| 1 | /* |
| 2 | Simple DirectMedia Layer |
| 3 | Copyright (C) 1997-2025 Sam Lantinga <slouken@libsdl.org> |
| 4 | |
| 5 | This software is provided 'as-is', without any express or implied |
| 6 | warranty. In no event will the authors be held liable for any damages |
| 7 | arising from the use of this software. |
| 8 | |
| 9 | Permission is granted to anyone to use this software for any purpose, |
| 10 | including commercial applications, and to alter it and redistribute it |
| 11 | freely, subject to the following restrictions: |
| 12 | |
| 13 | 1. The origin of this software must not be misrepresented; you must not |
| 14 | claim that you wrote the original software. If you use this software |
| 15 | in a product, an acknowledgment in the product documentation would be |
| 16 | appreciated but is not required. |
| 17 | 2. Altered source versions must be plainly marked as such, and must not be |
| 18 | misrepresented as being the original software. |
| 19 | 3. This notice may not be removed or altered from any source distribution. |
| 20 | */ |
| 21 | #include "SDL_internal.h" |
| 22 | |
| 23 | #include "SDL_sysaudio.h" |
| 24 | |
| 25 | #include "SDL_audioresample.h" |
| 26 | |
| 27 | // SDL's resampler uses a "bandlimited interpolation" algorithm: |
| 28 | // https://ccrma.stanford.edu/~jos/resample/ |
| 29 | |
| 30 | // TODO: Support changing this at runtime? |
| 31 | #if defined(SDL_SSE_INTRINSICS) || defined(SDL_NEON_INTRINSICS) |
| 32 | // In <current year>, SSE is basically mandatory anyway |
| 33 | // We want RESAMPLER_SAMPLES_PER_FRAME to be a multiple of 4, to make SIMD easier |
| 34 | #define RESAMPLER_ZERO_CROSSINGS 6 |
| 35 | #else |
| 36 | #define RESAMPLER_ZERO_CROSSINGS 5 |
| 37 | #endif |
| 38 | |
| 39 | #define RESAMPLER_SAMPLES_PER_FRAME (RESAMPLER_ZERO_CROSSINGS * 2) |
| 40 | |
| 41 | // For a given srcpos, `srcpos + frame` are sampled, where `-RESAMPLER_ZERO_CROSSINGS < frame <= RESAMPLER_ZERO_CROSSINGS`. |
| 42 | // Note, when upsampling, it is also possible to start sampling from `srcpos = -1`. |
| 43 | #define RESAMPLER_MAX_PADDING_FRAMES (RESAMPLER_ZERO_CROSSINGS + 1) |
| 44 | |
| 45 | // More bits gives more precision, at the cost of a larger table. |
| 46 | #define RESAMPLER_BITS_PER_ZERO_CROSSING 3 |
| 47 | #define RESAMPLER_SAMPLES_PER_ZERO_CROSSING (1 << RESAMPLER_BITS_PER_ZERO_CROSSING) |
| 48 | #define RESAMPLER_FILTER_INTERP_BITS (32 - RESAMPLER_BITS_PER_ZERO_CROSSING) |
| 49 | #define RESAMPLER_FILTER_INTERP_RANGE (1 << RESAMPLER_FILTER_INTERP_BITS) |
| 50 | |
| 51 | // ResampleFrame is just a vector/matrix/matrix multiplication. |
| 52 | // It performs cubic interpolation of the filter, then multiplies that with the input. |
| 53 | // dst = [1, frac, frac^2, frac^3] * filter * src |
| 54 | |
| 55 | // Cubic Polynomial |
| 56 | typedef union Cubic |
| 57 | { |
| 58 | float v[4]; |
| 59 | |
| 60 | #ifdef SDL_SSE_INTRINSICS |
| 61 | // Aligned loads can be used directly as memory operands for mul/add |
| 62 | __m128 v128; |
| 63 | #endif |
| 64 | |
| 65 | #ifdef SDL_NEON_INTRINSICS |
| 66 | float32x4_t v128; |
| 67 | #endif |
| 68 | |
| 69 | } Cubic; |
| 70 | |
| 71 | static void ResampleFrame_Generic(const float *src, float *dst, const Cubic *filter, float frac, int chans) |
| 72 | { |
| 73 | const float frac2 = frac * frac; |
| 74 | const float frac3 = frac * frac2; |
| 75 | |
| 76 | int i, chan; |
| 77 | float scales[RESAMPLER_SAMPLES_PER_FRAME]; |
| 78 | |
| 79 | for (i = 0; i < RESAMPLER_SAMPLES_PER_FRAME; ++i, ++filter) { |
| 80 | scales[i] = filter->v[0] + (filter->v[1] * frac) + (filter->v[2] * frac2) + (filter->v[3] * frac3); |
| 81 | } |
| 82 | |
| 83 | for (chan = 0; chan < chans; ++chan) { |
| 84 | float out = 0.0f; |
| 85 | |
| 86 | for (i = 0; i < RESAMPLER_SAMPLES_PER_FRAME; ++i) { |
| 87 | out += src[i * chans + chan] * scales[i]; |
| 88 | } |
| 89 | |
| 90 | dst[chan] = out; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | static void ResampleFrame_Mono(const float *src, float *dst, const Cubic *filter, float frac, int chans) |
| 95 | { |
| 96 | const float frac2 = frac * frac; |
| 97 | const float frac3 = frac * frac2; |
| 98 | |
| 99 | int i; |
| 100 | float out = 0.0f; |
| 101 | |
| 102 | for (i = 0; i < RESAMPLER_SAMPLES_PER_FRAME; ++i, ++filter) { |
| 103 | // Interpolate between the nearest two filters |
| 104 | const float scale = filter->v[0] + (filter->v[1] * frac) + (filter->v[2] * frac2) + (filter->v[3] * frac3); |
| 105 | |
| 106 | out += src[i] * scale; |
| 107 | } |
| 108 | |
| 109 | dst[0] = out; |
| 110 | } |
| 111 | |
| 112 | static void ResampleFrame_Stereo(const float *src, float *dst, const Cubic *filter, float frac, int chans) |
| 113 | { |
| 114 | const float frac2 = frac * frac; |
| 115 | const float frac3 = frac * frac2; |
| 116 | |
| 117 | int i; |
| 118 | float out0 = 0.0f; |
| 119 | float out1 = 0.0f; |
| 120 | |
| 121 | for (i = 0; i < RESAMPLER_SAMPLES_PER_FRAME; ++i, ++filter) { |
| 122 | // Interpolate between the nearest two filters |
| 123 | const float scale = filter->v[0] + (filter->v[1] * frac) + (filter->v[2] * frac2) + (filter->v[3] * frac3); |
| 124 | |
| 125 | out0 += src[i * 2 + 0] * scale; |
| 126 | out1 += src[i * 2 + 1] * scale; |
| 127 | } |
| 128 | |
| 129 | dst[0] = out0; |
| 130 | dst[1] = out1; |
| 131 | } |
| 132 | |
| 133 | #ifdef SDL_SSE_INTRINSICS |
| 134 | #define sdl_madd_ps(a, b, c) _mm_add_ps(a, _mm_mul_ps(b, c)) // Not-so-fused multiply-add |
| 135 | |
| 136 | static void SDL_TARGETING("sse" ) ResampleFrame_Generic_SSE(const float *src, float *dst, const Cubic *filter, float frac, int chans) |
| 137 | { |
| 138 | #if RESAMPLER_SAMPLES_PER_FRAME != 12 |
| 139 | #error Invalid samples per frame |
| 140 | #endif |
| 141 | |
| 142 | __m128 f0, f1, f2; |
| 143 | |
| 144 | { |
| 145 | const __m128 frac1 = _mm_set1_ps(frac); |
| 146 | const __m128 frac2 = _mm_mul_ps(frac1, frac1); |
| 147 | const __m128 frac3 = _mm_mul_ps(frac1, frac2); |
| 148 | |
| 149 | // Transposed in SetupAudioResampler |
| 150 | // Explicitly use _mm_load_ps to workaround ICE in GCC 4.9.4 accessing Cubic.v128 |
| 151 | #define X(out) \ |
| 152 | out = _mm_load_ps(filter[0].v); \ |
| 153 | out = sdl_madd_ps(out, frac1, _mm_load_ps(filter[1].v)); \ |
| 154 | out = sdl_madd_ps(out, frac2, _mm_load_ps(filter[2].v)); \ |
| 155 | out = sdl_madd_ps(out, frac3, _mm_load_ps(filter[3].v)); \ |
| 156 | filter += 4 |
| 157 | |
| 158 | X(f0); |
| 159 | X(f1); |
| 160 | X(f2); |
| 161 | |
| 162 | #undef X |
| 163 | } |
| 164 | |
| 165 | if (chans == 2) { |
| 166 | // Duplicate each of the filter elements and multiply by the input |
| 167 | // Use two accumulators to improve throughput |
| 168 | __m128 out0 = _mm_mul_ps(_mm_loadu_ps(src + 0), _mm_unpacklo_ps(f0, f0)); |
| 169 | __m128 out1 = _mm_mul_ps(_mm_loadu_ps(src + 4), _mm_unpackhi_ps(f0, f0)); |
| 170 | out0 = sdl_madd_ps(out0, _mm_loadu_ps(src + 8), _mm_unpacklo_ps(f1, f1)); |
| 171 | out1 = sdl_madd_ps(out1, _mm_loadu_ps(src + 12), _mm_unpackhi_ps(f1, f1)); |
| 172 | out0 = sdl_madd_ps(out0, _mm_loadu_ps(src + 16), _mm_unpacklo_ps(f2, f2)); |
| 173 | out1 = sdl_madd_ps(out1, _mm_loadu_ps(src + 20), _mm_unpackhi_ps(f2, f2)); |
| 174 | |
| 175 | // Add the accumulators together |
| 176 | __m128 out = _mm_add_ps(out0, out1); |
| 177 | |
| 178 | // Add the lower and upper pairs together |
| 179 | out = _mm_add_ps(out, _mm_movehl_ps(out, out)); |
| 180 | |
| 181 | // Store the result |
| 182 | _mm_storel_pi((__m64 *)dst, out); |
| 183 | return; |
| 184 | } |
| 185 | |
| 186 | if (chans == 1) { |
| 187 | // Multiply the filter by the input |
| 188 | __m128 out = _mm_mul_ps(f0, _mm_loadu_ps(src + 0)); |
| 189 | out = sdl_madd_ps(out, f1, _mm_loadu_ps(src + 4)); |
| 190 | out = sdl_madd_ps(out, f2, _mm_loadu_ps(src + 8)); |
| 191 | |
| 192 | // Horizontal sum |
| 193 | __m128 shuf = _mm_shuffle_ps(out, out, _MM_SHUFFLE(2, 3, 0, 1)); |
| 194 | out = _mm_add_ps(out, shuf); |
| 195 | out = _mm_add_ss(out, _mm_movehl_ps(shuf, out)); |
| 196 | |
| 197 | _mm_store_ss(dst, out); |
| 198 | return; |
| 199 | } |
| 200 | |
| 201 | int chan = 0; |
| 202 | |
| 203 | // Process 4 channels at once |
| 204 | for (; chan + 4 <= chans; chan += 4) { |
| 205 | const float *in = &src[chan]; |
| 206 | __m128 out0 = _mm_setzero_ps(); |
| 207 | __m128 out1 = _mm_setzero_ps(); |
| 208 | |
| 209 | #define X(a, b, out) \ |
| 210 | out = sdl_madd_ps(out, _mm_loadu_ps(in), _mm_shuffle_ps(a, a, _MM_SHUFFLE(b, b, b, b))); \ |
| 211 | in += chans |
| 212 | |
| 213 | #define Y(a) \ |
| 214 | X(a, 0, out0); \ |
| 215 | X(a, 1, out1); \ |
| 216 | X(a, 2, out0); \ |
| 217 | X(a, 3, out1) |
| 218 | |
| 219 | Y(f0); |
| 220 | Y(f1); |
| 221 | Y(f2); |
| 222 | |
| 223 | #undef X |
| 224 | #undef Y |
| 225 | |
| 226 | // Add the accumulators together |
| 227 | __m128 out = _mm_add_ps(out0, out1); |
| 228 | |
| 229 | _mm_storeu_ps(&dst[chan], out); |
| 230 | } |
| 231 | |
| 232 | // Process the remaining channels one at a time. |
| 233 | // Channel counts 1,2,4,8 are already handled above, leaving 3,5,6,7 to deal with (looping 3,1,2,3 times). |
| 234 | // Without vgatherdps (AVX2), this gets quite messy. |
| 235 | for (; chan < chans; ++chan) { |
| 236 | const float *in = &src[chan]; |
| 237 | __m128 v0, v1, v2; |
| 238 | |
| 239 | #define X(x) \ |
| 240 | x = _mm_unpacklo_ps(_mm_load_ss(in), _mm_load_ss(in + chans)); \ |
| 241 | in += chans + chans; \ |
| 242 | x = _mm_movelh_ps(x, _mm_unpacklo_ps(_mm_load_ss(in), _mm_load_ss(in + chans))); \ |
| 243 | in += chans + chans |
| 244 | |
| 245 | X(v0); |
| 246 | X(v1); |
| 247 | X(v2); |
| 248 | |
| 249 | #undef X |
| 250 | |
| 251 | __m128 out = _mm_mul_ps(f0, v0); |
| 252 | out = sdl_madd_ps(out, f1, v1); |
| 253 | out = sdl_madd_ps(out, f2, v2); |
| 254 | |
| 255 | // Horizontal sum |
| 256 | __m128 shuf = _mm_shuffle_ps(out, out, _MM_SHUFFLE(2, 3, 0, 1)); |
| 257 | out = _mm_add_ps(out, shuf); |
| 258 | out = _mm_add_ss(out, _mm_movehl_ps(shuf, out)); |
| 259 | |
| 260 | _mm_store_ss(&dst[chan], out); |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | #undef sdl_madd_ps |
| 265 | #endif |
| 266 | |
| 267 | #ifdef SDL_NEON_INTRINSICS |
| 268 | static void ResampleFrame_Generic_NEON(const float *src, float *dst, const Cubic *filter, float frac, int chans) |
| 269 | { |
| 270 | #if RESAMPLER_SAMPLES_PER_FRAME != 12 |
| 271 | #error Invalid samples per frame |
| 272 | #endif |
| 273 | |
| 274 | float32x4_t f0, f1, f2; |
| 275 | |
| 276 | { |
| 277 | const float32x4_t frac1 = vdupq_n_f32(frac); |
| 278 | const float32x4_t frac2 = vmulq_f32(frac1, frac1); |
| 279 | const float32x4_t frac3 = vmulq_f32(frac1, frac2); |
| 280 | |
| 281 | // Transposed in SetupAudioResampler |
| 282 | #define X(out) \ |
| 283 | out = vmlaq_f32(vmlaq_f32(vmlaq_f32(filter[0].v128, filter[1].v128, frac1), filter[2].v128, frac2), filter[3].v128, frac3); \ |
| 284 | filter += 4 |
| 285 | |
| 286 | X(f0); |
| 287 | X(f1); |
| 288 | X(f2); |
| 289 | |
| 290 | #undef X |
| 291 | } |
| 292 | |
| 293 | if (chans == 2) { |
| 294 | float32x4x2_t g0 = vzipq_f32(f0, f0); |
| 295 | float32x4x2_t g1 = vzipq_f32(f1, f1); |
| 296 | float32x4x2_t g2 = vzipq_f32(f2, f2); |
| 297 | |
| 298 | // Duplicate each of the filter elements and multiply by the input |
| 299 | // Use two accumulators to improve throughput |
| 300 | float32x4_t out0 = vmulq_f32(vld1q_f32(src + 0), g0.val[0]); |
| 301 | float32x4_t out1 = vmulq_f32(vld1q_f32(src + 4), g0.val[1]); |
| 302 | out0 = vmlaq_f32(out0, vld1q_f32(src + 8), g1.val[0]); |
| 303 | out1 = vmlaq_f32(out1, vld1q_f32(src + 12), g1.val[1]); |
| 304 | out0 = vmlaq_f32(out0, vld1q_f32(src + 16), g2.val[0]); |
| 305 | out1 = vmlaq_f32(out1, vld1q_f32(src + 20), g2.val[1]); |
| 306 | |
| 307 | // Add the accumulators together |
| 308 | out0 = vaddq_f32(out0, out1); |
| 309 | |
| 310 | // Add the lower and upper pairs together |
| 311 | float32x2_t out = vadd_f32(vget_low_f32(out0), vget_high_f32(out0)); |
| 312 | |
| 313 | // Store the result |
| 314 | vst1_f32(dst, out); |
| 315 | return; |
| 316 | } |
| 317 | |
| 318 | if (chans == 1) { |
| 319 | // Multiply the filter by the input |
| 320 | float32x4_t out = vmulq_f32(f0, vld1q_f32(src + 0)); |
| 321 | out = vmlaq_f32(out, f1, vld1q_f32(src + 4)); |
| 322 | out = vmlaq_f32(out, f2, vld1q_f32(src + 8)); |
| 323 | |
| 324 | // Horizontal sum |
| 325 | float32x2_t sum = vadd_f32(vget_low_f32(out), vget_high_f32(out)); |
| 326 | sum = vpadd_f32(sum, sum); |
| 327 | |
| 328 | vst1_lane_f32(dst, sum, 0); |
| 329 | return; |
| 330 | } |
| 331 | |
| 332 | int chan = 0; |
| 333 | |
| 334 | // Process 4 channels at once |
| 335 | for (; chan + 4 <= chans; chan += 4) { |
| 336 | const float *in = &src[chan]; |
| 337 | float32x4_t out0 = vdupq_n_f32(0); |
| 338 | float32x4_t out1 = vdupq_n_f32(0); |
| 339 | |
| 340 | #define X(a, b, out) \ |
| 341 | out = vmlaq_f32(out, vld1q_f32(in), vdupq_lane_f32(a, b)); \ |
| 342 | in += chans |
| 343 | |
| 344 | #define Y(a) \ |
| 345 | X(vget_low_f32(a), 0, out0); \ |
| 346 | X(vget_low_f32(a), 1, out1); \ |
| 347 | X(vget_high_f32(a), 0, out0); \ |
| 348 | X(vget_high_f32(a), 1, out1) |
| 349 | |
| 350 | Y(f0); |
| 351 | Y(f1); |
| 352 | Y(f2); |
| 353 | |
| 354 | #undef X |
| 355 | #undef Y |
| 356 | |
| 357 | // Add the accumulators together |
| 358 | float32x4_t out = vaddq_f32(out0, out1); |
| 359 | |
| 360 | vst1q_f32(&dst[chan], out); |
| 361 | } |
| 362 | |
| 363 | // Process the remaining channels one at a time. |
| 364 | // Channel counts 1,2,4,8 are already handled above, leaving 3,5,6,7 to deal with (looping 3,1,2,3 times). |
| 365 | for (; chan < chans; ++chan) { |
| 366 | const float *in = &src[chan]; |
| 367 | float32x4_t v0, v1, v2; |
| 368 | |
| 369 | #define X(x) \ |
| 370 | x = vld1q_dup_f32(in); \ |
| 371 | in += chans; \ |
| 372 | x = vld1q_lane_f32(in, x, 1); \ |
| 373 | in += chans; \ |
| 374 | x = vld1q_lane_f32(in, x, 2); \ |
| 375 | in += chans; \ |
| 376 | x = vld1q_lane_f32(in, x, 3); \ |
| 377 | in += chans |
| 378 | |
| 379 | X(v0); |
| 380 | X(v1); |
| 381 | X(v2); |
| 382 | |
| 383 | #undef X |
| 384 | |
| 385 | float32x4_t out = vmulq_f32(f0, v0); |
| 386 | out = vmlaq_f32(out, f1, v1); |
| 387 | out = vmlaq_f32(out, f2, v2); |
| 388 | |
| 389 | // Horizontal sum |
| 390 | float32x2_t sum = vadd_f32(vget_low_f32(out), vget_high_f32(out)); |
| 391 | sum = vpadd_f32(sum, sum); |
| 392 | |
| 393 | vst1_lane_f32(&dst[chan], sum, 0); |
| 394 | } |
| 395 | } |
| 396 | #endif |
| 397 | |
| 398 | // Calculate the cubic equation which passes through all four points. |
| 399 | // https://en.wikipedia.org/wiki/Ordinary_least_squares |
| 400 | // https://en.wikipedia.org/wiki/Polynomial_regression |
| 401 | static void CubicLeastSquares(Cubic *coeffs, float y0, float y1, float y2, float y3) |
| 402 | { |
| 403 | // Least squares matrix for xs = [0, 1/3, 2/3, 1] |
| 404 | // [ 1.0 0.0 0.0 0.0 ] |
| 405 | // [ -5.5 9.0 -4.5 1.0 ] |
| 406 | // [ 9.0 -22.5 18.0 -4.5 ] |
| 407 | // [ -4.5 13.5 -13.5 4.5 ] |
| 408 | |
| 409 | coeffs->v[0] = y0; |
| 410 | coeffs->v[1] = -5.5f * y0 + 9.0f * y1 - 4.5f * y2 + y3; |
| 411 | coeffs->v[2] = 9.0f * y0 - 22.5f * y1 + 18.0f * y2 - 4.5f * y3; |
| 412 | coeffs->v[3] = -4.5f * y0 + 13.5f * y1 - 13.5f * y2 + 4.5f * y3; |
| 413 | } |
| 414 | |
| 415 | // Zeroth-order modified Bessel function of the first kind |
| 416 | // https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html |
| 417 | static float BesselI0(float x) |
| 418 | { |
| 419 | float sum = 0.0f; |
| 420 | float i = 1.0f; |
| 421 | float t = 1.0f; |
| 422 | x *= x * 0.25f; |
| 423 | |
| 424 | while (t >= sum * SDL_FLT_EPSILON) { |
| 425 | sum += t; |
| 426 | t *= x / (i * i); |
| 427 | ++i; |
| 428 | } |
| 429 | |
| 430 | return sum; |
| 431 | } |
| 432 | |
| 433 | // Pre-calculate 180 degrees of sin(pi * x) / pi |
| 434 | // The speedup from this isn't huge, but it also avoids precision issues. |
| 435 | // If sinf isn't available, SDL_sinf just calls SDL_sin. |
| 436 | // Know what SDL_sin(SDL_PI_F) equals? Not quite zero. |
| 437 | static void SincTable(float *table, int len) |
| 438 | { |
| 439 | int i; |
| 440 | |
| 441 | for (i = 0; i < len; ++i) { |
| 442 | table[i] = SDL_sinf(i * (SDL_PI_F / len)) / SDL_PI_F; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | // Calculate Sinc(x/y), using a lookup table |
| 447 | static float Sinc(const float *table, int x, int y) |
| 448 | { |
| 449 | float s = table[x % y]; |
| 450 | s = ((x / y) & 1) ? -s : s; |
| 451 | return (s * y) / x; |
| 452 | } |
| 453 | |
| 454 | static Cubic ResamplerFilter[RESAMPLER_SAMPLES_PER_ZERO_CROSSING][RESAMPLER_SAMPLES_PER_FRAME]; |
| 455 | |
| 456 | static void GenerateResamplerFilter(void) |
| 457 | { |
| 458 | enum |
| 459 | { |
| 460 | // Generate samples at 3x the target resolution, so that we have samples at [0, 1/3, 2/3, 1] of each position |
| 461 | TABLE_SAMPLES_PER_ZERO_CROSSING = RESAMPLER_SAMPLES_PER_ZERO_CROSSING * 3, |
| 462 | TABLE_SIZE = RESAMPLER_ZERO_CROSSINGS * TABLE_SAMPLES_PER_ZERO_CROSSING, |
| 463 | }; |
| 464 | |
| 465 | // if dB > 50, beta=(0.1102 * (dB - 8.7)), according to Matlab. |
| 466 | const float dB = 80.0f; |
| 467 | const float beta = 0.1102f * (dB - 8.7f); |
| 468 | const float bessel_beta = BesselI0(beta); |
| 469 | const float lensqr = TABLE_SIZE * TABLE_SIZE; |
| 470 | |
| 471 | int i, j; |
| 472 | |
| 473 | float sinc[TABLE_SAMPLES_PER_ZERO_CROSSING]; |
| 474 | SincTable(sinc, TABLE_SAMPLES_PER_ZERO_CROSSING); |
| 475 | |
| 476 | // Generate one wing of the filter |
| 477 | // https://en.wikipedia.org/wiki/Kaiser_window |
| 478 | // https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula |
| 479 | float filter[TABLE_SIZE + 1]; |
| 480 | filter[0] = 1.0f; |
| 481 | |
| 482 | for (i = 1; i <= TABLE_SIZE; ++i) { |
| 483 | float b = BesselI0(beta * SDL_sqrtf((lensqr - (i * i)) / lensqr)) / bessel_beta; |
| 484 | float s = Sinc(sinc, i, TABLE_SAMPLES_PER_ZERO_CROSSING); |
| 485 | filter[i] = b * s; |
| 486 | } |
| 487 | |
| 488 | // Generate the coefficients for each point |
| 489 | // When interpolating, the fraction represents how far we are between input samples, |
| 490 | // so we need to align the filter by "moving" it to the right. |
| 491 | // |
| 492 | // For the left wing, this means interpolating "forwards" (away from the center) |
| 493 | // For the right wing, this means interpolating "backwards" (towards the center) |
| 494 | // |
| 495 | // The center of the filter is at the end of the left wing (RESAMPLER_ZERO_CROSSINGS - 1) |
| 496 | // The left wing is the filter, but reversed |
| 497 | // The right wing is the filter, but offset by 1 |
| 498 | // |
| 499 | // Since the right wing is offset by 1, this just means we interpolate backwards |
| 500 | // between the same points, instead of forwards |
| 501 | // interp(p[n], p[n+1], t) = interp(p[n+1], p[n+1-1], 1 - t) = interp(p[n+1], p[n], 1 - t) |
| 502 | for (i = 0; i < RESAMPLER_SAMPLES_PER_ZERO_CROSSING; ++i) { |
| 503 | for (j = 0; j < RESAMPLER_ZERO_CROSSINGS; ++j) { |
| 504 | const float *ys = &filter[((j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING) + i) * 3]; |
| 505 | |
| 506 | Cubic *fwd = &ResamplerFilter[i][RESAMPLER_ZERO_CROSSINGS - j - 1]; |
| 507 | Cubic *rev = &ResamplerFilter[RESAMPLER_SAMPLES_PER_ZERO_CROSSING - i - 1][RESAMPLER_ZERO_CROSSINGS + j]; |
| 508 | |
| 509 | // Calculate the cubic equation of the 4 points |
| 510 | CubicLeastSquares(fwd, ys[0], ys[1], ys[2], ys[3]); |
| 511 | CubicLeastSquares(rev, ys[3], ys[2], ys[1], ys[0]); |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | typedef void (*ResampleFrameFunc)(const float *src, float *dst, const Cubic *filter, float frac, int chans); |
| 517 | static ResampleFrameFunc ResampleFrame[8]; |
| 518 | |
| 519 | // Transpose 4x4 floats |
| 520 | static void Transpose4x4(Cubic *data) |
| 521 | { |
| 522 | int i, j; |
| 523 | |
| 524 | Cubic temp[4] = { data[0], data[1], data[2], data[3] }; |
| 525 | |
| 526 | for (i = 0; i < 4; ++i) { |
| 527 | for (j = 0; j < 4; ++j) { |
| 528 | data[i].v[j] = temp[j].v[i]; |
| 529 | } |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | static void SetupAudioResampler(void) |
| 534 | { |
| 535 | int i, j; |
| 536 | bool transpose = false; |
| 537 | |
| 538 | GenerateResamplerFilter(); |
| 539 | |
| 540 | #ifdef SDL_SSE_INTRINSICS |
| 541 | if (SDL_HasSSE()) { |
| 542 | for (i = 0; i < 8; ++i) { |
| 543 | ResampleFrame[i] = ResampleFrame_Generic_SSE; |
| 544 | } |
| 545 | transpose = true; |
| 546 | } else |
| 547 | #endif |
| 548 | #ifdef SDL_NEON_INTRINSICS |
| 549 | if (SDL_HasNEON()) { |
| 550 | for (i = 0; i < 8; ++i) { |
| 551 | ResampleFrame[i] = ResampleFrame_Generic_NEON; |
| 552 | } |
| 553 | transpose = true; |
| 554 | } else |
| 555 | #endif |
| 556 | { |
| 557 | for (i = 0; i < 8; ++i) { |
| 558 | ResampleFrame[i] = ResampleFrame_Generic; |
| 559 | } |
| 560 | |
| 561 | ResampleFrame[0] = ResampleFrame_Mono; |
| 562 | ResampleFrame[1] = ResampleFrame_Stereo; |
| 563 | } |
| 564 | |
| 565 | if (transpose) { |
| 566 | // Transpose each set of 4 coefficients, to reduce work when resampling |
| 567 | for (i = 0; i < RESAMPLER_SAMPLES_PER_ZERO_CROSSING; ++i) { |
| 568 | for (j = 0; j + 4 <= RESAMPLER_SAMPLES_PER_FRAME; j += 4) { |
| 569 | Transpose4x4(&ResamplerFilter[i][j]); |
| 570 | } |
| 571 | } |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | void SDL_SetupAudioResampler(void) |
| 576 | { |
| 577 | static SDL_InitState init; |
| 578 | |
| 579 | if (SDL_ShouldInit(&init)) { |
| 580 | SetupAudioResampler(); |
| 581 | SDL_SetInitialized(&init, true); |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | Sint64 SDL_GetResampleRate(int src_rate, int dst_rate) |
| 586 | { |
| 587 | SDL_assert(src_rate > 0); |
| 588 | SDL_assert(dst_rate > 0); |
| 589 | |
| 590 | Sint64 numerator = (Sint64)src_rate << 32; |
| 591 | Sint64 denominator = (Sint64)dst_rate; |
| 592 | |
| 593 | // Generally it's expected that `dst_frames = (src_frames * dst_rate) / src_rate` |
| 594 | // To match this as closely as possible without infinite precision, always round up the resample rate. |
| 595 | // For example, without rounding up, a sample ratio of 2:3 would have `sample_rate = 0xAAAAAAAA` |
| 596 | // After 3 frames, the position would be 0x1.FFFFFFFE, meaning we haven't fully consumed the second input frame. |
| 597 | // By rounding up to 0xAAAAAAAB, we would instead reach 0x2.00000001, fulling consuming the second frame. |
| 598 | // Technically you could say this is kicking the can 0x100000000 steps down the road, but I'm fine with that :) |
| 599 | // sample_rate = div_ceil(numerator, denominator) |
| 600 | Sint64 sample_rate = ((numerator - 1) / denominator) + 1; |
| 601 | |
| 602 | SDL_assert(sample_rate > 0); |
| 603 | |
| 604 | return sample_rate; |
| 605 | } |
| 606 | |
| 607 | int SDL_GetResamplerHistoryFrames(void) |
| 608 | { |
| 609 | // Even if we aren't currently resampling, make sure to keep enough history in case we need to later. |
| 610 | |
| 611 | return RESAMPLER_MAX_PADDING_FRAMES; |
| 612 | } |
| 613 | |
| 614 | int SDL_GetResamplerPaddingFrames(Sint64 resample_rate) |
| 615 | { |
| 616 | // This must always be <= SDL_GetResamplerHistoryFrames() |
| 617 | |
| 618 | return resample_rate ? RESAMPLER_MAX_PADDING_FRAMES : 0; |
| 619 | } |
| 620 | |
| 621 | // These are not general purpose. They do not check for all possible underflow/overflow |
| 622 | SDL_FORCE_INLINE bool ResamplerAdd(Sint64 a, Sint64 b, Sint64 *ret) |
| 623 | { |
| 624 | if ((b > 0) && (a > SDL_MAX_SINT64 - b)) { |
| 625 | return false; |
| 626 | } |
| 627 | |
| 628 | *ret = a + b; |
| 629 | return true; |
| 630 | } |
| 631 | |
| 632 | SDL_FORCE_INLINE bool ResamplerMul(Sint64 a, Sint64 b, Sint64 *ret) |
| 633 | { |
| 634 | if ((b > 0) && (a > SDL_MAX_SINT64 / b)) { |
| 635 | return false; |
| 636 | } |
| 637 | |
| 638 | *ret = a * b; |
| 639 | return true; |
| 640 | } |
| 641 | |
| 642 | Sint64 SDL_GetResamplerInputFrames(Sint64 output_frames, Sint64 resample_rate, Sint64 resample_offset) |
| 643 | { |
| 644 | // Calculate the index of the last input frame, then add 1. |
| 645 | // ((((output_frames - 1) * resample_rate) + resample_offset) >> 32) + 1 |
| 646 | |
| 647 | Sint64 output_offset; |
| 648 | if (!ResamplerMul(output_frames, resample_rate, &output_offset) || |
| 649 | !ResamplerAdd(output_offset, -resample_rate + resample_offset + 0x100000000, &output_offset)) { |
| 650 | output_offset = SDL_MAX_SINT64; |
| 651 | } |
| 652 | |
| 653 | Sint64 input_frames = (Sint64)(Sint32)(output_offset >> 32); |
| 654 | input_frames = SDL_max(input_frames, 0); |
| 655 | |
| 656 | return input_frames; |
| 657 | } |
| 658 | |
| 659 | Sint64 SDL_GetResamplerOutputFrames(Sint64 input_frames, Sint64 resample_rate, Sint64 *inout_resample_offset) |
| 660 | { |
| 661 | Sint64 resample_offset = *inout_resample_offset; |
| 662 | |
| 663 | // input_offset = (input_frames << 32) - resample_offset; |
| 664 | Sint64 input_offset; |
| 665 | if (!ResamplerMul(input_frames, 0x100000000, &input_offset) || |
| 666 | !ResamplerAdd(input_offset, -resample_offset, &input_offset)) { |
| 667 | input_offset = SDL_MAX_SINT64; |
| 668 | } |
| 669 | |
| 670 | // output_frames = div_ceil(input_offset, resample_rate) |
| 671 | Sint64 output_frames = (input_offset > 0) ? ((input_offset - 1) / resample_rate) + 1 : 0; |
| 672 | |
| 673 | *inout_resample_offset = (output_frames * resample_rate) - input_offset; |
| 674 | |
| 675 | return output_frames; |
| 676 | } |
| 677 | |
| 678 | void SDL_ResampleAudio(int chans, const float *src, int inframes, float *dst, int outframes, |
| 679 | Sint64 resample_rate, Sint64 *inout_resample_offset) |
| 680 | { |
| 681 | int i; |
| 682 | Sint64 srcpos = *inout_resample_offset; |
| 683 | ResampleFrameFunc resample_frame = ResampleFrame[chans - 1]; |
| 684 | |
| 685 | SDL_assert(resample_rate > 0); |
| 686 | |
| 687 | src -= (RESAMPLER_ZERO_CROSSINGS - 1) * chans; |
| 688 | |
| 689 | for (i = 0; i < outframes; ++i) { |
| 690 | int srcindex = (int)(Sint32)(srcpos >> 32); |
| 691 | Uint32 srcfraction = (Uint32)(srcpos & 0xFFFFFFFF); |
| 692 | srcpos += resample_rate; |
| 693 | |
| 694 | SDL_assert(srcindex >= -1 && srcindex < inframes); |
| 695 | |
| 696 | const Cubic *filter = ResamplerFilter[srcfraction >> RESAMPLER_FILTER_INTERP_BITS]; |
| 697 | const float frac = (float)(srcfraction & (RESAMPLER_FILTER_INTERP_RANGE - 1)) * (1.0f / RESAMPLER_FILTER_INTERP_RANGE); |
| 698 | |
| 699 | const float *frame = &src[srcindex * chans]; |
| 700 | resample_frame(frame, dst, filter, frac, chans); |
| 701 | |
| 702 | dst += chans; |
| 703 | } |
| 704 | |
| 705 | *inout_resample_offset = srcpos - ((Sint64)inframes << 32); |
| 706 | } |
| 707 | |