1 | /* |
2 | Simple DirectMedia Layer |
3 | Copyright (C) 1997-2025 Sam Lantinga <slouken@libsdl.org> |
4 | |
5 | This software is provided 'as-is', without any express or implied |
6 | warranty. In no event will the authors be held liable for any damages |
7 | arising from the use of this software. |
8 | |
9 | Permission is granted to anyone to use this software for any purpose, |
10 | including commercial applications, and to alter it and redistribute it |
11 | freely, subject to the following restrictions: |
12 | |
13 | 1. The origin of this software must not be misrepresented; you must not |
14 | claim that you wrote the original software. If you use this software |
15 | in a product, an acknowledgment in the product documentation would be |
16 | appreciated but is not required. |
17 | 2. Altered source versions must be plainly marked as such, and must not be |
18 | misrepresented as being the original software. |
19 | 3. This notice may not be removed or altered from any source distribution. |
20 | */ |
21 | #include "SDL_internal.h" |
22 | |
23 | #include "SDL_sysaudio.h" |
24 | |
25 | #define DIVBY2147483648 0.0000000004656612873077392578125f // 0x1p-31f |
26 | |
27 | // start fallback scalar converters |
28 | |
29 | // This code requires that floats are in the IEEE-754 binary32 format |
30 | SDL_COMPILE_TIME_ASSERT(float_bits, sizeof(float) == sizeof(Uint32)); |
31 | |
32 | union float_bits { |
33 | Uint32 u32; |
34 | float f32; |
35 | }; |
36 | |
37 | static void SDL_Convert_S8_to_F32_Scalar(float *dst, const Sint8 *src, int num_samples) |
38 | { |
39 | int i; |
40 | |
41 | LOG_DEBUG_AUDIO_CONVERT("S8" , "F32" ); |
42 | |
43 | for (i = num_samples - 1; i >= 0; --i) { |
44 | /* 1) Construct a float in the range [65536.0, 65538.0) |
45 | * 2) Shift the float range to [-1.0, 1.0) */ |
46 | union float_bits x; |
47 | x.u32 = (Uint8)src[i] ^ 0x47800080u; |
48 | dst[i] = x.f32 - 65537.0f; |
49 | } |
50 | } |
51 | |
52 | static void SDL_Convert_U8_to_F32_Scalar(float *dst, const Uint8 *src, int num_samples) |
53 | { |
54 | int i; |
55 | |
56 | LOG_DEBUG_AUDIO_CONVERT("U8" , "F32" ); |
57 | |
58 | for (i = num_samples - 1; i >= 0; --i) { |
59 | /* 1) Construct a float in the range [65536.0, 65538.0) |
60 | * 2) Shift the float range to [-1.0, 1.0) */ |
61 | union float_bits x; |
62 | x.u32 = src[i] ^ 0x47800000u; |
63 | dst[i] = x.f32 - 65537.0f; |
64 | } |
65 | } |
66 | |
67 | static void SDL_Convert_S16_to_F32_Scalar(float *dst, const Sint16 *src, int num_samples) |
68 | { |
69 | int i; |
70 | |
71 | LOG_DEBUG_AUDIO_CONVERT("S16" , "F32" ); |
72 | |
73 | for (i = num_samples - 1; i >= 0; --i) { |
74 | /* 1) Construct a float in the range [256.0, 258.0) |
75 | * 2) Shift the float range to [-1.0, 1.0) */ |
76 | union float_bits x; |
77 | x.u32 = (Uint16)src[i] ^ 0x43808000u; |
78 | dst[i] = x.f32 - 257.0f; |
79 | } |
80 | } |
81 | |
82 | static void SDL_Convert_S32_to_F32_Scalar(float *dst, const Sint32 *src, int num_samples) |
83 | { |
84 | int i; |
85 | |
86 | LOG_DEBUG_AUDIO_CONVERT("S32" , "F32" ); |
87 | |
88 | for (i = num_samples - 1; i >= 0; --i) { |
89 | dst[i] = (float)src[i] * DIVBY2147483648; |
90 | } |
91 | } |
92 | |
93 | // Create a bit-mask based on the sign-bit. Should optimize to a single arithmetic-shift-right |
94 | #define SIGNMASK(x) (Uint32)(0u - ((Uint32)(x) >> 31)) |
95 | |
96 | static void SDL_Convert_F32_to_S8_Scalar(Sint8 *dst, const float *src, int num_samples) |
97 | { |
98 | int i; |
99 | |
100 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S8" ); |
101 | |
102 | for (i = 0; i < num_samples; ++i) { |
103 | /* 1) Shift the float range from [-1.0, 1.0] to [98303.0, 98305.0] |
104 | * 2) Shift the integer range from [0x47BFFF80, 0x47C00080] to [-128, 128] |
105 | * 3) Clamp the value to [-128, 127] */ |
106 | union float_bits x; |
107 | x.f32 = src[i] + 98304.0f; |
108 | |
109 | Uint32 y = x.u32 - 0x47C00000u; |
110 | Uint32 z = 0x7Fu - (y ^ SIGNMASK(y)); |
111 | y = y ^ (z & SIGNMASK(z)); |
112 | |
113 | dst[i] = (Sint8)(y & 0xFF); |
114 | } |
115 | } |
116 | |
117 | static void SDL_Convert_F32_to_U8_Scalar(Uint8 *dst, const float *src, int num_samples) |
118 | { |
119 | int i; |
120 | |
121 | LOG_DEBUG_AUDIO_CONVERT("F32" , "U8" ); |
122 | |
123 | for (i = 0; i < num_samples; ++i) { |
124 | /* 1) Shift the float range from [-1.0, 1.0] to [98303.0, 98305.0] |
125 | * 2) Shift the integer range from [0x47BFFF80, 0x47C00080] to [-128, 128] |
126 | * 3) Clamp the value to [-128, 127] |
127 | * 4) Shift the integer range from [-128, 127] to [0, 255] */ |
128 | union float_bits x; |
129 | x.f32 = src[i] + 98304.0f; |
130 | |
131 | Uint32 y = x.u32 - 0x47C00000u; |
132 | Uint32 z = 0x7Fu - (y ^ SIGNMASK(y)); |
133 | y = (y ^ 0x80u) ^ (z & SIGNMASK(z)); |
134 | |
135 | dst[i] = (Uint8)(y & 0xFF); |
136 | } |
137 | } |
138 | |
139 | static void SDL_Convert_F32_to_S16_Scalar(Sint16 *dst, const float *src, int num_samples) |
140 | { |
141 | int i; |
142 | |
143 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S16" ); |
144 | |
145 | for (i = 0; i < num_samples; ++i) { |
146 | /* 1) Shift the float range from [-1.0, 1.0] to [383.0, 385.0] |
147 | * 2) Shift the integer range from [0x43BF8000, 0x43C08000] to [-32768, 32768] |
148 | * 3) Clamp values outside the [-32768, 32767] range */ |
149 | union float_bits x; |
150 | x.f32 = src[i] + 384.0f; |
151 | |
152 | Uint32 y = x.u32 - 0x43C00000u; |
153 | Uint32 z = 0x7FFFu - (y ^ SIGNMASK(y)); |
154 | y = y ^ (z & SIGNMASK(z)); |
155 | |
156 | dst[i] = (Sint16)(y & 0xFFFF); |
157 | } |
158 | } |
159 | |
160 | static void SDL_Convert_F32_to_S32_Scalar(Sint32 *dst, const float *src, int num_samples) |
161 | { |
162 | int i; |
163 | |
164 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S32" ); |
165 | |
166 | for (i = 0; i < num_samples; ++i) { |
167 | /* 1) Shift the float range from [-1.0, 1.0] to [-2147483648.0, 2147483648.0] |
168 | * 2) Set values outside the [-2147483648.0, 2147483647.0] range to -2147483648.0 |
169 | * 3) Convert the float to an integer, and fixup values outside the valid range */ |
170 | union float_bits x; |
171 | x.f32 = src[i]; |
172 | |
173 | Uint32 y = x.u32 + 0x0F800000u; |
174 | Uint32 z = y - 0xCF000000u; |
175 | z &= SIGNMASK(y ^ z); |
176 | x.u32 = y - z; |
177 | |
178 | dst[i] = (Sint32)x.f32 ^ (Sint32)SIGNMASK(z); |
179 | } |
180 | } |
181 | |
182 | #undef SIGNMASK |
183 | |
184 | static void SDL_Convert_Swap16_Scalar(Uint16* dst, const Uint16* src, int num_samples) |
185 | { |
186 | int i; |
187 | |
188 | for (i = 0; i < num_samples; ++i) { |
189 | dst[i] = SDL_Swap16(src[i]); |
190 | } |
191 | } |
192 | |
193 | static void SDL_Convert_Swap32_Scalar(Uint32* dst, const Uint32* src, int num_samples) |
194 | { |
195 | int i; |
196 | |
197 | for (i = 0; i < num_samples; ++i) { |
198 | dst[i] = SDL_Swap32(src[i]); |
199 | } |
200 | } |
201 | |
202 | // end fallback scalar converters |
203 | |
204 | // Convert forwards, when sizeof(*src) >= sizeof(*dst) |
205 | #define CONVERT_16_FWD(CVT1, CVT16) \ |
206 | int i = 0; \ |
207 | if (num_samples >= 16) { \ |
208 | while ((uintptr_t)(&dst[i]) & 15) { CVT1 ++i; } \ |
209 | while ((i + 16) <= num_samples) { CVT16 i += 16; } \ |
210 | } \ |
211 | while (i < num_samples) { CVT1 ++i; } |
212 | |
213 | // Convert backwards, when sizeof(*src) <= sizeof(*dst) |
214 | #define CONVERT_16_REV(CVT1, CVT16) \ |
215 | int i = num_samples; \ |
216 | if (i >= 16) { \ |
217 | while ((uintptr_t)(&dst[i]) & 15) { --i; CVT1 } \ |
218 | while (i >= 16) { i -= 16; CVT16 } \ |
219 | } \ |
220 | while (i > 0) { --i; CVT1 } |
221 | |
222 | #ifdef SDL_SSE2_INTRINSICS |
223 | static void SDL_TARGETING("sse2" ) SDL_Convert_S8_to_F32_SSE2(float *dst, const Sint8 *src, int num_samples) |
224 | { |
225 | /* 1) Flip the sign bit to convert from S8 to U8 format |
226 | * 2) Construct a float in the range [65536.0, 65538.0) |
227 | * 3) Shift the float range to [-1.0, 1.0) |
228 | * dst[i] = i2f((src[i] ^ 0x80) | 0x47800000) - 65537.0 */ |
229 | const __m128i zero = _mm_setzero_si128(); |
230 | const __m128i flipper = _mm_set1_epi8(-0x80); |
231 | const __m128i caster = _mm_set1_epi16(0x4780 /* 0x47800000 = f2i(65536.0) */); |
232 | const __m128 offset = _mm_set1_ps(-65537.0); |
233 | |
234 | LOG_DEBUG_AUDIO_CONVERT("S8" , "F32 (using SSE2)" ); |
235 | |
236 | CONVERT_16_REV({ |
237 | _mm_store_ss(&dst[i], _mm_add_ss(_mm_castsi128_ps(_mm_cvtsi32_si128((Uint8)src[i] ^ 0x47800080u)), offset)); |
238 | }, { |
239 | const __m128i bytes = _mm_xor_si128(_mm_loadu_si128((const __m128i *)&src[i]), flipper); |
240 | |
241 | const __m128i shorts0 = _mm_unpacklo_epi8(bytes, zero); |
242 | const __m128i shorts1 = _mm_unpackhi_epi8(bytes, zero); |
243 | |
244 | const __m128 floats0 = _mm_add_ps(_mm_castsi128_ps(_mm_unpacklo_epi16(shorts0, caster)), offset); |
245 | const __m128 floats1 = _mm_add_ps(_mm_castsi128_ps(_mm_unpackhi_epi16(shorts0, caster)), offset); |
246 | const __m128 floats2 = _mm_add_ps(_mm_castsi128_ps(_mm_unpacklo_epi16(shorts1, caster)), offset); |
247 | const __m128 floats3 = _mm_add_ps(_mm_castsi128_ps(_mm_unpackhi_epi16(shorts1, caster)), offset); |
248 | |
249 | _mm_store_ps(&dst[i], floats0); |
250 | _mm_store_ps(&dst[i + 4], floats1); |
251 | _mm_store_ps(&dst[i + 8], floats2); |
252 | _mm_store_ps(&dst[i + 12], floats3); |
253 | }) |
254 | } |
255 | |
256 | static void SDL_TARGETING("sse2" ) SDL_Convert_U8_to_F32_SSE2(float *dst, const Uint8 *src, int num_samples) |
257 | { |
258 | /* 1) Construct a float in the range [65536.0, 65538.0) |
259 | * 2) Shift the float range to [-1.0, 1.0) |
260 | * dst[i] = i2f(src[i] | 0x47800000) - 65537.0 */ |
261 | const __m128i zero = _mm_setzero_si128(); |
262 | const __m128i caster = _mm_set1_epi16(0x4780 /* 0x47800000 = f2i(65536.0) */); |
263 | const __m128 offset = _mm_set1_ps(-65537.0); |
264 | |
265 | LOG_DEBUG_AUDIO_CONVERT("U8" , "F32 (using SSE2)" ); |
266 | |
267 | CONVERT_16_REV({ |
268 | _mm_store_ss(&dst[i], _mm_add_ss(_mm_castsi128_ps(_mm_cvtsi32_si128((Uint8)src[i] ^ 0x47800000u)), offset)); |
269 | }, { |
270 | const __m128i bytes = _mm_loadu_si128((const __m128i *)&src[i]); |
271 | |
272 | const __m128i shorts0 = _mm_unpacklo_epi8(bytes, zero); |
273 | const __m128i shorts1 = _mm_unpackhi_epi8(bytes, zero); |
274 | |
275 | const __m128 floats0 = _mm_add_ps(_mm_castsi128_ps(_mm_unpacklo_epi16(shorts0, caster)), offset); |
276 | const __m128 floats1 = _mm_add_ps(_mm_castsi128_ps(_mm_unpackhi_epi16(shorts0, caster)), offset); |
277 | const __m128 floats2 = _mm_add_ps(_mm_castsi128_ps(_mm_unpacklo_epi16(shorts1, caster)), offset); |
278 | const __m128 floats3 = _mm_add_ps(_mm_castsi128_ps(_mm_unpackhi_epi16(shorts1, caster)), offset); |
279 | |
280 | _mm_store_ps(&dst[i], floats0); |
281 | _mm_store_ps(&dst[i + 4], floats1); |
282 | _mm_store_ps(&dst[i + 8], floats2); |
283 | _mm_store_ps(&dst[i + 12], floats3); |
284 | }) |
285 | } |
286 | |
287 | static void SDL_TARGETING("sse2" ) SDL_Convert_S16_to_F32_SSE2(float *dst, const Sint16 *src, int num_samples) |
288 | { |
289 | /* 1) Flip the sign bit to convert from S16 to U16 format |
290 | * 2) Construct a float in the range [256.0, 258.0) |
291 | * 3) Shift the float range to [-1.0, 1.0) |
292 | * dst[i] = i2f((src[i] ^ 0x8000) | 0x43800000) - 257.0 */ |
293 | const __m128i flipper = _mm_set1_epi16(-0x8000); |
294 | const __m128i caster = _mm_set1_epi16(0x4380 /* 0x43800000 = f2i(256.0) */); |
295 | const __m128 offset = _mm_set1_ps(-257.0f); |
296 | |
297 | LOG_DEBUG_AUDIO_CONVERT("S16" , "F32 (using SSE2)" ); |
298 | |
299 | CONVERT_16_REV({ |
300 | _mm_store_ss(&dst[i], _mm_add_ss(_mm_castsi128_ps(_mm_cvtsi32_si128((Uint16)src[i] ^ 0x43808000u)), offset)); |
301 | }, { |
302 | const __m128i shorts0 = _mm_xor_si128(_mm_loadu_si128((const __m128i *)&src[i]), flipper); |
303 | const __m128i shorts1 = _mm_xor_si128(_mm_loadu_si128((const __m128i *)&src[i + 8]), flipper); |
304 | |
305 | const __m128 floats0 = _mm_add_ps(_mm_castsi128_ps(_mm_unpacklo_epi16(shorts0, caster)), offset); |
306 | const __m128 floats1 = _mm_add_ps(_mm_castsi128_ps(_mm_unpackhi_epi16(shorts0, caster)), offset); |
307 | const __m128 floats2 = _mm_add_ps(_mm_castsi128_ps(_mm_unpacklo_epi16(shorts1, caster)), offset); |
308 | const __m128 floats3 = _mm_add_ps(_mm_castsi128_ps(_mm_unpackhi_epi16(shorts1, caster)), offset); |
309 | |
310 | _mm_store_ps(&dst[i], floats0); |
311 | _mm_store_ps(&dst[i + 4], floats1); |
312 | _mm_store_ps(&dst[i + 8], floats2); |
313 | _mm_store_ps(&dst[i + 12], floats3); |
314 | }) |
315 | } |
316 | |
317 | static void SDL_TARGETING("sse2" ) SDL_Convert_S32_to_F32_SSE2(float *dst, const Sint32 *src, int num_samples) |
318 | { |
319 | // dst[i] = f32(src[i]) / f32(0x80000000) |
320 | const __m128 scaler = _mm_set1_ps(DIVBY2147483648); |
321 | |
322 | LOG_DEBUG_AUDIO_CONVERT("S32" , "F32 (using SSE2)" ); |
323 | |
324 | CONVERT_16_FWD({ |
325 | _mm_store_ss(&dst[i], _mm_mul_ss(_mm_cvt_si2ss(_mm_setzero_ps(), src[i]), scaler)); |
326 | }, { |
327 | const __m128i ints0 = _mm_loadu_si128((const __m128i *)&src[i]); |
328 | const __m128i ints1 = _mm_loadu_si128((const __m128i *)&src[i + 4]); |
329 | const __m128i ints2 = _mm_loadu_si128((const __m128i *)&src[i + 8]); |
330 | const __m128i ints3 = _mm_loadu_si128((const __m128i *)&src[i + 12]); |
331 | |
332 | const __m128 floats0 = _mm_mul_ps(_mm_cvtepi32_ps(ints0), scaler); |
333 | const __m128 floats1 = _mm_mul_ps(_mm_cvtepi32_ps(ints1), scaler); |
334 | const __m128 floats2 = _mm_mul_ps(_mm_cvtepi32_ps(ints2), scaler); |
335 | const __m128 floats3 = _mm_mul_ps(_mm_cvtepi32_ps(ints3), scaler); |
336 | |
337 | _mm_store_ps(&dst[i], floats0); |
338 | _mm_store_ps(&dst[i + 4], floats1); |
339 | _mm_store_ps(&dst[i + 8], floats2); |
340 | _mm_store_ps(&dst[i + 12], floats3); |
341 | }) |
342 | } |
343 | |
344 | static void SDL_TARGETING("sse2" ) SDL_Convert_F32_to_S8_SSE2(Sint8 *dst, const float *src, int num_samples) |
345 | { |
346 | /* 1) Shift the float range from [-1.0, 1.0] to [98303.0, 98305.0] |
347 | * 2) Extract the lowest 16 bits and clamp to [-128, 127] |
348 | * Overflow is correctly handled for inputs between roughly [-255.0, 255.0] |
349 | * dst[i] = clamp(i16(f2i(src[i] + 98304.0) & 0xFFFF), -128, 127) */ |
350 | const __m128 offset = _mm_set1_ps(98304.0f); |
351 | const __m128i mask = _mm_set1_epi16(0xFF); |
352 | |
353 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S8 (using SSE2)" ); |
354 | |
355 | CONVERT_16_FWD({ |
356 | const __m128i ints = _mm_castps_si128(_mm_add_ss(_mm_load_ss(&src[i]), offset)); |
357 | dst[i] = (Sint8)(_mm_cvtsi128_si32(_mm_packs_epi16(ints, ints)) & 0xFF); |
358 | }, { |
359 | const __m128 floats0 = _mm_loadu_ps(&src[i]); |
360 | const __m128 floats1 = _mm_loadu_ps(&src[i + 4]); |
361 | const __m128 floats2 = _mm_loadu_ps(&src[i + 8]); |
362 | const __m128 floats3 = _mm_loadu_ps(&src[i + 12]); |
363 | |
364 | const __m128i ints0 = _mm_castps_si128(_mm_add_ps(floats0, offset)); |
365 | const __m128i ints1 = _mm_castps_si128(_mm_add_ps(floats1, offset)); |
366 | const __m128i ints2 = _mm_castps_si128(_mm_add_ps(floats2, offset)); |
367 | const __m128i ints3 = _mm_castps_si128(_mm_add_ps(floats3, offset)); |
368 | |
369 | const __m128i shorts0 = _mm_and_si128(_mm_packs_epi16(ints0, ints1), mask); |
370 | const __m128i shorts1 = _mm_and_si128(_mm_packs_epi16(ints2, ints3), mask); |
371 | |
372 | const __m128i bytes = _mm_packus_epi16(shorts0, shorts1); |
373 | |
374 | _mm_store_si128((__m128i*)&dst[i], bytes); |
375 | }) |
376 | } |
377 | |
378 | static void SDL_TARGETING("sse2" ) SDL_Convert_F32_to_U8_SSE2(Uint8 *dst, const float *src, int num_samples) |
379 | { |
380 | /* 1) Shift the float range from [-1.0, 1.0] to [98304.0, 98306.0] |
381 | * 2) Extract the lowest 16 bits and clamp to [0, 255] |
382 | * Overflow is correctly handled for inputs between roughly [-254.0, 254.0] |
383 | * dst[i] = clamp(i16(f2i(src[i] + 98305.0) & 0xFFFF), 0, 255) */ |
384 | const __m128 offset = _mm_set1_ps(98305.0f); |
385 | const __m128i mask = _mm_set1_epi16(0xFF); |
386 | |
387 | LOG_DEBUG_AUDIO_CONVERT("F32" , "U8 (using SSE2)" ); |
388 | |
389 | CONVERT_16_FWD({ |
390 | const __m128i ints = _mm_castps_si128(_mm_add_ss(_mm_load_ss(&src[i]), offset)); |
391 | dst[i] = (Uint8)(_mm_cvtsi128_si32(_mm_packus_epi16(ints, ints)) & 0xFF); |
392 | }, { |
393 | const __m128 floats0 = _mm_loadu_ps(&src[i]); |
394 | const __m128 floats1 = _mm_loadu_ps(&src[i + 4]); |
395 | const __m128 floats2 = _mm_loadu_ps(&src[i + 8]); |
396 | const __m128 floats3 = _mm_loadu_ps(&src[i + 12]); |
397 | |
398 | const __m128i ints0 = _mm_castps_si128(_mm_add_ps(floats0, offset)); |
399 | const __m128i ints1 = _mm_castps_si128(_mm_add_ps(floats1, offset)); |
400 | const __m128i ints2 = _mm_castps_si128(_mm_add_ps(floats2, offset)); |
401 | const __m128i ints3 = _mm_castps_si128(_mm_add_ps(floats3, offset)); |
402 | |
403 | const __m128i shorts0 = _mm_and_si128(_mm_packus_epi16(ints0, ints1), mask); |
404 | const __m128i shorts1 = _mm_and_si128(_mm_packus_epi16(ints2, ints3), mask); |
405 | |
406 | const __m128i bytes = _mm_packus_epi16(shorts0, shorts1); |
407 | |
408 | _mm_store_si128((__m128i*)&dst[i], bytes); |
409 | }) |
410 | } |
411 | |
412 | static void SDL_TARGETING("sse2" ) SDL_Convert_F32_to_S16_SSE2(Sint16 *dst, const float *src, int num_samples) |
413 | { |
414 | /* 1) Shift the float range from [-1.0, 1.0] to [256.0, 258.0] |
415 | * 2) Shift the int range from [0x43800000, 0x43810000] to [-32768,32768] |
416 | * 3) Clamp to range [-32768,32767] |
417 | * Overflow is correctly handled for inputs between roughly [-257.0, +inf) |
418 | * dst[i] = clamp(f2i(src[i] + 257.0) - 0x43808000, -32768, 32767) */ |
419 | const __m128 offset = _mm_set1_ps(257.0f); |
420 | |
421 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S16 (using SSE2)" ); |
422 | |
423 | CONVERT_16_FWD({ |
424 | const __m128i ints = _mm_sub_epi32(_mm_castps_si128(_mm_add_ss(_mm_load_ss(&src[i]), offset)), _mm_castps_si128(offset)); |
425 | dst[i] = (Sint16)(_mm_cvtsi128_si32(_mm_packs_epi32(ints, ints)) & 0xFFFF); |
426 | }, { |
427 | const __m128 floats0 = _mm_loadu_ps(&src[i]); |
428 | const __m128 floats1 = _mm_loadu_ps(&src[i + 4]); |
429 | const __m128 floats2 = _mm_loadu_ps(&src[i + 8]); |
430 | const __m128 floats3 = _mm_loadu_ps(&src[i + 12]); |
431 | |
432 | const __m128i ints0 = _mm_sub_epi32(_mm_castps_si128(_mm_add_ps(floats0, offset)), _mm_castps_si128(offset)); |
433 | const __m128i ints1 = _mm_sub_epi32(_mm_castps_si128(_mm_add_ps(floats1, offset)), _mm_castps_si128(offset)); |
434 | const __m128i ints2 = _mm_sub_epi32(_mm_castps_si128(_mm_add_ps(floats2, offset)), _mm_castps_si128(offset)); |
435 | const __m128i ints3 = _mm_sub_epi32(_mm_castps_si128(_mm_add_ps(floats3, offset)), _mm_castps_si128(offset)); |
436 | |
437 | const __m128i shorts0 = _mm_packs_epi32(ints0, ints1); |
438 | const __m128i shorts1 = _mm_packs_epi32(ints2, ints3); |
439 | |
440 | _mm_store_si128((__m128i*)&dst[i], shorts0); |
441 | _mm_store_si128((__m128i*)&dst[i + 8], shorts1); |
442 | }) |
443 | } |
444 | |
445 | static void SDL_TARGETING("sse2" ) SDL_Convert_F32_to_S32_SSE2(Sint32 *dst, const float *src, int num_samples) |
446 | { |
447 | /* 1) Scale the float range from [-1.0, 1.0] to [-2147483648.0, 2147483648.0] |
448 | * 2) Convert to integer (values too small/large become 0x80000000 = -2147483648) |
449 | * 3) Fixup values which were too large (0x80000000 ^ 0xFFFFFFFF = 2147483647) |
450 | * dst[i] = i32(src[i] * 2147483648.0) ^ ((src[i] >= 2147483648.0) ? 0xFFFFFFFF : 0x00000000) */ |
451 | const __m128 limit = _mm_set1_ps(2147483648.0f); |
452 | |
453 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S32 (using SSE2)" ); |
454 | |
455 | CONVERT_16_FWD({ |
456 | const __m128 floats = _mm_load_ss(&src[i]); |
457 | const __m128 values = _mm_mul_ss(floats, limit); |
458 | const __m128i ints = _mm_xor_si128(_mm_cvttps_epi32(values), _mm_castps_si128(_mm_cmpge_ss(values, limit))); |
459 | dst[i] = (Sint32)_mm_cvtsi128_si32(ints); |
460 | }, { |
461 | const __m128 floats0 = _mm_loadu_ps(&src[i]); |
462 | const __m128 floats1 = _mm_loadu_ps(&src[i + 4]); |
463 | const __m128 floats2 = _mm_loadu_ps(&src[i + 8]); |
464 | const __m128 floats3 = _mm_loadu_ps(&src[i + 12]); |
465 | |
466 | const __m128 values1 = _mm_mul_ps(floats0, limit); |
467 | const __m128 values2 = _mm_mul_ps(floats1, limit); |
468 | const __m128 values3 = _mm_mul_ps(floats2, limit); |
469 | const __m128 values4 = _mm_mul_ps(floats3, limit); |
470 | |
471 | const __m128i ints0 = _mm_xor_si128(_mm_cvttps_epi32(values1), _mm_castps_si128(_mm_cmpge_ps(values1, limit))); |
472 | const __m128i ints1 = _mm_xor_si128(_mm_cvttps_epi32(values2), _mm_castps_si128(_mm_cmpge_ps(values2, limit))); |
473 | const __m128i ints2 = _mm_xor_si128(_mm_cvttps_epi32(values3), _mm_castps_si128(_mm_cmpge_ps(values3, limit))); |
474 | const __m128i ints3 = _mm_xor_si128(_mm_cvttps_epi32(values4), _mm_castps_si128(_mm_cmpge_ps(values4, limit))); |
475 | |
476 | _mm_store_si128((__m128i*)&dst[i], ints0); |
477 | _mm_store_si128((__m128i*)&dst[i + 4], ints1); |
478 | _mm_store_si128((__m128i*)&dst[i + 8], ints2); |
479 | _mm_store_si128((__m128i*)&dst[i + 12], ints3); |
480 | }) |
481 | } |
482 | #endif |
483 | |
484 | // FIXME: SDL doesn't have SSSE3 detection, so use the next one up |
485 | #ifdef SDL_SSE4_1_INTRINSICS |
486 | static void SDL_TARGETING("ssse3" ) SDL_Convert_Swap16_SSSE3(Uint16* dst, const Uint16* src, int num_samples) |
487 | { |
488 | const __m128i shuffle = _mm_set_epi8(14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1); |
489 | |
490 | CONVERT_16_FWD({ |
491 | dst[i] = SDL_Swap16(src[i]); |
492 | }, { |
493 | __m128i ints0 = _mm_loadu_si128((const __m128i*)&src[i]); |
494 | __m128i ints1 = _mm_loadu_si128((const __m128i*)&src[i + 8]); |
495 | |
496 | ints0 = _mm_shuffle_epi8(ints0, shuffle); |
497 | ints1 = _mm_shuffle_epi8(ints1, shuffle); |
498 | |
499 | _mm_store_si128((__m128i*)&dst[i], ints0); |
500 | _mm_store_si128((__m128i*)&dst[i + 8], ints1); |
501 | }) |
502 | } |
503 | |
504 | static void SDL_TARGETING("ssse3" ) SDL_Convert_Swap32_SSSE3(Uint32* dst, const Uint32* src, int num_samples) |
505 | { |
506 | const __m128i shuffle = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3); |
507 | |
508 | CONVERT_16_FWD({ |
509 | dst[i] = SDL_Swap32(src[i]); |
510 | }, { |
511 | __m128i ints0 = _mm_loadu_si128((const __m128i*)&src[i]); |
512 | __m128i ints1 = _mm_loadu_si128((const __m128i*)&src[i + 4]); |
513 | __m128i ints2 = _mm_loadu_si128((const __m128i*)&src[i + 8]); |
514 | __m128i ints3 = _mm_loadu_si128((const __m128i*)&src[i + 12]); |
515 | |
516 | ints0 = _mm_shuffle_epi8(ints0, shuffle); |
517 | ints1 = _mm_shuffle_epi8(ints1, shuffle); |
518 | ints2 = _mm_shuffle_epi8(ints2, shuffle); |
519 | ints3 = _mm_shuffle_epi8(ints3, shuffle); |
520 | |
521 | _mm_store_si128((__m128i*)&dst[i], ints0); |
522 | _mm_store_si128((__m128i*)&dst[i + 4], ints1); |
523 | _mm_store_si128((__m128i*)&dst[i + 8], ints2); |
524 | _mm_store_si128((__m128i*)&dst[i + 12], ints3); |
525 | }) |
526 | } |
527 | #endif |
528 | |
529 | #ifdef SDL_NEON_INTRINSICS |
530 | static void SDL_Convert_S8_to_F32_NEON(float *dst, const Sint8 *src, int num_samples) |
531 | { |
532 | LOG_DEBUG_AUDIO_CONVERT("S8" , "F32 (using NEON)" ); |
533 | |
534 | CONVERT_16_REV({ |
535 | vst1_lane_f32(&dst[i], vcvt_n_f32_s32(vdup_n_s32(src[i]), 7), 0); |
536 | }, { |
537 | int8x16_t bytes = vld1q_s8(&src[i]); |
538 | |
539 | int16x8_t shorts0 = vmovl_s8(vget_low_s8(bytes)); |
540 | int16x8_t shorts1 = vmovl_s8(vget_high_s8(bytes)); |
541 | |
542 | float32x4_t floats0 = vcvtq_n_f32_s32(vmovl_s16(vget_low_s16(shorts0)), 7); |
543 | float32x4_t floats1 = vcvtq_n_f32_s32(vmovl_s16(vget_high_s16(shorts0)), 7); |
544 | float32x4_t floats2 = vcvtq_n_f32_s32(vmovl_s16(vget_low_s16(shorts1)), 7); |
545 | float32x4_t floats3 = vcvtq_n_f32_s32(vmovl_s16(vget_high_s16(shorts1)), 7); |
546 | |
547 | vst1q_f32(&dst[i], floats0); |
548 | vst1q_f32(&dst[i + 4], floats1); |
549 | vst1q_f32(&dst[i + 8], floats2); |
550 | vst1q_f32(&dst[i + 12], floats3); |
551 | }) |
552 | } |
553 | |
554 | static void SDL_Convert_U8_to_F32_NEON(float *dst, const Uint8 *src, int num_samples) |
555 | { |
556 | LOG_DEBUG_AUDIO_CONVERT("U8" , "F32 (using NEON)" ); |
557 | |
558 | uint8x16_t flipper = vdupq_n_u8(0x80); |
559 | |
560 | CONVERT_16_REV({ |
561 | vst1_lane_f32(&dst[i], vcvt_n_f32_s32(vdup_n_s32((Sint8)(src[i] ^ 0x80)), 7), 0); |
562 | }, { |
563 | int8x16_t bytes = vreinterpretq_s8_u8(veorq_u8(vld1q_u8(&src[i]), flipper)); |
564 | |
565 | int16x8_t shorts0 = vmovl_s8(vget_low_s8(bytes)); |
566 | int16x8_t shorts1 = vmovl_s8(vget_high_s8(bytes)); |
567 | |
568 | float32x4_t floats0 = vcvtq_n_f32_s32(vmovl_s16(vget_low_s16(shorts0)), 7); |
569 | float32x4_t floats1 = vcvtq_n_f32_s32(vmovl_s16(vget_high_s16(shorts0)), 7); |
570 | float32x4_t floats2 = vcvtq_n_f32_s32(vmovl_s16(vget_low_s16(shorts1)), 7); |
571 | float32x4_t floats3 = vcvtq_n_f32_s32(vmovl_s16(vget_high_s16(shorts1)), 7); |
572 | |
573 | vst1q_f32(&dst[i], floats0); |
574 | vst1q_f32(&dst[i + 4], floats1); |
575 | vst1q_f32(&dst[i + 8], floats2); |
576 | vst1q_f32(&dst[i + 12], floats3); |
577 | }) |
578 | } |
579 | |
580 | static void SDL_Convert_S16_to_F32_NEON(float *dst, const Sint16 *src, int num_samples) |
581 | { |
582 | LOG_DEBUG_AUDIO_CONVERT("S16" , "F32 (using NEON)" ); |
583 | |
584 | CONVERT_16_REV({ |
585 | vst1_lane_f32(&dst[i], vcvt_n_f32_s32(vdup_n_s32(src[i]), 15), 0); |
586 | }, { |
587 | int16x8_t shorts0 = vld1q_s16(&src[i]); |
588 | int16x8_t shorts1 = vld1q_s16(&src[i + 8]); |
589 | |
590 | float32x4_t floats0 = vcvtq_n_f32_s32(vmovl_s16(vget_low_s16(shorts0)), 15); |
591 | float32x4_t floats1 = vcvtq_n_f32_s32(vmovl_s16(vget_high_s16(shorts0)), 15); |
592 | float32x4_t floats2 = vcvtq_n_f32_s32(vmovl_s16(vget_low_s16(shorts1)), 15); |
593 | float32x4_t floats3 = vcvtq_n_f32_s32(vmovl_s16(vget_high_s16(shorts1)), 15); |
594 | |
595 | vst1q_f32(&dst[i], floats0); |
596 | vst1q_f32(&dst[i + 4], floats1); |
597 | vst1q_f32(&dst[i + 8], floats2); |
598 | vst1q_f32(&dst[i + 12], floats3); |
599 | }) |
600 | } |
601 | |
602 | static void SDL_Convert_S32_to_F32_NEON(float *dst, const Sint32 *src, int num_samples) |
603 | { |
604 | LOG_DEBUG_AUDIO_CONVERT("S32" , "F32 (using NEON)" ); |
605 | |
606 | CONVERT_16_FWD({ |
607 | vst1_lane_f32(&dst[i], vcvt_n_f32_s32(vld1_dup_s32(&src[i]), 31), 0); |
608 | }, { |
609 | int32x4_t ints0 = vld1q_s32(&src[i]); |
610 | int32x4_t ints1 = vld1q_s32(&src[i + 4]); |
611 | int32x4_t ints2 = vld1q_s32(&src[i + 8]); |
612 | int32x4_t ints3 = vld1q_s32(&src[i + 12]); |
613 | |
614 | float32x4_t floats0 = vcvtq_n_f32_s32(ints0, 31); |
615 | float32x4_t floats1 = vcvtq_n_f32_s32(ints1, 31); |
616 | float32x4_t floats2 = vcvtq_n_f32_s32(ints2, 31); |
617 | float32x4_t floats3 = vcvtq_n_f32_s32(ints3, 31); |
618 | |
619 | vst1q_f32(&dst[i], floats0); |
620 | vst1q_f32(&dst[i + 4], floats1); |
621 | vst1q_f32(&dst[i + 8], floats2); |
622 | vst1q_f32(&dst[i + 12], floats3); |
623 | }) |
624 | } |
625 | |
626 | static void SDL_Convert_F32_to_S8_NEON(Sint8 *dst, const float *src, int num_samples) |
627 | { |
628 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S8 (using NEON)" ); |
629 | |
630 | CONVERT_16_FWD({ |
631 | vst1_lane_s8(&dst[i], vreinterpret_s8_s32(vcvt_n_s32_f32(vld1_dup_f32(&src[i]), 31)), 3); |
632 | }, { |
633 | float32x4_t floats0 = vld1q_f32(&src[i]); |
634 | float32x4_t floats1 = vld1q_f32(&src[i + 4]); |
635 | float32x4_t floats2 = vld1q_f32(&src[i + 8]); |
636 | float32x4_t floats3 = vld1q_f32(&src[i + 12]); |
637 | |
638 | int32x4_t ints0 = vcvtq_n_s32_f32(floats0, 31); |
639 | int32x4_t ints1 = vcvtq_n_s32_f32(floats1, 31); |
640 | int32x4_t ints2 = vcvtq_n_s32_f32(floats2, 31); |
641 | int32x4_t ints3 = vcvtq_n_s32_f32(floats3, 31); |
642 | |
643 | int16x8_t shorts0 = vcombine_s16(vshrn_n_s32(ints0, 16), vshrn_n_s32(ints1, 16)); |
644 | int16x8_t shorts1 = vcombine_s16(vshrn_n_s32(ints2, 16), vshrn_n_s32(ints3, 16)); |
645 | |
646 | int8x16_t bytes = vcombine_s8(vshrn_n_s16(shorts0, 8), vshrn_n_s16(shorts1, 8)); |
647 | |
648 | vst1q_s8(&dst[i], bytes); |
649 | }) |
650 | } |
651 | |
652 | static void SDL_Convert_F32_to_U8_NEON(Uint8 *dst, const float *src, int num_samples) |
653 | { |
654 | LOG_DEBUG_AUDIO_CONVERT("F32" , "U8 (using NEON)" ); |
655 | |
656 | uint8x16_t flipper = vdupq_n_u8(0x80); |
657 | |
658 | CONVERT_16_FWD({ |
659 | vst1_lane_u8(&dst[i], |
660 | veor_u8(vreinterpret_u8_s32(vcvt_n_s32_f32(vld1_dup_f32(&src[i]), 31)), |
661 | vget_low_u8(flipper)), 3); |
662 | }, { |
663 | float32x4_t floats0 = vld1q_f32(&src[i]); |
664 | float32x4_t floats1 = vld1q_f32(&src[i + 4]); |
665 | float32x4_t floats2 = vld1q_f32(&src[i + 8]); |
666 | float32x4_t floats3 = vld1q_f32(&src[i + 12]); |
667 | |
668 | int32x4_t ints0 = vcvtq_n_s32_f32(floats0, 31); |
669 | int32x4_t ints1 = vcvtq_n_s32_f32(floats1, 31); |
670 | int32x4_t ints2 = vcvtq_n_s32_f32(floats2, 31); |
671 | int32x4_t ints3 = vcvtq_n_s32_f32(floats3, 31); |
672 | |
673 | int16x8_t shorts0 = vcombine_s16(vshrn_n_s32(ints0, 16), vshrn_n_s32(ints1, 16)); |
674 | int16x8_t shorts1 = vcombine_s16(vshrn_n_s32(ints2, 16), vshrn_n_s32(ints3, 16)); |
675 | |
676 | uint8x16_t bytes = veorq_u8(vreinterpretq_u8_s8( |
677 | vcombine_s8(vshrn_n_s16(shorts0, 8), vshrn_n_s16(shorts1, 8))), |
678 | flipper); |
679 | |
680 | vst1q_u8(&dst[i], bytes); |
681 | }) |
682 | } |
683 | |
684 | static void SDL_Convert_F32_to_S16_NEON(Sint16 *dst, const float *src, int num_samples) |
685 | { |
686 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S16 (using NEON)" ); |
687 | |
688 | CONVERT_16_FWD({ |
689 | vst1_lane_s16(&dst[i], vreinterpret_s16_s32(vcvt_n_s32_f32(vld1_dup_f32(&src[i]), 31)), 1); |
690 | }, { |
691 | float32x4_t floats0 = vld1q_f32(&src[i]); |
692 | float32x4_t floats1 = vld1q_f32(&src[i + 4]); |
693 | float32x4_t floats2 = vld1q_f32(&src[i + 8]); |
694 | float32x4_t floats3 = vld1q_f32(&src[i + 12]); |
695 | |
696 | int32x4_t ints0 = vcvtq_n_s32_f32(floats0, 31); |
697 | int32x4_t ints1 = vcvtq_n_s32_f32(floats1, 31); |
698 | int32x4_t ints2 = vcvtq_n_s32_f32(floats2, 31); |
699 | int32x4_t ints3 = vcvtq_n_s32_f32(floats3, 31); |
700 | |
701 | int16x8_t shorts0 = vcombine_s16(vshrn_n_s32(ints0, 16), vshrn_n_s32(ints1, 16)); |
702 | int16x8_t shorts1 = vcombine_s16(vshrn_n_s32(ints2, 16), vshrn_n_s32(ints3, 16)); |
703 | |
704 | vst1q_s16(&dst[i], shorts0); |
705 | vst1q_s16(&dst[i + 8], shorts1); |
706 | }) |
707 | } |
708 | |
709 | static void SDL_Convert_F32_to_S32_NEON(Sint32 *dst, const float *src, int num_samples) |
710 | { |
711 | LOG_DEBUG_AUDIO_CONVERT("F32" , "S32 (using NEON)" ); |
712 | |
713 | CONVERT_16_FWD({ |
714 | vst1_lane_s32(&dst[i], vcvt_n_s32_f32(vld1_dup_f32(&src[i]), 31), 0); |
715 | }, { |
716 | float32x4_t floats0 = vld1q_f32(&src[i]); |
717 | float32x4_t floats1 = vld1q_f32(&src[i + 4]); |
718 | float32x4_t floats2 = vld1q_f32(&src[i + 8]); |
719 | float32x4_t floats3 = vld1q_f32(&src[i + 12]); |
720 | |
721 | int32x4_t ints0 = vcvtq_n_s32_f32(floats0, 31); |
722 | int32x4_t ints1 = vcvtq_n_s32_f32(floats1, 31); |
723 | int32x4_t ints2 = vcvtq_n_s32_f32(floats2, 31); |
724 | int32x4_t ints3 = vcvtq_n_s32_f32(floats3, 31); |
725 | |
726 | vst1q_s32(&dst[i], ints0); |
727 | vst1q_s32(&dst[i + 4], ints1); |
728 | vst1q_s32(&dst[i + 8], ints2); |
729 | vst1q_s32(&dst[i + 12], ints3); |
730 | }) |
731 | } |
732 | |
733 | static void SDL_Convert_Swap16_NEON(Uint16* dst, const Uint16* src, int num_samples) |
734 | { |
735 | CONVERT_16_FWD({ |
736 | dst[i] = SDL_Swap16(src[i]); |
737 | }, { |
738 | uint8x16_t ints0 = vld1q_u8((const Uint8*)&src[i]); |
739 | uint8x16_t ints1 = vld1q_u8((const Uint8*)&src[i + 8]); |
740 | |
741 | ints0 = vrev16q_u8(ints0); |
742 | ints1 = vrev16q_u8(ints1); |
743 | |
744 | vst1q_u8((Uint8*)&dst[i], ints0); |
745 | vst1q_u8((Uint8*)&dst[i + 8], ints1); |
746 | }) |
747 | } |
748 | |
749 | static void SDL_Convert_Swap32_NEON(Uint32* dst, const Uint32* src, int num_samples) |
750 | { |
751 | CONVERT_16_FWD({ |
752 | dst[i] = SDL_Swap32(src[i]); |
753 | }, { |
754 | uint8x16_t ints0 = vld1q_u8((const Uint8*)&src[i]); |
755 | uint8x16_t ints1 = vld1q_u8((const Uint8*)&src[i + 4]); |
756 | uint8x16_t ints2 = vld1q_u8((const Uint8*)&src[i + 8]); |
757 | uint8x16_t ints3 = vld1q_u8((const Uint8*)&src[i + 12]); |
758 | |
759 | ints0 = vrev32q_u8(ints0); |
760 | ints1 = vrev32q_u8(ints1); |
761 | ints2 = vrev32q_u8(ints2); |
762 | ints3 = vrev32q_u8(ints3); |
763 | |
764 | vst1q_u8((Uint8*)&dst[i], ints0); |
765 | vst1q_u8((Uint8*)&dst[i + 4], ints1); |
766 | vst1q_u8((Uint8*)&dst[i + 8], ints2); |
767 | vst1q_u8((Uint8*)&dst[i + 12], ints3); |
768 | }) |
769 | } |
770 | #endif |
771 | |
772 | #undef CONVERT_16_FWD |
773 | #undef CONVERT_16_REV |
774 | |
775 | // Function pointers set to a CPU-specific implementation. |
776 | static void (*SDL_Convert_S8_to_F32)(float *dst, const Sint8 *src, int num_samples) = NULL; |
777 | static void (*SDL_Convert_U8_to_F32)(float *dst, const Uint8 *src, int num_samples) = NULL; |
778 | static void (*SDL_Convert_S16_to_F32)(float *dst, const Sint16 *src, int num_samples) = NULL; |
779 | static void (*SDL_Convert_S32_to_F32)(float *dst, const Sint32 *src, int num_samples) = NULL; |
780 | static void (*SDL_Convert_F32_to_S8)(Sint8 *dst, const float *src, int num_samples) = NULL; |
781 | static void (*SDL_Convert_F32_to_U8)(Uint8 *dst, const float *src, int num_samples) = NULL; |
782 | static void (*SDL_Convert_F32_to_S16)(Sint16 *dst, const float *src, int num_samples) = NULL; |
783 | static void (*SDL_Convert_F32_to_S32)(Sint32 *dst, const float *src, int num_samples) = NULL; |
784 | |
785 | static void (*SDL_Convert_Swap16)(Uint16* dst, const Uint16* src, int num_samples) = NULL; |
786 | static void (*SDL_Convert_Swap32)(Uint32* dst, const Uint32* src, int num_samples) = NULL; |
787 | |
788 | void ConvertAudioToFloat(float *dst, const void *src, int num_samples, SDL_AudioFormat src_fmt) |
789 | { |
790 | switch (src_fmt) { |
791 | case SDL_AUDIO_S8: |
792 | SDL_Convert_S8_to_F32(dst, (const Sint8 *) src, num_samples); |
793 | break; |
794 | |
795 | case SDL_AUDIO_U8: |
796 | SDL_Convert_U8_to_F32(dst, (const Uint8 *) src, num_samples); |
797 | break; |
798 | |
799 | case SDL_AUDIO_S16: |
800 | SDL_Convert_S16_to_F32(dst, (const Sint16 *) src, num_samples); |
801 | break; |
802 | |
803 | case SDL_AUDIO_S16 ^ SDL_AUDIO_MASK_BIG_ENDIAN: |
804 | SDL_Convert_Swap16((Uint16*) dst, (const Uint16*) src, num_samples); |
805 | SDL_Convert_S16_to_F32(dst, (const Sint16 *) dst, num_samples); |
806 | break; |
807 | |
808 | case SDL_AUDIO_S32: |
809 | SDL_Convert_S32_to_F32(dst, (const Sint32 *) src, num_samples); |
810 | break; |
811 | |
812 | case SDL_AUDIO_S32 ^ SDL_AUDIO_MASK_BIG_ENDIAN: |
813 | SDL_Convert_Swap32((Uint32*) dst, (const Uint32*) src, num_samples); |
814 | SDL_Convert_S32_to_F32(dst, (const Sint32 *) dst, num_samples); |
815 | break; |
816 | |
817 | case SDL_AUDIO_F32 ^ SDL_AUDIO_MASK_BIG_ENDIAN: |
818 | SDL_Convert_Swap32((Uint32*) dst, (const Uint32*) src, num_samples); |
819 | break; |
820 | |
821 | default: SDL_assert(!"Unexpected audio format!" ); break; |
822 | } |
823 | } |
824 | |
825 | void ConvertAudioFromFloat(void *dst, const float *src, int num_samples, SDL_AudioFormat dst_fmt) |
826 | { |
827 | switch (dst_fmt) { |
828 | case SDL_AUDIO_S8: |
829 | SDL_Convert_F32_to_S8((Sint8 *) dst, src, num_samples); |
830 | break; |
831 | |
832 | case SDL_AUDIO_U8: |
833 | SDL_Convert_F32_to_U8((Uint8 *) dst, src, num_samples); |
834 | break; |
835 | |
836 | case SDL_AUDIO_S16: |
837 | SDL_Convert_F32_to_S16((Sint16 *) dst, src, num_samples); |
838 | break; |
839 | |
840 | case SDL_AUDIO_S16 ^ SDL_AUDIO_MASK_BIG_ENDIAN: |
841 | SDL_Convert_F32_to_S16((Sint16 *) dst, src, num_samples); |
842 | SDL_Convert_Swap16((Uint16*) dst, (const Uint16*) dst, num_samples); |
843 | break; |
844 | |
845 | case SDL_AUDIO_S32: |
846 | SDL_Convert_F32_to_S32((Sint32 *) dst, src, num_samples); |
847 | break; |
848 | |
849 | case SDL_AUDIO_S32 ^ SDL_AUDIO_MASK_BIG_ENDIAN: |
850 | SDL_Convert_F32_to_S32((Sint32 *) dst, src, num_samples); |
851 | SDL_Convert_Swap32((Uint32*) dst, (const Uint32*) dst, num_samples); |
852 | break; |
853 | |
854 | case SDL_AUDIO_F32 ^ SDL_AUDIO_MASK_BIG_ENDIAN: |
855 | SDL_Convert_Swap32((Uint32*) dst, (const Uint32*) src, num_samples); |
856 | break; |
857 | |
858 | default: SDL_assert(!"Unexpected audio format!" ); break; |
859 | } |
860 | } |
861 | |
862 | void ConvertAudioSwapEndian(void* dst, const void* src, int num_samples, int bitsize) |
863 | { |
864 | switch (bitsize) { |
865 | case 16: SDL_Convert_Swap16((Uint16*) dst, (const Uint16*) src, num_samples); break; |
866 | case 32: SDL_Convert_Swap32((Uint32*) dst, (const Uint32*) src, num_samples); break; |
867 | default: SDL_assert(!"Unexpected audio format!" ); break; |
868 | } |
869 | } |
870 | |
871 | void SDL_ChooseAudioConverters(void) |
872 | { |
873 | static bool converters_chosen = false; |
874 | if (converters_chosen) { |
875 | return; |
876 | } |
877 | |
878 | #define SET_CONVERTER_FUNCS(fntype) \ |
879 | SDL_Convert_Swap16 = SDL_Convert_Swap16_##fntype; \ |
880 | SDL_Convert_Swap32 = SDL_Convert_Swap32_##fntype; |
881 | |
882 | #ifdef SDL_SSE4_1_INTRINSICS |
883 | if (SDL_HasSSE41()) { |
884 | SET_CONVERTER_FUNCS(SSSE3); |
885 | } else |
886 | #endif |
887 | #ifdef SDL_NEON_INTRINSICS |
888 | if (SDL_HasNEON()) { |
889 | SET_CONVERTER_FUNCS(NEON); |
890 | } else |
891 | #endif |
892 | { |
893 | SET_CONVERTER_FUNCS(Scalar); |
894 | } |
895 | |
896 | #undef SET_CONVERTER_FUNCS |
897 | |
898 | #define SET_CONVERTER_FUNCS(fntype) \ |
899 | SDL_Convert_S8_to_F32 = SDL_Convert_S8_to_F32_##fntype; \ |
900 | SDL_Convert_U8_to_F32 = SDL_Convert_U8_to_F32_##fntype; \ |
901 | SDL_Convert_S16_to_F32 = SDL_Convert_S16_to_F32_##fntype; \ |
902 | SDL_Convert_S32_to_F32 = SDL_Convert_S32_to_F32_##fntype; \ |
903 | SDL_Convert_F32_to_S8 = SDL_Convert_F32_to_S8_##fntype; \ |
904 | SDL_Convert_F32_to_U8 = SDL_Convert_F32_to_U8_##fntype; \ |
905 | SDL_Convert_F32_to_S16 = SDL_Convert_F32_to_S16_##fntype; \ |
906 | SDL_Convert_F32_to_S32 = SDL_Convert_F32_to_S32_##fntype; \ |
907 | |
908 | #ifdef SDL_SSE2_INTRINSICS |
909 | if (SDL_HasSSE2()) { |
910 | SET_CONVERTER_FUNCS(SSE2); |
911 | } else |
912 | #endif |
913 | #ifdef SDL_NEON_INTRINSICS |
914 | if (SDL_HasNEON()) { |
915 | SET_CONVERTER_FUNCS(NEON); |
916 | } else |
917 | #endif |
918 | { |
919 | SET_CONVERTER_FUNCS(Scalar); |
920 | } |
921 | |
922 | #undef SET_CONVERTER_FUNCS |
923 | |
924 | converters_chosen = true; |
925 | } |
926 | |