiBit the index of the highest bit set. |
605 | /// |
606 | /// \returns An APInt value with the requested bits set. |
607 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
608 | APInt Res(numBits, 0); |
609 | Res.setBits(loBit, hiBit); |
610 | return Res; |
611 | } |
612 | |
613 | /// Get a value with upper bits starting at loBit set. |
614 | /// |
615 | /// Constructs an APInt value that has a contiguous range of bits set. The |
616 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
617 | /// bits will be zero. For example, with parameters(32, 12) you would get |
618 | /// 0xFFFFF000. |
619 | /// |
620 | /// \param numBits the intended bit width of the result |
621 | /// \param loBit the index of the lowest bit to set. |
622 | /// |
623 | /// \returns An APInt value with the requested bits set. |
624 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
625 | APInt Res(numBits, 0); |
626 | Res.setBitsFrom(loBit); |
627 | return Res; |
628 | } |
629 | |
630 | /// Get a value with high bits set |
631 | /// |
632 | /// Constructs an APInt value that has the top hiBitsSet bits set. |
633 | /// |
634 | /// \param numBits the bitwidth of the result |
635 | /// \param hiBitsSet the number of high-order bits set in the result. |
636 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
637 | APInt Res(numBits, 0); |
638 | Res.setHighBits(hiBitsSet); |
639 | return Res; |
640 | } |
641 | |
642 | /// Get a value with low bits set |
643 | /// |
644 | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
645 | /// |
646 | /// \param numBits the bitwidth of the result |
647 | /// \param loBitsSet the number of low-order bits set in the result. |
648 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
649 | APInt Res(numBits, 0); |
650 | Res.setLowBits(loBitsSet); |
651 | return Res; |
652 | } |
653 | |
654 | /// Return a value containing V broadcasted over NewLen bits. |
655 | static APInt getSplat(unsigned NewLen, const APInt &V); |
656 | |
657 | /// Determine if two APInts have the same value, after zero-extending |
658 | /// one of them (if needed!) to ensure that the bit-widths match. |
659 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
660 | if (I1.getBitWidth() == I2.getBitWidth()) |
661 | return I1 == I2; |
662 | |
663 | if (I1.getBitWidth() > I2.getBitWidth()) |
664 | return I1 == I2.zext(I1.getBitWidth()); |
665 | |
666 | return I1.zext(I2.getBitWidth()) == I2; |
667 | } |
668 | |
669 | /// Overload to compute a hash_code for an APInt value. |
670 | friend hash_code hash_value(const APInt &Arg); |
671 | |
672 | /// This function returns a pointer to the internal storage of the APInt. |
673 | /// This is useful for writing out the APInt in binary form without any |
674 | /// conversions. |
675 | const uint64_t *getRawData() const { |
676 | if (isSingleWord()) |
677 | return &U.VAL; |
678 | return &U.pVal[0]; |
679 | } |
680 | |
681 | /// @} |
682 | /// \name Unary Operators |
683 | /// @{ |
684 | |
685 | /// Postfix increment operator. |
686 | /// |
687 | /// Increments *this by 1. |
688 | /// |
689 | /// \returns a new APInt value representing the original value of *this. |
690 | const APInt operator++(int) { |
691 | APInt API(*this); |
692 | ++(*this); |
693 | return API; |
694 | } |
695 | |
696 | /// Prefix increment operator. |
697 | /// |
698 | /// \returns *this incremented by one |
699 | APInt &operator++(); |
700 | |
701 | /// Postfix decrement operator. |
702 | /// |
703 | /// Decrements *this by 1. |
704 | /// |
705 | /// \returns a new APInt value representing the original value of *this. |
706 | const APInt operator--(int) { |
707 | APInt API(*this); |
708 | --(*this); |
709 | return API; |
710 | } |
711 | |
712 | /// Prefix decrement operator. |
713 | /// |
714 | /// \returns *this decremented by one. |
715 | APInt &operator--(); |
716 | |
717 | /// Logical negation operator. |
718 | /// |
719 | /// Performs logical negation operation on this APInt. |
720 | /// |
721 | /// \returns true if *this is zero, false otherwise. |
722 | bool operator!() const { |
723 | if (isSingleWord()) |
724 | return U.VAL == 0; |
725 | return countLeadingZerosSlowCase() == BitWidth; |
726 | } |
727 | |
728 | /// @} |
729 | /// \name Assignment Operators |
730 | /// @{ |
731 | |
732 | /// Copy assignment operator. |
733 | /// |
734 | /// \returns *this after assignment of RHS. |
735 | APInt &operator=(const APInt &RHS) { |
736 | // If the bitwidths are the same, we can avoid mucking with memory |
737 | if (isSingleWord() && RHS.isSingleWord()) { |
738 | U.VAL = RHS.U.VAL; |
739 | BitWidth = RHS.BitWidth; |
740 | return clearUnusedBits(); |
741 | } |
742 | |
743 | AssignSlowCase(RHS); |
744 | return *this; |
745 | } |
746 | |
747 | /// Move assignment operator. |
748 | APInt &operator=(APInt &&that) { |
749 | #ifdef _MSC_VER |
750 | // The MSVC std::shuffle implementation still does self-assignment. |
751 | if (this == &that) |
752 | return *this; |
753 | #endif |
754 | assert(this != &that && "Self-move not supported" ); |
755 | if (!isSingleWord()) |
756 | delete[] U.pVal; |
757 | |
758 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
759 | // as modified. |
760 | memcpy(&U, &that.U, sizeof(U)); |
761 | |
762 | BitWidth = that.BitWidth; |
763 | that.BitWidth = 0; |
764 | |
765 | return *this; |
766 | } |
767 | |
768 | /// Assignment operator. |
769 | /// |
770 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
771 | /// the bit width, the excess bits are truncated. If the bit width is larger |
772 | /// than 64, the value is zero filled in the unspecified high order bits. |
773 | /// |
774 | /// \returns *this after assignment of RHS value. |
775 | APInt &operator=(uint64_t RHS) { |
776 | if (isSingleWord()) { |
777 | U.VAL = RHS; |
778 | clearUnusedBits(); |
779 | } else { |
780 | U.pVal[0] = RHS; |
781 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
782 | } |
783 | return *this; |
784 | } |
785 | |
786 | /// Bitwise AND assignment operator. |
787 | /// |
788 | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
789 | /// assigned to *this. |
790 | /// |
791 | /// \returns *this after ANDing with RHS. |
792 | APInt &operator&=(const APInt &RHS) { |
793 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
794 | if (isSingleWord()) |
795 | U.VAL &= RHS.U.VAL; |
796 | else |
797 | AndAssignSlowCase(RHS); |
798 | return *this; |
799 | } |
800 | |
801 | /// Bitwise AND assignment operator. |
802 | /// |
803 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
804 | /// logically zero-extended or truncated to match the bit-width of |
805 | /// the LHS. |
806 | APInt &operator&=(uint64_t RHS) { |
807 | if (isSingleWord()) { |
808 | U.VAL &= RHS; |
809 | return *this; |
810 | } |
811 | U.pVal[0] &= RHS; |
812 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
813 | return *this; |
814 | } |
815 | |
816 | /// Bitwise OR assignment operator. |
817 | /// |
818 | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
819 | /// assigned *this; |
820 | /// |
821 | /// \returns *this after ORing with RHS. |
822 | APInt &operator|=(const APInt &RHS) { |
823 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
824 | if (isSingleWord()) |
825 | U.VAL |= RHS.U.VAL; |
826 | else |
827 | OrAssignSlowCase(RHS); |
828 | return *this; |
829 | } |
830 | |
831 | /// Bitwise OR assignment operator. |
832 | /// |
833 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
834 | /// logically zero-extended or truncated to match the bit-width of |
835 | /// the LHS. |
836 | APInt &operator|=(uint64_t RHS) { |
837 | if (isSingleWord()) { |
838 | U.VAL |= RHS; |
839 | clearUnusedBits(); |
840 | } else { |
841 | U.pVal[0] |= RHS; |
842 | } |
843 | return *this; |
844 | } |
845 | |
846 | /// Bitwise XOR assignment operator. |
847 | /// |
848 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
849 | /// assigned to *this. |
850 | /// |
851 | /// \returns *this after XORing with RHS. |
852 | APInt &operator^=(const APInt &RHS) { |
853 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
854 | if (isSingleWord()) |
855 | U.VAL ^= RHS.U.VAL; |
856 | else |
857 | XorAssignSlowCase(RHS); |
858 | return *this; |
859 | } |
860 | |
861 | /// Bitwise XOR assignment operator. |
862 | /// |
863 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
864 | /// logically zero-extended or truncated to match the bit-width of |
865 | /// the LHS. |
866 | APInt &operator^=(uint64_t RHS) { |
867 | if (isSingleWord()) { |
868 | U.VAL ^= RHS; |
869 | clearUnusedBits(); |
870 | } else { |
871 | U.pVal[0] ^= RHS; |
872 | } |
873 | return *this; |
874 | } |
875 | |
876 | /// Multiplication assignment operator. |
877 | /// |
878 | /// Multiplies this APInt by RHS and assigns the result to *this. |
879 | /// |
880 | /// \returns *this |
881 | APInt &operator*=(const APInt &RHS); |
882 | APInt &operator*=(uint64_t RHS); |
883 | |
884 | /// Addition assignment operator. |
885 | /// |
886 | /// Adds RHS to *this and assigns the result to *this. |
887 | /// |
888 | /// \returns *this |
889 | APInt &operator+=(const APInt &RHS); |
890 | APInt &operator+=(uint64_t RHS); |
891 | |
892 | /// Subtraction assignment operator. |
893 | /// |
894 | /// Subtracts RHS from *this and assigns the result to *this. |
895 | /// |
896 | /// \returns *this |
897 | APInt &operator-=(const APInt &RHS); |
898 | APInt &operator-=(uint64_t RHS); |
899 | |
900 | /// Left-shift assignment function. |
901 | /// |
902 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
903 | /// |
904 | /// \returns *this after shifting left by ShiftAmt |
905 | APInt &operator<<=(unsigned ShiftAmt) { |
906 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
907 | if (isSingleWord()) { |
908 | if (ShiftAmt == BitWidth) |
909 | U.VAL = 0; |
910 | else |
911 | U.VAL <<= ShiftAmt; |
912 | return clearUnusedBits(); |
913 | } |
914 | shlSlowCase(ShiftAmt); |
915 | return *this; |
916 | } |
917 | |
918 | /// Left-shift assignment function. |
919 | /// |
920 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
921 | /// |
922 | /// \returns *this after shifting left by ShiftAmt |
923 | APInt &operator<<=(const APInt &ShiftAmt); |
924 | |
925 | /// @} |
926 | /// \name Binary Operators |
927 | /// @{ |
928 | |
929 | /// Multiplication operator. |
930 | /// |
931 | /// Multiplies this APInt by RHS and returns the result. |
932 | APInt operator*(const APInt &RHS) const; |
933 | |
934 | /// Left logical shift operator. |
935 | /// |
936 | /// Shifts this APInt left by \p Bits and returns the result. |
937 | APInt operator<<(unsigned Bits) const { return shl(Bits); } |
938 | |
939 | /// Left logical shift operator. |
940 | /// |
941 | /// Shifts this APInt left by \p Bits and returns the result. |
942 | APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
943 | |
944 | /// Arithmetic right-shift function. |
945 | /// |
946 | /// Arithmetic right-shift this APInt by shiftAmt. |
947 | APInt ashr(unsigned ShiftAmt) const { |
948 | APInt R(*this); |
949 | R.ashrInPlace(ShiftAmt); |
950 | return R; |
951 | } |
952 | |
953 | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
954 | void ashrInPlace(unsigned ShiftAmt) { |
955 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
956 | if (isSingleWord()) { |
957 | int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); |
958 | if (ShiftAmt == BitWidth) |
959 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
960 | else |
961 | U.VAL = SExtVAL >> ShiftAmt; |
962 | clearUnusedBits(); |
963 | return; |
964 | } |
965 | ashrSlowCase(ShiftAmt); |
966 | } |
967 | |
968 | /// Logical right-shift function. |
969 | /// |
970 | /// Logical right-shift this APInt by shiftAmt. |
971 | APInt lshr(unsigned shiftAmt) const { |
972 | APInt R(*this); |
973 | R.lshrInPlace(shiftAmt); |
974 | return R; |
975 | } |
976 | |
977 | /// Logical right-shift this APInt by ShiftAmt in place. |
978 | void lshrInPlace(unsigned ShiftAmt) { |
979 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
980 | if (isSingleWord()) { |
981 | if (ShiftAmt == BitWidth) |
982 | U.VAL = 0; |
983 | else |
984 | U.VAL >>= ShiftAmt; |
985 | return; |
986 | } |
987 | lshrSlowCase(ShiftAmt); |
988 | } |
989 | |
990 | /// Left-shift function. |
991 | /// |
992 | /// Left-shift this APInt by shiftAmt. |
993 | APInt shl(unsigned shiftAmt) const { |
994 | APInt R(*this); |
995 | R <<= shiftAmt; |
996 | return R; |
997 | } |
998 | |
999 | /// Rotate left by rotateAmt. |
1000 | APInt rotl(unsigned rotateAmt) const; |
1001 | |
1002 | /// Rotate right by rotateAmt. |
1003 | APInt rotr(unsigned rotateAmt) const; |
1004 | |
1005 | /// Arithmetic right-shift function. |
1006 | /// |
1007 | /// Arithmetic right-shift this APInt by shiftAmt. |
1008 | APInt ashr(const APInt &ShiftAmt) const { |
1009 | APInt R(*this); |
1010 | R.ashrInPlace(ShiftAmt); |
1011 | return R; |
1012 | } |
1013 | |
1014 | /// Arithmetic right-shift this APInt by shiftAmt in place. |
1015 | void ashrInPlace(const APInt &shiftAmt); |
1016 | |
1017 | /// Logical right-shift function. |
1018 | /// |
1019 | /// Logical right-shift this APInt by shiftAmt. |
1020 | APInt lshr(const APInt &ShiftAmt) const { |
1021 | APInt R(*this); |
1022 | R.lshrInPlace(ShiftAmt); |
1023 | return R; |
1024 | } |
1025 | |
1026 | /// Logical right-shift this APInt by ShiftAmt in place. |
1027 | void lshrInPlace(const APInt &ShiftAmt); |
1028 | |
1029 | /// Left-shift function. |
1030 | /// |
1031 | /// Left-shift this APInt by shiftAmt. |
1032 | APInt shl(const APInt &ShiftAmt) const { |
1033 | APInt R(*this); |
1034 | R <<= ShiftAmt; |
1035 | return R; |
1036 | } |
1037 | |
1038 | /// Rotate left by rotateAmt. |
1039 | APInt rotl(const APInt &rotateAmt) const; |
1040 | |
1041 | /// Rotate right by rotateAmt. |
1042 | APInt rotr(const APInt &rotateAmt) const; |
1043 | |
1044 | /// Unsigned division operation. |
1045 | /// |
1046 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
1047 | /// RHS are treated as unsigned quantities for purposes of this division. |
1048 | /// |
1049 | /// \returns a new APInt value containing the division result, rounded towards |
1050 | /// zero. |
1051 | APInt udiv(const APInt &RHS) const; |
1052 | APInt udiv(uint64_t RHS) const; |
1053 | |
1054 | /// Signed division function for APInt. |
1055 | /// |
1056 | /// Signed divide this APInt by APInt RHS. |
1057 | /// |
1058 | /// The result is rounded towards zero. |
1059 | APInt sdiv(const APInt &RHS) const; |
1060 | APInt sdiv(int64_t RHS) const; |
1061 | |
1062 | /// Unsigned remainder operation. |
1063 | /// |
1064 | /// Perform an unsigned remainder operation on this APInt with RHS being the |
1065 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
1066 | /// of this operation. Note that this is a true remainder operation and not a |
1067 | /// modulo operation because the sign follows the sign of the dividend which |
1068 | /// is *this. |
1069 | /// |
1070 | /// \returns a new APInt value containing the remainder result |
1071 | APInt urem(const APInt &RHS) const; |
1072 | uint64_t urem(uint64_t RHS) const; |
1073 | |
1074 | /// Function for signed remainder operation. |
1075 | /// |
1076 | /// Signed remainder operation on APInt. |
1077 | APInt srem(const APInt &RHS) const; |
1078 | int64_t srem(int64_t RHS) const; |
1079 | |
1080 | /// Dual division/remainder interface. |
1081 | /// |
1082 | /// Sometimes it is convenient to divide two APInt values and obtain both the |
1083 | /// quotient and remainder. This function does both operations in the same |
1084 | /// computation making it a little more efficient. The pair of input arguments |
1085 | /// may overlap with the pair of output arguments. It is safe to call |
1086 | /// udivrem(X, Y, X, Y), for example. |
1087 | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
1088 | APInt &Remainder); |
1089 | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
1090 | uint64_t &Remainder); |
1091 | |
1092 | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
1093 | APInt &Remainder); |
1094 | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
1095 | int64_t &Remainder); |
1096 | |
1097 | // Operations that return overflow indicators. |
1098 | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
1099 | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
1100 | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
1101 | APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
1102 | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
1103 | APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
1104 | APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
1105 | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
1106 | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
1107 | |
1108 | // Operations that saturate |
1109 | APInt sadd_sat(const APInt &RHS) const; |
1110 | APInt uadd_sat(const APInt &RHS) const; |
1111 | APInt ssub_sat(const APInt &RHS) const; |
1112 | APInt usub_sat(const APInt &RHS) const; |
1113 | |
1114 | /// Array-indexing support. |
1115 | /// |
1116 | /// \returns the bit value at bitPosition |
1117 | bool operator[](unsigned bitPosition) const { |
1118 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!" ); |
1119 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
1120 | } |
1121 | |
1122 | /// @} |
1123 | /// \name Comparison Operators |
1124 | /// @{ |
1125 | |
1126 | /// Equality operator. |
1127 | /// |
1128 | /// Compares this APInt with RHS for the validity of the equality |
1129 | /// relationship. |
1130 | bool operator==(const APInt &RHS) const { |
1131 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths" ); |
1132 | if (isSingleWord()) |
1133 | return U.VAL == RHS.U.VAL; |
1134 | return EqualSlowCase(RHS); |
1135 | } |
1136 | |
1137 | /// Equality operator. |
1138 | /// |
1139 | /// Compares this APInt with a uint64_t for the validity of the equality |
1140 | /// relationship. |
1141 | /// |
1142 | /// \returns true if *this == Val |
1143 | bool operator==(uint64_t Val) const { |
1144 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
1145 | } |
1146 | |
1147 | /// Equality comparison. |
1148 | /// |
1149 | /// Compares this APInt with RHS for the validity of the equality |
1150 | /// relationship. |
1151 | /// |
1152 | /// \returns true if *this == Val |
1153 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
1154 | |
1155 | /// Inequality operator. |
1156 | /// |
1157 | /// Compares this APInt with RHS for the validity of the inequality |
1158 | /// relationship. |
1159 | /// |
1160 | /// \returns true if *this != Val |
1161 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
1162 | |
1163 | /// Inequality operator. |
1164 | /// |
1165 | /// Compares this APInt with a uint64_t for the validity of the inequality |
1166 | /// relationship. |
1167 | /// |
1168 | /// \returns true if *this != Val |
1169 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
1170 | |
1171 | /// Inequality comparison |
1172 | /// |
1173 | /// Compares this APInt with RHS for the validity of the inequality |
1174 | /// relationship. |
1175 | /// |
1176 | /// \returns true if *this != Val |
1177 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
1178 | |
1179 | /// Unsigned less than comparison |
1180 | /// |
1181 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1182 | /// the validity of the less-than relationship. |
1183 | /// |
1184 | /// \returns true if *this < RHS when both are considered unsigned. |
1185 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
1186 | |
1187 | /// Unsigned less than comparison |
1188 | /// |
1189 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1190 | /// the validity of the less-than relationship. |
1191 | /// |
1192 | /// \returns true if *this < RHS when considered unsigned. |
1193 | bool ult(uint64_t RHS) const { |
1194 | // Only need to check active bits if not a single word. |
1195 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
1196 | } |
1197 | |
1198 | /// Signed less than comparison |
1199 | /// |
1200 | /// Regards both *this and RHS as signed quantities and compares them for |
1201 | /// validity of the less-than relationship. |
1202 | /// |
1203 | /// \returns true if *this < RHS when both are considered signed. |
1204 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
1205 | |
1206 | /// Signed less than comparison |
1207 | /// |
1208 | /// Regards both *this as a signed quantity and compares it with RHS for |
1209 | /// the validity of the less-than relationship. |
1210 | /// |
1211 | /// \returns true if *this < RHS when considered signed. |
1212 | bool slt(int64_t RHS) const { |
1213 | return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() |
1214 | : getSExtValue() < RHS; |
1215 | } |
1216 | |
1217 | /// Unsigned less or equal comparison |
1218 | /// |
1219 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1220 | /// validity of the less-or-equal relationship. |
1221 | /// |
1222 | /// \returns true if *this <= RHS when both are considered unsigned. |
1223 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
1224 | |
1225 | /// Unsigned less or equal comparison |
1226 | /// |
1227 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1228 | /// the validity of the less-or-equal relationship. |
1229 | /// |
1230 | /// \returns true if *this <= RHS when considered unsigned. |
1231 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
1232 | |
1233 | /// Signed less or equal comparison |
1234 | /// |
1235 | /// Regards both *this and RHS as signed quantities and compares them for |
1236 | /// validity of the less-or-equal relationship. |
1237 | /// |
1238 | /// \returns true if *this <= RHS when both are considered signed. |
1239 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
1240 | |
1241 | /// Signed less or equal comparison |
1242 | /// |
1243 | /// Regards both *this as a signed quantity and compares it with RHS for the |
1244 | /// validity of the less-or-equal relationship. |
1245 | /// |
1246 | /// \returns true if *this <= RHS when considered signed. |
1247 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
1248 | |
1249 | /// Unsigned greather than comparison |
1250 | /// |
1251 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1252 | /// the validity of the greater-than relationship. |
1253 | /// |
1254 | /// \returns true if *this > RHS when both are considered unsigned. |
1255 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
1256 | |
1257 | /// Unsigned greater than comparison |
1258 | /// |
1259 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1260 | /// the validity of the greater-than relationship. |
1261 | /// |
1262 | /// \returns true if *this > RHS when considered unsigned. |
1263 | bool ugt(uint64_t RHS) const { |
1264 | // Only need to check active bits if not a single word. |
1265 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
1266 | } |
1267 | |
1268 | /// Signed greather than comparison |
1269 | /// |
1270 | /// Regards both *this and RHS as signed quantities and compares them for the |
1271 | /// validity of the greater-than relationship. |
1272 | /// |
1273 | /// \returns true if *this > RHS when both are considered signed. |
1274 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
1275 | |
1276 | /// Signed greater than comparison |
1277 | /// |
1278 | /// Regards both *this as a signed quantity and compares it with RHS for |
1279 | /// the validity of the greater-than relationship. |
1280 | /// |
1281 | /// \returns true if *this > RHS when considered signed. |
1282 | bool sgt(int64_t RHS) const { |
1283 | return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() |
1284 | : getSExtValue() > RHS; |
1285 | } |
1286 | |
1287 | /// Unsigned greater or equal comparison |
1288 | /// |
1289 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1290 | /// validity of the greater-or-equal relationship. |
1291 | /// |
1292 | /// \returns true if *this >= RHS when both are considered unsigned. |
1293 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
1294 | |
1295 | /// Unsigned greater or equal comparison |
1296 | /// |
1297 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1298 | /// the validity of the greater-or-equal relationship. |
1299 | /// |
1300 | /// \returns true if *this >= RHS when considered unsigned. |
1301 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
1302 | |
1303 | /// Signed greater or equal comparison |
1304 | /// |
1305 | /// Regards both *this and RHS as signed quantities and compares them for |
1306 | /// validity of the greater-or-equal relationship. |
1307 | /// |
1308 | /// \returns true if *this >= RHS when both are considered signed. |
1309 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
1310 | |
1311 | /// Signed greater or equal comparison |
1312 | /// |
1313 | /// Regards both *this as a signed quantity and compares it with RHS for |
1314 | /// the validity of the greater-or-equal relationship. |
1315 | /// |
1316 | /// \returns true if *this >= RHS when considered signed. |
1317 | bool sge(int64_t RHS) const { return !slt(RHS); } |
1318 | |
1319 | /// This operation tests if there are any pairs of corresponding bits |
1320 | /// between this APInt and RHS that are both set. |
1321 | bool intersects(const APInt &RHS) const { |
1322 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1323 | if (isSingleWord()) |
1324 | return (U.VAL & RHS.U.VAL) != 0; |
1325 | return intersectsSlowCase(RHS); |
1326 | } |
1327 | |
1328 | /// This operation checks that all bits set in this APInt are also set in RHS. |
1329 | bool isSubsetOf(const APInt &RHS) const { |
1330 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1331 | if (isSingleWord()) |
1332 | return (U.VAL & ~RHS.U.VAL) == 0; |
1333 | return isSubsetOfSlowCase(RHS); |
1334 | } |
1335 | |
1336 | /// @} |
1337 | /// \name Resizing Operators |
1338 | /// @{ |
1339 | |
1340 | /// Truncate to new width. |
1341 | /// |
1342 | /// Truncate the APInt to a specified width. It is an error to specify a width |
1343 | /// that is greater than or equal to the current width. |
1344 | APInt trunc(unsigned width) const; |
1345 | |
1346 | /// Sign extend to a new width. |
1347 | /// |
1348 | /// This operation sign extends the APInt to a new width. If the high order |
1349 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
1350 | /// It is an error to specify a width that is less than or equal to the |
1351 | /// current width. |
1352 | APInt sext(unsigned width) const; |
1353 | |
1354 | /// Zero extend to a new width. |
1355 | /// |
1356 | /// This operation zero extends the APInt to a new width. The high order bits |
1357 | /// are filled with 0 bits. It is an error to specify a width that is less |
1358 | /// than or equal to the current width. |
1359 | APInt zext(unsigned width) const; |
1360 | |
1361 | /// Sign extend or truncate to width |
1362 | /// |
1363 | /// Make this APInt have the bit width given by \p width. The value is sign |
1364 | /// extended, truncated, or left alone to make it that width. |
1365 | APInt sextOrTrunc(unsigned width) const; |
1366 | |
1367 | /// Zero extend or truncate to width |
1368 | /// |
1369 | /// Make this APInt have the bit width given by \p width. The value is zero |
1370 | /// extended, truncated, or left alone to make it that width. |
1371 | APInt zextOrTrunc(unsigned width) const; |
1372 | |
1373 | /// Sign extend or truncate to width |
1374 | /// |
1375 | /// Make this APInt have the bit width given by \p width. The value is sign |
1376 | /// extended, or left alone to make it that width. |
1377 | APInt sextOrSelf(unsigned width) const; |
1378 | |
1379 | /// Zero extend or truncate to width |
1380 | /// |
1381 | /// Make this APInt have the bit width given by \p width. The value is zero |
1382 | /// extended, or left alone to make it that width. |
1383 | APInt zextOrSelf(unsigned width) const; |
1384 | |
1385 | /// @} |
1386 | /// \name Bit Manipulation Operators |
1387 | /// @{ |
1388 | |
1389 | /// Set every bit to 1. |
1390 | void setAllBits() { |
1391 | if (isSingleWord()) |
1392 | U.VAL = WORDTYPE_MAX; |
1393 | else |
1394 | // Set all the bits in all the words. |
1395 | memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); |
1396 | // Clear the unused ones |
1397 | clearUnusedBits(); |
1398 | } |
1399 | |
1400 | /// Set a given bit to 1. |
1401 | /// |
1402 | /// Set the given bit to 1 whose position is given as "bitPosition". |
1403 | void setBit(unsigned BitPosition) { |
1404 | assert(BitPosition < BitWidth && "BitPosition out of range" ); |
1405 | WordType Mask = maskBit(BitPosition); |
1406 | if (isSingleWord()) |
1407 | U.VAL |= Mask; |
1408 | else |
1409 | U.pVal[whichWord(BitPosition)] |= Mask; |
1410 | } |
1411 | |
1412 | /// Set the sign bit to 1. |
1413 | void setSignBit() { |
1414 | setBit(BitWidth - 1); |
1415 | } |
1416 | |
1417 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1418 | void setBits(unsigned loBit, unsigned hiBit) { |
1419 | assert(hiBit <= BitWidth && "hiBit out of range" ); |
1420 | assert(loBit <= BitWidth && "loBit out of range" ); |
1421 | assert(loBit <= hiBit && "loBit greater than hiBit" ); |
1422 | if (loBit == hiBit) |
1423 | return; |
1424 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
1425 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
1426 | mask <<= loBit; |
1427 | if (isSingleWord()) |
1428 | U.VAL |= mask; |
1429 | else |
1430 | U.pVal[0] |= mask; |
1431 | } else { |
1432 | setBitsSlowCase(loBit, hiBit); |
1433 | } |
1434 | } |
1435 | |
1436 | /// Set the top bits starting from loBit. |
1437 | void setBitsFrom(unsigned loBit) { |
1438 | return setBits(loBit, BitWidth); |
1439 | } |
1440 | |
1441 | /// Set the bottom loBits bits. |
1442 | void setLowBits(unsigned loBits) { |
1443 | return setBits(0, loBits); |
1444 | } |
1445 | |
1446 | /// Set the top hiBits bits. |
1447 | void setHighBits(unsigned hiBits) { |
1448 | return setBits(BitWidth - hiBits, BitWidth); |
1449 | } |
1450 | |
1451 | /// Set every bit to 0. |
1452 | void clearAllBits() { |
1453 | if (isSingleWord()) |
1454 | U.VAL = 0; |
1455 | else |
1456 | memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); |
1457 | } |
1458 | |
1459 | /// Set a given bit to 0. |
1460 | /// |
1461 | /// Set the given bit to 0 whose position is given as "bitPosition". |
1462 | void clearBit(unsigned BitPosition) { |
1463 | assert(BitPosition < BitWidth && "BitPosition out of range" ); |
1464 | WordType Mask = ~maskBit(BitPosition); |
1465 | if (isSingleWord()) |
1466 | U.VAL &= Mask; |
1467 | else |
1468 | U.pVal[whichWord(BitPosition)] &= Mask; |
1469 | } |
1470 | |
1471 | /// Set the sign bit to 0. |
1472 | void clearSignBit() { |
1473 | clearBit(BitWidth - 1); |
1474 | } |
1475 | |
1476 | /// Toggle every bit to its opposite value. |
1477 | void flipAllBits() { |
1478 | if (isSingleWord()) { |
1479 | U.VAL ^= WORDTYPE_MAX; |
1480 | clearUnusedBits(); |
1481 | } else { |
1482 | flipAllBitsSlowCase(); |
1483 | } |
1484 | } |
1485 | |
1486 | /// Toggles a given bit to its opposite value. |
1487 | /// |
1488 | /// Toggle a given bit to its opposite value whose position is given |
1489 | /// as "bitPosition". |
1490 | void flipBit(unsigned bitPosition); |
1491 | |
1492 | /// Negate this APInt in place. |
1493 | void negate() { |
1494 | flipAllBits(); |
1495 | ++(*this); |
1496 | } |
1497 | |
1498 | /// Insert the bits from a smaller APInt starting at bitPosition. |
1499 | void insertBits(const APInt &SubBits, unsigned bitPosition); |
1500 | |
1501 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
1502 | APInt (unsigned numBits, unsigned bitPosition) const; |
1503 | |
1504 | /// @} |
1505 | /// \name Value Characterization Functions |
1506 | /// @{ |
1507 | |
1508 | /// Return the number of bits in the APInt. |
1509 | unsigned getBitWidth() const { return BitWidth; } |
1510 | |
1511 | /// Get the number of words. |
1512 | /// |
1513 | /// Here one word's bitwidth equals to that of uint64_t. |
1514 | /// |
1515 | /// \returns the number of words to hold the integer value of this APInt. |
1516 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
1517 | |
1518 | /// Get the number of words. |
1519 | /// |
1520 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
1521 | /// |
1522 | /// \returns the number of words to hold the integer value with a given bit |
1523 | /// width. |
1524 | static unsigned getNumWords(unsigned BitWidth) { |
1525 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
1526 | } |
1527 | |
1528 | /// Compute the number of active bits in the value |
1529 | /// |
1530 | /// This function returns the number of active bits which is defined as the |
1531 | /// bit width minus the number of leading zeros. This is used in several |
1532 | /// computations to see how "wide" the value is. |
1533 | unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } |
1534 | |
1535 | /// Compute the number of active words in the value of this APInt. |
1536 | /// |
1537 | /// This is used in conjunction with getActiveData to extract the raw value of |
1538 | /// the APInt. |
1539 | unsigned getActiveWords() const { |
1540 | unsigned numActiveBits = getActiveBits(); |
1541 | return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
1542 | } |
1543 | |
1544 | /// Get the minimum bit size for this signed APInt |
1545 | /// |
1546 | /// Computes the minimum bit width for this APInt while considering it to be a |
1547 | /// signed (and probably negative) value. If the value is not negative, this |
1548 | /// function returns the same value as getActiveBits()+1. Otherwise, it |
1549 | /// returns the smallest bit width that will retain the negative value. For |
1550 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
1551 | /// for -1, this function will always return 1. |
1552 | unsigned getMinSignedBits() const { |
1553 | if (isNegative()) |
1554 | return BitWidth - countLeadingOnes() + 1; |
1555 | return getActiveBits() + 1; |
1556 | } |
1557 | |
1558 | /// Get zero extended value |
1559 | /// |
1560 | /// This method attempts to return the value of this APInt as a zero extended |
1561 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
1562 | /// uint64_t. Otherwise an assertion will result. |
1563 | uint64_t getZExtValue() const { |
1564 | if (isSingleWord()) |
1565 | return U.VAL; |
1566 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t" ); |
1567 | return U.pVal[0]; |
1568 | } |
1569 | |
1570 | /// Get sign extended value |
1571 | /// |
1572 | /// This method attempts to return the value of this APInt as a sign extended |
1573 | /// int64_t. The bit width must be <= 64 or the value must fit within an |
1574 | /// int64_t. Otherwise an assertion will result. |
1575 | int64_t getSExtValue() const { |
1576 | if (isSingleWord()) |
1577 | return SignExtend64(U.VAL, BitWidth); |
1578 | assert(getMinSignedBits() <= 64 && "Too many bits for int64_t" ); |
1579 | return int64_t(U.pVal[0]); |
1580 | } |
1581 | |
1582 | /// Get bits required for string value. |
1583 | /// |
1584 | /// This method determines how many bits are required to hold the APInt |
1585 | /// equivalent of the string given by \p str. |
1586 | static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
1587 | |
1588 | /// The APInt version of the countLeadingZeros functions in |
1589 | /// MathExtras.h. |
1590 | /// |
1591 | /// It counts the number of zeros from the most significant bit to the first |
1592 | /// one bit. |
1593 | /// |
1594 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1595 | /// zeros from the most significant bit to the first one bits. |
1596 | unsigned countLeadingZeros() const { |
1597 | if (isSingleWord()) { |
1598 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
1599 | return llvm::countLeadingZeros(U.VAL) - unusedBits; |
1600 | } |
1601 | return countLeadingZerosSlowCase(); |
1602 | } |
1603 | |
1604 | /// Count the number of leading one bits. |
1605 | /// |
1606 | /// This function is an APInt version of the countLeadingOnes |
1607 | /// functions in MathExtras.h. It counts the number of ones from the most |
1608 | /// significant bit to the first zero bit. |
1609 | /// |
1610 | /// \returns 0 if the high order bit is not set, otherwise returns the number |
1611 | /// of 1 bits from the most significant to the least |
1612 | unsigned countLeadingOnes() const { |
1613 | if (isSingleWord()) |
1614 | return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
1615 | return countLeadingOnesSlowCase(); |
1616 | } |
1617 | |
1618 | /// Computes the number of leading bits of this APInt that are equal to its |
1619 | /// sign bit. |
1620 | unsigned getNumSignBits() const { |
1621 | return isNegative() ? countLeadingOnes() : countLeadingZeros(); |
1622 | } |
1623 | |
1624 | /// Count the number of trailing zero bits. |
1625 | /// |
1626 | /// This function is an APInt version of the countTrailingZeros |
1627 | /// functions in MathExtras.h. It counts the number of zeros from the least |
1628 | /// significant bit to the first set bit. |
1629 | /// |
1630 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1631 | /// zeros from the least significant bit to the first one bit. |
1632 | unsigned countTrailingZeros() const { |
1633 | if (isSingleWord()) |
1634 | return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth); |
1635 | return countTrailingZerosSlowCase(); |
1636 | } |
1637 | |
1638 | /// Count the number of trailing one bits. |
1639 | /// |
1640 | /// This function is an APInt version of the countTrailingOnes |
1641 | /// functions in MathExtras.h. It counts the number of ones from the least |
1642 | /// significant bit to the first zero bit. |
1643 | /// |
1644 | /// \returns BitWidth if the value is all ones, otherwise returns the number |
1645 | /// of ones from the least significant bit to the first zero bit. |
1646 | unsigned countTrailingOnes() const { |
1647 | if (isSingleWord()) |
1648 | return llvm::countTrailingOnes(U.VAL); |
1649 | return countTrailingOnesSlowCase(); |
1650 | } |
1651 | |
1652 | /// Count the number of bits set. |
1653 | /// |
1654 | /// This function is an APInt version of the countPopulation functions |
1655 | /// in MathExtras.h. It counts the number of 1 bits in the APInt value. |
1656 | /// |
1657 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
1658 | unsigned countPopulation() const { |
1659 | if (isSingleWord()) |
1660 | return llvm::countPopulation(U.VAL); |
1661 | return countPopulationSlowCase(); |
1662 | } |
1663 | |
1664 | /// @} |
1665 | /// \name Conversion Functions |
1666 | /// @{ |
1667 | void print(raw_ostream &OS, bool isSigned) const; |
1668 | |
1669 | /// Converts an APInt to a string and append it to Str. Str is commonly a |
1670 | /// SmallString. |
1671 | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
1672 | bool formatAsCLiteral = false) const; |
1673 | |
1674 | /// Considers the APInt to be unsigned and converts it into a string in the |
1675 | /// radix given. The radix can be 2, 8, 10 16, or 36. |
1676 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1677 | toString(Str, Radix, false, false); |
1678 | } |
1679 | |
1680 | /// Considers the APInt to be signed and converts it into a string in the |
1681 | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
1682 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1683 | toString(Str, Radix, true, false); |
1684 | } |
1685 | |
1686 | /// Return the APInt as a std::string. |
1687 | /// |
1688 | /// Note that this is an inefficient method. It is better to pass in a |
1689 | /// SmallVector/SmallString to the methods above to avoid thrashing the heap |
1690 | /// for the string. |
1691 | std::string toString(unsigned Radix, bool Signed) const; |
1692 | |
1693 | /// \returns a byte-swapped representation of this APInt Value. |
1694 | APInt byteSwap() const; |
1695 | |
1696 | /// \returns the value with the bit representation reversed of this APInt |
1697 | /// Value. |
1698 | APInt reverseBits() const; |
1699 | |
1700 | /// Converts this APInt to a double value. |
1701 | double roundToDouble(bool isSigned) const; |
1702 | |
1703 | /// Converts this unsigned APInt to a double value. |
1704 | double roundToDouble() const { return roundToDouble(false); } |
1705 | |
1706 | /// Converts this signed APInt to a double value. |
1707 | double signedRoundToDouble() const { return roundToDouble(true); } |
1708 | |
1709 | /// Converts APInt bits to a double |
1710 | /// |
1711 | /// The conversion does not do a translation from integer to double, it just |
1712 | /// re-interprets the bits as a double. Note that it is valid to do this on |
1713 | /// any bit width. Exactly 64 bits will be translated. |
1714 | double bitsToDouble() const { |
1715 | return BitsToDouble(getWord(0)); |
1716 | } |
1717 | |
1718 | /// Converts APInt bits to a double |
1719 | /// |
1720 | /// The conversion does not do a translation from integer to float, it just |
1721 | /// re-interprets the bits as a float. Note that it is valid to do this on |
1722 | /// any bit width. Exactly 32 bits will be translated. |
1723 | float bitsToFloat() const { |
1724 | return BitsToFloat(getWord(0)); |
1725 | } |
1726 | |
1727 | /// Converts a double to APInt bits. |
1728 | /// |
1729 | /// The conversion does not do a translation from double to integer, it just |
1730 | /// re-interprets the bits of the double. |
1731 | static APInt doubleToBits(double V) { |
1732 | return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); |
1733 | } |
1734 | |
1735 | /// Converts a float to APInt bits. |
1736 | /// |
1737 | /// The conversion does not do a translation from float to integer, it just |
1738 | /// re-interprets the bits of the float. |
1739 | static APInt floatToBits(float V) { |
1740 | return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); |
1741 | } |
1742 | |
1743 | /// @} |
1744 | /// \name Mathematics Operations |
1745 | /// @{ |
1746 | |
1747 | /// \returns the floor log base 2 of this APInt. |
1748 | unsigned logBase2() const { return getActiveBits() - 1; } |
1749 | |
1750 | /// \returns the ceil log base 2 of this APInt. |
1751 | unsigned ceilLogBase2() const { |
1752 | APInt temp(*this); |
1753 | --temp; |
1754 | return temp.getActiveBits(); |
1755 | } |
1756 | |
1757 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
1758 | /// |
1759 | /// NOTE: When we have a BitWidth of 1, we define: |
1760 | /// |
1761 | /// log2(0) = UINT32_MAX |
1762 | /// log2(1) = 0 |
1763 | /// |
1764 | /// to get around any mathematical concerns resulting from |
1765 | /// referencing 2 in a space where 2 does no exist. |
1766 | unsigned nearestLogBase2() const { |
1767 | // Special case when we have a bitwidth of 1. If VAL is 1, then we |
1768 | // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to |
1769 | // UINT32_MAX. |
1770 | if (BitWidth == 1) |
1771 | return U.VAL - 1; |
1772 | |
1773 | // Handle the zero case. |
1774 | if (isNullValue()) |
1775 | return UINT32_MAX; |
1776 | |
1777 | // The non-zero case is handled by computing: |
1778 | // |
1779 | // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. |
1780 | // |
1781 | // where x[i] is referring to the value of the ith bit of x. |
1782 | unsigned lg = logBase2(); |
1783 | return lg + unsigned((*this)[lg - 1]); |
1784 | } |
1785 | |
1786 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
1787 | /// otherwise |
1788 | int32_t exactLogBase2() const { |
1789 | if (!isPowerOf2()) |
1790 | return -1; |
1791 | return logBase2(); |
1792 | } |
1793 | |
1794 | /// Compute the square root |
1795 | APInt sqrt() const; |
1796 | |
1797 | /// Get the absolute value; |
1798 | /// |
1799 | /// If *this is < 0 then return -(*this), otherwise *this; |
1800 | APInt abs() const { |
1801 | if (isNegative()) |
1802 | return -(*this); |
1803 | return *this; |
1804 | } |
1805 | |
1806 | /// \returns the multiplicative inverse for a given modulo. |
1807 | APInt multiplicativeInverse(const APInt &modulo) const; |
1808 | |
1809 | /// @} |
1810 | /// \name Support for division by constant |
1811 | /// @{ |
1812 | |
1813 | /// Calculate the magic number for signed division by a constant. |
1814 | struct ms; |
1815 | ms magic() const; |
1816 | |
1817 | /// Calculate the magic number for unsigned division by a constant. |
1818 | struct mu; |
1819 | mu magicu(unsigned LeadingZeros = 0) const; |
1820 | |
1821 | /// @} |
1822 | /// \name Building-block Operations for APInt and APFloat |
1823 | /// @{ |
1824 | |
1825 | // These building block operations operate on a representation of arbitrary |
1826 | // precision, two's-complement, bignum integer values. They should be |
1827 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
1828 | // generally a pointer to the base of an array of integer parts, representing |
1829 | // an unsigned bignum, and a count of how many parts there are. |
1830 | |
1831 | /// Sets the least significant part of a bignum to the input value, and zeroes |
1832 | /// out higher parts. |
1833 | static void tcSet(WordType *, WordType, unsigned); |
1834 | |
1835 | /// Assign one bignum to another. |
1836 | static void tcAssign(WordType *, const WordType *, unsigned); |
1837 | |
1838 | /// Returns true if a bignum is zero, false otherwise. |
1839 | static bool tcIsZero(const WordType *, unsigned); |
1840 | |
1841 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
1842 | static int (const WordType *, unsigned bit); |
1843 | |
1844 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
1845 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
1846 | /// significant bit of DST. All high bits above srcBITS in DST are |
1847 | /// zero-filled. |
1848 | static void (WordType *, unsigned dstCount, |
1849 | const WordType *, unsigned srcBits, |
1850 | unsigned srcLSB); |
1851 | |
1852 | /// Set the given bit of a bignum. Zero-based. |
1853 | static void tcSetBit(WordType *, unsigned bit); |
1854 | |
1855 | /// Clear the given bit of a bignum. Zero-based. |
1856 | static void tcClearBit(WordType *, unsigned bit); |
1857 | |
1858 | /// Returns the bit number of the least or most significant set bit of a |
1859 | /// number. If the input number has no bits set -1U is returned. |
1860 | static unsigned tcLSB(const WordType *, unsigned n); |
1861 | static unsigned tcMSB(const WordType *parts, unsigned n); |
1862 | |
1863 | /// Negate a bignum in-place. |
1864 | static void tcNegate(WordType *, unsigned); |
1865 | |
1866 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1867 | static WordType tcAdd(WordType *, const WordType *, |
1868 | WordType carry, unsigned); |
1869 | /// DST += RHS. Returns the carry flag. |
1870 | static WordType tcAddPart(WordType *, WordType, unsigned); |
1871 | |
1872 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1873 | static WordType tcSubtract(WordType *, const WordType *, |
1874 | WordType carry, unsigned); |
1875 | /// DST -= RHS. Returns the carry flag. |
1876 | static WordType tcSubtractPart(WordType *, WordType, unsigned); |
1877 | |
1878 | /// DST += SRC * MULTIPLIER + PART if add is true |
1879 | /// DST = SRC * MULTIPLIER + PART if add is false |
1880 | /// |
1881 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
1882 | /// start at the same point, i.e. DST == SRC. |
1883 | /// |
1884 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
1885 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
1886 | /// result, and if all of the omitted higher parts were zero return zero, |
1887 | /// otherwise overflow occurred and return one. |
1888 | static int tcMultiplyPart(WordType *dst, const WordType *src, |
1889 | WordType multiplier, WordType carry, |
1890 | unsigned srcParts, unsigned dstParts, |
1891 | bool add); |
1892 | |
1893 | /// DST = LHS * RHS, where DST has the same width as the operands and is |
1894 | /// filled with the least significant parts of the result. Returns one if |
1895 | /// overflow occurred, otherwise zero. DST must be disjoint from both |
1896 | /// operands. |
1897 | static int tcMultiply(WordType *, const WordType *, const WordType *, |
1898 | unsigned); |
1899 | |
1900 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
1901 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
1902 | static void tcFullMultiply(WordType *, const WordType *, |
1903 | const WordType *, unsigned, unsigned); |
1904 | |
1905 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
1906 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
1907 | /// REMAINDER to the remainder, return zero. i.e. |
1908 | /// |
1909 | /// OLD_LHS = RHS * LHS + REMAINDER |
1910 | /// |
1911 | /// SCRATCH is a bignum of the same size as the operands and result for use by |
1912 | /// the routine; its contents need not be initialized and are destroyed. LHS, |
1913 | /// REMAINDER and SCRATCH must be distinct. |
1914 | static int tcDivide(WordType *lhs, const WordType *rhs, |
1915 | WordType *remainder, WordType *scratch, |
1916 | unsigned parts); |
1917 | |
1918 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
1919 | /// restrictions on Count. |
1920 | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
1921 | |
1922 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
1923 | /// restrictions on Count. |
1924 | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
1925 | |
1926 | /// The obvious AND, OR and XOR and complement operations. |
1927 | static void tcAnd(WordType *, const WordType *, unsigned); |
1928 | static void tcOr(WordType *, const WordType *, unsigned); |
1929 | static void tcXor(WordType *, const WordType *, unsigned); |
1930 | static void tcComplement(WordType *, unsigned); |
1931 | |
1932 | /// Comparison (unsigned) of two bignums. |
1933 | static int tcCompare(const WordType *, const WordType *, unsigned); |
1934 | |
1935 | /// Increment a bignum in-place. Return the carry flag. |
1936 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
1937 | return tcAddPart(dst, 1, parts); |
1938 | } |
1939 | |
1940 | /// Decrement a bignum in-place. Return the borrow flag. |
1941 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
1942 | return tcSubtractPart(dst, 1, parts); |
1943 | } |
1944 | |
1945 | /// Set the least significant BITS and clear the rest. |
1946 | static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); |
1947 | |
1948 | /// debug method |
1949 | void dump() const; |
1950 | |
1951 | /// @} |
1952 | }; |
1953 | |
1954 | /// Magic data for optimising signed division by a constant. |
1955 | struct APInt::ms { |
1956 | APInt m; ///< magic number |
1957 | unsigned s; ///< shift amount |
1958 | }; |
1959 | |
1960 | /// Magic data for optimising unsigned division by a constant. |
1961 | struct APInt::mu { |
1962 | APInt m; ///< magic number |
1963 | bool a; ///< add indicator |
1964 | unsigned s; ///< shift amount |
1965 | }; |
1966 | |
1967 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
1968 | |
1969 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
1970 | |
1971 | /// Unary bitwise complement operator. |
1972 | /// |
1973 | /// \returns an APInt that is the bitwise complement of \p v. |
1974 | inline APInt operator~(APInt v) { |
1975 | v.flipAllBits(); |
1976 | return v; |
1977 | } |
1978 | |
1979 | inline APInt operator&(APInt a, const APInt &b) { |
1980 | a &= b; |
1981 | return a; |
1982 | } |
1983 | |
1984 | inline APInt operator&(const APInt &a, APInt &&b) { |
1985 | b &= a; |
1986 | return std::move(b); |
1987 | } |
1988 | |
1989 | inline APInt operator&(APInt a, uint64_t RHS) { |
1990 | a &= RHS; |
1991 | return a; |
1992 | } |
1993 | |
1994 | inline APInt operator&(uint64_t LHS, APInt b) { |
1995 | b &= LHS; |
1996 | return b; |
1997 | } |
1998 | |
1999 | inline APInt operator|(APInt a, const APInt &b) { |
2000 | a |= b; |
2001 | return a; |
2002 | } |
2003 | |
2004 | inline APInt operator|(const APInt &a, APInt &&b) { |
2005 | b |= a; |
2006 | return std::move(b); |
2007 | } |
2008 | |
2009 | inline APInt operator|(APInt a, uint64_t RHS) { |
2010 | a |= RHS; |
2011 | return a; |
2012 | } |
2013 | |
2014 | inline APInt operator|(uint64_t LHS, APInt b) { |
2015 | b |= LHS; |
2016 | return b; |
2017 | } |
2018 | |
2019 | inline APInt operator^(APInt a, const APInt &b) { |
2020 | a ^= b; |
2021 | return a; |
2022 | } |
2023 | |
2024 | inline APInt operator^(const APInt &a, APInt &&b) { |
2025 | b ^= a; |
2026 | return std::move(b); |
2027 | } |
2028 | |
2029 | inline APInt operator^(APInt a, uint64_t RHS) { |
2030 | a ^= RHS; |
2031 | return a; |
2032 | } |
2033 | |
2034 | inline APInt operator^(uint64_t LHS, APInt b) { |
2035 | b ^= LHS; |
2036 | return b; |
2037 | } |
2038 | |
2039 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
2040 | I.print(OS, true); |
2041 | return OS; |
2042 | } |
2043 | |
2044 | inline APInt operator-(APInt v) { |
2045 | v.negate(); |
2046 | return v; |
2047 | } |
2048 | |
2049 | inline APInt operator+(APInt a, const APInt &b) { |
2050 | a += b; |
2051 | return a; |
2052 | } |
2053 | |
2054 | inline APInt operator+(const APInt &a, APInt &&b) { |
2055 | b += a; |
2056 | return std::move(b); |
2057 | } |
2058 | |
2059 | inline APInt operator+(APInt a, uint64_t RHS) { |
2060 | a += RHS; |
2061 | return a; |
2062 | } |
2063 | |
2064 | inline APInt operator+(uint64_t LHS, APInt b) { |
2065 | b += LHS; |
2066 | return b; |
2067 | } |
2068 | |
2069 | inline APInt operator-(APInt a, const APInt &b) { |
2070 | a -= b; |
2071 | return a; |
2072 | } |
2073 | |
2074 | inline APInt operator-(const APInt &a, APInt &&b) { |
2075 | b.negate(); |
2076 | b += a; |
2077 | return std::move(b); |
2078 | } |
2079 | |
2080 | inline APInt operator-(APInt a, uint64_t RHS) { |
2081 | a -= RHS; |
2082 | return a; |
2083 | } |
2084 | |
2085 | inline APInt operator-(uint64_t LHS, APInt b) { |
2086 | b.negate(); |
2087 | b += LHS; |
2088 | return b; |
2089 | } |
2090 | |
2091 | inline APInt operator*(APInt a, uint64_t RHS) { |
2092 | a *= RHS; |
2093 | return a; |
2094 | } |
2095 | |
2096 | inline APInt operator*(uint64_t LHS, APInt b) { |
2097 | b *= LHS; |
2098 | return b; |
2099 | } |
2100 | |
2101 | |
2102 | namespace APIntOps { |
2103 | |
2104 | /// Determine the smaller of two APInts considered to be signed. |
2105 | inline const APInt &smin(const APInt &A, const APInt &B) { |
2106 | return A.slt(B) ? A : B; |
2107 | } |
2108 | |
2109 | /// Determine the larger of two APInts considered to be signed. |
2110 | inline const APInt &smax(const APInt &A, const APInt &B) { |
2111 | return A.sgt(B) ? A : B; |
2112 | } |
2113 | |
2114 | /// Determine the smaller of two APInts considered to be signed. |
2115 | inline const APInt &umin(const APInt &A, const APInt &B) { |
2116 | return A.ult(B) ? A : B; |
2117 | } |
2118 | |
2119 | /// Determine the larger of two APInts considered to be unsigned. |
2120 | inline const APInt &umax(const APInt &A, const APInt &B) { |
2121 | return A.ugt(B) ? A : B; |
2122 | } |
2123 | |
2124 | /// Compute GCD of two unsigned APInt values. |
2125 | /// |
2126 | /// This function returns the greatest common divisor of the two APInt values |
2127 | /// using Stein's algorithm. |
2128 | /// |
2129 | /// \returns the greatest common divisor of A and B. |
2130 | APInt GreatestCommonDivisor(APInt A, APInt B); |
2131 | |
2132 | /// Converts the given APInt to a double value. |
2133 | /// |
2134 | /// Treats the APInt as an unsigned value for conversion purposes. |
2135 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
2136 | return APIVal.roundToDouble(); |
2137 | } |
2138 | |
2139 | /// Converts the given APInt to a double value. |
2140 | /// |
2141 | /// Treats the APInt as a signed value for conversion purposes. |
2142 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
2143 | return APIVal.signedRoundToDouble(); |
2144 | } |
2145 | |
2146 | /// Converts the given APInt to a float vlalue. |
2147 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
2148 | return float(RoundAPIntToDouble(APIVal)); |
2149 | } |
2150 | |
2151 | /// Converts the given APInt to a float value. |
2152 | /// |
2153 | /// Treast the APInt as a signed value for conversion purposes. |
2154 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
2155 | return float(APIVal.signedRoundToDouble()); |
2156 | } |
2157 | |
2158 | /// Converts the given double value into a APInt. |
2159 | /// |
2160 | /// This function convert a double value to an APInt value. |
2161 | APInt RoundDoubleToAPInt(double Double, unsigned width); |
2162 | |
2163 | /// Converts a float value into a APInt. |
2164 | /// |
2165 | /// Converts a float value into an APInt value. |
2166 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
2167 | return RoundDoubleToAPInt(double(Float), width); |
2168 | } |
2169 | |
2170 | /// Return A unsign-divided by B, rounded by the given rounding mode. |
2171 | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2172 | |
2173 | /// Return A sign-divided by B, rounded by the given rounding mode. |
2174 | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2175 | |
2176 | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
2177 | /// (e.g. 32 for i32). |
2178 | /// This function finds the smallest number n, such that |
2179 | /// (a) n >= 0 and q(n) = 0, or |
2180 | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
2181 | /// integers, belong to two different intervals [Rk, Rk+R), |
2182 | /// where R = 2^BW, and k is an integer. |
2183 | /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
2184 | /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
2185 | /// subtraction (treated as addition of negated numbers) would always |
2186 | /// count as an overflow, but here we want to allow values to decrease |
2187 | /// and increase as long as they are within the same interval. |
2188 | /// Specifically, adding of two negative numbers should not cause an |
2189 | /// overflow (as long as the magnitude does not exceed the bith width). |
2190 | /// On the other hand, given a positive number, adding a negative |
2191 | /// number to it can give a negative result, which would cause the |
2192 | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
2193 | /// treated as a special case of an overflow. |
2194 | /// |
2195 | /// This function returns None if after finding k that minimizes the |
2196 | /// positive solution to q(n) = kR, both solutions are contained between |
2197 | /// two consecutive integers. |
2198 | /// |
2199 | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
2200 | /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
2201 | /// virtue of *signed* overflow. This function will *not* find such an n, |
2202 | /// however it may find a value of n satisfying the inequalities due to |
2203 | /// an *unsigned* overflow (if the values are treated as unsigned). |
2204 | /// To find a solution for a signed overflow, treat it as a problem of |
2205 | /// finding an unsigned overflow with a range with of BW-1. |
2206 | /// |
2207 | /// The returned value may have a different bit width from the input |
2208 | /// coefficients. |
2209 | Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
2210 | unsigned RangeWidth); |
2211 | } // End of APIntOps namespace |
2212 | |
2213 | // See friend declaration above. This additional declaration is required in |
2214 | // order to compile LLVM with IBM xlC compiler. |
2215 | hash_code hash_value(const APInt &Arg); |
2216 | } // End of llvm namespace |
2217 | |
2218 | #endif |
2219 | |