1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkBitmap.h" |
9 | #include "include/core/SkColorSpace.h" |
10 | #include "include/core/SkMath.h" |
11 | #include "include/core/SkPoint3.h" |
12 | #include "include/core/SkSize.h" |
13 | #include "include/core/SkStream.h" |
14 | #include "include/private/SkColorData.h" |
15 | #include "include/private/SkMacros.h" |
16 | #include "include/private/SkTemplates.h" |
17 | #include "src/codec/SkCodecPriv.h" |
18 | #include "src/codec/SkColorTable.h" |
19 | #include "src/codec/SkPngCodec.h" |
20 | #include "src/codec/SkPngPriv.h" |
21 | #include "src/codec/SkSwizzler.h" |
22 | #include "src/core/SkOpts.h" |
23 | #include "src/core/SkUtils.h" |
24 | |
25 | #include "png.h" |
26 | #include <algorithm> |
27 | |
28 | #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
29 | #include "include/android/SkAndroidFrameworkUtils.h" |
30 | #endif |
31 | |
32 | // This warning triggers false postives way too often in here. |
33 | #if defined(__GNUC__) && !defined(__clang__) |
34 | #pragma GCC diagnostic ignored "-Wclobbered" |
35 | #endif |
36 | |
37 | // FIXME (scroggo): We can use png_jumpbuf directly once Google3 is on 1.6 |
38 | #define PNG_JMPBUF(x) png_jmpbuf((png_structp) x) |
39 | |
40 | /////////////////////////////////////////////////////////////////////////////// |
41 | // Callback functions |
42 | /////////////////////////////////////////////////////////////////////////////// |
43 | |
44 | // When setjmp is first called, it returns 0, meaning longjmp was not called. |
45 | constexpr int kSetJmpOkay = 0; |
46 | // An error internal to libpng. |
47 | constexpr int kPngError = 1; |
48 | // Passed to longjmp when we have decoded as many lines as we need. |
49 | constexpr int kStopDecoding = 2; |
50 | |
51 | static void sk_error_fn(png_structp png_ptr, png_const_charp msg) { |
52 | SkCodecPrintf("------ png error %s\n" , msg); |
53 | longjmp(PNG_JMPBUF(png_ptr), kPngError); |
54 | } |
55 | |
56 | void sk_warning_fn(png_structp, png_const_charp msg) { |
57 | SkCodecPrintf("----- png warning %s\n" , msg); |
58 | } |
59 | |
60 | #ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED |
61 | static int sk_read_user_chunk(png_structp png_ptr, png_unknown_chunkp chunk) { |
62 | SkPngChunkReader* chunkReader = (SkPngChunkReader*)png_get_user_chunk_ptr(png_ptr); |
63 | // readChunk() returning true means continue decoding |
64 | return chunkReader->readChunk((const char*)chunk->name, chunk->data, chunk->size) ? 1 : -1; |
65 | } |
66 | #endif |
67 | |
68 | /////////////////////////////////////////////////////////////////////////////// |
69 | // Helpers |
70 | /////////////////////////////////////////////////////////////////////////////// |
71 | |
72 | class AutoCleanPng : public SkNoncopyable { |
73 | public: |
74 | /* |
75 | * This class does not take ownership of stream or reader, but if codecPtr |
76 | * is non-NULL, and decodeBounds succeeds, it will have created a new |
77 | * SkCodec (pointed to by *codecPtr) which will own/ref them, as well as |
78 | * the png_ptr and info_ptr. |
79 | */ |
80 | AutoCleanPng(png_structp png_ptr, SkStream* stream, SkPngChunkReader* reader, |
81 | SkCodec** codecPtr) |
82 | : fPng_ptr(png_ptr) |
83 | , fInfo_ptr(nullptr) |
84 | , fStream(stream) |
85 | , fChunkReader(reader) |
86 | , fOutCodec(codecPtr) |
87 | {} |
88 | |
89 | ~AutoCleanPng() { |
90 | // fInfo_ptr will never be non-nullptr unless fPng_ptr is. |
91 | if (fPng_ptr) { |
92 | png_infopp info_pp = fInfo_ptr ? &fInfo_ptr : nullptr; |
93 | png_destroy_read_struct(&fPng_ptr, info_pp, nullptr); |
94 | } |
95 | } |
96 | |
97 | void setInfoPtr(png_infop info_ptr) { |
98 | SkASSERT(nullptr == fInfo_ptr); |
99 | fInfo_ptr = info_ptr; |
100 | } |
101 | |
102 | /** |
103 | * Reads enough of the input stream to decode the bounds. |
104 | * @return false if the stream is not a valid PNG (or too short). |
105 | * true if it read enough of the stream to determine the bounds. |
106 | * In the latter case, the stream may have been read beyond the |
107 | * point to determine the bounds, and the png_ptr will have saved |
108 | * any extra data. Further, if the codecPtr supplied to the |
109 | * constructor was not NULL, it will now point to a new SkCodec, |
110 | * which owns (or refs, in the case of the SkPngChunkReader) the |
111 | * inputs. If codecPtr was NULL, the png_ptr and info_ptr are |
112 | * unowned, and it is up to the caller to destroy them. |
113 | */ |
114 | bool decodeBounds(); |
115 | |
116 | private: |
117 | png_structp fPng_ptr; |
118 | png_infop fInfo_ptr; |
119 | SkStream* fStream; |
120 | SkPngChunkReader* fChunkReader; |
121 | SkCodec** fOutCodec; |
122 | |
123 | void infoCallback(size_t idatLength); |
124 | |
125 | void releasePngPtrs() { |
126 | fPng_ptr = nullptr; |
127 | fInfo_ptr = nullptr; |
128 | } |
129 | }; |
130 | #define AutoCleanPng(...) SK_REQUIRE_LOCAL_VAR(AutoCleanPng) |
131 | |
132 | static inline bool is_chunk(const png_byte* chunk, const char* tag) { |
133 | return memcmp(chunk + 4, tag, 4) == 0; |
134 | } |
135 | |
136 | static inline bool process_data(png_structp png_ptr, png_infop info_ptr, |
137 | SkStream* stream, void* buffer, size_t bufferSize, size_t length) { |
138 | while (length > 0) { |
139 | const size_t bytesToProcess = std::min(bufferSize, length); |
140 | const size_t bytesRead = stream->read(buffer, bytesToProcess); |
141 | png_process_data(png_ptr, info_ptr, (png_bytep) buffer, bytesRead); |
142 | if (bytesRead < bytesToProcess) { |
143 | return false; |
144 | } |
145 | length -= bytesToProcess; |
146 | } |
147 | return true; |
148 | } |
149 | |
150 | bool AutoCleanPng::decodeBounds() { |
151 | if (setjmp(PNG_JMPBUF(fPng_ptr))) { |
152 | return false; |
153 | } |
154 | |
155 | png_set_progressive_read_fn(fPng_ptr, nullptr, nullptr, nullptr, nullptr); |
156 | |
157 | // Arbitrary buffer size, though note that it matches (below) |
158 | // SkPngCodec::processData(). FIXME: Can we better suit this to the size of |
159 | // the PNG header? |
160 | constexpr size_t kBufferSize = 4096; |
161 | char buffer[kBufferSize]; |
162 | |
163 | { |
164 | // Parse the signature. |
165 | if (fStream->read(buffer, 8) < 8) { |
166 | return false; |
167 | } |
168 | |
169 | png_process_data(fPng_ptr, fInfo_ptr, (png_bytep) buffer, 8); |
170 | } |
171 | |
172 | while (true) { |
173 | // Parse chunk length and type. |
174 | if (fStream->read(buffer, 8) < 8) { |
175 | // We have read to the end of the input without decoding bounds. |
176 | break; |
177 | } |
178 | |
179 | png_byte* chunk = reinterpret_cast<png_byte*>(buffer); |
180 | const size_t length = png_get_uint_32(chunk); |
181 | |
182 | if (is_chunk(chunk, "IDAT" )) { |
183 | this->infoCallback(length); |
184 | return true; |
185 | } |
186 | |
187 | png_process_data(fPng_ptr, fInfo_ptr, chunk, 8); |
188 | // Process the full chunk + CRC. |
189 | if (!process_data(fPng_ptr, fInfo_ptr, fStream, buffer, kBufferSize, length + 4)) { |
190 | return false; |
191 | } |
192 | } |
193 | |
194 | return false; |
195 | } |
196 | |
197 | bool SkPngCodec::processData() { |
198 | switch (setjmp(PNG_JMPBUF(fPng_ptr))) { |
199 | case kPngError: |
200 | // There was an error. Stop processing data. |
201 | // FIXME: Do we need to discard png_ptr? |
202 | return false; |
203 | case kStopDecoding: |
204 | // We decoded all the lines we want. |
205 | return true; |
206 | case kSetJmpOkay: |
207 | // Everything is okay. |
208 | break; |
209 | default: |
210 | // No other values should be passed to longjmp. |
211 | SkASSERT(false); |
212 | } |
213 | |
214 | // Arbitrary buffer size |
215 | constexpr size_t kBufferSize = 4096; |
216 | char buffer[kBufferSize]; |
217 | |
218 | bool iend = false; |
219 | while (true) { |
220 | size_t length; |
221 | if (fDecodedIdat) { |
222 | // Parse chunk length and type. |
223 | if (this->stream()->read(buffer, 8) < 8) { |
224 | break; |
225 | } |
226 | |
227 | png_byte* chunk = reinterpret_cast<png_byte*>(buffer); |
228 | png_process_data(fPng_ptr, fInfo_ptr, chunk, 8); |
229 | if (is_chunk(chunk, "IEND" )) { |
230 | iend = true; |
231 | } |
232 | |
233 | length = png_get_uint_32(chunk); |
234 | } else { |
235 | length = fIdatLength; |
236 | png_byte idat[] = {0, 0, 0, 0, 'I', 'D', 'A', 'T'}; |
237 | png_save_uint_32(idat, length); |
238 | png_process_data(fPng_ptr, fInfo_ptr, idat, 8); |
239 | fDecodedIdat = true; |
240 | } |
241 | |
242 | // Process the full chunk + CRC. |
243 | if (!process_data(fPng_ptr, fInfo_ptr, this->stream(), buffer, kBufferSize, length + 4) |
244 | || iend) { |
245 | break; |
246 | } |
247 | } |
248 | |
249 | return true; |
250 | } |
251 | |
252 | static constexpr SkColorType kXformSrcColorType = kRGBA_8888_SkColorType; |
253 | |
254 | static inline bool needs_premul(SkAlphaType dstAT, SkEncodedInfo::Alpha encodedAlpha) { |
255 | return kPremul_SkAlphaType == dstAT && SkEncodedInfo::kUnpremul_Alpha == encodedAlpha; |
256 | } |
257 | |
258 | // Note: SkColorTable claims to store SkPMColors, which is not necessarily the case here. |
259 | bool SkPngCodec::createColorTable(const SkImageInfo& dstInfo) { |
260 | |
261 | int numColors; |
262 | png_color* palette; |
263 | if (!png_get_PLTE(fPng_ptr, fInfo_ptr, &palette, &numColors)) { |
264 | return false; |
265 | } |
266 | |
267 | // Contents depend on tableColorType and our choice of if/when to premultiply: |
268 | // { kPremul, kUnpremul, kOpaque } x { RGBA, BGRA } |
269 | SkPMColor colorTable[256]; |
270 | SkColorType tableColorType = this->colorXform() ? kXformSrcColorType : dstInfo.colorType(); |
271 | |
272 | png_bytep alphas; |
273 | int numColorsWithAlpha = 0; |
274 | if (png_get_tRNS(fPng_ptr, fInfo_ptr, &alphas, &numColorsWithAlpha, nullptr)) { |
275 | bool premultiply = needs_premul(dstInfo.alphaType(), this->getEncodedInfo().alpha()); |
276 | |
277 | // Choose which function to use to create the color table. If the final destination's |
278 | // colortype is unpremultiplied, the color table will store unpremultiplied colors. |
279 | PackColorProc proc = choose_pack_color_proc(premultiply, tableColorType); |
280 | |
281 | for (int i = 0; i < numColorsWithAlpha; i++) { |
282 | // We don't have a function in SkOpts that combines a set of alphas with a set |
283 | // of RGBs. We could write one, but it's hardly worth it, given that this |
284 | // is such a small fraction of the total decode time. |
285 | colorTable[i] = proc(alphas[i], palette->red, palette->green, palette->blue); |
286 | palette++; |
287 | } |
288 | } |
289 | |
290 | if (numColorsWithAlpha < numColors) { |
291 | // The optimized code depends on a 3-byte png_color struct with the colors |
292 | // in RGB order. These checks make sure it is safe to use. |
293 | static_assert(3 == sizeof(png_color), "png_color struct has changed. Opts are broken." ); |
294 | #ifdef SK_DEBUG |
295 | SkASSERT(&palette->red < &palette->green); |
296 | SkASSERT(&palette->green < &palette->blue); |
297 | #endif |
298 | |
299 | if (is_rgba(tableColorType)) { |
300 | SkOpts::RGB_to_RGB1(colorTable + numColorsWithAlpha, (const uint8_t*)palette, |
301 | numColors - numColorsWithAlpha); |
302 | } else { |
303 | SkOpts::RGB_to_BGR1(colorTable + numColorsWithAlpha, (const uint8_t*)palette, |
304 | numColors - numColorsWithAlpha); |
305 | } |
306 | } |
307 | |
308 | if (this->colorXform() && !this->xformOnDecode()) { |
309 | this->applyColorXform(colorTable, colorTable, numColors); |
310 | } |
311 | |
312 | // Pad the color table with the last color in the table (or black) in the case that |
313 | // invalid pixel indices exceed the number of colors in the table. |
314 | const int maxColors = 1 << fBitDepth; |
315 | if (numColors < maxColors) { |
316 | SkPMColor lastColor = numColors > 0 ? colorTable[numColors - 1] : SK_ColorBLACK; |
317 | sk_memset32(colorTable + numColors, lastColor, maxColors - numColors); |
318 | } |
319 | |
320 | fColorTable.reset(new SkColorTable(colorTable, maxColors)); |
321 | return true; |
322 | } |
323 | |
324 | /////////////////////////////////////////////////////////////////////////////// |
325 | // Creation |
326 | /////////////////////////////////////////////////////////////////////////////// |
327 | |
328 | bool SkPngCodec::IsPng(const void* buf, size_t bytesRead) { |
329 | return !png_sig_cmp((png_bytep) buf, (png_size_t)0, bytesRead); |
330 | } |
331 | |
332 | #if (PNG_LIBPNG_VER_MAJOR > 1) || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 6) |
333 | |
334 | static float png_fixed_point_to_float(png_fixed_point x) { |
335 | // We multiply by the same factor that libpng used to convert |
336 | // fixed point -> double. Since we want floats, we choose to |
337 | // do the conversion ourselves rather than convert |
338 | // fixed point -> double -> float. |
339 | return ((float) x) * 0.00001f; |
340 | } |
341 | |
342 | static float png_inverted_fixed_point_to_float(png_fixed_point x) { |
343 | // This is necessary because the gAMA chunk actually stores 1/gamma. |
344 | return 1.0f / png_fixed_point_to_float(x); |
345 | } |
346 | |
347 | #endif // LIBPNG >= 1.6 |
348 | |
349 | // If there is no color profile information, it will use sRGB. |
350 | std::unique_ptr<SkEncodedInfo::ICCProfile> read_color_profile(png_structp png_ptr, |
351 | png_infop info_ptr) { |
352 | |
353 | #if (PNG_LIBPNG_VER_MAJOR > 1) || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 6) |
354 | // First check for an ICC profile |
355 | png_bytep profile; |
356 | png_uint_32 length; |
357 | // The below variables are unused, however, we need to pass them in anyway or |
358 | // png_get_iCCP() will return nothing. |
359 | // Could knowing the |name| of the profile ever be interesting? Maybe for debugging? |
360 | png_charp name; |
361 | // The |compression| is uninteresting since: |
362 | // (1) libpng has already decompressed the profile for us. |
363 | // (2) "deflate" is the only mode of decompression that libpng supports. |
364 | int compression; |
365 | if (PNG_INFO_iCCP == png_get_iCCP(png_ptr, info_ptr, &name, &compression, &profile, |
366 | &length)) { |
367 | auto data = SkData::MakeWithCopy(profile, length); |
368 | return SkEncodedInfo::ICCProfile::Make(std::move(data)); |
369 | } |
370 | |
371 | // Second, check for sRGB. |
372 | // Note that Blink does this first. This code checks ICC first, with the thinking that |
373 | // an image has both truly wants the potentially more specific ICC chunk, with sRGB as a |
374 | // backup in case the decoder does not support full color management. |
375 | if (png_get_valid(png_ptr, info_ptr, PNG_INFO_sRGB)) { |
376 | // sRGB chunks also store a rendering intent: Absolute, Relative, |
377 | // Perceptual, and Saturation. |
378 | // FIXME (scroggo): Extract this information from the sRGB chunk once |
379 | // we are able to handle this information in |
380 | // skcms_ICCProfile |
381 | return nullptr; |
382 | } |
383 | |
384 | // Default to SRGB gamut. |
385 | skcms_Matrix3x3 toXYZD50 = skcms_sRGB_profile()->toXYZD50; |
386 | // Next, check for chromaticities. |
387 | png_fixed_point chrm[8]; |
388 | png_fixed_point gamma; |
389 | if (png_get_cHRM_fixed(png_ptr, info_ptr, &chrm[0], &chrm[1], &chrm[2], &chrm[3], &chrm[4], |
390 | &chrm[5], &chrm[6], &chrm[7])) |
391 | { |
392 | float rx = png_fixed_point_to_float(chrm[2]); |
393 | float ry = png_fixed_point_to_float(chrm[3]); |
394 | float gx = png_fixed_point_to_float(chrm[4]); |
395 | float gy = png_fixed_point_to_float(chrm[5]); |
396 | float bx = png_fixed_point_to_float(chrm[6]); |
397 | float by = png_fixed_point_to_float(chrm[7]); |
398 | float wx = png_fixed_point_to_float(chrm[0]); |
399 | float wy = png_fixed_point_to_float(chrm[1]); |
400 | |
401 | skcms_Matrix3x3 tmp; |
402 | if (skcms_PrimariesToXYZD50(rx, ry, gx, gy, bx, by, wx, wy, &tmp)) { |
403 | toXYZD50 = tmp; |
404 | } else { |
405 | // Note that Blink simply returns nullptr in this case. We'll fall |
406 | // back to srgb. |
407 | } |
408 | } |
409 | |
410 | skcms_TransferFunction fn; |
411 | if (PNG_INFO_gAMA == png_get_gAMA_fixed(png_ptr, info_ptr, &gamma)) { |
412 | fn.a = 1.0f; |
413 | fn.b = fn.c = fn.d = fn.e = fn.f = 0.0f; |
414 | fn.g = png_inverted_fixed_point_to_float(gamma); |
415 | } else { |
416 | // Default to sRGB gamma if the image has color space information, |
417 | // but does not specify gamma. |
418 | // Note that Blink would again return nullptr in this case. |
419 | fn = *skcms_sRGB_TransferFunction(); |
420 | } |
421 | |
422 | skcms_ICCProfile skcmsProfile; |
423 | skcms_Init(&skcmsProfile); |
424 | skcms_SetTransferFunction(&skcmsProfile, &fn); |
425 | skcms_SetXYZD50(&skcmsProfile, &toXYZD50); |
426 | |
427 | return SkEncodedInfo::ICCProfile::Make(skcmsProfile); |
428 | #else // LIBPNG >= 1.6 |
429 | return nullptr; |
430 | #endif // LIBPNG >= 1.6 |
431 | } |
432 | |
433 | void SkPngCodec::allocateStorage(const SkImageInfo& dstInfo) { |
434 | switch (fXformMode) { |
435 | case kSwizzleOnly_XformMode: |
436 | break; |
437 | case kColorOnly_XformMode: |
438 | // Intentional fall through. A swizzler hasn't been created yet, but one will |
439 | // be created later if we are sampling. We'll go ahead and allocate |
440 | // enough memory to swizzle if necessary. |
441 | case kSwizzleColor_XformMode: { |
442 | const int bitsPerPixel = this->getEncodedInfo().bitsPerPixel(); |
443 | |
444 | // If we have more than 8-bits (per component) of precision, we will keep that |
445 | // extra precision. Otherwise, we will swizzle to RGBA_8888 before transforming. |
446 | const size_t bytesPerPixel = (bitsPerPixel > 32) ? bitsPerPixel / 8 : 4; |
447 | const size_t colorXformBytes = dstInfo.width() * bytesPerPixel; |
448 | fStorage.reset(colorXformBytes); |
449 | fColorXformSrcRow = fStorage.get(); |
450 | break; |
451 | } |
452 | } |
453 | } |
454 | |
455 | static skcms_PixelFormat png_select_xform_format(const SkEncodedInfo& info) { |
456 | // We use kRGB and kRGBA formats because color PNGs are always RGB or RGBA. |
457 | if (16 == info.bitsPerComponent()) { |
458 | if (SkEncodedInfo::kRGBA_Color == info.color()) { |
459 | return skcms_PixelFormat_RGBA_16161616BE; |
460 | } else if (SkEncodedInfo::kRGB_Color == info.color()) { |
461 | return skcms_PixelFormat_RGB_161616BE; |
462 | } |
463 | } else if (SkEncodedInfo::kGray_Color == info.color()) { |
464 | return skcms_PixelFormat_G_8; |
465 | } |
466 | |
467 | return skcms_PixelFormat_RGBA_8888; |
468 | } |
469 | |
470 | void SkPngCodec::applyXformRow(void* dst, const void* src) { |
471 | switch (fXformMode) { |
472 | case kSwizzleOnly_XformMode: |
473 | fSwizzler->swizzle(dst, (const uint8_t*) src); |
474 | break; |
475 | case kColorOnly_XformMode: |
476 | this->applyColorXform(dst, src, fXformWidth); |
477 | break; |
478 | case kSwizzleColor_XformMode: |
479 | fSwizzler->swizzle(fColorXformSrcRow, (const uint8_t*) src); |
480 | this->applyColorXform(dst, fColorXformSrcRow, fXformWidth); |
481 | break; |
482 | } |
483 | } |
484 | |
485 | static SkCodec::Result log_and_return_error(bool success) { |
486 | if (success) return SkCodec::kIncompleteInput; |
487 | #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
488 | SkAndroidFrameworkUtils::SafetyNetLog("117838472" ); |
489 | #endif |
490 | return SkCodec::kErrorInInput; |
491 | } |
492 | |
493 | class SkPngNormalDecoder : public SkPngCodec { |
494 | public: |
495 | SkPngNormalDecoder(SkEncodedInfo&& info, std::unique_ptr<SkStream> stream, |
496 | SkPngChunkReader* reader, png_structp png_ptr, png_infop info_ptr, int bitDepth) |
497 | : INHERITED(std::move(info), std::move(stream), reader, png_ptr, info_ptr, bitDepth) |
498 | , fRowsWrittenToOutput(0) |
499 | , fDst(nullptr) |
500 | , fRowBytes(0) |
501 | , fFirstRow(0) |
502 | , fLastRow(0) |
503 | {} |
504 | |
505 | static void AllRowsCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int /*pass*/) { |
506 | GetDecoder(png_ptr)->allRowsCallback(row, rowNum); |
507 | } |
508 | |
509 | static void RowCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int /*pass*/) { |
510 | GetDecoder(png_ptr)->rowCallback(row, rowNum); |
511 | } |
512 | |
513 | private: |
514 | int fRowsWrittenToOutput; |
515 | void* fDst; |
516 | size_t fRowBytes; |
517 | |
518 | // Variables for partial decode |
519 | int fFirstRow; // FIXME: Move to baseclass? |
520 | int fLastRow; |
521 | int fRowsNeeded; |
522 | |
523 | typedef SkPngCodec INHERITED; |
524 | |
525 | static SkPngNormalDecoder* GetDecoder(png_structp png_ptr) { |
526 | return static_cast<SkPngNormalDecoder*>(png_get_progressive_ptr(png_ptr)); |
527 | } |
528 | |
529 | Result decodeAllRows(void* dst, size_t rowBytes, int* rowsDecoded) override { |
530 | const int height = this->dimensions().height(); |
531 | png_set_progressive_read_fn(this->png_ptr(), this, nullptr, AllRowsCallback, nullptr); |
532 | fDst = dst; |
533 | fRowBytes = rowBytes; |
534 | |
535 | fRowsWrittenToOutput = 0; |
536 | fFirstRow = 0; |
537 | fLastRow = height - 1; |
538 | |
539 | const bool success = this->processData(); |
540 | if (success && fRowsWrittenToOutput == height) { |
541 | return kSuccess; |
542 | } |
543 | |
544 | if (rowsDecoded) { |
545 | *rowsDecoded = fRowsWrittenToOutput; |
546 | } |
547 | |
548 | return log_and_return_error(success); |
549 | } |
550 | |
551 | void allRowsCallback(png_bytep row, int rowNum) { |
552 | SkASSERT(rowNum == fRowsWrittenToOutput); |
553 | fRowsWrittenToOutput++; |
554 | this->applyXformRow(fDst, row); |
555 | fDst = SkTAddOffset<void>(fDst, fRowBytes); |
556 | } |
557 | |
558 | void setRange(int firstRow, int lastRow, void* dst, size_t rowBytes) override { |
559 | png_set_progressive_read_fn(this->png_ptr(), this, nullptr, RowCallback, nullptr); |
560 | fFirstRow = firstRow; |
561 | fLastRow = lastRow; |
562 | fDst = dst; |
563 | fRowBytes = rowBytes; |
564 | fRowsWrittenToOutput = 0; |
565 | fRowsNeeded = fLastRow - fFirstRow + 1; |
566 | } |
567 | |
568 | Result decode(int* rowsDecoded) override { |
569 | if (this->swizzler()) { |
570 | const int sampleY = this->swizzler()->sampleY(); |
571 | fRowsNeeded = get_scaled_dimension(fLastRow - fFirstRow + 1, sampleY); |
572 | } |
573 | |
574 | const bool success = this->processData(); |
575 | if (success && fRowsWrittenToOutput == fRowsNeeded) { |
576 | return kSuccess; |
577 | } |
578 | |
579 | if (rowsDecoded) { |
580 | *rowsDecoded = fRowsWrittenToOutput; |
581 | } |
582 | |
583 | return log_and_return_error(success); |
584 | } |
585 | |
586 | void rowCallback(png_bytep row, int rowNum) { |
587 | if (rowNum < fFirstRow) { |
588 | // Ignore this row. |
589 | return; |
590 | } |
591 | |
592 | SkASSERT(rowNum <= fLastRow); |
593 | SkASSERT(fRowsWrittenToOutput < fRowsNeeded); |
594 | |
595 | // If there is no swizzler, all rows are needed. |
596 | if (!this->swizzler() || this->swizzler()->rowNeeded(rowNum - fFirstRow)) { |
597 | this->applyXformRow(fDst, row); |
598 | fDst = SkTAddOffset<void>(fDst, fRowBytes); |
599 | fRowsWrittenToOutput++; |
600 | } |
601 | |
602 | if (fRowsWrittenToOutput == fRowsNeeded) { |
603 | // Fake error to stop decoding scanlines. |
604 | longjmp(PNG_JMPBUF(this->png_ptr()), kStopDecoding); |
605 | } |
606 | } |
607 | }; |
608 | |
609 | class SkPngInterlacedDecoder : public SkPngCodec { |
610 | public: |
611 | SkPngInterlacedDecoder(SkEncodedInfo&& info, std::unique_ptr<SkStream> stream, |
612 | SkPngChunkReader* reader, png_structp png_ptr, |
613 | png_infop info_ptr, int bitDepth, int numberPasses) |
614 | : INHERITED(std::move(info), std::move(stream), reader, png_ptr, info_ptr, bitDepth) |
615 | , fNumberPasses(numberPasses) |
616 | , fFirstRow(0) |
617 | , fLastRow(0) |
618 | , fLinesDecoded(0) |
619 | , fInterlacedComplete(false) |
620 | , fPng_rowbytes(0) |
621 | {} |
622 | |
623 | static void InterlacedRowCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int pass) { |
624 | auto decoder = static_cast<SkPngInterlacedDecoder*>(png_get_progressive_ptr(png_ptr)); |
625 | decoder->interlacedRowCallback(row, rowNum, pass); |
626 | } |
627 | |
628 | private: |
629 | const int fNumberPasses; |
630 | int fFirstRow; |
631 | int fLastRow; |
632 | void* fDst; |
633 | size_t fRowBytes; |
634 | int fLinesDecoded; |
635 | bool fInterlacedComplete; |
636 | size_t fPng_rowbytes; |
637 | SkAutoTMalloc<png_byte> fInterlaceBuffer; |
638 | |
639 | typedef SkPngCodec INHERITED; |
640 | |
641 | // FIXME: Currently sharing interlaced callback for all rows and subset. It's not |
642 | // as expensive as the subset version of non-interlaced, but it still does extra |
643 | // work. |
644 | void interlacedRowCallback(png_bytep row, int rowNum, int pass) { |
645 | if (rowNum < fFirstRow || rowNum > fLastRow || fInterlacedComplete) { |
646 | // Ignore this row |
647 | return; |
648 | } |
649 | |
650 | png_bytep oldRow = fInterlaceBuffer.get() + (rowNum - fFirstRow) * fPng_rowbytes; |
651 | png_progressive_combine_row(this->png_ptr(), oldRow, row); |
652 | |
653 | if (0 == pass) { |
654 | // The first pass initializes all rows. |
655 | SkASSERT(row); |
656 | SkASSERT(fLinesDecoded == rowNum - fFirstRow); |
657 | fLinesDecoded++; |
658 | } else { |
659 | SkASSERT(fLinesDecoded == fLastRow - fFirstRow + 1); |
660 | if (fNumberPasses - 1 == pass && rowNum == fLastRow) { |
661 | // Last pass, and we have read all of the rows we care about. |
662 | fInterlacedComplete = true; |
663 | if (fLastRow != this->dimensions().height() - 1 || |
664 | (this->swizzler() && this->swizzler()->sampleY() != 1)) { |
665 | // Fake error to stop decoding scanlines. Only stop if we're not decoding the |
666 | // whole image, in which case processing the rest of the image might be |
667 | // expensive. When decoding the whole image, read through the IEND chunk to |
668 | // preserve Android behavior of leaving the input stream in the right place. |
669 | longjmp(PNG_JMPBUF(this->png_ptr()), kStopDecoding); |
670 | } |
671 | } |
672 | } |
673 | } |
674 | |
675 | Result decodeAllRows(void* dst, size_t rowBytes, int* rowsDecoded) override { |
676 | const int height = this->dimensions().height(); |
677 | this->setUpInterlaceBuffer(height); |
678 | png_set_progressive_read_fn(this->png_ptr(), this, nullptr, InterlacedRowCallback, |
679 | nullptr); |
680 | |
681 | fFirstRow = 0; |
682 | fLastRow = height - 1; |
683 | fLinesDecoded = 0; |
684 | |
685 | const bool success = this->processData(); |
686 | png_bytep srcRow = fInterlaceBuffer.get(); |
687 | // FIXME: When resuming, this may rewrite rows that did not change. |
688 | for (int rowNum = 0; rowNum < fLinesDecoded; rowNum++) { |
689 | this->applyXformRow(dst, srcRow); |
690 | dst = SkTAddOffset<void>(dst, rowBytes); |
691 | srcRow = SkTAddOffset<png_byte>(srcRow, fPng_rowbytes); |
692 | } |
693 | if (success && fInterlacedComplete) { |
694 | return kSuccess; |
695 | } |
696 | |
697 | if (rowsDecoded) { |
698 | *rowsDecoded = fLinesDecoded; |
699 | } |
700 | |
701 | return log_and_return_error(success); |
702 | } |
703 | |
704 | void setRange(int firstRow, int lastRow, void* dst, size_t rowBytes) override { |
705 | // FIXME: We could skip rows in the interlace buffer that we won't put in the output. |
706 | this->setUpInterlaceBuffer(lastRow - firstRow + 1); |
707 | png_set_progressive_read_fn(this->png_ptr(), this, nullptr, InterlacedRowCallback, nullptr); |
708 | fFirstRow = firstRow; |
709 | fLastRow = lastRow; |
710 | fDst = dst; |
711 | fRowBytes = rowBytes; |
712 | fLinesDecoded = 0; |
713 | } |
714 | |
715 | Result decode(int* rowsDecoded) override { |
716 | const bool success = this->processData(); |
717 | |
718 | // Now apply Xforms on all the rows that were decoded. |
719 | if (!fLinesDecoded) { |
720 | if (rowsDecoded) { |
721 | *rowsDecoded = 0; |
722 | } |
723 | return log_and_return_error(success); |
724 | } |
725 | |
726 | const int sampleY = this->swizzler() ? this->swizzler()->sampleY() : 1; |
727 | const int rowsNeeded = get_scaled_dimension(fLastRow - fFirstRow + 1, sampleY); |
728 | |
729 | // FIXME: For resuming interlace, we may swizzle a row that hasn't changed. But it |
730 | // may be too tricky/expensive to handle that correctly. |
731 | |
732 | // Offset srcRow by get_start_coord rows. We do not need to account for fFirstRow, |
733 | // since the first row in fInterlaceBuffer corresponds to fFirstRow. |
734 | int srcRow = get_start_coord(sampleY); |
735 | void* dst = fDst; |
736 | int rowsWrittenToOutput = 0; |
737 | while (rowsWrittenToOutput < rowsNeeded && srcRow < fLinesDecoded) { |
738 | png_bytep src = SkTAddOffset<png_byte>(fInterlaceBuffer.get(), fPng_rowbytes * srcRow); |
739 | this->applyXformRow(dst, src); |
740 | dst = SkTAddOffset<void>(dst, fRowBytes); |
741 | |
742 | rowsWrittenToOutput++; |
743 | srcRow += sampleY; |
744 | } |
745 | |
746 | if (success && fInterlacedComplete) { |
747 | return kSuccess; |
748 | } |
749 | |
750 | if (rowsDecoded) { |
751 | *rowsDecoded = rowsWrittenToOutput; |
752 | } |
753 | return log_and_return_error(success); |
754 | } |
755 | |
756 | void setUpInterlaceBuffer(int height) { |
757 | fPng_rowbytes = png_get_rowbytes(this->png_ptr(), this->info_ptr()); |
758 | fInterlaceBuffer.reset(fPng_rowbytes * height); |
759 | fInterlacedComplete = false; |
760 | } |
761 | }; |
762 | |
763 | // Reads the header and initializes the output fields, if not NULL. |
764 | // |
765 | // @param stream Input data. Will be read to get enough information to properly |
766 | // setup the codec. |
767 | // @param chunkReader SkPngChunkReader, for reading unknown chunks. May be NULL. |
768 | // If not NULL, png_ptr will hold an *unowned* pointer to it. The caller is |
769 | // expected to continue to own it for the lifetime of the png_ptr. |
770 | // @param outCodec Optional output variable. If non-NULL, will be set to a new |
771 | // SkPngCodec on success. |
772 | // @param png_ptrp Optional output variable. If non-NULL, will be set to a new |
773 | // png_structp on success. |
774 | // @param info_ptrp Optional output variable. If non-NULL, will be set to a new |
775 | // png_infop on success; |
776 | // @return if kSuccess, the caller is responsible for calling |
777 | // png_destroy_read_struct(png_ptrp, info_ptrp). |
778 | // Otherwise, the passed in fields (except stream) are unchanged. |
779 | static SkCodec::Result (SkStream* stream, SkPngChunkReader* chunkReader, |
780 | SkCodec** outCodec, |
781 | png_structp* png_ptrp, png_infop* info_ptrp) { |
782 | // The image is known to be a PNG. Decode enough to know the SkImageInfo. |
783 | png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, |
784 | sk_error_fn, sk_warning_fn); |
785 | if (!png_ptr) { |
786 | return SkCodec::kInternalError; |
787 | } |
788 | |
789 | #ifdef PNG_SET_OPTION_SUPPORTED |
790 | // This setting ensures that we display images with incorrect CMF bytes. |
791 | // See crbug.com/807324. |
792 | png_set_option(png_ptr, PNG_MAXIMUM_INFLATE_WINDOW, PNG_OPTION_ON); |
793 | #endif |
794 | |
795 | AutoCleanPng autoClean(png_ptr, stream, chunkReader, outCodec); |
796 | |
797 | png_infop info_ptr = png_create_info_struct(png_ptr); |
798 | if (info_ptr == nullptr) { |
799 | return SkCodec::kInternalError; |
800 | } |
801 | |
802 | autoClean.setInfoPtr(info_ptr); |
803 | |
804 | if (setjmp(PNG_JMPBUF(png_ptr))) { |
805 | return SkCodec::kInvalidInput; |
806 | } |
807 | |
808 | #ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED |
809 | // Hookup our chunkReader so we can see any user-chunks the caller may be interested in. |
810 | // This needs to be installed before we read the png header. Android may store ninepatch |
811 | // chunks in the header. |
812 | if (chunkReader) { |
813 | png_set_keep_unknown_chunks(png_ptr, PNG_HANDLE_CHUNK_ALWAYS, (png_byte*)"" , 0); |
814 | png_set_read_user_chunk_fn(png_ptr, (png_voidp) chunkReader, sk_read_user_chunk); |
815 | } |
816 | #endif |
817 | |
818 | const bool decodedBounds = autoClean.decodeBounds(); |
819 | |
820 | if (!decodedBounds) { |
821 | return SkCodec::kIncompleteInput; |
822 | } |
823 | |
824 | // On success, decodeBounds releases ownership of png_ptr and info_ptr. |
825 | if (png_ptrp) { |
826 | *png_ptrp = png_ptr; |
827 | } |
828 | if (info_ptrp) { |
829 | *info_ptrp = info_ptr; |
830 | } |
831 | |
832 | // decodeBounds takes care of setting outCodec |
833 | if (outCodec) { |
834 | SkASSERT(*outCodec); |
835 | } |
836 | return SkCodec::kSuccess; |
837 | } |
838 | |
839 | void AutoCleanPng::infoCallback(size_t idatLength) { |
840 | png_uint_32 origWidth, origHeight; |
841 | int bitDepth, encodedColorType; |
842 | png_get_IHDR(fPng_ptr, fInfo_ptr, &origWidth, &origHeight, &bitDepth, |
843 | &encodedColorType, nullptr, nullptr, nullptr); |
844 | |
845 | // TODO: Should we support 16-bits of precision for gray images? |
846 | if (bitDepth == 16 && (PNG_COLOR_TYPE_GRAY == encodedColorType || |
847 | PNG_COLOR_TYPE_GRAY_ALPHA == encodedColorType)) { |
848 | bitDepth = 8; |
849 | png_set_strip_16(fPng_ptr); |
850 | } |
851 | |
852 | // Now determine the default colorType and alphaType and set the required transforms. |
853 | // Often, we depend on SkSwizzler to perform any transforms that we need. However, we |
854 | // still depend on libpng for many of the rare and PNG-specific cases. |
855 | SkEncodedInfo::Color color; |
856 | SkEncodedInfo::Alpha alpha; |
857 | switch (encodedColorType) { |
858 | case PNG_COLOR_TYPE_PALETTE: |
859 | // Extract multiple pixels with bit depths of 1, 2, and 4 from a single |
860 | // byte into separate bytes (useful for paletted and grayscale images). |
861 | if (bitDepth < 8) { |
862 | // TODO: Should we use SkSwizzler here? |
863 | bitDepth = 8; |
864 | png_set_packing(fPng_ptr); |
865 | } |
866 | |
867 | color = SkEncodedInfo::kPalette_Color; |
868 | // Set the alpha depending on if a transparency chunk exists. |
869 | alpha = png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS) ? |
870 | SkEncodedInfo::kUnpremul_Alpha : SkEncodedInfo::kOpaque_Alpha; |
871 | break; |
872 | case PNG_COLOR_TYPE_RGB: |
873 | if (png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS)) { |
874 | // Convert to RGBA if transparency chunk exists. |
875 | png_set_tRNS_to_alpha(fPng_ptr); |
876 | color = SkEncodedInfo::kRGBA_Color; |
877 | alpha = SkEncodedInfo::kBinary_Alpha; |
878 | } else { |
879 | color = SkEncodedInfo::kRGB_Color; |
880 | alpha = SkEncodedInfo::kOpaque_Alpha; |
881 | } |
882 | break; |
883 | case PNG_COLOR_TYPE_GRAY: |
884 | // Expand grayscale images to the full 8 bits from 1, 2, or 4 bits/pixel. |
885 | if (bitDepth < 8) { |
886 | // TODO: Should we use SkSwizzler here? |
887 | bitDepth = 8; |
888 | png_set_expand_gray_1_2_4_to_8(fPng_ptr); |
889 | } |
890 | |
891 | if (png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS)) { |
892 | png_set_tRNS_to_alpha(fPng_ptr); |
893 | color = SkEncodedInfo::kGrayAlpha_Color; |
894 | alpha = SkEncodedInfo::kBinary_Alpha; |
895 | } else { |
896 | color = SkEncodedInfo::kGray_Color; |
897 | alpha = SkEncodedInfo::kOpaque_Alpha; |
898 | } |
899 | break; |
900 | case PNG_COLOR_TYPE_GRAY_ALPHA: |
901 | color = SkEncodedInfo::kGrayAlpha_Color; |
902 | alpha = SkEncodedInfo::kUnpremul_Alpha; |
903 | break; |
904 | case PNG_COLOR_TYPE_RGBA: |
905 | color = SkEncodedInfo::kRGBA_Color; |
906 | alpha = SkEncodedInfo::kUnpremul_Alpha; |
907 | break; |
908 | default: |
909 | // All the color types have been covered above. |
910 | SkASSERT(false); |
911 | color = SkEncodedInfo::kRGBA_Color; |
912 | alpha = SkEncodedInfo::kUnpremul_Alpha; |
913 | } |
914 | |
915 | const int numberPasses = png_set_interlace_handling(fPng_ptr); |
916 | |
917 | if (fOutCodec) { |
918 | SkASSERT(nullptr == *fOutCodec); |
919 | auto profile = read_color_profile(fPng_ptr, fInfo_ptr); |
920 | if (profile) { |
921 | switch (profile->profile()->data_color_space) { |
922 | case skcms_Signature_CMYK: |
923 | profile = nullptr; |
924 | break; |
925 | case skcms_Signature_Gray: |
926 | if (SkEncodedInfo::kGray_Color != color && |
927 | SkEncodedInfo::kGrayAlpha_Color != color) |
928 | { |
929 | profile = nullptr; |
930 | } |
931 | break; |
932 | default: |
933 | break; |
934 | } |
935 | } |
936 | |
937 | if (encodedColorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
938 | png_color_8p sigBits; |
939 | if (png_get_sBIT(fPng_ptr, fInfo_ptr, &sigBits)) { |
940 | if (8 == sigBits->alpha && kGraySigBit_GrayAlphaIsJustAlpha == sigBits->gray) { |
941 | color = SkEncodedInfo::kXAlpha_Color; |
942 | } |
943 | } |
944 | } else if (SkEncodedInfo::kOpaque_Alpha == alpha) { |
945 | png_color_8p sigBits; |
946 | if (png_get_sBIT(fPng_ptr, fInfo_ptr, &sigBits)) { |
947 | if (5 == sigBits->red && 6 == sigBits->green && 5 == sigBits->blue) { |
948 | // Recommend a decode to 565 if the sBIT indicates 565. |
949 | color = SkEncodedInfo::k565_Color; |
950 | } |
951 | } |
952 | } |
953 | |
954 | SkEncodedInfo encodedInfo = SkEncodedInfo::Make(origWidth, origHeight, color, alpha, |
955 | bitDepth, std::move(profile)); |
956 | if (1 == numberPasses) { |
957 | *fOutCodec = new SkPngNormalDecoder(std::move(encodedInfo), |
958 | std::unique_ptr<SkStream>(fStream), fChunkReader, fPng_ptr, fInfo_ptr, bitDepth); |
959 | } else { |
960 | *fOutCodec = new SkPngInterlacedDecoder(std::move(encodedInfo), |
961 | std::unique_ptr<SkStream>(fStream), fChunkReader, fPng_ptr, fInfo_ptr, bitDepth, |
962 | numberPasses); |
963 | } |
964 | static_cast<SkPngCodec*>(*fOutCodec)->setIdatLength(idatLength); |
965 | } |
966 | |
967 | // Release the pointers, which are now owned by the codec or the caller is expected to |
968 | // take ownership. |
969 | this->releasePngPtrs(); |
970 | } |
971 | |
972 | SkPngCodec::SkPngCodec(SkEncodedInfo&& encodedInfo, std::unique_ptr<SkStream> stream, |
973 | SkPngChunkReader* chunkReader, void* png_ptr, void* info_ptr, int bitDepth) |
974 | : INHERITED(std::move(encodedInfo), png_select_xform_format(encodedInfo), std::move(stream)) |
975 | , fPngChunkReader(SkSafeRef(chunkReader)) |
976 | , fPng_ptr(png_ptr) |
977 | , fInfo_ptr(info_ptr) |
978 | , fColorXformSrcRow(nullptr) |
979 | , fBitDepth(bitDepth) |
980 | , fIdatLength(0) |
981 | , fDecodedIdat(false) |
982 | {} |
983 | |
984 | SkPngCodec::~SkPngCodec() { |
985 | this->destroyReadStruct(); |
986 | } |
987 | |
988 | void SkPngCodec::destroyReadStruct() { |
989 | if (fPng_ptr) { |
990 | // We will never have a nullptr fInfo_ptr with a non-nullptr fPng_ptr |
991 | SkASSERT(fInfo_ptr); |
992 | png_destroy_read_struct((png_struct**)&fPng_ptr, (png_info**)&fInfo_ptr, nullptr); |
993 | fPng_ptr = nullptr; |
994 | fInfo_ptr = nullptr; |
995 | } |
996 | } |
997 | |
998 | /////////////////////////////////////////////////////////////////////////////// |
999 | // Getting the pixels |
1000 | /////////////////////////////////////////////////////////////////////////////// |
1001 | |
1002 | SkCodec::Result SkPngCodec::initializeXforms(const SkImageInfo& dstInfo, const Options& options) { |
1003 | if (setjmp(PNG_JMPBUF((png_struct*)fPng_ptr))) { |
1004 | SkCodecPrintf("Failed on png_read_update_info.\n" ); |
1005 | return kInvalidInput; |
1006 | } |
1007 | png_read_update_info(fPng_ptr, fInfo_ptr); |
1008 | |
1009 | // Reset fSwizzler and this->colorXform(). We can't do this in onRewind() because the |
1010 | // interlaced scanline decoder may need to rewind. |
1011 | fSwizzler.reset(nullptr); |
1012 | |
1013 | // If skcms directly supports the encoded PNG format, we should skip format |
1014 | // conversion in the swizzler (or skip swizzling altogether). |
1015 | bool skipFormatConversion = false; |
1016 | switch (this->getEncodedInfo().color()) { |
1017 | case SkEncodedInfo::kRGB_Color: |
1018 | if (this->getEncodedInfo().bitsPerComponent() != 16) { |
1019 | break; |
1020 | } |
1021 | |
1022 | // Fall through |
1023 | case SkEncodedInfo::kRGBA_Color: |
1024 | case SkEncodedInfo::kGray_Color: |
1025 | skipFormatConversion = this->colorXform(); |
1026 | break; |
1027 | default: |
1028 | break; |
1029 | } |
1030 | if (skipFormatConversion && !options.fSubset) { |
1031 | fXformMode = kColorOnly_XformMode; |
1032 | return kSuccess; |
1033 | } |
1034 | |
1035 | if (SkEncodedInfo::kPalette_Color == this->getEncodedInfo().color()) { |
1036 | if (!this->createColorTable(dstInfo)) { |
1037 | return kInvalidInput; |
1038 | } |
1039 | } |
1040 | |
1041 | this->initializeSwizzler(dstInfo, options, skipFormatConversion); |
1042 | return kSuccess; |
1043 | } |
1044 | |
1045 | void SkPngCodec::initializeXformParams() { |
1046 | switch (fXformMode) { |
1047 | case kColorOnly_XformMode: |
1048 | fXformWidth = this->dstInfo().width(); |
1049 | break; |
1050 | case kSwizzleColor_XformMode: |
1051 | fXformWidth = this->swizzler()->swizzleWidth(); |
1052 | break; |
1053 | default: |
1054 | break; |
1055 | } |
1056 | } |
1057 | |
1058 | void SkPngCodec::initializeSwizzler(const SkImageInfo& dstInfo, const Options& options, |
1059 | bool skipFormatConversion) { |
1060 | SkImageInfo swizzlerInfo = dstInfo; |
1061 | Options swizzlerOptions = options; |
1062 | fXformMode = kSwizzleOnly_XformMode; |
1063 | if (this->colorXform() && this->xformOnDecode()) { |
1064 | if (SkEncodedInfo::kGray_Color == this->getEncodedInfo().color()) { |
1065 | swizzlerInfo = swizzlerInfo.makeColorType(kGray_8_SkColorType); |
1066 | } else { |
1067 | swizzlerInfo = swizzlerInfo.makeColorType(kXformSrcColorType); |
1068 | } |
1069 | if (kPremul_SkAlphaType == dstInfo.alphaType()) { |
1070 | swizzlerInfo = swizzlerInfo.makeAlphaType(kUnpremul_SkAlphaType); |
1071 | } |
1072 | |
1073 | fXformMode = kSwizzleColor_XformMode; |
1074 | |
1075 | // Here, we swizzle into temporary memory, which is not zero initialized. |
1076 | // FIXME (msarett): |
1077 | // Is this a problem? |
1078 | swizzlerOptions.fZeroInitialized = kNo_ZeroInitialized; |
1079 | } |
1080 | |
1081 | if (skipFormatConversion) { |
1082 | // We cannot skip format conversion when there is a color table. |
1083 | SkASSERT(!fColorTable); |
1084 | int srcBPP = 0; |
1085 | switch (this->getEncodedInfo().color()) { |
1086 | case SkEncodedInfo::kRGB_Color: |
1087 | SkASSERT(this->getEncodedInfo().bitsPerComponent() == 16); |
1088 | srcBPP = 6; |
1089 | break; |
1090 | case SkEncodedInfo::kRGBA_Color: |
1091 | srcBPP = this->getEncodedInfo().bitsPerComponent() / 2; |
1092 | break; |
1093 | case SkEncodedInfo::kGray_Color: |
1094 | srcBPP = 1; |
1095 | break; |
1096 | default: |
1097 | SkASSERT(false); |
1098 | break; |
1099 | } |
1100 | fSwizzler = SkSwizzler::MakeSimple(srcBPP, swizzlerInfo, swizzlerOptions); |
1101 | } else { |
1102 | const SkPMColor* colors = get_color_ptr(fColorTable.get()); |
1103 | fSwizzler = SkSwizzler::Make(this->getEncodedInfo(), colors, swizzlerInfo, |
1104 | swizzlerOptions); |
1105 | } |
1106 | SkASSERT(fSwizzler); |
1107 | } |
1108 | |
1109 | SkSampler* SkPngCodec::getSampler(bool createIfNecessary) { |
1110 | if (fSwizzler || !createIfNecessary) { |
1111 | return fSwizzler.get(); |
1112 | } |
1113 | |
1114 | this->initializeSwizzler(this->dstInfo(), this->options(), true); |
1115 | return fSwizzler.get(); |
1116 | } |
1117 | |
1118 | bool SkPngCodec::onRewind() { |
1119 | // This sets fPng_ptr and fInfo_ptr to nullptr. If read_header |
1120 | // succeeds, they will be repopulated, and if it fails, they will |
1121 | // remain nullptr. Any future accesses to fPng_ptr and fInfo_ptr will |
1122 | // come through this function which will rewind and again attempt |
1123 | // to reinitialize them. |
1124 | this->destroyReadStruct(); |
1125 | |
1126 | png_structp png_ptr; |
1127 | png_infop info_ptr; |
1128 | if (kSuccess != read_header(this->stream(), fPngChunkReader.get(), nullptr, |
1129 | &png_ptr, &info_ptr)) { |
1130 | return false; |
1131 | } |
1132 | |
1133 | fPng_ptr = png_ptr; |
1134 | fInfo_ptr = info_ptr; |
1135 | fDecodedIdat = false; |
1136 | return true; |
1137 | } |
1138 | |
1139 | SkCodec::Result SkPngCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, |
1140 | size_t rowBytes, const Options& options, |
1141 | int* rowsDecoded) { |
1142 | Result result = this->initializeXforms(dstInfo, options); |
1143 | if (kSuccess != result) { |
1144 | return result; |
1145 | } |
1146 | |
1147 | if (options.fSubset) { |
1148 | return kUnimplemented; |
1149 | } |
1150 | |
1151 | this->allocateStorage(dstInfo); |
1152 | this->initializeXformParams(); |
1153 | return this->decodeAllRows(dst, rowBytes, rowsDecoded); |
1154 | } |
1155 | |
1156 | SkCodec::Result SkPngCodec::onStartIncrementalDecode(const SkImageInfo& dstInfo, |
1157 | void* dst, size_t rowBytes, const SkCodec::Options& options) { |
1158 | Result result = this->initializeXforms(dstInfo, options); |
1159 | if (kSuccess != result) { |
1160 | return result; |
1161 | } |
1162 | |
1163 | this->allocateStorage(dstInfo); |
1164 | |
1165 | int firstRow, lastRow; |
1166 | if (options.fSubset) { |
1167 | firstRow = options.fSubset->top(); |
1168 | lastRow = options.fSubset->bottom() - 1; |
1169 | } else { |
1170 | firstRow = 0; |
1171 | lastRow = dstInfo.height() - 1; |
1172 | } |
1173 | this->setRange(firstRow, lastRow, dst, rowBytes); |
1174 | return kSuccess; |
1175 | } |
1176 | |
1177 | SkCodec::Result SkPngCodec::onIncrementalDecode(int* rowsDecoded) { |
1178 | // FIXME: Only necessary on the first call. |
1179 | this->initializeXformParams(); |
1180 | |
1181 | return this->decode(rowsDecoded); |
1182 | } |
1183 | |
1184 | std::unique_ptr<SkCodec> SkPngCodec::MakeFromStream(std::unique_ptr<SkStream> stream, |
1185 | Result* result, SkPngChunkReader* chunkReader) { |
1186 | SkCodec* outCodec = nullptr; |
1187 | *result = read_header(stream.get(), chunkReader, &outCodec, nullptr, nullptr); |
1188 | if (kSuccess == *result) { |
1189 | // Codec has taken ownership of the stream. |
1190 | SkASSERT(outCodec); |
1191 | stream.release(); |
1192 | } |
1193 | return std::unique_ptr<SkCodec>(outCodec); |
1194 | } |
1195 | |